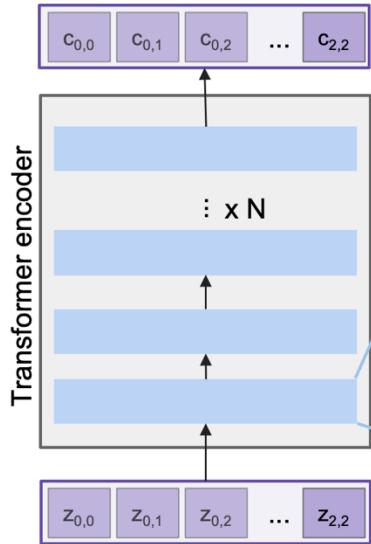


Lecture 9: Detection, Segmentation, Visualization, and Understanding

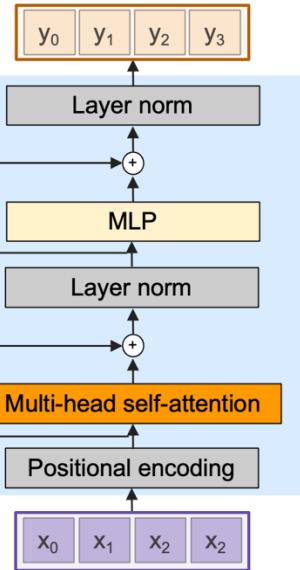
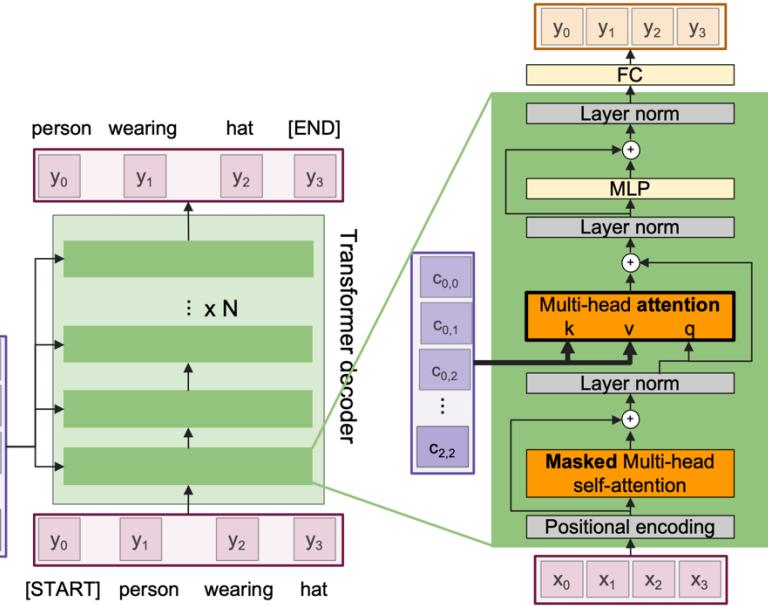
Administrative Announcements

- Make sure to start Assignment 2 early. It is the longest of the three assignments, and the midterm and project milestone deadlines follow closely after the Assignment 2 deadline.
- Be sure to check out [this Ed post](#) for the best Colab practices to avoid unnecessary bugs and delays.

Last time: Transformer



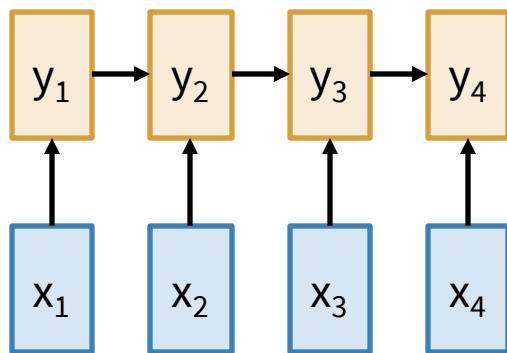
Encoder



Decoder

Three Ways of Processing Sequences

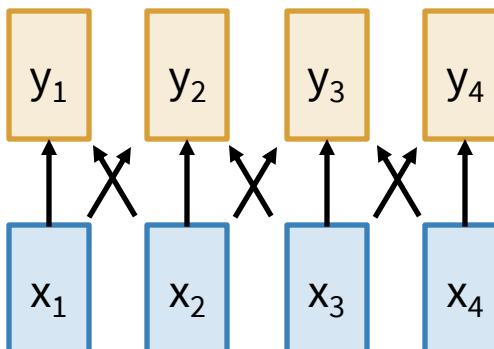
Recurrent Neural Network



Works on 1D ordered sequences

- (+) Theoretically good at long sequences: $O(N)$ compute and memory for a sequence of length N
- (-) Not parallelizable. Need to compute hidden states sequentially

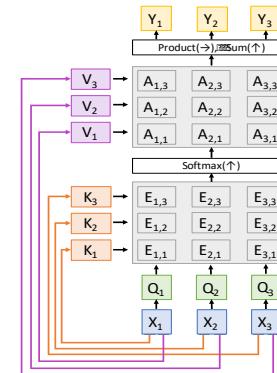
Convolution



Works on N-dimensional grids

- (-) Bad for long sequences: need to stack many layers to build up large receptive fields
- (+) Parallelizable, outputs can be computed in parallel

Self-Attention



Works on sets of vectors

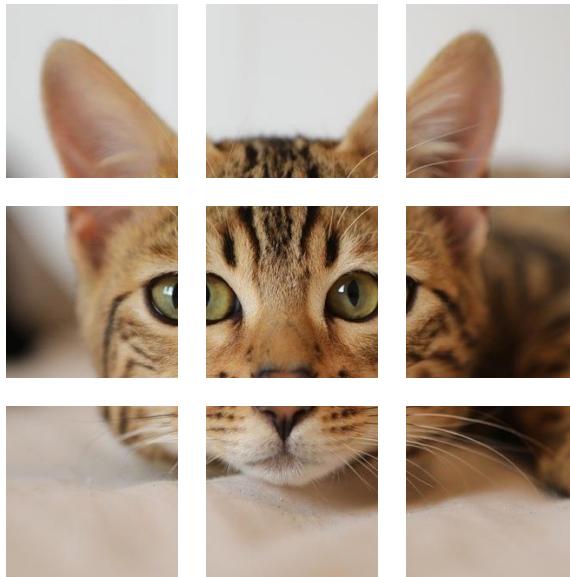
- (+) Great for long sequences; each output depends directly on all inputs
- (+) Highly parallel, it's just 4 matmuls
- (-) Expensive: $O(N^2)$ compute, $O(N)$ memory for sequence of length N

Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Dosovitskiy et al, "An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale", ICLR 2021

Vision Transformers (ViT)



Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

[Cat image](#) is free for commercial use under a [Pixabay license](#)

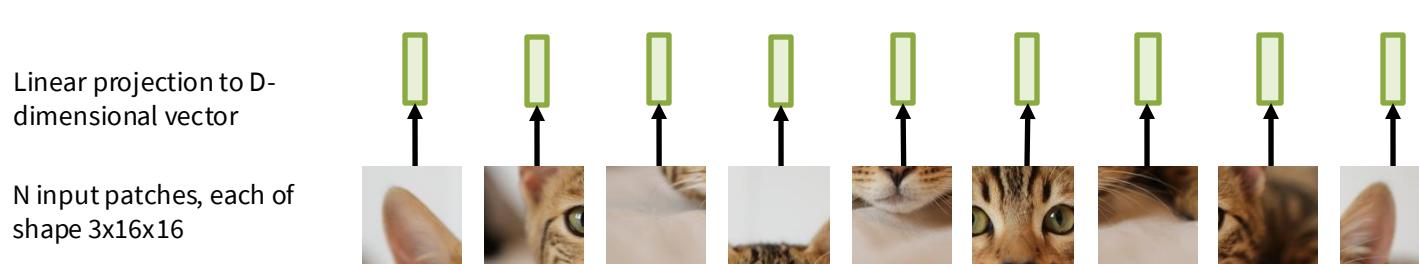
Vision Transformers (ViT)

N input patches, each of
shape 3x16x16

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

[Cat image](#) is free for commercial
use under a [Pixabay license](#)

Vision Transformers (ViT)



Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

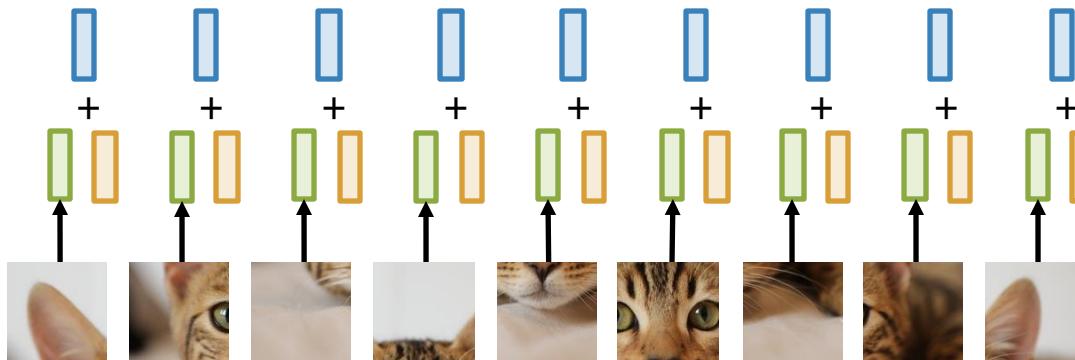
[Cat image](#) is free for commercial use under a [Pixabay license](#)

Vision Transformers (ViT)

Add positional embedding:
learned D-dim vector per
position

Linear projection to D-
dimensional vector

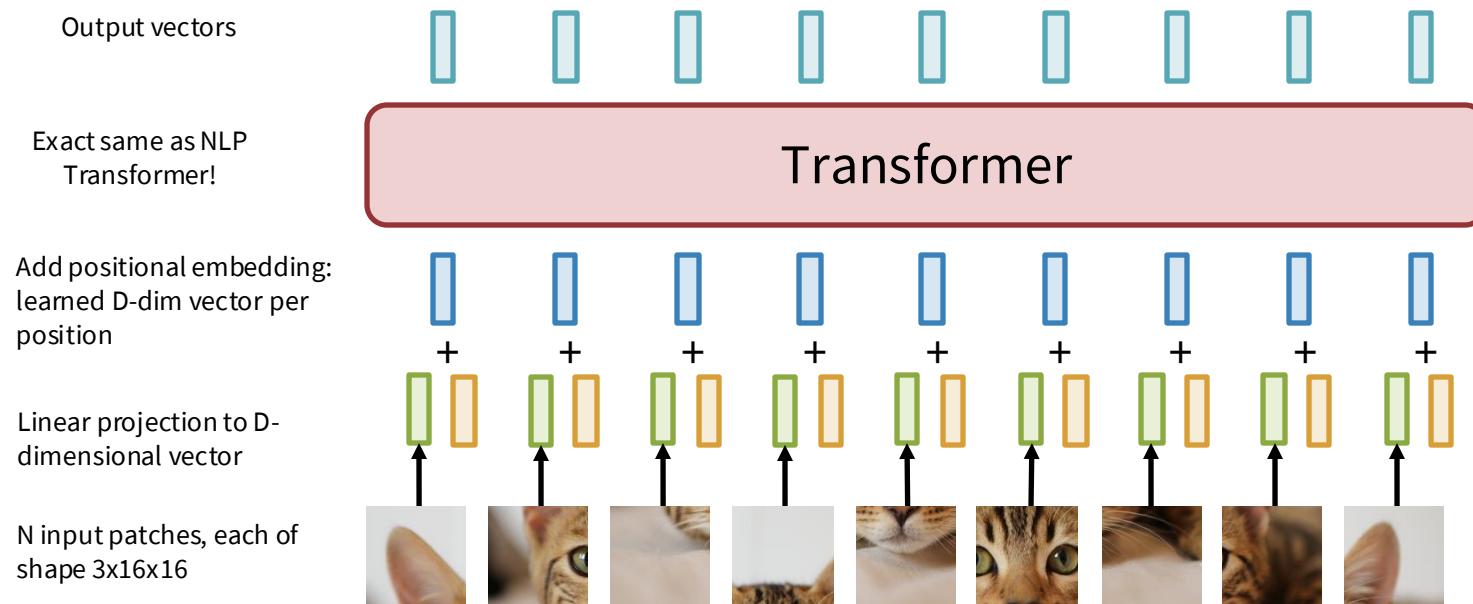
N input patches, each of
shape 3x16x16



Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

[Cat image](#) is free for commercial
use under a [Pixabay license](#)

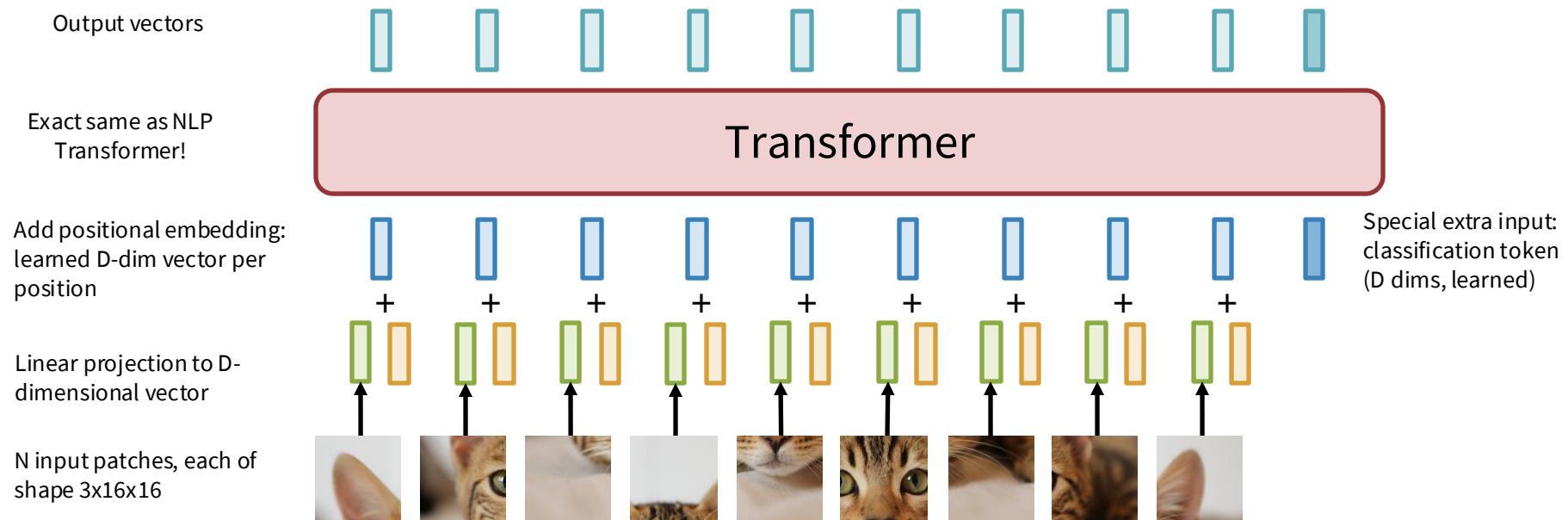
Vision Transformers (ViT)



Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

[Cat image](#) is free for commercial use under a [Pixabay license](#)

