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Damage to the hippocampal system disrupts recent memory but leaves remote memory intact. Our
account of this suggests that memories are first stored via synaptic changesin the hippocampal sys-
tem; that these changes support reinstatement of recent memories in the neocortex; that neocortical
synapseschangealittle on each reinstatement; and that remote memory is based on accumul ated neo-
cortical changes. Modelsthat learn viaadaptive changesto connectionshel p explain this organization.
These models discover the structure in ensembles of items if learning of eachitem is gradual and in-
terleaved with learning about other items. This suggeststhat neocortex learns slowly to discover the
structure in ensembles of experiences. The hippocampal system permits rapid learning of new items
without disrupting this structure, and reinstatement of new memoriesinterleaves them with othersto
integrate them into structured neocortical memory systems.

One of the most striking neuropsychological phenomena
ever reported is the dramatic amnesia produced by bilateral
lesions to the hippocampus and related tempora lobe struc-
tures (Scoville & Milner, 1957). A crucia aspect of this phe-
nomenon is temporally graded retrograde amnesia. Consider-
able evidence now supports the conclusion that the influence
of thehippocampal system on theability to exploitinformation
derived from past experiencein awiderange of tasksistempo-
rally circumscribed: Performanceisimpaired if the hippocam-
pal system isdamaged before or withinawindow of time after
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theinitid experience; but if the hippocampal systemisleft in-
tact both during the experience and for a period of time there-
after, subsequent damage may have little or no impact on per-
formance.

This change in dependence on the hippocampa system
over time appears to be a slow, gradual process. This gradual
change has often been called consolidation, but theterm really
only label sthe phenomenon. In thispaper, wefocus on consol -
idation, and consider what produces it and why it occurs. We
ask: Isthe phenomenon areflection of an arbitrary property of
the nervous system, or doesit reflect some crucial aspect of the
mechanisms of learning and memory? |s the fact that consol-
idation can take quite along time—up to 15 years or morein
some cases—just an arbitrary parameter, or does it reflect an
important design principle?

We begin with a brief overview of the neuropsychol ogy of
memory, emphasi zing the temporally circumscribed role of the
hippocampal system, and elaborate one possibleaccount of the
functional organization of memory that is broadly consistent
with the neuropsychol ogical evidence, aswell as aspects of the
underlying anatomy and physiology. We then describe results
from connectionist modeling research that suggest reasons for
this organization and for the phenomenon of gradual consoli-
dation. From the insights gained through the consideration of
these models we devel op illustrative simulation models of the
phenomenon of temporally graded retrograde amnesia. These



are not detailed neural models; rather they illustrate at an ab-
stract level what we take consolidation to be about. We dis-
cuss the implications of our view of the role of consolidation
for findingsrelated to age, species, and task differencesin neo-
cortical learning and for the form of representationsused in the
hi ppocampus, and we concludewith acomparison of our views
to those of others who have theorized about the role of the
hippocampal system in learning and memory. Whilethere are
many points of compatibility, our approach differs from some
othersin treating gradual consolidation as reflecting a princi-
pled aspect of the design of the mammalian memory system.

Role of the Hippocampal System in Learning and
Memory

The phrase the hippocampal system is widely used to re-
fer to asystem of interrelated brain regions found in arange of
mammalian species that appear to play a special rolein learn-
ingand memory. The exact boundariesof the hippocampal sys-
tem are difficult to define, but it includes at | east the hippocam-
pus itself—the CA1-3 fields of Ammon’s Horn and the den-
tate gyrus—the subicular complex and the entorhinal cortex.
It probably al so encompasses adjacent structuresincluding the
perirhinal and parahippocampal cortices.

The literature on the effects of damage to the hippocampal
systemis quite vast. Here we summarize what we believe are
the main points.

(1) An extensivelesion of the hippocampal system can pro-
duce a profound deficit in new learning, while leaving other
cognitive functions and memory performance based on mate-
rial acquired well before the lesion apparently normal. Dra
matic evidence of thiswas first reported by Scoville and Mil-
ner (1957) in their description of the anterograde amnesia pro-
duced in patient HM dueto bilateral removal of large portions
of the hippocampal system and other temporal lobe structures.
HM presented initially with a profound deficit in memory for
events that occurred either after the lesion or during the weeks
and monthsprior toit, with intact intellectual function and in-
formation processing skills and apparent sparing of his mem-
ory for more remote time periods.

(2) The effects of lesions to the hippocampal system ap-
pear to be selective to certain forms of learning. In humans,
the hippocampal system appears to be essential for the rapid
formation of comprehensive associ ationsamong thevariouse -
ements of specific events and experiences, in aform sufficient
to sustain an explicit (Schacter, 1987) retrieva of the contents
of the experience, so that they can be attested (explicitly rec-
ognized as memories), verbally described, or flexibly used to
govern subsequent behavior. Cohen and Squire (1980) intro-
duced the term declarative memory to encompass these forms
of memory. Included in the category of declarative memories
are episodic memories (Tulving, 1983)—memoriesfor thespe-
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cific contentsof individual episodesor events—aswell aswhat
aregeneraly termed semantic memories, including knowledge
of the meanings of words, factua information, and encyclope-
dic memories (see Squire, 1992, for a recent discussion). A
paradigm example of thisform of memory is paired-associate
learning of arbitrary word pairs. Prior associationsto the cue
word are unhelpful in this task, which depends on recall of
theword that previously occurred with the cue word in thelist
study context. Hippocampal system lesions produce profound
impai rmentsin learning arbitrary paired associates (Scoville &
Milner, 1957). However, it should be noted that deficitsare not
apparently restricted to tasksthat rely on memories that are ex-
plicitly accessed and used to govern task performance. For ex-
ample, amnesics are also impaired in acquisition of arbitrary
new factual information, whether or not the use of thisinforma-
tionis accompanied by deliberate or conscious recollection of
previous experience (Shimamura & Squire, 1987). Also, nor-
mal subjects show sensitivity to novel associations after asin-
gle presentation in stem completion tasks, but profound am-
nesics do not (Schacter & Graf, 1986; Shimamura & Squire,
1989). Whilerecent evidence (Bowers & Schacter, 1993) sug-
geststhat normal subjectswho show sensitivity to novel associ-
ationsare consciousof having accessed theseassociationson at
least sometrials, sensitivity to novel associationsisdissociable
in several ways from standard measures of explicit or declara-
tive memory (Graf & Schacter, 1987; Schacter & Graf, 1989).
Thus, at this point the extent to which deficitsin amnesics are
restricted to tasks that depend on conscious access to the con-
tents of prior episodes or eventsisunclear. It does appear that
in humans an intact hippocampal system is necessary for the
formation of an association between arbitrarily-paired words
that issufficiently strong after asingle presentation to have any
effect on subsequent performance, whether explicit memory is
involved or not.

In the animal literature, the exact characterization of the
forms of learning that depend on the hippocampal system re-
mains a matter of intense investigation and debate. Suther-
land and Rudy (1989) suggest that the hippocampal system
iscrucia for learning to make appropriate responses that de-
pend not on individual cues but on specific combinations or
conjunctions of cues—what they call cue configurations. The
paradigm example of atask depending on cue configurationsis
the negative patterning task, in which animals receive reward
for operant responses to a light and a tone but not the tone-
light compound. Hippocampal system lesions lead to deficits
in responding differently to the compound than to the individ-
ual cues (Rudy & Sutherland, 1989). Cohen and Eichenbaum
(1993) have emphasized the importance of the hippocampal
system for flexible access to memory traces, a characteristic
that may be closely related to declarative memory in humans.
A major aternative viewpoint is that of O'Keefe and Nadel
(1978), who have suggested that the hippocampal systemises-
pecially relevant intheformation of memoriesinvolving places



or locationsin the environment, and there isavast body of ev-
idencethat spatia |earning isimpaired foll owing hippocampal
lesionsin rats. One view of spatia learning that is compati-
blewith both the Sutherland and Rudy (1989) and the O’ Keefe
and Nadel (1978) theoriesisthat placelearninginvolvesform-
ing configural associations of locations and movements that
would enable prediction of the spatial consequence of agiven
movement in agiven spatial context (M cNaughton, Leonard, &
Chen, 1989). This can be seen as a specia case of the Suther-
land and Rudy (1989) theory, and it is possible that it may
be the evolutionary forerunner of the more general process-
ing capability. In any case, increasing evidence suggests that
damage restricted to the hippocampusimpacts on tasks that re-
quire the animal to learn responses specific to particular non-
spatial combinationsof cues, or to specific contexts, aswell as
tasks that depend on learning to navigate in a previoudy unfa-
miliar spatia environment (Jarrard, 1993; Rudy & Sutherland,
1994).! More extensive lesions of the hippocampal system
lead to deficitsin abroader range of tasks. Insome cases, selec-
tivelesionsto just the hippocampus produce little or no effect,
though performance is severely disturbed by a completelesion
of the entire hippocampal system (see Eichenbaum, Otto, &
Cohen, 1994, and Jarrard, 1993, for reviews).

(3) Some kinds of learning appear to be completely un-
affected by hippocampal system lesions. Squire (1992) char-
acterizes these forms of memory as non-declarative or im-
plicit (Schacter, 1987), emphasizing that they influence be-
havior without depending on conscious or deliberate access
to memory for the contents of the events that led to these in-
fluences. Another characterization emphasizes inflexibility of
use of such memories; they appear to influence behavior maxi-
mally when thereis a close match between the processing car-
ried out during the learning event and the processing carried
out when the later influence of the learning event is assessed
(Cohen & Eichenbaum, 1993). Thisgreater specificity appears
to characterizeimplicit memory asit isobserved in normalsas
well asamnesics (Schacter, 1987). Examplesof formsof learn-
ing that are spared are gradually acquired skills that emerge
over severa sessions of practice, such as the skill of tracing
a figure viewed in a mirror (Milner, 1966), reading mirror-
reversed print (Cohen & Squire, 1980), or anticipating subse-
guent items in a sequence governed by a complex stochastic
grammar (Cleeremans, 1993). Hippocampa patients also ap-
pear to be spared in their ability to learn the structure com-
mon to a set of items. They are as good as normals in judg-
ing whether particular test items come from the same proto-
type, or were generated by the same finite-state grammar, as

1 Jarrard (1993) treats the fact that Davidson, McK ernan, and Jarrard (1993)
find no effect of alesion selective to the hippocampusper sein negative pat-
terning as evidence against a role of the hippocampusin configural learning,
but Rudy and Sutherland (1994) cite a total of 6 studies finding that selective
hippocampal lesions lead to a deficit in negative patterning. Severa of these
studies use the ibotenate lesion of Jarrard (1989). Clearly the debate is not yet
settled. Further discussion of the relationship between spatial and configural
approachesmay be found in the General Discussion.
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the members of aprevioudy studied list (Knowlton, Ramus, &
Squire, 1992; Knowlton & Squire, 1993). Spared learning is
also exhibited in repetition priming tasks. These are tasks that
require subjectsto emit some response aready within their ca-
pabilities, such as naming aword or picture (Milner, Corkin, &
Teuber, 1968), reading a oud a pronounceabl e nonword (Hai st,
Musen, & Squire, 1991), or completing aword fragment with
alexically valid completion (Graf, Squire, & Mandler, 1984).
Repetition priming is exhibited when the subject is later re-
quiredto processaprevioudy presented item, and asingleprior
presentationis often sufficient. In many such tasks, hippocam-
pal patients appear indistinguishable from normals in the ex-
tent to which they show facilitation from prior presentations,
aslong as care is taken to avoid the possibility that explicit re-
cal isused to aid performance. Hippocampa patients exhibit
spared priming of existing associations(i.e., and increaseinthe
likelihood of producing table when giving a free-associate to
chair after prior presentation of table and chair together), but
aspreviously noted do not show priming, as normalsdo, after a
single prior presentation of an arbitrary, novel pairs of words.
Such priming effects can be obtained after multiple presenta-
tions of the novel arbitrary word pair (Squire, 1992). Turn-
ing to animal studies, it isclear that some forms of classical or
instrumental conditioning of responses to discrete salient cues
areunaffected by hippocampa system damage (see O’ Keefe &
Nadel, 1978; Barnes, 1988; Rudy & Sutherland, 1994, for re-
views). A fuller consideration of these forms of conditioning
ispresented in alater section.

(4) Lesionsto the hippocampa system or bilatera el ectro-
convulsivetreatment (ECT) appear to giveriseto atemporally
graded retrograde amnesia for material acquired in the period
of time preceding thelesion. Recent electrophysiological stud-
ies(Barnes, Jung, McNaughton, Korol, Andreasson, & Worley,
1994; Stewart & Reid, 1993) indicate that ECT has profound
effects on hippocampal synapses. Althoughtemporally-graded
retrograde amnesia has been the subject of controversy (War-
rington & Weiskrantz, 1978; Warrington & McCarthy, 1988),
we believe the evidence is substantial enough to be taken seri-
oudly, and it plays a major role in the theory to be developed
here. Early indicationsthat retrograde amnesia may be tempo-
rally graded, at least in certain forms of amnesia, come from
the observations of Ribot (1882) and from the early report of
patient H.M. by Scovilleand Milner (1957). Morerecent quan-
titative studies of a wide range of hippocampa amnesics sug-
gests several conclusions (Squire, 1992):

e Hippocampal amnesics show a selective memory deficit
for material acquired shortly before the date of their le-
sion. Memory for very remote material appears to be
completely spared; in between thereis an apparent gradi-
ent.

o The severity and temporal extent of the retrograde amne-
sia appears to vary with the extent of damage to the hip-
pocampus and related structures.



¢ In some severe cases, the retrograde gradient can extend
over periods of 15 years or more.

Results from animal studies are generaly consistent with the
human data, though in the case of the anima work the retro-
grade gradient appears to cover a much briefer span of time.
Studiesin rats (Winocur, 1990; Kim & Fanselow, 1992) have
produced retrograde gradients covering a period of days or
weeks. Primate experiments (Zola-Morgan & Squire, 1990)
show a severe impairment relative to controls for memory ac-
quired 2 or 4 weeks prior to surgery, but not for ol der memories.

A key observationisthat thereisacorrespondence between
the kinds of tasks that show retrograde amnesia and those that
show anterograde amnesia. For example, Kim and Fanselow
(1992) observed that the same ratswho showed retrograde am-
nesiafor the spatial context of atone-shock association exhib-
ited no retrograde amnesia for the simple tone-shock associa
tion itself.

A second crucia aspect of temporally graded retrograde
amnesia is the fact that, after hippocampal lesions, perfor-
mance on recent material can actually be worse than perfor-
mance on somewhat older material. As Squire (1992) points
out, thisfinding is crucial for the claim that some real consoli-
dation takes place, sinceit rules out the alternative interpreta-
tion that memories are initialy stored in two forms, whose &f-
fects are additive: arelatively transient, hippocampal-system
dependent form, and a more persistent, hippocampal-system
independent form. On this account, there is no ateration of
the form of memory over time, there is merely decay. Nev-
ertheless, because the decay of the hippocampa memory is
more rapid, there would be a gradually diminishing differ-
ence between the two groups. Severa anima studies now pro-
vide clear evidence againgt this simple dual-store interpreta-
tion (ZolaMorgan & Squire, 1990; Kim & Fanselow, 1992;
Winocur, 1990); we show the datafrom all three in Figure 1.
In all three studies, performance of lesioned animals &t test is
better when thereisalonger delay between study and test, sup-
portingarea changein the form or location of memory. Also
shown are data from human ECT patients (Squire & Cohen,
1979), taken from atest called the TV test devel oped by Squire
and Slater (1975). This test examined knowledge of single-
season TV shows, for which memory depended primarily on
exposureto the shows during theyear they wereaired. Itisdif-
ficultto ruleout the possibilitieseither that the depressioninthe
yearsjust prior to treatment affected initial storage. Itaso must
benoted that the treatment may have affected morethanjust the
hippocampal system. But no such difficultiesapply to thefind-
ingsfrom theanimal studies, which arevery clear intwo of the
cases. |n both Winocur (1990) and Kim and Fansel ow (1992),
lesions occurring within 24 hours of the experience led to per-
formance indistinguishable from chance, while lesions occur-
ring at later pointsin time led to much better performance.
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One Account of the Organization of Memory in the
Brain

What followsis one account of the mechanisms of learn-
ing inthemammalian brain. The account isconsistent with the
data summarized above, and with several important anatomi-
ca and physiological findings that we will summarize below,
and has many pointsin common with the accounts offered in
several other synthetictreatments, beginningwithMarr (1971).
A comparison with these other treatments can be found in the
General Discussion.

Our account begins with the assumption that the brain ex-
ploits complementary learning systems. One system relieson
adaptation of synaptic connections among the neuronsdirectly
responsi blefor information processing and behavior. Theother
relies on adaptation of synaptic connections within a special
memory system that includes the hippocampus and related
structures.

The Neocortical Processing System

Adaptation of synaptic connections undoubtedly occursin
awiderange of neura processing systemsin the brain, but for
the cognitive forms of learning that are the principa focus of
this paper, we will be concerned primarily with adaptivelearn-
ing that is likely in most cases to occur in the neocortex. We
suspect that the principles we propose for the neocortical sys
tem also apply to some other adaptive processing systems in
the brain such asthose that are involved in some forms of skill
learning, including the basal ganglia and the cerebellum. We
will comment in alater section on adaptive changes produced
by animal conditioning paradigmsin other systems such asthe
amygdala and various other sub-cortical brain structures.

We view the neocortex as a collection of partialy overlap-
ping processing systems, but for simplicity of reference wewill
speak of these systems collectively as a single system called
“the neocortical processing system”. We include in this sys-
tem those neocortical structures that we take to share the role
of providing the neural substrate for higher-level control of
behavior and cognitive processing, as well as other neocorti-
cal structuresinvolved in sensory, perceptual, and output pro-
cesses. Most but not al of the neocortex bel ongsto thissystem:
the perirhina and parahippocampal cortices are anatomically
defined as neocortex, but they appear functionally to belong at
least in part to the hippocampa memory system. It may be best
to consider these as borderline areas in which the neocortical
processing system and the hippocampal memory systems over-
lap. They certainly play acrucial rolein mediating communi-
cation between the other parts of the hippocampal system and
the neocortex.

Weassume that performance of higher-level behavioral and
cognitivetasks depends on the éicitation of patterns of active-
tion over the popul ations of neurons in various regions of the
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Figure 1: Panels (a) - (c) show behaviora responses of animals receiving extensive hippocampal system lesions (circles) or
control lesions (squares) as a function of the numbers of days elapsing between exposure to the relevant experiences and the
occurrence of thelesion. Barssurroundingeach datapointindicatethestandard error. (8) Percent choiceof aspecific samplefood
(out of two aternatives) by rats exposed to a conspecific who had esten the sample food. (b) Fear (freezing) behavior shown by
ratswhen returned to an environment in which they had experienced paired presentati ons of toneswith foot shock. (c) Choicesof
reinforced objects by monkeys exposed to 14 training trial swith each of 20 object pairs. (d) Recall by depressed human subjects
of detailsof television showsaired different numbersof years prior to the time of test, after electroconvulsivetreatment (circles)
or just prior to treatment (squares). Herewe havetrandated yearsinto daysto alow comparison with theresultsfrom the animal
studies. The curves shown on each panel are based on asimplemodel discussedin alater section and depictedin Figure 14, using
the parameters shownin Table 1. Note: Datain (@) arefrom Figure 2 of “ Anterograde and retrograde amnesiain rats with dorsal
hippocampal or dorsomedial thalamic lesions’, by G. Winocur, 1990, Behavioral Brain Research, 38, p. 149. Copyright 1990
by Elsevier Science Publishers. Permission pending. Datain (b) are from Figure 2 of “Modality-specific retrograde amnesia
of fear”, by J. J. Kim and M. S. Fanselow, 1992, Science, 256, p. 676. Copyright 1992 by the American Association for the
Advancement of Science. Permission pending. Datain (c) are from Figure 2 of “The primate hippocampal formation: Evidence
for atime-limited role in memory storage’, by S. Zola-Morgan and L. R. Squire, 1990, Science, 250, p. 289. Copyright 1990
by the American Association for the Advancement of Science. Permission pending. Datain (d) are from Figure 1 of “Memory
and amnesia: Resistance to disruption develops for years after learning”, by L. R. Squire and N. Cohen, 1979, Behavioral and
Neural Biology, 25, p. 118. Copyright 1979 by Academic Press, Inc. Permission pending.



neocortical system by other patternsof activationover thesame
or different regions. For example, in an acquired skill (such as
reading), the pattern produced by an input (such as a printed
word) elicits a corresponding pattern representing an output
(such as the motor program for pronouncing the word). In a
free association task, a pattern representing a stimulus word
elicits another pattern representing the response word. In re-
trieving an arbitrary list-associate in a paired-associate learn-
ing task, the stimulus pattern must specify not only the stimu-
lusword but a so someinformation about the encoding context,
but the principle remains the same: task performance occurs
through the elicitation of one pattern of activation in response
to another that serves as acue. For thisto work in tasksrequir-
ing the contextual ly-appropriateretrieval of patternsof activa
tion representing specific propositions, events, etc., the system
must be structured in such away that any aspect of the content
of the target pattern, as well as patterns representing material
associated with the target pattern, can serve asretrieva cues.

