DS-GA 1003: Machine Learning and Computational Statistics
Homework 6: Generalized Hinge Loss and Multiclass SVM

Due: Monday, April 11, 2016, at 6pm (Submit via NYU Classes)

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single file, either HTML or PDF. You may include your code inline or
submit it as a separate file. You may either scan hand-written work or, preferably, write your
answers using software that typesets mathematics (e.g. WIEX, LyX, or MathJax via iPython).

1 Introduction

This is an entirely written problem set, and relatively short. Many of the problems below can
be answered in a line or two. The goal of this problem set is to get more comfortable with the
multiclass hinge loss and multiclass SVM. In several problems below, you are asked to justify that
certain things are convex functions. For these problems, you may use any of the rules about convex
functions described in our notes on Convex Optimization (https://davidrosenberg.github.
io/mlcourse/Notes/convex—-optimization.pdf)) or in the Boyd and Vandenberghe book.
In particular, you will need to make frequent use of the following result: If fi,...,fn : R® =2 R
are convex, then their pointwise maximum

f(z) = max{fi(z),..., fm(x)}

is also convex.

2 Convex Surrogate Loss Functions

It’s common in machine learning that the loss function we really care about leads to optimization
problems that are not computationally tractable. The 0/1 loss for binary classification is one such
exampleﬂ Since we have better machinery for minimizing convex functions, a standard approach is
to find a convex surrogate loss function. A convex surrogate loss function is a convex function
that is an upper bound for the loss function of interestﬂ If we can make the upper bound small,

Hnterestingly, if our hypothesis space is linear classifiers and we are in the “realizable” case, which means that
there is some hypothesis that achieves 0 loss (with the 0/1 loss), then we can efficiently find a good hypothesis using
linear programming. This is not difficult to see: each data point gives a single linear constraint, and we are looking
for a vector that satisfies the constraints for each data point.

2 At this level of generality, you might be wondering: “A convex function of WHAT?”. For binary classification, we
usually are talking about a convex function of the margin. But to solve our machine learning optimization problems,
we will eventually need our loss function to be a convex function of some w € R that parameterizes our hypothesis
space. It’ll be clear in what follows what we’re talking about.


https://davidrosenberg.github.io/mlcourse/Notes/convex-optimization.pdf
https://davidrosenberg.github.io/mlcourse/Notes/convex-optimization.pdf

then the loss we care about will also be smal’] Below we will show that the multiclass hinge loss
based on a class-sensitive loss A is a convex surrogate for the multiclass loss function A, when
we have a linear hypothesis space. We'll start with a special case, that the hinge loss is a convex
surrogate for the 0/1 loss.

2.1 Hinge loss is a convex surrogate for 0/1 loss

1. Let f: X — R be a classification score function for binary classification.
(a) For any example (z,y) € X x {—1,1}, show that
Ly # sign(f(2)) < max{0,1 —yf(x)},

1 x>0
where sign (z) =<0 z=0.
-1 <0

(b) Show that the hinge loss max {0,1 — m} is a convex function of the margin m.

(c) Suppose our prediction score functions are given by f,(z) = wTz. The hinge loss of f,
on any example (z,y) is then max {0,1 — yw’z}. Show that this is a convex function
of w.

2.2 Multiclass Hinge Loss

Consider the multiclass output space ) = {1,...,k}. Suppose we have a base hypothesis space H =
{h: X xY — R} from which we select a compatibility score function. Then our final multiclass
hypothesis space is F = {f(:v) = argmax,cy h(z,y) | h € ’H} Since functions in F map into Y,
our action space A and output space ) are the same. Suppose we have a class-sensitive loss function
A:)Y x A— R. Even though Y = A, we write ) X A to indicate that the true class goes in the
first argument of the function, while the prediction (i.e. the action) goes in the second slot. We
do this because we don’t assume that A(y,y') = A(y’,y). It would not be unusual to have this
asymmetry in practice. For example, false alarms may be much less costly than no alarm when
indeed something is going wrong.
Our ultimate goal would be to find f € F minimizing the empirical cost-sensitive loss:

?ﬂeig;A (yi, (@) -

Since binary classification with 0/1 loss is intractable and is a special case of this formulation, we
know that this more general formulation must also be computationally intractable. Thus we are
looking for a convex surrogate loss function.

1. Suppose we have chosen an h € H, from which we get f(r) = argmax,cy h(z,y). Justify
that for any x € X and y € ), we have

h(z,y) < h(z, f(z)).