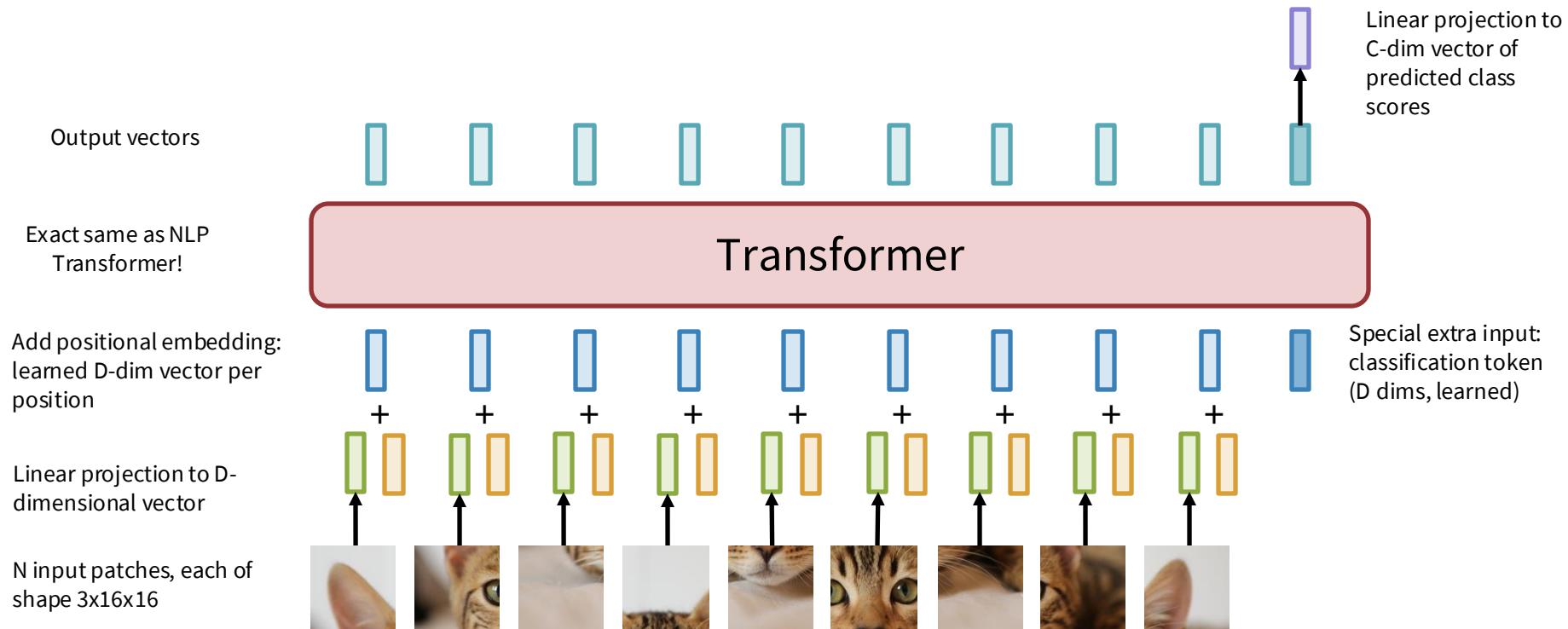
Vision Transformers (ViT)



Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

[Cat image](#) is free for commercial use under a [Pixabay license](#)

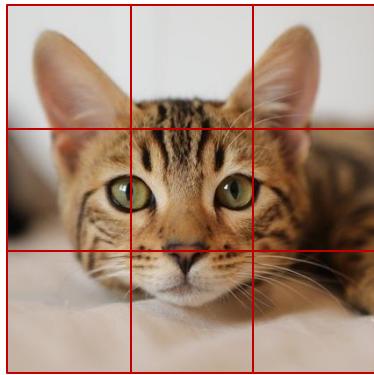
Vision Transformers (ViT)



Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

[Cat image](#) is free for commercial use under a [Pixabay license](#)

Vision Transformers (ViT) – a similar approach (different classifier)



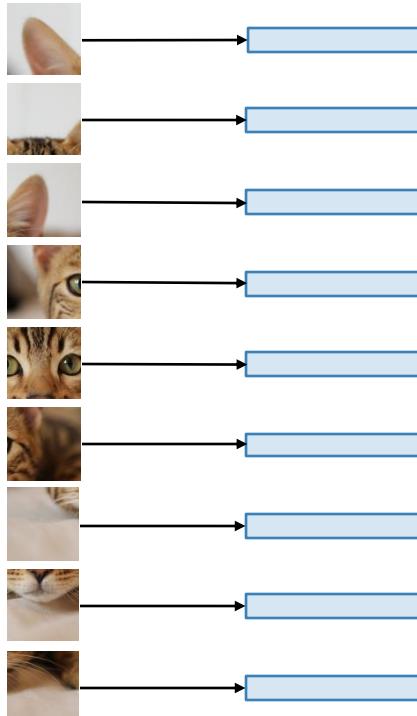
Input image:
e.g. 224x224x3

Break into patches
e.g. 16x16x3

Dosovitskiy et al, "An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale", ICLR 2021

Vision Transformers (ViT)

Input image:
e.g. 224x224x3



Break into patches
e.g. 16x16x3

Flatten and apply a linear
transform $768 \Rightarrow D$

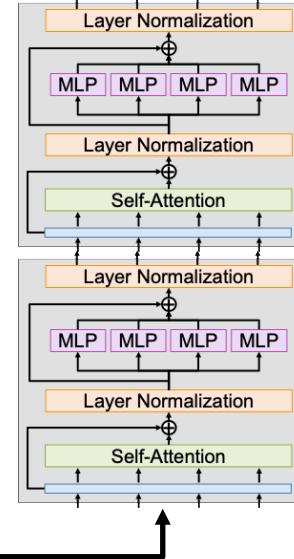
Dosovitskiy et al, "An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale", ICLR 2021

Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Break into patches
e.g. 16x16x3

Flatten and apply a linear
transform $768 \Rightarrow D$



D-dim vector per patch are
the input vectors to the
Transformer

Dosovitskiy et al, "An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale", ICLR 2021

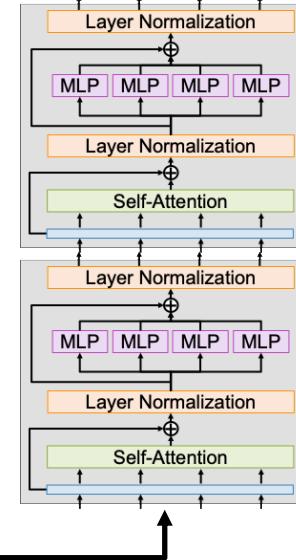
Vision Transformers (ViT)

Input image:
e.g. 224x224x3



Break into patches
e.g. 16x16x3

Flatten and apply a linear
transform $768 \Rightarrow D$



D-dim vector per patch are
the input vectors to the
Transformer

Use positional
encoding to tell
the transformer
the 2D position
of each patch

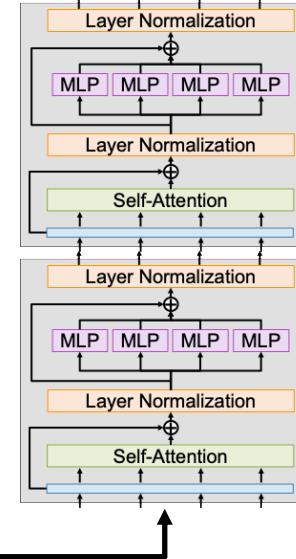
Dosovitskiy et al, "An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale", ICLR 2021

Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Break into patches
e.g. 16x16x3

Flatten and apply a linear
transform $768 \Rightarrow D$



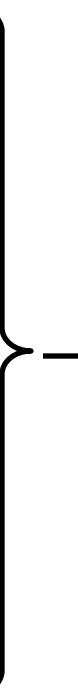
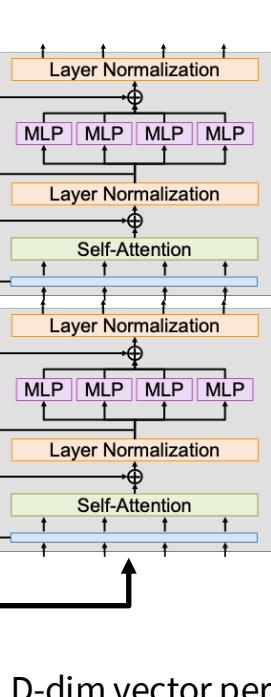
D-dim vector per patch are
the input vectors to the
Transformer

Don't use any
masking; each
image patch can
look at all other
image patches

Use positional
encoding to tell
the transformer
the 2D position
of each patch

Vision Transformers (ViT)

Input image:
e.g. 224x224x3



Break into patches
e.g. 16x16x3

Flatten and apply a linear
transform $768 \Rightarrow D$

D-dim vector per patch are
the input vectors to the
Transformer

Transformer
gives an output
vector per patch

Don't use any
masking; each
image patch can
look at all other
image patches

Use positional
encoding to tell
the transformer
the 2D position
of each patch

Vision Transformers (ViT)

Input image:
e.g. 224x224x3

→

→

→

→

→

→



→

→

→

→

Break into patches
e.g. 16x16x3

Flatten and apply a linear
transform 768 => D

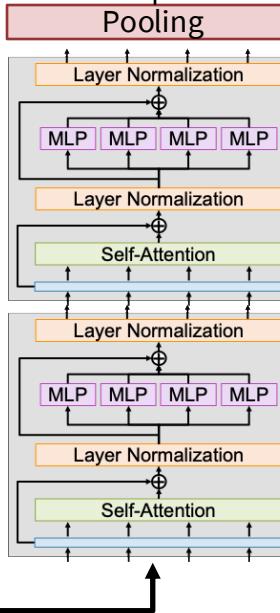
Average pool NxD vectors to
1xD, apply a linear layer D=>C to
predict class scores

Transformer
gives an output
vector per patch

Don't use any
masking; each
image patch can
look at all other
image patches

Use positional
encoding to tell
the transformer
the 2D position
of each patch

D-dim vector per patch are
the input vectors to the
Transformer

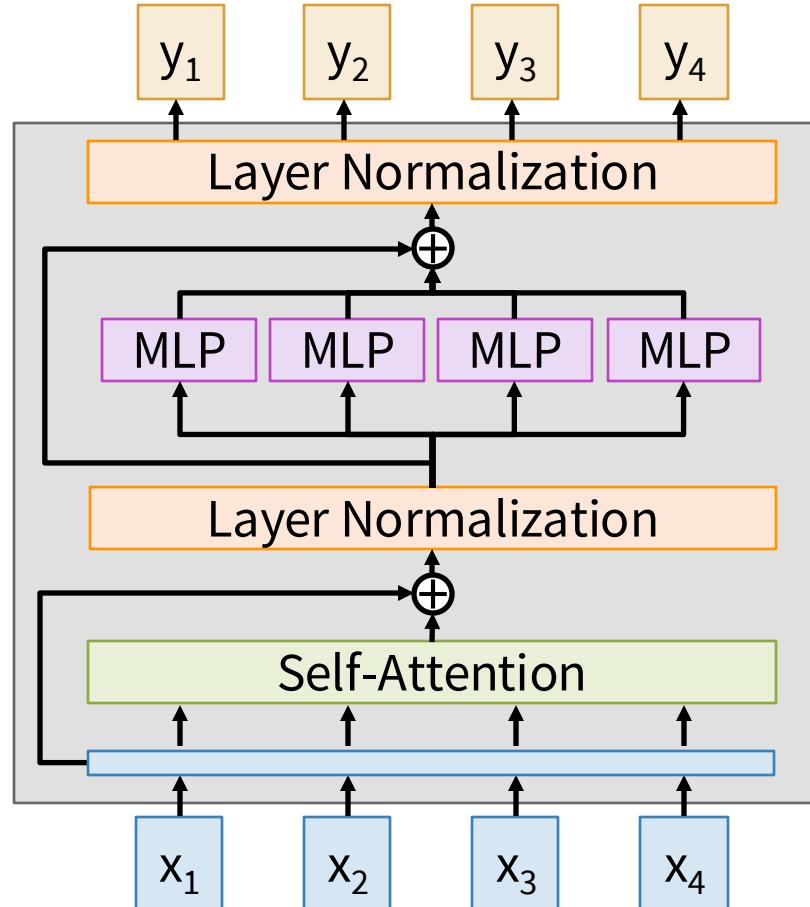


Dosovitskiy et al, "An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale", ICLR 2021

Tweaking Transformers

The Transformer architecture has not changed much since 2017.

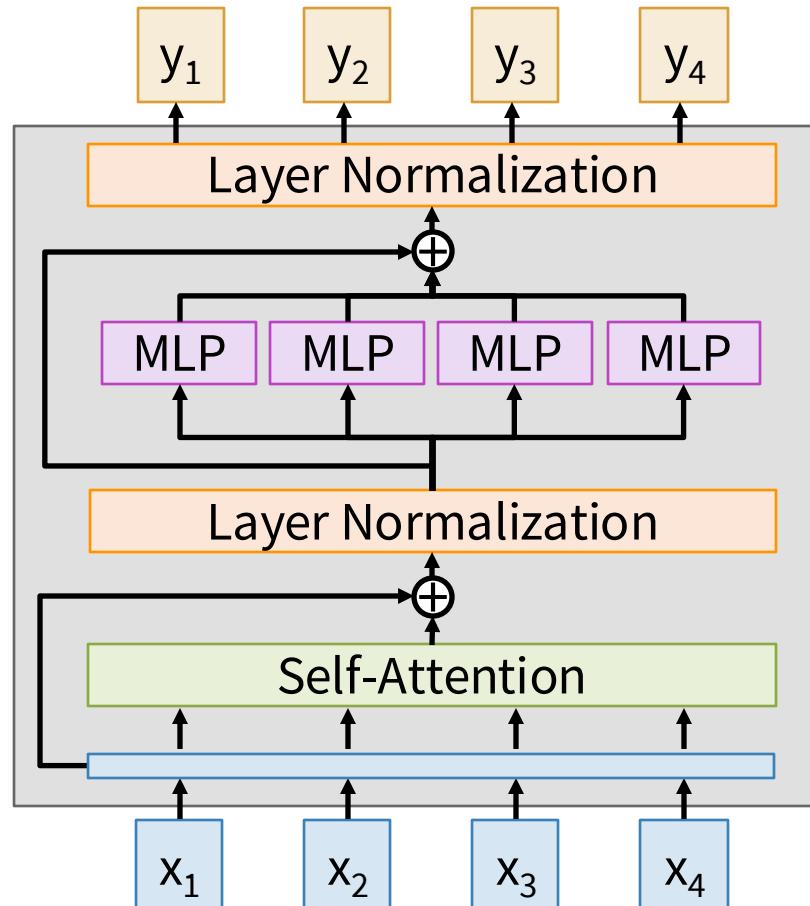
But a few changes have become common:



Pre-Norm Transformer

Layer normalization is outside the residual connections

Kind of weird, the model can't actually learn the identity function



Baevski & Auli, "Adaptive Input Representations for Neural Language Modeling", arXiv 2018

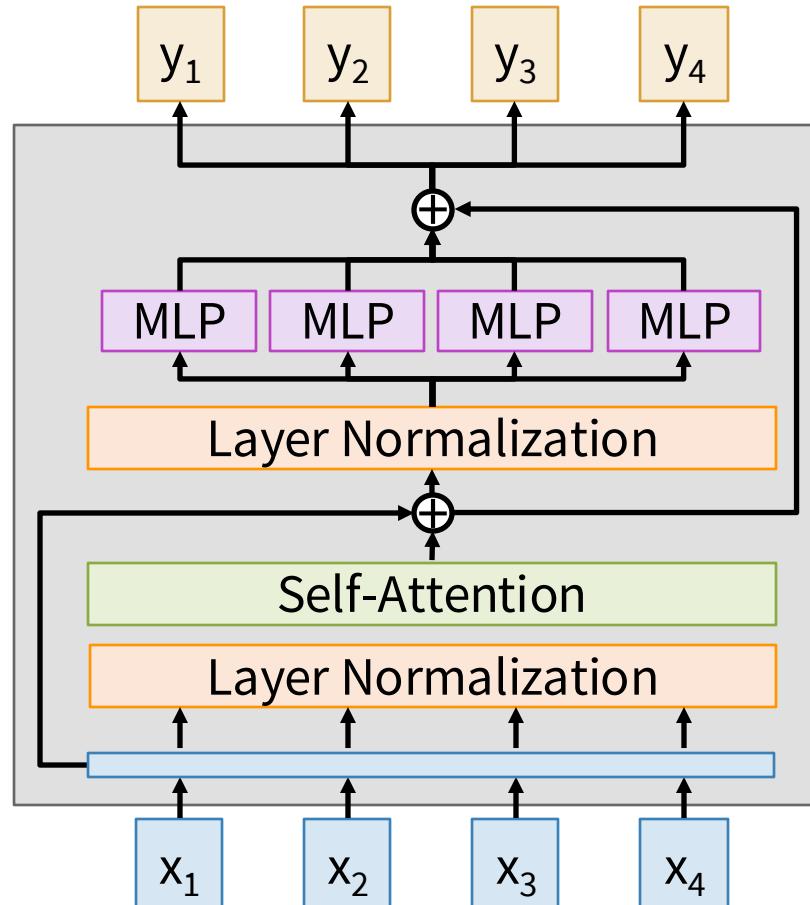
Pre-Norm Transformer

Layer normalization is outside the residual connections

Kind of weird, the model can't actually learn the identity function

Solution: Move layer normalization before the Self-Attention and MLP, inside the residual connections.

Training is more stable.