Patterns are elicited by the propagation of activation via
synaptic connectionsamong theneuronsinvolved. The know!-
edge that underliesthe processing capabilities of the neocortex
isstored inthese connections. Thusthe knowledgeis assumed
to be embedded in thethevery neura circuitsthat carry out the
tasks that use the information.

We assume that every occasion of information processing
in the neocortical system gives rise to small, adaptive adjust-
ments to the connections among the neuronsinvolved. The ad-
justments are widely distributed across all of the relevant con-
nections, but are very small in magnitude, and so have rela
tively subtle effects; they tend to facilitate a repetition of the
same act of processing or an essentialy similar one at alater
time; and/or to facilitate reaching the same global state of ac-
tivation (corresponding for exampleto an entire proposition or
image) when given any fragment or associate of it as a cue.”
We assume, however, that the changes that result fromone or a
few repetitionsof an experience are not sufficient to support the
reinstatement of a pattern representing a specific conjunction of
arbitrary elements, such asthe conjunction of an arbitrary pair
of wordsin apaired-associate |earning experiment, or the con-
junction of elements that together compose a specific episode
or event.

Over the course of many repetitionsof the same or substan-
tially similar acts of informati on processing, the changes to the
synaptic connectionsamong neuronsin the neocortical system
will accumulate. When the changes arise from the repetition
of the same specific content, for example the association be-
tween a particular word and its meaning, the accumulation of

2In general one expects adjustments of connection weights to produce a
genera facilitation of retrieval of the overall pattern through changesthat oc-
cur among the neurons active in the retrieved pattern itself, as well asa more
specific facilitation of retrieval from the same cue due to changes that occur
between the neurons representing the retrieved pattern and those representing
the cue.
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such changes will providethe basis for correct performancein
tasks that depend on the specific content in question. When
they reflect different examples of some sort of structured rela-
tionship between inputs and outputs, such as, for example, the
structured relation that holds between the spellings of words
and their sounds, they will providethebasisof an acquired cog-
nitive skill.

The Hippocampal Memory System

Therepresentations of an experienceinthe neocortical sys-
tem consist of widely distributed patterns of neura activity. As
just noted, we assume that each experience givesrise to small
adaptive changes, but that these will generally not be sufficient
to alow rapid learning of arbitrary associative conjunctions
that we assume provide the substrate for explicit recall of the
contentsof specific episodesand for other hippocampal -system
dependent tasks. We assumethat performancein such tasksde-
pends initially on substantial changes to the strengths of con-
nections among neurons in the hippocampal system. Informa:
tion is carried between the hippocampal system and the neo-
cortical system via bi-directional pathways that trandate pat-
terns of activity in the neocortical system into corresponding
patternsin the hippocampal system and vice versa. We do not
assume that the hippocampal system receives a direct copy of
the pattern of activation distributed over the higher level re-
gions of the neocortical system; instead the neocortical repre-
sentation is thought to be re-represented in a compressed for-
mat over amuch smaller number of neuronsin the hippocampal
system. McNaughton (1989) has referred to this compressed
pattern as a “summary sketch” of the current neocortical rep-
resentation. Such compression can often occur without [0ss of
essentia information if there is redundancy in the neocortical
representations. The familiar data compression schemes that
are used for computer files exploit such redundancy, and very
high levels of compression may be possibleif the patterns be-
ing compressed are highly constrained or redundant. Artificia
neural networksstructurally similar to those suggested by Fig-
ure 2 are quite commonly used to perform pattern compression
and decompression (Ackley, Hinton, & Sejnowski, 1985; Cot-
trell, Munro, & Zipser, 1987). Compression is carried out in
these models by the connections leading from the input to a
much smaller representation layer, and decompression occurs
via connections leading back from the representation layer to
theinput layer. Intermediate layers can be interposed on either
theinput or the output side to i ncrease the sophi stication of the
compression and/or decompression processes. (For further dis-
cussion, see the section on Binding in the General Discussion.

Within the hippocampus itself, we assume that the event
or experience is represented by a sparse pattern of activity,
in which the individua neurons represent specific combina
tions or conjunctions of elements of the event that gave rise
to the pattern of activation. We assume that once such a pat-
tern of activity arises in the hippocampa memory system, it



may potentially become a stable memory. Plastic changes to
the synapses on fibers coming into the hippocampus tend to
increase the likelihood that a subsequent fragment of the pat-
tern will elicit the entire pattern, and plastic changes to synap-
tic connectionsamong the neuronsactive in the pattern tend to
make this pattern an attractor—that is, a pattern toward which
neighboring patterns or incompleteversions of the pattern will
tend to converge. Severa repetitionsmay bereguired for these
changes to reach sufficient strength to subserve memory task
performance. During recall, if a part of the pattern represent-
ing the episode arises again in the neocortical system, thiswill
betrangd ated into apart of the pattern corresponding to the pre-
vious event in the hippocampal memory system. If the input
issufficiently close to the stored pattern, and if the changes to
the relevant synaptic efficacies were sufficiently large, thisin-
put would then lead the hippocampa memory system to tend
to settleinto the attractor, thereby filling in the missing aspects
of thememory trace. Thereturn pathwaysfrom the hippocam-
pal system to the neocortex, together with pre-existing intra-
cortical connections, then reverse the trandation carried out
by the forward connections, thereby completing the neocorti-
cal reinstatement of the event pattern and enabling appropriate
overt responses. Reinstatement in such asystem isassumed to
be a matter of degree, varying with the adequacy of the probe,
the amount of initia learning, subsequent interference and de-
cay; and the sufficiency of a particular degree of pattern rein-
statement for overt behavior will depend on the exact nature of
the task and behavioral response required.

Reinstatement and Consolidation of Hippocampal
Memories in the Neocortical System

As just described, reinstatement of patterns stored in the
hippocampal memory system may occur in task-relevant sit-
uations, where the memory trace is needed for task perfor-
mance. We assume that reinstatement also occurs in off-line
situations, including active rehearsal, reminiscence, and other
inactive states including sleep (Marr, 1971). In such cases, we
assume that reinstatement in the hippocampal memory system
givesrise, viathe return connections, to reinstatement in the
neocortical processing system. This would have two impor-
tant consequences: First, reinstatement of the stored event in
an appropriate context would allow the stored information to
be used for controlling behavioral responses. Second, rein-
statement would providethe opportunity for an incremental ad-
justment of neocortical connections, thereby allowing memo-
riesinitialy dependent on the hippocampal system gradualy
to become independent of it. To the extent that the hippocam-
pal memory system participates in this reinstatement process,
it can be viewed not just as a memory store but as the teacher
of the neocortical processing system.

In our view, the same consolidation process applies to the
development of a neocortical substrate for performance in se-
mantic, encyclopedic, and episodic memory tasks. Aswe de-
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fine these terms here, semantic memory tasks are simply those
that require the use of information about categories and con-
cepts, encyclopedic tasks require the use of specific factua in-
formation, and episodic memory tasks are those that require
the use of information contained in a specific previous event
or episode in which the subject was an observer or participant.
In our view, thereis no special distinction between such tasks.
Performance in dl three depends initially on plastic changes
within the hippocampal system, but the knowledge underly-
ing al three can eventually be stored in the neocortical system
viathe gradual accumulation of small changes. Let us con-
sider the specific episode or event in which one first encoun-
terssome particular fact: For example, that Neil Armstrong ut-
tered the words “That's one small step for [a] man ...” when
he first set foot on the moon. Such factua information would
be encountered first in a particular context, in this case, per-
haps, in the context of watching Armstrongliveon TV ashe set
foot on the moon, during a family reunion celebrating grand-
father’s 70th birthday. If the event of Armstrong’slandingis
reinstated repeatedly, the accumulated changes to neocortical
connectionscould eventually cometo preserve the common as-
pects of thereinstated event. The result would allow the indi-
vidual to perform correctly in the encyclopedic memory task of
recalling what Armstrong said. If the previous reinstatements
had specifically included information about thetime and place
of initial learning, then thisinformation, too, would gradually
become incorporated into the connection weights in the neo-
cortica system, and would sustain performance in an episodic
memory task. If, however, the reinstatements occur in many
different contexts, and if these reinstatements do not include
other aspects of the original context of encoding, no reliable
memory for any particular context would remain. Much the
same process would a so apply to the learning of semantic in-
formation, such as thefact that giraffes havelong necks, or the
fact that a particular category label is the correct name to ap-
ply to a set of items derived from the same prototype. Knapp
and Anderson (1984) and McCleland and Rumelhart (1985)
both present connectionist modelsin which semantic memory
and category learning can arise from the gradua accumulation
of small changes resulting from individual events and experi-
ences.

Evidence and Comment

Our accounts of neocortical processing and learning, of
hippocampal involvement in someforms of memory, and of re-
instatement of hippocampal memories during off-line periods
are all grounded in evidence from neuroanatomical and neuro-
physiological investigations. We discuss the evidence for each
of these aspects of our account inturn. There are certainly gaps
but we do not dwell on these—we simply describetheevidence
that isavailable.

Neocortical processing and learning. Thebasic notionthat
information processing takes place through the propagation of



activation among neurons via synaptic connections does not
appear tobeindispute, and isbased on over 100years of neuro-
physiological investigation. The evidence a so strong that the
neocortical processing system consists of alarge number of in-
terconnected brain areas. A compelling exampleisthe paralel
and hierarchical organization of thevisua system (Felleman &
Van Essen, 1991). Neurons in each area project to other neu-
rons, both within the same areaand in severa other areas. Ac-
tivation is propagated into and out of this system of brain re-
gions via a number of different pathways specific to particu-
lar sensory modalities and/or effector systems. Generaly, the
projectionsbetween brain areas are bi-directional , so that activ-
ity in one part of the system can potentialy influence activity
in many other parts, in both feed-forward and feed-back direc-
tions.

The idea that processing depends on the pattern of synap-
tic connections among neurons and that adaptive changes in
processing occur through the modification of such connections
is axiomatic in neuroscience. The notion that higher-level,
cognitive forms of learning are mediated by plastic changes
in these connections goes back at least to James (1890) and
Hebb (1949). At a physiologica level, these changes prob-
ably occur through strengthening and weakening, as well as
creation and pruning, of synaptic contacts between neurons.
There is strong evidence of changes in functional connectiv-
ity in neocortex as a consequence of experience (Greenough,
Armstrong, Cummery, Hawry, Humphreys, Kleim, Swain, &
Wang, 1994; Gilbert, 1994; Merzenich, Recanzone, Jenkins, &
Grajski, 1990; Singer & Artola, 1994; Kaas, 1994). Much of
thiswork, is, however, restricted to primary sensory systems,
and it remainsto be determined exactly what thesignal sarethat
govern the plastic changes. Although neocortical synapses ex-
hibit experience-dependent plasticity (Lee, 1983), the bulk of
our understanding of synaptic plasticity comesfrom physiol og-
ical studiesin the hippocampa system.

Hippocampal involvement in some forms of memory. Our
account requires that patterns of activity are propagated into
and out of the hippocampal system during informati on process-
ing. Neuroanatomically, itisclear that the necessary reciprocal
pathways exist to perform these proposed functions (see Fig-
ure 2 from Squire, Shimamura, & Amaral, 1989b). The en-
torhinal cortex isthefina convergence zone for neocortical in-
puts to the hippocampus, and is the main structure mediating
return proj ectionsfrom the hippocampusto the neocortex. The
entorhinal cortex isquitesmall relativeto the combined size of
all theneocortical regionsthat project to it, suggesting the need
for ahigh degree of data compression as previoudly discussed.
As the figure indicates, some of the the neocortical inputs to
the entorhinal cortex and return pathways from the entorhinal
cortex are mediated by the parahi ppocampal and perirhinal cor-
tices, which may serve astheintermediate layersin asophisti-
cated compressi on/decompression operation.

Our account also asserts that the hippocampal system
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makes use of representationsthat are highly specific to the par-
ticular conjunctions or combinations of inputs that are active
in particular experiences. A growing body of data from sin-
gle unit recording in rats is consistent with the idea that these
representations arise in the hippocampusitself. Part of thisev-
idence comes from recordings of neuronsinthe CA3and CA1
regions of the hippocampusin spatial tasks, for example atask
inwhich the animal exploresan eight-arm, radial maze to find
food rewards at the ends of the arms. Neurons in these re-
gionsfirein ahighly selective manner exhibiting‘ place fields
(O'Keefe & Dostrovsky, 1971; O’ Keefe & Conway, 1978), in
contrast to neuronsin the entorhinal cortex. Though spatialy
tuned to some extent, entorhinal neuronstend to fire much less
selectively. Thisisillustrated in Figure 3 from McNaughton
and Barnes (1990), which contrasts the spatial firing pattern
of atypica neuron in CA3 with that of a typical entorhinal
neuron, based on data from Barnes, McNaughton, Mizumori,
Leonard, and Lin (1990). Place fields of hippocampal neu-
rons can be seen as representing conjunctions of cues (includ-
ing cues arising from the anima’s inertial sense of direction
and location, Knierim, Kudrimoti, & McNaughton, in press)
that go together to define aplaceinthe environment. Infact, it
may be better to think of these neurons as coding for conjunc-
tionsthat define situationsrather than just places, since thefir-
ing of a hippocampa neuron in a particular location in space
is conditional on the task as well as the animal’s location in
the environment (Qin, Markus, McNaughton, & Barnes, 1994;
Gothard, Skaggs, Moore, & McNaughton, 1994). Also, note
that the hippocampal representation is very sparse compared
to the entorhinal input. In a given situation, afar smaller per-
centage of neuronsin the hippocampusitself are firing than in
theentorhinal cortex (Barneset al., 1990; Quirk, Muller, & Ku-
bie, 1990). The use of sparse, conjunctive coding in the hip-
pocampus means that its representations of situationsthat dif-
fer only dightly may haverdatively littleoverlap (Marr, 1969;
McNaughton & Morris, 1987; O’ Reilly & McClelland, 1994).

Our account requires the availability of a mechanism for
synaptic plasticity in the hippocampus, and specifically as-
sumes that the synaptic changes provided by these changes
serve asthe substrate of initial learning in hippocampal-system
dependent memory tasks. There isnow considerable evidence
that such a mechanism exists in the hippocampus (see Mc-
Naughton & Morris, 1987; McNaughton & Nadel, 1990, for
reviews). Themechanismisaformof plasticity known as asso-
ciativelong-term potentiation (LTP). LTP has been studied ex-
tensively in the rodent hippocampus since the studies of Bliss
and Gardner-Medwin (1973) and Blissand Lgmo (1973). As-
sociative LTPisfound particularly inthe synapsesfrom the ax-
ons of the principa neurons of the entorhina cortex onto the
dendrites of the principa neurons in the dentate and CA3 re-
gions of the hippocampus, as well as the synapses from the
axons of the principal neurons in CA3 onto the dendrites of
other neuronsin CA3 and neuronsin CALl. LTP may be the
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Figure 2: Schematic representation of the inputsand outputs of the hippocampa system in the primate. The upper panel shows
thefrontal, temporal, and parieta areas reciprocally connected with the parahi ppocampal gyrusand the perirhina cortex, which
in turn connect reciprocally with the entorhinal cortex. The lower panel showsthe areas that have direct reciprocal connections
withtheentorhinal cortex. Note: From Figure 10 of “Memory and theHippocampus’ (p. 227), by L. R. Squire, A. P. Shimamura,
and D. G. Amardl, in Neural Models of Plasticity: Experimental and Theoretical Approaches, edited by J. H. Byrneand W. O.
Berry, 1989, New York: Academic Press. Copyright 1989 by Academic Press, Inc. Reprinted with permission.
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Figure 3: Response profiles of a representative neuron in area CA3 of the hippocampus and of a representative neuron in en-
torhinal cortex during performance in a spatial working memory task in the 8-arm radial maze Response profiles are shown in
theform of bars perpendicular to the arms of the runway, indicating the number of timesthe particular neuron fired astheanimal
repeatedly traversed the maze. Black barsindicate firing as the animal progressed inward on the indicated arm, and white bars
indicate firing as the animal progressed outward. Note: From Figure 4 of “From cooperative synapti c enhancement to associa-
tive memory: Bridging the abyss’ by B. L. McNaughton and C. A. Barnes, 1990, Seminars in the Neurosciences, 2, p. 412.
Copyright 1990 by W. B. Saunders Company. Reprinted with permission.

experimental manifestation of the synaptic modifications that
underlie the contribution of the hippocampus to some forms
of learning and memory (Marr, 1971; McNaughton & Mortis,
1987). LTP in these synapses can last for days to weeks de-
pending on the intensity and duration of the inducing stimula-
tion (Barnes, 1979; Abraham & Otani, 1991), and is associa-
tivein that it normally depends on near-synchronous input to
the receiving neuron by a large number of convergent fibers
(McNaughton, Douglas, & Goddard, 1978; Levy & Steward,
1979; Barrionuevo & Brown, 1983). Thisform of LTP depends
critically on the activation of aspecial typeof post-synapticre-
ceptor known asthe NMDA receptor, which isactivated by the
conjunction of transmitter rel ease from the pre-synaptic termi-
nal and post-synaptic depol arization (Wigstrom, Gustaffson, &
Huang, 1986). Chemica agents that block the NMDA re-
ceptor prevent long-term potentiation with little effect on the
transmission process per se (Collingridge, Kehl, & McLen-
nan, 1983; Harris, Ganong, & Cotman, 1984). Crucialy, these
agents also block learning in spatial memory tasks without in-
terfering with expression of learning that occurred at a previ-
ous time or producing retrograde amnesia (Morris, Anderson,
Lynch, & Baudry, 1986). Inaddition, electrical stimulationthat
sufficiently saturates LTP in the hippocampus aso produces
profound deficitsin spatial learning (Barneset a., 1994) and a
temporally limited retrograde amnesia (M cNaughton, Barnes,
Rao, Badwin, & Rasmussen, 1986).

As previoudly noted, thereis evidence from lesion studies

of involvement of parts of the hippocampal system other than
the hippocampusitself insevera formsof learning. Lesionsin-
cluding these structures can produce deficits that are more se-
verethan|esionsrestricted to the hippocampus, suggesting that
some of the plastic changes underlying performance in some
hi ppocampal -system dependent tasks may lie outside the hip-
pocampus itself. Exactly how plagticity in other zones con-
tributes to memory performance is a matter of considerable
ongoing discussion (see Eichenbaum et al., 1994, and the ac-
companying commentary). There are several possibilitiesthat
are consistent with our overal account. First, particular sub-
areas of the parahippocampal region may be involved in bi-
directional communication of specific types of information be-
tween the hippocampa system and the neocortex; if so we
would expect |esionsto these sub-areas to have specific effects
on memories that involve the relevant types of information, as
Suzuki (1994) suggests. Second, as a borderline area between
hi ppocampus and neocortex, the parahippocampal region may
participate is some forms of information processing, includ-
ing, for example, retention of information about the recent oc-
currence of novel stimuli for short periods of time (Gaffan &
Murray, 1992). Such functionsmay co-exist with these areas
involvement in bi-directional communication between the hip-
pocampusitself and the rest of the neocortical system. A third
possibility is that there is a hierarchy of plagticity, such that
learning in the hippocampus itsdlf is very rapid, learning in
the neocortical system is very slow, and learning within the



parahippocampal region occurs a an intermediate rate. This
could explain why damage restricted to the hippocampus it-
self may produce amilder deficit in new learning and a milder
retrograde amnesia than more extensive hippocampal system
lesions (Zola-Morgan, Squire, & Amaral, 1986; Squire, Zola
Morgan, & Alvarez, 1994).

Reinstatement of hippocampal memories. There is little
direct evidence of hippocampal involvement in the reinstate-
ment of patterns of activity in the neocortex, but thereis ev-
idence of reinstatement in the hippocampus itself of patterns
derived from recent experiences. The evidence is based on
activity recorded in rats during periods of slow wave deep.
In both primates and rodents, hippocampal electrical activ-
ity during slow wave deep (as well as during quiet wakeful-
ness) is characterized by a unique pattern called sharp waves
(O'Keefe & Nadel, 1978; Buzsaki, 1989). Hippocampa sharp
waves are brief periods of quasi-synchronous, high-frequency
burst discharge of hippocampal neurons, lasting about 100
msec. In theory, such activity provides the optimal condi-
tionsfor synaptic plasticity in downstream neurons (Douglas,
1977; McNaughton, 1983; Buzsaki, 1989). Buzsaki (1989) and
his colleagues (Chrobak & Buzsaki, 1994) have provided a
strong case that sharp waves arise in hippocampa area CA3
and are propagated both to area CA1 and to the output layers
of the entorhinal cortex, from which they could be propagated
widely to the neocortical system. Thus, patterns stored in the
hippocampus might complete themselves during hippocam-
pal sharp waves, thereby providing an opportunity for rein-
statement in the neocortex. Simulation studies (Shen & Mc-
Naughton, 1994) demonstrate that random activity can some-
times lead to reinstatement of attractors previously stored in
a hippocampus-like associative network. In support of these
proposals, Pavlides and Winson (1989) have shown that hip-
pocampal neurons which have been sdlectively activated dur-
ing a prior episode of waking behavior are selectively more ac-
tive during subsequent slow wave and paradoxica sleep. More
recently, Wilson and McNaughton (1994b, 1994a) have found
that the cross-correlation structure that arises in alarge popu-
lation (50-100) of simultaneously recorded CA1 neurons dur-
ing exploration of an environment is preserved in subseguent
sharp-wave activity while the animal isresting or deeping in
an entirely different apparatus. This correlational structureis
absent during sleep periods before exploration. Thus, there is
now strong empirical support for theideathat memory traces—
or at least, correl ationsof activity associated with such traces—
areindeed reactivated in therat hippocampusduring “off-ling’
periods.

