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Estimating a Probability Distribution: Setting

@ Let p(y) represent a probability distribution on Y.
@ p(y) is unknown and we want to estimate it.
@ Assume that p(y) is either a

o probability density function on a continuous space Y, or a
e probability mass function on a discrete space Y.

e Typical Y's:
o Y=R; Y =R [typical continuous distributions]
o Y={-1,1} [e.g. binary classification]
o Y={0,1,2,...,K} [e.g. multiclass problem]
e Y=1{0,1,2 ,3 4...} [unbounded counts]
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Evaluating a Probability Distribution Estimate

o Before we talk about estimation, let’s talk about evaluation.

@ Somebody gives us an estimate of the probability distribution

ply).

@ How can we evaluate how good it is?

@ We want p(y) to be descriptive of future data.
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Likelihood of a Predicted Distribution

@ Suppose we have
D={y,..., Yn} sampled i.i.d. from p(y).
@ Then the likelihood of p for the data D is defined to be
pD) =] a0
i=1
o We'll write this as
Lp(p):=p(D)

@ Special case: If p is a probability mass function, then

o Lp(p) is the probability of D under p.
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Maximum Likelihood Estimation

Parametric Models

Definition

A parametric model is a set of probability distributions indexed by a
parameter 8 € ©. We denote this as

{p(y;0) 16 €6},

where 0 is the parameter and © is the parameter space.

@ In probabilistic modeling, analysis begins with something like:

Suppose the data are generated by a distribution in parametric
family F (e.g. a Poisson family).

@ Our perspective is different, at least conceptually:

o We don't make any assumptions about the data generating distribution.
o We use a parametric model as a hypothesis space.
o (More on this later.)
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Maximum Likelihood Estimation

Poisson Family

@ Support Y={0,1,2,3,...}.
@ Parameter space: {A € R|A >0}
@ Probability mass function on k € Y:

p(k;A) =Ake ™/ (k)
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Beta Family

@ Support Y =(0,1). [The unit interval.]
o Parameter space: {0 = (o, B) | o, p > 0}
@ Probability density function on y € Y:

x*1(1 —X)B_l

ply;a, b) =
B(«, B)
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Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia
Commonshttp://taps-graph-review.wikispaces.com/Box+and+Whisker+Plots.
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Maximum Likelihood Estimation

Gamma Family

@ Support Y = (0,00). [Positive real numbers]
@ Parameter space: {0 = (k,0)| k> 0,0 >0}
@ Probability density function on y € Y:

1
. k—1 _—x/0
ply:k,0) =
I'(k)ok
0.5 e ——  —— ————
=10,6=20
=20,6=20
04 =30,0=20 o
3 =50,6=10
3 =90,6=05 3
03 F =75,0=10
E =05,0=10
02 ¢ E
0415
0 E | [ \| Lo [

0 2 4 6 8 10 12 14 16 18 20

Figure from Wikipedia.
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Maximum Likelihood Estimation

Maximum Likelihood Estimation
Suppose we have a parametric model {p(y;0) | 6 € ®} and a sample

Definition

The maximum likelihood estimator (MLE) for 0 in the model
{p(y.0)10€06}is

6 = argmax Ly (0) —argmapr yi; 0
0€O 0€0 7

4

In practice, we prefer to work with the log likelihood. Same maximum but

log p(D;0) Zlogp yi: 0),

and sums are easier to work with than products.
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

Finding the MLE is an optimization problem.
@ For some model families, calculus gives closed form for MLE.
e Can also use numerical methods we know (e.g. SGD).

@ Note: In certain situations, the MLE may not exist.

e But there is usually a good reason for this.

e.g. Gaussian family {N(u, 0?|ueR, o> O}, Single observation y.
o Take w=y and 02 — 0 drives likelihood to infinity. MLE doesn't exist.
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Example: MLE for Poisson

@ Suppose we've observed some counts D = {kq, ..., k,} €{0,1,2,3,...}.

@ The Poisson log-likelihood for a single count is

k ,—A
log[p(k;\)] = |og[}\ ZI ]

= klogA—A—log (k')

o The full log-likelihood is

n

logp(D.A) = > [kilogh—A—log (k)]
i=1
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Example: MLE for Poisson

o The full log-likelihood is

n

logp(D,A) = Z [kilogA — A —log (k;!)]
i=1

@ First order condition gives

) © Tk
0= = llogp(D,A)] = Z[—l]

— A = ;Zk,‘

@ So MLE A is just the mean of the counts.
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Test Set Log Likelihood for Penn Station, Mon-Fri 7-8pm

Method ‘ Test Log-Likelihood ‘
Poisson —392.16
Negative Binomial —188.67
Histogram (Bin width = 7) —00
95% Histogram +.05 NegBin —203.89
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Statistical Learning Formulation

Statistical Learning Formulation
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Probability Estimation as Statistical Learning

@ Output space Y

@ Action space
A ={p(y) | pis a probability density or mass function on Y}.