Baevski & Auli, "Adaptive Input Representations for Neural Language Modeling", arXiv 2018

RMSNorm

Replace Layer Normalization
with Root-Mean-Square
Normalization (RMSNorm)

Input: x [shape D]

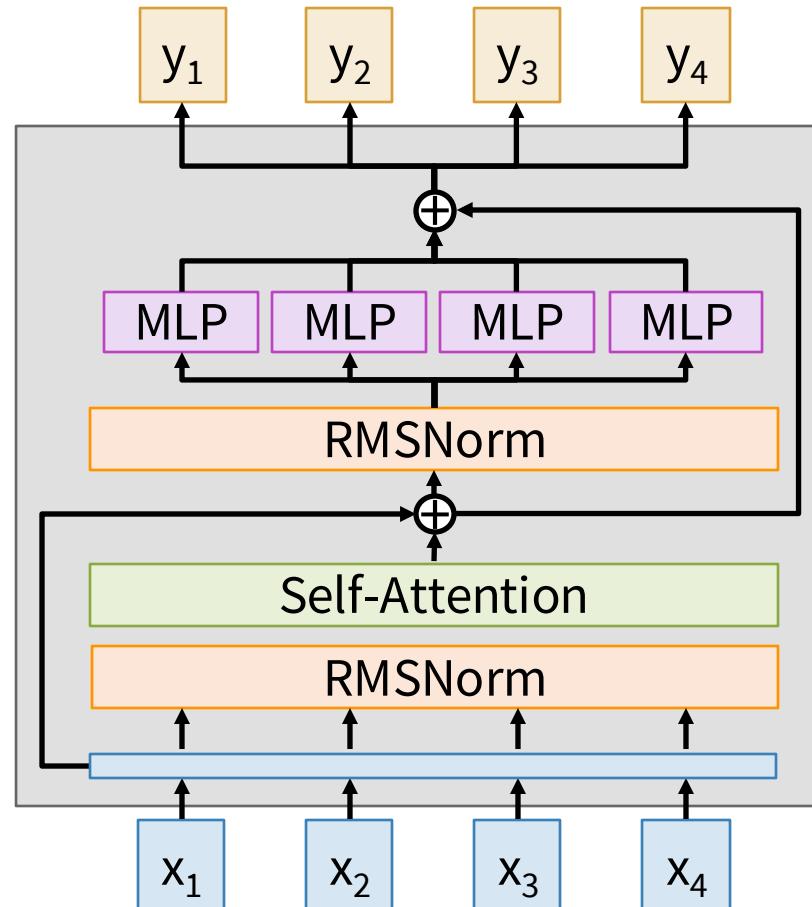
Output: y [shape D]

Weight: γ [shape D]

$$y_i = \frac{x_i}{RMS(x)} * \gamma_i$$

$$RMS(x) = \sqrt{\varepsilon + \frac{1}{N} \sum_{i=1}^N x_i^2}$$

Training is a bit more stable



Zhang and Sennrich, "Root Mean Square Layer Normalization", NeurIPS 2019

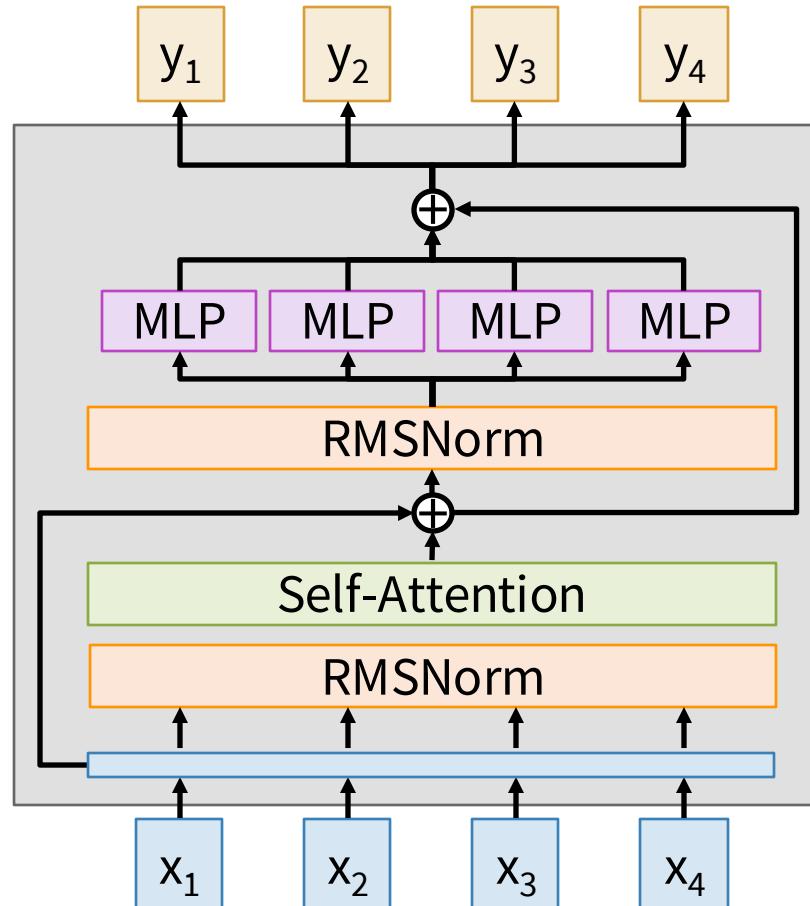
SwiGLU MLP

Classic MLP:

Input: $X [N \times D]$

Weights: $W_1 [D \times 4D]$
 $W_2 [4D \times D]$

Output: $Y = \sigma(XW_1)W_2 [N \times D]$



Shazeer, "GLU Variants Improve Transformers", 2020

SwiGLU MLP

Classic MLP:

Input: $X [N \times D]$

Weights: $W_1 [D \times 4D]$
 $W_2 [4D \times D]$

Output: $Y = \sigma(XW_1)W_2 [N \times D]$

SwiGLU MLP:

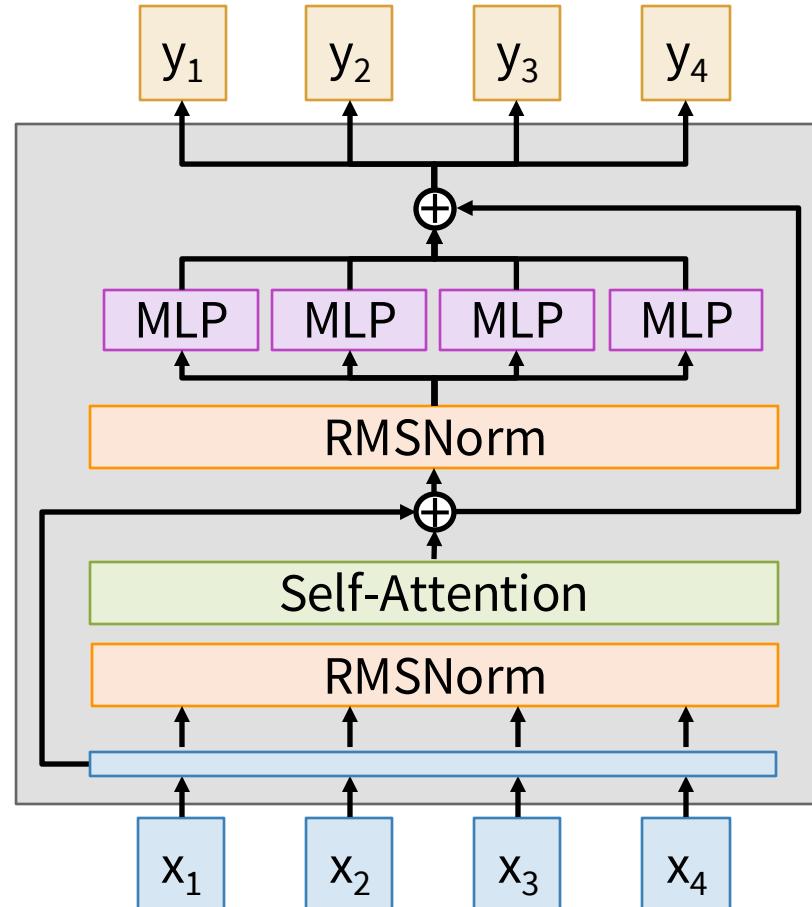
Input: $X [N \times D]$

Weights: $W_1, W_2 [D \times H]$
 $W_3 [H \times D]$

Output:

$$Y = (\sigma(XW_1) \odot XW_2)W_3$$

Setting $H = 8D/3$ keeps
same total params



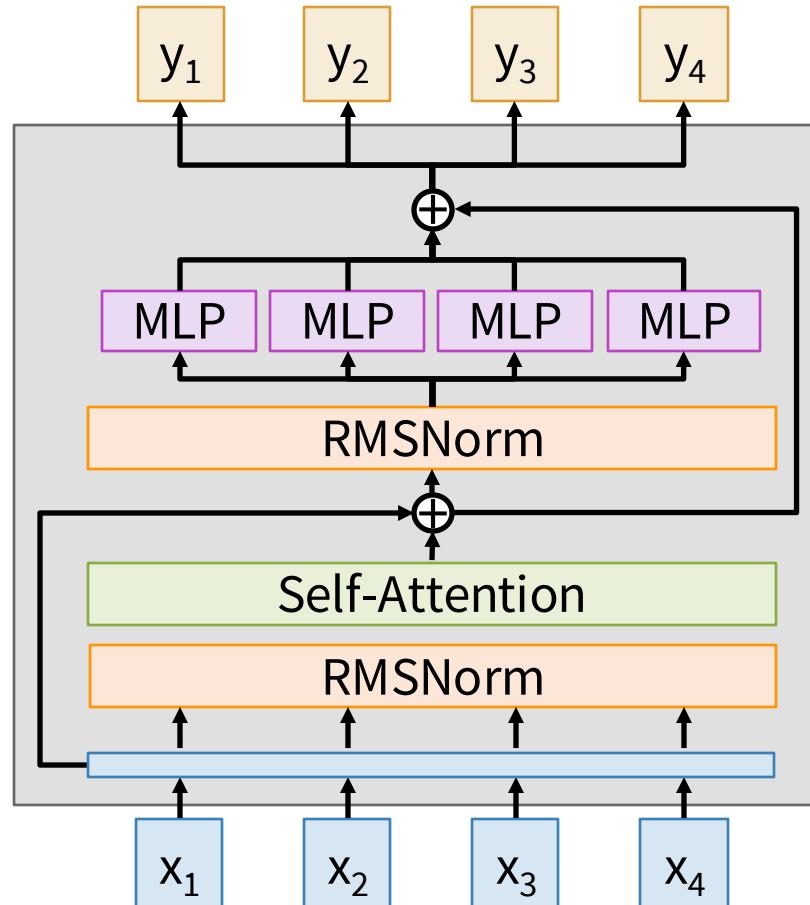
Shazeer, "GLU Variants Improve Transformers", 2020

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in each block; each MLP is an expert

$$W_1: [D \times 4D] \Rightarrow [E \times D \times 4D]$$

$$W_2: [4D \times D] \Rightarrow [E \times 4D \times D]$$



Shazeer et al, "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer", 2017

Mixture of Experts (MoE)

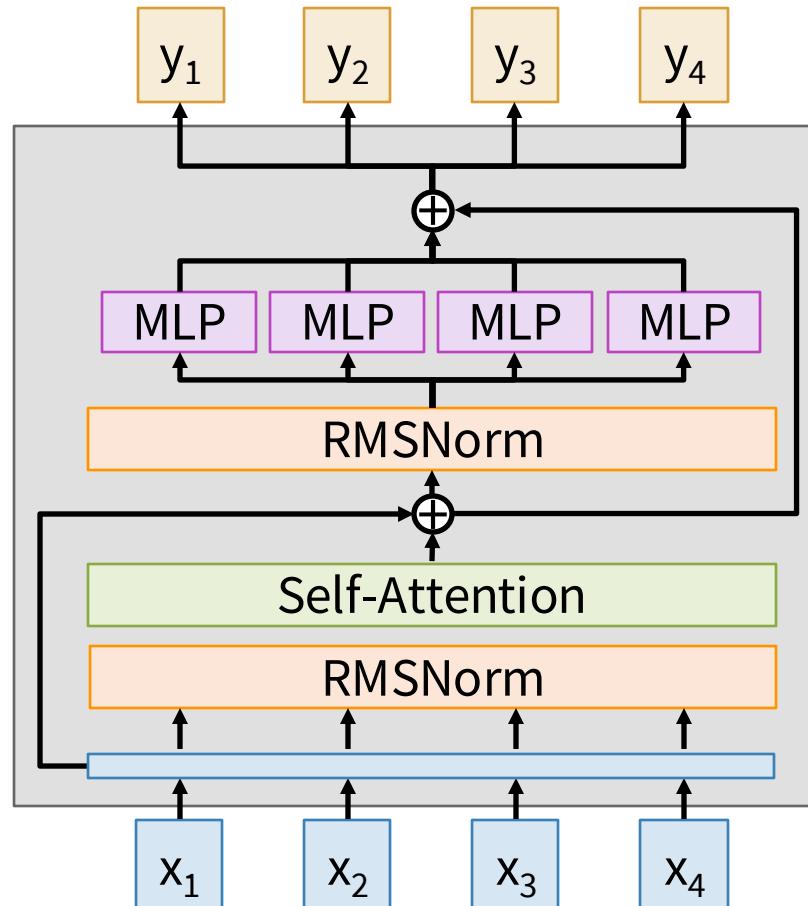
Learn E separate sets of MLP weights in each block; each MLP is an expert

$$W_1: [D \times 4D] \Rightarrow [E \times D \times 4D]$$

$$W_2: [4D \times D] \Rightarrow [E \times 4D \times D]$$

Each token gets routed to $A < E$ of the experts. These are the active experts.

Increases params by E ,
But only increases compute by A



Shazeer et al, "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer", 2017

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in each block; each MLP is an expert

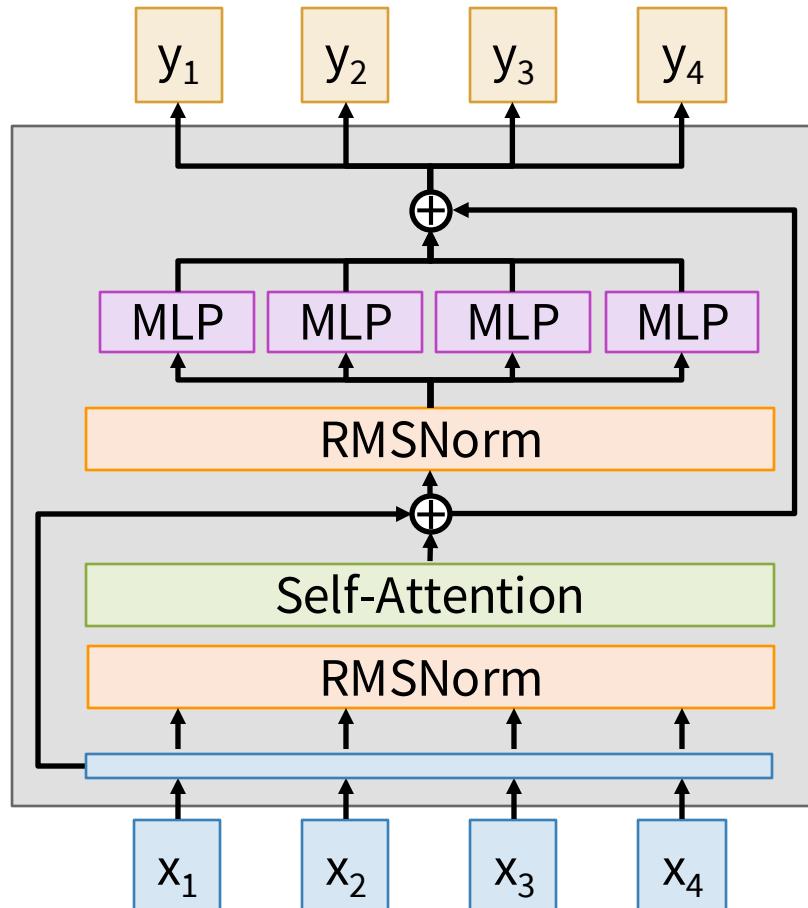
$$W_1: [D \times 4D] \Rightarrow [E \times D \times 4D]$$

$$W_2: [4D \times D] \Rightarrow [E \times 4D \times D]$$

Each token gets routed to $A < E$ of the experts. These are the active experts.