Summary

We can now summarize our account of the organization of
thememory system by noting how it accountsfor themain fea
tures of the pattern of deficits and spared performance found
following a hippocampal system lesion:
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The deficit in the ability to learn new arbitrary associations
involving conjunctions of cues from a few exposures would
arise from the fact that these would have been stored in the
(now destroyed) hippocampal system; the small changes that
would occur in the neocortica system could contribute to rep-
etition priming effects but would be insufficient to support nor-
mal rates of acquisitionin semantic and episodic memory tasks
and other tasksthat depend on the acquisition of novel conjunc-
tionsof arbitrary material.

The spared acquisition of skillswould arise from the grad-
ual accumulation of small changes in the connections among
the relevant neura populations in the neocortical system as
well as other relevant brain systems. The temporally extended
and graded nature of retrograde amnesia would reflect the fact
that information initially stored in the hippocampa memory
system can become incorporated into the neocortical system
only very gradually, due to the small size of the changes made
on each reinstatement.

The ability of even very profound amnesics to acquire
often-repeated material gradually (Milner et al., 1968; Glisky,
Schacter, & Tulving, 1986a, 1986b) would likewisereflect this
dow accumulation of changes in the neocortica system after
the onset of amnesia. The fact that such learning is often re-
stricted to the specific task contexts in which it was acquired
follows from the assumption that the learning actually takes
place directly within the connections among the neural popu-
lations that were activated during the acquisition process.

Our account of the organization of learning in the brainis
intended as a provisiona factua characterization. It embod-
ies some unproven assumptions, and so it might be viewed as a
theory of memory in some sense. We offer it, however, not asa
theory initself, but asastarting placefor theoretical discussion.
Though it is neither fully explicit nor complete (some gaps,
such as a consideration of spared conditioning of responses to
individual salient cues, will be discussed in later sections), the
account appears to be broadly compatible with alarge body of
data, and it is consistent enough with many of the other ac-
counts considered in the general discussion that we suggest it
isuseful to treat it as provisionally correct, at least in itsessen-
tials.

Key Questions about the Organization of Memory
intheBrain

Supposing provisionally that our account is basically cor-
rect, we can now ask, why isit that the system isorganized in
this particular way?

Two key functional questionsarise;

¢ Why do we need a hippocampal system, if ultimately per-
formanceinal sortsof memory tasks depends on changes
in connections within the neocortical system? Why are



the changes not made directly in the neocortical system
in thefirst place?

o Why does incorporation of new materia into the neocor-
tical system take such along time? Why are the changes
to neocortical connections not made more rapidly, shortly
after initial storage in the hippocampal system?

Successes and Failures of Connectionist Models of
Learning and Memory

The answers we will suggest to these questions arise from
the study of learning inartificial neural network or connection-
ist models that adhere to many aspects of the account of the
mammalian memory system given above, but which do not in-
corporate aspecia system for rapid acquisition of the contents
of specific episodes and events. Such networks are similar to
the neocortical processing system, in that they may consist of
several modules and pathways interconnecting the modules,
but they are monoalithic in the sense that knowledge is stored
directly in the connections among the units of the system that
carriesoutinformati on processing, and thereisno separate sys-
tem for rapid learning of the contents of particular inputs.

Discovery of Shared Structure through Interleaved
Learning

The first and perhaps most crucia point is that in such
monolithic connectionist systems there are tremendous ulti-
meate benefits of what we will call interleaved learning. By in-
terleaved learning we mean learning in which aparticul ar item
isnotlearned all at once, butinstead isacquired very gradually,
through a series of presentations interleaved with exposure to
other examples from the domain. The adjustments made to
connection weights on each exposure to an example are small
so that the overal direction of connection adjustment is gov-
erned, not by the particular characteristics of individual associ-
ations, but by the shared structure common to the environment
from which these individual associations are sampled.

Consider, in this context, some of the facts we know about
robins. We know that a robin is a bird, it has wings, it has
feathers, it can fly, it breathes, it must est to stay alive, and so
on. This knowledge is not totaly arbitrary knowledge about
robinsbutisinfact part of asystem of knowledgeabout robins,
herons, eagles, sparrows and many other things. Indeed much
of theinformationwe may have about robinsprobably does not
come from specific experience with robins but from other, re-
lated things. Some such knowledge comes from very closely
related things of which we may have knowledge, such as other
birds; while other knowledge may come from other thingsless
closely related but still related enough in some particul ar ways
to support some knowledge sharing, such as other animals, or
even other living things. A key issuefor our use of conceptsis
thefact that what countsas rel ated is by no means obvious, and
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isnot in general predictablefrom surface properties. Birdsare
more related to, for example, reptiles and fish than they are to
insects.

Connectionist models that employ interleaved learning
suggest how knowledge of relations among concepts may de-
velop. Both Hinton (1989) and Rumelhart (1990; Rumel hart &
Todd, 1993) developed simulations to illustrate how connec-
tionist networkscan learn representations appropriate for orga
nized bodies of conceptua knowledge. We use the Rumel hart
example here, because it relates to the domain of knowledge
about living things that we have aready begun to consider as
an example, and because, aswe shall see, thereis some empir-
ical data about the development of children’s knowledge that
this model can help us understand. The specific example is
highly simplified and abstract. It captures approximately the
constraints that may be operative in the discovery of concep-
tual structurefrom an ensemble of sentences that convey sim-
ple propositional statements about living things, in that con-
ceptsare represented by arbitrary tokens (akin to words) rather
than by percepts that directly provide some information about
the concepts under consideration. The conceptua structurere-
sides not in the direct appearance of the wordsthat convey the
conceptsbut intherelationsthat the conceptsreferred to by the
words enter into with other concepts.

Human knowledge of the domain of living things appears
to be organized hierarchically, with a principa grouping into
plants and animals, and then other, finer, subgroupingswithin
each of these broad classes (werefer not to objectivebiological
information per sebut to the cognitiverepresentationsthat peo-
ple have of thisinformation). Previous, symbolic approaches
to knowledge representation directly imported the hierarchi-
cal organization of knowledgeinto their structure, representing
knowledge about concepts in a data structure known as a se-
mantic network (Quillian, 1968; see Figure 4). Such networks
are not to be confused with connectionist networks, since they
represent and process information in fundamentally different
ways. In the semantic network, concepts are organized hierar-
chically, usinglinkscalledisalinks, asashort formof thestate-
ment An X isa Y. Given this organization, semantic networks
could store knowledge of conceptsin asuccinct form, with in-
formation that istrue of al of the conceptsin an entire branch
of thetree at the top of the branch. For example, the predicate
has feathers can be stored at the bird node, since it is true of
all birds. Thisallows generalization to new instances. When a
new typeof thingisencountered, for example an egret, we need
only to betold that it isabird, and to link the an new node for
egret to the node for bird by anisa link. Then our knowledge
of egrets can inherit al that is known about birds.

Semantic networks of thistype were very popular vehicles
for representation for a period of time in the 1970's, but ap-
parent experimental support (Collins& Quillian, 1969) for the
hypothesis that people’s knowledge of concepts is organized
this way was illusory (Rips, Shoben, & Smith, 1973). Com-
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Figure 4: A semantic network of the type formerly used in models of the organization of knowledge in memory. All of the
propositionsused in training the network are based on the information actually encoded in thisfigure. For example the network
indicates that living things can grow; that atree isaplant; and that a plant isaliving thing. Thereforeit followsthat atree can
grow. All of these propositionsare contained in the training set. Note: Redrawn with alterationsfrom Figure 1.8 of “Learning
and connectionist representations’, (p. 14), by D. E. Rumelhart and P. M. Todd, in Attention and Performance XIV: Synergiesin
Experimental Psychology, Artificial Intelligence, and Cognitive Neuroscience, edited by D. E. Meyer and S. Kornblum, (1993),
Cambridge, MA: MIT Press. Copyright 1993 by MIT Press. Permission pending.
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Figure 5: Our depiction of the connectionist network used by Rumelhart to learn propositions about the concepts shown in
Figure4. The entire set of unitsused in the actual network is shown. Inputs are presented on theleft, and activation propagates
from left to right. Where connections are indicated, every unit in the pool on the left (sending) side projectsto every unitin the
right (recelving) side. Aninput consists of aconcept-relation pair; theinput robin canisillustrated here by darkening the active
input units. The network istrained to turnon all those output unitsthat represent correct compl etionsof theinput pattern. Inthis
case, the correct unitsto activate are grow, move and fly; the units for these outputs are darkened as well. Subsequent analysis
focuses on the concept representation units, the group of eight unitsto the right of the concept input units. Based on the network
depicted in Rumelhart and Todd (1993), Figure 1.9, page 15.



putationally, semantic networks of this type become cumber-
some to use when they contain a large amount of information
(Fahlman, 1981). It becomes very difficult to determine when
it is appropriate to consider a property to be essentially com-
mon to a category even though there are exceptions, and when
itisappropriateto consider aproperty sufficiently variablethat
it must be enumerated separately on the instances. The prob-
lem is compounded by the fact that most concepts are con-
stituents of multipleintersecting hierarchies, in which case in-
tractable inheritance conflicts can arise.

Connectionistmodel soffer avery different way of account-
ing for the ability to generdize knowledge from one concept
to another. According to this approach (Hinton, 1981; Touret-
zky & Geva, 1987), generalization depends on a process that
assigns each concept an internal representation that captures
itsconceptua similarity to other concepts. Thisaternative ap-
proach appears to be more consistent with the psychologica
evidence (Ripset ., 1973), since theevidence favorsthe view
that conceptual similarity judgments are made by comparing
representations of concepts directly, rather than searching for
common parentsin a hierarchically structured tree. Thisalter-
native a so overcomes the vexing questions about how to han-
die partially regular traits and exceptions, since idiosyncratic
as well as common properties can be captured in these repre-
sentations.

The approach depends on exploiting the ability of a net-
work to discover the relations among concepts through inter-
leaved learning. The network is trained on a set of specific
propositionsabout various concepts, and in the course of train-
ing, it learns similar representations for similar concepts. By
similar concepts, we mean conceptsthat enter into overlapping
sets of propositions.

Rumel hart trained a network on propositionsabout a num-
ber of concepts: living things, plants, animals, trees, oaks,
pines, flowers, roses, daisies, animals, birds, canaries, robins,
fish, saimon, and sunfish. Thetraining datawere the set of true
propositions either explicitly represented in or derivable from
the semantic network shown in Figure 4. The connectionist
network used to learn these propositionsis shown in Figure 5.
It consists of a number of nonlinear connectionist processing
units organized into several modules, connected as illustrated
in the figure. Where arrows are shown they signify complete
connectivity fromall theunitsin themodul e at the sending end
of thearrowsto all of the unitsat the receiving end.

Input to the network is presented by activating the unit for
a concept name in the concept input modul e on the upper left,
and the unit for arelation term in the relation input module on
thelower | eft. Therelationsisa, has, canandisarerepresented.
The task of the network is to respond to each input by activat-
ing unitsin the appropriate modul e on the right corresponding
to the correct completion or completions of the input. For ex-
ample in the case of the input robin isa the network is trained

Complementary Learning Systems 14

to activate the output units for living thing, animal, bird, and
robin. In the case of robin can the network is trained to acti-
vate the output units for grow, move, and fly. The inputs and
desired outputsfor thislatter case are indicated in the figure.

Before learning begins, the network isinitialized with ran-
dom weights. At first when an input is presented, the output
is random and bears no relation to the desired output. The
goa is to adjust these connection weights, through exposure
to propositions from the environment, so as to minimize the
discrepancy between desired and obtained output over the en-
tire ensemble of training patterns. This goa can be achieved
by interleaved learning using a gradient descent learning pro-
cedure: During training, each patternis presented many times,
interleaved with presentations of the other patterns. After each
pattern presentation, the error—i.e., the discrepancy between
desired and obtained output—is calculated. Each connection
weight is then adjusted either up or down by an amount pro-
portional to the extent that its adjustment will reduce the dis-
crepancy between the correct response and the response actu-
ally produced by the network. The changes to the connection
weights are scaled by alearning rate constant ¢ that is set to a
small value, so that only small changes are made on any given
training trial. Thus, responses are learned slowly. Over time,
some of the changes made to the connections are mutually co-
operative and some of the changes cancel each other out. The
cooperative changes build up over time, with theend result that
the set of connectionsevolvesinadirectionthat reflectsthe ag-
gregate influence of the entire ensemble of patterns.

To understand the results of the cooperétive learning, we
will consider patterns of activation the network comes to pro-
duce on the eight unitsin the module to the right of the con-
cept unitsin thefigure. These unitsare called the concept rep-
resentation units. The patterns of activation inthismodulecan
be considered to be thelearned interna representations of each
concept; the connections from the concept input units to the
representation units can be viewed as capturing the mapping
between input patterns and internal representations. The rest
of the connectionsin the network can be seen as capturing the
mapping from theseinternal representations, together with pat-
terns on the relation units, to appropriate response patterns at
the output layer.

In the course of learning, the network learns both how to
assign useful representations, and how to use these to gener-
ate appropriate responses. That is, it learns a set of input-to-
representation weights that allow each concept to activate a
useful internal representation, and it learns a set of weights
in the rest of the network that allows these representations to
produce the correct output, conditional on this representation
and the relation input. Note that there is no direct specifi-
cation of the representations that the network should assign;
the representations—and the connection weights that produce
them—arise as aresult of the action of thelearning procedure.
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Figure 6: Representations discovered in our replication of Rumelhart’s learning experiment, using the network shown in Fig-
ure 5. The figure presents a vertical bar indicating the activation of each of the eight concept representation units produced by
activating the input unit for each of the eight specific concepts. The height of each vertical bar indicates the activation of the
corresponding unit on ascale from 0 to 1. One can see that initialy al the concepts have fairly similar representations. After
200 epochs, thereisaclear differentiation of the representations of the plantsand animals, but thetreesand flowersare still quite
similar as are the birds and the fish. After 500 epochs, the further differentiation of the plantsinto trees and flowers and of the
animalsinto fish and birdsis apparent.
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Figure7: Similarity structurediscovered in our replication of Rumelhart’slearning experiment, using the representati ons shown
in Figure 6. These analyses make the similarity relationships among the patterns shown in the preceding Figure explicit. The
clustering algorithmrecursively linksaapattern or an previoudly-linkedgroup of patternsto another patternor previoudy formed
group. The process beginsthethe pair that is most similar, the el ements combined are then replaced by the resulting group, and
the process continuesuntil everything have been joinedintoasinglesuperordinategroup. Similarity ismeasured by the Euclidian
distance metric (Sum of the squared differences between the activationsof the corresponding e ementsin thetwo patterns). The
height of the point where a subtree branches indicates the Euclidean distance of the elements joined at that branch point.



We repeated Rumel hart’s simulations, training the network
for atotal of 500 epochs (sweepsthroughthetraining set) using
the gradient descent learning procedure. The representations
at different pointsin training are shown in Figure 6. These are
simply the patterns of activation over the representation units
that arise when theinput unit corresponding to each of theeight
specific concepts is activated. The arrangement and grouping
of therepresentations, shownin Figure7, reflectsthe similarity
structure among these patterns, as determined by ahierarchical
clustering analysis using Euclidian distance as the measure of
similarity of two patterns. At an early pointinlearning (Epoch
25), theanalysisreveal s an essentially random similarity struc-
ture, illustrating that at first the representations do not reflect
the structure of the domain: For example oak is grouped with
canary indicating that the representation of oak is more sm-
ilar at this point to canary than it isto pine. At later pointsin
training, however, thesimilarity structure beginsto emerge. At
Epoch 500, we see that the complete hierarchicd structureis
apparent: Thetwo trees (oak and pine) are moresimilar to each
other than either isto any other concept, and therepresentations
of thetwo flowers, thetwo birds, and thetwo fish are moresim-
ilar to each other than either member of any of these pairsisto
the representation of any other concept. Furthermore, the rep-
resentationsof thetrees are more similar to the representations
of the flowers than they are to the representations of any of the
animals, and the representations of the birds are more similar
to the representations of the fish than they are to the represen-
tations of any of the plants. Examination of the clustering of
therepresentationsat Epoch 200 showsthat the network has by
this point only learned the coarser distinction between plants
and animalss, since at this point the plants and animals are well
differentiated but within the plantsand animal s the differences
are very small and not yet completely systematic with respect
to subtype. For example, pineisgrouped with daisy rather than
oak. Thus we see that the network exhibits a progressive dif-
ferentiation of concepts, progressing from coarser to finer con-
ceptual distinctionsthrough the course of learning.

The similarity structure shown in Figure 7—for example,
thefact that oak and pineare similar to each other but quitedif-
ferent from canary and robin—arises not because of intrinsic
similarity among the inputs, but because of similarity among
the responsesthe network must learn to make when thevarious
concepts are presented with the same relation term. The con-
nectionsinthe rest of the network exploit these similarities, so
that what the network has learned about one concept tends to
transfer to other concepts that use similar representations. We
can illustratethis by examining what happensif, after training

3 All of the simulation results reported here were fresh runs of the Rumel-
hart model, carried out by us, using the bp program of McClelland and Rumel-
hart (1988). We thank Rumelhart for supplyingthe patternfilesused in hisear-
lier smulations. Weightswereinitialized with valuesdistributed uniformly be-
tween —.5 and +.5, and were updated after every pattern presentation with no
momentum. Thelearning rate parameter e was set to 0.1. Targets for learning
were .95 for unitsthat should be “on” and .05 for units that should be “off”.
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on the material already described, anew concept isadded such
as sparrow, and the network istaught only the correct response
tothesparrow isainput, interleaving thisexamplewith therest
of thetraining corpus (Rumelhart, 1990 performed avery sim-
ilar experiment). Through thisfurther training, the network as-
signsarepresentationto sparrow that issimilar to the represen-
tation for robin and canary. This allows correct performance,
since such arepresentation is already associated with the cor-
rect output for theisa relation term. Thisrepresentationisalso
already associated with the correct responses to be made when
it isactivein conjunction with the other relation terms. There-
fore the network will respond appropriately when the other re-
lation terms are paired with sparrow, even though it has never
been trained on these cases. In fact the network correctly sets
the activity of al those outputs on which canary and sparrow
agree; wherethey disagreeit produces compromise activations
reflecting the conflicting votes of the two known bird concepts.

Theability tolearn to represent concepts so that knowledge
acquired about one can be automatically shared with other re-
lated conceptsis, we believe, a crucia cognitive capacity that
plays a centra role in the very gradual process of cognitive
development. The order of acquisition of conceptual distinc-
tionsin such systems, beginning with coarser distinctionsand
proceeding to finer distinctions between subtypes, mirrorsthe
developmental progression from coarser to finer distinctions
studied by Keil (1979). Keil was interested in the conceptual
differentiation of children’s knowledge of different kinds of
things, not so much in terms of the specific facts they knew
about them, but in terms of the range of things that they be-
lieved could plausibly be said about them, or in Kell's terms
predicated of them. As adults, we know, for example, that it
isappropriateto attribute a duration to an event (such asalec-
ture or movie), but not to an animate being or physical object
(such as a person or a chair). Feglings, on the other hand, can
be attributed to humans, but not to plants or inanimate objects.
Thus we can predicate a duration to an event and afeeling to
a person, but we cannot predicate a duration to a person or a
feeling to an event. To assess children’s knowledge of these
meatters, Keil asked children to indicate whether it was “silly”
or “ok” to say, for example, that “ Thischair isan hour long” or
“Thismilk isalive’. To separate children’s judgments of mat-
tersof fact per se from predicability, Keil asked for judgments
about individual statements and about their negations. If the
child accepted either statement as“ok”, Kell interpreted thisas
evidence that the child felt that the kind of property in ques-
tion could be predicated of thethingin question. Based on chil-
dren’s judgments, Keil constructed what he called predicabil -
ity treesfor individual children. Four such trees, from children
in different age groups, are shown in Figure 8. As the figure
illustrates, Keil found that kindergarten children tend to make
only two or three distinctions. Asthey grew older they cameto
differentiatemore and more finely among the different typesof
concepts, as indicated by the restrictions they placed on what



Kindergarten
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Second Grade

A3 ( AN HOUR LONG ) A17 ( AN HOUR LONG )
THINK OF THINK OF
HEAVY secret HEAVY tv. show
TALL TALL secret
ALIVE recess ALIVE milk
AWAKE flower AWAKE house
SORRY chair ~~_
| milk SORRY flower
man | pig
pig man
Fourth Grade Sixth Grade
A 37 THINK OF A 54 THINK OF
HEAVY AN HOUR\LONG HEAVY AN HOUR; LONG§§S'ecret
N \ N, '
TALL milk secret TALL  milk t.v. show
~ t.v. show ~o
ALIVE  house ALIVE  house
\\~ \\\
AWAKE  flower HUNGRY  flower
SORRY ~—.
l SORRY  pig
man I
pig man

Figure 8: Examples of predicability treesempirically derived by Keil (1979). The treesindicate the types of predicates children
of different ages are willing to accept as applicable to different types of concepts at different ages. The trees were derived by
asking children to whether they thought statementslike® Thischair isan hour long” were “silly”. Seetext for further discussion.
Note: Redrawn from Semantic and Conceptual Development: An Ontological Perspective (A3 from p. 181, A17 from p. 183,
A37 from p. 185, and A54 from p. 187), by F. C. Keil, 1979, Cambridge, MA: Harvard University Press. Copyright 1979 by

Harvard University Press. Permission pending.

can be predicated of what.

