SKS (Secure Key Store)
API and Architecture

Disclaimer. This is a system in development. That is, the specification may change without notice.

SKS (Secure Key Store) — APl and Architecture V1.07, WebPKl.org, 2021-01-29 Page 1 of 84

Table of Contents

1
2

1o Yo [T o 5
(@o] =3 1 U] oot o] o = | 1| V20 5
B R Y o oV =T {1 = 5
2.2 ProViSiONINg APl .. e 5
G N U L= =T ol 6
A Y=ol U [Y2 1 o T 1= 6
2.5 Transaction Based Operation......c.eeiiiiiiiiiie i s e aiee s s e eaaaiareeeeeeeaanns 6
2.6 Privacy Enabled ProViSioning....c.cuiiiieiiiiie i e s e e e e e s s s saanaree e e e e e 7
A 0 1<V T ol S I 5 7
2.8 Backward Compatibility.....coveeeiii e 7
(@) =T o1 3 8
T A (= = 1 1= 8
3.2 PIN @nd PUK OB JeCtS. it et e e e e e e e e aeaens 9
3.3 Provisioning ObJeCtS. ...t i e 9
AN Ta o] o]0 4 IS 6T oo o P 10
4.1 Mandatory AlGOrthmS. ... e 10
4.2 Special AlgorithmS. .. e 11
4.3 Optional AlgoritNmS. ... e 11
PrOteCtiON AL DU ES. . e e 12
Y R =5 q o T | ol = o) T oL o[] o 12
5.2 Delete ProteClion. .. 12
5.3 BiometriC ProteCtioN. .o e 12
5.4 PIN INPUL MethOdS. . uiiiiiii it e e e s e s s e ee e e e nnnns 13
T T o VI = T o 1 13
LS o (V=T o I = U1 S o 2 = 13
ST = 1\ € o 1 U 01 o T 14
5.8 ApPPlCatioN USAge. ...ttt e et 14
YIS (o] a ST =Tl Ul o VA =Tel o =1 o117 o o = 15
6.1 ENCrypted Data...ccoiiiiiii i i e e 15
ST\ X G @ o 1= = | of (o] 1 15
TG T N <11 =1 o o] = 15
6.4 Target KeY Ref@IENCE. . uiiiiii it s e e e e s e eeannnneeeenas 15
TR = U0 [Toll (= A - - 16
e 1T =l GO =Y 16

S AN 0 2 < B Tl (= 17
D= o= Y1 L=Ta IO o =T =1 o o] o 18
2 R =Y = TR 1Y 0= 18
7.2 REEUIN ValUBS. .ttt s e e st e s s et s e e s sann e s ranne s sannness 19
/8 T =] o gl (o T == 19
2 S\ 1= o o Yo I I =3 o 19

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 2 of 84

Lo LT B X<V A Tl =) 1 o (o T 1 20

CreateProVviSioNIiNgSESSION [2] it et e r e e e e e aeeaaeaeaens 22
ClOSEPIOVISIONINGSESSION [tiiiiiititiiiie ittt aa e aa e aaee e aaaneeeeanns 28
enumMerateProvisSioNiNgSESSIONS [4]...uuiiiiiiii i i i e e e e e e e eaaans 30
AbOrtProViSIONINGSESSION [5] ittt it et e e e e e eaaans 31
updateKeyManagementKey [7] oo i e 32
CreatePUKPOIICY [ittt et e e e e e e e e e e e e e annnnnes 34
CrEatEPINPOIICY [O] e iii ittt e e st 35
(ol g == L= (=34 = o 2 0 O P 36
(o 1= (=3 YA = o |1 1 41
setCertificatePath [12]. .o e e e 42
IMPOrtSYMMEtHICKEY [13] ittt s e s e e s s e annnnnnnees 44
IMPOMPrIVAtEKEY [14] it e ans 47
= e Lo 1 g =] 1] 1o i T 0 = P 49
(2o TS I (= o= NV = O] S 53
POSTUNIOCKKEY [5L ettt e e e e s e s e e e e e e s e anneens 55
POSEUPAateKeY [52 it e e 56
POStCloneKeyProteCtion [53] .. it r e e 58
ENUMEIALEKEYS [70]ttt ettt e e e e e s e e e e s e e eannnnes 60
(o= (S AN | o 10 =T [61
getKeyProtectioNINfO [72] i e e e s e e e e e eannns 62
o= o = 1= Lo o 172 64
Y=o o] o 1= o [P 65
(o[L= =] (= 10 66
L2 q Lo T o (= 1< 7 0 67
(U] a1 (ool 1 = VA k< 272 68
(ol aT=T a Lo [= T T < 7C 71 S 69
Y= o S 2 70
UPAateFirmMWare [90 . ittt et e e e s e e e e e e r e 71
SigNHashedData [100 .. .uuuiiiiii i s e e s s ae e s s e s aanne s sanneeeseennnnns 72
asymmetricKeyDeCrypt [101 . et i e r e e e s e e a e e e e e eaaans 73
SV 7AYe | =T o =T o L 1 02 74
(2= 0T L [g = Lol 1 0 1C 2 75
SymmetriCKeYENCrY P [104 ..ot e s e e e e e e e ennnnns 76
APPENdiX A, KeYGEN2 PrOXY . uuiteiiiiteeieieesaiessaisee s saaarreeeessssaasnnneeesssseaannnnnneeeess 77
AppendiX B. Sample S@SSION. ...ttt 78
Appendix C. Reference Implementation.......coooviiiiiiiiii e 78
AppendixX D. Remote Key LOOKUD .. ittt it ittt e e e s e e s e s e annannnnnnns 79
Appendix E. Security Considerations. . ..iiiiiiiiii i i e e 81
Appendix F. Intellectual Property RightS.....ccoiiuiiiiiiiii e 81
PAY o] o= aTe It C 2= (=] = ol == 82

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 3 of 84

Appendix H. ACKNOWIEAgmMENtS. ... e e e s 84
PAY 0T 01=T 0 Te [) QN IR AN U 1 o o o 84

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 4 of 84

1 Introduction

This document describes the API (Application Programming Interface) and architecture of a system called SKS (Secure Key
Store). SKS is essentially an enhanced smart card that is optimized for secure, reliable, and user-friendly on-line provisioning
and life-cycle management of cryptographic keys.

In addition to PKI and symmetric keys (including OTP applications), SKS also supports arbitrary key attributes which for
example can support novel schemes for identity federation and payment networks.

The primary objective with SKS and the related specifications is establishing two-factor authentication as a viable alternative
for any provider by making the scheme a standard feature in the “Universal Client”, the Internet browser.

2 Core Functionality
2.1 Architecture

Below is a picture showing the core components in the SKS architecture:

Y B3 O

Device Attestation Credential Cryptographic
Certificate Private Key Database Engine

The Device Certificate forms together with a matching Attestation Private Key the foundation for the session mechanism that
facilitates secure provisioning of keys, also when the provisioning middleware and network are non-secure.

The Credential Database holds keys and other data that is related to keys such as protection and extension objects. It also
keeps the provisioning state.

The Cryptographic Engine performs in addition to standard cryptographic operations on private and secret keys, the core of
the provisioning operations which from an API point-of-view are considerably more complex than the former.

A vital part of the Cryptographic Engine is a high quality random number generator since the integrity of the entire provisioning
scheme is relying on this.

All operations inside of an SKS are supposed to be protected from tampering by malicious external entities but the degree of
internal protection may vary depending on the environment that the SKS is running in. That is, an SKS housed in a smart card
which may be inserted in an arbitrary computer must keep all data within its protected memory, while an SKS that is an integral
part of a mobile phone processor may store credential data in the same external Flash memory where programs are stored,
but sealed by a CPU-resident “Master Key”.

2.2 Provisioning API

Although SKS may be regarded as a “component’, it actually comprises of three associated pieces: The KeyGen2 protocol,
the SKS architecture, and the provisioning API described in this document. These items are tightly matched which is more or
less a prerequisite for large-scale, secure and interoperable ecosystems of cryptographic keys. Also see KeyGen2 Proxy.

One of the core features of the SKS Provisioning API is enabling independent issuers securely sharing a single “Key Ring”,
which is particularly suited for mobile phones with embedded “Trusted Hardware”.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 5 of 84

2.3 User API

In this document “User API” refers to operations that are required by security applications like TLS client-certificate
authentication, S/MIME, Kerberos and payment authorization systems.

The User APl is not a core SKS facility but its implementation is anyway recommended to facilitate adoption.

The described User API is fully mappable to the subset of CryptoAPI, PKCS #11, and JCE that the majority of current
PKI-using applications rely on.

The standard User API does not utilize authenticated sessions like featured in TPM 2.0 because this is a local security option,
which is independent of the network centric Provisioning APL.

If another User API is used the only requirement is that the key objects created by the provisioning API, are compatible with
the former.

2.4 Security Model

Since the primary target for SKS is authentication to arbitrary service providers on the Internet, the security model is quite
different to traditional multi-application card schemes like GlobalPlatform. In practical terms this means that it is the user
who grants an issuer the right to create keys in the SKS. That is, there are no preconfigured “Security Domains”.

However, an issuer may during a provisioning session define a VSD (Virtual Security Domain) which enables post provisioning
(update) operations by the issuer, while cryptographically shielding provisioned data from similar actions by other issuers.

When using KeyGen2 the grant operation is performed through a GUI dialog triggered by an issuer request, which in turn is
the result of the user browsing to an issuer-related web address.

The SKS itself only trusts inbound data that can securely be derived from a session key created in the initial phase of a
provisioning session. See createProvisioningSession.

The session key scheme is conceptually similar to GlobalPlatform's SCP (Secure Channel Protocol) but details differ
because KeyGen2 uses an on-the-wire JSON format requiring encoding/decoding by the middleware, rather than raw APDUs.

Regarding who trusts an SKS, this is effectively up to each issuer to decide and may be established anytime during an
enrollment procedure. Trust in an SKS can be highly granular like only accepting requests from preregistered units or be fully
open ended where any SKS complaint device is accepted. A potentially useful issuer policy would be specifying a set of
endorsed SKS brands, presumably meeting some generally recognized certification level like EALS.

Many smart card schemes depend on roles like SO (Security Officer) which squarely matches scenarios where users are
associated with a multitude of independent service providers. By building on an E2ES (End To End Security) model, the
technical part of the SO role, exclusively becomes an affair between the SKS and the remote issuers, where each issuer is
confined to their own virtual cards and SO policies.

Also see Security Considerations and Privacy Enabled Provisioning.

2.5 Transaction Based Operation

An important characteristic for maintaining integrity and robustness is that provisioning and management operations either
succeed or leave the system intact. This is accomplished by deferring the actual “commit” of container-modifying operations
until the terminating closeProvisioningSession call.

Ideally an SKS container should be able dealing with power-failures regardless when they occur.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 6 of 84

2.6 Privacy Enabled Provisioning

Note: Credential provisioning and credential usage (at least when the issuer is independent of the relying party), represent two
entirely different scenarios from a privacy point of view.

Although a one-size-fits-all approach would be nice, it seems that the span of Internet-related services motivates a design that
supports on-line identity schemes where issuers have (often quite substantial) knowledge about users, as well as close to fully
anonymous relationships.

The “Standard” E2ES (End To End Security) mode which exploits the SKS Device Certificate and Attestation Private Key
in the provisioning API, is intended to suit the needs of banks, employers, governments, and high-security third-party identity
providers.

The PEP (Privacy Enabled Provisioning) mode is identical to the E2ES mode, with the exception that the identity of the SKS is
excluded. A valid question is if the PEP mode is equally secure as the E2ZES mode. The simple answer to that is a clear “No”,
since the issuer neither learns the type (=quality, brand), nor the identity of the SKS.

However, from a user's horizon the PEP mode is as secure and trustworthy as the E2ES mode as long as the client platform is
intact and the correct issuer enroliment URL is used. After provisioning there are no security differences whatsoever between
the two modes.

The PEP mode is selected by the privacyEnabled parameter of createProvisioningSession.

Due to the fact that the “Standard” mode potentially affects the user's privacy, it is recommended
that such requests are equipped with an appropriate user alert notice in the GUI

2.7 Device ID

Since the exposed identity of the SKS container is dependent on the mode as described in the previous section, the affected
provisioning methods refer to a “Device ID” which is the literal string "Anonymous™" or the X.509 DER format of the
Device Certificate for the Privacy Enabled Provisioning and E2ES mode respectively.

2.8 Backward Compatibility

A question that arises is of course how compatible the SKS Provisioning API is with respect to existing protocols, APls, and
smart cards. The answer is simply: NOT AT ALL due to the fact that current schemes do generally not support secure on-line
provisioning and key life-cycle management directly towards end-users.

In fact, smart cards are almost exclusively personalized by more or less proprietary software under the supervision of card
administrators or performed in automated production facilities.

Note: unlike 7816-compatible smart cards, an SKS exposes no visible file system, only objects.

Although the lack of compatibility with the current state-of-the-art (“nothing”), may be regarded as a major short-coming, the
good news is that SKS by separating key provisioning from actual usage, does neither require applications nor cryptographic
APIs to be rewritten.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 7 of 84

3 Objects

The SKS API (as well as its companion protocol KeyGen2), presumes that objects are arranged in a specific fashion. At the
heart of the system there are the typical cryptographic keys intended for user authentication, signing etc., but also dedicated
keys supporting life-cycle management and of user keys and attributes.

All provisioned user keys, including symmetric dittos (see importSymmetricKey), are identified by X.509 certificates. The
reason for this somewhat unusual arrangement is that this enables universal key IDs as well as secure remote object
management by independent issuers. See Remote Key Lookup.

3.1 Key Entries

The following picture shows the elements forming an SKS key entry:

Public Key | End-Entity Certificate | | CACertificates | PIN Error Count

I

Element Description
Public Key Public part of the asymmetric key-pair created by createKeyEntry
Private Key Private part of the asymmetric key-pair created by createKeyEntry

End-Entity Certificate X.5009 certificate set by the mandatory call to setCertificatePath

Symmetric Key Optional symmetric key defined by calling importSymmetricKey

CA Certificates Optional X.509 CA certificates defined during the call to setCertificatePath
Extension Objects Optional extension objects defined by calling addExtension

PIN Error Count Optional counter for keys protected by a PIN policy object. See createPinPolicy
Key Attributes Attributes defined during the call to createKeyEntry

Note that key management operations always involve an entire key entry; individual elements cannot be managed.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 8 of 84

3.2 PIN and PUK Objects

Keys can optionally be protected by PIN-codes (“passphrases”). PIN-protected keys maintain separate PIN error counters, but
a single PIN policy object may govern multiple keys. A PIN policy and its associated keys can in turn be supplemented by an
optional PUK (PIN Unlock Key) policy object that can be used to reset error-counters that have passed the limit as defined by
the PIN policy. Below is an illustration of the SKS protection object hierarchy:

. PUK Policy

.. PIN Policy

Lt

For the creation of protection objects, see createPukPolicy, createPinPolicy and createKeyEntry.
For an example how KeyGen2 deals with this structure, see KeyCreationRequest.

Note that the set of keys bound to a particular PIN policy object “owns” the PIN policy object which means that when the /ast
key of such a set has been deleted, the PIN policy object itself must be automatically deleted (by postDeleteKey and
deleteKey). The very same principle is also valid for PUK policy objects. Due to this there are no specific PIN or PUK delete
methods.

An embedded SKS may also support a device (system-wide) PIN and PUK. See devicePinProtection. Usage and
management of device PINs and PUKs is out of scope for the SKS API.

3.3 Provisioning Objects

The following picture shows how provisioning objects “own” the keys they have provisioned:

.
.
LL[Provisioning Object }

ol

Lo

For detailed information concerning the contents of a provisioning object see createProvisioningSession.

