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Maximum Likelihood Estimation

Estimating a Probability Distribution: Setting

Let p(y) represent a probability distribution on Y.
p(y) is unknown and we want to estimate it.
Assume that p(y) is either a

probability density function on a continuous space Y, or a
probability mass function on a discrete space Y.

Typical Y’s:

Y= R; Y= Rd [typical continuous distributions]
Y= {−1,1} [e.g. binary classification]
Y= {0,1,2, . . . ,K } [e.g. multiclass problem]
Y= {0,1,2,3,4 . . .} [unbounded counts]
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Maximum Likelihood Estimation

Evaluating a Probability Distribution Estimate

Before we talk about estimation, let’s talk about evaluation.
Somebody gives us an estimate of the probability distribution

p̂(y).

How can we evaluate how good it is?
We want p̂(y) to be descriptive of future data.
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Maximum Likelihood Estimation

Likelihood of a Predicted Distribution

Suppose we have

D= {y1, . . . ,yn} sampled i.i.d. from p(y).

Then the likelihood of p̂ for the data D is defined to be

p̂(D) =

n∏
i=1

p̂(yi ).

We’ll write this as
LD(p̂) := p̂(D)

Special case: If p̂ is a probability mass function, then

LD(p̂) is the probability of D under p̂.
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Maximum Likelihood Estimation

Parametric Models

Definition
A parametric model is a set of probability distributions indexed by a
parameter θ ∈Θ. We denote this as

{p(y ;θ) | θ ∈Θ} ,

where θ is the parameter and Θ is the parameter space.

In probabilistic modeling, analysis begins with something like:

Suppose the data are generated by a distribution in parametric
family F (e.g. a Poisson family).

Our perspective is different, at least conceptually:
We don’t make any assumptions about the data generating distribution.
We use a parametric model as a hypothesis space.
(More on this later.)
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Maximum Likelihood Estimation

Poisson Family

Support Y= {0,1,2,3, . . .}.
Parameter space: {λ ∈ R | λ > 0}
Probability mass function on k ∈ Y:

p(k ;λ) = λke−λ/(k!)
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Maximum Likelihood Estimation

Beta Family

Support Y= (0,1). [The unit interval.]
Parameter space: {θ= (α,β) | α,β > 0}
Probability density function on y ∈ Y:

p(y ;a,b) =
xα−1 (1− x)β−1

B(α,β)
.

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia
Commonshttp://taps-graph-review.wikispaces.com/Box+and+Whisker+Plots.
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Maximum Likelihood Estimation

Gamma Family

Support Y= (0,∞). [Positive real numbers]
Parameter space: {θ= (k ,θ) | k > 0,θ > 0}
Probability density function on y ∈ Y:

p(y ;k ,θ) =
1

Γ(k)θk
xk−1e−x/θ.

Figure from Wikipedia.
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

Suppose we have a parametric model {p(y ;θ) | θ ∈Θ} and a sample
D= {y1, . . . ,yn}.

Definition
The maximum likelihood estimator (MLE) for θ in the model
{p(y ,θ) | θ ∈Θ} is

θ̂= argmax
θ∈Θ

LD(θ) = argmax
θ∈Θ

n∏
i=1

p(yi ;θ).

In practice, we prefer to work with the log likelihood. Same maximum but

logp(D;θ) =
n∑

i=1

logp(yi ;θ),

and sums are easier to work with than products.
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

Finding the MLE is an optimization problem.

For some model families, calculus gives closed form for MLE.

Can also use numerical methods we know (e.g. SGD).

Note: In certain situations, the MLE may not exist.

But there is usually a good reason for this.

e.g. Gaussian family
{
N(µ,σ2 | µ ∈ R,σ2 > 0

}
, Single observation y .

Take µ= y and σ2→ 0 drives likelihood to infinity. MLE doesn’t exist.
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Maximum Likelihood Estimation

Example: MLE for Poisson

Suppose we’ve observed some counts D= {k1, . . . ,kn} ∈ {0,1,2,3, . . .}.
The Poisson log-likelihood for a single count is

log [p(k ;λ)] = log
[
λke−λ

k!

]
= k logλ−λ− log (k!)

The full log-likelihood is

logp(D,λ) =

n∑
i=1

[ki logλ−λ− log (ki !)]

David Rosenberg (New York University) DS-GA 1003 October 29, 2016 12 / 49



Maximum Likelihood Estimation

Example: MLE for Poisson

The full log-likelihood is

logp(D,λ) =

n∑
i=1

[ki logλ−λ− log (ki !)]