Keil’s (1979) developmenta findings mirror the progres-
sive differentiation of concepts that we have seen in the con-
nectionist model. The modd illustrates how conceptua dis-
tinctions can emerge as a result of very gradual training, and
provides an important starting place for an experience-based
approach to cognitive development. The ability to discover
appropriate representations for concepts and to use them to
respond appropriately to novel questions is a fundamental
achievement of connectionist systems, and allows them to re-
open gquestionsabout what kinds of knowledge can be acquired
from experience and what must be taken to beinnate (McCld-
land, 1994).

Catastrophic Interference

The achievements of interleaved learning systems that we
havejust reviewed do not mean that such systemsare appropri-
atefor al formsof learning. Indeed, it appearsthat they are not
at all appropriatefor the rapid acquisition of arbitrary associa-
tionsbetween inputsand responses asisrequired, for example,
in paired-associate learning experiments (e.g., Barnes & Un-
derwood, 1959). When used in such tasks, connectionist sys-
temslike the one considered above exhibit a phenomenon Mc-
Closkey and Cohen (1989) termed catastrophic interference.
Essentially the same point was aso made independently by
Ratcliff (1990).

Toillustrate catastrophic interference, McCloskey and Co-
hen used a connectionist network slightly simpler than the one
used by Rumelhart (1990). They were particularly interested
inaparadigm called the AB — AC' paradigm, which is com-
monly used to study retroactiveinterference of one set of asso-
ciations (AC) on recall of a set of associations previously ac-
quired (AB). Here AB stands for alist of stimulus-response
pairs of words, such as Locomotive-Dishtowel, Table-Street,
Carpet-ldea,... and AC standsfor asecond such list, involving
the same stimulus words now paired with different responses,
such as Locomotive-Banana, Table-Basket, Carpet-Pencil,....
In such experiments, subjects are repeatedly exposed to all the
itemsinaparticular list. On eachtrid, they receive one A item
and thetask isto producethe correspondingitemonthelist cur-
rently under study; the correct answer is given as feedback af -
ter each recall attempt. Thisis repeated for the AB list until
performance reaches a strict criterion, and then the subject is
switched to the AC' list. At different pointsin the series of ex-
posures to the AC' ligt, the subject is asked to try to recall the
B members of each pair, thereby providing an opportunity to
examine the extent of interference of AC' learning on recovery
of the A B associations.

McCloskey and Cohen’s network provided for a two-part
input, as in Rumelhart’s network (Figure 9). One subset of
theinput unitswas reserved for representing each A term, and
a second subset was used to represent what is called the list
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Figure 9: The network used by McCloskey and Cohen (1989)
to demonstrate catastrophic interference in back-propagation
networks. All output unitsreceive connectionsfrom all hidden
unitsand all hidden unitsreceive inputsfrom both sets of input
units. Based on Figure 8, page 126, of McCloskey and Cohen
(1989).

context—essentially an arbitrary patternindicating whether the
itemstoberecalled arethe B itemsor theC' items. Asintheex-
periment, they trained a network first on the A B list, and then
shifted to AC' training, testing AB performance at different
pointsalong theway. The resultsare shown in Figure 10a, and
contrasted with typical human results in Figure 10b. The pat-
tern McCloskey and Cohen termed catastrophicinterferenceis
evident in the network’s performance. Whereas humans show
agradual lossof ability to retrievethe AB ligt, and are till ca-
pable of operating at over 50% correct recall after the AC' list
performance has reached asymptote, the network shows virtu-
aly completeabolitionof AB list performance before AC' per-
formance rises above 0% correct.

One possible response to this state of affairs might be to
try to find ways of avoiding catastrophic interference in multi-
layer networks. In fact, several investigators have demon-
strated ways of reducing the magnitude of interference in
tasks like those studied by McCloskey and Cohen (Hethering-
ton & Seidenberg, 1989; Kortge, 1993; French, 1991, 1992;
Sloman & Rumehart, 1992; McRae & Hetherington, 1993).
Many of these proposals amount to finding ways of reducing
overlap of thepatternsthat areto be associated with appropriate
responses via connection weight adjustment. One might then
be tempted to suggest that McCloskey and Cohen simply used
the wrong kind of representation, and that the problem could
be eliminated by using sparser patterns of activation with less
overlap. However, as French (1991) has noted, reducing over-
lap avoids catastrophicinterference at the cost of adramatic re-
duction in the exploitation of shared structure. In connection-
ist systems, what one learns about something is stored in the
connection weights among the units activated in representing
it. That knowledge can only be shared or generalized to other
related things if the patterns that represent these other things
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overlap (Hinton, McClelland, & Rumelhart, 1986).

One could pursue the matter further, looking for ways of
preserving as much of the ability to extract shared structure
as possible while at the same time minimizing the problem
of catastrophic interference. However, the existence of hip-
pocampal amnesi a, together with the sketch given above of the
possiblerole of the hippocampal system in learning and mem-
ory, suggests instead that we might use the success of Rumel-
hart’s simul ation, together with the failure of McCloskey and
Cohen's, asthebasisfor understanding why we have aseparate
learning system in the hippocampus and why knowledge origi-
nally storedinthissystemisincorporated in the neocortex only
gradualy.

Incorporating New Material into a Structured Sys-
tem of Knowledge through Interleaved Learning

To begin to address thisissue, let us consider the incorpo-
ration of new knowledgeinto a structured system. McCloskey
and Cohen’'s simulation does not relate to structured knowl-
edge, since the associations being learned are arbitrary paired
associates, arbitrarily grouped into lists. thisissue can be ex-
plored, however, in the context of the semantic network simu-
lation. We will see that attemptsto acquire new knowledgeall
at once can lead to strong interference with aspects of what is
aready known. But we shall also see that thisinterference can
be dramatically reduced if new informationisadded gradually,
interleaved with ongoing exposure to other examples from the
same domain of knowledge.

Weillustratethese pointsby examining what happensif we
teach Rumelhart’s network some new facts that are inconsis-
tent with the existing knowledge in the system: The factsin
guestion are that penguins are birds, but they can swim and
cannot fly. We will consider two cases. The first one we will
call focused learning, inwhich thenew knowledgeis presented
to the system repeatedly, without interleaving it with contin-
ued exposure to the rest of the database about plants and an-
imals. We compare this to interleaved learning, in which the
new informationabout penguinsissimply added to thetraining
set, so that it isinterleaved with continued exposure to thefull
database. We use the same learning rate parameter in the two
cases. We seethat withfocused learning, thenetwork learnsthe
meaterial about penguins much more rapidly than in the case of
interleaved learning (Figure 11a). In thisgraph, we use a mea-
sure called the absol ute error, which reflects the mismatch be-
tween the network’s output and the correct response. The ab-
solute error isthe sum, across al output units, of the absolute
value of the difference between the correct and obtained acti-
vation. The axisisinverted so that the upward direction repre-
sents better performance, and it is apparent that learning pro-
ceeds more rapidly in the focused case. However, as we teach
the network this new information, we can continueto test it on
theknowledgeit had previously acquired about other concepts.
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Figure 10: @) Experimental data showing mild interference in humansin the AB-AC paradigm (Barnes & Underwood, 1959),
and b) simulation results demonstrating catastrophic interference. Note: From Figures 7 and 10a of “ Catastrophic interference
in connectionist networks: The sequential learning problem” (pp. 125 and 129), by M. McCloskey and N. J. Cohen, in The Psy-
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Press. Permission pending.

What we see is a deleterious effect of the new learning on the
network’s performance with other concepts (Figure 11b). The
measure in the case isthe average absolute error over al of the
cases in which any concept (including a subordinate concept
such as robin or pine or a superordinate concept such as bird
or animal) ispaired withthere ation can. What happensisthat
as the network learns that the penguin is a bird that can swim
but not fly, it comes to treat all animas—and to alesser extent
all plants—as having these same characteristics. In the case of
thefish, the effect is actually to improve performance dightly,
since the penguin can do all of the same thingsthe fish can do.
Inthe case of the birds, of course, theeffect istoworsen perfor-
mance a great dedl, specifically on the output units that differ
between the birdsand the penguin. Theinterferenceisnot quite
as catastrophic asinthe McCloskey-Cohen simulation, butitis
far greater than what we see with interleaved learning.

With interleaved learning, incorporation of knowledgethat
penguins can swim but not fly is very gradua, in two ways.
First the processis extended simply because of theinterleaving
with continued exposure to the rest of the corpus; second, the
rate of progress per exposure, as shownin thefigure, isslowed
down; However, thisprocedure has agreat benefit. It resultsin
very little interference. Eventually, with enough practice, the
network can in fact learn to activate strongly the correct output
for the input penguin-can, and it learns to do so without ever
producing more than a dight hint of interference with what it
already knows about other concepts. Thisisbecause theinter-
leaved learning allows the network to carve out a place for the

penguin, adjusting its representation of other similar concepts
and adjusting its connection wei ghtsto incorporatethe penguin
into its structured knowledge system.

We will argue below that these effects are not just idiosyn-
cratic characteristics of back-propagation networks, but apply
broadly to systems that learn by adjusting connection weights
based on experience. Dramatic confirmation of catastrophic
effects of focused learning in real brains—and of the bene-
fits of interleaved learning—can be found in recent work of
Merzenich (personal communication, January, 1995). He has
found that highly repetitive sensory-motor tasks correspond-
ing to focused learning lead to severe loss of differentiation
of the relevant regions of sensory cortex: Practice produces a
dramatic reduction in the diversity of responses of the neurons
inthese regions. Thisloss of differentiation was accompanied
by aclinical syndrome called focal dystonia, which isabreak-
down of sensory-motor coordination of the affected limb. This
syndrome can be corrected in both monkeys and humans by
physical therapy regimens that involveinterleaved practice on
abattery of different exercises.

The observation that interleaved learning alows new
knowledge to be gradually incorporated into a structured sys-
tem lies at the heart of our proposal s concerning the role of the
hippocampusin learning and memory. We see thisgradual in-
corporation process as reflecting what goes on in the neocortex
during consolidation. Thisview isquiteclosetotheview of the
consolidation process as it was envisioned by Squire, Cohen,
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Figure 11: Effects of focused and interleaved learning on the acquisition of new knowledge and on interference with existing
knowledge. Simulationswere carried out using Rumel hart’ snetwork, using the connection weightsresulting fromtheinitial 500
epochs of training with the base corpus. The performance measure, absolute error, is defined as the sum across output units of
the absol ute value of the difference between the correct response for each pattern and the actua response. The measure reaches
its optimal value of 0 when the output exactly matches the target. Better performance corresponds to lower error, and the axis
isinverted for better visual correspondence to standard memory performance curves. Inthe analysis of interference with other
memories, the performance measure is the average of the absolute error over al 15 of the cases in theinitid training corpus
involving the can relation. The scales of each graph are different, and are set to encompass the range of va ues spanned in each
case. Theinterferenceis much greater for some items than for others, and falls predominantly on those output units where the
correct answer for the pre-existing memory differs from the correct answer for the penguin.



and Nadel (1984):

...it would be simplistic to suggest that any sim-
ple biologica change is responsible for consolida
tion lasting as long as severa years, as indicated
by the data from retrograde amnesia. Rather, this
time period, during which the media temporal re-
gion maintains its importance, is filled with exter-
nal events (such as repetition and activities related
to original learning) and internal processes (such as
rehearsal and reconstruction). These influence the
fate of as-yet unconsolidatedinformationthroughre-
modeling the neural circuitry underlying the original
representation. (p. 205)

Three Principles of Connectionist Learning

The simulations presented above suggest three principles
of learning in connectionist systems:

¢ Thediscovery of aset of connection weightsthat captures
the structure of a domain and places specific facts within
that structure occurs from a gradual, interleaved learning
process.

o Attempts to learn new information rapidly in a network
that has previously learned a subset of some domain leads
to catastrophic interference.

e Incorporation of new material without interference can
occur if new material is incorporated gradualy, inter-
leaved with ongoing exposure to examples of the domain
embodying the content already |earned.

Answersto the Key Questions

These principles alow us to formulate answers to the key
guestions about the organization of memory raised above:

¢ Why do we need a hippocampal system, if ultimately per-
formanceinal sortsof memory tasks depends on changes
in connections within the neocortical system? Why are
the changes not made directly in the neocortical system
inthefirst place?

The principles indicate that the hippocampus is there to pro-
videamedium for theinitia storage of memoriesinaform that
avoidsinterference with the knowledge already acquired inthe
neocortica system.

o Why does incorporation of new materia into the neocor-
tical system take such along time? Why are the changes
to neocortical connections not made more rapidly, shortly
after initial storage in the hippocampa system?

Incorporation takes along time to allow new knowledgeto be
interleaved with ongoing exposure to exemplars of the exist-
ing knowledgestructure, so that eventually the new knowledge
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may be incorporated into the structured system already con-
tained in the neocortex. If the changes were made rapidly, they
would interfere with the system of structured knowledge built
up from prior experience with other related material .

Generality of the Relation between Discovery of
Shared Structure and Gradual, Interleaved Learning

Thusfar we have used a very specific example to consider
discovery of shared structure through interleaved learning and
catastrophicinterference in focused learning. We selected this
example to provide a concrete context in which to make these
points and to illustrate as clearly as possible how much is at
stake: Our claim is that experience can give rise to the grad-
ual discovery of structurethrough interleaved learning but not
through focused learning and that this gradua discovery pro-
cessliesat the heart of cognitive, linguistic, and perceptua de-
vel opment.

In this section, we examinetheissues more generaly. First
we consider what it means to discover the structure present in
aset of inputsand experiences. Then we consider general rea
sons why the extraction of structure present in an ensemble of
events or experiences requires slow learning. To conclude the
section, we discuss the process of discovering structurein bio-
logicaly redlistic systems.

What is structure?

Throughout this article we discuss the structure present in
ensembles of events. What we mean by the term structure is
any systematic relationship that exists within or between the
events which, if discovered, could then serve as a basis for
efficient representation of novel events and/or for appropriate
responses to nove inputs. Marr (1970) noted that events al-
most never repeat themselves exactly, but yet we do learn from
past experienceto respond appropriately to new experiences. |If
there is no structure—no systematicity in the relationship be-
tween inputs and appropriate responses—then of course there
will be no basis for responding appropriately to novel inputs.
But if a systematic relationship does exist between inputs and
appropriate responses, and if the organism has discovered that
relationship, then appropriate responding may be possible.

We can begin to make this point explicit by continuing
within the domain of concepts about living things. In the
Rumelhart model, the structureisthe set of constraintsthat ex-
ist on the correct completions of propositions, given a concept
and arelationterm. For example, if somethingisabird, thenit
haswings and it can fly. In a symbolic framework, such con-
straints are captured by storing propositions that apply to en-
tire subtrees just once at the top of the subtree; similarity re-
lations among concepts are captured by placing then in neigh-
boring locations in the tree. In the connectionist framework,
such constraintsare captured inthe connection weights, and the



similarity relations among concepts are captured by using the
weightsto assign similar distributed representations. The pat-
ternsinvolving the concept sparrow conform, by and large, to
the constraintsembodied in the patternsinvol ving the concepts
for robin and canary, and therefore, once sparrow is assigned
arepresentation similar to the representations of robin and ca-
nary, appropriate representation and completion of proposi-
tionsinvolving sparrow are possible.

In other domains, different kinds of structure can be found.
For example, the English spelling system provides a notation
that has a quasi-structured relation to the sound of English
words. Once one has learned this structure from examples
of existing words (including, for example, save, wave, cave,
slave, etc.) one can generalize correctly to novel forms (such
asmave). As athird example of structure, consider redundan-
cies present invisual patterns. Neighboring pointstendto have
similar depth, orientation, and reflectance properties; such sets
of neighboring points define surfaces of objects. Similarly, if
there isadiscontinuity between two adjacent pointsin the pat-
tern, the same discontinuity will tend to exist between other
pairs of adjacent pointsclose by; such sets of neighboring dis-
continuities define edges. The surfaces and edges constitute
structure, and given that the objectsinimages contain surfaces
bordered by edges, it is efficient to represent images in terms
of the properties and locations of the surfaces and edges. Such
representations can be very efficient and can allow for comple-
tion of occluded portions of novel visua patterns.

Finally, an abstract but general example of structureisany
correlationthat may exist between particular pairsor larger sets
of elements in a set of patterns. Such correlations, if discov-
ered, could then be employed to infer the value of one mem-
ber of the set of elements from the values of the other mem-
bers, when a novel but incomplete pattern is presented. Fur-
thermore, the presence of these correlationsmeans that the pat-
terns are partially redundant. This in turn means that we can
represent patterns that exhibit these correlations by storing a
singlevaluefor each correlated set of elements, rather than the
elements themselves, asisdonein principal components anal-
ysis.

Why Discovering Structure Depends on Sow Learn-
ing

Now that we have defined what we mean by structure, we
are in a position to consider genera reasons why the discov-
ery of structure depends on gradual, interleaved learning. The
reasonswe will consider arelargely independent of specifics of
the network organi zation, the training environment, or even of
the learning & gorithm used.

The first reason applies generally to procedures with the
following characteristics:

e The procedure is applied to a sequence of experiences,
each representing a sample from an environment that can
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be thought of as a distribution or population of possible
experiences.

e Thegod of learning isto derive a parameterized charac-
terization of the environment that generated the sequence
of samples, rather than to store the samples themsel ves.

o What is stored as a result of applying the procedure is
not the examples, but only the parameterized characteri-
zation. As each new example is experienced, the param-
eterized characterization is adjusted, and that is the only
residue of the example.

¢ The adjustment process consists of a procedure that im-
proves some measure of the adequacy of the parameter-
ized characterization, as estimated from the dataprovided
by the current training case.

We might call procedures with these characteristics stochastic,
on-line, parameter updating procedures, but we will call them
simply stochastic learning procedures to emphasize their re-
lation to the question of learning and memory. In such proce-
dures, we shall see that gradual learning isimportant if the pa-
rameterized characterization isto accurately capture the struc-
ture of the popul ation of possibletraining examples.

Our analysis of thisissue derivesfrom an analysis of con-
nectionist |earning proceduresdueto White (1989). In White's
analysis, the array of connection weights stored in a network
isviewed as a multi-valued parameterized characterization, or
statistic, thought to be an estimate of the weights appropriate
for the entire environment or popul ationfrom which actua ex-
periences or training examples are drawn. In the case of the
gradient descent learning procedure used in the semantic net-
work model, the statistic is an array of connection weights w
that is construed to be an estimate of the array of weights w+
that minimizes the error measure over the popul ation of input-
output patterns. When thereis more than one array of weights
equivaently good at minimizing the error measure, then w is
construed as an estimate of some member of the set of such
equivalent arrays. To find an estimate that exactly matches one
of these arrays of weightswould be to capture all of the struc-
ture, not of the training examples themselves, but of theentire
distribution from which they were drawn.

There are of course a very large number of different con-
nectionist learning rules that can be viewed as a method for
computing some statistic from the sample of training experi-
ences. These statistics can in turn be viewed as representing
some aspect of thestructure present inthetraining experiences.
Let us consider for example aversion of the Hebbian learning
rule that computes an estimate of the covariance, the average
value of the product of the activations of the units on the two
sides of the connection weight to unit ¢ from unit j. The co-
variance is a statistic that captures one aspect of the structure
present in the patternsfrom which it was computed. Thelearn-



ing rulefor estimating the covarianceiis:

D)

Here w;; isthe weight to unit ¢ from unit j, and Aw;; repre-
sents the change in thisweight. Thevariables a; and «; repre-
sent the activations of units< and j, and ¢ isthe learning rate
parameter. In the case where each event consists of a sample
vector a of activations, then the vector of weightsw will bean
estimate of the population covariance array ¢, where the ele-
ments of ¢ are the covariances of activations of unitsi and ;.
Inthiscaseitiseasy tosee how thelearningruleisacting tore-
duce the difference between the parameterized estimate of the
covariance of each pair of units (w;;) and the current data rel-
evant to thisestimate (a;a;).

Awi]' = G(Cll'a]' — wZ’]’)

This covariance learning rule provides a concrete context
in which to illustrate a genera point: the smaller the learning
rate, the more accurate the estimate will eventually be of the
population value of the statistic the learning rule is estimating,
in thiscase the popul ation val ue of the covariance of «; and «;.

