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Why Convex Optimization?

e Historically:

o Linear programs (linear objectives & constraints) were the focus
o Nonlinear programs: some easy, some hard

@ More Recently:

e Main distinction is between convex and non-convex problems
e Convex problems are the ones we know how to solve efficiently

@ Many techniques that are well understood for convex problems are
applied to non-convex problems

e e.g. SGD is routinely applied to neural networks, which are not convex
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Introduction

Your Reference for Convex Optimization

@ Boyd and Vandenberghe (2004)

o Very clearly written, but has a ton of detail for a first pass.
o See my “Extreme Abridgement of Boyd and Vandenberghe'.

Stephen Boyd and
Lieven Vandenberghe

convex
Optimization
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Notation from Boyd and Vandenberghe

e f:RP — RY to mean that f maps from some subset of RP

e namely dom f C RP, where dom f is the domain of f
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Convex Sets and Functions

Convex Sets and Functions J
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Convex Sets and Functions

Convex Sets

Definition

A set C is convex if for any x;,x2 € C and any 0 with 0 <0 < 1 we have

Ox1+(1—0)xx € C.

KPM Fig. 7.4
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Convex Sets and Functions

Convex and Concave Functions

Definition
A function f : R" = R is convex if dom f is a convex set and if for all
x,y €dom f, and 0 < 0 < 1, we have

f(Ox+(1—0)y) <Of(x)+(1—0)f(y).

KPM Fig. 7.5
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Convex Sets and Functions

Examples of Convex Functions on R

Examples
@ x> ax+ b is both convex and concave on R for all a,b € R.
@ x+ |x|P for p>1is convex on R

o x— e is convex on R for all a€ R

David Rosenberg (New York University)| DS-GA 1003 October 29, 2016

9/ 30



Convex Sets and Functions

Convex Functions and Optimization

Definition

A function f is strictly convex if the line segment connecting any two
points on the graph of f lies strictly above the graph (excluding the
endpoints).

Consequences for optimization:
@ convex: if there is a local minimum, then it is a global minimum

@ strictly convex: if there is a local minimum, then it is the unique
global minumum
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The General Optimization Problem
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The General Optimization Problem

General Optimization Problem: Standard Form

General Optimization Problem: Standard Form

minimize fo(x)
subject to fi(x)<0, i=1,....m
hi(x) =0, i=1,...p,

where x € R" are the optimization variables and f; is the objective
function.

Assume domain D =" dom f;N(\?_; dom h; is nonempty.
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The General Optimization Problem

General Optimization Problem: More Terminology

The set of points satisfying the constraints is called the feasible set.

A point x in the feasible set is called a feasible point.
If x is feasible and f;(x) =0,

e then we say the inequality constraint f;(x) < 0 is active at x.

The optimal value p* of the problem is defined as

p" =inf{fy(x) | x satisfies all constraints}.

e x* is an optimal point (or a solution to the problem) if x* is feasible

and f(x*) = p*.
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Do We Need Equality Constraints?

o Note that

h(x)=0 <= (h(x) >0 AND h(x) <0)

@ So any equality-constrained problem

minimize fo(x)
subject to h(x)=0

can be rewritten as

minimize fo(x)
subject to h(x) <0

@ For simplicity, we'll drop equality contraints from this presentation.
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Lagrangian Duality: Convexity not required
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The Lagrangian

The general [inequality-constrained] optimization problem is:

minimize fo(x)
subject to fi(x)<0, i=1,....m

Definition

The Lagrangian for this optimization problem is

L(x,\) = fo(x +Z)\f

@ A;'s are called Lagrange multipliers (also called the dual variables).

v
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Lagrangian Duality: Convexity not required

The Lagrangian Encodes the Objective and Constraints

@ Supremum over Lagrangian gives back objective and constraints:

supL(x,A) = sup <fo(X)+Z?\;ﬁ-(X)>
i=1

A=0 A=0

B {fo(x) when fi(x) <0all i

0 otherwise.
@ Equivalent primal form of optimization problem:

p* =infsup L(x,A)
X A%0
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The Primal and the Dual

@ Original optimization problem in primal form:

p* =infsup L(x,A)
X AX0

@ The Lagrangian dual problem:

d* =supinfL(x,A)
A=0 X

o We will show weak duality: p* > d* for any optimization problem
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Weak Max-Min Inequality

Theorem

For any f: W x Z — R, we have

sup inf f(w,z) < inf supf(w,z).

