

Conditional Probability Models

David Rosenberg

New York University

October 29, 2016

Maximum Likelihood Estimation

Estimating a Probability Distribution: Setting

- Let $p(y)$ represent a probability distribution on \mathcal{Y} .
- $p(y)$ is **unknown** and we want to **estimate** it.
- Assume that $p(y)$ is either a
 - probability density function on a continuous space \mathcal{Y} , or a
 - probability mass function on a discrete space \mathcal{Y} .
- Typical \mathcal{Y} 's:
 - $\mathcal{Y} = \mathbf{R}$; $\mathcal{Y} = \mathbf{R}^d$ [typical continuous distributions]
 - $\mathcal{Y} = \{-1, 1\}$ [e.g. binary classification]
 - $\mathcal{Y} = \{0, 1, 2, \dots, K\}$ [e.g. multiclass problem]
 - $\mathcal{Y} = \{0, 1, 2, 3, 4, \dots\}$ [unbounded counts]

Evaluating a Probability Distribution Estimate

- Before we talk about estimation, let's talk about evaluation.
- Somebody gives us an estimate of the probability distribution

$$\hat{p}(y).$$

- How can we evaluate how good it is?
- We want $\hat{p}(y)$ to be descriptive of **future** data.

Likelihood of a Predicted Distribution

- Suppose we have

$\mathcal{D} = \{y_1, \dots, y_n\}$ sampled i.i.d. from $p(y)$.

- Then the **likelihood** of \hat{p} for the data \mathcal{D} is defined to be

$$\hat{p}(\mathcal{D}) = \prod_{i=1}^n \hat{p}(y_i).$$

- We'll write this as

$$L_{\mathcal{D}}(\hat{p}) := \hat{p}(\mathcal{D})$$

- Special case: If \hat{p} is a probability mass function, then

- $L_{\mathcal{D}}(\hat{p})$ is the probability of \mathcal{D} under \hat{p} .

Parametric Models

Definition

A **parametric model** is a set of probability distributions indexed by a parameter $\theta \in \Theta$. We denote this as

$$\{p(y; \theta) \mid \theta \in \Theta\},$$

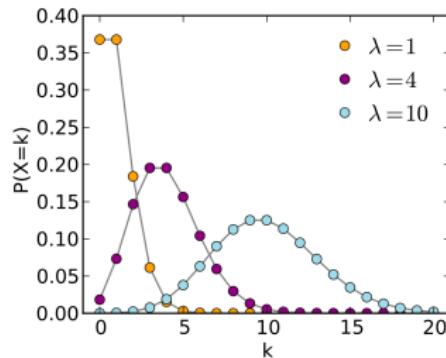
where θ is the **parameter** and Θ is the **parameter space**.

- In **probabilistic modeling**, analysis begins with something like:
Suppose the data are generated by a distribution in parametric family \mathcal{F} (e.g. a Poisson family).
- Our perspective is different, at least conceptually:
 - We don't make any assumptions about the data generating distribution.
 - We use a parametric model as a **hypothesis space**.
 - (More on this later.)

Poisson Family

- Support $\mathcal{Y} = \{0, 1, 2, 3, \dots\}$.
- Parameter space: $\{\lambda \in \mathbf{R} \mid \lambda > 0\}$
- Probability mass function on $k \in \mathcal{Y}$:

$$p(k; \lambda) = \lambda^k e^{-\lambda} / (k!)$$



Beta Family

- Support $\mathcal{Y} = (0, 1)$. [The unit interval.]
- Parameter space: $\{\theta = (\alpha, \beta) \mid \alpha, \beta > 0\}$
- Probability density function on $y \in \mathcal{Y}$:

$$p(y; a, b) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}.$$

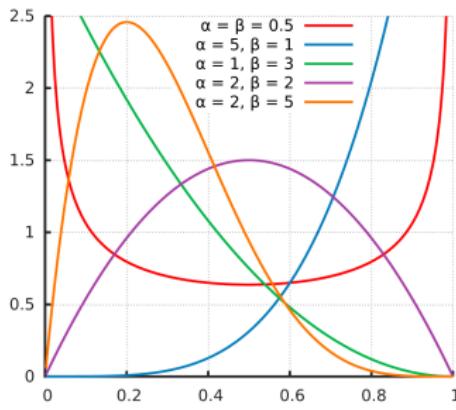


Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons <http://taps-graph-review.wikispaces.com/Box+and+Whisker+Plots>.

