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Convex and differentiable functions

Convex Sets

Definition
A set C is convex if the line segment between any two points in C lies in
C .

KPM Fig. 7.4
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Convex and differentiable functions

Convex and Concave Functions

Definition
A function f : Rn→ R is convex if the line segment connecting any two
points on the graph of f lies above the graph. f is concave if −f is convex.
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Convex and differentiable functions

First-Order Approximation

Suppose f : Rn→ R is differentiable.
Predict f (y) given f (x) and ∇f (x)?
Linear (i.e. “first order”) approximation:

f (y)≈ f (x)+∇f (x)T (y − x)

Boyd & Vandenberghe Fig. 3.2
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Convex and differentiable functions

First-Order Condition for Convex, Differentiable Function

Suppose f : Rn→ R is convex and differentiable.
Then for any x ,y ∈ Rn

f (y)> f (x)+∇f (x)T (y − x)

The linear approximation to f at x is a global underestimator of f :

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3
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Convex and differentiable functions

First-Order Condition for Convex, Differentiable Function

Suppose f : Rn→ R is convex and differentiable
Then for any x ,y ∈ Rn

f (y)> f (x)+∇f (x)T (y − x)

Corollary

If ∇f (x) = 0 then x is a global minimizer of f .

For convex functions, local information gives global information.
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Subgradients

Subgradients

Definition
A vector g ∈ Rn is a subgradient of f : Rn→ R at x if for all z ,

f (z)> f (x)+gT (z− x).

g is a subgradient iff f (x)+gT (z− x) is a global underestimator of f

Blue is a graph of f (x).
Each red line is a lower bound: x 7→ f (x0)+gT (x − x0)
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Subgradients

Subdifferential

Definitions
f is subdifferentiable at x if ∃ at least one subgradient at x .
The set of all subgradients at x is called the subdifferential: ∂f (x)

Basic Facts

f is convex and differentiable =⇒ ∂f (x) = {∇f (x)}.
Any point x , there can be 0, 1, or infinitely many subgradients.
∂f (x) = ∅ =⇒ f is not convex.
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Subgradients

Globla Optimality Condition

Definition
A vector g ∈ Rn is a subgradient of f : Rn→ R at x if for all z ,

f (z)> f (x)+gT (z− x).

Corollary

If 0 ∈ ∂f (x), then x is a global minimizer of f .
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Subgradients

Subdifferential of Absolute Value

Consider f (x) = |x |

Plot on right shows {(x ,g) | x ∈ R, g ∈ ∂f (x)}

Boyd EE364b: Subgradients Slides
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Subgradient Descent

Descent Directions

For differentiable f , −∇f (x) is a descent direction.
What can we do for non-differentiable f ?

Can we use −g as a step, for some g ∈ ∂f (x)?

Is −g a descent direction?
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Subgradient Descent

Subgradient Not a Descent Direction

Diamonds are level sets of f (x). (f minimized at origin)
g is a subgradient at the point it’s drawn.
Moving in −g direction increases the function.

Figure from Boyd EE364b: Subgradients Slides,
http://web.stanford.edu/class/ee364b/lectures/subgradients_slides.pdf, slide 28.
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Subgradient Descent

Subgradient Descent

Suppose f is convex, and we start optimizing at x0.
Repeat

Step in a negative subgradient direction:

x = x0− tg ,

where t > 0 is the step size and g ∈ ∂f (x0).

−g not a descent direction – can this work?
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Subgradient Descent

Subgradient Gets Us Closer To Minimizer

Theorem
Suppose f is convex.

Let x = x0− tg , for g ∈ ∂f (x0).
Let z be any point for which f (z)< f (x0).
Then for small enough t > 0,

‖x − z‖2 < ‖x0− z‖2.

Apply this with z = x∗ ∈ argminx f (x).

=⇒Negative subgradient step gets us closer to minimizer.
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Subgradient Descent

Subgradient Gets Us Closer To Minimizer (Proof)

Let x = x0− tg , for g ∈ ∂f (x0) and t > 0.
Let z be any point for which f (z)< f (x0).
Then

‖x − z‖22 = ‖x0− tg − z‖22
= ‖x0− z‖22−2tgT (x0− z)+ t2‖g‖22
6 ‖x0− z‖22−2t [f (x0)− f (z)]+ t2‖g‖22

Consider −2t [f (x0)− f (z)]+ t2‖g‖22.
It’s a convex quadratic (facing upwards).
Has zeros at t = 0 and t = 2(f (x0)− f (z))/‖g‖22 > 0.
Therefore, it’s negative for any

t ∈
(

0,
2(f (x0)− f (z))

‖g‖22

)
.

Based on Boyd EE364b: Subgradients Slides
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Subgradient Descent

Convergence Theorem for Fixed Step Size

Assume f : Rn→ R is convex and
f is Lipschitz continuous with constant G > 0:

|f (x)− f (y)|6 G‖x − y‖ for all x ,y

Theorem
For fixed step size t, subgradient method satisfies:

lim
k→∞ f (x

(k)
best)6 f (x∗)+G 2t/2

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06-sg-method.pdf
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Subgradient Descent

Convergence Theorems for Decreasing Step Sizes

Assume f : Rn→ R is convex and
f is Lipschitz continuous with constant G > 0:

|f (x)− f (y)|6 G‖x − y‖ for all x ,y

Theorem
For step size respecting Robbins-Monro conditions,

lim
k→∞ f (x

(k)
best)6 f (x∗)

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06-sg-method.pdf
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