Increases params by E ,
But only increases compute by A

All of the biggest LLMs today (e.g. GPT4o, GPT4.5, Claude 3.7, Gemini 2.5 Pro, etc) almost certainly use MoE and have $> 1T$ params; but they don't publish details anymore

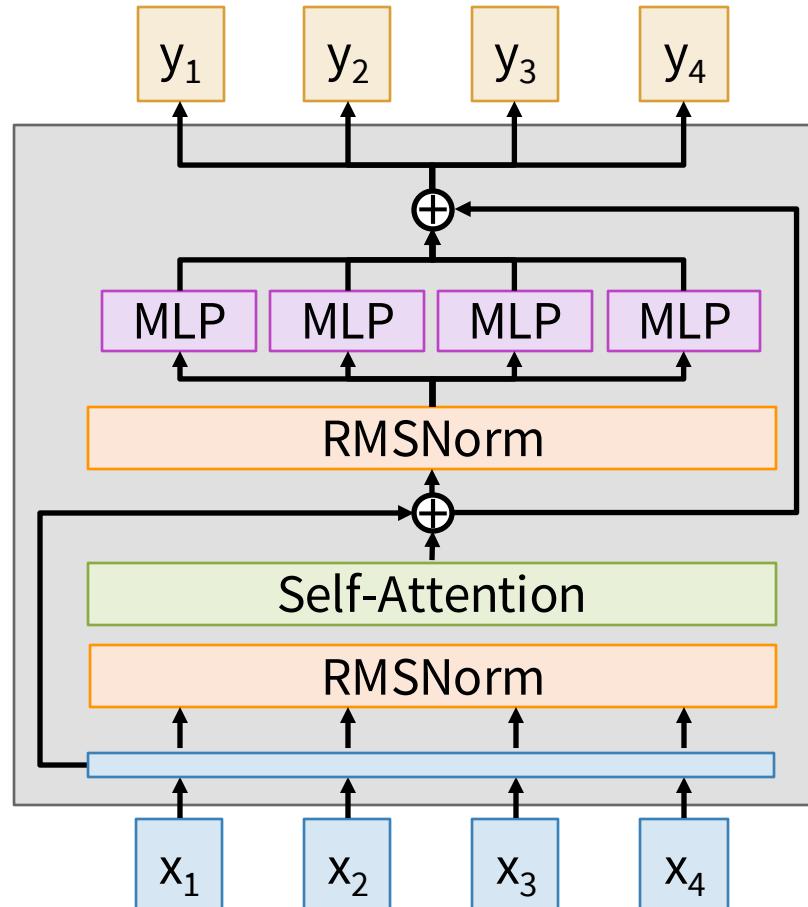


Tweaking Transformers

The Transformer architecture has not changed much since 2017.

But a few changes have become common:

- Pre-Norm: Move normalization inside residual
- RMSNorm: Different normalization layer
- SwiGLU: Different MLP architecture
- Mixture of Experts (MoE): Learn E different MLPs, use $A < E$ of them per token. Massively increase params, modest increase to compute cost.



Today

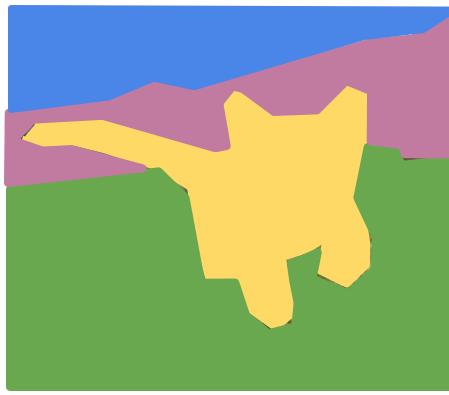
- Transformers Recap
- **Computer Vision Tasks**
 - Semantic Segmentation
 - Object Detection
 - Instance Segmentation
- Visualization & Understanding
 - Model Layers Visualization
 - Saliency Maps
 - CAM & Grad-CAM

Computer Vision Tasks

Classification

CAT

Semantic Segmentation



GRASS, CAT, TREE,
SKY

No spatial extent

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Object

[This image](#) is [CC0](#) public domain

Recall: Image Classification: A core task in Computer Vision

(assume given a set of possible labels)
{dog, cat, truck, plane, ...}

cat

This image by [Nikita](#) is
licensed under [CC-BY2.0](#)

Semantic Segmentation

Classification

CAT

No spatial extent

Semantic
Segmentation

GRASS, CAT, TREE,
SKY

No objects, just pixels

Object
Detection

DOG, DOG, CAT

Instance
Segmentation

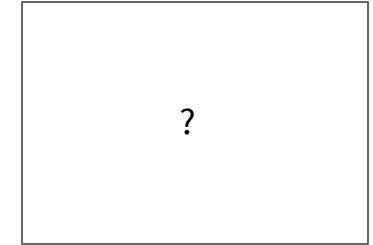
DOG, DOG, CAT

Multiple Object

Semantic Segmentation: The Problem

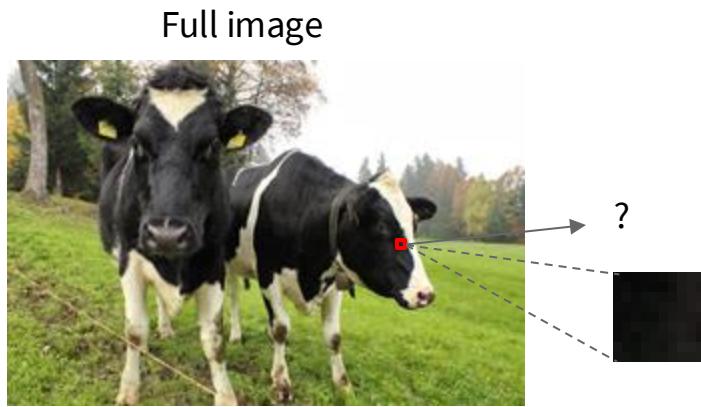
GRASS, CAT, TREE,
SKY, ...

Paired training data: for each training image,
each pixel is labeled with a semantic category.

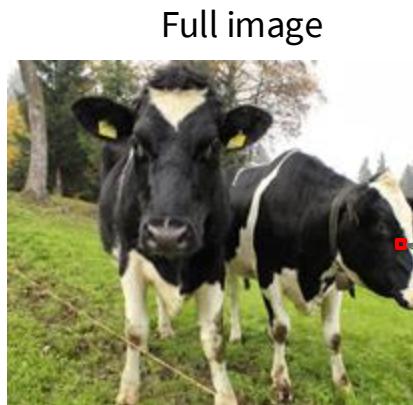


At test time, classify each pixel of a new image.

Semantic Segmentation Idea: Sliding Window



Semantic Segmentation Idea: Sliding Window

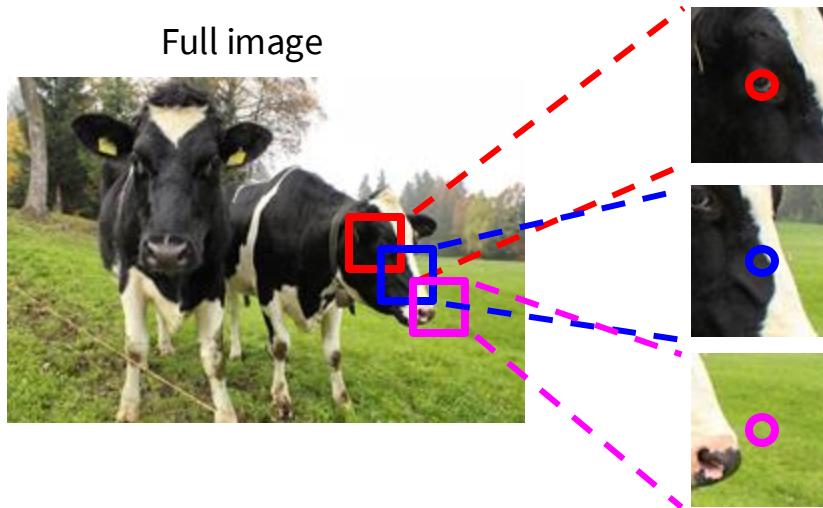


?

Impossible to classify without context

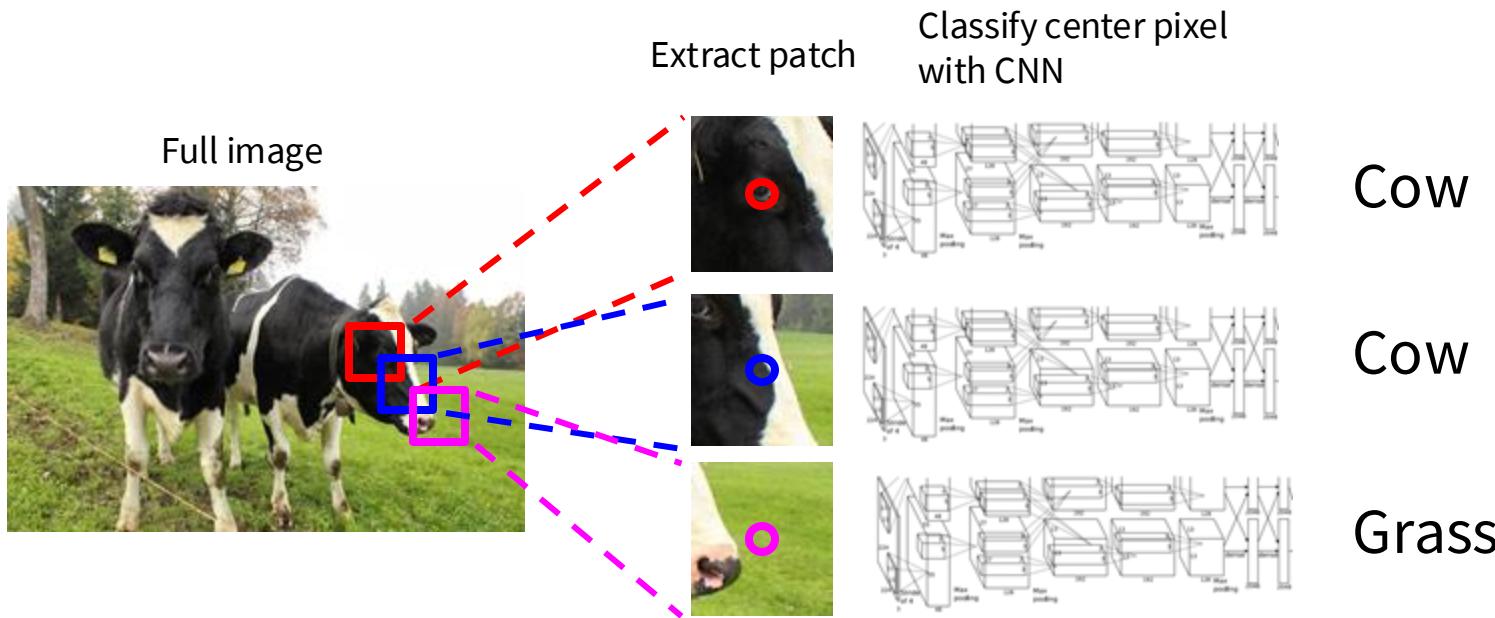
Q: how do we include context?

Semantic Segmentation Idea: Sliding Window



Q: how do we model this?

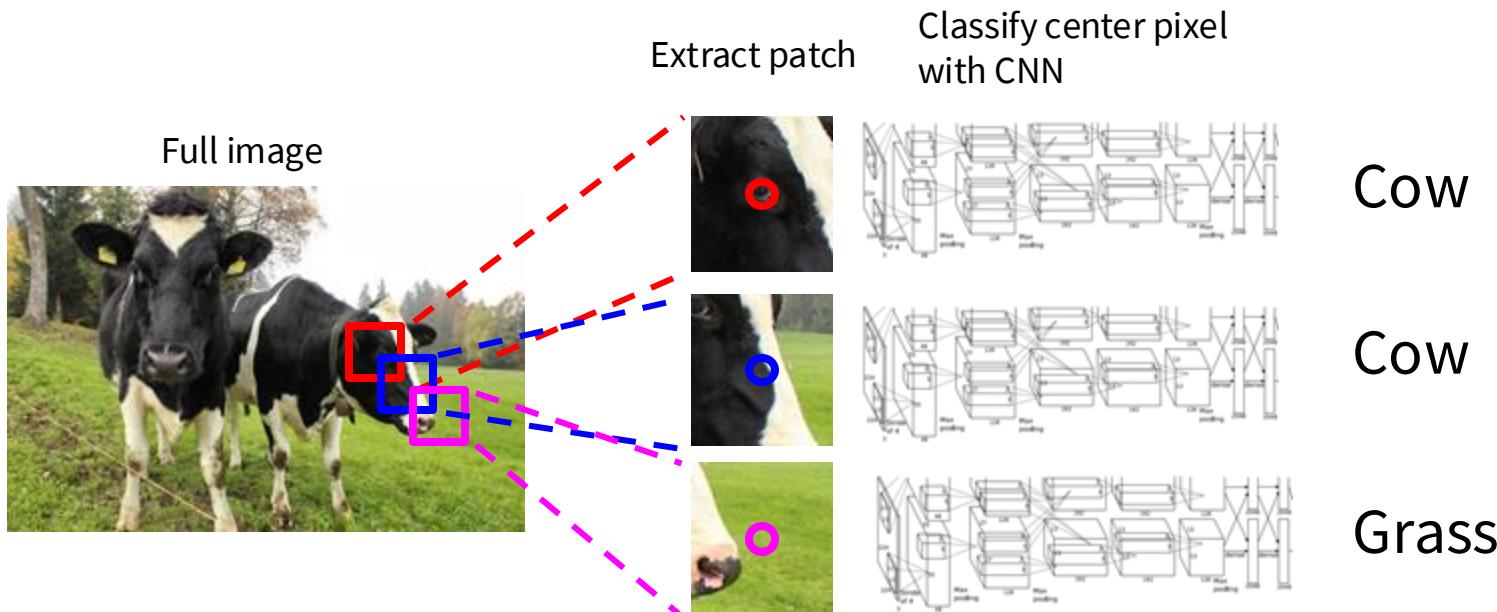
Semantic Segmentation Idea: Sliding Window



Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013

Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation Idea: Sliding Window

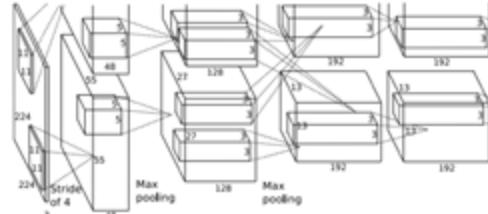


Problem: Very inefficient! Not reusing shared features between overlapping patches

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation Idea: Convolution

Full image

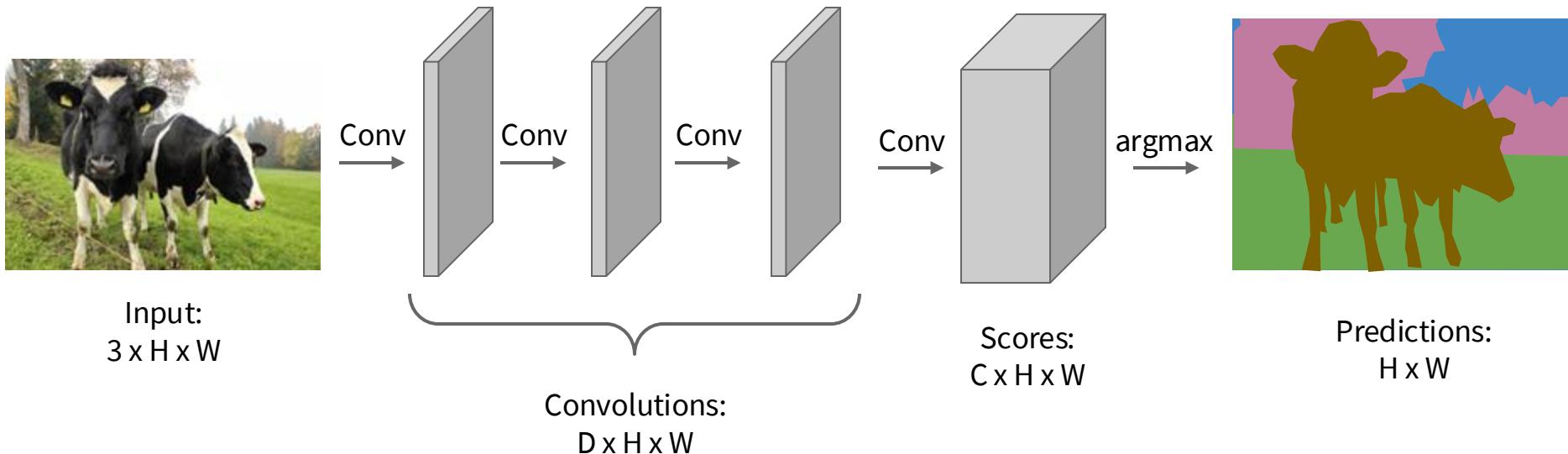


An intuitive idea: encode the entire image with conv net, and do semantic segmentation on top.