First order condition gives

0=
∂

∂λ
[logp(D,λ)] =

n∑
i=1

[
ki
λ
−1
]

=⇒ λ =
1
n

n∑
i=1

ki

So MLE λ̂ is just the mean of the counts.
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Maximum Likelihood Estimation

Test Set Log Likelihood for Penn Station, Mon-Fri 7-8pm

Method Test Log-Likelihood
Poisson −392.16

Negative Binomial −188.67
Histogram (Bin width = 7) −∞
95% Histogram +.05 NegBin −203.89
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Statistical Learning Formulation
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Statistical Learning Formulation

Probability Estimation as Statistical Learning

Output space Y

Action space
A= {p(y) | p is a probability density or mass function on Y}.
How to encode our objective of “high likelihood” as a loss function?

Define loss function as the negative log-likelihood of y under p(·):

` : A×Y → R
(p,y) 7→ − logp(y)
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Statistical Learning Formulation

Probability Estimation as Statistical Learning

If true distribution of y is q, then risk of predicted distribution p is

R(p) = Ey∼q [− logp(y)] .

The empirical risk of p for a sample D= {y1, . . . ,yn} ∈ Y is

R̂(p) = −

n∑
i=1

logp(yi ),

which is exactly the negative log-likelihood of p for the data D.
Therefore, MLE is just an empirical risk minimizer.
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Statistical Learning Formulation

Estimation Distributions, Overfitting, and Hypothesis Spaces

Just as in classification and regression, MLE (i.e. ERM) can overfit!
Example Hypothesis Spaces / Probability Models:

F = {Poisson distributions}.
F = {Negative binomial distributions}.
F ={Histogram with 10 bins}
F ={Histogram with bin for every y ∈ Y} [will likely overfit for
continuous data]
F = {Depth 5 decision trees with histogram estimates in leaves}

How to judge with hypothesis space works the best?
Choose the model with the highest likelihood for a test set.
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Generalized Regression

Generalized Regression
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Generalized Regression

Generalized Regression / Conditional Distribution Estimation

Given X , predict probability distribution p(y | x)

How do we represent the probability distribution?
We’ll consider parametric families of distributions.

distribution represented by parameter vector

Examples:
1 Logistic regression (Bernoulli distribution)
2 Probit regression (Bernoulli distribution)
3 Poisson regression (Poisson distribution)
4 Linear regression (Normal distribution, fixed variance)
5 Generalized Linear Models (GLM) (encompasses all of the above)
6 Generalized Additive Models (GAM)
7 Gradient Boosting Machines (GBM) / AnyBoost [with likelihood loss

function]
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Generalized Regression

Generalized Regression as Statistical Learning

Input space X

Output space Y

All pairs (x ,y) are independent with distribution PX×Y.
Action space
A= {p(y) | p is a probability density or mass function on Y}.
Hypothesis spaces contain decision functions f : X→A.

Given an x ∈ X, predict a probability distribution p(y) on Y.
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Generalized Regression

A Note on Notation

Hypothesis spaces contain decision functions f : X→A.

Given an x ∈ X, predict a probability distribution p(y) on Y.

Let f be a decision function.

In regression, f (x) ∈ R
In hard classification, f (x) ∈ {−1,1}
For generalized regression, f (x) ∈?

f (x) is a PDF or PMF on Y.
If p = f (x), can evaluate p(y) for predicted probability of y .
Or just write [f (x)](y) or even f (x)(y).
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Generalized Regression

Generalized Regression as Statistical Learning

The risk of decision function f : X→A

R(f ) = −Ex ,y log [f (x)] (y),

where f (x) is a PDF or PMF on Y, and we’re evaluating it on Y .

The empirical risk of f for a sample D= {y1, . . . ,yn} ∈ Y is

R̂(f ) = −

n∑
i=1

log [f (xi )] (yi ).

This is called the negative conditional log-likelihood.

David Rosenberg (New York University) DS-GA 1003 October 29, 2016 23 / 49



Bernoulli Regression

Bernoulli Regression
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Bernoulli Regression

Probabilistic Binary Classifiers

Setting: X= Rd , Y= {0,1}
For each x , need to predict a distribution on Y= {0,1}.
What kind of parametric distribution could be supported on {0,1}?
Not a lot of choices....
Bernoulli!
For each x ,

predict the Bernoulli parameter θ= p(y = 1 | x).
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Bernoulli Regression

Linear Probabilistic Classifiers

Setting: X= Rd , Y= {0,1}
Want prediction function x 7→ θ= p(y = 1 | x).
We need θ ∈ [0,1].
For a “linear method”, we can write this in two steps:

x︸︷︷︸
∈RD

7→ wT x︸︷︷︸
∈R

7→ f (wT x)︸ ︷︷ ︸
∈[0,1]

,

where f : R→ [0,1] is called the transfer or inverse link function.
Probability model is then

p(y = 1 | x) = f (wT x)
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Bernoulli Regression

Inverse Link Functions

Two commonly used “inverse link” functions to map from wT x to θ:
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Logistic function =⇒ Logistic Regression
Normal CDF =⇒ Probit Regression
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Bernoulli Regression

Learning

X= Rd

Y= {0,1}
A=,1 (Representing Bernoulli(θ) distributions by θ ∈ [0,1])
H =

{
x 7→ f (wT x) | w ∈ Rd

}
We can choose w using maximum likelihood...
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Bernoulli Regression

Bernoulli Regression: Likelihood Scoring

Suppose we have data D= {(x1,y1), . . . ,(xn,yn)}.
Compute the model likelihood for D:

pw (D) =

n∏
i=1

pw (yi | xi ) [by independence]

=

n∏
i=1

[
f (wT xi )

]yi [1− f (wT xi )
]1−yi

.