Gamma Family

- Support $\mathcal{Y} = (0, \infty)$. [Positive real numbers]
- Parameter space: $\{\theta = (k, \theta) \mid k > 0, \theta > 0\}$
- Probability density function on $y \in \mathcal{Y}$:

$$p(y; k, \theta) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-x/\theta}.$$

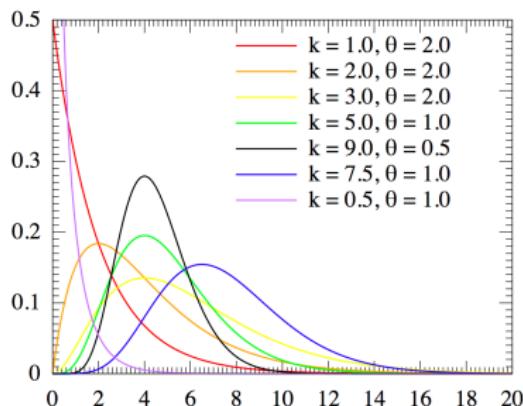


Figure from Wikipedia.

Maximum Likelihood Estimation

Suppose we have a parametric model $\{p(y; \theta) \mid \theta \in \Theta\}$ and a sample $\mathcal{D} = \{y_1, \dots, y_n\}$.

Definition

The maximum likelihood estimator (MLE) for θ in the model $\{p(y, \theta) \mid \theta \in \Theta\}$ is

$$\hat{\theta} = \arg \max_{\theta \in \Theta} L_{\mathcal{D}}(\theta) = \arg \max_{\theta \in \Theta} \prod_{i=1}^n p(y_i; \theta).$$

In practice, we prefer to work with the **log likelihood**. Same maximum but

$$\log p(\mathcal{D}; \theta) = \sum_{i=1}^n \log p(y_i; \theta),$$

and sums are easier to work with than products.

Maximum Likelihood Estimation

- Finding the MLE is an optimization problem.
- For some model families, calculus gives closed form for MLE.
- Can also use numerical methods we know (e.g. SGD).
- Note: In certain situations, the MLE may not exist.
 - But there is usually a good reason for this.
- e.g. Gaussian family $\{\mathcal{N}(\mu, \sigma^2) \mid \mu \in \mathbf{R}, \sigma^2 > 0\}$, Single observation y .
 - Take $\mu = y$ and $\sigma^2 \rightarrow 0$ drives likelihood to infinity. MLE doesn't exist.

Example: MLE for Poisson

- Suppose we've observed some counts $\mathcal{D} = \{k_1, \dots, k_n\} \in \{0, 1, 2, 3, \dots\}$.
- The Poisson log-likelihood for a single count is

$$\begin{aligned}\log [p(k; \lambda)] &= \log \left[\frac{\lambda^k e^{-\lambda}}{k!} \right] \\ &= k \log \lambda - \lambda - \log(k!)\end{aligned}$$

- The full log-likelihood is

$$\log p(\mathcal{D}, \lambda) = \sum_{i=1}^n [k_i \log \lambda - \lambda - \log(k_i!)]$$

Example: MLE for Poisson

- The full log-likelihood is

$$\log p(\mathcal{D}, \lambda) = \sum_{i=1}^n [k_i \log \lambda - \lambda - \log(k_i!)]$$

- First order condition gives

$$\begin{aligned} 0 = \frac{\partial}{\partial \lambda} [\log p(\mathcal{D}, \lambda)] &= \sum_{i=1}^n \left[\frac{k_i}{\lambda} - 1 \right] \\ \implies \lambda &= \frac{1}{n} \sum_{i=1}^n k_i \end{aligned}$$

- So MLE $\hat{\lambda}$ is just the mean of the counts.

Test Set Log Likelihood for Penn Station, Mon-Fri 7-8pm

Method	Test Log-Likelihood
Poisson	-392.16
Negative Binomial	-188.67
Histogram (Bin width = 7)	$-\infty$
95% Histogram +.05 NegBin	-203.89

Statistical Learning Formulation

Probability Estimation as Statistical Learning

- Output space \mathcal{Y}
- **Action space**
 $\mathcal{A} = \{p(y) \mid p \text{ is a probability density or mass function on } \mathcal{Y}\}$.
- How to encode our objective of “high likelihood” as a loss function?
- Define loss function as the negative log-likelihood of y under $p(\cdot)$:

$$\begin{aligned}\ell: \quad \mathcal{A} \times \mathcal{Y} &\rightarrow \quad \mathbb{R} \\ (p, y) &\mapsto -\log p(y)\end{aligned}$$