Proof.
For any wg € W and zy € Z, we clearly have

inf f(w,z) < f(wo,20) < supf(wp,2z).
wew zeZ

Since this is true for all wy and zy, we must also have

sup inf f(w,z) < inf supf(wg,z).
ZoEZWGW woEW zc 7

)
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Weak Duality

@ For any optimization problem (not just convex), weak max-min
inequality implies weak duality:

p" =infsup |fo(x)+ Aifi(x)
X A=0 0 ;
> sup inf |f(x)+ Aifi(x)| =d*
A=0,v X k ;

@ The difference p* —d* is called the duality gap.

@ For convex problems, we often have strong duality: p* = d*.
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The Lagrange Dual Function

@ The Lagrangian dual problem:
d* =sup inf L(x,A)

A=0 , ,
Lagrange dual function

Definition

The Lagrange dual function (or just dual function) is

g(A) =infL(x,A) = inf (fo(x) +Z7\,-f,-(x)> .
i=1

@ The dual function may take on the value —oco (e.g. fo(x) = x).
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The Lagrange Dual Problem

@ In terms of Lagrange dual function, we can write weak duality as

p* = supg(A) =d*
A0

@ So for any A with A > 0, Lagrange dual function gives a lower
bound on optimal solution:

g\ <p*
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The Lagrange Dual Problem

@ The Lagrange dual problem is a search for best lower bound:

maximize  g(A)
subject to A= 0.

o A dual feasible if A =0 and g(A) > —oo.
e A* dual optimal or optimal Lagrange multipliers if they are optimal
for the Lagrange dual problem.

o Lagrange dual problem often easier to solve (simpler constraints).
@ d* can be used as stopping criterion for primal optimization.

@ Dual can reveal hidden structure in the solution.
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Convex Optimization

Convex Optimization
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Convex Optimization

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize fo(x)

subject to fi(x)<0, i=1,...

where fy, ..., f,, are convex functions.
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Strong Duality for Convex Problems

@ For a convex optimization problems, we usually have strong duality,
but not always.
e For example:
minimize e
subject to x?/y <0
y>0

@ The additional conditions needed are called constraint qualifications.

Example from Laurent El Ghaoui's EE 227A: Lecture 8 Notes, Feb 9, 2012
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Slater's Constraint Qualifications for Strong Duality

Sufficient conditions for strong duality in a convex problem.

Roughly: the problem must be strictly feasible.

Qualifications when problem domain D C R" is an open set:

o (D is the set where all functions are defined, NOT the feasible set.)
o Strict feasibility is sufficient. (3x f;(x) <0 fori=1,...,m)
e For any affine inequality constraints, f;(x) <0 is sufficient.

@ Otherwise, see notes or BV Section 5.2.3, p. 226.
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Complementary Slackness
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Complementary Slackness

Complementary Slackness

Consider a general optimization problem (i.e. not necessarily convex).

If we have strong duality, we get an interesting relationship between

o the optimal Lagrange multiplier A; and
o the ith constraint at the optimum: f;(x*)

@ Relationship is called “complementary slackness':

A fi(x*)=0

Lagrange multiplier is zero unless constraint is active at optimum.
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Complementary Slackness

Complementary Slackness Proof

@ Assume strong duality: p* = d* in a general optimization problem

@ Let x* be primal optimal and A* be dual optimal. Then:

fox*) = g(A")

= inf (1%(X)+Z7\}kﬁ-(><)>
=1

< HX)+ ) AF(X)
i=1 go

< folx®).

Each term in sum }_;_; A'fi(x*) must actually be 0. That is

\A,*-‘f,-(x*)zo, i=1,...,m|

This condition is known as complementary slackness.
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