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Decision Theory: High Level View

What types of problems are we solving?

In data science problems, we generally need to:

Make a decision
Take an action
Produce some output

Have some evaluation criterion
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Decision Theory: High Level View

Actions

Definition
An action is the generic term for what is produced by our system.

Examples of Actions

Produce a 0/1 classification [classical ML]
Reject hypothesis that θ= 0 [classical Statistics]

Written English text [speech recognition]
Probability that a picture contains an animal [computer vision]

Probability distribution on the earth [storm tracking]
Adjust accelerator pedal down by 1 centimeter [automated driving]
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Decision Theory: High Level View

Evaluation Criterion

Decision theory is about finding “optimal” actions, under various definitions
of optimality.

Examples of Evaluation Criteria
Is classification correct?
Does text transcription exactly match the spoken words?

Should we give partial credit? How?

Is probability “well-calibrated”?
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Decision Theory: High Level View

Real Life: Formalizing a Business Problem

First two steps to formalizing a problem:
1 Define the action space (i.e. the set of possible actions)
2 Specify the evaluation criterion.

Finding the right formalization can be an interesting challenge
Formalization may evolve gradually, as you understand the problem
better
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Decision Theory: High Level View

Inputs

Most problems have an extra piece, going by various names:
Inputs [ML]
Covariates [Statistics]
Side Information [Various settings]

Examples of Inputs

A picture

A storm’s historical location and other weather data

A search query
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Decision Theory: High Level View

Output / Outcomes

Inputs often paired with outputs or outcomes

Examples of outputs / outcomes

Whether or not the picture actually contains an animal
The storm’s location one hour after query
Which, if any, of suggested the URLs were selected
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Decision Theory: High Level View

Typical Sequence of Events

Many problem domains can be formalized as follows:

1 Observe input x .
2 Take action a.
3 Observe outcome y .
4 Evaluate action in relation to the outcome: `(a,y).

Note

Outcome y is often independent of action a

But this is not always the case:
URL recommendation
automated driving
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Decision Theory: High Level View

Some Formalization

The Spaces

X: input space Y: output space A: action space

Decision Function
A decision function produces an action a ∈A for any input x ∈ X:

f : X → A

x 7→ f (x)

Loss Function
A loss function evaluates an action in the context of the output y .

` : A×Y → R>0

(a,y) 7→ `(a,y)
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Decision Theory: High Level View

Real Life: Formalizing a Business Problem

First two steps to formalizing a problem:
1 Define the action space (i.e. the set of possible actions)
2 Specify the evaluation criterion.

When a “stakeholder” asks the data scientist to solve a problem, she

may have an opinion on what the action space should be, and
hopefully has an opinion on the evaluation criterion, but
she really cares about your producing a “good” decision function.

Typical sequence:
1 Stakeholder presents problem to data scientist
2 Data scientist produces decision function
3 Engineer deploys “industrial strength” version of decision function
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Decision Theory: High Level View

Evaluating a Decision Function

Loss function ` evaluates a single action
How to evaluate the decision function as a whole?
We will use the standard statistical learning theory framework.
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Statistical Learning Theory

Setup for Statistical Learning Theory

Data Generating Assumption

All pairs (X ,Y ) ∈ X×Y are drawn i.i.d. from some unknown PX×Y.
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Statistical Learning Theory

The Risk Functional

Definition
The expected loss or “risk” of a decision function f : X→A is

R(f ) = E`(f (X ),Y ),

where the expectation taken is over (X ,Y ) ∼ PX×Y.

Risk function cannot be computed
Since we don’t know PX×Y, we cannot compute the expectation.
But we can estimate it...
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Statistical Learning Theory

The Bayes Decision Function

Definition
A Bayes decision function f ∗ : X→A is a function that achieves the
minimal risk among all possible functions:

R(f ∗) = inf
f
R(f ),

where the infimum is taken over all measurable functions from X to A.
The risk of a Bayes decision function is called the Bayes risk.

A Bayes decision function is often called the “target function”, since
it’s what we would ultimately like to produce as our decision function.
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Statistical Learning Theory

Example 1: Least Squares Regression

spaces: A= Y= R
square loss:

`(a,y) =
1
2
(a− y)2

mean square risk:

R(f ) =
1
2
E
[
(f (X )−Y )2

]
=

1
2
E
[
(f (X )−E[Y |X ])2

]
+

1
2
E
[
(Y −E[Y |X ])2

]
target function:

f ∗(x) = E[Y |X = x ]
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Statistical Learning Theory

Example 2: Multiclass Classification

spaces: A= Y= {0,1, . . . ,K −1}
0-1 loss:

`(a,y) = 1(a 6= y)

risk is misclassification error rate

R(f ) = E [1(f (X ) 6= Y )]

= P(f (X ) 6= Y )

target function is the assignment to the most likely class

f ∗(x) = argmax
16k6K

P(Y = k | X = x)
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Statistical Learning Theory

But we can’t compute the risk!

Can’t compute R(f ) = E`(f (X ),Y ) because we don’t know PX×Y.

Can we estimate PX×Y from data?

Under assumptions (e.g. comes from a parametric family), yes.

We’ll come back to these approaches later in the course.

Otherwise, we’ll typically face a curse of dimensionality,
making PX×Y very difficult ot estimate
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Statistical Learning Theory

A Curse of Dimensionality

The “volume” of space grows exponentially with the dimension.

Histograms

Construct histogram for X ∈ [0,1] with bins of size 0.1

That’s 10 bins.
About 100 observations would be a good start for estimation.