Probability Estimation as Statistical Learning

- If **true** distribution of y is q , then **risk** of predicted distribution p is

$$R(p) = \mathbb{E}_{y \sim q} [-\log p(y)].$$

- The empirical risk of p for a sample $\mathcal{D} = \{y_1, \dots, y_n\} \in \mathcal{Y}$ is

$$\hat{R}(p) = -\sum_{i=1}^n \log p(y_i),$$

which is exactly the **negative log-likelihood** of p for the data \mathcal{D} .

- Therefore, MLE is just an empirical risk minimizer.

Estimation Distributions, Overfitting, and Hypothesis Spaces

- Just as in classification and regression, MLE (i.e. ERM) can overfit!
- Example Hypothesis Spaces / Probability Models:
 - $\mathcal{F} = \{\text{Poisson distributions}\}$.
 - $\mathcal{F} = \{\text{Negative binomial distributions}\}$.
 - $\mathcal{F} = \{\text{Histogram with 10 bins}\}$
 - $\mathcal{F} = \{\text{Histogram with bin for every } y \in \mathcal{Y}\}$ [will likely overfit for continuous data]
 - $\mathcal{F} = \{\text{Depth 5 decision trees with histogram estimates in leaves}\}$
- How to judge with hypothesis space works the best?
- Choose the model with the **highest likelihood** for a test set.

Generalized Regression

Generalized Regression / Conditional Distribution Estimation

- Given X , predict *probability distribution* $p(y | x)$
- How do we represent the probability distribution?
- We'll consider *parametric families* of distributions.
 - distribution represented by parameter vector
- Examples:
 - 1 Logistic regression (Bernoulli distribution)
 - 2 Probit regression (Bernoulli distribution)
 - 3 Poisson regression (Poisson distribution)
 - 4 Linear regression (Normal distribution, fixed variance)
 - 5 Generalized Linear Models (GLM) (encompasses all of the above)
 - 6 Generalized Additive Models (GAM)
 - 7 Gradient Boosting Machines (GBM) / AnyBoost [with likelihood loss function]

Generalized Regression as Statistical Learning

- Input space \mathcal{X}
- Output space \mathcal{Y}
- All pairs (x, y) are independent with distribution $P_{\mathcal{X} \times \mathcal{Y}}$.
- **Action space**
 $\mathcal{A} = \{p(y) \mid p \text{ is a probability density or mass function on } \mathcal{Y}\}.$
- Hypothesis spaces contain decision functions $f : \mathcal{X} \rightarrow \mathcal{A}$.
 - Given an $x \in \mathcal{X}$, predict a probability distribution $p(y)$ on \mathcal{Y} .

A Note on Notation

- Hypothesis spaces contain decision functions $f : \mathcal{X} \rightarrow \mathcal{A}$.
 - Given an $x \in \mathcal{X}$, predict a probability distribution $p(y)$ on \mathcal{Y} .
- Let f be a decision function.
 - In regression, $f(x) \in \mathbf{R}$
 - In hard classification, $f(x) \in \{-1, 1\}$
 - For generalized regression, $f(x) \in ?$
- $f(x)$ is a PDF or PMF on \mathcal{Y} .
- If $p = f(x)$, can evaluate $p(y)$ for predicted probability of y .
- Or just write $[f(x)](y)$ or even $f(x)(y)$.

Generalized Regression as Statistical Learning

- The risk of decision function $f : \mathcal{X} \rightarrow \mathcal{A}$

$$R(f) = -\mathbb{E}_{x,y} \log [f(x)](y),$$

where $f(x)$ is a PDF or PMF on \mathcal{Y} , and we're evaluating it on Y .

- The empirical risk of f for a sample $\mathcal{D} = \{y_1, \dots, y_n\} \in \mathcal{Y}$ is

$$\hat{R}(f) = -\sum_{i=1}^n \log [f(x_i)](y_i).$$

This is called the negative **conditional log-likelihood**.

Bernoulli Regression

Probabilistic Binary Classifiers

- Setting: $\mathcal{X} = \mathbf{R}^d$, $\mathcal{Y} = \{0, 1\}$
- For each x , need to predict a distribution on $\mathcal{Y} = \{0, 1\}$.
- What kind of parametric distribution could be supported on $\{0, 1\}$?
- Not a lot of choices....
- Bernoulli!
- For each x ,
 - predict the Bernoulli parameter $\theta = p(y = 1 | x)$.