Let ussuppose, in keeping with our assumptions: 1) that we
want each w;; to approximate the true population vaue of the
covariance c;;, and 2) that in fact the environment is a proba-
bilisticenvironment so that the value of the product a; a; varies
from sample to sample. In thiscase, it should be obvious that
the accuracy with which the connection weight correspondsto
the actual populationval ue of the covariance will vary with the
size of our learning rate parameter ¢. The only meaningful val-
ues of ¢ are positive real numbers < 1. When ¢ isequal to 1,
wefind that each new experience totally resets the value of w;;
to reflect just the current experience. With smaller values, w;;
depends instead on the running average of the current and pre-
vious experiences. The smaler ¢, the larger the sample of his-
tory that is the basis for w;;, and the more accurate w;; will
eventually be as a representation of the true population value
of the statistic.

The argument just given applies very generdly; it isin-
dependent of the exact nature of the statistic being estimated.
There are some mathematical constraints, but these are rela
tively technical and werefer thereader to White (1989) for fur-
ther discussion. Basicaly, the argument depends on the fact
that when each experience represents but a single, stochastic
sample from the population, it is necessary to aggregate over
many samples to get a decent estimate of the popul ation statis-
tic. Accuracy of measurement will increase with sample size,
and smaller [earning rates increase the effective sample size by
basically causing the network to take a running average over a
larger number of recent examples.

The second reason why slow learning is necessary applies
to cases with an additional characteristic beyond those listed
above;

e The procedure adjusts each parameter in proportion to
an estimate of the derivative of the performance measure
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withrespect to that parameter, given theexisting val ues of
all of the parameters.

Such procedures can be called gradient descent procedures.
The standard back-propagation learning procedure and the
more biologically plausible procedures we will consider in the
next section are procedures of this sort. Such procedures are
guaranteed to lead to an improvement, but only if infinitesi-
mally small adjustmentsare made to the connection weightsat
each step. The reason for thisis that as one connection weight
changes, it can ater the effect that changes to other connec-
tion weights—or even further changes to the same connection
weight—will have on the error. This problemis especialy se-
vere in multi-layer networks, where the effect of changing a
weight from an input unit to a hidden unit depends criticaly
on the weights going forward from the hidden unit toward the
output. This is one of the reasons why multi-layer networks
trained with such a procedure require many passes through the
whole set of patterns, even in cases where the network is ex-
posed to the full set of patterns that make up the environment
before each change in theweights. After each passthroughthe
training set, the weights can be changed only alittle; otherwise
changes to some weightswill underminethe effects of changes
to the others, and the weights will tend to oscillate back and
forth. With small changes, on the other hand, the network pro-
gresses alittle after each pass through the training corpus. Af-
ter each weight adjustment, thepatternsare al presented again,
and the best way to change each weight isre-computed, thereby
assuring that progress will a'so be made at the next step. It
should be noted that progress may be possible, even if thereis
some overshoot on each wel ght adjustment step. In such cases
the actud rate of progress becomes decoupled from the size of
thelearning rate parameter. Given thisit isimportant to distin-
guish between the va ue of the learning rate parameter and the
effective rate of progressthat results from the value chosen.

In multi-layer networkstrained by a stochastic gradient de-
scent learning procedure, both of the factors discussed here
play arole. We can view the very small changes made after
each pattern presentation as adding up, over many patterns, to
an estimate of the best overall direction of change based both
on the characteristics of the population as estimated from the
sample and on the current values of the connection weights. It
isnecessary to make small changes, both to base the overall di-
rection of change on stable estimates of the population statis-
tics a each point and to avoid overshoot that can arise when
changesthat aretoolarge are made. Whileweknow of no andl-
yses considering the circumstances that cause one or the other
factor to dominate, itisclear that there are at |east two reasons
why thediscovery of structurerequiresthe use of asmall learn-
ing rate.



Arbitrary Associations, Quasi-Regularity, and

Memory for Facts and Experiences

It should be noted that connectionist networksthat are ca-
pable of extracting shared structure can aso learn ensembles
of arbitrary associations. In cases of totally arbitrary associa-
tions connectionist models show strong advantages for inter-
leaved over sequentia learning (McCloskey & Cohen, 1989).
This fact accords with the well-known advantages of spaced
over massed practice of arbitrary material. In humans, massed
practicetendsto allow for relatively rapid initial acquisition of
each association compared to theinterleaved case, but thisini-
tial advantage givesway to astrong disadvantage when perfor-
mance on an entire series of associationsistested on adelayed
test (see Schmidt & Bjork, 1992, for a brief summary of some
of therelevant evidence).

The reasons why learning ensembles of arbitrary associ-
ations requires interleaved learning are similar to the reasons
why the extraction of shared structure requires interleaved
learning: In both cases, the goa of the learning procedure is
to find a set of connections that handles an entire ensembl e of
events and experiences, rather than just each individua case.
With interleaved learning the direction of weight changes is
governed by the entire ensemble, not just the most recent in-
dividua case, and so the outcome is successful performance
on an entire ensemble of cases McCloskey and Cohen (1989)
themselves made this point for the case of ensembles of arbi-
trary associations.

As we shall see below, the need for interleaved learning
can be iminated by exploiting totally non-overlapping repre-
sentations of each example. One trouble with this scheme is
that it isextremely inefficient for large systems of arbitrary as-
sociations (such as the set of largely arbitrary associations of
wordsand their meanings). Hinton et al. (1986) showed that in
such cases much greater efficiency can be achieved using over-
lapping distributed representations. Learning these represen-
tations, however, requires interleaved learning, and proceeds
very slowly due to the lack of shared structure.

Another difficulty with using completely non-overlapping
representations is the fact that total arbitrarinessis the excep-
tionrather than therulein cognitively interesting domains, and
non-overlapping representations prevent the expl oitationof the
systematic aspects of these relationships. In genera arbitrary
aspects of particular associations coexist with partia regular-
ities. For example, consider the problem of learning excep-
tion words in the same system that learns typical spelling to
sound correspondences. This is a domain that can be called
quasi-regular: it contains many items that are partialy arbi-
trary, in that they violate some aspects of the shared struc-
ture of the domain, but not al. As an example, consider the
word PINT. First of dl, both its spelling and its sound con-
sist of familiar elements. Second, in this word, the letters B,
N, and T al have their usua correspondences, whilethe | has
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an exceptional correspondence. While some have argued that
such items should be stored totally separately from the system
of structured spelling-sound correspondences, incorporation of
PINT into astructured system would allow for partia exploita-
tion of thestructure. 1t has now been shown that such itemscan
beincorporatedin such systems, without preventing them from
handling novel items (e.g., VINT) in accordance with the reg-
ular correspondences of al of the letters, to an extent indistin-
guishable from English speaking college students (Plaut, Mc-
Cleland, Seidenberg, & Patterson, in press).

We believe that the domains encompassed by semantic,
episodic, and encyclopedic knowledge are al quasi-regular,
and we suggest that facts and experiences are only partially ar-
bitrary, similar to exception words. Consider for example John
F. Kennedy’s assassination. There were severa arbitrary as-
pects, such as the date and time of the event. But our under-
standing of what happened depends al so on general knowledge
of presidents, motorcades, rifles, spies, etc. Our understand-
ing of these things informs—indeed, pervades—our memory
of Kennedy's assassination. Perhaps even more importantly,
though, our understanding of other similar eventsis ultimately
influenced by what we learn about Kennedy’s assassination. It
is the integration of the contents of ensembles of such experi-
encesinto structured knowledge systems that providesthe sub-
stance of semantic, episodic, and encyclopedic memory.

To consolidate the contents of a partialy arbitrary episode
or event, the neocortica system will need to find a set of con-
nection weights that accommodate both the common and the
idiosyncratic aspects. Those aspects that are shared with other
events and experiences will be the most easily consolidated—
indeed, the system of connection weights may already incor-
porate these aspects when the association is first encountered.
Those that are idiosyncratic will take more time to acquire, as
iswell documented in simulation studies of interleaved learn-
ing in quasi-structured domains (Plaut et al., in press). Decay
of hippocampal traces over time comes to play a crucid role
in this context. If the rate of decay is relatively rapid, com-
pared to the rate of consolidation, much of the idiosyncratic
content of individua episodes and events may not be consol-
idated at al. This race between hippocampal decay and inter-
leaved | earning thus providesthe mechanism that |eadsto what
Squireet al. (1984) describe as the schematic quality of long-
term memory: arbitrary and idiosyncratic material tends to be
lost, while that which is common to many episodes and expe-
riences tendsto remain. However, we should note that thereis
nothing preventing the consolidation of some totally arbitrary
materia encountered in experience only once, if itisreinstated
in the neocortical system frequently enough.



Discovery of Structure in Biologically Realistic Sys-
tems

Let usnow consider the process of discovering structure as
it might occur in the mammalian neocortex. First, some of the
structure present in ensembl es of inputs can be extracted using
very simple learning rules, similar to the covariance rule de-
scribed above. One example of such structureis the pattern of
intercorrel ationsamong the variousinputsto aneuron or group
of neurons. Severa researchers have proposed that the discov-
ery of the relative magnitudes of these correlationsmay play a
centra rolein the development of receptive fields and the or-
ganization of these fieldsinto columns(Linsker, 1986a, 1986b,
1986¢; Miller, Keller, & Stryker, 1989; Miller & Stryker, 1990;
Kohonen, 1984). For example, Linsker (1986a) uses the fol-
lowinglearning rulein hismodel of the development of center-
surround receptivefields:

Aw;; :e(aiL —I)L)(ajL_1 —bL_l)—|—K? (2
In this equation, a;, and a;L~! refer to activations of two
neurons in layers . and . — 1 of a multi-layered, feedfor-
ward network, and &%, 6*~', and « are constants that regu-
late the weight changes. The ruleis similar to the covariance
learning rule already discussed. Weights between units that
are correlated more than a certain amount are increased, and
other weights are decreased. Individual weights are bounded
in Linsker’'s models, so they tend to increase over time to the
upper bound or decrease to the lower bound.

The development of center-surround organization in this
model occurs by assigning positive connection weightsto in-
putsthat are maximally correl ated with other inputsto the same
neuron. The set of inputs that are most correlated with each
other come to have strong positive connections to the receiv-
ing unit, whilepositive connectionsfrom other input unitsdrop
away. The modd depends on slow learning because other-
wise many of the correlations that need to be detected would
be lost in noise. The weights must change slowly enough so
that their overal direction of change is governed by the true
correlations. Linsker considers one case wherethe correlations
are so small relative to the noise that it is necessary to sample
about 8,000 input patternsto determine the correct direction of
weight changes.

Correlations among inputs can be detected with ssimplelo-
cal learning rules, but these rules are not necessarily adequate
to learn al aspects of the structure that may be present in an
ensembl e of events, particularly when part of the structurelies
in relations between inputs and desired outputs, which can be
construed asinputsin another modality or inputsat alater point
in time. Sometimes, the structure is hidden, in the sense that
it isnot present as a direct relationship between actua inputs
and desired outputs, but only as a relationship between inputs
once they have been appropriately re-represented. This situa
tion arises, for example, inthe Rumel hart (1990) semantic net-
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work model discussed above. In generd, the problemis that
the choice of an appropriate representation for one part of an
input depends on the use to which that representation is to be
put by the rest of the system. This information is simply not
availablewithinthedifferent parts of the input considered sep-
arately, and requires some form of bi-directional communica
tion among the different parts of the system.

The major breakthrough in connectionist learning was the
discovery of procedures, more powerful than simple correla-
tional learning rules, that could learn to form these represen-
tations (Rumelhart, Hinton, & Williams, 1986). The purpose
of the procedure is to make available, at each connection in
the network, information about the extent to which the adjust-
ment of that connection will reduce the discrepancy between
the actual output of the network and the desired output—i.e.,
the partia derivative of the error with respect to each connec-
tion weight. Each connection weight is then adjusted by this
amount, and gradually—as we have seen in the semantic net-
work example—the structure underlying the entire ensemble
of patternsin the training set is discovered. Asimportant as
thislearning rule has been computationally, however, therere-
mains a road block to a synthesis of computational and neu-
ral science, sincetheactual procedure used to caculate therel-
evant derivatives seems biologicaly unredistic. Rumelhart’'s
semantic network model exemplifies the situation. Activation
signalspropagatein onedirection, frominput to output, and the
process of determining the appropriate adjustments to the cru-
cia weightsfrom the concept input unitsto the concept repre-
sentati on unitsdepends on a computation that appearsto corre-
spond to abiologicaly implausiblebackward transmission of a
separate error signal across forward-going synapses. Because
of this, the learning algorithmis tolerated in neuroscience cir-
cles as a method for finding optimal connection weights that
perform some task, but it is specifically disavowed as a pos-
sible mechanism for learning in real biologicd systems (eg.,
Zipser & Andersen, 1988). This leaves us, though, without
abiologicaly plausible mechanism for discovering structured
relations between inputs and outputsin multi-layer networks.

One solution to this problem comes from the idea that
learning in multilayer systems might exploit the reciprocity of
ordinary axona projections that appears to hold between re-
gions of the neocortex. It appears to be quite generaly true
that whenever there are connections from region A to region
B there are al so connections returning from region B to region
A (Maunsdll & Van Essen, 1983). Such return connectionscan
allow levels of processing near the input to be affected by re-
sultsof processing further upstream. Infact, it has been shown
in anumber of different cases that the necessary error deriva
tivescan be computed from the activation signascarried by or-
dinary feedback connections (Barto, Sutton, & Brouwer, 1981;
Ackley et a., 1985; Grossberg, 1987; Hinton & McClédland,
1988).

For example, Hinton and McClelland (1988) showed that



hidden units can cal culate terms equiva ent to the error deriva-
tivesused in back propagation by using the difference between
theactivation signal sreturning from output unitsbefore and af -
ter the desired output is provided to the output units. Thisand
related procedures are generaly robust in the face of incom-
pletereciprocal connectivity, and can even operatewhenthere-
turn activationis mediated by interneurons(Galland & Hinton,
1991; see also Hopfield, 1982). Infact, random initial connec-
tions subject only to relatively coarse topographic constraints
of thesort that appear to typify reciprocal connectivity between
brain regions can be used, and the system will naturaly tend
to increase the degree of symmetry (Hinton, 1989). Random
synapti c sprouting coupl ed with pruning of unused connections
could further contribute to the symmetrizing effect.

A second approach is to replace back propagation of er-
ror information with a single, diffusely propagated reinforce-
ment signa of the kind that could easily be distributed widely
throughout the brain by a neuromodulatory system. Mazzoni,
Andersen, and Jordan (1991) have compared an associative re-
inforcement learning algorithm and the back propagation al-
gorithm as procedures for discovering representations that are
useful for the transformation of visual space from retina to
head-centered coordinates and for development of simulated
neurons with response properties resembling those found in
area 7a. Both procedures can be used, and both discover re-
ceptivefields of the same typesthat are found in thebrain. In-
terestingly, for large-scal e networks, thistype of reinforcement
learning appears to require even more gradual learning than
back-propagation (Barto & Jordan, 1987).

It isnot our intention to suggest that there exists any com-
plete understanding of the exact procedures used by the brain
to discover the structure present in ensembles of patterns. Our
argument is only that procedures that compute the relevant in-
formation must exist, and some such procedureshave been pro-
posed that are quite biologically plausible. Whatever the ex-
act procedure turns out to be, it will involve slow, interleaved
learning. The reason issimply that structureis not in fact de-
tectable in individual patterns, but necessarily requires infor-
mation that is only present in ensembles of patterns. Inter-
leaved learning allows connection weight changes to be gov-
erned by this sort of information.

Combining the Hippocampal and the Neocortical
Learning Systems. Consolidation and Retrograde
Amnesia

We have seen how it is possible, using interleaved learn-
ing, to gradually discover the structure present in ensembl es of
events and experiences, and to integrate new knowledge into
the connection weightsin a system without producing interfer-
encewithwhat that system aready knows. The problemisthat
acquiring new informationin thisway isvery sow—andif the
cortical system works like the systems we have discussed, it
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would obviously beinsufficient for meeting the demands of ev-
eryday life, in which information must often be acquired and
retained on the basis of a single exposure. Our argument is
that it is precisely to alow retention of the contents of specific
episodes and events, while at the same time avoiding interfer-
ence with the structured knowledge held in the neocortex, that
the hippocampus and related structures exist. Aswe have a-
ready reviewed, these structures are crucial for the rapid for-
mation of memory traces for the contents of specific episodes
and events.

Once amemory is stored in the hippocampal system, it can
be reactivated and then reinstated in the neocortex. Such re-
instatements will have two important consequences:. First, re-
instatement of the stored event in appropriate contexts would
allow the reinstated pattern to be used for controlling behav-
iora responses (e.g., uttering the name of the person in front
of us, when we have previoudy stored that name in associ-
ation with the face). Second, reinstatement provides the op-
portunity for an incremental adjustment of neocortical connec-
tions, thereby allowing memories initialy dependent on the
hippocampal system to gradually become independent of it.

Experimenta studies of consolidation generally use rela
tively arbitrary pairings of stimuli with other stimuli and/or
responses. For example, the experiment of Zola-Morgan and
Squire (1990) that we will discuss below requires animals to
learn totally arbitrary associations between food pellets and
junk objects. It appears consolidationof such arbitrary material
occurs through the same process of gradual incorporationinto
the neocortical structuresthat is used for learning more struc-
tured material. As previously discussed, consolidation of arbi-
trary materia allows efficient representation, and even experi-
ences that have arbitrary elements generally share some struc-
turewith many other experiencethat gradual consolidationwill
allow the system to exploit.

A key question arises as to the source of reinstatements of
exemplars drawn from the existing knowledge structure, since
their interleaving with new knowledge is crucia for the pre-
vention of catastrophic interference. There are severa (non-
exclusive) possibilities, including direct reinstatement fromthe
external environment and re-activation in the course of cogni-
tive activity or reminiscence. In addition, spontaneous reacti-
vationin theabsence of externa input may bepossible. Asdis-
cussed in an earlier section, multiple single-neuron recording
in hippocampus suggests such spontaneous reactivation dur-
ing slow wave sleep (Wilson & McNaughton, 1994b), and a
similar process of reinstatement could apply to patterns aris-
ing from the structured knowledge in the neocortical system.
Possibly, eventsreactivated in hippocampusduring slow-wave
deep primerel ated neocortical patterns, so that theseinturnbe-
come available for activation during REM dleep. This could
permit both new and old information to be played back in
closely interleaved fashion.



Modeling Temporally Graded Retrograde Amnesia

To illustrate our conception of the consolidation process,
we undertake in this section to provide simulations of two ex-
periments in the growing literature on retrograde amnesia. In
both studies, the manipulation is a bilateral lesion to some or
all of the hippocampal system at some time after exposure to
some learning experience.

In the simulations that follow, we do not actualy attempt
to simulate theformation of memoriesin the hippocampa sys-
tem in a network model. Such a simulation would have the
virtue of forcing us to demonstrate the mechanistic feasibility
of our account, but to be at all faithful to the complexity of the
hippocampal system would requirealevel of detail that would
tend to take us away from our current focus on the systems
level. Thereforewetreat the hippocampusasa’ black box’ that
isassumed to carry out the functionswe previously ascribed to
it, and we concentrate on showing how an account may be pro-
vided of much of theexisting data, intermsof arelatively small
number of assumptionsabout the storage and decay of memory
tracesin the hippocampal system and their reinstatement inthe
neocortex.

The key assumptions underlying the present simulations
are the following. First, we assume that hippocampa learn-
ing is a matter of degree that depends on the salience or im-
portance of the original episode or event. Second, we assume
that, as time passes, hippocampa memory traces degrade, be-
coming effectively weaker with the passage of time. Thiscould
occur as aresult of passive decay of therelevant enhanced con-
nectionsand/or as aresult of interference caused by new learn-
ing. Third, we assume that the probability of hippocampally-
mediated reinstatement in the neocortex decreases with the
strength of the hippocampal trace. Finally, we assume that
probability of reinstatement in a given amount of time may
be different in task-relevant and task-irrelevant contexts. On
a moment-by-moment basis, reinstatement is assumed to be
more likely in task-relevant than in task-irredlevant contexts,
since probe patterns generated in the former will be more sim-
ilar to the pattern stored in memory than probe patterns gener-
ated inthe latter, at least on the average.

A complicating factor for modeling consolidation is the
fact that reinstatement of a pattern in the hippocampal sys
tem might strengthen the hippocampal representation as well
as the representation in the neocortex. This could grestly re-
tard the decay of the hippocampal trace. In this context, how-
ever, it is of interest to note that there is evidence that hip-
pocampal synaptic plasticity issuppressed during some phases
of dleep (Leonard, McNaughton, & Barnes, 1987). This sug-
gests the possibility that at least some spontaneous reinstate-
ments in task-irrelevant contexts may not be self-reinforcing.
If task-relevant reinstatements were self-reinforcing but spon-
taneous reinstatements were not, this would provide a mech-
anism whereby memories that remain relevant would tend to
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persist longer in the hippocampa system than memories of
only transitory relevance. In any case, the remainder of this
section ignoresthe effects of salf-reinforcement for smplicity.
Such effects, if they exist, wouldtend to slow the apparent rate
of decay from the hippocampal system.