Note that when the /ast key owned by a provisioning object has been deleted, the provisioning object itself must be
automatically deleted (by closeProvisioningSession and deleteKey).

If a keyManagementKey is deployed during provisioning object creation (establishing a VVSD), post-provisioning operations can
also be performed. See postDeleteKey, postUnlockKey, postUpdateKey, and postCloneKeyProtection. Also see
updateKeyManagementKey.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 9 of 84

4 Algorithm Support
4.1 Mandatory Algorithms

Algorithm support in SKS must as a minimum include the following items:

URI

Description

Symmetric Key Encryption

http://www.w3.0rg/2001/04/xmlenc#aes128-cbc

http://www.w3.0rg/2001/04/xmlenc#aes192-cbc

http://www.w3.0rg/2001/04/xmlenc#aes256-cbc

See XML Encryption. Note that [V must be internally
generated as well as prepended to encrypted data

https://webpki.github.io/sks/algorithm#aes.cbc

https://webpki.github.io/sks/algorithm#aes.ecb.nopad

See FIPS 197. Support for 128, 192, and 256-bit keys

HMAC Operations

http://www.w3.0rg/2000/09/xmldsig#hmac-sha1

http://www.w3.0rg/2001/04/xmldsig-more#hmac-sha256

http://www.w3.0rg/2001/04/xmldsig-more#hmac-sha384

http://www.w3.0rg/2001/04/xmldsig-more#thmac-sha512

See XML Signature

Asymmetric Key Encryption

https://webpki.github.io/sks/algorithm#rsa.es.pkcs1_5

https://webpki.github.io/sks/algorithm#rsa.oaep.sha1

https://webpki.github.io/sks/algorithm#rsa.oaep.sha256

See RFC 3447

Hash function = mgf1 function.
No explicit argument

Decryption mode only

Diffie-Hellman Key Agreement

https://webpki.github.io/sks/algorithm#ecdh.raw

See SP800-56A ECC CDH primitive (Section 5.7.1.2)

Asymmetric Key Signatures

http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha256

http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha384

http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha512

http://www.w3.0rg/2001/04/xmldsig-more#ecdsa-sha256

http://www.w3.0rg/2001/04/xmldsig-more#ecdsa-sha384

http://www.w3.0rg/2001/04/xmldsig-more#ecdsa-sha512

See XML Signature
Signing mode only

https://webpki.github.io/sks/algorithm#rsa.pkcs1.none

https://webpki.github.io/sks/algorithm#ecdsa.none

See sighHashedData

Note that the binary encoding of signature values must be in accordance with XML Signature which for ECDSA differs from

for example OpenSSL and JCE.

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

Page 10 of 84

Asymmetric Key Generation

https://webpki.github.io/sks/algorithm#rsa1024 RSA 1024-bit key Implicit exponent:
https://webpki.github.io/sks/algorithm#rsa2048 RSA 2048-bit key 65537
https://webpki.github.io/sks/algorithm#ec.nist.p256 EC NIST “P-256"
https://webpki.github.io/sks/algorithm#ec.nist.p384 EC NIST “P-384”" See FIPS 186-4
https://webpki.github.io/sks/algorithm#ec.nist.p521 EC NIST “P-521”

Supported algorithms can be acquired by calling getDevicelnfo.

Note: RSA “multi-prime” keys are not supported by this specification.

4.2 Special Algorithms

Special algorithms are unique to SKS:

Special Algorithms

https://webpki.github.io/sks/algorithm#session. 1

See createProvisioningSession

https://webpki.github.io/sks/algorithm#key.1

See createKeyEntry

https://webpki.github.io/sks/algorithm#none

See createKeyEntry and importSymmetricKey

4.3 Optional Algorithms

The following algorithms are defined but are optional:

Asymmetric Key Generation

https://webpki.github.io/sks/algorithm#rsa3072 RSA 3072-bit key Implicit exponent:
https://webpki.github.io/sks/algorithm#rsa4096 RSA 4096-bit key 65537
https://webpki.github.io/sks/algorithm#rsa1024.exp RSA 1024-bit key
https://webpki.github.io/sks/algorithm#rsa2048.exp RSA 2048-bit key Variable exponent
https://webpki.github.io/sks/algorithm#rsa3072.exp RSA 3072-bit key See keyParameters
https://webpki.github.io/sks/algorithm#rsa4096.exp RSA 4096-bit key
https://webpki.github.io/sks/algorithm#ec.brainpool.p256r1 EC Brainpool “P256r1” See RFC 5639
https://webpki.github.io/sks/algorithm#ec.secg.p256k EC “secp256k1” See https://secg.org

Note that the KeyGen2 samples use JOSE algorithm-IDs when there is such a counterpart available.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 11 of 84

https://secg.org/

5 Protection Attributes

The following section describes the attributes issuers need to set for defining suitable key protection policies. Also see
getKeyProtectionInfo, keyManagementKey, devicePinProtection, and enablePinCaching.

During provisioning of user-defined PINs, the provisioning middleware should maintain the PIN policy and optionally ask the
user to create another PIN if there is a policy mismatch because createKeyEntry must return an error and abort the entire
session if fed with incorrect data. Also see KeyGen2 Proxy.

In addition to protection policies, a key may also be constrained with respect to algorithm usage. See endorsedAlgorithms.

5.1 Export Protection

The following table illustrates the use of the exportProtection attribute:

KeyGen2 Name Value Description
none 0x00 No authorization needed for exporting the key
pin 0x01 Correct PIN is required
puk 0x02 Correct PUK is required
non-exportable 0x03 The key must not be exported

Also see exportKey.

5.2 Delete Protection

The following table illustrates the use of the deleteProtection attribute:

KeyGen2 Name Value Description
none 0x00 No delete restrictions apply
pin 0x01 Correct PIN is required
puk 0x02 Correct PUK is required
non-deletable 0x03 The key must not be deleted

Also see deleteKey.

5.3 Biometric Protection

An SKS may also support using biometric data as an alternative or complement to PINs. See getDevicelnfo. The following
table shows the biometric protection options as defined by the biometricProtection policy attribute:

KeyGen2 Name Value Description
none 0x00 No biometric protection
alternative 0x01 The key may be authorized with a PIN or by biometrics
combined 0x02 The key is protected by a PIN and by biometrics
exclusive 0x03 The key is only protected by biometrics

Note that there is no API support for biometric authentication, such information is typically provided out of band. The type of
biometrics used is outside the scope of SKS and is usually established during enroliment.

The biometric protection option is only intended to be applied to User API methods like signHashedData.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 12 of 84

5.4 PIN Input Methods
The inputMethod policy attribute tells how PINs should be inputted to the SKS according to the following table:

KeyGen2 Name Value Description
any 0x00 No restrictions
programmatic 0x01 PINs should only be given through the SKS User API

Keys should only be used through a trusted GUI that does the

trusted-gui 0x02 actual PIN request and API invocation

Note that this policy attribute requires that the middleware is “cooperative” to be enforced.

5.5 PIN Patterns

The patternRestrictions policy attribute specifies how PINs must be designed according to the following table:

KeyGen2 Name Value Description
two-in-a-row 0x01 Flags 1124 as invalid
three-in-a-row 0x02 Flags 1114 as invalid
sequence 0x04 Flags 1234, 9876, etc as invalid
repeated 0x08 All PIN bytes must be unique

The PIN format must be alphanumeric or string and
contain a mix of letters and digits. The string format also
requires lowercase letters and non-alphanumeric characters.
See PIN and PUK Formats

missing-group 0x10

Note that the patternRestrictions byte actually holds a set of bits. That is, 0x00 means that there are no pattern restrictions,
while 0x06 imposes two constraints. Also note that pattern policy checking is supposed to be applied at the binary level which
has implications for the binary PIN format (see PIN and PUK Formats).

An alternative for organizations having strict requirements on PIN patterns, it is letting users define PINs during enrollment in a
web application and then deploy issuer-set PIN codes during provisioning. See pinValue.

5.6 PIN and PUK Formats

PINs and PUKs must adhere to one of formats described in the following table:

KeyGen2 Name Value Description
numeric 0x00 0-9
alphanumeric 0x01 0-9,A-Z
string 0x02 | Any valid UTF-8 encoded string
binary 0x03 Binary value, typically expressed as hexadecimal data

Note that format specifiers only deal with how PINs and PUKs are treated in GUIs; internally and in the SKS API, key
protection data must always be handled as decoded strings of bytes. A conforming SKS must perform syntax validation
during createKeyEntry on numeric and alphanumeric PIN data. Length of the clear-text binary value must not exceed
128 bytes. See format attribute in createPinPolicy and createPukPolicy.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 13 of 84

5.7 PIN Grouping

A PIN policy object may govern multiple keys. The grouping policy attribute (which is intimately linked to the Application
Usage scheme), controls how PINs to the different keys relate to each other according to the following table:

KeyGen2 Name Value Description
none 0x00 No restrictions
shared 0x01 All keys must share the same PIN

Keys with appUsage = signature must share a common PIN

i t +standard
stgnaturerstandar 0x02 while all other keys must share a different PIN

All four appUsage types must have different PINs while keys with

unique 0x03 the same appUsage must share a common PIN

Note that keys having a shared PIN groping attribute must be treated as having a single “virtual” PIN object (holding PIN
value and error counter), while signature+standard and unique imply two respectively four independent PIN objects.

Shared PINs require that a PIN value or status change must propagate to all keys sharing the particular PIN.

5.8 Application Usage

The appUsage attribute specifies what applications keys are intended for according to the following table:

KeyGen2 Name Value Description
signature 0x00 The key should only be used in signature applications like S/MIME
: : The key should only be used in applications like TLS client certificate
thent t
authentication 0x01 authentication and login to AD (Active Directory)
encryption 0x02 The key should only be used in encryption applications
universal 0x03 There are no restrictions on key usage

Enforcement of appUsage is up to each application to perform.

Note that appUsage must not constrain a key's internal use of cryptographic algorithms in any way, because for that purpose
there is the endorsedAlgorithm mechanism.

Although appUsage could be be regarded as a duplication of the X.509 key usage and extended key usage attributes the
latter have proved hard to use as “filters” to certificate selection GUIs. appUsage is also applicable for other credentials like
OTPs (One Time Passwords).

However, an equally important target for appUsage is that in conjunction with PIN Grouping provide the means for aiding
users in PIN input GUIs in the case an issuer requires separate PINs for different keys and applications.

The following matrix shows the recommended interpretation of PIN GUI “hints”:

PIN Grouping signature authentication encryption universal
none PIN PIN PIN PIN
shared PIN PIN PIN PIN
signaturet+standard Signature PIN PIN PIN PIN
unique Signature PIN Authentication PIN Encryption PIN PIN

For this scheme to work a prerequisite is (of course) that the middleware is specifically adapted for SKS.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 14 of 84

6 Session Security Mechanisms

After the sessionKey has been created the actual provisioning methods can be called. Depending on the specific method
downloaded data may be confidential or need to be authenticated. For certain operations the SKS needs to prove for the
issuer that sent data indeed stems from internal SKS operations which is referred to as attestations.

This section describes the default security mechanisms used during a provisioning session (defined by the SKS properties
sessionKeyAlgorithm and keyEntryAlgorithm). See also sessionKeyLimit.

Note that all elements featured in the following definitions must be supplied “as is” without length indicators.

6.1 Encrypted Data

During provisioning encrypted data is occasionally exchanged between the issuer and the SKS. The encryption key is created
by the following key derivation scheme:

EncryptionKey = HMAC-SHA256 (sessionKey, "EncryptionKey")

EncryptionKey must only be used with the AES256-CBC algorithm. Note that the IV (Initialization Vector) must be
prepended to the encrypted data as in XML Encryption as well as freshly generated for each encryption.

6.2 MAC Operations

In order to verify the integrity of provisioned data, many of the provisioning methods mandate that the data-carrying arguments
are included in a MAC (Message Authentication Code) operation as well. MAC operations use the following scheme:

mac = HMAC-SHA256 (sessionKey || MethodName || macSequenceCounter, Data)

MethodName is the string literal of the target method like "closeProvisioningSession", while Data represents the
arguments as specified for the actual method. Note that individual elements featured in Data must use the representation
described in Data Types, that is, include applicable length-indicators.

After each MAC operation, macSequenceCounter must be incremented by one. Due the use of a sequence counter, the
provisioning system must honor the order of objects as defined by the issuer.

6.3 Attestations

Attestations created by the SKS are identical to MAC Operations where MethodName is set to "DeviceAttestation".

6.4 Target Key Reference

In order to perform post provisioning operations the issuer must provide evidence of ownership to keys. Target Key Reference
denotes a key management authorization signature scheme using the keyManagementKey associated with the “owning”
provisioning object of the target key (see Provisioning Objects) according to the following:
authorization = Sign (keyManagementKeytarget,
"TargetKeyReference" || HMAC-SHA256 (sessionKey ... Il Device ID,
End-Entity Certificate

target))
Notes:

« Sign must use an PKCS # 1 RSASSA signature for RSA keys and ECDSA for EC keys with the private key associated
with keyManagementKey, and utilizing SHA256 as hash function

* An SKS must verify that the signature validates with respect to the public key (keyManagementKey) as well as
checking that End-Entity Certificate matches targetKeyHandle

« Ifa keyManagementKey is not present in the target key's provisioning object, the key is considered “not updatable”
and the provisioning session must be aborted

* The provisioning session must be aborted if the privacyEnabled flag differs between the original and the updating
session.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 15 of 84

6.5 Public Key Data

Public key data in SKS is assumed to be in X.509 DER encoded format when exchanged through the API or when used in
MAC operations. The latter requires that the format is very strict and free from extensions. The following shows three sample
keys having the anticipated encoding:

P-256 EC Key
ASN.1:

0000:

0002:

0004:
000d:

0017:

Binary:

0000:
0010:
0020:
0030:
0040:
0050:

Ed25519 Key
ASN.1:

0000:

0002:

0004:

0009:

Binary:

0000:
0010:
0020:

SEQUENCE

30
86
Oc
84
%e
le

SEQUENCE

BIT STRING, 65 bytes

59
48
12
01
c0
Tc

{

OBJECT IDENTIFIER ecPublicKey (1.2.840.10045.2.1)
OBJECT IDENTIFIER NIST-P-256 (1.2.840.10045.3.1.7)

}

04
70
c4
ef
e6

30
ce
48
51
6d
e9

SEQUENCE

71
3b
c6
b8

13
3d
22
£7
3e
c0

e9
b0
af
Oa

06
03
78
45
79
76

SEQUENCE

{
}

OBJECT IDENTIFIER Ed25519 (1.3.

ec
15
2b
88

07
01
fc
od
57
94

0f
e9
cd
3d

2a
07
fa
55
12
ee

37
ac
ee
08

86
03
od
01
17
de

Oc
84
%9e
le

48
42
70
42
bd
a7

BIT STRING, 32 bytes
fe 49 ac £f5 b9 2b 6e
ac 92 4b e9 3c £5 33

30 2a 30 05 06 03 2b 65 70
b9 2b 6e 92 35 94 £f2 e8 33
3c £f5 33 ae ca £8 02 e3 77

Continued on the next page...

