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Before RNNs and Transformers, we assume fixed-size inputs and outputs.

But many vision tasks require sequential processing.

Motivation



Example: Image Captioning (one to many)

Motivation

Model
A dog is standing 

on the beach.



Example: Activity Recognition (many to one)

Motivation

Model Dancing



Example: Video Captioning (many to many)

Motivation

Model
A man and woman 

are dancing.



To solve these kinds of tasks, we need models that can:
● Handle variable-length input and output sequences
● Preserve temporal structure and order
● Capture long-range dependencies

Some considerations include:
● Long-Range Dependencies: How do models learn which past inputs are relevant?
● Parallelizability: Can the model be parallelized across time steps?
● Compute & Memory Use: How do compute/memory scale with sequence length?
● Inductive Bias: How well do models capture temporal/locality structure?

Motivation



Key Idea: RNNs process sequences one step at a time, maintaining a “internal state” 
that summarizes past inputs & is updated as the sequence is processed

RNNs



At every time step, we use the same function / parameters to update the hidden state, 
which allows us to process input sequences of arbitrary length.

We use another function / parameters to decode the hidden state into an output, to 
generate output sequences.

RNNs



(Truncated) Backpropagation Through Time
Key Idea: Instead of backpropping through the entire sequence, we carry hidden states
forward in time forever, but only backpropagate for a chunk

RNNs



Advantages
● Can process inputs of any length
● Each step can use information from previous steps (in theory)
● Model size is fixed, regardless of sequence length
● Shared weights across time → enforces temporal consistency

Disadvantages
● Slow training due to sequential / recurrent computation
● Hard to capture long-term dependencies
● Vanishing/exploding gradients 

● Gradient clipping (clip norm of gradient to a threshold)
● LSTM / GRU (gating mechanisms help preserve / regulate flow of info over time)

RNNs



Key Idea:  use self-attention to process all elements in parallel and let the model attend 
to most relevant parts of the input

Transformers

Vaswani et al, “Attention is All You Need” NeurIPS 2017

Self-Attention

Add + Norm

MLP

Add + Norm



Transformers

Self-Attention
Input Vectors: X 
Queries: Q – what each token is looking for
Keys: K – what each token offers
Values: V – information of each token

Compute attention scores by computing dot product between 
each query and the keys of all tokens + passing through softmax

Attention scores determine how much each token should pay 
attention to other tokensʼ values

Final Output: weighted sum of all values, based on attention



RNNs vs Transformers

RNNs Transformers

Long-Range 
Dependencies

Good in theory, but hard in 
practice 

Good in practice, through 
self-attention over full input

Parallelizability No – sequential computation 
across timesteps

Yes – process tokens in 
parallel

Compute & Memory 
Use

O(N), O(N) O(N^2), O(N)

Inductive Bias Strong – inherent temporal 
structure

Weak – needs to learn from 
data



Key Idea: treat images like sequences of patches, and apply the Transformer directly to 
those patches, using self-attention to model relationships between parts of the image.

Vision Transformers

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



https://colab.research.google.com/drive/1mC5CWwekbZ2NrYv6Zfpuv55z8DuOZXVP?us
p=sharing 

Colab Notebook

https://colab.research.google.com/drive/1mC5CWwekbZ2NrYv6Zfpuv55z8DuOZXVP?usp=sharing
https://colab.research.google.com/drive/1mC5CWwekbZ2NrYv6Zfpuv55z8DuOZXVP?usp=sharing

