
DS-GA 1003: Machine Learning and Computational Statistics

Homework 7: Bayesian Modeling

Due: Tuesday, May 10, 2016, at 6pm (Submit via NYU Classes)
Instructions: Your answers to the questions below, including plots and mathematical work,

should be submitted as a single file, either HTML or PDF. You may include your code inline or
submit it as a separate file. You may either scan hand-written work or, preferably, write your
answers using software that typesets mathematics (e.g. LATEX, LYX, or MathJax via iPython).

1 Introduction

In this homework we work through several basic concepts in Bayesian statistics via one of the
simplest problems there is: estimating the probability of heads in a coin flip. Later we’ll extend
this to the probability of estimating click-through rates in mobile advertising.

2 Coin Flipping: Maximum Likelihood

1. Suppose we flip a coin and get the following seqeunce of heads and tails:

D = (H,H, T )

Give an expression for the probability of observing D given that the probability of heads is
θ. That is, give an expression for p (D | θ). This is called the likelihood of θ for the data D.

2. How many different sequences of 3 coin tosses have 2 heads and 1 tail? If we coss the coin 3
times, what is the probability of 2 heads and 1 tail? (Answer should be in terms of θ.)

3. More generally, give an expression for the likelihood p(D | θ) for a particular sequence of flips
D that has nh heads and nt tails. Make sure you have expressions that make sense even for
θ = 0 and nh = 0, and other boundary cases. You may use the convention that 00 = 1, or
you can break your expression into cases if needed.

4. Prove that the maximum likelihood estimate of θ given we observed a sequence with nh heads
and nt tails is

θ̂MLE =
nh

nh + nt
.
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(Hint: Maximizing the log-likelihood is equivalent and is often easier. As usual, make sure
everything make sense for the boundary cases, such as data with only heads.)

3 Coin Flipping: Bayesian Approach with Beta Prior

We’ll now take a Bayesian approach to the coin flipping problem, in which we treat θ as a random
variable sampled from some prior distribution p(θ). We’ll represent the ith coin flip by a random
variable Xi ∈ {0, 1}, where Xi = 1 if the ith flip is heads. We assume that the Xi’s are conditionally
indendent given θ. This means that the joint distribution of the coin flips and θ factorizes as follows:

p(x1, . . . , xn, θ) = p(θ)p(x1, . . . , xn | θ) (always true)

= p(θ)

n∏
i=1

p(xi | θ) (by conditional independence).

1. Suppose that our prior distribution on θ is Beta(h, t), for some h, t > 0. That is, p(θ) ∝
θh−1 (1− θ)t−1. Suppose that our sequence of flips D has nh heads and nt tails. Show that
the posterior distribution for θ is Beta(h+ nh, t+ nt). That is, show that

p(θ | D) ∝ θh−1+nh (1− θ)t−1+nt .

We say that the Beta distribution is conjugate to the Bernoulli distribution since the prior
and the posterior are both in the same family of distributions (i.e. both Beta distributions).

2. Give expressions for the MLE, the MAP, and the posterior mean estimates of θ. [Hint:
You may use the fact that a Beta(h, t) distribution has mean h/(h + t) and has mode
(h− 1) / (h+ t− 2) for h, t > 1. For the Bayesian solutions, you should note that as h + t
gets very large, the posterior mean and MAP approach the prior mean h/ (n+ h), while for
fixed h and t, the posterior mean approaches the MLE when nh + nt →∞.

3. What happens to θ̂MLE , θ̂MAP, and θ̂POSTERIOR MEAN as the number of coin flips approaches
infinity?

4. The MAP and posterior mean estimators of θ were derived from a Bayesian perspective. Let’s
now evaluate them from a frequentist perspective. Suppose θ is fixed and unknown. Which of
the MLE, MAP, and posterior mean estimators give unbiased estimates of θ, if any? [Hint:
The answer may depend on the parameters h and t of the prior.]

5. Suppose somebody gives you a coin and asks you to give an estimate of the probability of
heads, but you can only toss the coin 3 times. You have no particular reason to believe this
is an unfair coin. Would you prefer the MLE or the posterior mean as a point estimate of θ?
If the posterior mean, what would you use for your prior?
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4 Hierarchical Bayes for Click-Through Rate Estimation

In mobile advertising, ads are often displayed inside apps on a phone or tablet device. When an
ad is displayed, this is called an “impression.” If the user clicks on the ad, that is called a “click.”
The probability that an impression leads to a click is called the “click-through rate” (CTR).

Suppose we have d = 1000 apps. For various reasons, each app tends to have a different
overall CTR. For the purposes of designing an ad campaign, we want estimates of all the app-level
CTRs, which we’ll denote by θ1, . . . , θd. Of course, the particular user seeing the impression and
the particular ad that is shown have an effect on the CTR, but we’ll ignore these issues for now.
[Because so many clicks on mobile ads are accidental, it turns out that the overall app-level CTR
often dominates the effect of the particular user and the specific ad.]

