Lasso, Ridge, and Elastic Net

David Rosenberg

New York University

October 29, 2016

David Rosenberg (New York University)| DS-GA 1003 October 29, 2016

1/14



A Very Simple Model

Suppose we have one feature x; € R.

Response variable y € R.

Got some data and ran least squares linear regression.
The ERM is

I?(Xl) =4x;.

What happens if we get a new feature x»,

o but we always have x, = x;7
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The Grouping Issue

Duplicate Features

@ New feature x» gives no new information.
e ERM is still

~

f(x1,x2) = 4x1.

@ Now there are some more ERMs:

F(xl,xﬂ = 2x1+2x0
fxi,x) = x1+3x
fxa,x) = 4x

@ What if we introduce £; or {> regularization?
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The Grouping Issue

Duplicate Features: £; and €2 norms

° f(xl,xz) = wix1 + woxo is an ERM iff wq +wo = 4.

@ Consider the ¢; and > norms of various solutions:

[ wi [ wo [ [wlly | w3 |

4 |0 4 16
2|2 4 8
1] 3 4 10
-1 5 6 26

@ ||wl|; doesn’t discriminate, as long as all have same sign

o ||w||3 minimized when weight is spread equally

@ Picture proof: Level sets of loss are lines of the form wy +w, =c...

David Rosenberg (New York University)| DS-GA 1003 October 29, 2016

4/14



Duplicate Features: Take Away

o For identical features

o {; regularization spreads weight arbitrarily (all weights same sign)
o {5 regularization spreads weight evenly

o Extrapolation to correlated variables:

e {; regularization may choose just one variable from a group and ignore
the rest
o {» tends to spread weight roughly equally among correlated variables
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The Grouping Issue

Example with highly correlated features

o Model in words:

y is a linear combination of z; and z
e But we don't observe z; and z, directly.

We get 3 noisy observations of z;.
We get 3 noisy observations of z.

e We want to predict y from our noisy observations.

Example based on Section 4.2 in Hastie et al's Statistical Learning with Sparsity.
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The Grouping Issue

Example with highly correlated features

@ Suppose (x,y) generated as follows:

71,22 ~ N(0,1) (independent)
€0,€1,...,€6 ~ N(0,1) (independent)
y = 3z1—15z+¢g
{z1+ej/5 for j=1,2,3

Xj = .
z+¢;/b forj=4,56

o Generated a sample of (x,y) pairs of size 100.

e Correlations within the groups of x's were around 0.97.

Example based on Section 4.2 in Hastie et al's Statistical Learning with Sparsity.
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The Grouping Issue

Example with highly correlated features

@ Lasso regularization paths:
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@ This is not a good outcome — why?

From Figure 4.1 of Hastie et al's Statistical Learning with Sparsity.
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Hedge Bets When Variables Highly Correlated

@ When variables are highly correlated,
e we want to give them roughly the same weight.
o Why?

o robustness: what if one of the input variables has large error

@ How can we get the weight spread more evenly?

From Figure 4.1 of Hastie et al's Statistical Learning with Sparsity.
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Elastic Net

@ The elastic net combines lasso and ridge penalties:

n

. 1 2
w=argmin = > {wTx—yi} + Aallwlls +Al|wl3
weRd M50

@ We expect correlated random variables to have similar coefficients.

Theorem
2L et pjj = corr(xj, xj). Suppose W; and W; are selected by elastic net. If

w;w; >0, then
lyllv2
2

W — W] <

A wl—p,-j.

https://web.stanford.edu/~hastie/ TALKS /enet _talk.pdf

v
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Elastic Net Results on Model
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@ Lasso on left; Elastic net on right.

@ Ratio of £, to {; regularization roughly 2: 1.

From Figure 4.1 of Hastie et al's Statistical Learning with Sparsity.
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The Grouping Issue

Elastic Net vs Lasso Norm Ball

B3 B3

From Figure 4.2 of Hastie et al's Statistical Learning with Sparsity.
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The Grouping Issue

The ((Zq)q Norm Constraint

e Generalize to £ norm: (||wl|q)? =[wa|? +|wa| .
o F={f(x)=wixg +woxo}.
e Contours of ||w|d = |wi|? +|wo|?:
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The Grouping Issue

{15 vs Elastic Net

qg=1.2 a=0.2
i A\
L‘q Elastic Net

FIGURE 3.13. Contours of constant wvalue of
>2; 18517 for ¢ = 1.2 (left plot), and the elastic-net
penalty 3, (B2 + (1 — @)|B;]) for a = 0.2 (right plot).
Although visually very similar, the elastic-net has sharp
(non-differentiable) corners, while the ¢ = 1.2 penalty
does not.

From Hastie et al’s Elements of Statistical Learning.
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