The modelingwork described bel ow makes use of thefore-
going idess in the following way. We use the assumptions
just giventojustify specific training regimes for simple neural -
network analogs of the neocortical systems that we assume
underlie performance of the tasks animals are asked to per-
form in particular experiments, and show how consolidation
arises under these assumptions. The hippocampus is not im-
plemented, but isinstead treated as a source of training datafor
themodel neocortical networks. Thenetworksused aresimple,
generic three-layer networks of the kind used by McCloskey
and Cohen (1989). Learning in such networks occurs through
repeated presentations of patterns, interleaved with other pat-
terns. In our simulations, hippocampus-generated presenta
tions to the cortical network due to experimenter-determined
learning experiences are assumed to be interleaved with ongo-
ing exposure to the contents of other experiences and events.
Aspreviously noted thisongoing exposure to such background
patterns probably depends on reinstatements from memory as
well as direct input from the environment, but thereis no data
on the extent of hippocampal involvement in this process. For
simplicity therefore the simulations below treat the rate of on-
going exposureto such patterns asindependent of the status of
the hippocampal system.

Kimand Fanselow (1992). Kimand Fanse ow (1992) stud-
ied therole of the hippocampa system in memory consolida-
tioninrats. Each animal was placed in anovel environment,
where it was exposed to 15 pairings of a tone with foot-shock,
and then returned to its home cage. After 1, 7, 14, or 28 days
they received either bilateral hippocampal lesions or sham le-
sions (as another control one further group received neocorti-
ca lesions a 1 day post learning). Seven days after surgery,
the animal s were reintroduced to the environment in which the
tone-shock pairshad been presented, and their apparent fear of
the situation was monitored (percent of time spent in typical
fear postures), in the absence of any presentation of either tone
or shock. The data are shown in Figure 12a. There were no
reliable effects of delay in the sham lesioned group, athough
therewasatrend toward adecrease. The hippocampal animals,
however, showed hardly any fear if they received a hippocam-
pal lesion oneday after thetone-shock experience. Therewasa
clear increasein thefear response as afunction of time between
experience and lesion, demonstrating a consolidation process
that apparently extended over the full 28-day period.

As a simulation analog of consolidation in this situation,
we used a three-layer network consisting of 16 input, 16
hidden, and 16 output units, and trained it on a set of 20
random stimulus-response associations (i.e., 20 input-output
pairs, each consisting of a random pattern of 1'sand 0's). We



took these associations to represent other experiences of the
anima. We assume that the neocortical system continues to
be exposed to these associations throughout. For simplicity
we treat the rate of recurrence of each pattern as constant over
time, with each pattern occurring exactly once per simulated
day of the experiment. We then added to this training cor-
pusone additional training pair, ana ogousto the environment-
tone-shock association; thereforewe call thisthe ETS pair. Af-
ter the experimental exposure to this association it would be
available only via the hippocampus. After introduction of the
new pair, training continued as before, anal ogous to the expo-
sure of the cortica system to the new pattern interleaved with
continued presentation of other memory traces. Althoughitis
one of our assumptions that hippocampal traces generaly de-
cay withtime, weignorethisdecay for simplicity inthisinitial
simulation, sinceit appearsfrom thelack of asignificant effect
of delay inthe control animal sthat the hippocampal traceisde-
caying very slowly if at al inthiscase. Thus the hippocampal
trace of the new experience remains at full strength for the du-
ration of the experiment (in control animals) or until the hip-
pocampusis removed (for hippocampa groups).

In thisinitial simulation our interest focuses on the perfor-
mance of the lesioned animal s, since thisillustratesthe consol -
idation process. We monitored the response of the network to
each presentation of the new pair, and the performance of the
network is graphed in Figure 12b. Accuracy of the network’s
response is measured as the reduction in the average squared
deviation from the correct ETS output pattern, as a fraction of
theinitia deviation obtained prior to any exposure to this pat-
tern. Thefigureillustratesthe gradual incorporation of the new
association into the simulation analog of the neocortica sys-
tem. We can compare the network’s progress in learning the
new associ ation with the performance of Kim and Fanselow’s
rats who received hippocampal lesions at different points af-
ter exposure to the ETS combination. For this comparison, we
have transformed the data from experimenta animals into a
comparable measure of proportionof maximal response, which
we assume is reflected in the mean time spent freezing aver-
aged acrossthe control conditions. Thelearningrate parameter
in the simulation was adjusted to produce an approximatefit to
the data with one epoch of training corresponding to one day
between exposure and hippocampectomy. The simulation fol-
lows an approximately exponential approach to maximal per-
formance that falls within the error bars of the experimenta
data

The details of the frequency and timing of reinstatement
are of course completely unknown. The simulation indicates
that it is possible to account for Kim and Fanselow’s consoli-
dation data by assuming a constant rate of reinstatement over
time, and no actua hippocampa decay in this case. Various
other assumptions are also consistent with the data, however.
For example, there isa dight indication of some reduction in
freezing with delay in the control animals, suggesting perhaps
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that the hippocampal trace might have weakened to some ex-
tent with time. If so, we would expect a gradua reduction in
the frequency of reinstatement, and thisin turn would lead to
a consolidation curve with a somewhat sharper initial riserel-
ative to the slope of the curve over the later phases of the con-
solidation period (we explorethismatter morefully inasubse-
guent section). Such apatternisconsistent with, though hardly
demanded by, the data, given the size of the error bars around
the points.

Zola-Morgan and Squire (1990). Zola-Morgan and Squire
(1990) obtained evidence of consolidation over a period of
about 10 weeks in monkeys. They trained monkeys on a set
of 100 binary discriminations. Each discriminationinvolved a
pair of junk objects, one of which was consistently reinforced
and the other of which was not. Animals were trained on five
successive sets of twenty of these discriminations. For each set
of 20, each animal was trained ontwo of the discriminationson
each of ten successive days. Thetraining sessionsin the first
set occurred an average of 15 weeks prior to surgery; thosein
the other sets occurred an average of 11, 7, 3, or 1 week before
surgery. At the end of each set of 20 discriminations, the an-
imal received one more exposure to each discrimination as a
final test. At theend of training, 11 animal s had the hippocam-
pusaswell asentorhinal and parahippocampal cortex removed
bilaterally, and seven had sham lesions. Two weeks later, al
animals were tested on all 100 discriminations each presented
once over two 50-tria sessions.

The experiment produced a fairly standard if somewhat
noisy forgetting curve for the normal controls, with accuracy
dropping from about 80% for the discriminations learned an
average of 1 and 3 weeks prior to surgery to about 70% for
discriminationslearned 11-15 weeks prior to surgery (see Fig-
ure 13). The animals with hippocampal lesions, on the other
hand, showed performance in the low sixties for the discrim-
inations learned an average of one week prior to surgery, but
thisincreased to a peak of about 70% at 11 weeks, indicating
that there was some consolidation over about a 10 week period
between initial learning and hippocampal removal. Given the
lack of a difference between the lesioned animals and controls
at or beyond 11 weeks, it would appear that the hippocampal
contribution becomes negligibleat about that point.

We simulated this experiment using a three-layer network
consisting of 50 input units, 15 hidden units, and a single out-
put unit. The network was trained on 100 input-output pairs.
Each input pattern consisted of two random 25-element pat-
terns trested as corresponding to the two junk objects in each
discrimination in the Zola-Morgan and Squire (1990) experi-
ment. The random patterns were constructed simply by set-
ting each of the 25 elements to 1 with probability 0.2 or to 0
with probability 0.8. Thismakes the patterns somewhat sparse
and therefore somewhat distinctive. The two random patterns
were concatenated to form a 50-element input pattern. Either
thefirst or the second object in the pair was designated correct;
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Figure 12: Consolidationin the experiment of Kim and Fanselow (1992). a) Experimental datafrom experimenta and control
groups. b) Simulation of consolidation in the group with hippocampal lesions. This panel shows the experimental data with
error bars, together with a curve describing the buildup of performance over the consolidation in the simulation. For this pandl,
the measure used for the experimental datais the amount of time spent freezing for each experimenta group, divided by the
average amount of time spent freezing acrossthe control groupsat different delays. The measure used for the simulation divides
the reduction in output mean squared error at each test point by theinitial amount of error to the test input prior to any learning
on thispattern. Note: Datain (a) are from Figure 2 of “Modality-specific retrograde amnesia of fear”, by J. J. Kimand M. S.
Fanselow, 1992, Science, 256, p. 676. Copyright 1992 by the American Associ ation for the Advancement of Science. Permission
pending.
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Figure 13: Consolidation in the experiment of Zola-Morgan and Squire (1990). (a) Experimentd data from animals with hip-
pocampal lesions and control animals. (b) Results of the simulation of this experiment described in the text. Note: Datain (a)
are from Figure 2 of “The primate hippocampal formation: Evidence for atime-limited role in memory storage’, by S. Zola
Morgan and L. R. Squire, 1990, Science, 250, p. 289. Copyright 1990 by the American Association for the Advancement of
Science. Permission pending.



we trained the net to turn the output unit on if the first object
is correct and off if the second object is correct (assignment
of which object was correct was random with equal probabil-
ity for the two objects). To test the network we simply present
each input and observe the activation of the output unit. If this
is greater than 0.5 the net is taken to have chosen thefirst ob-
ject; otherwiseit is taken to have chosen the second.

The training regime attempted to capture a set of training
events consistent both with our theory and with the design of
the experiment. Asin the case of the Kim and Fanselow sim-
ulation, we presented the network with an epoch of training
for each day of the experiment. Each day’s training contained
three types of trials; Background trids, representing ongoing
exposureto aconstant environment; direct-experiencetraining
trials, corresponding to the actual experiences of Zola-Morgan
and Squire’ sanimasinthetraining trial sthemselves; and rein-
stated experience trias, corresponding to reinstatement of ex-
periencesfromthe experiment viathe hippocampus. The back-
ground trials began 100 simulated “days’ before the experi-
ment proper and continued for the 109 days of the experiment.
There were atotal of 250 background items, and each of these
was sampled with a probability of 0.2 per day, so that on the
average there were 50 such background items per day. The di-
rect experience trialsexactly mirrored thetraining regime used
by Zola-Morgan and Squire, so that on thefirst day there were
14 presentations of thefirst discrimination followed by 14 pre-
sentations of the second, and so on. The reinstated-experience
trials were determined as follows. For each direct-experience,
a hippocampal trace was assumed to be formed. These traces
were assumed to start at a nomina strength of 1 and decay
at afixed rate D per day. On each day prior to hippocampal
surgery stored traces were reinstated with a probability equal
tothestrength of thetracetimesareinstatement probability pa-
rameter ». After surgery, no further consolidation based on hip-
pocampal traces occurred. However, the exposure to the back-
ground environment continued as before.

To model the performance of the control s, we assumed that
in their case consolidation continued through the sham lesion
and on for the next 14 days until testing occurred. In addi-
tion, we assumed that performance could be based on retrieval
from the hippocampus. If hippocampd retrieva faled, we as-
sumed performance would be based on the output of the neo-
cortical network. For retrieval from the hippocampus, each of
the stored traces of the same discrimination was tested for re-
trieval, and if any one of these was successful, retrieval was
considered successful. For each trace, the probability of re-
trieval was equal tothestrength of thetracegiventhetimesince
initial study, times a retrieval probability parameter k. Note
that this R reflects the probability of retrieving a trace during
atest tria, given as aretrieval cue the presentation of the two
relevant junk objects. It isquitedifferent from », the probabil -
ity of reinstatement of a trace over the course of an entire 24
hour period, but in the absence of any particular cue. The only
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other parameters of the simulation were the hippocampal de-
cay rate parameter D, and the cortical learning rate parameter
¢. Dueto therandomnessinherent in the patternsand thetrain-
ing experience, thereis considerable variability in the simula
tion. To compensate for thiseach simulation run involved 200
simul ated subjects per condition. Severa runswere performed
with different values of the parameters.

The results of the best fitting simulation run are shown in
Figure13. Giventhevariabilityinthe Zola-Morgan and Squire
data, itishard totell whether the deviations between the model
and the data should be taken at all seriously. From the point
of view of the simulation, the data points for both groups at
11 weeks seem particularly anomalous; for both the normal
and thelesioned groupsthey represent thelargest discrepancies
fromthedata. Sincethe simulated datapointsall fall withinor
near one standard error of the mean of each datapoint, thereis
no statistical basis for thinking that these anomalies are mean-
ingful. The values of the free parameters of the simulation are
instructive: though the data are noisy, sizable changes to these
parameters do result in much poorer fits. First, the value of the
learning rate parameter ¢ was 0.03. With thisvalue, learning
occursvery gradually indeed. The decay rate D for hippocam-
pal traces was 0.025 per day. At thisrate, hippocampal trace
strength is down to 1/6 of its origina value in 10 weeks. The
parameter r, the probability of off-line reinstatement from the
hippocampus, is0.1 per trainingtria per day. Giventhisvalue,
each discrimination (represented by 15 separate trainingtrials)
will be reinstated about 1.5 times aday when it is fresh, drop-
pingto an average of 0.15 times per day at 10 weeks. Including
theinitial cortical exposures from the direct-experience train-
ing trids, this gave a number of cortical trainingtrialsranging
from 25 for the items presented an average of oneweek before
surgery, to 63, for items presented an average of 15 weeks be-
foresurgery. Thevaueof R, the probability of trace reinstate-
ment in atest trial, was 0.07; thisyields a probability of 0.6 of
retrieving at least one trace of a particular discrimination just
at the end of training. By the time the test occurs two weeks
later, the probability of retrieving at least onetrace of anitemin
the set studied just before (sham) surgery is0.47. Thisdropsto
0.19for items studied 7 weeks before surgery (9 weeks before
test) and to 0.05 for theitems studied 15 weeks before surgery.

The simulation may help us understand why the evidence
for consolidation isin fact somewhat weak in this experiment.
The simulation shows a consolidation effect—that is, a dight
increase in performance as a function of lesion delay among
the lesioned groups—but it is relatively small, for two rea-
sons. First, aconsiderableamount of neocortical learning actu-
ally occursinthese simulations during the period all ocated for
training of each batch of associations. Second, therate of decay
of traces from the hippocampus appears to be high enough to
forcethe bulk of the consolidationto occur withinthefirst few
weeks. Given the range of training-to-lesion intervals used,
and the apparent rate of hippocampal decay, the experiment



provides arelatively small window on the process of consol-
idation.

A Smplified Quantitative Formulation of the Con-
solidation Process

For the purposes of fecilitating further thinking and re-
search about thetime course of consolidation, we have found it
useful to adopt avery abstract and simplified two-compartment
model of the memory storage and consolidation process. This
formulation attempts to capture the quantitative relationships
seen inthe simulationsjust described in terms of afew simple
equations. * The formulation is depicted graphicaly in Fig-
urel4.

Our formulation assumes first of al that each experienced
event is stored in the hippocampus with some initial strength
Sp(0). Thisinitid strength ranges between 0 and 1, and the
strength at timet follows an exponentia decay fromthisinitial
vaue’®

AS)(t) = — Dy Sh(t) 3)

Theinitia strength S5 (0) and the decay rate Dy, may depend
on the task and stimulus conditions.

When the hippocampusis off-line, reinstatementsthat sub-
serve consolidation will occur with some probability p(t) per
unit time. The probability of reinstatement depends on the
residual strength of the trace times the reinstatement rate pa-
rameter rp,:

p(t) = raSh(t) 4

We assume that neocortical trace strength isincremented with
each neocortical reinstatement of the trace. The amount of
the increment is proportional to the learning rate parameter ¢
times the difference between the current cortical trace strength
and the maximum strength of 1.0. Neocortical trace strength
also decays at somerate D... (As withthe hippocampa decay,
this may be passive or may result from interference produced
through the storage of other traces). Taking the probability of
reinstatement into account, the change in the cortical strength
at each time step is given by

AS(t) = CSy(t)(1 = S.(1)) — D.S.(t) (5)

*1n part of aPh. D. dissertation undertaken at about the same time as our
work, Lynn (1994) al so devel oped asimple conceptual model of the consolida-
tion processvery similar to the one presented here. Hefit hismodel to findings
from six consolidation studies, including three of the four studies considered
here, and found parameter estimates broadly consistent with ours.

5 A dightly more complex formulation would allow strengthsto vary over
the positive real numberswithout upper bound. In this formulation some sort
of non-linear function is needed to determine the probability of reinstatement
of atrace given its strength. For the present the data do not provide a com-
pelling casefor introducing this complication so we haveleft it out for simplic-
ity. However, it may beworth noting that this modification has the effect of re-
ducingat least initially the effectiverate of decay of hippocampal traces; theef-
fectivestrength, asmeasuredin terms of therate of reinstatement, dropsslowly
at first and then drops more rapidly later, once the underlying trace strength
dropsinto the linear range of the non-linear function.
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Figure 14: A simple two-compartment model that character-
izes memory storage and decay in the hippocampal system, to-
gether with consolidation and subsequent decay in the neocor-
tica system. Arrows are labeled with the parameters of the
simplemodd: S5, (0) and S, (0) refer to the strength of the hip-
pocampa and neocortica traces due to the initial exposure to
the event, Dy, and D, refer to the rate of decay from the hip-
pocampal system and the neocortical system respectively, and
C refersto therate of consolidation.



here C' is the consolidation rate, equa to the product of ¢ and
Th.

When the system is probed in some particul ar task context,
the probability that the hippocampal trace will be reinstated in
aform sufficient to drive correct, task-appropriate behavior is
assumed to be given by

bp(t) = RpSa(t) (6)
In this equation, R, reflects the adequacy of the task/context
situation as a cue to the hippocampa memory trace. The prob-
ability that the consolidated cortical trace will be sufficient for
correct task appropriate behavior is assumed to be

be(t) = RoSe(t) )
where R, reflects the adequacy of the task/context situation as
aretrievd cue for the neocortica trace.

Correct behavior can be based on the hippocampal system,
if it produces an output, or on the neocortical representation if
the hippocampal system is either unavailable or does not pro-
duce aresponsein thiscase. Giventhis, the probability b, (t)
of correct behavior based on either the hippocampal or the neo-
cortical system will be

bre(t) = ba(1) + (1 = ba(D))be(t) ®

Correct behavioral responses can also arise dueto pre-existing
tendencies, or to random choice when faced with afixed set of
aternatives. One can introduce such factors into the formu-
lation in a number of ways. The simplest way is to assume
that the correct response is generated by the combined hip-
pocampal /neocortical memory with probability b;,., and that on
theremaining trialsthe animal relies on preexisting tendencies
or random choice, whose probability of yielding a correct re-
sponse will be denoted by 6,,. The total probability of correct
responding then becomes:

bi(t) = bne(t) + (1 = brc(1))by (9)

Althoughthisformulationis quiteminimalisticin itsstructure,
there are severd free parameters. However, the parameter R.
will be difficult to separate from the effects of the consolida
tion rate parameter €', and so can be set to 1 without much loss
of potential expressive adequacy of theformulation. Similarly,
Ry, isconfounded with S5 (0) and can dlso beset to 1. Inwell-
designed experiments there will be separate assessment of b,
or if thetask isan n-alternative forced choice and the alterna-
tives are appropriately balanced b, will simply be 1/n. Inthis
case the free parameters reduce to those given in Table 1.

These equations have been fit to the data from Kim and
Fanselow (1992), Zola-Morgan and Squire (1990), and thetwo
studiesthat will be considered in more detail below. Thesefits
are shown along with the datafromall four studiesin Figure 1.
The parameters producing the fits are shown in Table 1. Fits

Complementary Learning Systems 32

as good as those obtai ned with the previously-described sim-
ulationswere obtained for the Kim and Fanselow data and the
Zola-Morgan and Squiredata. The model & so providesamod-
erately good fit to the datafrom the two other studies. We now
consider these two studiesin turn.

Winocur (1990). Winocur (1990) exposed rats to a con-
specific demonstrator who had eaten a sample food flavored
either with cinnamon or chocolate. After adday of O, 2, 5
or 10 days, some rats received hippocampal lesions and some
received sham (control) surgery. After 10 more days for re-
covery, each rat was given access to both chocolate and cin-
namon flavored food, and the amount of each food consumed
was measured. Control rats showed a preference for the sam-
plefood eaten by the demonstrator; thispreference waned over
the course of about 20 days. This contrasts with the finding of
Kim and Fansel ow, in which there was not a significant decre-
ment in the behavioral measure with time in their control ani-
mals. Turningto thehippocampal animals, those who were op-
erated immediately after exposure to the demonstrator showed
virtually no preference for the sample food, indicating that the
initiadl memory trace was dependent on the hippocampus and
that littleor no consolidation occurred during theinitia expo-
sure event. Performance was better in the groups operated 2
and 5 days post-experience, with the 5-day hippocampal s per-
forming amost aswell at test astheir controls; thetwo ten-day
groups were virtualy identical and both were worse than the
5-day groups. These data suggest that in this experiment, the
hippocampal trace decayed to a fairly smal residud in about
five days after initia exposureto the demonstrator, with a cor-
responding foreshortening of the duration of the consolidation
interval. The data further suggest that there was considerably
more decay of the neocortica tracesin the Kim and Fansel ow
study as well.

