
CS231N Review Session:
RNNs and Transformers

Emily Jin

May 2nd, 2025

Agenda

- Motivation
- RNNs
- Transformers
- RNNs vs Transformers
- Colab Notebook

Before RNNs and Transformers, we assume fixed-size inputs and outputs.

But many vision tasks require sequential processing.

Motivation

Example: Image Captioning (one to many)

Motivation

Model
A dog is standing

on the beach.

Example: Activity Recognition (many to one)

Motivation

Model Dancing

Example: Video Captioning (many to many)

Motivation

Model
A man and woman

are dancing.

To solve these kinds of tasks, we need models that can:
● Handle variable-length input and output sequences
● Preserve temporal structure and order
● Capture long-range dependencies

Some considerations include:
● Long-Range Dependencies: How do models learn which past inputs are relevant?
● Parallelizability: Can the model be parallelized across time steps?
● Compute & Memory Use: How do compute/memory scale with sequence length?
● Inductive Bias: How well do models capture temporal/locality structure?

Motivation

Key Idea: RNNs process sequences one step at a time, maintaining a “internal state”
that summarizes past inputs & is updated as the sequence is processed

RNNs

At every time step, we use the same function / parameters to update the hidden state,
which allows us to process input sequences of arbitrary length.

We use another function / parameters to decode the hidden state into an output, to
generate output sequences.

RNNs

(Truncated) Backpropagation Through Time
Key Idea: Instead of backpropping through the entire sequence, we carry hidden states
forward in time forever, but only backpropagate for a chunk

RNNs

Advantages
● Can process inputs of any length
● Each step can use information from previous steps (in theory)
● Model size is fixed, regardless of sequence length
● Shared weights across time → enforces temporal consistency

Disadvantages
● Slow training due to sequential / recurrent computation
● Hard to capture long-term dependencies
● Vanishing/exploding gradients

● Gradient clipping (clip norm of gradient to a threshold)
● LSTM / GRU (gating mechanisms help preserve / regulate flow of info over time)

RNNs

Key Idea: use self-attention to process all elements in parallel and let the model attend
to most relevant parts of the input

Transformers

Vaswani et al, “Attention is All You Need” NeurIPS 2017

Self-Attention

Add + Norm

MLP

Add + Norm

Transformers

Self-Attention
Input Vectors: X
Queries: Q – what each token is looking for
Keys: K – what each token offers
Values: V – information of each token

Compute attention scores by computing dot product between
each query and the keys of all tokens + passing through softmax

Attention scores determine how much each token should pay
attention to other tokensʼ values

Final Output: weighted sum of all values, based on attention

RNNs vs Transformers

RNNs Transformers

Long-Range
Dependencies

Good in theory, but hard in
practice

Good in practice, through
self-attention over full input

Parallelizability No – sequential computation
across timesteps

Yes – process tokens in
parallel

Compute & Memory
Use

O(N), O(N) O(N^2), O(N)

Inductive Bias Strong – inherent temporal
structure

Weak – needs to learn from
data

Key Idea: treat images like sequences of patches, and apply the Transformer directly to
those patches, using self-attention to model relationships between parts of the image.

Vision Transformers

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

https://colab.research.google.com/drive/1mC5CWwekbZ2NrYv6Zfpuv55z8DuOZXVP?us
p=sharing

Colab Notebook

https://colab.research.google.com/drive/1mC5CWwekbZ2NrYv6Zfpuv55z8DuOZXVP?usp=sharing
https://colab.research.google.com/drive/1mC5CWwekbZ2NrYv6Zfpuv55z8DuOZXVP?usp=sharing