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

12
01
c0
Tc

ce
00
7b
83
89
55

48
51
6d
e9

3d
04
70
c4
ef
e6

22
£7
3e
c0

02
71
3b
c6
b8

78
45
79
76

01
e9
b0
af
Oa

92 35 94 f2
ae ca f8 02

03 21 00 fe
68 £6 80 ac
57 £8 c9

fc
od
57
94

06
ec
15
2b
88

fa
55
12
ee

08
(033
e9
cd
3d

od
01
17
de

2a
37
ac
ee
08

101.112)

e8 33 68
e3 77 57

49 ac £5
92 4b e9

70 7b
42 83
bd 89
a7 55

£6 80
£8 c9

Page 16 of 84

RSA 2048 Bit Key

ASN.1

0000:

0004:

0006:
0011:

0013:

0018:

00lc:

0121:

Binary:

0000:
0010:
0020:
0030:
0040:
0050:
0060:
0070:
0080:
0090:
00a0:
00bO0:
00cO:
00dO0:
00e0:
00£0:
0100:
0110:
0120:

SEQUENCE

30
01
00
el
ce
do
3e
da
64
91
44
9b
cc
dd
2a
d7
41
4c
17

{

SEQUENCE

{

}

OBJECT IDENTIFIER rsaEncryption (1.2.840.113549.1.1.1)

NULL

BIT STRING, encapsulates

82
05
84
2e
b7
££

5e
61
76
23
a6
93
£8
5f
14
5b
6a
02

{

01
00
55
07
91
4f
15
99
£0
d2
60
60
4b
94
46
05
b7
87
03

SEQUENCE

{

22
03
84
97
76
77
£3
ad
26
94
e9
ad
4a
be
60
82

of
01

INTEGER

00
el
ce
do
3e
da
64
91
44
%b
cc
dd
2a
d7
41
4c
17

84
2e
b7
££f
db
5e
61
76
23
a6
93
£8
5f
14
5b
6a

INTEGER

30
82
5c
6f
dd
9¢c
74
2a
6e
le
45
62
fe
3b
96
ed
fd
ec
00

od
01
Oa
06
c8
66
31
b5
el
f£
47
40
cé6
£8
S5e
fc
89
95
01

SKS (Secure Key Store) — API and Architecture

06
(033
ef
25
£7
ae
c3
5a
14
b7
08
79
66
bf
57
ad
a9
91

55
07
91
4f
15
99
f0
d2
60
60
4b
94
46
05
b7
87

655

09
00
69
04
92
5a
53
ac
17
ca
dl
95
2c
1b
68
ea
3a
do

84
97
76
77
£3
ad
26
94
e9
ad
4a
be
60
82
fb
0of

37

2a
30
91
cd
d3
c8
88
do
16
42
do
c4
f6
a3
9d
Oc
d3
82

5c
6f
dd
9¢c
74
2a
6e
le
45
62
fe
3b
96
6d
fd
ec

86
82
29
be
a6
a6
78
c5
03
4a
3f
£ff
4b
3b
67
dc
65
d3

Oa
06
c8
66
31
b5
el
£f£f
47
40
c6
£8
S5e
fc
89
95

48
01
48
70
£3
a8
ee
ab
78
£7
ae
cc
81
98
76
86
de
de

ef
25
£7
ae
c3
5a
14
b7
08
79
66
bf
57
ad
a9
91

86
Oa
fe
f0
e8
a0
2e
1f
b0
3c
2e
58
5c
8e
fa

de
46

69
04
92
5a
53
ac
17
ca
dl
95
2c
1b
68
ea
3a
do

£7
02
6a
91
69
66
8d
19
c7
1lc
8f
29
ed
a3

04
4d
4c

91
cd
d3
c8
88
do
16
42
do
c4
fé6
a3
9d
Oc
d3
82

0od
82
35
fa
ds
18
b2
25
7b
b8
bl
46
Oa
de
52
ff
bc
d3

29
be
a6
a6
78
c5
03
4a
3f
£f£
4b
3b
67
dc
65
d3

01
01
Te
a2
de
01
08
64
46
07
82
06
cé6
bf
a6
d2
7d
eb5

V1.07, WebPKl.org, 2021-01-29

48
70
£3
a8
ee
ab
78
£7
ae
cc
81
98
76
86
de
de

01
01
£l
5a
d7
8c
6f
61
el
8c
c0
38
8d

6e
90
08
93

fe
£0
e8
a0
2e
1f
b0
3c
2e
58
5c
8e
fa
ab
de
46

6a
91
69
66
8d
19
c7
lc
8f
29
ed
a3
fb
04
4d
4c

35
fa
ds
18
b2
25
7b
b8
bl
46
Oa
4e
52
£f£f
bc
d3

Te
a2
de
01
08
64
46
07
82
06
c6
bf
a6
d2
7d
e5

£l
5a
d7
8c
6f
61
ed
8c
c0
38
8d

6e
90
08
93

Page 17 of 84

7 Detailed Operation

This chapter describes the SKS API in detail.

7.1 Data Types

The table below shows the data types used by the SKS API. Note that multi-byte integers must be stored in big-endian
fashion whenever they are serialized like in MAC Operations. See also Method List.

Type Length Description
byte 1 Unsigned byte (0 - OxFF)
bool 1 Byte containing 0x01 (true) or 0x00 (false)
ushort 2 Unsigned two-byte integer (0 - OXFFFF)
uint 4 Unsigned four-byte integer (0 - OXFFFFFFFF)
byte[] 2 + length | Array of bytes with a leading “ushort” holding the length of the data
blob 4 +length | Long array of bytes with a leading “uint” holding the length of the data
id 2 + length Special form of byFe[] which must contain an 1-32 byte string with a character
set restricted to printable ASCII (0x21 - Ox7E)
uri 2 +length | UTF-8 encoded URI which must not exceed 1000 bytes
string 2 +length | UTF-8 encoded string with arbitrary content

If an array is followed by a number in brackets (byte[32]) it means that the array must be exactly of that length.

Variables and literals that represent textual data must be UTF-8 encoded and not include terminating null characters; they are
in this specification considered equivalent to byte[].

Note that length indicators are only applicable to array objects when included in MAC Operations, and when they are

serialized.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29

Page 18 of 84

7.2 Return Values

All methods return a single-byte status code. In case return status is <> 0 there is an error and any expected succeeding
values must not be read as they are not supposed to be available. Instead there must be a second return value containing a
UTF-8 encoded description in English to be used for logging and debugging purposes as shown below:

Name Type Description
status byte Non-zero (error) value
ErrorString String A human-readable error-description with length <= 2000 bytes

7.3 Error Codes

The following table shows the standard SKS error-codes:

Name Value Description
ERROR_AUTHORIZATION | 0001 | (e e, o6 GetkeyProtectiontnfo
ERROR_NOT ALLOWED 0x02 | Operation is not allowed
ERROR_STORAGE 0x03 | No persistent storage available for the operation
ERROR_MAC 0x04 MAC does not match supplied data
ERROR_CRYPTO 0x05 Various cryptographic errors
ERROR_NO_SESSION 0x06 | Provisioning session not found
ERROR_NO_KEY 0x07 | Key not found
ERROR_ALGORITHM 0x08 Unknown or non-matching algorithm
ERROR_OPTION 0x09 Invalid or unsupported option
ERROR_INTERNAL O0x0A | Internal error
ERROR_EXTERNAL 0x0B | External error like communication link failure
ERROR_USER_ABORT 0x0C | User aborted PIN input or similar
ERROR_NOT_AVAILABLE 0xOD | External error when a requested SKS is unavailable

7.4 Method List

This section provides a list of the SKS methods. The number in square brackets denotes the decimal value used to identify
the method in a call. Method calls are formatted as strings of bytes where the first byte holds the method ID and the
succeeding bytes the applicable argument data. User API methods have method IDs = 100.

Note: The described APl is adapted for an SKS using low-level byte-streams for communication. However, the
SKS design is equally applicable to APl schemes using high-level objects and exceptions. The only thing that
must remain intact are the cryptographic operations including how objects are represented in MACs.

Note that a keyHandle in this specification always refers to a key entry. See Key Entries.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 19 of 84

getDevicelnfo [1]

Input
Name Type Description
This method does not have any input arguments
Output
Name Type Description
status byte See Return Values
apilevel ushort 100 (1.00) => Applies to this API specification
deviceType byte Holds basic device data. See deviceType
updateUrl uri :r';l'yP (geI:TJFI)DdSa tJeI?:Ii_rprfw;iE to a firmware update service or a zero length
vendorName string String of 1-128 characters holding the name of the vendor
vendorDescription string String of 1-1000 characters holding a vendor description of the SKS device
certificate... byte[] Non zero list of DER encoded X.509 certificate objects
supportedAlgorithm. . . uri Non zero list of algorithm URIs. See Algorithm Support
cryptoDataSize uint Maximum number of bytes in the data argument of cryptographic methods
extensionDataSize uint Maximum size of extensionData objects
devicePinSupport bool True if the SKS supports a device PIN. See createKeyEntry
e T bool Erigiqig ttP;(iaCSPlgtzucsz:r:ts biometric authentication options. See

getDeviceData lists the core characteristics of an SKS which is used by provisioning schemes like KeyGen2.

The certificate objects must form an ordered and contiguous certificate path so that the first object contains the actual
SKS Device Certificate. The path does though not have to be complete (include all upper-level CAs).

A compliant SKS must support extensionData objects with a size of at least 65536 bytes.

A compliant SKS must support a cryptoDataSize of at least 16384 bytes.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29

Page 20 of 84

The deviceType property holds a set of fields according to the following table:

Bit Value Label Description
0x00 | LOCATION_EXTERNAL Connected device
0x01 LOCATION EMBEDDED Embedded in the client platform
01 k02 LOCATION_SOCKETED | Mounted inside a socket
0x03 | LOCATION_SIM SIM/USIM card
0x00 | TYPE SOFTWARE Software implementation
9.3 0x04 TYPE_HARDWARE Unqualified hardware implementation
0x08 | TYPE_HSM Hardware Security Module
0x0C TYPE_CPU Implemented inside of the main CPU
4-7 - - -

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

Page 21 of 84

createProvisioningSession [2]

Input
Name Type Description
sessionKeyAlgorithm uri Session creation algorithm URI. See next page
privacyEnabled bool If true the PEP (Privacy Enabled Provisioning) mode must be honored
serverSessionld id Server-created provisioning ID which should be unique for each session
serverEphemeralKey byte[] Server-created ephemeral ECDH key. See serverEphemeralKey
issuerUri uri URI associated with the issuer. See issuerUri
keyManagementKey byte[] Key management key or zero length array. See keyManagementKey
clientTime uint Locally acquired time in UNIX “epoch” format in seconds. See clientTime
sessionLifeTime ushort | Validity of the provisioning session in seconds. See sessionLifeTime
sessionKeyLimit ushort | Upper limit of sessionKey operations. See sessionKeyLimit
serverCertificate byte[] Locally acquired X.509 server certificate for the issuing server
Output
Name Type Description
status byte See Return Values
clientSessionId id SKS-created provisioning ID which must be unique for each session
clientEphemeralKey bytel[] SKS-created ephemeral ECDH key. See clientEphemeralKey
attestation byte[] Session creation attestation signature
provisioningHandle uint Non-zero local handle to created provisioning session

createProvisioningSession establishes a persistent session key that is only known by the issuer and the SKS for usage
in subsequent provisioning steps. In addition, the SKS is optionally authenticated by the issuer.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 22 of 84

Shown below is the mandatory to support SKS session key creation algorithm:

https://webpki.github.io/sks/algorithm#session.1

* Generate a for this SKS unique clientSessionId

* Output clientSessionId

* Output clientEphemeralKey = EKP.publicKey

shared secret 2

» Define internal variable: byte[32] sessionKey

issuerUri ||
Device ID)

clientSessionId |
serverSessionId |
issuerUri ||

Device ID ||
sessionKeyAlgorithm |
PrivacyEnabled ||
serverEphemeralKey |
EKP.publicKey |
keyManagementKey ||
clientTime |
sessionLifeTime |
sessionKeyLimit ||
serverCertificate)

database entry in provisioningHandle

* Output provisioningHandle

operations must be represented as described in Data Types.

See also Public Key Data.

* Generate an ephemeral ECDH key-pair EKP using the same named curve as serverEphemeralKey

* Apply the SP800-56A ECC CDH primitive on EKP.privateKey and serverEphemeralKey creating a

* Set sessionKey = HMAC-SHA256 (2, clientSessionId || // KDF (Key Derivation Function)
serverSessionId ||

* Outputattestation = Sign (attestationKey, /I See remarks

» Define internal variable: ushort macSequenceCounter and set it to zero

» Store sessionKey, sessionKeyAlgorithm, privacyEnabled, macSequenceCounter
clientSessionld, serverSessionId, issuerUri, keyManagementKey, clientTime,
sessionLifeTime and sessionKeyLimit in the Credential Database and return a handle to the

Note that individual elements featured in the arguments (e.g. clientSessionId) of the Sign and HMAC

Creation of a session key is an afomic operation.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29

Page 23 of 84

Remarks

If any succeeding operation in the same provisioning session, is regarded as incorrect by the SKS, the session must be
terminated and removed from internal storage including all associated data created in the session.

An SKS should only constrain the number of simultaneous sessions due to lack of storage.
A provisioning session should not be terminated due to power down of an SKS.

sessionKeyAlgorithm defines the creation of sessionKey but also the integrity, confidentiality, and attestation mechanisms
used during the provisioning session. See Session Security Mechanisms.

Using KeyGen2 issuerUri is the URL which invoked ProvisioninglInitializationRequest.
serverEphemeralKey and clientEphemeralKey must match the elliptic curve capabilities given by getDevicelnfo.

In the E2ES mode the Sign function's attestationKey is the Attestation Private Key (see Architecture) and must use
PKCS #1 RSASSA signatures for RSA keys and ECDSA for EC keys with SHA256 as the hash function. The distinction
between RSA and ECDSA keys is performed through the Device Certificate (see getDeviceInfo) which in KeyGen?2 is
supplied as well as a part of the response to the issuer.

In the Privacy Enabled Provisioning mode the Sign function must use HMAC-SHA256 with sessionKey as the
attestationKey.

provisioningHandle must be static, unique and never be reused.

The clientTime attribute is gathered by the local provisioning middleware and is typically derived from the operating system
clock. When clientTime is transferred through a protocol such as KeyGen2 it must always as a minimum have seconds
resolution otherwise serious interoperability issues will occur. Possible milliseconds must though be tfruncated during the
HMAC calculation. clientTime should be interpreted as a 32-bit unsigned integer to cope with the Y2038 problem.

It is recommended setting sessionLifeTime as low as possible to enable efficient automatic “cleanup” of possible aborted
provisioning sessions.

The sessionKeyLimit attribute must be large enough to handle all sessionKey related operations required during the rest
of the provisioning session, otherwise the session must be terminated. See Session Security Mechanisms. Note that
methods like importSymmetricKey and postDeleteKey actually use two sessionKey operations.

A keyManagementKey must be supplied if provisioned objects should be updatable in a future session (see postDeleteKey,
postUnlockKey, postUpdateKey, and postCloneKeyProtection), else this item must be a zero-length array.

A keyManagementKey must either be an RSA or an ECDSA public key, compatible with the SKS Algorithm Support.

serverCertificate holds the X.509 DER formatted issuer server certificate retrieved during KeyGen?2 initialization
(through the HTTPS connection).