Problem: classification architectures often reduce feature spatial sizes to go deeper, but semantic segmentation requires the output size to be the same as input size.

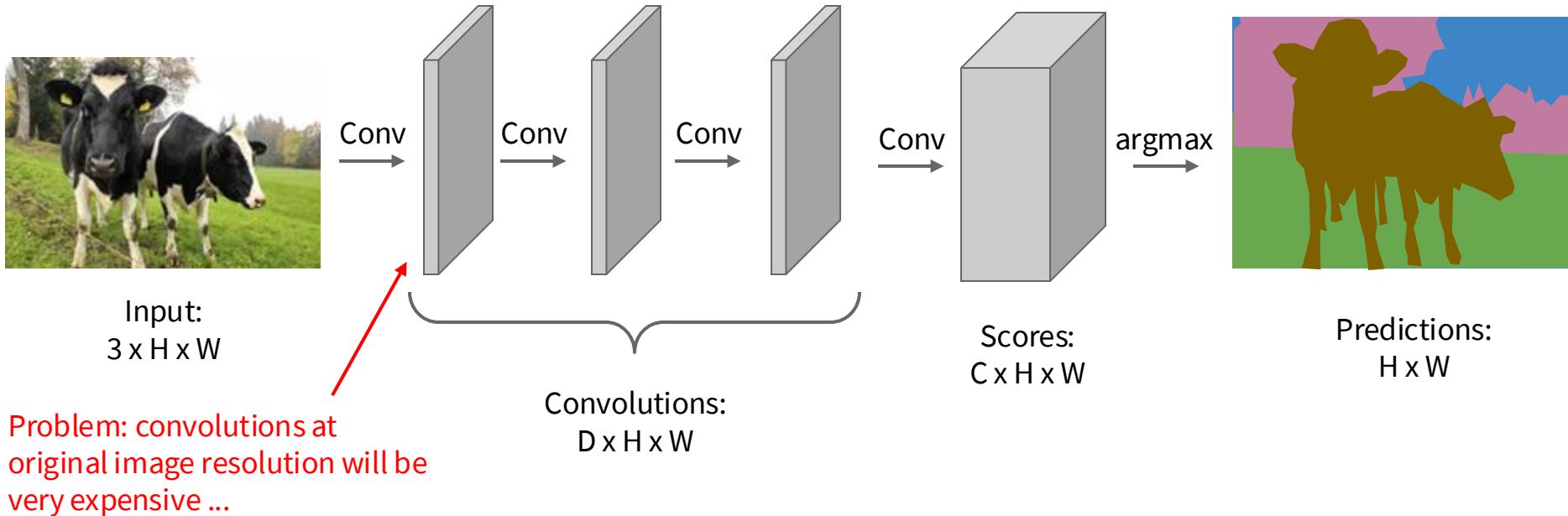
Semantic Segmentation Idea: Fully Convolutional

Design a network with only convolutional layers
without downsampling operators to make predictions
for pixels all at once!



Semantic Segmentation Idea: Fully Convolutional

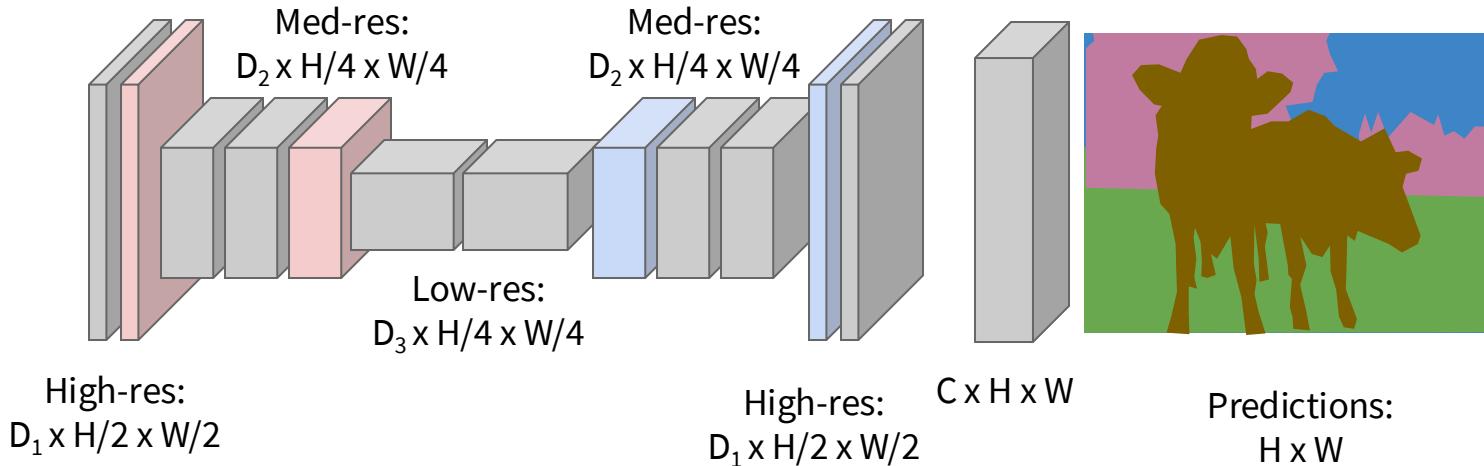
Design a network with only convolutional layers without downsampling operators to make predictions for pixels all at once!



Semantic Segmentation Idea: Fully Convolutional

Design network as a bunch of convolutional layers, with
downsampling and **upsampling** inside the network!

Input:
 $3 \times H \times W$



Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015

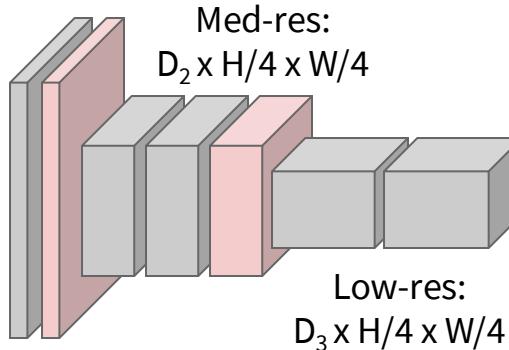
Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Semantic Segmentation Idea: Fully Convolutional

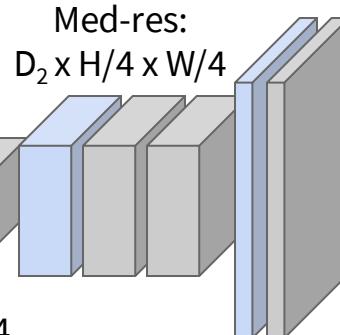
Downsampling:
Pooling, strided
convolution

Input:
 $3 \times H \times W$

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

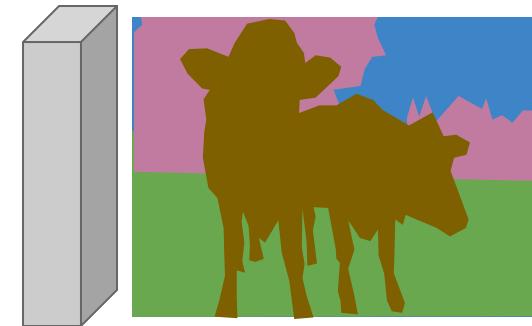


High-res:
 $D_1 \times H/2 \times W/2$



High-res:
 $D_1 \times H/2 \times W/2$

Upsampling:
???



Predictions:
 $H \times W$

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015

Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

In-Network upsampling: “Unpooling”

Nearest Neighbor

1	2
3	4

1	1	2	2
1	1	2	2
3	3	4	4
3	3	4	4

Input: 2 x 2

Output: 4 x 4

“Bed of Nails”

1	2
3	4

1	0	2	0
0	0	0	0
3	0	4	0
0	0	0	0

Output: 4 x 4

In-Network upsampling: “Max Unpooling”

Max Pooling

Remember which element was max!

1	2	6	3
3	5	2	1
1	2	2	1
7	3	4	8

Input: 4 x 4

5	6
7	8

Output: 2 x 2

Max Unpooling

Use positions from
pooling layer

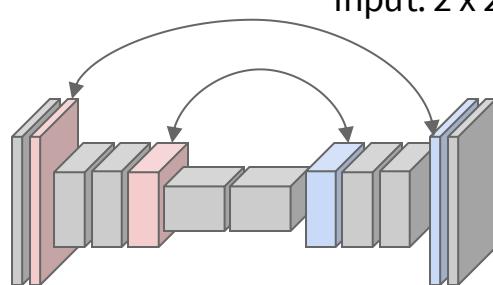
1	2
3	4

Rest of the network

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

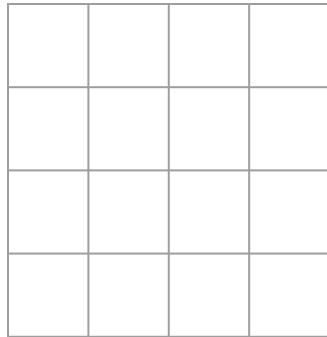
Output: 4 x 4

Corresponding pairs of
downsampling and
upsampling layers

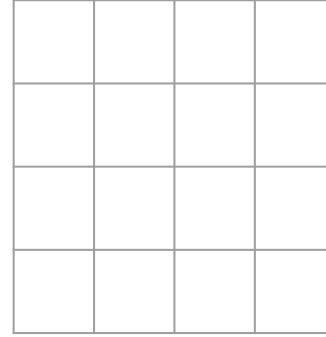


Learnable Upsampling

Recall: Normal 3×3 convolution, stride 1 pad 1



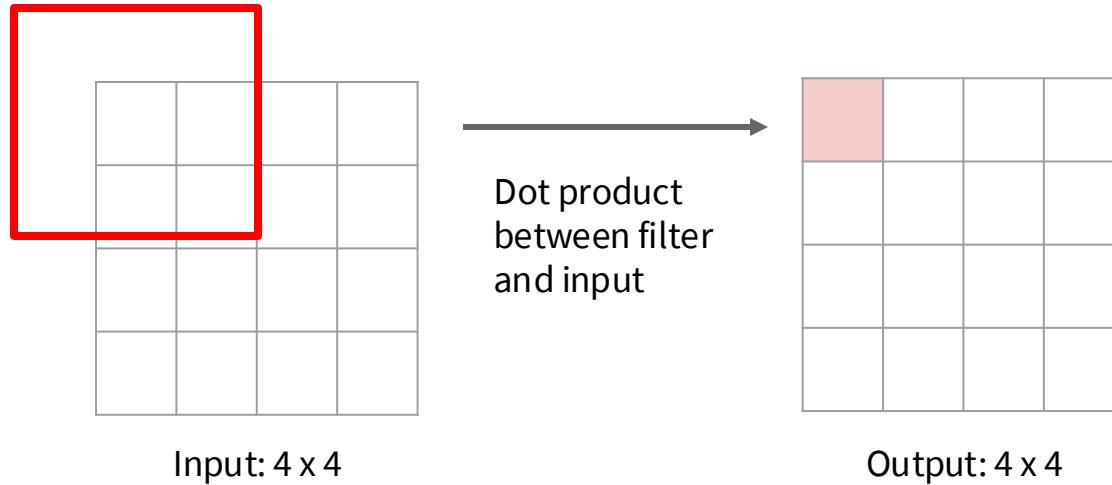
Input: 4×4



Output: 4×4

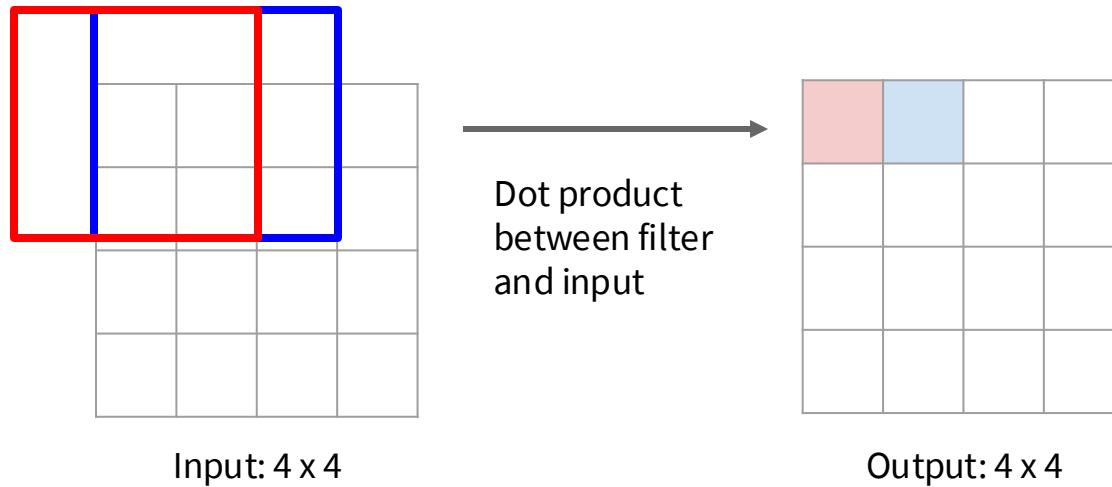
Learnable Upsampling

Recall: Normal 3×3 convolution, stride 1 pad 1



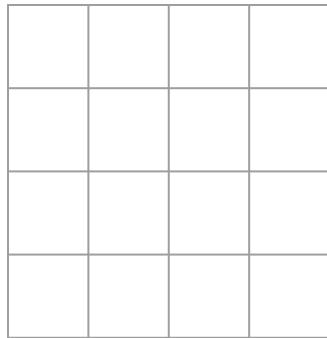
Learnable Upsampling

Recall: Normal 3×3 convolution, stride 1 pad 1

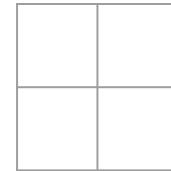


Learnable Upsampling

Recall: Normal 3×3 convolution, stride 2 pad 1



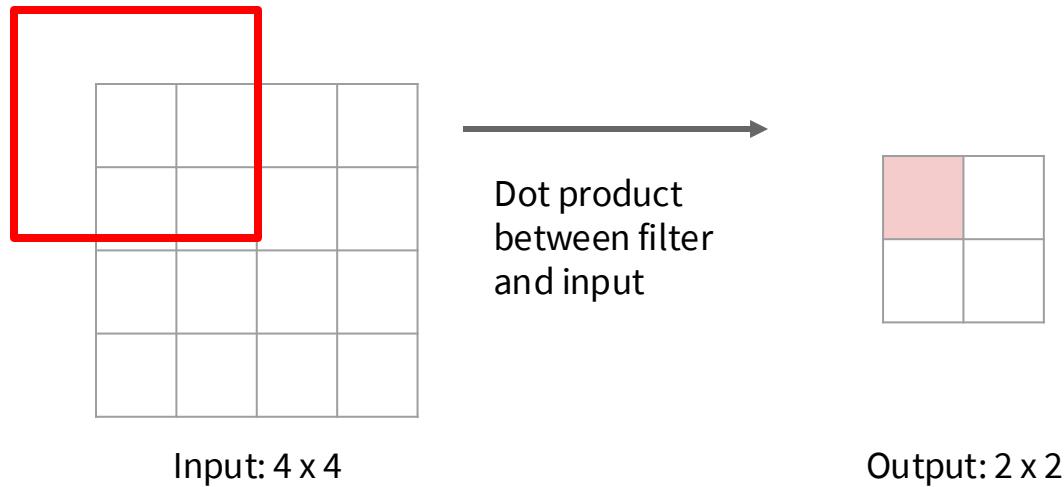
Input: 4×4



Output: 2×2

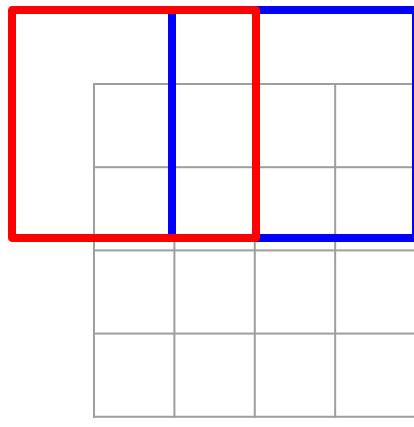
Learnable Upsampling

Recall: Normal 3×3 convolution, stride 2 pad 1



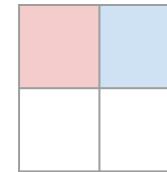
Learnable Upsampling

Recall: Normal 3×3 convolution, stride 2 pad 1



Input: 4×4

Dot product
between filter
and input



Output: 2×2

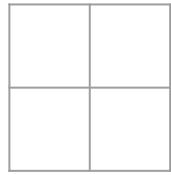
Filter moves 2 pixels in the input for every one pixel in the output

Stride gives ratio between movement in input and output

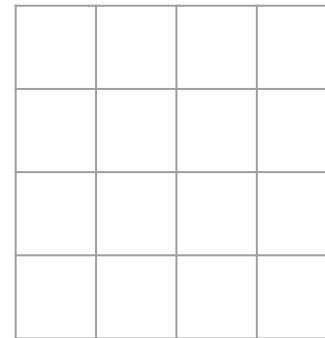
We can interpret strided convolution as “learnable downsampling”.