Linear Probabilistic Classifiers

- Setting: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{0, 1\}$
- Want prediction function $x \mapsto \theta = p(y = 1 | x)$.
- We need $\theta \in [0, 1]$.
- For a “linear method”, we can write this in two steps:

$$\underbrace{x}_{\in \mathbb{R}^D} \mapsto \underbrace{w^T x}_{\in \mathbb{R}} \mapsto \underbrace{f(w^T x)}_{\in [0,1]},$$

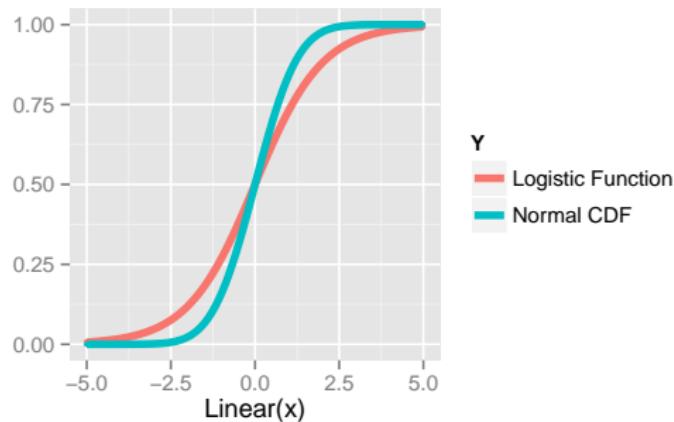
where $f : \mathbb{R} \rightarrow [0, 1]$ is called the **transfer** or **inverse link** function.

- Probability model is then

$$p(y = 1 | x) = f(w^T x)$$

Inverse Link Functions

- Two commonly used “inverse link” functions to map from $w^T x$ to θ :



- Logistic function \implies Logistic Regression
- Normal CDF \implies Probit Regression

Learning

- $\mathcal{X} = \mathbf{R}^d$
- $\mathcal{Y} = \{0, 1\}$
- $\mathcal{A} = \{0, 1\}$ (Representing Bernoulli(θ) distributions by $\theta \in [0, 1]$)
- $\mathcal{H} = \{x \mapsto f(w^T x) \mid w \in \mathbf{R}^d\}$
- We can choose w using maximum likelihood...

Bernoulli Regression: Likelihood Scoring

- Suppose we have data $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$.
- Compute the model likelihood for \mathcal{D} :

$$\begin{aligned}
 p_w(\mathcal{D}) &= \prod_{i=1}^n p_w(y_i | x_i) \text{ [by independence]} \\
 &= \prod_{i=1}^n [f(w^T x_i)]^{y_i} [1 - f(w^T x_i)]^{1-y_i}.
 \end{aligned}$$

- Huh? Remember $y_i \in \{0, 1\}$.
- Easier to work with the log-likelihood:

$$\log p_w(\mathcal{D}) = \sum_{i=1}^n y_i \log f(w^T x_i) + (1 - y_i) \log [1 - f(w^T x_i)]$$

Bernoulli Regression: MLE

- Maximum Likelihood Estimation (MLE) finds w maximizing $\log p_w(\mathcal{D})$.
- Equivalently, minimize the objective function

$$J(w) = - \left[\sum_{i=1}^n y_i \log f(w^T x_i) + (1 - y_i) \log [1 - f(w^T x_i)] \right]$$

- For differentiable f ,
 - $J(w)$ is differentiable, and we can use our standard tools.
- Homework: Derive the SGD step directions for logistic regression.

Multinomial Logistic Regression

Multinomial Logistic Regression

- Setting: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{1, \dots, k\}$
- The numbers $(\theta_1, \dots, \theta_k)$ where $\sum_{c=1}^k \theta_c = 1$ represent a
 - “**multinoulli**” or “**categorical**” distribution.
- For each x , we want to produce a distribution on the k classes.
- That is, for each x and each $y \in \{1, \dots, k\}$, we want to produce a probability

$$p(y | x) = \theta_y,$$

where $\sum_{y=1}^k \theta_y = 1$.