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 24 of 84

When using KeyGen2 the input to createProvisioningSession is expressed as shown (in the E2ES mode) below:

{
"@context": "https://webpki.github.io/keygen2",
"@qualifier": "ProvisioninglnitializationRequest",
"serverSessionld": "14153858604BE50TXkwbax23nsIxS3gh",
"serverTime": "2020-01-08T10:00:17Z",
"sessionKeyAlgorithm": "https://webpki.github.io/sks/algorithm#session.1",
"sessionKeyLimit": 50,
"sessionLifeTime": 10000,
"serverEphemeralKey": {
"kty": "EC",
"crv": "P-256",
"x": "INXNVAUEE8t7DSQBft93LVSXxKCiVjhbWWfyg023F Ck",
"y": "LmTIQxXB3LgZrNLmhOfMaCnDizczC RfQEKx8iNwfFA"
fr
"keyManagementKey": {
"kty": "RSA",
"n": "jvct15zkHOIw20wWFCn ... vVPFX7K1GgLdnumNHNrY1YQ",
"e": "AQAB"
}
}
Notes:

The keyManagementKey object is optional. See also updateKeyManagementKey.

serverTime is simply a reference and possible “sanity control” for the client.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 25 of 84

When using KeyGen2 the output from createProvisioningSession is translated as shown in the example below:

"@context": "https://webpki.github.io/keygen2",
"@qualifier": "ProvisioninglnitializationResponse",
"serverSessionld": "14153858604BE50TXkwbax23nsIxS3gh",
"clientSessionld": "QgTIcUH_Md7_i2dP4S5VKYmmYsbUbzGL",
"serverTime": "2020-01-08T10:00:17Z",
"clientTime™: "2020-01-08T12:00:19+02:00",
"clientEphemeralKey": {

"kty": "EC",

"crv": "P-256",

"x": "INXNVAUEE8t7DSQBft93LVSXxKCiVjhbWWfyg023FCk",

"y": "LmTIQxXB3LgZrNLmhOfMaCnDizczC_RfQ6Kx8iNwfFA"

}

evicelnfo": {
"certificatePath": [
"MIICIzCCAX-gAWIBAgI ... uk9W/uNIHdoyQn19w",
"MIIDZjCCAkBgAWIBAgI ... xOmZyH10xvpsnmokg",
"MIIDZjCCAkBgAWIBAgI ... ObXiOInYgeKdK-Dw"
;]
"attestation": "Tgzvnr_k266LMXinVm ... 7pkdnYiplf9xjOuUJD6OYs"

Notes:

In the E2ES mode the deviceInfo must be available for verification of the attestation signature as well as for
identification of the SKS container. The deviceInfo must supply the full Device Certificate path as provided by
getDevicelnfo.

In the Privacy Enabled Provisioning mode the deviceInfo must not be emitted.

serverTime must contain a verbatim copy of the same attribute received in the ProvisioningInitializationRequest.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 26 of 84

On the server side the following steps should be performed:

Server Response Validation
» Decide if the received deviceInfo featured in the ProvisioninglnitializationResponse message is to be
accepted/trusted
* Run the the same SP800-56A procedure and KDF as for the SKS but now using clientEphemeralKey
and the saved private key of serverEphemeralKey to obtain sessionKey
» Perform a Verify (Device Certificate . publicKey, /I Received
attestation, /I Received (holds a signature)
clientSessionId || /I Received
serverSessionId || /I Saved
issuerUri || /I Saved
Device ID || /I Saved
sessionKeyAlgorithm || /l Saved
privacyEnabled || /I Saved
serverEphemeralKey || /I Saved
clientEphemeralKey || /I Received
keyManagementKey || /I Saved
clientTime || /I Received
sessionLifeTime || /I Saved
sessionKeyLimit || /I Saved
serverCertificate)) // Known by the issuer

If the test above succeeds the issuer server may continue with the actual provisioning process.

Note that in the Privacy Enabled Provisioning mode the deviceInfo does not apply, and the asymmetric key Verify
operation is replaced by a comparison between attestation and the output from the HMAC-SHA256.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 27 of 84

closeProvisioningSession [3]

Input
Name Type Description
provisioningHandle uint Local handle to an open provisioning session
nonce byte[] Server generated 1-32 byte nonce value
mac byte[32] | Vouches for the integrity and authenticity of the operation
Output
Name Type Description
status byte See Return Values
attestation byte[32] | Session terminate success attestation signature. See attestation

closeProvisioningSession terminates a provisioning session and returns a proof of successful operation to the issuer.
However, success status must only be returned if all of the following conditions are valid:

* There is an open provisioning session associated with provisioningHandle

* The mac computes correctly using the method described in MAC Operations where Data is arranged as follows:

Data = clientSessionld || serverSessionld || issuerUri || nonce

» All generated keys are fully provisioned which means that matching public key certificates have been deployed and
checked regarding disallowed duplicates. See setCertificatePath

» endorsedAlgorithm URIs match the provisioned key material with respect to symmetric or asymmetric operations as
well as to length. Asymmetric keys are also tested for RSA and EC algorithm compliance

» There are no unreferenced PIN or PUK policy objects. See createPukPolicy and createPinPolicy

» The post provisioning operations succeed during the final commit. See Transaction Based Operation

If verification is successful, closeProvisioningSession must also reassign provisioning session ownership to the current
(closing) session for all objects belonging to sessions that have been subject to a post provisioning operation. The original
session objects must subsequently be deleted since they have no mission anymore. See also Provisioning Objects.

If verification fails, all objects created in the session must be deleted and post provisioning operations must be rolled back.

When a provisioning session has been successfully closed by this method, it remains stored until all associated keys have

been deleted.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29 Page 28 of 84

Using KeyGen2 closeProvisioningSession is invoked as the /ast step of ProvisioningFinalizationRequest
processing, where sessionCloseData objects holds the associated mac and nonce attributes:

"@context": "https://webpki.github.io/keygen2",

"@qualifier": "ProvisioningFinalizationRequest",
"serverSessionld": "1417fa0e508YzrfxGeX-w2ByTAKDSy8v",
"clientSessionld": "fXQrec8rlguUz5XxQkSZKimbiPbb7eM3f",

Other Message Payload

"sessionCloseData": {
"nonce": "NajebxXBmgs10Nj81KzrQBNiAMts-I90kCMJ41Qdzhl",
"mac": "DvhtwgO7fnasR-gouyiReoFGDH2w4Sj6RWZ9SIWJeDQ"
}
}

The attestation object is created by attesting (see Attestations) the following Data:
Data = nonce

See also sessionKeyLimit.

A successful KeyGen2 response would only contain the following:

{
"@context": "https://webpki.github.io/keygen2",
"@qualifier": "ProvisioningFinalizationResponse",
"serverSessionld": "1417fa0e508YzrfxGeX-w2ByTAKDSy8v",
"clientSessionld": "fXQrec8rigUz5XxQkSZKimbiPbb7eM3f",
"attestation": "acpN8bVJwKZJadlaOsZ-b-7Ky2WRoltP9pFXFD3Nrlo"
}

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 29 of 84

enumerateProvisioningSessions [4]

Input
Name Type Description
provisioningHandle uint Input enumeration handle
provisioningState bool If true list only open provisioning sessions. If false list only closed dittos
Output
Name Type Description
status byte See Return Values
provisioningHandle uint Output enumeration handle
The following elements must not be present if the returned provisioningHandle =0
sessionKeyAlgorithm uri
privacyEnabled bool
keyManagementKey byte[]
clientTime uint
sessionlifeTime e See createProvisioningSession
serverSessionIld id
clientSessionId id
issuerUri uri

enumerateProvisioningSessions is primarily intended to be used by provisioning middleware for retrieving handles to

open provisioning sessions in sessions that are interrupted due to a certification process or similar.

In addition, users of portable SKSes (like smart cards), may carry out provisioning steps on different computers through this

method.

enumerateProvisioningSessions is also useful for debugging and for “cleaning-up” after failed provisioning sessions.

The input provisioningHandle must initially be set to O to start an enumeration round.

Succeeding calls must use the output provisioningHandle as input to the next call.

When enumerateProvisioningSessions returns with a provisioningHandle = 0 there are no more provisioning
objects to read.

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

Page 30 of 84

abortProvisioningSession [5]

Input
Name Type Description
provisioningHandle uint Local handle to an open provisioning session
Output
Name Type Description
status byte See Return Values

abortProvisioningSession is intended to be used by provisioning middleware if an unrecoverable error occurs in the
communication with the issuer, or if a user cancels a session. If there is a matching and still open provisioning session, all
associated data must be removed from the SKS, otherwise an error must be returned.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 31 of 84

updateKeyManagementKey [7]

Input
Name Type Description
Local handle to an existing (closed) provisioning session object holding a
provisioningHandle uint keyManagementKey that needs to be updated to support post-operations
using a new keyManagementKey. See Provisioning Objects
keyManagementKey byte[] The new keyManagementKey
authorization byte[] Authorization signature performed by the old keyManagementKey
Output
Name Type Description
status byte See Return Values

updateKeyManagementKey associates an existing provisioning session object with an updated keyManagementKey. The
update must be cryptographically secured by the authorization signature which is created as follows:

authorization = Sign (keyManagementKeyexisting,

"RollOverAuthorization" || keyManagementKey

new)

For details on allowed signature algorithms and data representation, see Target Key Reference.
The operation must be aborted if the authorization signature does not verify or if the target provisioning object lacks a

keyManagementKey.

See also enumerateProvisioningSessions.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29 Page 32 of 84

The following request shows how updateKeyManagementKey is integrated in KeyGen2:

"@context": "https://webpki.github.io/keygen2",
"@qualifier": "ProvisioninglnitializationRequest",
"serverSessionld": "14182a80df8_4YcBFZmNkVUnAw9losHa",
"serverTime": "2020-01-08T10:49:132",
"sessionKeyAlgorithm": "https://webpki.github.io/sks/algorithm#session.1",
"sessionKeyLimit": 50,
"sessionLifeTime": 10000,
"serverEphemeralKey": {
"kty": "EC",
"crv": "P-256",
"x": "chrt0S6C3eLbKzbV4R8n1-kKNKHoggbAi4FH3fsDiaQ",
"y": "WcW6PIkSj3-1GYNu--cdlljTjYtjuhIGEOk6/vv1kTc"

}

keyManagementKey": {
llktyll: IIEC:II7
"CrV": llP_256ll,
"x": "INXNVAUEE8t7DSQBft93LVSXxKCiVjhbWWfyg023FCk",
"y": "LmTIQxXB3LgZrNLmhOfMaCnDizczC_RfQBKx8iNwfFA"

}

updatableKeyManagementKeys": [{
"publicKey": {
"kty": "RSA",
"n": "kCNcOpatALB21jHrPIv1BgXIUJ . . . pgNo75jsAZlucGOw",
"e": "AQAB"
}1
"authorization": "XjzlozOmuM8AMjFafySIR . . . 3sLm1Bfkm4XbbdbrvJw"
1
}

updatableKeyManagementKeys holds an array of old keyManagementKeys which can be upgraded to the heading
(current) keyManagementKey if a matching key is found through calls to enumerateProvisioningSessions.

The updatableKeyManagementKeys array can in turn (recursively) also hold an updatableKeyManagementKeys array
making it possible to have any number of keyManagementKey generations deployed. To make this feasible, updates must
be performed in steps, starting at the oldest level (leaf updatableKeyManagementKeys array).

keyManagementKey updates must be done before calling createProvisioningSession since open sessions cannot be
updated.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 33 of 84

createPukPolicy [8]

Input
Name Type Description
provisioningHandle uint Local handle to an open provisioning session
id id External name of the PUK policy object. See Object IDs
encryptedPuk byte[] Encrypted PUK value. See Encrypted Data
format byte Format of PUK strings. See PIN and PUK Formats
Value [0..10000] holding the number of incorrect PUK values (in a sequence),
.. forcing the PUK object to permanently lock up. A zero value indicates that there
L
retrylimit Leiien: is no limit but that the SKS will introduce an internal 1-10 second delay before
acting on an unlock operation in order to thwart exhaustive attacks
mac byte[32] | Vouches for the integrity and authenticity of the operation
Output
Name Type Description
status byte See Return Values
pukPolicyHandle uint Non-zero handle to created PUK policy object

createPukPolicy creates a PUK policy object in the Credential Database to be referenced by subsequent calls to the
createPinPolicy method.

The mac relies on the method described in MAC Operations where Data is arranged as follows:
Data = id || encryptedPuk || format || retryLimit
Note that encryptedPuk is MACed in encrypted form and then decrypted by the SKS before storing.

The purpose of a PUK is to facilitate a master key for unlocking keys that have locked-up due to faulty PIN entries. See
unlockKey.

PUK policy objects are not directly addressable after provisioning; in order to read PUK policy data, you need to use an
associated key handle as input. See getKeyProtectionInfo.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 34 of 84

createPinPolicy [9]

Input
Name Type Description
provisioningHandle uint Local handle to an open provisioning session
id id External name of the PIN policy object. See Object IDs
pukPolicyHandle uint Handle to a governing PUK policy object or zero
S 001 | (ot he user or by he ssuer See pnvalie e obe
userModifiable bool True if PINs can be changed by the user after provisioning
format byte Format of PIN strings. See PIN and PUK Formats
A ushort ;éarlc?ir?g“a" Il g}(/)?g]k:\gklddr;g the number of incorrect PIN values (in a sequence),
grouping byte See PIN Grouping
patternRestrictions byte See PIN Patterns
minLength ushort | Minimum decoded PIN length in bytes. See PIN and PUK Formats
maxLength ushort | Maximum decoded PIN length in bytes. See PIN and PUK Formats
inputMethod byte See PIN Input Methods
mac byte[32] | Vouches for the integrity and authenticity of the operation
Output
Name Type Description
status byte See Return Values
pinPolicyHandle uint Non-zero handle to created PIN policy object

createPinPolicy creates a PIN policy object in the Credential Database to be referenced by subsequent calls to the
createKeyEntry method.

The mac relies on the method described in MAC Operations where Data is arranged as follows:

Data = id || PUKReference || userDefined || userModifiable || format || retryLimit ||
grouping || patternRestrictions || minLength || maxLength || inputMethod

PUKReference is set to "" if pukPolicyHandle is zero, else it is set to the id of the referenced PUK policy object.

If pukPolicyHandle is zero no PUK is associated with the PIN policy object.

PIN policy objects are not directly addressable after provisioning; in order to read PIN policy data, you need to use an
associated key handle as input. See getKeyProtectionInfo.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 35 of 84

createKeyEntry [10]

Input
Name Type Description
provisioningHandle uint Local handle to an open provisioning session
id id External name of the key. See Object IDs
keyEntryAlgorithm uri Key generation and attestation algorithm URI. See next page
serverSeed byte[] Server input to the random number generation process. See serverSeed
devicePinProtection bool 'SI':Jee |if1mea|:13y |iDSUt}2 t())eb?;%ttescted by a device PIN.
pinPolicyHandle uint Handle to a governing PIN policy object or zero. See createPinPolicy
pinValue byte[] See pinValue, PIN Patterns and PIN Grouping
enablePinCaching bool True if middleware may cache PINs for this key. See enablePinCaching
biometricProtection byte See Biometric Protection
exportProtection byte See Export Protection
deleteProtection byte See Delete Protection
appUsage byte See Application Usage
friendlyName string String of 0-100 characters that will be associated with this key for use in GUIs
keyAlgorithm uri Algorithm of the key to be created. See Asymmetric Key Generation
keyParameters byte[] Optional parameter data needed for some algorithms. See keyParameters
endorsedAlgorithm. .. uri List of 0-255 endorsed algorithm URIs
mac byte[32] | Vouches for the integrity and authenticity of the operation
Output
Name Type Description
status byte See Return Values
keyHandle uint Non-zero local handle to created key entry
publicKey byte[] Generated public key. See Public Key Data
attestation byte[32] | See attestation

createKeyEntry generates an asymmetric key-pair according to the issuer's specification. In addition, createKeyEntry
creates a key entry (see Key Entries) in the Credential Database where the key-pair and its protection attributes are stored.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 36 of 84

The following operations match the mandatory to support key generation and attestation algorithm:

https://webpki.github.io/sks/algorithm#key.1

The mac relies on the method described in MAC Operations where Data is arranged as follows:

Data = id || keyEntryAlgorithm || serverSeed ||
PINPolicyReference || PINValueReference ||
devicePinProtection || enablePinCaching ||
biometricProtection || exportProtection ||
deleteProtection || appUsage || friendlyName ||
keyAlgorithm || keyParameters [|| endorsedAlgorithm. . .]