Squire and Cohen (1979). Squire and Cohen (1979) tested
retrograde amnesiain human subjects using atest based on re-
cal for facts about television showsthat aired for asingle sea-
son. Their subjects were depressed humans tested either af-
ter multiple treatments of bilateral electroconvulsive therapy
(ECT) or before the beginning of treatment (Control). ECT
produces an amnesia in humans similar to that seen with hip-
pocampa lesions. For present purposes, we treat ECT as
equivalent to reversible removal or inactivation of the hip-
pocampus.

Of al the human studies available, we chose to concen-
trate on the data from this study because the TV test presents
a picture of consolidation that seems freer of contamination
from intervening exposure to the material than tests based on
famous faces or public events (as in Squire, Haist, & Shi-
mamura, 19893, and other studies); Squire and Slater (1975)
went to great lengthsto show that acquisition of knowledge of
the TV shows depended on exposure to the shows during the
year that they aired, and not on later exposure in subsequent
years. It should be pointed out that the material covered by
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Table 1. Parameter Values used in Fitting the Simplified Two-Memory Model to Data from Four Consolidation Experiments.

Experiment Parameter

Dh C Dc Sh (0) SC (0)
Winocur (1990) 0.250 0.400 0.075 0.900 0.100
Kim & Fanselow (1992) 0.050 0.040 0.011 0.800 0.030
ZolaMorgan & Squire(1990) 0.035 0.020 0.003 1.000 0.100
Squire & Cohen (1979) 0.001 0.001 0.001 0.500 0.000

Note: Dy, represents rate of hippocampal decay; C represents rate of consolidation in off-
linecontexts; D, represents rate of decay from neocortex; .Sy, (0) representsinitial strength
of the hippocampal trace; S.(0) representsinitia strength of the neocortical trace.

thistest includes material to which the subject may have been
exposed several times—if in fact the subject actually watched
severa episodes of each show or had secondary exposure to
materia about the show while it was on the air. The materia
tested included such things as names of characters, their roles
in the show, etc. Thus this study addresses the consolidation
of shared structure of the show rather than idiosyncratic details
about individua scenes or episodes. Nevertheless the mate-
ria isfairly idiosyncratic, inthe sensethat it appliestoasingle
show and could not be derived from knowledge of other shows.

The data from the Squire and Cohen study may be mis-
leading in one respect. Typical remote memory curves show a
relatively rapid drop-off in the earlier part of the retention pe-
riod with aleveling off for more remote periods (Wickelgren,
1972). The simulation, likewise, produces curves that tend to
show areatively rapid drop-off in the earlier part of thereten-
tioncurvefor normals, with aleveling off for moreremotetime
periods, in accord with the typical pattern. The Squire and Co-
hen control data, however, show only a slight drop from the
most recent to the preceding time period, with a steeper drop
for later periods. Squire, Slater, and Chace (1975) report data
fromastudy with asimilar population, based on avariant of the
same test, and their data actualy shows slightly worse perfor-
mance by depressed ECT patientsfor the most recent time pe-
riod rel ativeto the preceding period. Taken together thestudies
suggest that material from the recent past might have been less
well learned rel ativeto earlier time periodsin thispopul ation of
subjects. Aspreviously noted, onepossiblesourceof thiscould
bethe subjects severe depression during the period shortly be-
fore treatment. Depression may have affected exposure to the
shows; it may have made subjects |ess attentive to new input
than they would otherwise have been; or it may have impaired
theinitial formation of memory traces for the input even if at-

tended. Such factors may be responsible for the unusual shape
of the control forgetting curve—and also for some part of the
apparent deficit seen inmemory for the most recent time period
right after ECT.

The data do, however, produce a pattern of differences be-
tween the control and ECT conditions that is comparable to
those seen in the simulations. What is striking hereis the fact
that the pattern extends over very long periods of time rela
tive to those obtained in the rat and monkey studies. Stud-
ies using memory for public events (Squire et a., 1989a) and
for autobiographical information (MacKinnon & Squire, 1989)
tend to corroborate thisfinding: in both cases, differences be-
tween hippocampal patients and controls are present for mate-
rial morethan 10 years old. This suggests hippocampal partic-
ipation for over 10 years, even for material with no apparent
relevance over all but thefirst year of this period.

Sources of Variation in Hippocampal Decay and
Neocortical Learning Rate

Overdl, themost striking aspect of the retrograde amnesia
data presented in Figure 1 is the huge range of differencesin
the time-scale of the phenomenon. These differences are aso
reflected in the parameters of thefitsto these datafrom thesim-
ple two-store modd, as displayed in Table 1. Before we con-
sider thisissue in detail, we need to distinguish between two
factors that influence the length of the consolidation interval
and the outcome of the consolidation process. Thefirst isthe
rate of decay from the hippocampal system, and the second is
the rate of incorporation of hippocampal traces into the neo-
cortica system. These two variables regulate the duration of
the consolidationinterval in contrastingways. If therate of de-
cay from the hippocampusisrelatively high, the consolidation
period will be short because information will be lost from the



hippocampus after a short period of time. If the rate of incor-
porationisrelatively high, the consolidation period will appear
short sincethe cortex will learn relatively quickly. Inthislatter
circumstance we may see animalsreaching ceiling levels after
arelatively short consolidation interval. For the consolidation
period to last along time, both the rate of decay from the hip-
pocampus and therate of consolidation must be small. In gen-
eral, aperusa of the parameters of the fits to the data suggests
that the rate of hippocampal decay and the rate of neocortical
consolidation tend to vary together in these studies. In fact, it
appearsthat therate of decay fromthe cortex a so covarieswith
these other variables.

What might be the source of the huge differences in the
time-scale of consolidation? A comparison of the Winocur
(1990) and Kim and Fansel ow (1992) data suggests that there
are variations within species due to task differences. Some of
this variation may be due to differences in the importance or
salience of the information stored for the animalsin these two
different experiments. Winocur’sanimals experienced passive
exposure to a conspecific who had eaten aflavored food, while
Kimand Fansel ow’sreceived 15 pairingsof asalient tonewith
painful shock. Such a salient experience may result in stronger
initial hippocampal traces that show grester resistance to de-
cay. Inthisconnection it is interesting to note that the decay
of plastic changes in the hippocampus does vary as a function
of the magnitude of the inducing stimulation. Barnes (1979)
has found that LTP produced by rel atively weak inducing stim-
uli decays over a period of days while LTP produced by more
meassive or repeated stimulation can last for weeks, and Abra
ham and Otani (1991) review a number of subsequent studies
producing decay rates faling into two groups, one, produced
with fewer or weaker inducing stimuli, showing a decay rate
of about 0.28 per day and another other, produced with more or
larger inducing stimuli, showing a rate of about 0.05 per day.
Theseratesclosely parallel the hippocampal decay rates shown
in Table 1 for our fitsto Winocur (1990) and Kim and Fansel ow
(1992) respectively. Interestingly, Sutherland (personal com-
munication) has repeated the Kim and Fanselow (1992) study
varying the number and intensity of foot shocks and finds that
the persistence of the memory for spatial context is reduced
with fewer pairings. In natural situations differences in extent
of initial learning and/or magnitude of decay might beinduced
by neuromodul atory systems activated in strongly motivated or
emotionally charged situations (Gold & McGaugh, 1984).

Our view of the purpose of neocortical learning—to foster
thegradual discovery of shared structure—motivatestwo other
sorts of suggestions about the possible sources of the differ-
ences observed between the different experiments. One possi-
bility isthat there may be species differencesin therate of neo-
cortical learning, arising from different evol utionary pressures.
In animals with relatively short life-spans, a very dow rate of
neocortical learning would makelittlesense, sincetheanimal’s
lifecould be over before much adaptation hastaken place. Fur-
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thermore, if the structure such animals needed to extract from
the environment through experience was relatively straightfor-
ward, it might be possiblefor the neocortical systems of these
animalstolearn it relatively quickly. On the other hand, in an-
imals with much longer life spans—especially in humans who
must master complex bodies of knowledgethat vary from cul-
tureto culture—it may bethat incorporation of new knowledge
into the neocortical system must occur at a much slower rate.
The extreme slowness of |earning even often-repeated aspects
of post-lesion experiencein profound human amnesics (Milner
et al., 1968) may be due, at least in part, to the necessity of ex-
tremely small learning rates in humans. These considerations
lead to the possibly counter-intuitiveprediction that hippocam-
pally damaged rats might show faster acquisition than compa:
rably damaged primates on tasks dependent on learning in the
neocortica system.

A second possibility isthat there are age differencesin the
rate of neocortical learning. Changesin the rate of neocortical
learning with age could be one of the reasons why consolida-
tion appears sower inthe human studiesthanintherat or mon-
key research. All of the systematic human data that we know
of comes from adults; the monkeys and rats used in other stud-
ies would have been considerably younger in raw chronolog-
ical age. Thereisrelatively little evidence directly related to
this age hypothesis, though Squire (1992) makes one sugges-
tive observation: He notes that the retrograde amnesia in pa-
tient HM may have been somewhat shorter—only about three
years— compared to the retrograde amnesia of about 10 years
seen in the older group of patients tested by MacKinnon and
Squire(1989). Thissort of difference would be expected if the
rate of consolidation were to decrease gradually with increas-
ing age.

Why might the rate of neocortica learning change with
age? One functiona reason for this arises from a considera-
tion of the optimal procedure for estimating popul ation statis-
ticsin online statistical estimation procedures. In genera, in
these procedures, it isbest to make relatively large adjustments
in response to initia observations, and then gradualy reduce
the size of the adjustments as the sampl e size increases (White,
1989). For example, the optima on-line procedure for esti-
mating a simple statistic, such as the mean of a number of ob-
servations, is to adjust the estimate after each observation by
an amount equal to one over the total number of observations
taken, including the last:

(10)
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In this case ¢,,, the estimate of the population mean after the
nth observation o,,, is dways exactly equal to the mean of the
n sample observations. This procedure yields the optimal, un-
biased estimate of the popul ation mean based on theentire pre-
ceding sampleat every step. In morecomplex networksitisnot
necessarily the case the one should begin immediately to re-
ducethelearning rate, but convergence to the populationvalue



of adtatistic that is being estimated through a stochastic learn-
ing procedure generally requires the use of agradually dimin-
ishing learning rate (Darken & Moody, 1991).

Given thisobservation, it may make sense to begin lifeus-
ing relatively large neocortical learning rates, to begin extract-
ing structure from experience rel atively quickly, then to reduce
the learning rate gradualy as experience accumulates. This
statistical argument may be apart of the functiona explanation
for variouscritical period phenomenain development. If thisis
correct, wewould expect to see much more rapid acquisition of
the shared structure of events and experiences in younger hu-
man amnesics and animals with hippocampa lesions, relative
to older amnesic groups.

One consideration relevant to the pointsraised in this sec-
tion isthe fact that that the effective learning rate of a system
can vary as afunction of factors other than just the learning-
rate parameter of the synaptic modification rule. In particular,
networks that have developed strong connection weights after
aperiod of learning can exhibit alack of sensitivity to new in-
formation (Munro, 1986; Miller et al., 1989). This suggests
that reduction in the effective learning rate with age could be
abyproduct of previouslearning.

The preceding discussion relates to the consolidation rate
parameter in our smplemodel (actualy the product of the neo-
cortical learning rate and the reinstatement rate), but should
not be construed as providing abasisfor predicting longer hip-
pocampal persistence of memories with age. In fact, it may
be that initia storage of information in the hippocampus gets
poorer with age and/or that the decay rate increases. Barnes
and McNaughton (1985) have found evidence that older rats
exhibit more rapid decay of hippocampa LTP and also ex-
hibit faster forgetting of spatia information. Perhaps the ef-
fectiverate of decay of information from the hippocampal sys-
tem increases with age even as the rate of neocortical learning
decreases. If s0, the separate changes would compound each
other’seffects, thereby doubly diminishingthe plagticity of the
aging neocortical system. Obviously, the matters raised here
deserve considerably more exploration. It would be useful to
know much more about how consolidation changes as a func-
tion of species, age, task variables, and prior learning.

Infantile amnesia. The fact that the neocortical learning
rate may berelatively highearly inlife, before settlingdown to
relatively lower rates as more and more structure is extracted,
may provideat |east apartial account of the phenomenon of in-
fantileamnesia: the fact that humans have little or no explicit
memory from the earliest periods of their lives. A recent re-
view by Howeand Courage (1993) concludesthat infantileam-
nesiacannot be explained away asasimpleresult of immaturity
of the nervous system. We suggest that the phenomenon may
be due instead to rapid initial change in the structured repre-
sentations used in the neocortical system. Hippocampa traces
based onimmature representationa systemswould be difficult
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to access, since the cortical representation of an appropriate
probe would have changed. They would aso be more diffi-
cult to interpret if reinstated, since the reinstated representa
tionswould no longer make sense in terms of the more mature
system of neocortica representations.

Fast learning outside the hippocampal system. In animal
studies, even complete lesions to the hippocampal system can
leave certain formsof learning intact. As Rudy and Sutherland
(1994) point out, spared learning in such cases appears to de-
pend on the formation of associations of asimple, discrete cue
with an unconditiona stimulusor the availability of reinforce-
ment. Simple correl ationsbetween discrete cues and outcomes
areakind of low-order structurethat isshared across situations,
and therefore it makes sense for such correlationsto be learned
inthe neocortical system. Much of the data could be explained
if, assuggested above, theneocortical learningrateisrelatively
high in rats, and if performance depends on the use of these
neocortical associations rather than the conjunctive represen-
tations formed in the hippocampus. Hippocampal conjunctive
representations might be of little use in tasks that require the
generalization of aresponse to a specific cue in anew context,
rather than the repetition of a response acquired in a specific
old context (Rudy & Sutherland, 1994).

It may seem to strain our basic approach, however, that
learning of simpl e associ ations can sometimes occur injust one
or a few trials, according to our analysis, acquisition of such
correlations by the neocortical system should occur somewhat
gradudly, even in animalslike rodents, to prevent potentia in-
terference with previously-established associ ationsto the same
stimuli. From afunctional point of view, however, it seemsrea
sonable to suppose that evolution might provide mechanisms
that over-ride this consideration in situationswhere very rapid
adaptation may be necessary for survival. It iswell-accepted
that there are specia systemsfor rapidlearning of certain types
of associations, e.g., between the taste of food and sickness
(Garcia, Ervin, & Koelling, 1966), that appear to be specific to
the survival needs of particular species, and it obviously makes
sense for such systems to be able to learn quickly. Such sys-
tems might be seen as providing a second form of fast learning,
quitedifferent from the hippocampal system in many respects,
but similar to it in providing a mechanism for rapid learning
that leaves the neocortical system free for the gradua discov-
ery of shared structure.

There is another basis within our framework for under-
standing rel atively spared learning of simplecue-outcome con-
tingencies even in cases where these are not strongly survival
related. The ideais closdly related to our earlier observation
that one can optimize both initia and final performance by
making large initial weight changes and then gradually reduc-
ing the sizes of these changes. A variation on thiswould be to
learn simple, first-order relationshipsrelatively quickly (espe-
cialy if thestimuli can be tagged as novel so that prior associ-
ationswould not be a consideration), while extracting higher-



order relationships at a lower rate. This makes sense from a
statistical perspectivesince simplefirst-order relationsare gen-
eraly apparent in much smaller samples of data than higher-
order relationships. If the neocortex exploited thisstrategy, we
would expect learning of simple associations to be relatively
spared following hippocampal lesions compared to learning
of more complex relationships. Indeed, as noted earlier, hip-
pocampal |esionsdo produce sel ective deficitsin negative pat-
terning and other paradigms that require the animal to master
higher-order cue-outcome contingencies. In this context, it is
interesting that hippocampa system lesions only produce re-
liableimpairments of learning of higher-order relationshipsin
paradigms where these relationships are pitted against ssimple
first-order relationships (Rudy & Sutherland, 1994). Negative
patterning is such a case, since the animal must learn not to re-
spond to the conjunction of A and B, even though responsesto
A and B are each individualy reinforced. On the other hand,
when only compound stimuli are used, and the animal must re-
spond to the compounds AC and BD but not to the compounds
AD and BC, there are no competing first-order relationships,
and hippocampal rats appear relatively unimpairedinthiscase.
The dataare consistent with theidea that structures outside the
hippocampal system in the rat can learn higher-order associ-
ations, but that the strength of these associations builds more
gradudly than the strength of first-order associations.

General Discussion

We have presented an account of the complementary roles
of the hippocampal and neocortical systems in learning and
memory, and we have studied the properties of computational
models of learning and memory that provide a basis for un-
derstanding why the memory system may be organized in this
way. We have illustrated through simple simulations how we
see performance and consolidation arising from the joint con-
tributions of the hippocampal system and the neocortical sys
tem, and we have considered why there may be variation in
learning rate as afunction of age, species, and other functional
considerations. In this section, we compare the approach we
have taken to some other views of the role of the hippocampal
system in learning and memory. It is beyond the scope of this
paper to offer an exhaustive summary and comparison of the
present theory to other views, but there are afew major points
of similarity and difference that warrant discussion.

Per spectives on Retrograde Amnesia

Our treatment of the complementary roles of the hippocam-
pal and neocortical systems rests on the centrality of the phe-
nomenon of temporally graded retrograde amnesia. The phe-
nomenon callsout for atheory that specifically accords the hip-
pocampal system arelatively extended, but nevertheless time-
limited role, in some but not all memory tasks. In this respect
our treatment continues a theme that was emphasized in some
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of the earliest discussions of amnesia (e.g., Ribot, 1882). The
notion that the hippocampal system playsarolein consolida-
tion began to emerge with theinitia studiesof HM (Scoville&
Milner, 1957; Milner, 1966). It was adopted in the theoretical
proposalsof Marr (1971) and has been strongly emphasized in
thework of Squireand hiscollaboratorsover atwenty-year pe-
riod (Squireet a., 1975; Squireet al., 1984; Alvarez & Squire,
1994).

Squireet al. (1984) treat temporally graded retrograde am-
nesiaas areflection of agradual process of memory reorganiza:
tion. Our proposal saccord with, and el aborate, thissuggestion.
The models we have presented produce such reorganizations,
and our analysis of these models provides an explicit account
of the reasons why these reorgani zations shoul d necessarily be
slow that is not present inthe Squire et a. (1984) account. Our
proposals also build on the earlier ideas of Marr (1970, 1971).
He saw consolidation as a process of sorting experiences into
categories, and noted that thissorting process would requirean
adeguate statistical sample of the environment. This proposa
isaspecific example of our moregenera claim that the neocor-
tical system isoptimized for the discovery of the shared struc-
ture of events and experiences.

The idea of consolidation as the reflection of a processin
which the hippocampus plays back information to the neo-
cortex may have originated with Marr (1971) as well. He
proposed that the hippocampal system stored experiences as
they happened during the day, and then replayed the memo-
ries stored in the hippocampal system back to the neocortex
overnight, to provide data for the category formation process
asheenvisioned it. Several neurophysiol ogists(McNaughton,
1983; Pavlides & Winson, 1989; Buzsaki, 1989; Wilson & Mc-
Naughton, 1993) have pursued thisidea. McNaughton (1983)
suggested that the high-frequency, complex-spike burst dis-
charges that occur during hippocampal sharp waves are one
source of such reinstatement. This idea has been elaborated
in considerable detail by Buzsaki (1989). The idea of the
hippocampus as providing extra learning opportunitiesfor the
neocortex has also been proposed by Milner (1989). We first
discussed theideain McClelland, McNaughton, O’ Reilly, and
Nadel (1992), and it has recently been adopted by severa other
authors (Alvarez & Squire, 1994; Lynn, 1994; Treves & Rolls,
1994). Earlier versions of our simulations of consolidationin
the studies of Kim and Fanselow (1992) and Zola-Morgan and
Squire (1990) were presented in McCleland, McNaughton,
and O'Rellly (1993). In modeling studies contemporaneous
with and independent of ours, Alvarez and Squire (1994) de-
veloped asimpleneura network model of the hippocampal and
neocortica systemsand showed how it could capture the gen-
era form of the consolidation functionsshownin Figurel, and
Lynn (1994) devel oped a simple conceptual model quite simi-
lar to the one we have presented.

Many theorists have focused primarily on the anterograde
effects of hippocampal lesions. Many of these theoretical dis-



cussions have suggested that the hippocampal system directs
the choi ce of representationsin neocortex; the neocortical sys-
tem is treated as an impoverished learning device that needs
the hippocampus to function more effectively in certain con-
texts. Thisis arather different form of the idea of the hip-
pocampus as teacher to the neocortex than the one that we
have proposed, since our ideais simply that the hippocampus
provides training trials, allowing the cortical system to select
representations for itself through interleaved learning. Sev-
era variants of the idea that the hippocampus directs or influ-
ences neocortical representations have been proposed. (Wick-
elgren, 1979; Roalls, 1990) have suggested that the hippocam-
pus is necessary to assign distinct cortica representations to
particular novel conjunctions of inputs, so that the neocor-
tex can treat these separately from other overlapping episodes
and events. Rudy and Sutherland (1994) suggest that the hip-
pocampus may increase the salience of neocortical represen-
tations of cue conjunctions, facilitating the learning of con-
junctive relationships, and Schmajuk and DiCarlo (1992) and
Gluck and Myers (1993) assume that the hippocampus pro-
vides error signalsthat direct the neocortex in the formation of
representations of cue combinations. In most of these models,
the hippocampusplaysitsroleat thetimeof initiad memory for-
mation, leaving no basisfor expecting any retrograde amnesia.
However, Wickelgren (1979) suggested that the hippocampus
was necessary for theinitial selection of the neocortical repre-
sentation and for its subsequent reactivation, until direct intra-
cortical connections can become established (through gradual
learning). Treves and Rolls(1994) provide an extension of the
theory of Rolls (1990) that encompasses essentialy the same
idea. The result isthat these theories can provide an account
for the phenomenon of temporally graded retrograde amnesia.
Themain differenceisthat our approach providesa principled,
functional reason why the neocortex should necessarily learn
gradually—and thusthat retrograde amnesia should necessar-
ily be temporally extended—-whilethese other approaches do
not.

