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Convex and differentiable functions

Convex Sets

Definition

A set C is convex if the line segment between any two points in C lies in

55

KPM Fig. 7.4
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Convex and differentiable functions

Convex and Concave Functions

Definition
A function f : R" — R is convex if the line segment connecting any two
points on the graph of f lies above the graph. f is concave if —f is convex.

KPM Fig. 7.5
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First-Order Approximation

@ Suppose f: R" — R is differentiable.
@ Predict f(y) given f(x) and Vf(x)?
@ Linear (i.e. “first order”) approximation:

Fy) = Fx)+ V()T (y—x)

fl@)+ Vi) (y-2)

(z, f(=))

Boyd & Vandenberghe Fig. 3.2
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Convex and differentiable functions

First-Order Condition for Convex, Differentiable Function

@ Suppose f : R" — R is convex and differentiable.
@ Then for any x,y € R”
fly) = f(x)+VF(x)T (y—x)

@ The linear approximation to f at x is a global underestimator of f:

() /

(z, f(=))

f@)+ V@) (y—=)

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3
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Convex and differentiable functions

First-Order Condition for Convex, Differentiable Function

@ Suppose f:R" — R is convex and differentiable

@ Then for any x,y € R”

Fly) = fx)+VF(x) (y—x)

Corollary
If Vf(x) =0 then x is a global minimizer of f. J

For convex functions, local information gives global information.
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Subgradients

Definition
A vector g € R" is a subgradient of 7 : R” — R at x if for all z,

flz) = fx)+gT (z—x).

g is a subgradient iff f(x)4g ' (z—x) is a global underestimator of f

A

\/

Blue is a graph of f(x).
Each red line is a lower bound: x +— f(xg)+g" (x —xo)
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Subdifferential

Definitions
o f is subdifferentiable at x if 3 at least one subgradient at x.

@ The set of all subgradients at x is called the subdifferential: 0f(x)

Basic Facts J

@ f is convex and differentiable = 0f(x) ={Vf(x)}.
@ Any point x, there can be 0, 1, or infinitely many subgradients.

@ df(x) =0 = f is not convex.
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Globla Optimality Condition

Definition
A vector g € R" is a subgradient of f : R” — R at x if for all z,

flz) > f(x)+g" (z—x).

Corollary

If0 € 0f (x), then x is a global minimizer of f.
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Subdifferential of Absolute Value

o Consider f(x) =|x]

fz) = |z af ()

@ Plot on right shows {(x,g) | x € R, g € 0f(x)}

Boyd EE364b: Subgradients Slides
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Subgradient Descent

Descent Directions

o For differentiable f, —Vf(x) is a descent direction.

@ What can we do for non-differentiable 7
@ Can we use —g as a step, for some g € 0f(x)?

@ Is —g a descent direction?
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Subgradient Not a Descent Direction

x2

f(@) = |z1| + 22|

e Diamonds are level sets of f(x). (f minimized at origin)
@ g is a subgradient at the point it's drawn.

@ Moving in —g direction increases the function.

Figure from Boyd EE364b: Subgradients Slides,
http://web.stanford.edu/class/ee364b/lectures/subgradients_slides.pdf, slide 28.
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Subgradient Descent

@ Suppose f is convex, and we start optimizing at xg.
@ Repeat

e Step in a negative subgradient direction:
X =Xp—tg,
where t > 0 is the step size and g € 0f (xp).

—g not a descent direction — can this work?
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L el |
Subgradient Gets Us Closer To Minimizer

Theorem

Suppose f is convex.
o let x=x9—tg, for g € 0f (xp).
@ Let z be any point for which f(z) < f(xp).
@ Then for small enough t >0,

X —2[|2 < []x0 — 2|2,

@ Apply this with z = x* € argmin, f(x).

— Negative subgradient step gets us closer to minimizer.
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Subgradient Gets Us Closer To Minimizer (Proof)

o Let x=x9—tg, for g € 9f(xp) and t > 0.
@ Let z be any point for which f(z) < f(xp).
@ Then
Ix—zl3 = lx—tg—2z|3
= |xo—zl3—2tg" (xo—2)+¢[lgl3
< xo—z]3—2t[f(x0) — F(2)] + 2||g |3
o Consider —2t[f(x0) — f(2)] + t?| g|3.

o It's a convex quadratic (facing upwards).
o Has zeros at t =0 and t =2(f(x0) —f(2))/||gl/3 > 0.
o Therefore, it's negative for any

e (o 240b0)re)
lgll3

Based on Boyd EE364b: Subgradients Slides
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Subgradient Descent

Convergence Theorem for Fixed Step Size
Assume f : R" — R is convex and
@ f is Lipschitz continuous with constant G > 0:

If(x)—=f(y)l < Gl x—yll forall x,y

Theorem

For fixed step size t, subgradient method satisfies:

||m f(xbest) f(x*)+ G%t/2

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06- sg-method.pdf
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Subgradient Descent

Convergence Theorems for Decreasing Step Sizes
Assume f :R" — R is convex and
@ f is Lipschitz continuous with constant G > 0:

If(x)—=f(y)l < Gl x—yll forall x,y

Theorem

For step size respecting Robbins-Monro conditions,

||m f(xbest) f(x*)

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06- sg-method.pdf
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