PINPolicyReference is set to "" if pinPolicyHandle is zero, else it is set to the id of the referenced
PIN policy object.

PINValueReference is setto "" if pinPolicyHandle is zero, or if the PIN is userDefined, else it is set to
the encrypted pinvalue.

attestation vouches for that generated key-pairs actually reside in the SKS by attesting (see Attestations)
keys according to the following Data scheme:

Data = publicKey || mac

Remarks

keyHandle must be static, unique and never be reused. Note that a keyHandle returned by createKeyEntry must not
be featured in User API operations until the associated provisioning session has been closed (see
closeProvisioningSession).

Object IDs for createKeyEntry, createPinPolicy and createPukPolicy share a common namespace but the namespace is
entirely local to the provisioning session. Although only static identifiers are used in the examples, Object IDs may be
randomized to increase entropy of MAC Operations.

serverSeed must be a 0-64 byte binary string holding a random number seed. How serverSeed is applied to the random
number generation process is unspecified with the exception that a zero-byte input string must not affect the SKS internal
random number generation.

For RSA keys with variable exponent keyParameters must be 1-8 bytes holding a positive big-endian integer, else
keyParameters must be of zero length.

A non-zero biometricProtection value presumes that the target SKS supports Biometric Protection, otherwise an error
must be returned. See getDevicelnfo.

endorsedAlgorithm URIs must be sorted in ascending alphabetical order before calling createKeyEntry.
endorsedAlgorithm URIs must be checked for compatibility with Algorithm Support.
endorsedAlgorithm compliance must be enforced by the User API.

endorsedAlgorithm URIs must not be checked against actual key material during createKeyEntry. This check must
be deferred to closeProvisioningSession.

If no endorsedAlgorithm URIs are specified, the key is only constrained by the key material.

With the special algorithm https://webpki.github.io/sks/algorithm#none (which is only permitted as a single
endorsedAlgorithm item), keys must be disabled from executing cryptographic operations through the User API.

A set devicePinProtection presumes that the target SKS supports a “device PUK/PIN”, otherwise an error must be
returned. The characteristics of device PINs are out of scope for the SKS specification. See getDevicelnfo.

devicePinProtection must not be combined with local PIN policy objects.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 37 of 84

enablePinCaching must only be used with keys protected by local PIN policy objects having the inputMethod set to

"trusted-gui".
pinValue objects must be set by the caller as illustrated by the following pseudo code:

if (pinPolicyHandle == 0) // No PIN or device PIN

{ pinValue = zero length array;
el}se if (pinPolicyHandle.usedDefined) // see userDefined

{ pinValue = user-defined clear text PIN value; [/ taken from a local provisioning GUI
else

{

pinValue = encrypted issuer-set PIN value; |/ see Encrypted Data

}

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29

Page 38 of 84

The following JSON object shows a typical key generation (initialization) request in KeyGen?2:

}

"@context": "https://webpki.github.io/keygen2",
"@qualifier": "KeyCreationRequest",
"serverSessionld": "1417fa0bedb7rjEFGS-BL3RnJoDyh5UZ",
"clientSessionld": "PpZRTVq2wa-TLvsFJE7GZPASEeEqk4YZz",
"keyEntryAlgorithm": "https://webpki.github.io/sks/algorithm#key.1",
"pukPolicySpecifiers": [{
"id": "PUK.1",
"retryLimit": 3,
"format": "numeric",
"encryptedPuk": "xKELVWmx-nHdemfJItY-KmcArGNTsusM7jATLHKHC5U",
"mac": "oNTuaVBPqgOGJE7xs1tNtICuzviE2wskcoW 1kiuZIKg",
"pinPolicySpecifiers": [{
"id": "PIN.1",
"minLength": 6,
"maxLength": 8,
"retryLimit": 3,
"grouping": "shared",
"format": "numeric",
"patternRestrictions": ["three-in-a-row","sequence"],
"mac": "Z3IMErjvevarAj5Ww31AAj8e_0QZjkYgFdtquDSf4G0",
"keyEntrySpecifiers": [{
"id": "Key.1",
"appUsage": "authentication",
"keyAlgorithm": "https://webpki.github.io/sks/algorithm#rsa2048",
"mac";: "ksg1ZwSfGrUjWPWpbK6wrhOKRH7TiwMc_VIN51GhFCc"
3
"id": "Key.2",
"appUsage": "signature",
"keyAlgorithm": "https://webpki.github.io/sks/algorithm#ec.nist.p256",
"mac": "dC--5J1yQ1SnP4WyRQv4sZJG9gPIq29wO4E2nnX5sFk"

1
1l
1

This sequence should be interpreted as a request for an RSA key and an EC key where both keys are protected by a single
(shared) user-defined (within the specified policy limits) PIN. The PIN is in turn governed by an issuer-defined, protocol-wise

secret PUK.

Note that the actual linkage of PUK, PIN and key-specifiers is accomplished through object embedding in the protocol which
the KeyGen2 Proxy must be honoring.

In the sample KeyGen2 default values have been utilized which is why there are few visible key generation attributes.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29

Page 39 of 84

When using KeyGen2 the output from createKeyEntry is translated as shown below:

"@context": "https://webpki.github.io/keygen2",
"@qualifier"; "KeyCreationResponse",
"serverSessionld": "1417faObedb7rjEFGS-BL3RnJoDyh5UZ",
"clientSessionld": "PpZRTVq2wa-TLvsFJE7GZPASEeEqk4YZz",
"generatedKeys": [{
"id": "Key.1",
"publicKey": {
"kty": "RSA",
"n": "sol7DCkNaGZtMP8QLMCu . . . TZTPWM6qFKWLzR45-3DWcPw",
"e": "AQAB"

i
"attestation": "bYNIOYTCnVXvuNUM1Im_grDC9U2c63nRbgchnpaoUVg"
il
"id": "Key.2",

"publicKey": {

"kty": "EC",

"crv": "P-256",

"x": "nGIEGIladp0aSJzD3aNsqt1QC3CCSGDgPTVG_2pFLQ6W",

"y": "XOa0-BbXVgqcvwBBOMvV1fs5BzbCOrLdBnXigWNy970"

}!
"attestation": "TtScC3woIB_hGt3SmSvpgglB2233S87vSI94hCFFsSE"
1l

}

A conforming server must after receival of the response verify that the number and IDs of returned keys match the request. In
addition, each returned key must be checked for correctness regarding attestation data and that the generated public key
actually complies with that of the request.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 40 of 84

getKeyHandle [11]

Input

Name Type Description
provisioningHandle uint Local handle to an open provisioning session
id id See createKeyEntry
Output
Name Type Description
status byte See Return Values
keyHandle uint Local handle to a key belonging to an open provisioning session

getKeyHandle returns a keyHandle based on the provisioning session specific key ID.

An invalid key id must return an error and abort the provisioning session.

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

Page 41 of 84

setCertificatePath [12]

Input
Name Type Description
keyHandle uint Local handle to a key-pair belonging to an open provisioning session
certificate... byte[] Non zero list of DER encoded X.509 certificate objects
mac byte[32] | Vouches for the integrity and authenticity of the operation
Output
Name Type Description
status byte See Return Values

setCertificatePath attaches an X.509 certificate path to an already created key-pair. See createKeyEntry.

The certificate objects must form an ordered and contiguous certificate path so that the first object contains the

End-Entity Certificate usually holding the public key of the target key-pair. The path does though not have to be complete
(include all upper-level CAs). Path validity should be verified by the provisioning middleware before calling this method.

Individual certificate objects must not exceed cryptoDataSize.

Note that an SKS must not not attempt to verify that the End-Entity Certificate and keyHandle . publickey match because

that would disable the importPrivateKey method. Itis the MAC operation that is facilitating a cryptographically verifiable
binding between the certificate path and the designated key entry.

The MAC relies on the method described in MAC Operations where Data is arranged as follows:
Data = keyHandle.publicKey || keyHandle.id || certificate. ..
A compliant SKS must not accept multiple key entries being associated by the same End-Entity Certificate unless the

conflicting key is subject to a postUpdateKey or postDeleteKey operation.

A compliant SKS must verify that the public key of the End-Entity Certificate matches the Asymmetric Key Generation
capabilities of the SKS.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 42 of 84

The following KeyGen2 object shows its interaction with setCertificatePath:

"@context": "https://webpki.github.io/keygen2",
"@qualifier"; "ProvisioningFinalizationRequest",
"serverSessionld": "1417fa0ad90cEhH32g3fghY_6EbeenIK",
"clientSessionld": "jPGg77Uqgp_A59u7Yo4laSRBZMxmoeLay",
"IssuedCredentials": [{
"id": "Key.1",
"certificatePath": [
"MIIDbDCCAISgAwWIBAgIGAUF_oLFEMAOGCS . . . LNTAajQcWBwAmvX5dvizg",
"MIIDYTCCAKkmgAWIBAgIGAUGCQAG . . . qqN3fG5GMaTCZNuJfRQJyU"

I,
"mac": "b3hr4Rc6pHo-MuJYGvvAzdV3knV6tVLphdzDUTEfa9w"

1,

"sessionCloseData"; {
"nonce": "NajebxXBmgs10Nj81KzrQBNiAMts-I90kCMJ41QdZhl",
"mac": "DvhtwgO7fnasR-gouyiReoF GDH2w4Sj6RWZ9SIWJeDQ"

}
}

The certificatePath array must hold a sorted certificate path.

The owning provisioningHandle and local keyHandle can be retrieved by calling enumerateProvisioningSessions
and getKeyHandle using the clientSessionId, serverSessionId and id attributes respectively.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 43 of 84

importSymmetricKey [13]

Input
Name Type Description
keyHandle uint Local handle to a key belonging to an open provisioning session
encryptedKey byte[] Raw symmetric key encrypted as described in Encrypted Data
mac byte[32] | Vouches for the integrity and authenticity of the operation
Output
Name Type Description
status byte See Return Values

importSymmetricKey imports and links a symmetric key to an already created key-pair and certificate.

The MAC relies on the method described in MAC Operations where Data is arranged as follows:

Data = End-Entity Certificate || encryptedKey

Note that encryptedKey objects must be MACed in encrypted form and then decrypted by the SKS before storing.

Symmetric keys must not exceed 128 bytes.

With the special endorsedAlgorithm https://webpki.github.io/sks/algorithm#inone arbitrary static shared
secrets can be specified. When used together with exportKey, a suitable PIN policy and a propertyBags object holding site

information, an SKS could then also serve as a password store.

After importSymmetricKey has been called the key entry is marked as “symmetric”. Thatis, the private key is disabled as

well as all operations associated with it. See getKeyAttributes.

The keyBackup . IMPORTED flag of the key must be set after execution of importSymmetricKey.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29

Page 44 of 84

The following KeyGen2 steps show how symmetric keys are provisioned. First the server issues a key-pair request:

{
"@context": "https://webpki.github.io/keygen2",

"@qualifier": "KeyCreationRequest",
"serverSessionld": "1417fa0c061hwoiSTca_BwhH;jl7tm5y;j",

"clientSessionld": "yCW200bErAF8DFFmzWWOIphYa2GuFHis",
"keyEntryAlgorithm": "https://webpki.github.io/sks/algorithm#key.1",

"pinPolicySpecifiers": [{
"id": "PIN.1",
"minLength": 4,
"maxLength": 8,
"retryLimit": 3,
"format": "numeric",
"mac": "OvinCQy7y0v3C234ESYu3KEQiQ1We9JWAIipQ-1J0A64",

"keyEntrySpecifiers": [{
"id": "Key.1",
"appUsage": "authentication",
"keyAlgorithm": "https://webpki.github.io/sks/algorithm#rsa2048",
"endorsedAlgorithms": ["http://www.w3.0rg/2001/04/xmldsig-more#hmac-sha256"],

mac": "5s7dC3SX-jZxjPN7Gg3ssviX-gOYjcsMEWUN8P3dU7g"

1
1

The request above is identical to requests for PKI except for the optional endorsedAlgorithm declaration which in the sample

limit symmetric key operations to HMAC-SHA256.

After receiving the request the client generates a compatible key-pair and a response which is identical to that of PKI:

{
"@context": "https://webpki.github.io/keygen2",

"@qualifier": "KeyCreationResponse",
"serverSessionld": "1417fa0c061hwoiSTca_BwhH;jl7tm5yj",

"clientSessionld": "yCW200bErAF8DFFmzWWOIphYa2GuFHis",

"generatedKeys": [{
"id": "Key.1",
"publicKey": {
"kty": "RSA",
"n": "ubpeYjs2LQjo3EiaYK4AXIVRAMXLMA? . . . VCsOAgDVfo8vi3RNmWHS53Fw",

llell: IIAQAB"
}1
ttestation": "grwWmZzeyah10QjlvT8KJ3-hOZHx599fnKH4RtbEysiKI"

1l

}

Continued on the next page...

Page 45 of 84

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29

The server then responds with a PKI-compliant certified public key including an encrypted “piggybacked” symmetric key:

}

"@context": "https://webpki.github.io/keygen2",
"@qualifier": "ProvisioningFinalizationRequest",
"serverSessionld": "1417fa0c061hwoiSTca_BwhH;jl7tm5y;j",
"clientSessionld": "yCW200bErAF8DFFmzWWOIphYa2GuFHis",
"IssuedCredentials": [{
"id": "Key.1",
"certificatePath": [
"MIIDFjCCAf6gAwWIBAgIGAUF_oMFSMAOG . . . EJwsqSLO88IVL5jpwWO036AVtW3BhILP_Q"
1,
"mac"; "go5cioJmlzyNROKfrA0jGZEmoq_6w15YelLdz8QYq8ns",
"ImportSymmetricKey": {
"encryptedKey": "oh1J_luDYO0jfQYVokvhRvSMw3nfOxiGAVuU_x9gAg3RJtwtuhLtNNmukVb4ggx6a",
"mac": "y0T2uVwaJrUQVPna9CtpgdNxzPdvjRYr_kdx8uaDyTc"

}

31,

"sessionCloseData": {
"nonce": "NajebxXBmgs10Nj81KzrQBNiAMts-I90kCMJ41Qdzhl",
"mac": "DvhtwgO7fnasR-gouyiReoF GDH2w4Sj6RWZ9SIWJeDQ"

}

For details on how to map keys and sessions, see setCertificatePath.

Note that the X.509 certificate serves as a universal key ID. That is, SKS/KeyGen2 treats asymmetric
and symmetric keys close to identically for provisioning, management and user-selection operations

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29

Page 46 of 84

importPrivateKey [14]

Input
Name Type Description
keyHandle uint Local handle to a key belonging to an open provisioning session
encryptedKey byte[] Private key in PKCS #8 format wrapped as described in Encrypted Data
mac byte[32] | Vouches for the integrity and authenticity of the operation
Output
Name Type Description
status byte See Return Values

importPrivateKey replaces a generated private key with a key supplied by the issuer.

The purpose of importPrivateKey (preceded by setCertificatePath), is to install a certificate and private key that the

issuer have generated or have a backup of.

The mac relies on the method described in MAC Operations where Data is arranged as follows:

Data = End-Entity Certificate || encryptedKey

Note that encryptedKey objects must be MACed in encrypted form and then decrypted by the SKS before storing.

A compliant SKS must verify that the imported private key matches the Asymmetric Key Generation capabilities of the

SKS.

The keyBackup . IMPORTED flag of the key must be set after execution of importPrivateKey.