If we have enough impressions for a particular app, then the empirical fraction of clicks will give
a good estimate for the actual CTR. However, if we have relatively few impressions, we’ll have some
problems using the empirical fraction. Typical CTRs are less than 1%, so it takes a fairly large
number of observations to get a good estimate of CTR. For example, even with 100 impressions,
the only possible CTR estimates are 0%, 1%, 2%, . . . , 100%. The 0% estimate is almost certainly
much too low, and anything 2% or higher is almost certainly much too high. Our goal is to come
up with reasonable point estimates for θ1, . . . , θ1000, even when we have very few observations for
some apps.

If we wanted to apply the Bayesian approach worked out in the previous problem, we could
come up with a prior that seemed reasonable. For example, we could use the following Beta(3, 400)
as a prior distribution on each θi:

In this basic Bayesian approach, the parameters 3 and 400 would be chosen by the data scientist
based on prior experience, or “best guess”, but without looking at the new data. Another approach
would be to use the data to help you choose the parameters a and b in Beta(a, b). This would not
be a Bayesian approach, though it is frequently used in practice. One method in this direction
is called empirical Bayes. Empirical Bayes can be considered a frequentist approach, in which
estimate a and b from the data D using some estimation technique, such as maximum likelihood.
The proper Bayesian approach to this type of thing is called hierarchical Bayes, in which we put
another prior distribution on a and b.
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Mathematical Description

We’ll now give a mathematical description of our model, assuming the prior parameters a and b
are given. Let n1, . . . , nd be the number of impressions we observe for each of the d apps. In
this problem, we will not consider these to be random numbers. For the ith app, let c1i , . . . , c

ni
i ∈

{0, 1} be indicator variables determining whether or not each impression was clicked. That is,
cji = 1(jth impression on ith app was clicked). We can summarize the data on the ith app by

Di = (xi, ni), where xi =
∑ni

j=1 c
j
i is the total number of impressions that were clicked for app i.

Let θ = (θ1, . . . , θd), where θi is the CTR for app i.
In our Bayesian approach, we act as though the data were generated as follows:

1. Sample θ1, . . . , θd i.i.d. from Beta(a, b).

2. For each app i, sample c1i , . . . , c
ni
i i.i.d. from Bernoulli(θi).

4.1 Empirical Bayes for a single app

We start by working out some details for Bayesian inference for a single app. That is, suppose
we only have the data Di from app i, and nothing else. Mathematically, this is exactly the same
setting as the coin tossing setting above, but here we push it further.

1. Give an expression for p(Di | θi), the likelihood of Di given the probability of click θi, in terms
of θi, xi and ni.

2. The probability density for the Beta(a, b) distribution, evaluated at θi, is given by

Beta(θi; a, b) =
1

B(a, b)
θa−1i (1− θi)b−1

where B(a, b) is called the Beta function. Explain why we must have

ˆ
θa−1i (1− θi)b−1 dθ = B(a, b),

and give the full density function for the prior on θi, in terms of a, b, and the normalization
function B.

3. Give an expression for the posterior distribution p(θi | Di). In this case, include the constant
of proportionality. (In other words, do not use the “is proportional to” sign ∝ in your final
expression.) [Hint: This problem is essentially a repetition of an earlier problem.]

4. Give a closed form expression for p(Di), the marginal likelihood of Di, in terms of the a, b, xi,
and ni. You may use the normalization function B(·, ·) for convenience, but you should not
have any integrals in your solution. (Hint: p(Di) =

´
p (Di | θi) p(θi) dθi, and the answer will

be a ratio of two beta function evaluations.)
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Figure 1: A plot of p(Di | a, b) as a function of a and b.

5. The maximum likelihood estimate for θi is xi/ni. Let pMLE(Di) be the marginal likelihood
of Di when we use a prior on θi that puts all of its probability mass at xi/ni. Note that

pMLE(Di) = p

(
Di | θi =

xi
ni

)
p

(
θi =

xi
ni

)
= p

(
Di | θi =

xi
ni

)
.

Explain why, or prove, that pMLE(Di) is larger than p(Di) for any other prior we might put
on θi. If it’s too hard to reason about all possible priors, it’s fine to just consider all Beta
priors. [Hint: This does not require much or any calculation. It may help to think about the
integral p(Di) =

´
p (Di | θi) p(θi) dθi as a weighted average of p(Di | θi) for different values

of θi, where the weights are p(θi).]

6. One approach to getting an empirical Bayes estimate of the parameters a and b is to use
maximum likelihood. Such an empirical Bayes estimate is often called an ML-2 estimate,
since it’s maximum likelihood, but at a higher level in the Bayesian hierarchy. To emphasize
the dependence of the likelihood of Di on the parameters a and b, we’ll now write it as
p(Di | a, b)1. The empirical Bayes estimates for a and b are given by

(â, b̂) = arg max
(a,b)∈R>0×R>0

p(Di | a, b).