@ How to encode our objective of “high likelihood" as a loss function?

@ Define loss function as the negative log-likelihood of y under p(-):

0: AxY — R
(p.y) + —logply)
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Probability Estimation as Statistical Learning

o If true distribution of y is g, then risk of predicted distribution p is
R(p) =Eyq[—logp(y)].
@ The empirical risk of p for a sample D ={yy,...,y,} €Y is

R(p)=—) logpl(y),
i=1

which is exactly the negative log-likelihood of p for the data D.

@ Therefore, MLE is just an empirical risk minimizer.
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Estimation Distributions, Overfitting, and Hypothesis Spaces

Just as in classification and regression, MLE (i.e. ERM) can overfit!

Example Hypothesis Spaces / Probability Models:

F ={Poisson distributions}.

F ={Negative binomial distributions}.

F =({Histogram with 10 bins}

F ={Histogram with bin for every y € Y} [will likely overfit for
continuous datal]

F ={Depth 5 decision trees with histogram estimates in leaves}

How to judge with hypothesis space works the best?
Choose the model with the highest likelihood for a test set.
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Generalized Regression

Generalized Regression
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Generalized Regression

Generalized Regression / Conditional Distribution Estimation

e Given X, predict probability distribution p(y | x)
@ How do we represent the probability distribution?
o We'll consider parametric families of distributions.

e distribution represented by parameter vector

@ Examples:

Logistic regression (Bernoulli distribution)

Probit regression (Bernoulli distribution)

Poisson regression (Poisson distribution)

Linear regression (Normal distribution, fixed variance)

Generalized Linear Models (GLM) (encompasses all of the above)
Generalized Additive Models (GAM)

Gradient Boosting Machines (GBM) / AnyBoost [with likelihood loss
function]

000000

David Rosenberg (New York University)| DS-GA 1003 October 29, 2016 20 / 49



Generalized Regression

Generalized Regression as Statistical Learning

@ Input space X
@ Output space Y
e All pairs (x,y) are independent with distribution Py .

@ Action space
A ={p(y) | pis a probability density or mass function on Y}.

@ Hypothesis spaces contain decision functions f : X — A.

o Given an x € X, predict a probability distribution p(y) on Y.
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A Note on Notation

Hypothesis spaces contain decision functions f : X — A.

e Given an x € X, predict a probability distribution p(y) on Y.

@ Let f be a decision function.

o In regression, f(x) € R
e In hard classification, f(x) € {—1,1}
o For generalized regression, f(x) €7

f(x) is a PDF or PMF on Y.
If p=1f(x), can evaluate p(y) for predicted probability of y.

Or just write [f(x)](y) or even f(x)(y).
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Generalized Regression

Generalized Regression as Statistical Learning

@ The risk of decision function f: X — A
R(f) =—Ex,, loglf(x)](y),
where f(x) is a PDF or PMF on Y, and we're evaluating it on Y.

@ The empirical risk of f for a sample D ={y;,...,yat €Y is
R(F) == loglf(x)](y)-
i=1

This is called the negative conditional log-likelihood.
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Bernoulli Regression

Bernoulli Regression
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Probabilistic Binary Classifiers

@ Setting: X = R, Yy={0,1}

@ For each x, need to predict a distribution on Y ={0, 1}.

@ What kind of parametric distribution could be supported on {0,1}?
@ Not a lot of choices....

@ Bernoullil

e For each x,

o predict the Bernoulli parameter 6 = p(y =1 x).
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Bernoulli Regression

Linear Probabilistic Classifiers

Setting: X = R, Yy={0,1}

Want prediction function x — 0 = p(y =1 x).

We need 0 € [0, 1].

For a “linear method"”, we can write this in two steps:

x = wlixe flwx),
< =~
ERD €R €[0,1]

where f: R — [0,1] is called the transfer or inverse link function.