Multinomial Logistic Regression: Classic Setup

- From each x , we compute a linear score function for each class:

$$x \mapsto (\langle w_1, x \rangle, \dots, \langle w_k, x \rangle) \in \mathbf{R}^k$$

- We need to map this \mathbf{R}^k vector into a probability vector.
- Use the **softmax function**:

$$(\langle w_1, x \rangle, \dots, \langle w_k, x \rangle) \mapsto \left(\frac{\exp(w_1^T x)}{\sum_{c=1}^K \exp(w_c^T x)}, \dots, \frac{\exp(w_k^T x)}{\sum_{c=1}^K \exp(w_c^T x)} \right)$$

- If $\theta \in \mathbf{R}^k$ is the output of the softmax, note that

$$\begin{aligned} \theta_i &> 0 \\ \sum_{i=1}^k \theta_i &= 1 \end{aligned}$$

Multinomial Logistic Regression: Classic Setup

- Putting this together, we write multinomial logistic regression as

$$p(y | x) = \frac{\exp(w_y^T x)}{\sum_{c=1}^K \exp(w_c^T x)},$$

where we've introduced parameter vectors $w_1, \dots, w_k \in \mathbf{R}^d$.

- Do we still see score functions in here?
- Can view $x \mapsto w_y^T x$ as the score for class y , for $y \in \{1, \dots, k\}$.
- We can also “flatten” this as we did for multiclass classification.
 - Introduce a class-sensitive feature vector $\Psi(x, y) \in \mathbf{R}^{d \times k}$
 - Parameter vector $w \in \mathbf{R}^{d \times k}$.

-

Poisson Regression

Poisson Regression: Setup

- Input space $\mathcal{X} = \mathbf{R}^d$, Output space $\mathcal{Y} = \{0, 1, 2, 3, 4, \dots\}$
- Hypothesis space consists of functions $f : x \mapsto \text{Poisson}(\lambda(x))$.
 - That is, for each x , $f(x)$ returns a Poisson with mean $\lambda(x) \in (0, \infty)$.
 - What function?
- Recall $\lambda > 0$.
- In Poisson regression, x enters **linearly**: $x \mapsto w^T x \mapsto \lambda = f(w^T x)$.
- Standard approach is to take

$$\lambda(x) = \exp(w^T x),$$

for some parameter vector w .

- Note that range of $\lambda(x) = (0, \infty)$, (appropriate for the Poisson parameter).

Poisson Regression: Likelihood Scoring

- Suppose we have data $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$.
- Recall the log-likelihood for Poisson is:

$$\log p(\mathcal{D}, \lambda) = \sum_{i=1}^n [y_i \log \lambda - \lambda - \log(y_i!)]$$

- Plugging in $\lambda(x) = \exp(w^T x)$, we get

$$\begin{aligned} \log p(\mathcal{D}, \lambda) &= \sum_{i=1}^n [y_i \log [\exp(w^T x)] - \exp(w^T x) - \log(y_i!)] \\ &= \sum_{i=1}^n [y_i w^T x - \exp(w^T x) - \log(y_i!)] \end{aligned}$$

- Maximize this w.r.t. w to find the Poisson regression.
- No closed form for optimum, but it's concave, so easy to optimize.

Conditional Gaussian Regression

Gaussian Regression

- Input space $\mathcal{X} = \mathbf{R}^d$, Output space $\mathcal{Y} = \mathbf{R}$
 - Hypothesis space consists of functions $f : x \mapsto \mathcal{N}(w^T x, \sigma^2)$.
 - For each x , $f(x)$ returns a particular Gaussian density with variance σ^2 .
 - Choice of w determines the function.
- For some parameter $w \in \mathbf{R}^d$, can write our prediction function as

$$[f_w(x)](y) = p_w(y | x) = \mathcal{N}(y | w^T x, \sigma^2),$$

where $\sigma^2 > 0$.

- Given some i.i.d. data $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$, how to assess the fit?

Gaussian Regression: Likelihood Scoring

- Suppose we have data $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$.
- Compute the model likelihood for \mathcal{D} :

$$p_w(\mathcal{D}) = \prod_{i=1}^n p_w(y_i | x_i) \text{ [by independence]}$$

- Maximum Likelihood Estimation (MLE) finds w maximizing $p_w(\mathcal{D})$.
- Equivalently, maximize the data log-likelihood:

$$w^* = \arg \max_{w \in \mathbb{R}^d} \sum_{i=1}^n \log p_w(y_i | x_i)$$

- Let's start solving this!