Huh? Remember yi ∈ {0,1}.
Easier to work with the log-likelihood:

logpw (D) =

n∑
i=1

yi log f (wT xi )+(1− yi ) log
[
1− f (wT xi )

]
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Bernoulli Regression

Bernoulli Regression: MLE

Maximum Likelihood Estimation (MLE) finds w maximizing
logpw (D).
Equivalently, minimize the objective function

J(w) = −

[
n∑

i=1

yi log f (wT xi )+(1− yi ) log
[
1− f (wT xi )

]]

For differentiable f ,

J(w) is differentiable, and we can use our standard tools.

Homework: Derive the SGD step directions for logistic regression.
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Multinomial Logistic Regression

Multinomial Logistic Regression
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Multinomial Logistic Regression

Multinomial Logistic Regression

Setting: X= Rd , Y= {1, . . . ,k}
The numbers (θ1, . . . ,θk) where

∑k
c=1θc = 1 represent a

“multinoulli” or “categorical” distribution.

For each x , we want to produce a distribution on the k classes.
That is, for each x and each y ∈ {1, . . . ,y }, we want to produce a
probability

p(y | x) = θy ,

where
∑K

y=1θy = 1.
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Multinomial Logistic Regression

Multinomial Logistic Regression: Classic Setup

From each x , we compute a linear score function for each class:

x 7→ (〈w1,x〉 , . . . ,〈wk ,x〉) ∈ Rk

We need to map this Rk vector into a probability vector.
Use the softmax function:

(〈w1,x〉 , . . . ,〈wk ,x〉) 7→

(
exp
(
wT

1 x
)∑K

c=1 exp(wT
c x)

, . . . ,
exp
(
wT
k x
)∑K

c=1 exp(wT
c x)

)

If θ ∈ Rk is the output of the softmax, note that

θi > 0
k∑

i=1

θi = 1
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Multinomial Logistic Regression

Multinomial Logistic Regression: Classic Setup

Putting this together, we write multinomial logistic regression as

p(y | x) =
exp
(
wT
y x
)∑K

c=1 exp(wT
c x)

,

where we’ve introduced parameter vectors w1, . . . ,wk ∈ Rd .
Do we still see score functions in here?
Can view x 7→ wT

y x as the score for class y , for y ∈ {1, . . . ,k}.
We can also “flatten” this as we did for multiclass classification.

Introduce a class-sensitive feature vector Ψ(x ,y) ∈ Rd×k

Parameter vector w ∈ Rd×k .
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Poisson Regression

Poisson Regression
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Poisson Regression

Poisson Regression: Setup

Input space X= Rd , Output space Y= {0,1,2,3,4, . . . }

Hypothesis space consists of functions f : x 7→ Poisson(λ(x)).

That is, for each x , f (x) returns a Poisson with mean λ(x) ∈ (0,∞).
What function?

Recall λ > 0.
In Poisson regression, x enters linearly: x 7→ wT x 7→ λ= f (wT x).
Standard approach is to take

λ(x) = exp
(
wT x

)
,

for some parameter vector w .
Note that range of λ(x) = (0,∞), (appropriate for the Poisson
parameter).
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Poisson Regression

Poisson Regression: Likelihood Scoring

Suppose we have data D= {(x1,y1), . . . ,(xn,yn)}.
Recall the log-likelihood for Poisson is:

logp(D,λ) =

n∑
i=1

[yi logλ−λ− log (yi !)]

Plugging in λ(x) = exp
(
wT x

)
, we get

logp(D,λ) =

n∑
i=1

[
yi log

[
exp
(
wT x

)]
− exp

(
wT x

)
− log (yi !)

]
=

n∑
i=1

[
yiw

T x − exp
(
wT x

)
− log (yi !)

]
Maximize this w.r.t. w to find the Poisson regression.
No closed form for optimum, but it’s concave, so easy to optimize.
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Conditional Gaussian Regression

Conditional Gaussian Regression
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Conditional Gaussian Regression

Gaussian Regression

Input space X= Rd , Output space Y= R
Hypothesis space consists of functions f : x 7→N

(
wT x ,σ2

)
.