Probability model is then

ply =1|x)=f(w'x)
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Bernoulli Regression

Inverse Link Functions

@ Two commonly used “inverse link” functions to map from w’x to 6:

1.00 =
0.75-
Y
0.50 - Logistic Function
=== Normal CDF
0.25 -
0.00 -

| | |
-50 -25 00 25 5.0
Linear(x)

@ Logistic function = Logistic Regression
@ Normal CDF = Probit Regression
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Bernoulli Regression

Learning
e X=R¢
o Y={01}

e A =,1 (Representing Bernoulli(9) distributions by 6 € [0, 1])
° TH:{Xb—H‘(WTx)lWGRd}

@ We can choose w using maximum likelihood...

David Rosenberg (New York University)| DS-GA 1003 October 29, 2016 28 / 49



Bernoulli Regression

Bernoulli Regression: Likelihood Scoring

@ Suppose we have data D ={(x1,y1),..., (Xn, Yn)}
@ Compute the model likelihood for D:

pw(D) = ] ]pwlyilx) [by independence]
i=1

= JTIFw )" [t fwx]" "

i=1

e Huh? Remember y; €{0,1}.

@ Easier to work with the log-likelihood:

log pu (D) =) _yilog f(wx)+ (1—y;)log [1—F(w x;)]
i=1
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Bernoulli Regression: MLE

Maximum Likelihood Estimation (MLE) finds w maximizing
log pw (D).
@ Equivalently, minimize the objective function

Jw)=—1> yilogf(w'x;)+(1—y;)log [1—f(wTx)]
i=1

For differentiable f,

o J(w) is differentiable, and we can use our standard tools.

@ Homework: Derive the SGD step directions for logistic regression.
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Multinomial Logistic Regression

Multinomial Logistic Regression

David Rosenberg (New York University)| DS-GA 1003 October 29, 2016 31/ 49



Multinomial Logistic Regression

Multinomial Logistic Regression

@ Setting: X = RY, Y={1,... k)
@ The numbers (01,...,0,) where Zlg:l 0. =1 represent a
e "“multinoulli” or “categorical” distribution.
@ For each x, we want to produce a distribution on the k classes.

@ That is, for each x and each y €{1,...,y}, we want to produce a
probability

ply[x) =06y,
where Z}’le 0, =1
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Multinomial Logistic Regression

Multinomial Logistic Regression: Classic Setup

@ From each x, we compute a linear score function for each class:
x = ((wg,x), ... (wg,x)) € R

@ We need to map this R¥ vector into a probability vector.
@ Use the softmax function:

((wi, x) sy (Wi, X)) < exp (wy x) exp (w] x) )

K e oK
Yemrexpwlx) Y L exp(wlx)

e If 6 € R¥ is the output of the softmax, note that

0, > 0
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Multinomial Logistic Regression

Multinomial Logistic Regression: Classic Setup

@ Putting this together, we write multinomial logistic regression as

exp (WyTX)
ply | x)=—% —
Y coqexp(wlx)
where we've introduced parameter vectors wy, ..., wx € RY.

@ Do we still see score functions in here?

o Can view x — WyT

o We can also “flatten” this as we did for multiclass classification.

x as the score for class y, for y €{1,..., k}.

o Introduce a class-sensitive feature vector ¥(x, y) € RI*k
o Parameter vector w € RI%k,
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Poisson Regression

Poisson Regression
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Poisson Regression

Poisson Regression: Setup

@ Input space X =R, Output space Y ={0,1,2,3,4,...}

@ Hypothesis space consists of functions f : x — Poisson (A(x)).

e That is, for each x, f(x) returns a Poisson with mean A(x) € (0, 00).
o What function?

Recall A > 0.

In Poisson regression, x enters linearly: x — w'x—A=f(w'x).
g y

Standard approach is to take

A(x) =exp (WTX) ,

for some parameter vector w.

o Note that range of A(x) = (0,00), (appropriate for the Poisson
parameter).
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Poisson Regression

Poisson Regression: Likelihood Scoring

@ Suppose we have data D ={(x1,y1),..., (Xn, ¥n)}
@ Recall the log-likelihood for Poisson is:

n

logp(D,A) = > lyilogA—A—log(yi)]
i=1
@ Plugging in A(x) = exp (WTX), we get

n

logp(D,A) = Z [yilog [exp (wx)] —exp (W x) —log ()]
i—1
= Z [y,-WTx—exp (WTX) —log (y;!)]
i—1

@ Maximize this w.r.t. w to find the Poisson regression.
@ No closed form for optimum, but it's concave, so easy to optimize.
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Conditional Gaussian Regression

Conditional Gaussian Regression
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Conditional Gaussian Regression

Gaussian Regression

@ Input space X =RY, Output space Yy =R

o Hypothesis space consists of functions f : x — N (w'x, 02).
e For each x, f(x) returns a particular Gaussian density with variance o
o Choice of w determines the function.