3This is actually fairly weak motivation for a convex surrogate. Much better motivation comes from the more
advanced theory of classification calibrated loss functions. See Bartlett et al’s paper “Convexity, Classification,
and Risk Bounds.” http://www.eecs.berkeley.edu/~wainwrig/stat241lb/bartlettetal.pdf



http://www.eecs.berkeley.edu/~wainwrig/stat241b/bartlettetal.pdf

2. Justify the following two inequalities:

<
< max[A(y,y) + h(z,y') — h(z,y)]
y' ey
The RHS of the last expression is called the generalized hinge loss:
¢(h, (z,9)) = max [A (y,5) + h(z, ) — h(z,y)].
We have shown that for any x € X,y € Y, h € H we have

C(h, (x,y) > Ay, f(z)),

where, as usual, f(r) = argmax,cy h(z,y). [You should think about why we cannot write
the generalized hinge loss as £ (f, (z,v)).]

3. We now introduce a specific base hypothesis space H of linear functions. Consider a class-
sensitive feature mapping ¥ : X x Y — R%, and H = {hw (z,y) = (w,¥(z,y)) | w e Rd}.
Show that we can write the generalized hinge loss for h,(z,y) on example (z;,y;) as

CQ, (w3, y3)) = max [A (yi, y)) + (w, U@, y) = ¥z, yi))]

4. We will now show that the generalized hinge loss ¢ (h., (z;,¥;)) is a convex function of w.
Justify each of the following steps.

(a) The expression A(y;,y) + (w, U(x;,y) — U(x;,y;)) is an affine function of w.
(b) The expression maxycy [A (yi,y)) + (w, ¥(x;,y) — V(z;,y;))] is a convex function of w.

5. Conclude that £ (hy, (x;,9;)) is a convex surrogate for A(y;, fu(x;)).

3 Hinge Loss is a Special Case of Generalized Hinge Loss

Let Y = {—1,1}. Let A(y,9) = 1(y # 9). If g(z) is the score function in our binary classification
setting, then define our compatibility function as

Wz, 1) = g(z)/2
h(z,—1) = —g(z)/2.

Show that for this choice of h, the multiclass hinge loss reduces to hinge loss:

C(h, (z,y) = max A (y,y') + h(z,y") — h(z,y)] = max {0,1 — yg(x)}



4 Another Formulation of Generalized Hinge Loss

In lecture we defined the margin of the compatibility score function h on the ith example (x;, y;)
for class y as
mi,y(h) = h(xuyl) - h(l’i,y),

and the loss on an individual example (z;,y;) to be:
max [ (Ayi,y) = miy (1)), ]
Here we investigate whether this is just an instance of the generalized hinge loss ¢ (h, (z,y))) defined
above.
1. Show that £ (h, (z;,y;)) = max, ey [A (yi,y")) — mi, (h)].

2. Suppose A (y,y’) > 0 for all y,4' € Y. Show that for any example (z;,y;) and any score
function h, the multiclass hinge loss we gave in lecture and the generalized hinge loss presened
above are equivalent, in the sense that

mae [(A(yi.y) = miy (1)), ] = masx (Alyi,y) = mo, ().

(Hint: This is easy by piecing together other results we have already attained regarding the
relationship between ¢ and A.)

3. In the context of the generalized hinge loss, A(y,y’) is like the “target margin” between the
score for true class y and the score for class y’. Suppose that our prediction function f gets
the correct class on x;. That is, f(z;) = argmax, ¢y h(z;,y’) = y;. Furthermore, assume
that all of our target margins are reached or exceeded. That is

miy(h) = k@i, yi) — h(zi,y) > Ayi, y),
for all y # y;. Show that ¢ (h, (z;,y;)) = 0 if we assume that A (y,y) =0 for all y € ).

5 SGD for Multiclass SVM

Suppose our output space and our action space are given as follows: Y = A ={1,...,k}. Given a
non-negative class-sensitive loss function A : Y x A — R2° and a class-sensitive feature mapping
U: X xY — R% Our prediction function is f : X — ) is given by

fw(z) = argmax (w, ¥(x,y))
yey

1. For a training set (z1,91),...(Zn,yn), let J(w) be the ¢y-regularized empirical risk function
for the multiclass hinge loss. We can write this as

T(w) = Al + -3 e [A () + (0, V(o) — Waisg0)]).

We will now show that that J(w) is a convex function of w. Justify each of the follow-
ing steps. As we've shown it in a previous problem, you may use the fact that w —
maxyey [A (yi,y)) + (w, ¥(z;,y) — U(x;,y,))] is a convex function.



(a) L350  maxyey [A (Yi,y)) + (w, U(2i,y) — U(z;,9;))] is a convex function of w.

n
(b) |Jwl||? is a convex function of w.
(¢) J(w) is a convex function of w.
2. Since J(w) is convex, it has a subgradient at every point. Give an expression for a subgradient
of J(w). You may use any standard results about subgradients, including the result from an

earlier homework about subgradients of the pointwise maxima of functions. (Hint: It may be
helpful to refer to § = argmax, ey [A (yi, y)) + (w, U(zs, y) — U(i,9:))].)

3. Give an expression the stochastic subgradient based on the point (z;,y;).

4. Give an expression for a minibatch subgradient, based on the points (x;, ¥:), - - -, (Titm—1, Yitm—1)-