If importPrivateKey is executed over a networked protocol such as KeyGen2 (rather than
locally), it is recommended alerting the user unless the key is having appUsage = encryption

Continued on the next page...

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

Page 47 of 84

The following KeyGen2 object shows how a private key is “piggybacked” to a credential to be restored:

"@context": "https://webpki.github.io/keygen2",
"@qualifier"; "ProvisioningFinalizationRequest",
"serverSessionld": "1417fa0dcd8PY8_OIdKNfCrGh-PPdsXG",
"clientSessionld": "m5BeY94pU9hqBOh_MgQI69ITIYDO6eRg",
"IssuedCredentials": [{
"id": "Key.1",
"certificatePath": [
"MIIC5DCCAcygAwWIBAgIGAUF_oN3/MAOG . . . T71wQ5pkQ67eZwqcfGjwmS9HOvVU"
I,
"mac": "vg5TIuFnxqyyVILcEqwRdjA_y eBOh-s1R3hkQ5 mES8",
"ImportPrivateKey": {
"encryptedKey": "uyplo2qEvSzxjkkjtygEhM3e3o . . . clfyK9jyvxhDpUuxKO1PRXR44maaU",
"mac"; "-iu-iigjgZAyQRvYAOoqg3aN_r87SVzImD3HQwIBO_el"

}

1,

"sessionCloseData": {
"nonce": "NajebxXBmgs10Nj81KzrQBNiAMts-I90kCMJ41Qdzhl",
"mac": "DvhtwgO7fnasR-gouyiReoFGDH2w4Sj6RWZ9SIWJeDQ"

}

For details on how to map keys and sessions, see setCertificatePath.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 48 of 84

addExtension [15]

Input
Name Type Description
keyHandle uint Local handle to a key belonging to an open provisioning session
type uri Type URI. Holds a unique name identifying the extension type
subType byte See table below
qualifier string See table below
extensionData blob Extension object. Regarding size constraints see getDeviceInfo
mac byte[32] | Vouches for the integrity and authenticity of the operation
Output
Name Type Description
status byte See Return Values

addExtension adds attribute (extension) data to an already created key-pair and certificate.

The mac relies on the method described in MAC Operations where Data is arranged as follows:

Data = End-Entity Certificate || type || subType || qualifier || extensionData

The following table shows subType, qualifier and extensionData mapping using KeyGen2:

Property Name SubType i .
(Array of) (Implicit) Qualifier ExtensionData
extensions 0x00 N/A Binary data extracted from Base64URL encoded strings
encryptedExtensions 0x01 N/A Etrrlicr:]rggted binary data extracted from Base64URL encoded
propertyBags 0x02 N/A See propertyBags data normalization
logotypes 0x03 mimeType | Binary image data extracted from Base64URL encoded strings
Remarks

N/A = zero-length string.

Note the handling of the encryptedExtension: extensionData which is encrypted as described in Encrypted Data
must be MACed in encrypted form and then decrypted by the SKS before storing.

A compliant SKS must not allow a given key to be associated with multiple extensions of the same type. If multiple objects
of the same type are needed, you must define a container type holding these.

type URIs do not have fo be recognized by the SKS, since they are intended for interpretation by external applications.

Although not a part of the current SKS specification, an extension could be created for consumption by the SKS only, like
downloaded JavaCard code. In that case the associated extension type URI must be featured in the SKS supported
algorithm list. See getDevicelnfo and getExtension.

qualifier strings must not exceed 128 bytes.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 49 of 84

Using KeyGen2 an optional propertyBags array holds typed collections of name-value pairs which are referred to as
Properties. The following BNF-like definitions outline the syntax:

Optional Property Bags
"propertyBags" : [Tlyped Properties 1on]

Typed Properties
{"type" : "URI", "properties" : [Name-Value Pair1_n 1, "mac" : "MAC"}

Name-Value Pair

{"name" : "Name" , "value" : "Value", "writable" : true | false}

optional

Notes:

A name must not exceed 255 bytes.

If writable is absent false is assumed.

A properties name-value collection must be converted to a binary blob before storage in SKS and MACing according to the
following:

« Each name-value pair is translated into a composite object consisting of the following attributes and transformed

representation:
Name Writable Value
byte[] bool byte[]

See Data Types

* The resulting objects are concatenated in the order they occur in the collection.
Note that there are no delimiters added between attributes or objects. The assembled blob holds the actual extensionData.

Enforcement of name uniqueness may be delegated to the middleware layer. See also setProperty.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 50 of 84

The following KeyGen2 sample shows how properties and logotypes can be added to a symmetric key for usage by a HOTP
(RFC 4226) application:

}

"@context": "https://webpki.github.io/keygen2",
"@qualifier"; "ProvisioningFinalizationRequest",
"serverSessionld": "14182a7f9f7u8bTUUFaTJVL0o29TxtUpG",
"clientSessionld": "1SJaeriZ6sdL_PT3a8qcZ66d2gyW0QpU",
"IssuedCredentials": [{
"id": "Key.1",
"certificatePath": [
"MIIDYDCCAKigAWIBAgIGAUGCp_w4MAOGCS . . BROUoFDeHc4NH8ZmJgd_drnyw"
I,
"mac": "UX1urB8mPPeO5rFwVGL5SmM0z02zeXnZJtumCSOn7KjU",
"ImportSymmetrickey": {
"encryptedKey": "Kx6 TU7 TwRF65a4ufQdz48fmrABt7ZByc6uK6mkoj6HeY9fdUOaxZDfO6MgHH",
"mac": "63iclLm4SP393yHTNpYW4sqxy7 TPXe96uffH_NzvTvs"

}

propertyBags": [{
"type": "urn:ietf:rfc:4226",
"properties": [{
"name": "Counter",
"value": "0",
"writable": true
ol
"name": "Digits",
"value": "8"
1,
"mac": "CObNbjOePsFdYRcvIc3LKISskYKPwW2Ce4ql3egOghE"
1,
"logotypes": [{
"type": "https://webpki.github.io/keygen2/logotype#application”,
"mimeType": "image/png",
"extensionData": "P3k0jz0ZilZfOU5Ag1l . . . Mg1mW1XUF_KrhPxs8Aoe3lrrx",
"mac": "Ir700KOdGBYa9ilSp2QC14V5YznFmfne200-5DWHmMSo0"

1]

i

"sessionCloseData": {
"nonce": "NajebxXBmgs10Nj81KzrQBNiAMts-I90kCMJ41QdZzhl",
"mac": "DvhtwgO7fnasR-gouyiReoF GDH2w4Sj6RWZ9SIWJeDQ"

}

For HOTP the corresponding KeyCreationRequest operation would preferably include an endorsement algorithm definition

as well.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29

Page 51 of 84

Below is a KeyGen2 sample showing an Extension object holding a Base64URL encoded object containing attributes that
presumably have a function to play together with the deployed key:

"@context": "https://webpki.github.io/keygen2",
"@qualifier": "ProvisioningFinalizationRequest",
"serverSessionld": "14182a7f517ghCEyqav1suQZTmKPLF1V",
"clientSessionld": "oWPA9NCj1_uWy0Ax41tsloVDA_L4cAEQ",
"IssuedCredentials": [{
"id": "Key.1",
"certificatePath": [
"MIICnjCCAYagAwIBAgIGAUGCp_VGMAO . . . w4q16pugWr7CFW4fu3bP4KI"
]

"mac": "pr_dgwUNZXBe2v1DKz7m5WUITihosyR2sG_9MKuWuFs",
"extensions": [{

"type": "http://xmins.example.com/payment-credential",
"extensionData": "liBIbmHVy85c¢ZS . . . B4bWxuczd3dy53My5vc",
"mac": "dI3_3anZBaPQcW4ZofhTIgO9WRpEF9HbBcmbFwWbMYAE"

1
B
"sessionCloseData": {
"nonce": "NajebxXBmgs10Nj81KzrQBNiAMts-I90kCMJ41QdZhl",
"mac": "DvhtwgO7fnasR-gouyiReoFGDH2w4Sj6RWZ9SIWJeDQ"
}
}

For details on how to map keys and sessions, see setCertificatePath.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 52 of 84

postDeleteKey [50]

Input
Name Type Description
provisioningHandle uint Local handle to an open provisioning session
targetKeyHandle uint Local handle to the target key
- . . X See Target Key Reference
authorization byte[] Key management authorization signature
mac byte[32] | Vouches for the integrity and authenticity of the operation
Output
Name Type Description
status byte See Return Values

postDeleteKey deletes a key created in an earlier provisioning session.

The mac relies on the method described in MAC Operations where Data is arranged as follows:

Data = authorization

A conforming SKS must abort the provisioning session if postDeleteKey is mixed with other post provisioning operations

referring to the same targetKeyHandle.

This method is independent of Delete Protection settings.

Note that the execution of this method must be deferred to closeProvisioningSession.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29 Page 53 of 84

The following request shows how postDeleteKey operations are integrated in the KeyGen2 protocol:

"@context": "https://webpki.github.io/keygen2",
"@qualifier"; "ProvisioningFinalizationRequest",
"serverSessionld": "14186f4ce39zKRaGUEOtrW6DrhGgZ58L",
"clientSessionld": "cXV1TPgFdmTnvFRXhDX6_6a7FAD9Z8fJ",

Other Message Payload

"deleteKeys": [{
"fingerPrint": "M_7NT9lYHtcClty2eBqgZiddvsoxmQzZ0kzmVcg6lIPs",
"serverSessionld"; "14186f4cbd8JwNfYUivrkFyrU5asnmkg",
"clientSessionld": "u1tVxuCw-ux2TyZlkkg1Rdq732GbpZiV",
"authorization": "LsWkDWhwcmSXVkuogeNjOmQ-Vdpb . . . bch7Lr5J22rdtciAFRLHGxZxUK6gZhqw",
"mac": "pZb5fXDp0hYVOKVXqzW00P6g11i6Ckw54WzzONRVkJo"
31,
"sessionCloseData": {
"nonce": "NajebxXBmgs10Nj81KzrQBNiAMts-I90kCMJ41Qdzhl",
"mac": "DvhtwgO7fnasR-gouyiReoF GDH2w4Sj6RWZ9SIWJeDQ"

}
}

Before invoking postDeleteKey the provisioning middleware needs to perform a number of steps:

1. Find the the old provisioning session associated with the clientSessionId and serverSessionId attributes of
each deleteKeys object by calling enumerateProvisioningSessions.

2. Find possible keys by calling enumerateKeys and ignoring all but those belonging to the provisioning session found
in step #1.

3. For the set of keys found in step #2 call getKeyAttributes while looking for a key having an End-Entity Certificate
matching the SHA256 fingerPrint.

4. |If step #3 is successful targetKeyHandle is recovered and postDeleteKey can be invoked.

If any of these steps fail the provisioning session must be aborted. See also Remote Key Lookup.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 54 of 84

postUnlockKey [51]

Input
Name Type Description
provisioningHandle uint Local handle to an open provisioning session
targetKeyHandle uint Local handle to the target key
- . . X See Target Key Reference
authorization byte[] Key management authorization signature
mac byte[32] | Vouches for the integrity and authenticity of the operation
Output
Name Type Description
status byte See Return Values

postUnlockKey works like unlockKey except that authorization is derived from a Target Key Reference instead of a PUK.

The mac relies on the method described in MAC Operations where Data is arranged as follows:

If the target key is associated with a PUK object the PUK error count must be cleared as well.

Data = authorization

Note that the execution of this method must be deferred to closeProvisioningSession.

The following request shows how postUnlockKey operations are integrated in the KeyGen2 protocol:

}

"@context": "https://webpki.github.io/keygen2",
"@qualifier": "ProvisioningFinalizationRequest",
"serverSessionld": "14186f4d4ccdaW-Z_IHEFw3xVLJ6kpKV",
"clientSessionld": "qP5ioSdpeGxnJFmo6rE9G9pAUUfnc1cO",

Other Message Payload

"unlockKeys": [{
"fingerPrint": "EOzdgsaxi7GOyBQxdaMeOZKKp4 GvI0TLfgNwt7Z9Btw",
"serverSessionld": "14186f4d44aEEIl_KtcKAnyLQpnVt3dVa",
"clientSessionld": "KHdZHnyod54nd9TMixTWDnOtfUVpZW1A",
"authorization": "f4xmvzt30boYtKpNA4nP . . . rsifnrEen5PJrq0DQPiZNa1Fo8Y6A",
"mac": "nCTL88llkkr2a_gHtiUP3yBuDQZ7HB15T5yzixmzBYA"

1,

"sessionCloseData": {
"nonce": "NajebxXBmgs10Nj81KzrQBNiAMts-I90kCMJ41Qdzhl",
"mac": "DvhtwgO7fnasR-gouyiReoFGDH2w4Sj6RWZ9SIWJeDQ"

}

Before invoking postUnlockKey the provisioning middleware must perform the same steps as for postDeleteKey.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29

Page 55 of 84

postUpdateKey [52]

Input
Name Type Description
keyHandle uint Local handle to a new key belonging to an open provisioning session
targetKeyHandle uint Local handle to the target key
- . . X See Target Key Reference
authorization byte[] Key management authorization signature
mac byte[32] | Vouches for the integrity and authenticity of the operation
Output
Name Type Description
status byte See Return Values

postUpdateKey updates (replaces) a key created in an earlier provisioning session.

The mac relies on the method described in MAC Operations where Data is arranged as follows:

Data = End-Entity Certificate || authorization

The new key must be fully provisioned (fitted with a certificate and optional attributes), before this method is called. However,
the new key must not be PIN-protected since it supposed to inherit the old key's PIN protection scheme (if there is one).
Inheritance does not mean “copying” but linking the new key to an existing PIN object. See PIN and PUK Objects.

The target key and and the new key must have identical Application Usage.

Note that updating a key involves all related data (see Key Entries), with PIN protection as the only exception.

The keyHandle of the updated key must after a successful update be set equal to targetKeyHandle.

A conforming SKS must allow a (single) postUpdateKey combined with an arbitrary number of postCloneKeyProtection
calls referring to the same targetKeyHandle.

Note that the execution of this method must be deferred to closeProvisioningSession.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29 Page 56 of 84

The following request shows how postUpdateKey is integrated in the KeyGen2 protocol:

}

"@context": "https://webpki.github.io/keygen2",
"@qualifier"; "ProvisioningFinalizationRequest",
"serverSessionld": "14186f4c622d2ixzZQBPpRoUe9PR7jC3D",
"clientSessionld": "YME9J37aH1Xo7tQifFpa9nkiyyMcGESQ",
"IssuedCredentials": [{
"id": "Key.1",
"certificatePath": [
"MIIDYTCCAKkmgAwWIBAgIGAUGGIMcmMAOGCSq . . . 1IzZ9C0sc5Ak1jNYzvd8GpS4X6C6J3Uys"
]

"mac": "J_RnFJtv7SJp5ZPudqVW6wQnqGmKZ66bWBJgCoESgKKk",

"updateKey": {

"fingerPrint": "PqCoZBJfCvRgikF1ogHa_MOJ_ZTXrIMFn6RvXCgGwps",

"serverSessionld": "14186f4c405V9Z4dm6knbREOEASEhQV8",

"clientSessionld": "ALHIRvpj39AuDCag1gXj8TQOWc9i3Bor",

"authorization": "dqJAh-ScttwndPN2Tu3Xy7m4zgmC . . . 0Qe92GoDHrOpes4prWn2rKkUrsgw",
"mac": "EZ0L4kaemzFtHSvSIFatYIC9rU4o0XVKowQVTuRBMwNA"

}

31,

"sessionCloseData": {
"nonce": "NajebxXBmgs10Nj81KzrQBNiAMts-I90kCMJ41Qdzhl",
"mac": "DvhtwgO7fnasR-gouyiReoF GDH2w4Sj6RWZ9SIWJeDQ"

}

Before invoking postUpdateKey the provisioning middleware must perform the same steps as for postDeleteKey.

keyHandle is the handle associated with the issued credential embedding the updateKey operation.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29

Page 57 of 84

postCloneKeyProtection [53]

Input
Name Type Description
keyHandle uint Local handle to a new key belonging to an open provisioning session
targetKeyHandle uint Local handle to the target key
- . . X See Target Key Reference
authorization byte[] Key management authorization signature
mac byte[32] | Vouches for the integrity and authenticity of the operation
Output
Name Type Description
status byte See Return Values

postCloneKeyProtection clones the protection scheme of a key created in an earlier provisioning session and applies it to
a newly created key.