2

@ For some parameter w € R?, can write our prediction function as

[fu (X)) (y) = pw(y [ x) =N(y | w'x,0?),

where 02 > 0.

o Given some i.i.d. data D ={(x1,y1),...,(Xn, ¥n)}, how to assess the fit?
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Conditional Gaussian Regression

Gaussian Regression: Likelihood Scoring

Suppose we have data D ={(x1,y1),..., (Xn, ¥a)}.
Compute the model likelihood for D:

pw(D) :pr(y,- | x;) [by independence]
i=1

Maximum Likelihood Estimation (MLE) finds w maximizing p, (D).

Equivalently, maximize the data log-likelihood:

n
w* =arg maxZ|Ong()/i | xi)
weRd iy

@ Let's start solving this!
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Conditional Gaussian Regression

Gaussian Regression: MLE

@ The conditional log-likelihood is:

D logpw(yi | xi)

i—1

- 1 (yi—w'x;)?
- .Z"’g[oﬁcex"(y )

Sl £ 25)

i=1

independent of w

@ MLE is the w where this is maximized.

o Note that o2 is irrelevant to finding the maximizing w.

@ Can drop the negative sign and make it a minimization problem.
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Conditional Gaussian Regression

Gaussian Regression: MLE

o The MLE is

* =argmin E i—w ' x;)?

weRd [T

@ This is exactly the objective function for least squares.

e From here, can use usual approaches to solve for w*(linear algebra,
calculus, iterative methods etc.)

o NOTE: Parameter vector w only interacts with x by an inner product
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Generalized Linear Models (Lite)

Generalized Linear Models (Lite) J
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Generalized Linear Models (Lite)

Natural Exponential Families

{pe IGEG)CRd} is a family of pdf's or pmf's on Y.

The family is a natural exponential family with parameter 0 if

poly) = Zéle)h(y)exr) [07y].

h(y) is a nonnegative function called the base measure.

0) = [y hly)exp [87y] is the partition function.

The natural parameter space is the set @ ={0 | Z(0) < oo}.

o the set of 0 for which exp [0 y] can be normalized to have integral 1

0 is called the natural parameter.

(]

Note: In exponential family form, family typically has a different
parameterization than the “standard” form.
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Specifying a Natural Exponential Family

@ The family is a natural exponential family with parameter 0 if
poly) = 5 h(y)exp[07y]
Z(6) '

@ To specify a natural exponential family, we need to choose h(y).
e Everything else is determined.

@ Implicit in choosing h(y) is the choice of the support of the
distribution.
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Generalized Linear Models (Lite)

Natural Exponential Families: Examples

The following are univariate natural exponential families:
© Normal distribution with known variance.
@ Poisson distribution
© Gamma distribution (with known k parameter)

© Bernoulli distribution (and Binomial with known number of trials)
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Generalized Linear Models (Lite)

Example: Poisson Distribution

@ For Poisson, we found the log probability mass function is:
log[p(y;A)] = ylogA—A—log(y!).

o Exponentiating this, we get
ply;A) = exp(ylogA—A—log(y!)).

o If we reparameterize, taking © = logA, we can write this as

ply,0) = exp(y0—e®—log(y!))
11
= ﬁe?eXP(ye),

which is in natural exponential family form, where

Z(0) = exp (ee)

1
hly) = F
@ 0 =logA is the natural parameter.
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Generalized Linear Models (Lite)

Generalized Linear Models [with Canonical Link]

In GLMs, we first choose a natural exponential family.
o (This amounts to choosing h(y).)

The idea is to plug in w x for the natural parameter.

@ This gives models of the following form:

poly|x)= h(y)exp [(w”x)y].

Z(wTx)

This is the form we had for Poisson regression.

Note: This is very convenient, but only works if ©® = R.
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Generalized Linear Models (Lite)

Generalized Linear Models [with General Link]

@ More generally, choose a function {: R — © so that
x—=w!x—1Pwx),
where 0 =(w 7 x) is the natural parameter for the family.
@ So our final prediction (for one-parameter families) is:

1

———=—C X WTX .
Z(lb(wa))h(y)e pW(w’x)y]

po(y | x) =

David Rosenberg (New York University)| DS-GA 1003 October 29, 2016

49 / 49



	Maximum Likelihood Estimation
	Statistical Learning Formulation
	Generalized Regression
	Bernoulli Regression
	Multinomial Logistic Regression
	Poisson Regression
	Conditional Gaussian Regression
	Generalized Linear Models (Lite)