To make things concrete, suppose we observed xi = 3 clicks out of ni = 500 impressions. A
plot of p(Di | a, b) as a function of a and b is given in Figure 1. It appears from this plot that

1Note that this is a slight (though common) abuse of notation, because a and b are not random variables in this
setting. It might be more appropriate to write this as p(Di; a, b) or pa,b(Di). But this isn’t very common.
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the likelihood will keep increasing as a and b increase, at least if a and b maintain a particular
ratio. Indeed, this likelihood function never attains its maximum, so we cannot use ML-2
here. Explain what’s happening to the prior as we continue to increase the likelihood. [Hint:
It is a property of the Beta distribution (not difficult to see), that for any θ ∈ (0, 1), there is a
Beta distribution with expected value θ and variance less than ε, for any ε > 0. What’s going
in here is similar to what happens when you attempt to fit a gaussian distribution N (µ, σ2)
to a single data point using maximum likelihood.]

4.2 Empirical Bayes Using All App Data

In the previous section, we considered working with data from a single app. With a fixed prior,
such as Beta(3,400), our Bayesian estimates for θi seem more reasonable (to me, the person who
chose the prior) than the MLE when our sample size ni is small. The fact that these estimates seem
reasonable is an immediate consequence of the fact that I chose the prior to give high probability
to estimates that seem reasonable to me, before ever seeing the data. Our attempt to use empirical
Bayes (ML-2) to choose the prior in a data-driven way was not successful. With only a single app,
we were essentially overfitting the prior to the data we have. In this section, we’ll consider using
the data from all the apps, in which case empirical Bayes makes more sense.

1. Let D = (D1, . . . ,Dd) be the data from all the apps. Give an expression for p(D | a, b), the
marginal likelihood of D. Expression should be in terms of a, b, xi, ni for i = 1, . . . , d.
(Hint: This problem should be easy, based on a problem from the previous section.)

2. Explain why p(θi | D) = p(θi | Di), according to our model. In other words, once we choose
values for parameters a and b, information about one app does not give any information about
other apps.

3. [Optional] Suppose we have data from 6 apps. 3 of the apps have a fair number of impressions,
and 3 have relatively few. Suppose we observe the following:

Num Clicks Num Impressions

App 1 50 10000
App 2 160 20000
App 3 180 60000
App 4 0 100
App 5 0 5
App 6 1 2

Compute the empirical Bayes estimates for a and b. The empirical Bayes prior is then
Beta(â, b̂), where â and b̂ are our estimates. What are the corresponding prior mean and
standard deviation? [Hint: You’re encouraged to use a general purpose function optimization
routine that does not require a gradient.]

4. [Optional] Complete the following table:
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NumClicks NumImpressions MLE MAP PosteriorMean PosteriorSD

App 1 50 10000 0.5%
App 2 160 20000 0.8%
App 3 180 60000 0.3%
App 4 0 100 0%
App 5 0 5 0%
App 6 1 2 50%

4.3 Hierarchical Bayes

In Section 4.2 we managed to get empirical Bayes ML-II estimates for a and b by assuming we had
data from multiple apps. However, we didn’t really address the issue that ML-II, as a maximum
likelihood method, is prone to overfitting if we don’t have enough data (in this case, enough apps).
Moreover, a true Bayesian would reject this approach, since we’re using our data to determine our
prior. If we don’t have enough confidence to choose parameters for a and b without looking at the
data, a proper Bayesian approach is to put another prior on the parameters a and b. If you are
very uncertain about values for a and b, you could put priors on them that have high variance.

1. [Optional] Suppose P is the Beta(a, b) distribution. Conceptually, rather than putting priors
on a and b, it is easier to reason about priors on the mean m and the variance v of P . If we
parameterize P by its mean m and the variance v, give an expression for the density function
Beta(θ;m, v). You are free to use the internet to get this expression (though no partial credit
if the website had it wrong). [Hint: You may find it convenient to write some expressions in
terms of η = a+ b.]

2. [Optional] Suggest a prior distribution to put on m and v. [Hint: You might want to use one of
the distribution families given in this lecture: https://davidrosenberg.github.io/
mlcourse/Lectures/10b.conditional-probability-models.pdf#page=7.]

3. [Optional] Once we have our prior on m and v, we can go “full Bayesian” and compute poste-
rior distributions on θ1, . . . , θd. However, these no longer have closed forms. We would have
to use approximation techniques, typically either a Monte Carlo sampling approach or a varia-
tional method, which are beyond the scope of this course2. After observing the data D, m and
v will have some posterior distribution p(m, v | D). We can approximate that distribution by
a point mass at the mode of that distribution (mMAP, vMAP) = arg maxm,v p(m, v | D). Give
expressions for the posterior distribution p(θ1, . . . , θd | D), with and without this approxi-
mation. You do not need to give any explicit expressions here. It’s fine to have expressions
like p(θ1, . . . , θd | m, v) in your solution. Without the approximation, you will probably need
some integrals. It’s these integrals that we need sampling or variational approaches to ap-
proximate. While one can see this approach as a way to approximate the proper Bayesian
approach, one could also be skeptical and say this is just another way to determine your prior
from the data. The estimators (mMAP, vMAP) are often called MAP-II estimators, since
they are MAP estimators at a higher level of the Bayesian hierarchy.

2If you’re very ambitious, you could try out a package like PyStan (https://pystan.readthedocs.io/en/
latest/) to see what happens.
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