Learnable Upsampling: Transposed Convolution

3 x 3 transposed convolution, stride 2 pad 1



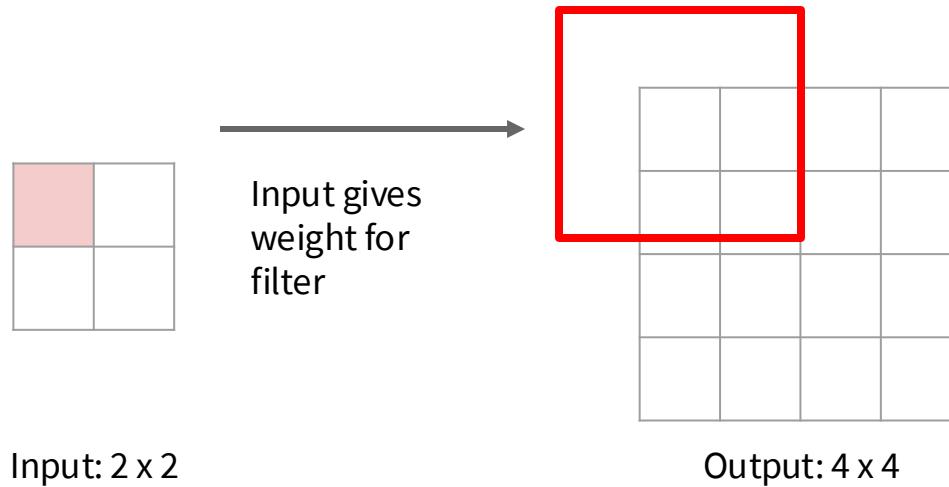
Input: 2 x 2



Output: 4 x 4

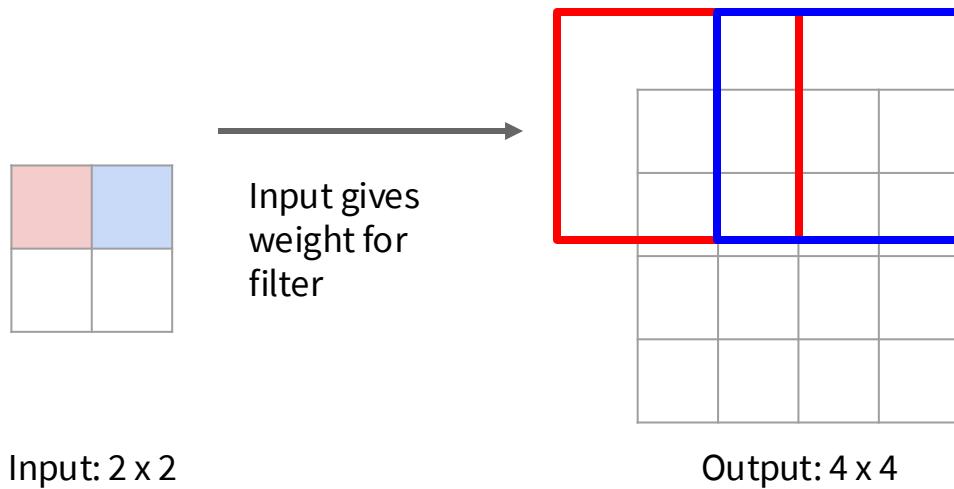
Learnable Upsampling: Transposed Convolution

3 x 3 transposed convolution, stride 2 pad 1



Learnable Upsampling: Transposed Convolution

3 x 3 transposed convolution, stride 2 pad 1

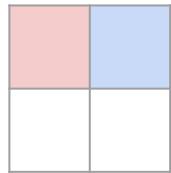


Filter moves 2 pixels in the output for every one pixel in the input

Stride gives ratio between movement in output and input

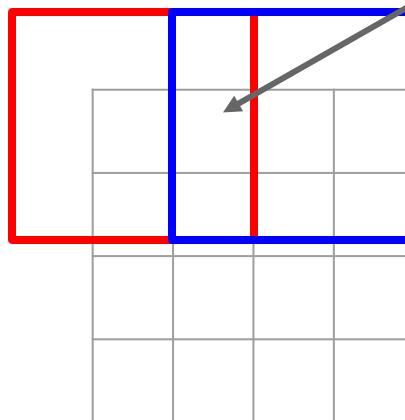
Learnable Upsampling: Transposed Convolution

3 x 3 transposed convolution, stride 2 pad 1



Input: 2 x 2

Input gives weight for filter



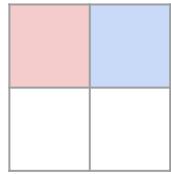
Sum where output overlaps

Filter moves 2 pixels in the output for every one pixel in the input

Stride gives ratio between movement in output and input

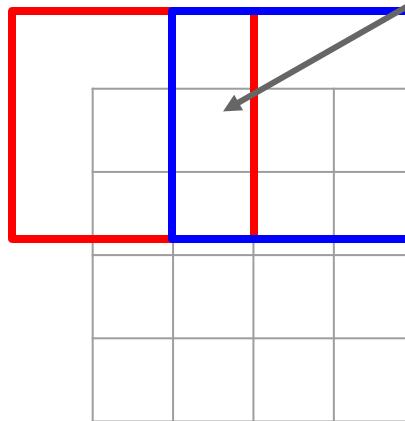
Learnable Upsampling: Transposed Convolution

3 x 3 transposed convolution, stride 2 pad 1



Input: 2 x 2

Input gives weight for filter



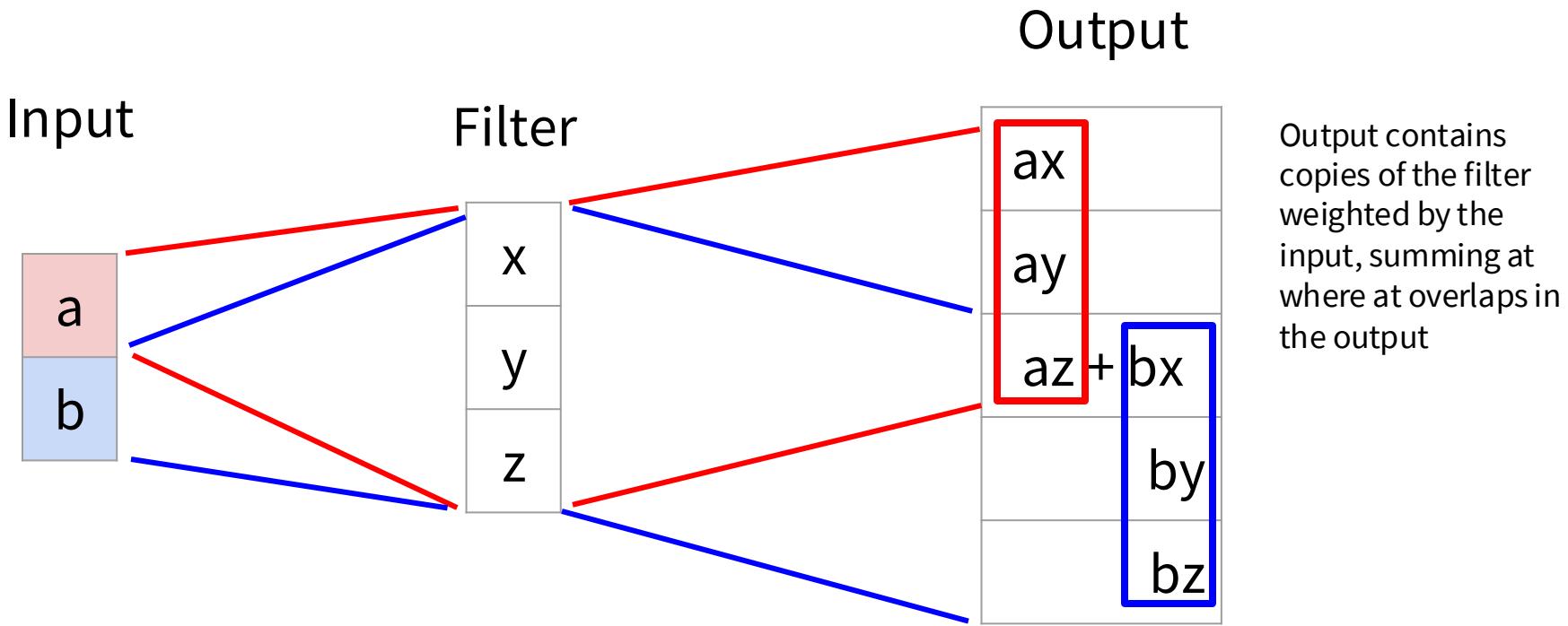
Output: 4 x 4

Sum where output overlaps

Filter moves 2 pixels in the output for every one pixel in the input

Stride gives ratio between movement in output and input

Learnable Upsampling: 1D Example

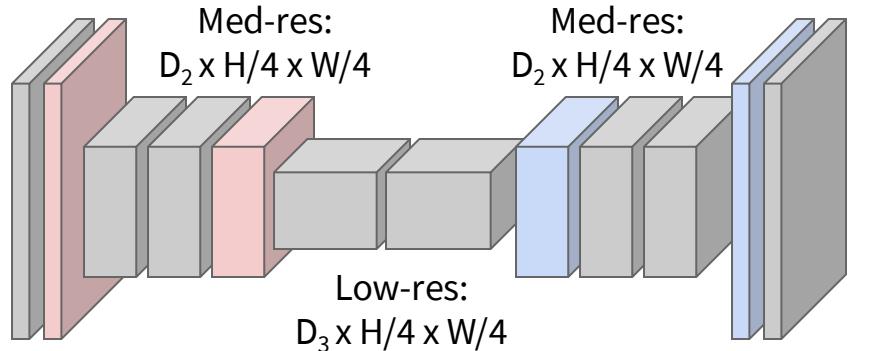


Semantic Segmentation Idea: Fully Convolutional

Downsampling:
Pooling, strided
convolution

Input:
 $3 \times H \times W$

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!



High-res:
 $D_1 \times H/2 \times W/2$

Low-res:
 $D_3 \times H/4 \times W/4$

High-res:
 $D_1 \times H/2 \times W/2$

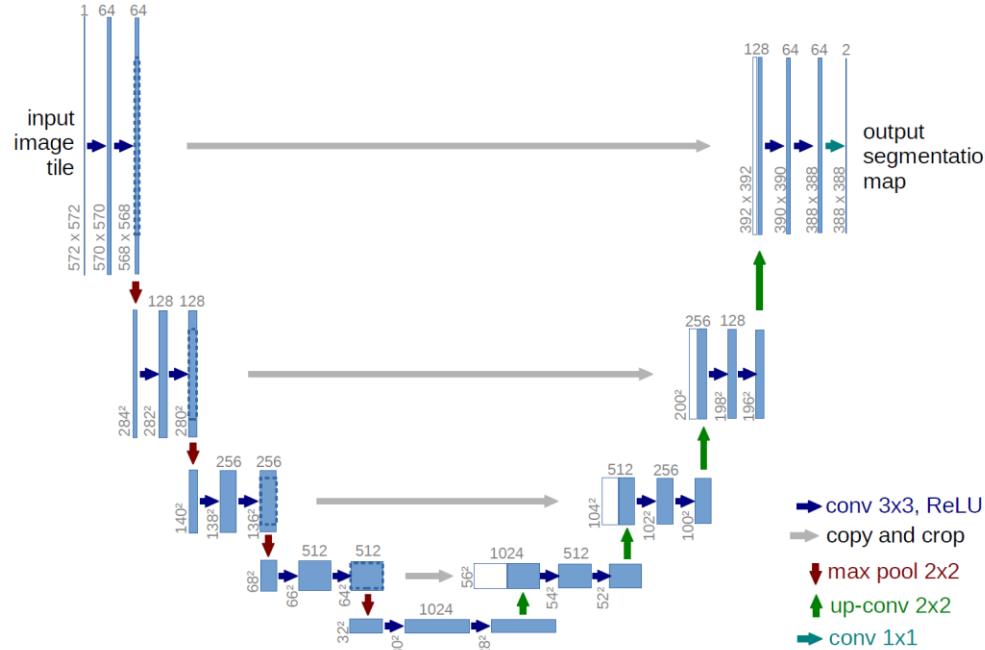
Upsampling:
Unpooling or strided
transposed convolution

Predictions:
 $H \times W$

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015

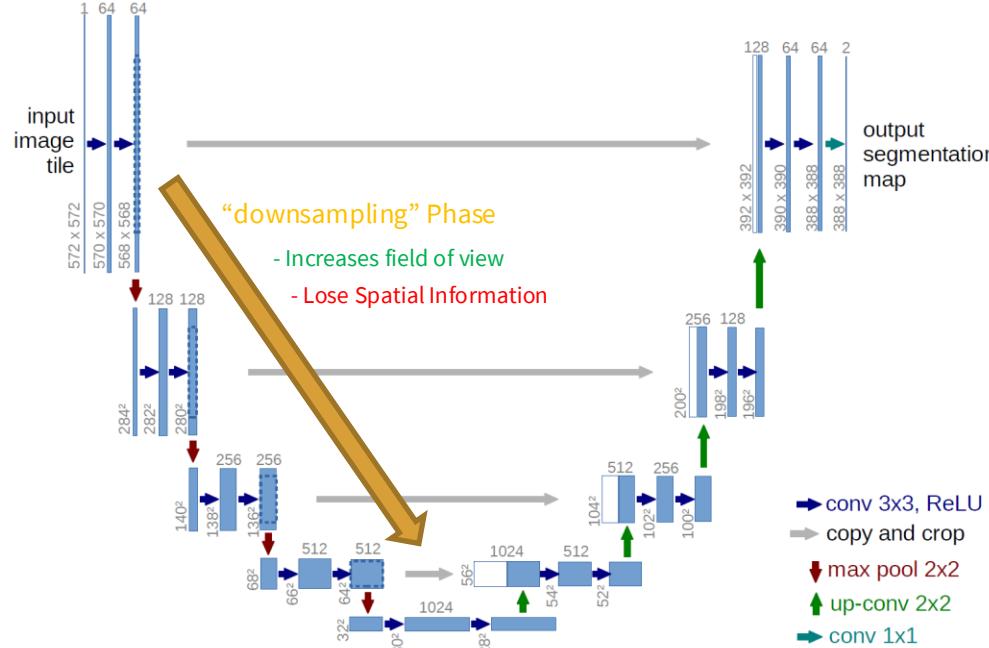
Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

U-Net



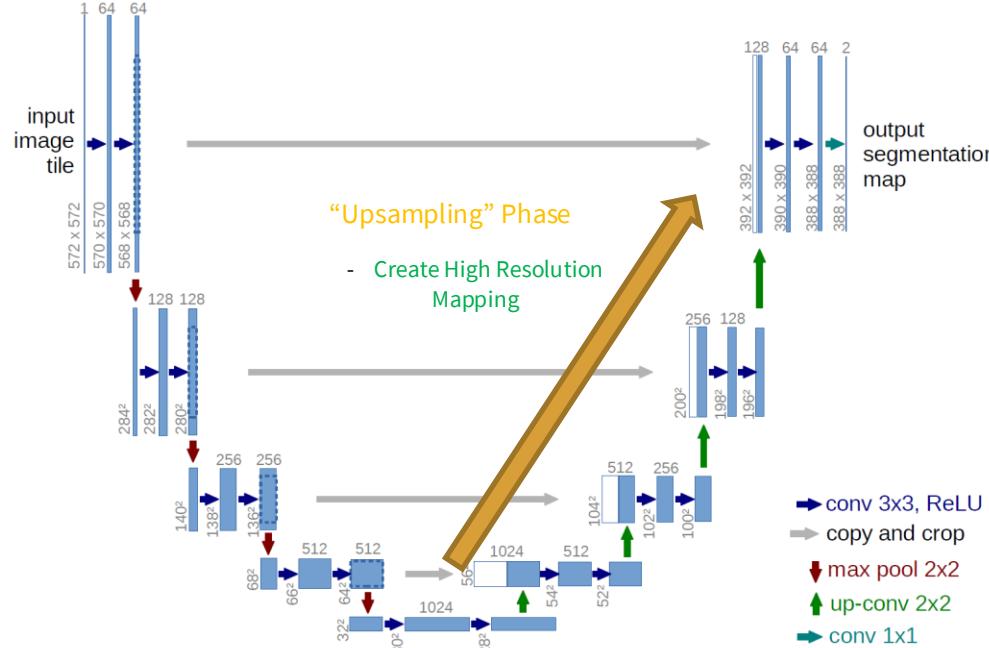
Ronneberger et al. (2015) U-net Architecture