Gaussian Regression: MLE

- The conditional log-likelihood is:

$$\begin{aligned}
 & \sum_{i=1}^n \log p_w(y_i | x_i) \\
 &= \sum_{i=1}^n \log \left[\frac{1}{\sigma\sqrt{2\pi}} \exp \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right) \right] \\
 &= \underbrace{\sum_{i=1}^n \log \left[\frac{1}{\sigma\sqrt{2\pi}} \right]}_{\text{independent of } w} + \sum_{i=1}^n \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right)
 \end{aligned}$$

- MLE is the w where this is maximized.
- Note that σ^2 is irrelevant to finding the maximizing w .
- Can drop the negative sign and make it a minimization problem.

Gaussian Regression: MLE

- The MLE is

$$w^* = \arg \min_{w \in \mathbb{R}^d} \sum_{i=1}^n (y_i - w^T x_i)^2$$

- This is exactly the objective function for least squares.
- From here, can use usual approaches to solve for w^* (linear algebra, calculus, iterative methods etc.)
- NOTE: Parameter vector w only interacts with x by an inner product

Generalized Linear Models (Lite)

Natural Exponential Families

- $\{p_\theta(y) \mid \theta \in \Theta \subset \mathbf{R}^d\}$ is a family of pdf's or pmf's on \mathcal{Y} .
- The family is a **natural exponential family** with parameter θ if

$$p_\theta(y) = \frac{1}{Z(\theta)} h(y) \exp [\theta^T y].$$

- $h(y)$ is a **nonnegative** function called the **base measure**.
- $Z(\theta) = \int_{\mathcal{Y}} h(y) \exp [\theta^T y]$ is the **partition function**.
- The **natural parameter space** is the set $\Theta = \{\theta \mid Z(\theta) < \infty\}$.
 - the set of θ for which $\exp [\theta^T y]$ can be normalized to have integral 1
- θ is called the **natural parameter**.
- Note: In exponential family form, family typically has a different parameterization than the “standard” form.

Specifying a Natural Exponential Family

- The family is a **natural exponential family** with parameter θ if

$$p_\theta(y) = \frac{1}{Z(\theta)} h(y) \exp [\theta^T y].$$

- To specify a natural exponential family, we need to choose $h(y)$.
 - Everything else is determined.
- Implicit in choosing $h(y)$ is the choice of the support of the distribution.

Natural Exponential Families: Examples

The following are univariate natural exponential families:

- ① Normal distribution with known variance.
- ② Poisson distribution
- ③ Gamma distribution (with known k parameter)
- ④ Bernoulli distribution (and Binomial with known number of trials)

Example: Poisson Distribution

- For Poisson, we found the log probability mass function is:

$$\log [p(y; \lambda)] = y \log \lambda - \lambda - \log(y!).$$

- Exponentiating this, we get

$$p(y; \lambda) = \exp(y \log \lambda - \lambda - \log(y!)).$$

- If we reparameterize, taking $\theta = \log \lambda$, we can write this as

$$\begin{aligned} p(y, \theta) &= \exp(y\theta - e^\theta - \log(y!)) \\ &= \frac{1}{y!} \frac{1}{e^{e^\theta}} \exp(y\theta), \end{aligned}$$

which is in natural exponential family form, where

$$\begin{aligned} Z(\theta) &= \exp(e^\theta) \\ h(y) &= \frac{1}{y!}. \end{aligned}$$

- $\theta = \log \lambda$ is the **natural parameter**.

Generalized Linear Models [with Canonical Link]

- In GLMs, we first choose a natural exponential family.
 - (This amounts to choosing $h(y)$.)
- The idea is to plug in $w^T x$ for the natural parameter.
- This gives models of the following form:

$$p_{\theta}(y | x) = \frac{1}{Z(w^T x)} h(y) \exp \left[(w^T x) y \right].$$

- This is the form we had for Poisson regression.
- **Note:** This is very convenient, but **only works if $\Theta = \mathbb{R}$** .

Generalized Linear Models [with General Link]

- More generally, choose a function $\psi : \mathbf{R} \rightarrow \Theta$ so that

$$x \mapsto w^T x \mapsto \psi(w^T x),$$

where $\theta = \psi(w^T x)$ is the natural parameter for the family.

- So our final prediction (for one-parameter families) is:

$$p_\theta(y | x) = \frac{1}{Z(\psi(w^T x))} h(y) \exp [\psi(w^T x) y].$$