The mac relies on the method described in MAC Operations where Data is arranged as follows:

Data = End-Entity Certificate || authorization

The new key must be fully provisioned (fitted with a certificate and optional attributes), before this method is called. However,
the new key must not be PIN-protected since it supposed to inherit the old key's PIN protection scheme (if there is one).
Inheritance does not mean “copying” but linking the new key to an existing PIN object. See PIN and PUK Objects.

An inherited custom PIN protection scheme must have its grouping attribute set to shared (see PIN Grouping).
A conforming SKS must allow multiple postCloneKeyProtection calls referring to the same targetKeyHandle.

Note that the execution of this method must be deferred to closeProvisioningSession.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 58 of 84

The following request shows how postCloneKeyProtection is integrated in the KeyGen2 protocol:

}

"@context": "https://webpki.github.io/keygen2",
"@qualifier"; "ProvisioningFinalizationRequest",
"serverSessionld": "14186f4c20a3ly83wJZoJMA3x_hZ2gKo",
"clientSessionld": "j3CcN3e8UI5SXKN1exKqcF19dBi8eGD78",
"IssuedCredentials": [{
"id": "Key.1",
"certificatePath": [
"MIIDajCCAIKgAWIBAgIGAUGGIMPKM . . . KUtYzmixtncrPb6NveGO0x9yrothzHd9k"
I,
"mac": "zwGCYuuKoiLR5n_OyufcS1Z9sABX4W4dI2dRmyBd8gE",
"cloneKeyProtection": {
"fingerPrint"; "cnEQwI7hGtfqgNgtXeCqG_dSN1KOkW1amRx2t6RcPQY0",
"serverSessionld": "14186f4bfeeibYVPx0110VbbgspZONAY",
"clientSessionld": "UENhOyelLZjhXo9CT5dqdTCOH4LtEEDgm",
"authorization": "MEYCIQC5BTwVz8VbrwPo7ujLx . . . HizsDemjamO6r9yyR15Cw241w",
"mac": "yViSzGjcgnVpAvkLzkxs5QwoccX-3IVr3_2IbdWJjOg"

}

31,

"sessionCloseData": {
"nonce": "NajebxXBmgs10Nj81KzrQBNiAMts-I90kCMJ41Qdzhl",
"mac": "DvhtwgO7fnasR-gouyiReoF GDH2w4Sj6RWZ9SIWJeDQ"

}

Before invoking postCloneKeyProtection the provisioning middleware must perform the same steps as for

postDeleteKey.

keyHandle is the handle associated with the issued credential embedding the cloneKeyProtection operation.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29

Page 59 of 84

enumerateKeys [70]

Input
Name Type Description
keyHandle uint Input enumeration handle
Output
Name Type Description
status byte See Return Values
keyHandle uint Output enumeration handle

The following element must not be present if the returned keyHandle =0

provisioningHandle

‘ uint ‘ Handle to the associated provisioning session object

enumerateKeys enumerate keys for closed provisioning sessions. Closed provisioning session means that the key is ready

for usage by applications.

The input keyHandle must initially be set to O to start an enumeration round.

Succeeding calls must use the output keyHandle as input to the next call.

When enumerateKeys returns with a keyHandle = 0 there are no more key objects to read.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29

Page 60 of 84

getKeyAttributes [71]

Input
Name Type Description
keyHandle uint Local handle to the target key
Output
Name Type Description
status byte See Return Values
. Length of symmetric key in bytes. If symmetricKeyLength > 0 the active key
t KeyL th
S T UEIIiS is symmetric. See importSymmetricKey
certificate... byte[] See setCertificatePath
appUsage byte
friendlyName string See createKeyEntry
endorsedAlgorithm. .. uri
type. .. uri List of 0-255 extension type URIs See addExtension

getKeyAttributes returns attribute data for provisioned keys.

For asymmetric keys the public key of the End-Entity Certificate signifies RSA or EC algorithm.

See also getKeyProtectionInfo.

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

Page 61 of 84

getKeyProtectionInfo [72]

Input
Name Type Description
keyHandle uint Local handle to the target key
Output
Name Type Description
status byte See Return Values
protectionStatus byte See protectionStatus table on the next page
pukFormat byte Copy of format defined by createPukPolicy [1]
pukRetryLimit ushort Copy of retryLimit defined by createPukPolicy [1]
pukErrorCount ushort Current PUK error count for keys protected by a local PUK policy object [1]
userDefined bool
userModifiable bool
format byte
retryLimit ushort
T byte aCCIJOpC|2|s Iglf Ijhsoﬁg;r;s)?:crld[;r}g createPinPolicy parameters for keys protected by
patternRestrictions byte
minLength ushort
maxLength ushort
inputMethod byte
ushort. | Saren I etrcountfor ey prtected oy ol PN oy ot (1
enablePinCaching bool
biometricProtection byte i)
S oyte Exact copies of the corresponding createKeyEntry parameters
deleteProtection byte
keyBackup byte Tells if there exists a copy of the key. See keyBackup table on the next page

getKeyProtectionInfo returns information about the protection scheme for a key including possible biometric options. In
addition, the call retrieves the current protection status for the key.

Note 1: Fields must be set to zero if they do not apply to the key in question.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 62 of 84

The following table illustrates how the protectionStatus bit field should be interpreted:

Name Value Description

PIN PROTECTED 0x01 The key is protected by a local PIN policy object

The key is protected by a local PUK policy object. This bit must be
PUK_PROTECTED | 0x02 | ;ombined with bit PIN. PROTECTED

The key has locked-up due to PIN errors. This bit must be
PIN_BLOCKED 0x04 1 combined with bit PIN PROTECTED

The key has locked-up due to PUK errors. This bit must be
PUK_BLOCKED 0x08 | combined with bit PUK_PROTECTED

The key is protected by a device PIN. Information about device
DEVICE_PIN 0x10 PINs is out of scope for the SKS API. This bit must be the only

active bit if applicable

If all bits are zero the key is not PIN protected.

The following table illustrates how the keyBackup bit field should be interpreted:

Name Value

Description

IMPORTED 0x01

The IMPORTED bit must be set if the key has been supplied through
importPrivateKey or importSymmetricKey

EXPORTED 0x02

The EXPORTED bit must be set if the key has been subject to an
exportKey operation

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

Page 63 of 84

getExtension [73]

Input

Name Type Description
keyHandle uint Local handle to the target key
type uri Type URI. See addExtension
Output
Name Type Description
status byte See Return Values
subType byte
qualifier string Exact copies of the corresponding addExtension parameters
extensionData blob

getExtension returns a typed extension object associated with a key.

Note that encrypted extensions are decrypted during provisioning.

If the extension is intended to be consumed by the SKS, extensionData must be returned as a zero-length array.

If the requested extension type doesn't exist, the status ERROR_OPTION must be returned.

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29 Page 64 of 84

setProperty [74]

Input

Name Type Description
keyHandle uint Local handle to the target key
type uri Type URI which must identify a properties extension. See propertyBags
name string Property name. String of 1-255 characters
value string Property value. Note extensionData size limit
Output
Name Type Description
status byte See Return Values

setProperty sets a named property value in a properties collection linked to a key.

If the named property does not exist or is not writable, an error must be returned.

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

Page 65 of 84

deleteKey [80]

Input

Name Type Description
keyHandle uint Local handle to the target key
authorization byte[] Zero-length array, PIN, or PUK depending on Delete Protection
Output
Name Type Description
status byte See Return Values

deleteKey removes a key from the Credential Database.

If the key is the last belonging to a provisioning session, the session data objects are removed as well.
Invalid authorization data to the key must return ERROR_AUTHORIZATION status.

A conforming SKS may introduce physical presence methods like GPIO-based buttons, circumventing Delete Protection

settings.

Regarding delete of PIN and PUK policy objects, see PIN and PUK Objects.

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

Page 66 of 84

exportKey [81]

Input

Name Type Description
keyHandle uint Local handle to the target key
authorization byte[] Zero-length array, PIN, or PUK depending on Export Protection
Output
Name Type Description
status byte See Return Values
key byte[] Unencrypted key. For type information see getKeyAttributes

exportKey exports a private or symmetric key from the Credential Database.

Invalid authorization data to the key must return ERROR_AUTHORIZATION status.

Private (asymmetric) keys must be exported in PKCS #8 format.

If a non-exportable key is referred to, exportKey must return ERROR_NOT_ALLOWED status.

Note that the keyBackup . EXPORTED flag of the key must be set after execution of exportKey.

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

Page 67 of 84

unlockKey [82]

Input

Name Type Description
keyHandle uint Local handle to the target key
authorization byte[] PUK

Output

Name Type Description

status byte See Return Values

unlockKey re-enables a key that has been locked due to erroneous PIN entries.

Note that this method only applies to keys that are protected by local PIN and PUK policy objects.

Invalid authorization data (PUK) to the key must return ERROR_AUTHORIZATION status.

If unlockKey succeeds all keys sharing the PIN object will be unlocked. See PIN Grouping.

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

Page 68 of 84

changePin [83]

Input

Name Type Description
keyHandle uint Local handle to the target key
authorization byte[] Original PIN
newPin byte[] The requested new PIN

Output

Name Type Description

status byte See Return Values

changePin modifies a PIN for a key.

Note that the key must be protected by a local PIN policy object having the userModifiable attribute set.
Invalid authorization data (PIN) to the key must return ERROR_AUTHORIZATION status.

If changePin succeeds all keys sharing the PIN object will be updated. See PIN Grouping.

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

Page 69 of 84

setPin [84]

Input

Name Type Description
keyHandle uint Local handle to the target key
authorization byte[] PUK string
newPin byte[] The requested new PIN

Output

Name Type Description

status byte See Return Values

setPin sets a PIN for a key regardless of PIN block status since it uses a PUK as authorization.

Note that the key must be protected by local PUK and PIN policy objects where the latter have the userModifiable attribute

set.

Invalid authorization data (PUK) must return ERROR_AUTHORIZATION status.

If setPin succeeds all keys sharing the PIN object will be updated and unlocked. See PIN Grouping.

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

Page 70 of 84

updateFirmware [90]

Input
Name Type Description
chunk blob Firmware code chunk
Output
Name Type Description
status byte See Return Values
nextURL uri Next URL or zero-length string

updateFirmware is an optional method that performs a firmware update operation. The method is only available if the
updateUrl is non-zero. To perform an update, the SKS management system issues an HTTP GET operation to the service
pointed out by updateUrl. If the service returns a content of zero length, the SKS device is assumed to be up-to-date, else
updateFirmware should be called with the content in chunk. The return value from the call is either a new URL to be used

analogous to updateUrl, or a zero-length string indicating that the update is ready.

A conforming update service must use the MIME-type application/octet-stream.

The updateFirmware method must be implemented in such a way that the SKS container
cannot be made inoperable due to network errors or aborted update operations. In addition,
the SKS container must be able to securely authenticate the update service's Chunk data

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29 Page 71 of 84

signHashedData [100]

Input
Name Type Description
keyHandle uint Local handle to the target key
algorithm uri Signature algorithm URI. See Asymmetric Key Signatures
parameters byte[] Parameters needed by some signature algorithms
biometricAuth bool True if a successful biometric operation was used for authorization
authorization byte[] Holds a PIN or is of zero length if no PIN is supplied
data byte[] Hashed data to be signed. See also cryptoDataSize
Output
Name Type Description
status byte See Return Values
result byte[] Signature in algorithm-specific encoding. See Asymmetric Key Signatures

signHashedData performs an asymmetric key signature operation on the input data object.

data must be hashed as required by the signature algorithm.

The parameters object must be of zero length for algorithms not needing additional input.

Invalid authorization data (PIN) or biometricAuth to the key must return ERROR_AUTHORIZATION status.

The length of data must match the hash algorithm. Note that signature algorithms that do not define a specific hash
algorithm must verify that the length of data is within the limits for the particular key type.

The https://webpki.github.io/sks/algorithmf{rsa.pkcsl.none signature algorithm must encode the signature
value according to PKCS #1 but without hash algorithm identifiers:

EMSA = 0x00 || 0x01 || PS || 0x00 || data

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29 Page 72 of 84

http://xmlns.webpki.org/keygen2/1.0#algorithm.rsa.none

asymmetricKeyDecrypt [101]

Input
Name Type Description
keyHandle uint Local handle to the target key
algorithm uri Encryption algorithm URI. See Asymmetric Key Encryption
parameters byte[] Parameters needed by some encryption algorithms
biometricAuth bool True if a successful biometric operation was used for authorization
authorization byte[] Holds a PIN or is of zero length if no PIN is supplied
data byte[] Encrypted data
Output
Name Type Description
status byte See Return Values
result byte[] Decrypted data

asymmetricKeyDecrypt performs an asymmetric key decryption operation on the input data object.

data must be padded as required by the encryption algorithm like PKCS #1 for
https://webpki.github.io/sks/algorithmiirsa.es.pkcsl_5.

The parameters object must be of zero length for algorithms not needing additional input.

Invalid authorization data (PIN) or biometricAuth to the key must return ERROR_AUTHORIZATION status.

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29 Page 73 of 84

keyAgreement [102]

Input
Name Type Description
keyHandle uint Local handle to the target key
algorithm uri Key agreement algorithm URI. See Diffie-Hellman Key Agreement
parameters byte[] Parameters needed by some key agreement algorithms
biometricAuth bool True if a successful biometric operation was used for authorization
authorization byte[] Holds a PIN or is of zero length if no PIN is supplied
publicKey byte[] The other party's public key
Output
Name Type Description
status byte See Return Values
result byte[] Shared secret

keyAgreement performs an asymmetric key agreement operation resulting in a shared secret.

publicKey must be an EC public key in X.509 DER format using the same curve as keyHandle. publicKey must match
the elliptic curve capabilities given by getDevicelnfo.

The parameters object must be of zero length for algorithms not needing additional input.

Invalid authorization data (PIN) or biometricAuth to the key must return ERROR_AUTHORIZATION status.

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29 Page 74 of 84

performHmac [103]

Input
Name Type Description
keyHandle uint Local handle to the target key
algorithm uri HMAC algorithm URI. See HMAC Operations
parameters byte[] Parameters needed by some HMAC algorithms
biometricAuth bool True if a successful biometric operation was used for authorization
authorization byte[] Holds a PIN or is of zero length if no PIN is supplied
data blob Data to be HMACed. See also cryptoDataSize
Output
Name Type Description
status byte See Return Values
result byte[] HMACed data

performHmac performs a symmetric key HMAC operation on the input data object.

The parameters object must be of zero length for algorithms not needing additional input.

Invalid authorization data (PIN) or biometricAuth to the key must return ERROR_AUTHORIZATION status.