U-Net



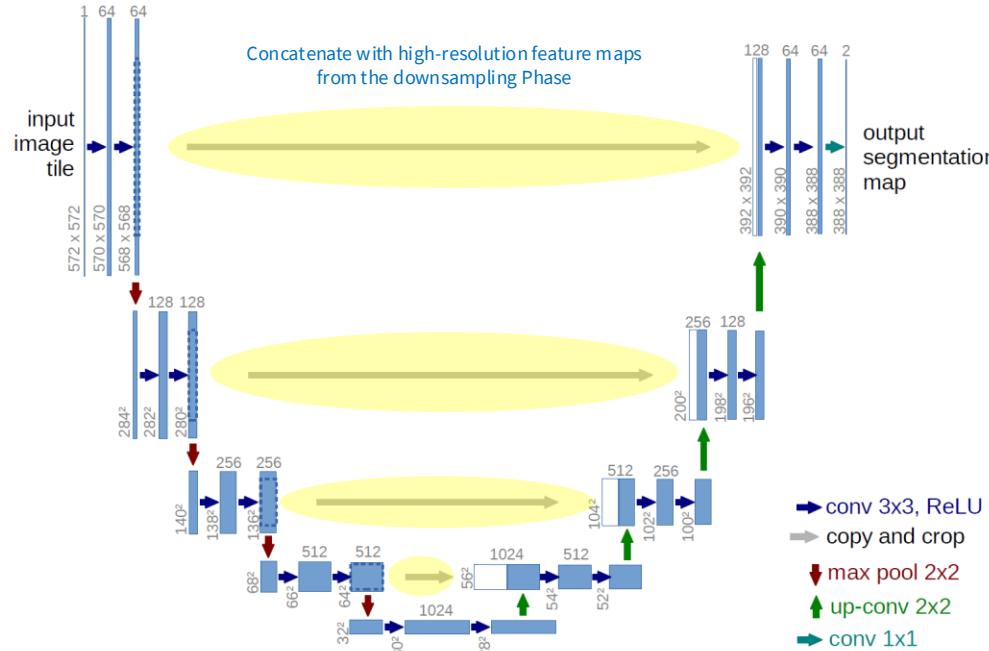
Ronneberger et al. (2015) U-net Architecture

U-Net



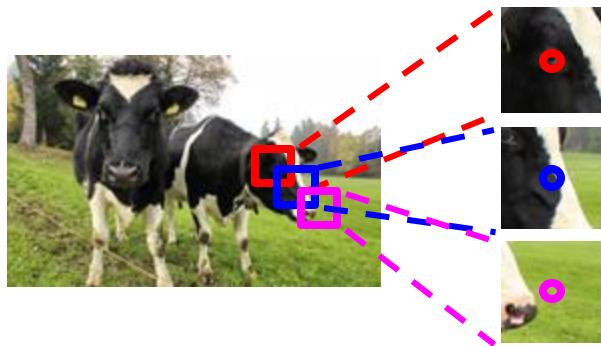
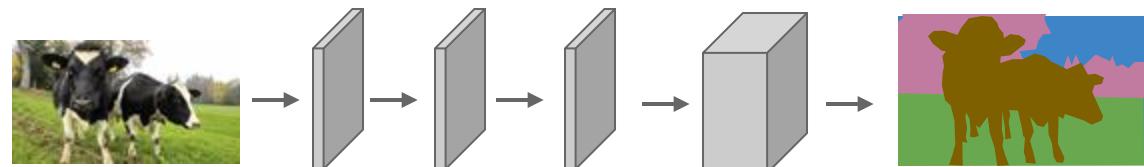
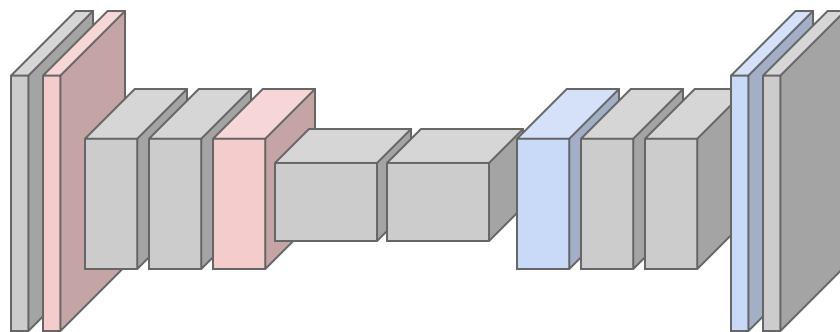
Ronneberger et al. (2015) U-net Architecture

U-Net



Ronneberger et al. (2015) U-net Architecture

Semantic Segmentation: Summary

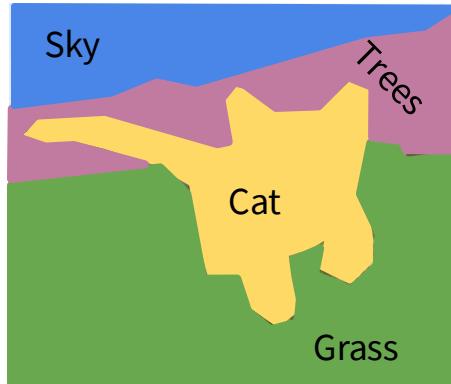
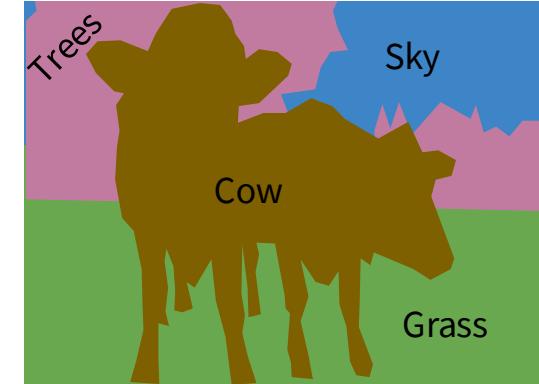


Semantic Segmentation

Label each pixel in the image with a category label

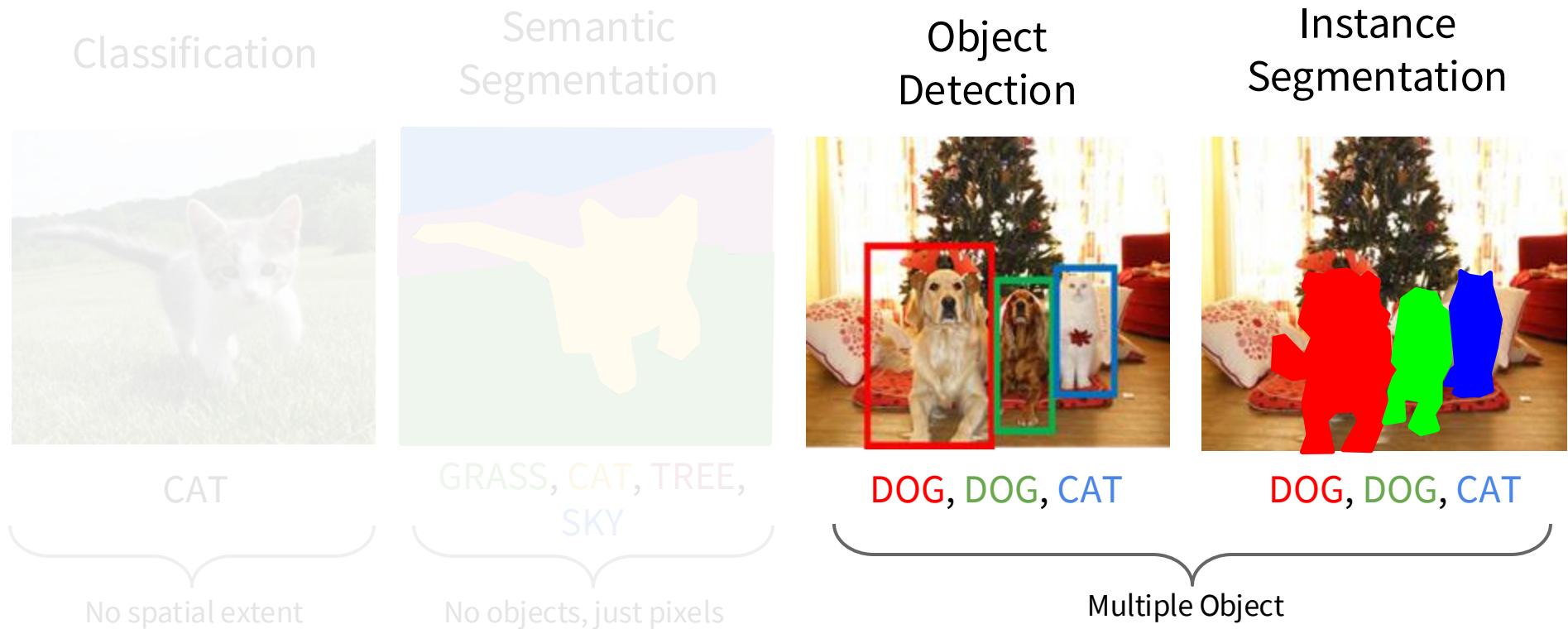
Don't differentiate instances, only care about pixels

[This image is CC0 public domain](#)



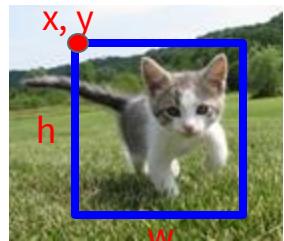
Object Detection

Object Detection

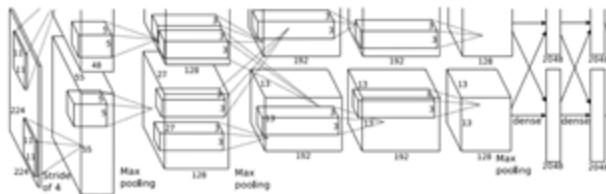
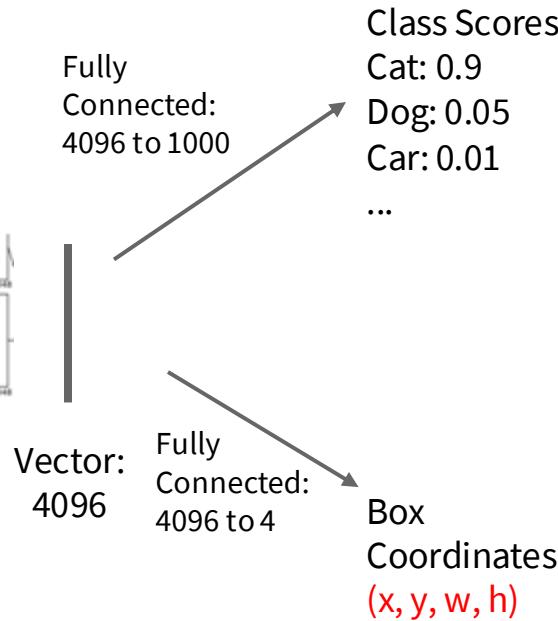


Object Detection: Single Object

(Classification + Localization)

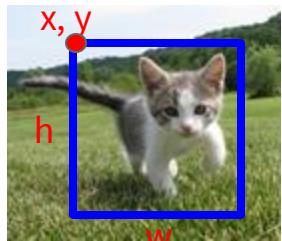


[This image is CC0 public domain](#)

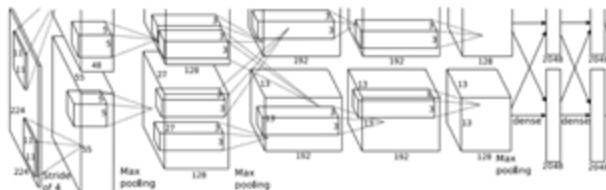


Object Detection: Single Object

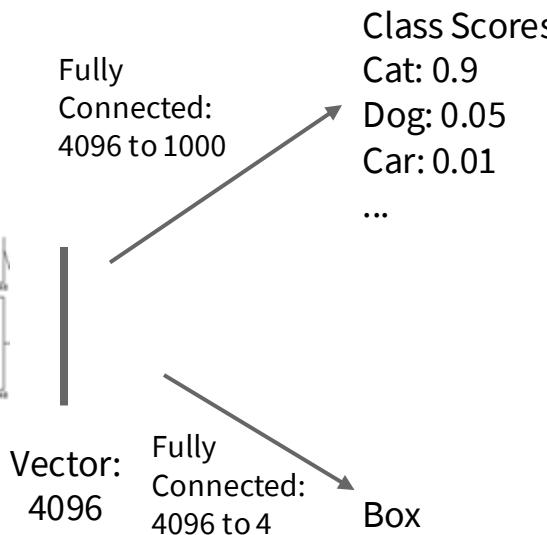
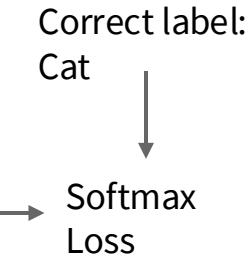
(Classification + Localization)



[This image](#) is CC0 public domain

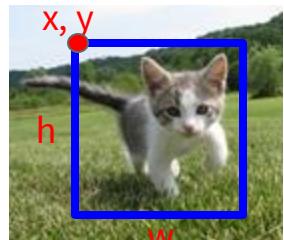


Treat localization as a
regression problem!

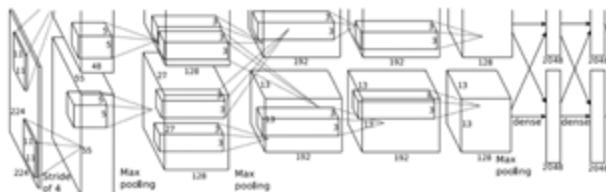
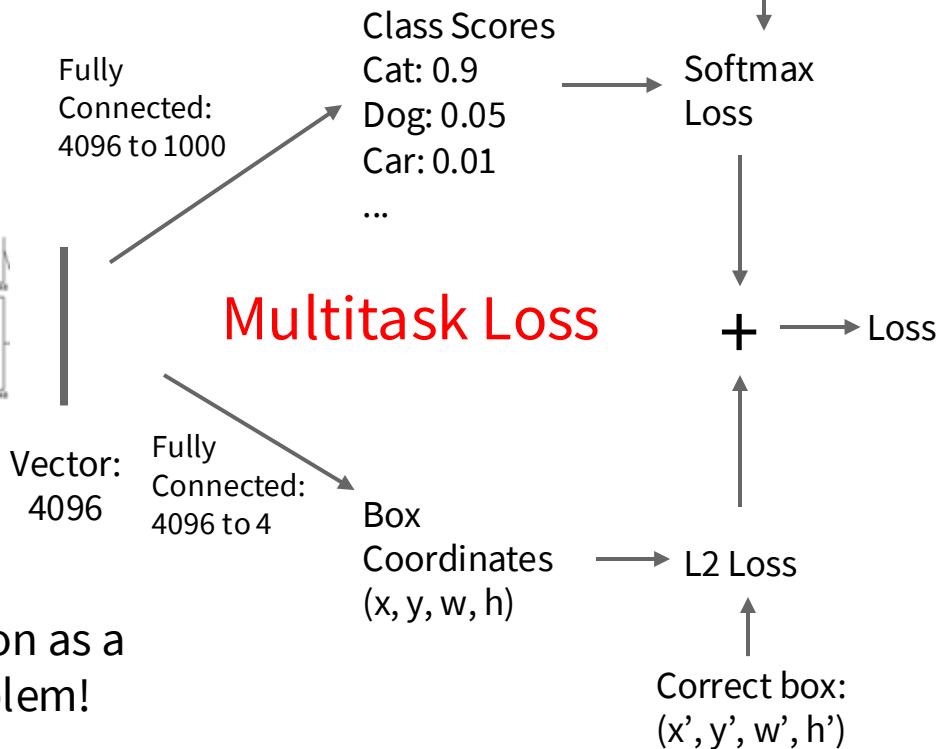


Object Detection: Single Object

(Classification + Localization)

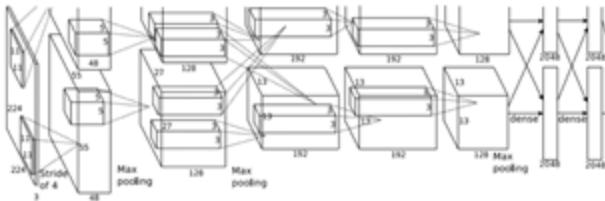


[This image is CC0 public domain](#)



Treat localization as a regression problem!