Constuct histogram for X ∈ [0,1]10 with hypercube bins of side length
0.1

That’s 1010 =10 billion bins.
About 100 billion observations would be a good start for estimation...

Takeaway Message
To estimate a density in high dimensions, you need additional assumptions.
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Statistical Learning Theory

The Empirical Risk Functional

Can we estimate R(f ) without estimating PX×Y?

Assume we have sample data

Let Dn = {(X1,Y1), . . . ,(Xn,Yn)} be drawn i.i.d. from PX×Y.

Definition
The empirical risk of f : X→A with respect to Dn is

R̂n(f ) =
1
n

n∑
i=1

`(f (Xi ),Yi ).

By the Strong Law of Large Numbers,

lim
n→∞ R̂n(f ) = R(f ),

almost surely.
That’s a start...
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Statistical Learning Theory

Empirical Risk Minimization

We want risk minimizer, is empirical risk minimizer close enough?

Definition

A function f̂ is an empirical risk minimizer if

R̂n(f̂ ) = inf
f
R̂n(f ),

where the minimum is taken over all [measurable] functions.
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Statistical Learning Theory

Empirical Risk Minimization

PX = Uniform[0,1], Y ≡ 1 (i.e. Y is always 1).

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

PX×Y.
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Statistical Learning Theory

Empirical Risk Minimization

PX = Uniform[0,1], Y ≡ 1 (i.e. Y is always 1).
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A sample of size 3 from PX×Y.
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Statistical Learning Theory

Empirical Risk Minimization

PX = Uniform[0,1], Y ≡ 1 (i.e. Y is always 1).
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Under square loss or 0/1 loss: Empirical Risk = 0. Risk = 1.
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Statistical Learning Theory

Empirical Risk Minimization

ERM led to a function f that just memorized the data.
How to spread information or “generalize” from training inputs to
new inputs?

Need to smooth things out somehow...
A lot of modeling is about spreading and extrapolating information
from one part of the input space X into unobserved parts of the space.
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Statistical Learning Theory

Aside: Notation for Function Spaces

Notation

Let CD denote the set of all functions mapping from D [the domain] to C

[the codomain].
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Statistical Learning Theory

Hypothesis Spaces

Definition

A hypothesis space F ⊂AX is a set of decision functions we are
considering as solutions.

Hypothesis Space Choice
Easy to work with.
Includes only those functions that have desired “smoothness”
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Statistical Learning Theory

Constrained Empirical Risk Minimization

Hypothesis space F ⊂AX, a set of functions mapping X→A

Empirical risk minimizer (ERM) in F is f̂ ∈ F, where

R̂(f̂ ) = inf
f∈F

R̂(f ) = inf
f∈F

1
n

n∑
i=1

`(f (Xi ),Yi ).

Risk minimizer in F is f ∗F ∈ F , where

R(f ∗F) = inf
f∈F

R(f ) = inf
f∈F

E`(f (X ),Y )
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Statistical Learning Theory

Error Decomposition

f ∗ =argmin
f

E`(f (X ),Y )

fF =argmin
f∈F

E`(f (X ),Y ))

f̂n =argmin
f∈F

1
n

n∑
i=1

`(f (xi ),yi )

Approximation Error (of F) = R(fF)−R(f ∗)

Estimation error (of f̂n in F) = R(f̂n)−R(fF)
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Statistical Learning Theory

Error Decomposition

Definition
The excess risk of f is the amount by which the risk of f exceeds the
Bayes risk

Excess Risk(f̂n) = R(f̂n)−R(f ∗) = R(f̂n)−R(f ∗F)︸ ︷︷ ︸
estimation error

+ R(f ∗F)−R(f ∗)︸ ︷︷ ︸
approximation error

.

This is a more general expression of the bias/variance tradeoff for mean
squared error:

Approximation error = “bias”
Estimation error = “variance”
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Statistical Learning Theory

Approximation Error

Approximation error is a property of the class F
It’s our penalty for restricting to F rather than considering all
measurable functions

Approximation error is the minimum risk possible with F (even with
infinite training data)

Bigger F mean smaller approximation error.
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Statistical Learning Theory

Estimation Error

Estimation error: The performance hit for choosing f using finite
training data

Equivalently: It’s the hit for not knowing the true risk, but only the
empirical risk.

Smaller F means smaller estimation error.
Under typical conditions: “With infinite training data, estimation error
goes to zero.”

Infinite training data solves the statistical problem, which is not
knowing the true risk.]
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Statistical Learning Theory

Optimization Error

Does unlimited data solve our problems?
There’s still the algorithmic problem of finding f̂n ∈ F.
For nice choices of loss functions and classes F, the algorithmic
problem can be solved (to any desired accuracy).

Takes time! Is it worth it?

Optimization error: If f̃n is the function our optimization method
returns, and f̂n is the empirical risk minimizer, then the optimization
error is R(f̃n)−R(f̂n)

NOTE: May have R(f̃n)< R(f̂n), since f̂n may overfit more than f̃n!
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Statistical Learning Theory

ERM Overview

Given a loss function ` : Y×Y→ R>0.
Choose hypothesis space F.
Use an algorithm (an optimization method) to find f̂n ∈ F minimizing
the empirical risk:

min
f∈F

1
n

n∑
i=1

`(f (Xi ),Yi ).

(So, R̂(f̂ ) =minf∈F R̂(f )).
Data scientist’s job: choose F to optimally balance between
approximation and estimation error.
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