Several other authors have proposed that the hippocam-
pus is necessary for a particular type of information process-
ing or representation that is crucia for some memory tasks.
For example, severa authors distinguish between pathway-
based learning, in which modifications occur directly in path-
ways involved in specific acts of information processing, and
more cognitiveforms of learning associated with performance
in explicit memory tasks. This or a related distinction may
be found in severa other places (Squire, 1992; Humphreys,
Bain, & Pike, 1989; O'Keefe & Nadel, 1978; Mishkin, Mda-
mut, & Bachevalier, 1984; Cohen & Eichenbaum, 1993; War-
rington & Weiskrantz, 1978). A related distinction is made
in our approach as well, though we differ from some of these
other theoristsin one crucial respect: We emphasize the fact
that ultimately, both forms of learning can occur in the neo-
cortical system. Once again, it is the phenomenon of tempo-
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raly graded retrograde amnesia that is crucia for our theory.
Those who view the hippocampus as necessary for a specific
type of representation, storage, or information processing that
isviewed as crucia for performance in certain memory tasks
appear to predict that retrograde amnesia will affect material
from al past time periods, and will not be time-limited.

In summary, three different kinds of roles have been sug-
gested for the hippocampus. One kind has it aiding the cor-
tex in selecting a representation to use at the time of storage.
Another type hasit providing a crucia form of representation
(or learning, or processing) not available to the neocortex, that
is necessary for performance in certain sorts of memory tasks.
The third type of theory has the hippocampus playing an ex-
plicitly time-limited role in the formation of neocortical rep-
resentations. The first type of theory can explain anterograde
amnesia, but appears to offer only ad-hoc accounts of retro-
grade amnesia. The second type of theory can explain retro-
grade amnesia as well as anterograde amnesia, but appears to
predict that retrograde amnesiawill not be temporally graded.
Whileaspects of al threetypeshave considerable appeal, only
the third type of theory offers a principled account of tempo-
rally graded retrograde amnesia. Of theories of the third type,
ours is the first to offer an explicit computational account of
why the period of hippocampal involvement must necessarily
be temporally extended.

Other Points of Comparison

Several additional features of other approachesto theroles
of the neocortical and hippocampa systems in learning and
memory warrant consi deration in compari son with our propos-
als. At first glance our approach may seem to contrast with
some of these other approaches but on closer inspection many
of these approaches may be complementary, and many appar-
ent differences may be matters of emphasis and perspective.

Hippocampal conjunctive coding, spatial representation,
and the temporally extended role of the hippocampal system
during consolidation. A number of investigators have pro-
posed that the hi ppocampusplaysaspecia roleinlearning con-
tingencies involving conjunctions of cues (Wickelgren, 1979;
Sutherland & Rudy, 1989; Rolls, 1990), and both Schmajuk
and DiCarlo (1992) and Gluck and Myers (1993) have pro-
posed explicit computational models in which the hippocam-
pal system plays a crucia role in the formation of internal
representations of cue combinations. Our account of the role
of the hippocampus in learning and memory is similar in
that it assumes that the hippocampal system is necessary for
the rapid formation of conjunctive representations, but differs
from these other proposalsin that we assume these representa-
tionsareinitialy formed in the hippocampal system. The fact
that the Schmajuk and DiCarlo (1992) and Gluck and Myers
(1993) model s both account for arange of phenomenafromthe
complex literature on classical conditioning suggests that the
essential computational properties of these models may have



considerable validity.

Rudy and Sutherland (1994), who have stressed the role of
the hippocampa system in memory that depends on cue con-
junctions, have suggested that thismay bethe basis, at least in
part, for its special role in spatial navigation, place learning,
and conditioning involving the learning context as a discrim-
inative cue. By the same token, O’ Keefe and Nadel (1978)
proposed that mechanisms initialy derived for spatial repre-
sentations and processes may be recruited for other functions
and McNaughton et a. (1989) have argued that spatial learn-
ing may involve specific conjunctions of locations and move-
ments. Whether the hippocampa system is primarily or was
initially specifically a spatia processing system, as O’ Keefe
and Naddl (1978) have argued, or is essentialy a system de-
signed specifically to handle cue conjunctions, as proposed by
Rudy and Sutherland (1994), may be undecidable and even
largely irrelevant to considerations about function, given that
neural structures often serve multiple functions and are often
recruited to new functions through evolution (Rozin, 1976;
Gould & Lewontin, 1979).

It seems to usthat the conjunctive coding perspective, the
spatial learning perspective, and the perspective taken here are
not mutually exclusive: 1t may be best toview dl of thesefunc-
tions as synergistic. We offer two illustrations of this point.
First, consider the possible synergy between a spatial memory
system and context sensitivity. Because space provides acon-
textual framework for al experiences, it would not be surpris-
ingif thehippocampal systemevolved certainintrinsicaly spa
tial mechanismsto facilitate the linking of experiences to their
gpatial contexts. At least part of the evidence from recordings
of hippocampal neurons in vivo is compatible with the exis-
tence withinitssynaptic matrix of intrinsicassociativelinksbe-
tween adjacent pointsin space (Knierimet al., in press). These
linkswould providea preconfigured substrate to which specific
objects and events might become bound Gothard et a. (1994).
This would facilitate the construction of a composite memory
incorporating events occurring at different times in the same
spatial location (Rawlins, 1985). Second, consider the possi-
ble synergy between the use of sparse, conjunctive represen-
tations in the hippocampus and the temporally extended role
it has to play according to our theory of consolidation. Hip-
pocampal representations must be maintained for an extended
period of time to ensure adequate consolidation, even as new
memories are continually being added. Since the knowledge
that maintains these representations is stored in connections
among unitsactive in each representation, it iscrucia to min-
imize the overlap of the representations to minimize interfer-
ence; otherwise the hippocampal memory system would itself
suffer from catastrophic interference and few representations
would remain for the long term. Thus, it is possible to see the
specia role of the hippocampus in learning that depends on
cue conjunctions—including memory for the contents of spe-
cific episodic experiences and spatial or contextual |earning—
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as a reflection of a coding style that serves at least as much
to minimize interference among sequentially stored memories
as to provide a basis for conjunctive (or equivalently spatial,
episodic) learning per se.

Explicit and declarative memory. Schacter (1987, 1994)
has stressed the descriptive va ue of thedistinctionbetween ex-
plicit and implicit memory in characterizing aspects of the hu-
man learning and memory literature. He defines explicit mem-
ory tasks as tasks that require the deliberate or conscious ac-
cess to prior experience, whereas implicit memory tasks are
those that do not require such deliberate or conscious access
to prior experience. Human amnesics are clearly impaired in
explicit memory tasks on this definition. However, amnesics
are adso impaired in acquisition of new, arbitrary factual in-
formation, whether or not the use of this information is ac-
companied by deliberate or conscious recollection of previ-
ous experiences in which thisinformation was presented (Shi-
mamura & Squire, 1987). (The evidence was considered in
paragraph (2) under The Role of the Hippocampal System in
Learning and Memory). Thus, it does not appear that amne-
siais adeficit that is restricted to explicit memory as defined
by Schacter (1987). Squire (1992) maintains the view that le-
sions to the hippocampal system produce a deficit in “declar-
ative memory” by which he means memory whose contents
can be consciously brought to mind or declared. This term
does encompass fact memories of the form studied by Shima-
mura and Squire (1987), but uncertainties remain concerning
whether human amnesics’ deficitsare restricted totasksinvolv-
ing memories that are conscioudy accessible. While amnesics
areimpairedin stem-compl etiontests of sensitivity to novel as-
sociations Schacter and Graf’s (1986), it is unclear to what ex-
tent conscious accessibility is necessary for sensitivity to new
arbitrary associationsin such paradigms.

Our perspectivegivesusadifferent vantage point onthisis-
sue. We have adopted the view that it isthe rapid formation of
novel, conjunctiveassociationsthat crucially dependsonanin-
tact hippocampal system, and we would suggest that theforms
of memory that are encompassed by the terms “explicit” and
“declarative’” are good examples of forms of memory that de-
pend on the rapid formation of such associations, but are not
necessarily the only ones. Other forms of memory that are not
explicit or declarative in any obvious sense might depend on
the rapid formation of such associations as well.

Flexible use of memory. The concepts of explicit and
declarative memory are even more difficult to operationalize
for animal studies than they are for humans. However, Cohen
and Eichenbaum (1993) have suggested that the hippocampus
may be specialized for the representation of recent memories
inaform that supportstheir flexible use (see also Eichenbaum
et a., 1994). Thisisan attractive idea in that the human abil-
ity to report declaratively on the contents of a recent experi-
ence might be treated as just one example of flexible use, and
Cohen and Eichenbaum'’s proposal is reminiscent of the dis-



tinction between memories and habits introduced by Mishkin
et al. (1984). In our view, the flexible use of recent memory is
not a unitary function of the hippocampal system but depends
on cooperation of the hippocampus and other brain systems,
particularly the frontal lobes. Cohen and O'Rellly (in press)
present thisidea, and suggest that the role of the hippocampal
system is to provide for the rapid auto-associative storage of
the arbitrary contents of particular episodes and events, allow-
ing for their reconstruction viathe associative pattern reinstate-
ment process we have repeatedly discussed. The other parts of
thesystem (e.g., theprefronta cortex) can influence hippocam-
pal recall by providingdifferent activity patterns as cuesto the
hippocampus, and areinturninfluenced by theinformationthat
is thereby recalled. These interactions would then lead to the
flexible use of information stored in the hippocampus.

Reference ver sus working memory. The proposal of Olton,
Becker, and Handelmann (1979) that the hippocampal system
isnecessary for what they called workingmemory (memory for
recent information of specific current relevance) but not refer-
ence memory (memory for invariant aspects a task situation)
bears some similarity to our view that the cortex is special-
ized for the gradual discovery of the shared structure of events
and experiences, while the hippocampus is necessary for the
rapid storage of the contents of specific episodes and events.
Where we differ from Olton et a. (1979), however, isin sug-
gesting that the hippocampus can support relatively rapid ac-
quisition of all aspects of a particular experience. Those as-
pects that are invariant in a task situation could guide initia
task performance, prior to neocortical consolidation. On this
basi swe would expect that hippocampal system lesionswould
affect the initial acquisition of spatia reference memory, but
not performance based on learning occurring prior to the le-
sion. In fact these expectations are borne out in the literature.
Barnes (1988) reviews severa spatial working memory stud-
ies and concludes that when the lesion occurs before training
thereisinvariably amarked impairment. However whenthele-
sion occurs after training there may be little or no impairment,
and Barnes (1988) suggests that the variability may be due at
least in part to differences in the delay between initial learning
and testing. In support of this she cites a study by Sutherland,
Arnold, and Rodriguez (1987) in which animals with dentate
gyrus lesions showed dramatic impai rments on a spatial refer-
ence memory task when thelesion occurred shortly after initial
acquisition, but not when the lesion occurred after a delay of
several weeks.

Binding. It has often been suggested that the hippocampal
system provides a mechanism that binds together the diverse
aspects of the cortical representation of a specific episode or
event. Variantsof thisideacan befound in Wickelgren (1979),
Squire et a. (1984), Teyler and Discenna (1986) and Dama-
si0(1989). Some of these proposals—most explicitly, the one
by Teyler and Discenna (1986)—suggest that the hippocampal
system does not store the memory itsdlf, but rather stores only
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alist of addresses of or pointersto the diverse locationsin the
neocortex where the memory itself isstored. Since we suggest
that the plastic changes responsiblefor theinitial storage of the
contentsof particul ar episodesand eventstake place withinthe
hippocampal system, our view may seem at first glance to con-
trast sharply with the view of the hippocampal representation
asalist of addresses bound together. However, closer scrutiny
revedls that our view may be more similar to the Teyler and
Discenna (1986) view thanisinitialy apparent (see Alvarez &
Squire, 1994, for arelated argument). Asnoted previously, our
proposal does not require that somehow afull copy of the neo-
cortica pattern of activation istransferred to the hippocampal
system; rather we assume the hippocampus uses a compressed
representation, and simply needs to encode enough informa-
tionabout the pattern for the neocortex to reconstruct enough of
it to guide overt responses. Thisidea of the hippocampal sys-
tem working with compressed representations can be seen as
similar to the Teyler and Discenna (1986) proposal, replacing
their addresseswith our compressed representations. A further
point of similarity arises from the fact that additiona know!-
edge is needed to implement the pattern compression and de-
compression processes. This knowledge is to be found in the
connections within the cortical system and in the connections
leading to and from the hippocampal system from the neocor-
tical system. Compression is carried out by the connections
leading into the hippocampal system, resulting in a reduced
representation in the entorhinal cortex, the gateway to the hip-
pocampus itself. This reduced representation is then the one
that is stored in the hippocampa system. When this represen-
tation isretrieved at a later time, return connections from the
entorhinal cortex to the neocortical system, as well as connec-
tions within the neocortex, participate in the reinstatement of
the neocortical pattern that was present at the time of storage.
Thisproposal shares withthe proposalsof Teyler and Discenna
(1986) and otherstheideathat much of theinformation needed
to reconstruct a particular pattern of activation is not stored in
the hippocampal system.

Teyler and Discenna's proposal includes the suggestion
that theactual content of hippocampal -system dependent mem-
oriesis stored within local circuitsin the neocortex at thetime
of learning. Squire et al. (1984) raise this possibility as well.
The idea appears to be that patterns of activation in loca cir-
cuitsare stored via plastic changes that occur within these cir-
cuits during the initial experience, and that the hippocampus
only binds these local patterns together so that the local pat-
tern in one part can be reactivated by patterns arising in other
parts. The plastic changes in theselocal circuits constitute, on
this view, the extra information needed to turn the addresses
stored in the hippocampusinto a neocortica memory trace.

Thisaspect of Teyler and Discenna’s (1986) proposal sdoes
contrast with our proposals, since we have suggested a disso-
ciation between the hippocampa system and the neocortical
system based on fast versus slow learning, whereas Teyler and



Discenna (1986) appear to be suggesting that there must be
some fast learning within the neocortex. However, it would be
possible to reconcile our proposas with theirs without aban-
doning our fundamental claim that there must be a division of
labor between fast and slow learning systems, by revising the
placement of the anatomical boundary between the fast and
dow learning systems. One specific possibility is that the su-
perficia layersof theneocortex are part of thefast learning sys-
tem, and that the low-learning systemislocated in deeper lay-
ers. Onthisview thefast learning systemisanatomically quite
distributed, with the hippocampusitself serving asthesystem’s
“convergence zone’ Damasio (1989). There are contrasts be-
tween the superficial layers of the neocortex (layers two and
three) and deeper layers that are consistent with this sugges-
tion. There isa higher density of NMDA receptors in superfi-
cia layers of neocortex (Monaghan & Cotman, 1989), and re-
cent studies of two areas of neocortex indicate that the superfi-
cia layers use sparser representations (Skaggs, McNaughton,
Barnes, Moore, Duffield, Frank, & D’Monte, 1994). Also, itis
the superficial layers of neocortex that exchange bi-directional
connections with the input-output zones of the hippocampal
system. This suggestion brings our theory into much closer
alignment with the suggestionsof Teyler and Discenna (1986)
and others who attribute a binding function to the hippocam-
pus. The suggestion also aligns our approach better with pro-
posals that the hippocampus may contributeto the assignment
of neocortical representations at the time of initia learning,
if we stipulate that the neocortical representations in question
are specifically the ones used in the superficial layers. Given
the convergence of inputs to the hippocampus and the diver-
gence of the return projections, the presence of the hippocam-
pus could well influence the representations used in the super-
ficia layers (Rolls, 1990; Treves & Rolls, 1994).

There is, however, and dternative to accepting the idea
that substantial changes must be made in the neocortex at the
time of initial memory formation to allow for decoding of the
compressed hippocampal representation. The dternativeisthe
idea that the knowledge needed for the encoding and decod-
ing operations is aready present in the connections into and
out of the hippocampal system and in the intracortical con-
nections that participate in the reinstatement process. If these
connectionswere part of the d ow-learning neocortical system,
their weights would come to exploit the structure (redundan-
cies and constraints) characteristic of the ensembles of events
previoudly experienced, enabling successful compression and
decompression of new patternsthat exhibit the same structure,
but not of unstructured patterns or patterns exhibiting unfamil-
iar structure. Thisis, in fact, exactly what happensin the con-
nectioni st pattern compression model smentioned earlier inthis
article. An appealing feature of this proposal is that it would
contributeto stability of the bi-directional mapping of patterns
of activation between thefast and slow learning systems, since
the bi-directional connections between the hippocampus and
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neocortex would not themselves be subject to rapid changes
during the storage of new associations. Rapid change in these
bi-directiona pathways would tend to interfere with the rein-
statement of older hippocampal memories. Sinceinthehuman
case it appears that the hippocampal system can contribute to
reinstatement for a period of years after initial memory acqui-
sition, it would be desirable to avoid such interference. The
proposal that the bi-directiona connections between the hip-
pocampal and neocortical systems exploit the structure present
in ensembles of experiences predicts that hippocampal mem-
ory will be far superior for materials conforming to the struc-
tural constraintsthat were embodied in the entire ensemble of
past experiences, than it will be for totally random patterns or
patterns that embody quite different constraints, since in the
latter cases the knowledge built into the connection weights
would not be applicable, and encoding and/or decoding would
fail. Indeed, one of the most pervasive findings in the hu-
man memory literatureisthe finding that memory isfar better
when the material to belearned conformsto familiar structures
(Bartlett, 1932).

Both of theideas considered in thelast two paragraphs have
considerable appeal. However, both raise a host of further is-
suesaswell, and at the present we see no clear basisfor choos-
ing between them. Stepping back from these specific matters,
though, our comparison of our viewswith those of Teyler and
Discenna (1986) underscores an important general point: Ap-
parent differences between theories may not reflect a funda-
mental incompatibility at afunctional level. We have aready
seen in previous sections that some apparent contrasts may re-
flect differences of focusand emphasis, and the present section
(as well as the next section) further exemplifies this point. In
addition, we now can see that other apparent contrasts might
hingenot so much on differencesin claims about thefunctional
organi zation but on different assumptions about the alignment
of the functional organization with the neural substrate or on
differencesin specific aspects of the proposed i mplementation.

Prediction. The last perspective we will consider on the
role of the hippocampusistheideathat it is necessary to pre-
dict the future based on the present and the recent past. This
kind of suggestion has been made by severa authors (Levy,
1989; Schmajuk & DiCarlo, 1992; Gluck & Myers, 1993). We
agree that prediction based on recent experience is impaired
after damage to the hippocampa system. However, we view
prediction as among the many special cases of the associa-
tive learning that occurs in the hippocampus. Prediction can
arisefrom associ ative storage and subsequent retrieval through
pattern completion. One possibility is that the pattern of ac-
tivation produced in the hippocampal system at any point in
time reflects experience over asmall temporal window. Auto-
associative storage of this pattern in the hippocampal system
wouldthenlink thesituation, action, and outcometogether into
a single memory trace. At a later time, when the beginning
of a previously-experienced sequence occurs, thiscould serve



as aprobe to the hippocampal system, and pattern completion
would then allow reinstatement of the next step or stepsin the
sequence. Thisideathat the pattern of activation at a particu-
lar point in time actually encompasses some temporal window
could be coupled with the assumption that the patternisnot as-
sociated withitsalf, but with apattern arising at adlightly later
time(Levy, 1989; Minai & Levy, 1993; Larson & Lynch, 1986;
McNaughton & Morris, 1987; Gluck & Myers, 1993). Thishy-
brid scheme would permit recall of temporal sequences aswell
as auto-associative completion of material in the overlapping
patternsthat are active at adjacent times.

Conclusion

In this article, we have treated the phenomenon of con-
solidation as a reflection of the gradual incorporation of new
knowledge into representational systems located primarily in
the neocortical regions of the brain. Our proposal has itsroots
in the work of Marr (1970, 1971) and Squire et d. (1984),
but we have given it a clearer computational motivation than
these earlier investigators, and we have pointed to computa
tional mechanisms that indicate how the incorporation of new
knowledge can gradually cause the structure itself to adapt.
Nevertheless our analysisis far from complete, and many de-
tail s of theimplementation and physiol ogical realization of the
complementary learning systemswe have proposed remain ob-
scure. Our analysis may address the two key questions we
have posed in this article, but in so doing it raises many new
ones. Answering these questionswill depend on the emerging
synthesis of computational, behavioral, and neurophysiologi-
cal investigation.
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