SKS (Secure Key Store) — API and Architecture

V1.07, WebPKl.org, 2021-01-29

Page 75 of 84

symmetricKkeyEncrypt [104]

Input
Name Type Description
keyHandle uint Local handle to the target key
algorithm uri Encryption algorithm URI. See Symmetric Key Encryption
mode bool True for encryption, false for decryption
parameters byte[] Parameters needed by some encryption algorithms
biometricAuth bool True if a successful biometric operation was used for authorization
authorization byte[] Holds a PIN or is of zero length if no PIN is supplied
data blob Data to be encrypted or decrypted. See also cryptoDataSize
Output
Name Type Description
status byte See Return Values
result blob Encrypted or decrypted data

symmetricKeyEncrypt performs a symmetric key encryption or decryption operation on the input data object.

Note that if an IV (Initialization Vector) is required by the encryption algorithm it must be supplied in parameters unless it is
supposed to supplied as a part of data like for XML Encryption.

The parameters object must be of zero length for algorithms not needing additional input.

Invalid authorization data (PIN) or biometricAuth to the key must return ERROR_AUTHORIZATION status.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 76 of 84

Appendix A. KeyGen2 Proxy

SKS departs from most other SE (Security Element) designs by relying on a “Semi-Trusted Proxy” for the provisioning and
management of keys. Introducing a proxy in a scheme which is claimed supporting true end-to-security may sound like a
contradiction. However, any alterations to the data flowing between the two end-points (the issuing service and the SKS) will
be detected by one of them due to the use of stateful sessions, sequence counters and MAC operations. The picture below

shows the SKS/KeyGen2 provisioning architecture:

Issuing

Service

KeyGen2 — High-level JSON Protocol

.............................

Networking

Provisionin JSON Processing
Prox 9 Content Aggregation
Y User Interaction

/ 3

Client Platform
(0]
P
()]
|
—
o]
g
T
<
o)
w
>
Q
2
>
3

Embedded or
Connected Device

..............................

Since SKS methods by design are low-level, most of the comparatively high-level provisioning operations result in multiple
SKS calls. In addition, there is a need for referencing objects created by preceding calls. As it would be quite inefficient if
every call forced a network “round-trip”, a core proxy task is aggregating and linking SKS calls and return data. This is
facilitated through the SKS virtual namespace concept which relieves issuers from ever dealing with raw (and device-
dependent) object handles or worrying about name collisions. See Object IDs. The following graph outlines content
aggregation and linking when applied to the KeyGen2 example on page 39:

Request SKS Calls & Object References Response Returned Data
createPukPolicy (, “PUK.17, ...) > Attested public key “Key.1”
Attested public key “Key.2”

createPinPolicy (, “PIN.17, ...) >

createKeyEntry (, “Key.17, ...)

createKeyEntry (, “Key.27, ...)

Another provisioning activity orchestrated by the proxy is requesting (and validating according to the issuer's policy), user-
defined PINs, because SKS depends on that all initial PIN values are set during key entry creation.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 77 of 84

Appendix B. Sample Session

The following provisioning sample session shows the sequence for creating an X.509 certificate with a matching PIN and PUK
protected private key:

provisioningHandle, ... = createProvisioningSession (...)
pukPolicyHandle = createPukPolicy (provisioningHandle, ...)
pinPolicyHandle = createPinPolicy (provisioningHandle, ... , pukPolicyHandle, ...)

keyHandle, ... = createKeyEntry (provisioningHandle, ... , pinPolicyHandle, ...)
External certification of the generated public key happens here...

setCertificatePath (keyHandle, ...)

closeProvisioningSession (provisioningHandle, ...)

Note that Handle variables are only used by local middleware, while (not shown) variables like sessionKey, mac, id, etc. are
primarily used in the communication between an issuer and the SKS.

If keys are to be created entirely locally, this requires local software emulation of an issuer.

Appendix C. Reference Implementation

To further guide implementers, an open source SKS reference implementation in java® is available including a JUnit suite.

URL: https://github.com/cyberphone/openkeystore

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 78 of 84

https://github.com/cyberphone/openkeystore

Appendix D. Remote Key Lookup

In order to update keys and related data, SKS supports post provisioning operations like postDeleteKey where issuers are

securely shielded from each other by the use of a keyManagementKey.

However, depending on the use-case, an issuer may need to get a list of applicable keys, before launching post provisioning

operations. Such a facility is available in KeyGen2 as illustrated by the message below:

"@context": "https://webpki.github.io/keygen2",
"@qualifier"; "CredentialDiscoveryRequest",
"serverSessionld": "14184c1f09eqCkPtjqY54Ehalc2_EjFN",
"clientSessionld": "Qn704xCRp1sewDrpgMJjEDieZHp2hego”,
"submitUrl"; "https://issuer.example.com/credisc",
"lookupSpecifiers": [{

"id": "Lookup.1",

"nonce": "eG3XgquTRh6ASFpcUpEeOgc1gniL_I2CoPx8xqJTvQO0"

"searchFilter": {

"emailRegEXx": "\Qjohn.doe@example.com\\E"
}

ignature": {
"algorithm": "ES256",
"publicKey": {
"kty": "EC",
"crv": "P-256",
"x": "INXNVAUEE8t7DSQBft93LVSXxKCiVjhbWWfyg023FCk",
"y": "LmTIQxXB3LgZrNLmhOfMaCnDizczC_RfQ6Kx8iNwfFA"
}

}
1

}

" alue": "MEUCIHWCPcDI6kea9DMy . . . Av7Px3bfwvagWcQY4kVrdeT38clzhiKnpiluigY"

For each object in the lookupSpecifiers array, perform the following steps:

1. Verify that the signature is technically valid while the origin of the signing key is ignored since the KeyGen2 Proxy

has no opinion about those .

2. \Verify that the freshness nonce matches SHA256 (clientSessionId || serverSessionId).

See createProvisioningSession and Data Types.

3. Enumerate all sessions having a keyManagementKey matching the public key of the signature object.
This serves as an Issuer Filter. See enumerateProvisioningSessions.

4. From step #3 enumerate all matching SKS keys and related certificates. See enumerateKeys and

getKeyAttributes.

5. Collect all unique keys from step #4 having matching search conditions. In the sample that is having an e-mail

address "john.doeRexample.com" in the End-Entity Certificate.

Continued on the next page...

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29

Page 79 of 84

The result of each is sent back to the issuer in the form of a list of End-Entity Certificate paths and session IDs:

"@context": "https://webpki.github.io/keygen2",
"@qualifier": "CredentialDiscoveryResponse",
"serverSessionld": "14184c1f09eqCkPtjqY54Ehalc2_EjFN",
"clientSessionld": "Qn704xCRp1sewDrpgMJjEDieZHp2hego”,
"lookupResults": [{
"id": "Lookup.1",
"matchingCredentials™: [{
"serverSessionld": "14184c1f04380wdjLnmGglx2c8245rDH",
"clientSessionld": "wmdVVHWi;jl666GvHnwmIALFRJQ-GC3Scr",
"certificatePath": [
"MIICIjCCAX6gAWIBAgIGAUGEWB4AMAOGCSq . . . rtGnyW8pnGcQ1U2clYD6VWN28GEup"
|

1

’Iocked": true

1l

Notes:

Remote key lookups are performed at the middleware level since they are passive, JSON-centric, and do not access private or
secret keys.

The primary purpose with credential lookups is improving provisioning robustness, while the Issuer Filter protects user privacy
by constraining lookup data to the party to where it belongs.

If a matching credential is locked (presumably due to user authorization failures), this information will also be available as
shown in sample.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 80 of 84

Appendix E. Security Considerations

Note: The following section only partially applies to the Privacy Enabled Provisioning mode.

This document does not cover the physical security of the key-store since SKS does not differ from other schemes in this
respect.

However, the provisioning concept has some specific security characteristics. One of the most critical operations in SKS is the
creation of a shared sessionKey because if such a key is intercepted or guessed by an attacker, the integrity of the entire
session is potentially jeopardized.

If you take a peek at createProvisioningSession you will note that the sessionKey depends on issuer-generated and SKS-
generated ephemeral public keys. It is pretty obvious that malicious middleware could replace such a key with one it has the
private key to and the issuer wouldn't notice the difference. This is where the attestation signature comes in because it is
computationally infeasible creating a matching signature since the both of the ephemeral public keys are enclosed as a part of
the signed attestation object. That is, the issuer can when receiving the response to the provisioning session request, easily
detect if it has been manipulated and cease the rest of the operation.

As earlier noted, the randomness of the sessionKey is crucial for all provisioning operations.

Missing or repeated objects are indirectly monitored by the use of macSequenceCounter, while the SKS “book-keeping”
functions will detect other possible irregularities during closeProvisioningSession. This means that an issuer should not
consider issued credentials as valid unless it has received a successful response from closeProvisioningSession.

The sessionKeyLimit attribute defined in createProvisioningSession is another security measure which aims to limit
exhaustive attacks on the sessionKey.

For algorithms that are considered as vulnerable to brute-force key searches, a simple workaround is adding a short initial
delay to the applicable User API method. Since SKS is exclusively intended for user authentication a 1-100 ms delay
imposes a (from the user's point of view), hardly noticeable impact on the performance.

By using the endorsedAlgorithm option, issuers can specify exactly which algorithms that are permitted for a given key.

A significant feature of SKS is that it is identified by a digital certificate, preferably issued by a known vendor of trusted
hardware. This enables the issuer to securely identify the key-container both from a cryptographic point of view (brand, type
etc) and as a specific unit. The latter also makes it possible to communicate the container identity as a fingerprint (hash) of
the Device Certificate which facilitates novel and secure enrollment procedures, typically eliminating the traditional sign-up
password.

That any issuer (after the user's consent), can provision keys may appear a bit scary but keys do not constitute of executable
code making it less interesting in tricking users accepting “bad” issuers. In addition, the provisioning middleware is also able
to validate incoming data for “sanity” and even abort unreasonable requests, such as asking for 10 keys or more to be created.

The system may be subject to phishing attacks. If the user authenticates with a password, no security solutions will help.
However, if two factor authentication with public key cryptography is used, the inclusion of the HTTPS server certificate in the
attestation gives the issuer an opportunity verifying that there actually is a “straight line” between the client and server.

One might suspect that the VSD scheme by relying on a static, potentially issuance-wide keyManagementKey could
introduce client-side vulnerabilities but that is unlikely to be the case: If a key management signature is intercepted by an
attacker, the inclusion of a high entropy sessionKey and the Device Certificate renders it useless in another session or
device. ltis also worth noting that the post provisioning operations by design do not expose secret or private key data.

There is no protection against DoS (Denial of Service) attacks on SKS storage space due to malicious middleware.

SKS does not have any built-in policy, it is up to the individual issuer deciding about suitable key protections options, key sizes,
and private key imports.

Appendix F. Intellectual Property Rights

This document contains several constructs that could be patentable but the author has no such interests and therefore puts
the entire design in public domain allowing anybody to use all or parts of it at their discretion. In case you adopt something

you found useful in this specification, feel free mentioning where you got it from ©

Note: it is possible that there are pieces that already are patented by other parties but the author is currently unaware of any
IPR encumbrances.

Some of the core concepts have been submitted to http://defensivepublications.org and subsequently been published in
IP.COM's prior art database.

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 81 of 84

http://defensivepublications.org/

Appendix G. References

KeyGen2 TBD
PKCS #1 TDB
PKCS #8 TBD
ECDSA TBD
AES256-CBC TBD
HMAC-SHA256 TBD
X.509 TBD
SHA256 TBD
TPM 2.0 TBD
Diffie-Hellman TBD
S/MIME TBD
UTF-8 TBD
XML Encryption TBD
RFC 3447 TBD
RFC 5639 TBD
XML Signature TBD
FIPS 197 TBD
FIPS 186-4 TBD
Base64URL TBD
HOTP TBD
JavaCard TBD
CryptoAPI TBD
PKCS #11 TBD
GlobalPlatform TBD
TLS TBD
XML Schema TBD
SP800-56A TBD
Kerberos TBD
Blind Signatures TBD

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 82 of 84

DAA TBD

URI TBD
JCE TBD
JOSE TBD

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 83 of 84

Appendix H. Acknowledgments
SKS and KeyGen2 heavily build on schemes pioneered by other individuals and organizations, most notably:
e CT-KIP by RSA Security: KeyGen2 format and basic operation

e ObC by Nokia: Key management through dynamic deployment of issuer-specific symmetric keys (VSD), and support
for keys bound to downloaded data (in ObC code)

e SCP80 by GlobalPlatform: Secure messaging including “rolling MACs”

e CertEnroll by Microsoft. Processes

There is also a bunch of individuals that have been instrumental for the creation of SKS. | need to check who would accept to
be mentioned :-)

KeyGen2 is an “homage” to Netscape Communications Corp. who created the first on-line provisioning system known as the
HTML <keygen> tag.

Appendix I. Author

Anders Rundgren
anders.rundgren.net@gmail.com

To Do List

Although it would be nice to say “itis 100% ready” there are still a few things missing:
* Investigating “physical presence” GPIO options
* Language proofing

e Filling in the references

SKS (Secure Key Store) — API and Architecture V1.07, WebPKl.org, 2021-01-29 Page 84 of 84

mailto:anders.rundgren@telia.com

	1 	Introduction	5
	2 	Core Functionality	5
	3 	Objects	8
	4 	Algorithm Support	10
	5 	Protection Attributes	12
	6 	Session Security Mechanisms	15
	7 	Detailed Operation	18
	1 Introduction
	2 Core Functionality
	2.1 Architecture
	2.2 Provisioning API
	2.3 User API
	2.4 Security Model
	2.5 Transaction Based Operation
	2.6 Privacy Enabled Provisioning
	2.7 Device ID
	2.8 Backward Compatibility

	3 Objects
	3.1 Key Entries
	3.2 PIN and PUK Objects
	3.3 Provisioning Objects

	4 Algorithm Support
	4.1 Mandatory Algorithms
	4.2 Special Algorithms
	4.3 Optional Algorithms

	5 Protection Attributes
	5.1 Export Protection
	5.2 Delete Protection
	5.3 Biometric Protection
	5.4 PIN Input Methods
	5.5 PIN Patterns
	5.6 PIN and PUK Formats
	5.7 PIN Grouping
	5.8 Application Usage

	6 Session Security Mechanisms
	6.1 Encrypted Data
	6.2 MAC Operations
	6.3 Attestations
	6.4 Target Key Reference
	6.5 Public Key Data
	P-256 EC Key
	RSA 2048 Bit Key

	7 Detailed Operation
	7.1 Data Types
	7.2 Return Values
	7.3 Error Codes
	7.4 Method List
	getDeviceInfo [1]
	createProvisioningSession [2]
	closeProvisioningSession [3]
	enumerateProvisioningSessions [4]
	abortProvisioningSession [5]
	updateKeyManagementKey [7]
	createPukPolicy [8]
	createPinPolicy [9]
	createKeyEntry [10]
	getKeyHandle [11]
	setCertificatePath [12]
	importSymmetricKey [13]
	importPrivateKey [14]
	addExtension [15]
	postDeleteKey [50]
	postUnlockKey [51]
	postUpdateKey [52]
	postCloneKeyProtection [53]
	enumerateKeys [70]
	getKeyAttributes [71]
	getKeyProtectionInfo [72]
	getExtension [73]
	setProperty [74]
	deleteKey [80]
	exportKey [81]
	unlockKey [82]
	changePin [83]
	setPin [84]
	updateFirmware [90]
	signHashedData [100]
	asymmetricKeyDecrypt [101]
	keyAgreement [102]
	performHmac [103]
	symmetricKeyEncrypt [104]
	Appendix A. KeyGen2 Proxy
	Appendix B. Sample Session
	Appendix C. Reference Implementation
	Appendix D. Remote Key Lookup
	Appendix E. Security Considerations
	Appendix F. Intellectual Property Rights
	Appendix G. References
	Appendix H. Acknowledgments
	Appendix I. Author