For each x , f (x) returns a particular Gaussian density with variance σ2 .
Choice of w determines the function.

For some parameter w ∈ Rd , can write our prediction function as

[fw (x)] (y) = pw (y | x) =N(y | wT x ,σ2),

where σ2 > 0.
Given some i.i.d. data D= {(x1,y1), . . . ,(xn,yn)}, how to assess the fit?
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Conditional Gaussian Regression

Gaussian Regression: Likelihood Scoring

Suppose we have data D= {(x1,y1), . . . ,(xn,yn)}.
Compute the model likelihood for D:

pw (D) =

n∏
i=1

pw (yi | xi ) [by independence]

Maximum Likelihood Estimation (MLE) finds w maximizing pw (D).
Equivalently, maximize the data log-likelihood:

w∗ = argmax
w∈Rd

n∑
i=1

logpw (yi | xi )

Let’s start solving this!
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Conditional Gaussian Regression

Gaussian Regression: MLE

The conditional log-likelihood is:

n∑
i=1

logpw (yi | xi )

=

n∑
i=1

log
[

1
σ
√
2π

exp
(
−
(yi −wT xi )

2

2σ2

)]

=

n∑
i=1

log
[

1
σ
√
2π

]
︸ ︷︷ ︸
independent of w

+

n∑
i=1

(
−
(yi −wT xi )

2

2σ2

)

MLE is the w where this is maximized.
Note that σ2 is irrelevant to finding the maximizing w .
Can drop the negative sign and make it a minimization problem.
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Conditional Gaussian Regression

Gaussian Regression: MLE

The MLE is

w∗ =argmin
w∈Rd

n∑
i=1

(yi −wT xi )
2

This is exactly the objective function for least squares.
From here, can use usual approaches to solve for w∗(linear algebra,
calculus, iterative methods etc.)
NOTE: Parameter vector w only interacts with x by an inner product
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Generalized Linear Models (Lite)

Generalized Linear Models (Lite)
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Generalized Linear Models (Lite)

Natural Exponential Families

{
pθ(y) | θ ∈Θ⊂ Rd

}
is a family of pdf’s or pmf’s on Y.

The family is a natural exponential family with parameter θ if

pθ(y) =
1

Z (θ)
h(y)exp

[
θT y

]
.

h(y) is a nonnegative function called the base measure.
Z (θ) =

∫
Y h(y)exp

[
θT y

]
is the partition function.

The natural parameter space is the set Θ= {θ | Z (θ)<∞}.

the set of θ for which exp
[
θT y

]
can be normalized to have integral 1

θ is called the natural parameter.
Note: In exponential family form, family typically has a different
parameterization than the “standard” form.
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Generalized Linear Models (Lite)

Specifying a Natural Exponential Family

The family is a natural exponential family with parameter θ if

pθ(y) =
1

Z (θ)
h(y)exp

[
θT y

]
.

To specify a natural exponential family, we need to choose h(y).

Everything else is determined.

Implicit in choosing h(y) is the choice of the support of the
distribution.
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Generalized Linear Models (Lite)

Natural Exponential Families: Examples

The following are univariate natural exponential families:
1 Normal distribution with known variance.
2 Poisson distribution
3 Gamma distribution (with known k parameter)
4 Bernoulli distribution (and Binomial with known number of trials)
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Generalized Linear Models (Lite)

Example: Poisson Distribution

For Poisson, we found the log probability mass function is:

log [p(y ;λ)] = y logλ−λ− log (y !) .

Exponentiating this, we get

p(y ;λ) = exp(y logλ−λ− log (y !)) .

If we reparameterize, taking θ= logλ, we can write this as

p(y ,θ) = exp
(
yθ− eθ− log (y !)

)
=

1
y !

1
eeθ

exp(yθ) ,

which is in natural exponential family form, where

Z (θ) = exp
(
eθ
)

h(y) =
1
y !
.

θ= logλ is the natural parameter.
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Generalized Linear Models (Lite)

Generalized Linear Models [with Canonical Link]

In GLMs, we first choose a natural exponential family.

(This amounts to choosing h(y).)

The idea is to plug in wT x for the natural parameter.

This gives models of the following form:

pθ(y | x) =
1

Z (wT x)
h(y)exp

[
(wT x)y

]
.

This is the form we had for Poisson regression.
Note: This is very convenient, but only works if Θ= R.
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Generalized Linear Models (Lite)

Generalized Linear Models [with General Link]

More generally, choose a function ψ : R→Θ so that

x 7→ wT x 7→ψ(wT x),

where θ=ψ(wT x) is the natural parameter for the family.
So our final prediction (for one-parameter families) is:

pθ(y | x) =
1

Z (ψ(wT x))
h(y)exp

[
ψ(wT x)y

]
.
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