Object Detection: Multiple Objects



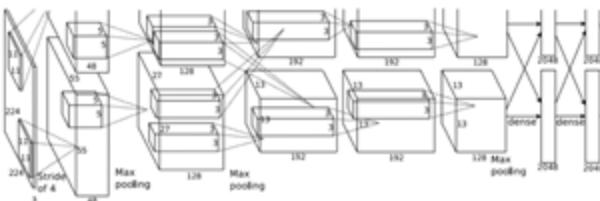
CAT: (x, y, w, h)



DOG: (x, y, w, h)

DOG: (x, y, w, h)

CAT: (x, y, w, h)



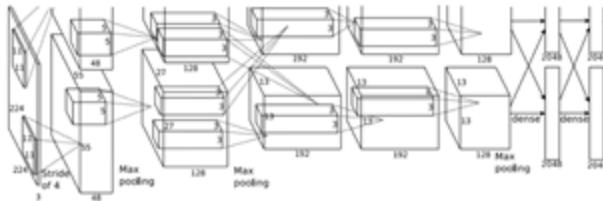
DUCK: (x, y, w, h)

DUCK: (x, y, w, h)

...

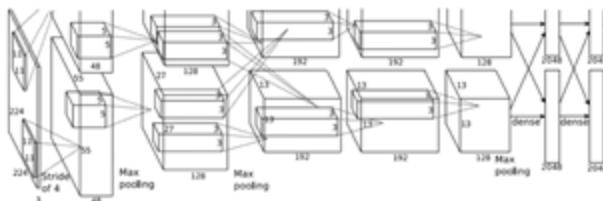
Object Detection: Multiple Objects

Each image needs a different number of outputs!



CAT: (x, y, w, h)

4 numbers

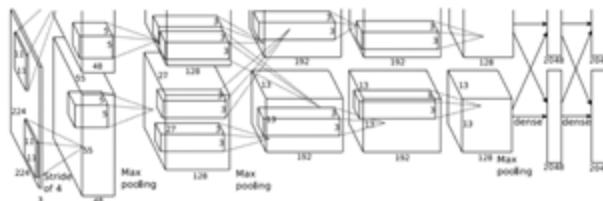


DOG: (x, y, w, h)

12 numbers

DOG: (x, y, w, h)

CAT: (x, y, w, h)



DUCK: (x, y, w, h)

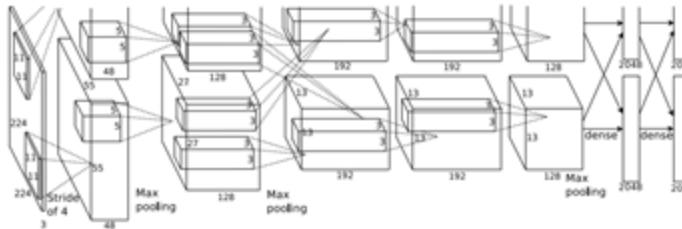
Many numbers!

DUCK: (x, y, w, h)

...

Object Detection: Multiple Objects

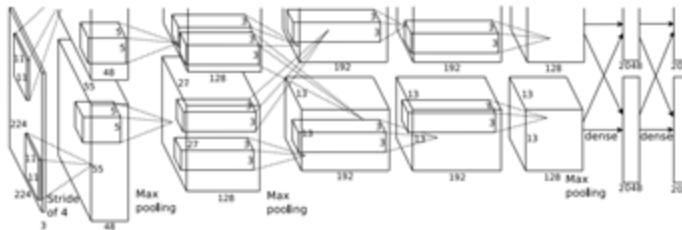
Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



Dog? NO
Cat? NO
Background? YES

Object Detection: Multiple Objects

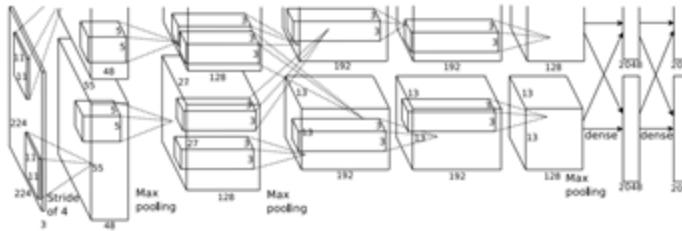
Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



Dog? YES
Cat? NO
Background? NO

Object Detection: Multiple Objects

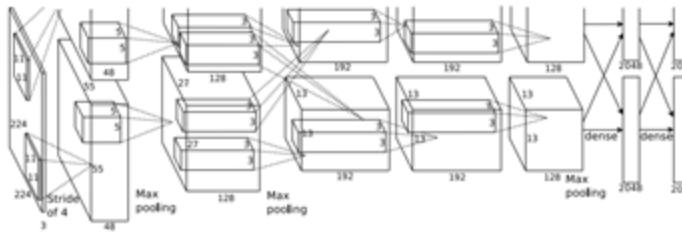
Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



Dog? YES
Cat? NO
Background? NO

Object Detection: Multiple Objects

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

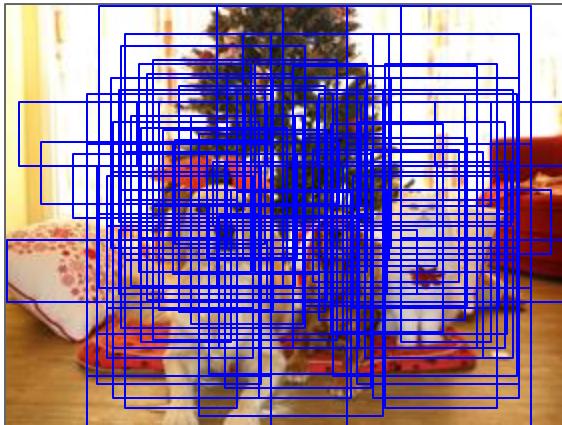
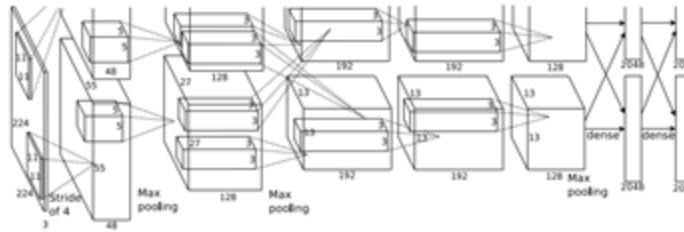


Dog? NO
Cat? YES
Background? NO

Q: What's the problem with this approach?

Object Detection: Multiple Objects

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

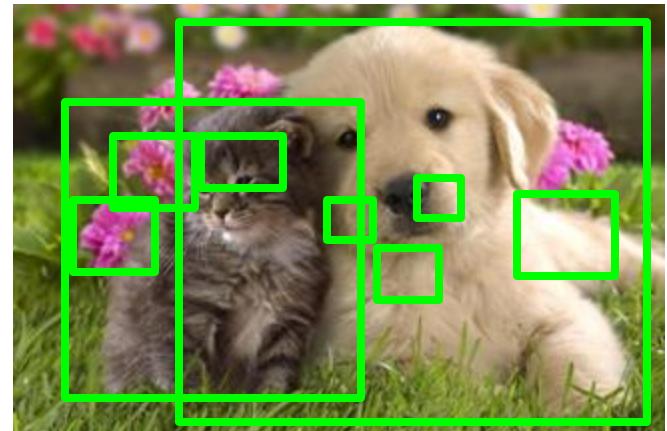


Dog? NO
Cat? YES
Background? NO

Problem: Need to apply CNN to huge number of locations, scales, and aspect ratios, very computationally expensive!

Region Proposals: Selective Search

- Find “blobby” image regions that are likely to contain objects
- Relatively fast to run; e.g. Selective Search gives 2000 region proposals in a few seconds on CPU



Alex et al, “Measuring the objectness of image windows”, TPAMI 2012

Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014

Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

R-CNN

Input image

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Figure copyright Ross Girshick, 2015; [source](#). Reproduced with permission.

R-CNN



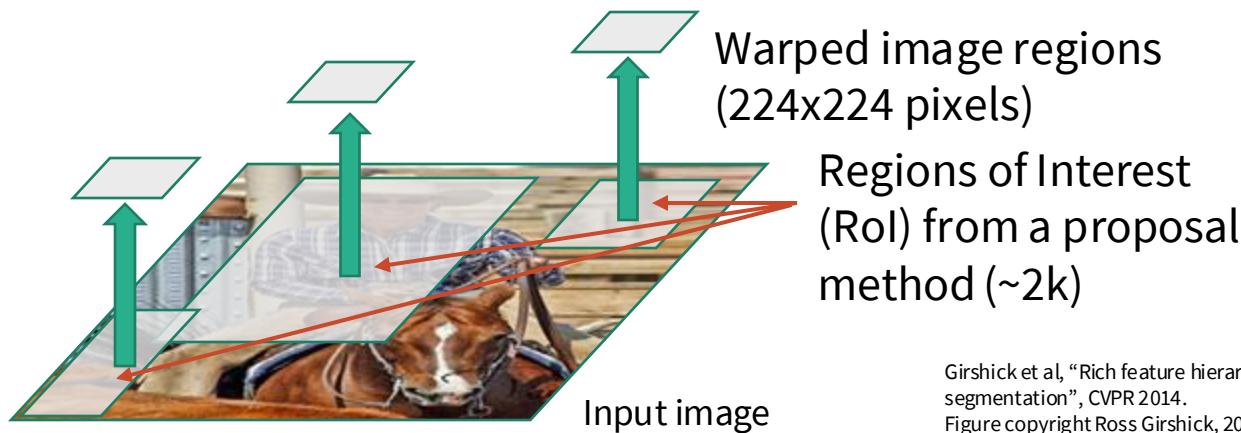
Input image

Regions of Interest
(RoI) from a proposal
method (~2k)

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Figure copyright Ross Girshick, 2015; [source](#). Reproduced with permission.

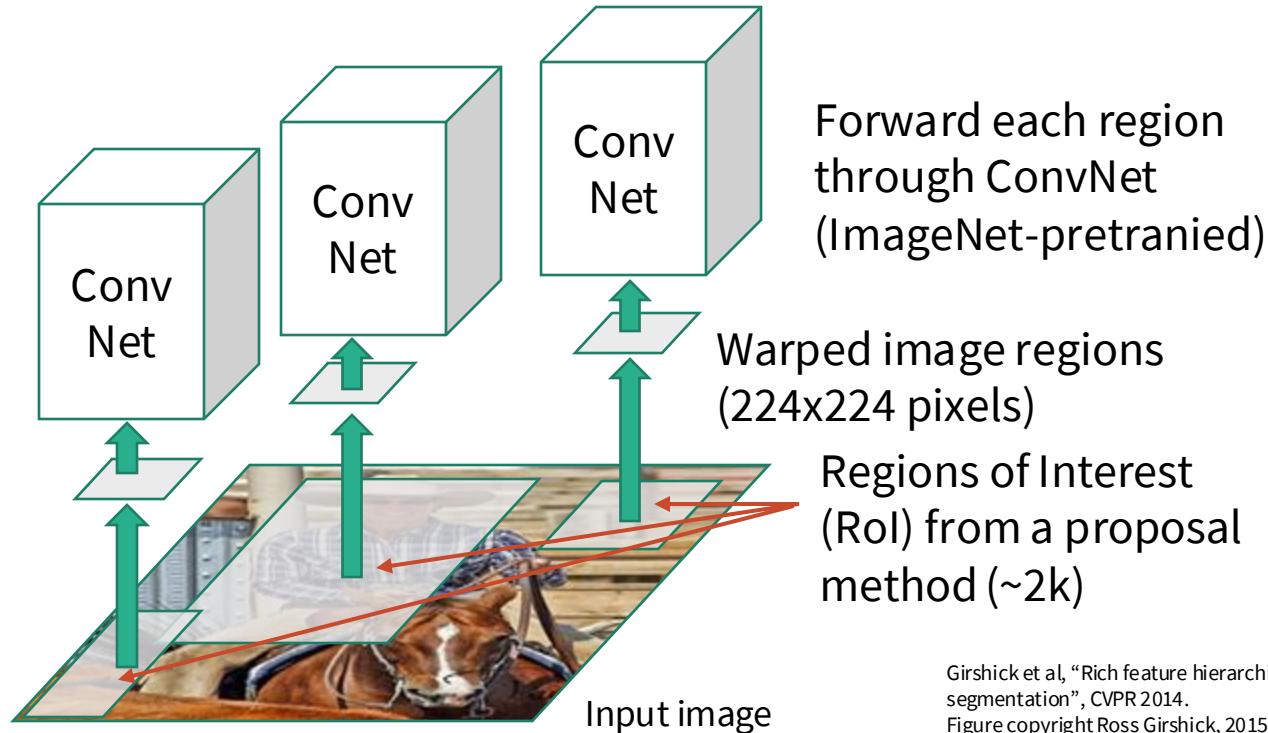
R-CNN



Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Figure copyright Ross Girshick, 2015; [source](#). Reproduced with permission.

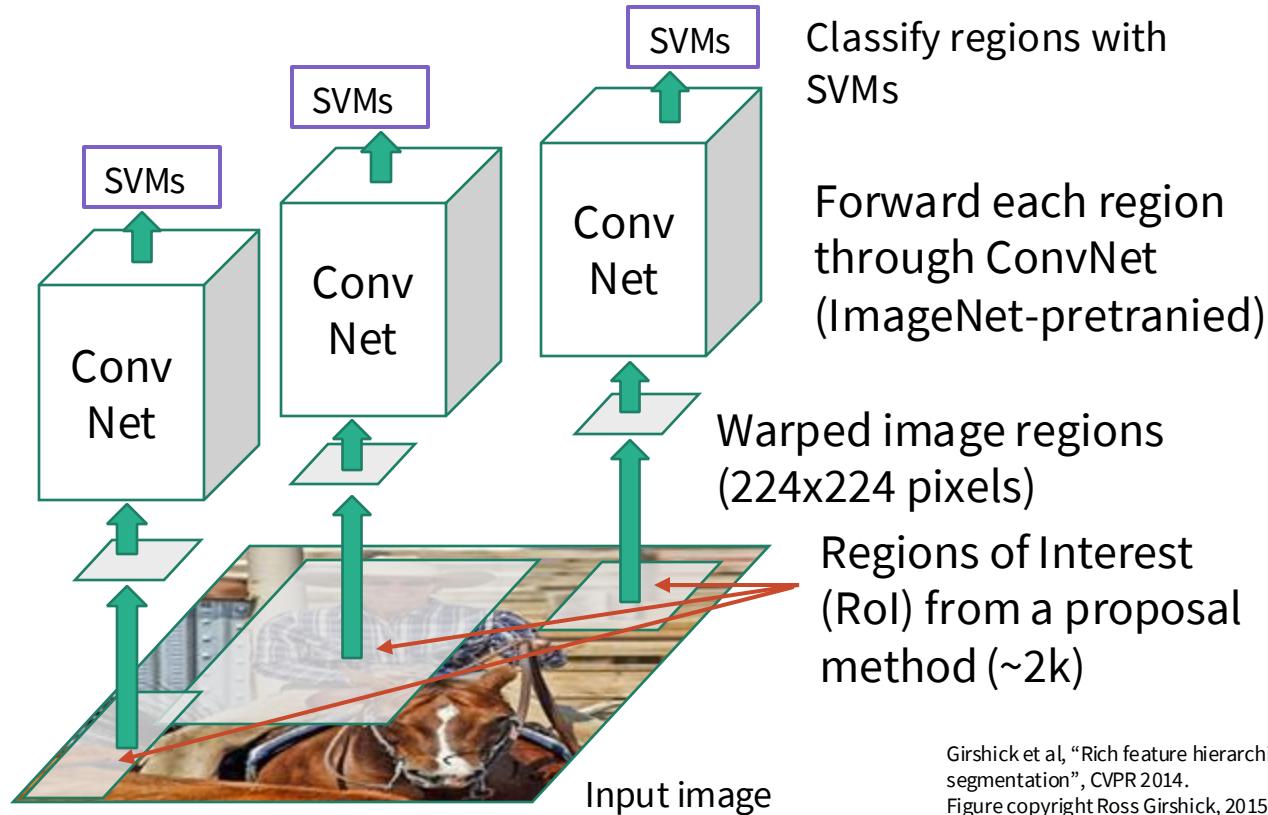
R-CNN



Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Figure copyright Ross Girshick, 2015; [source](#). Reproduced with permission.

R-CNN

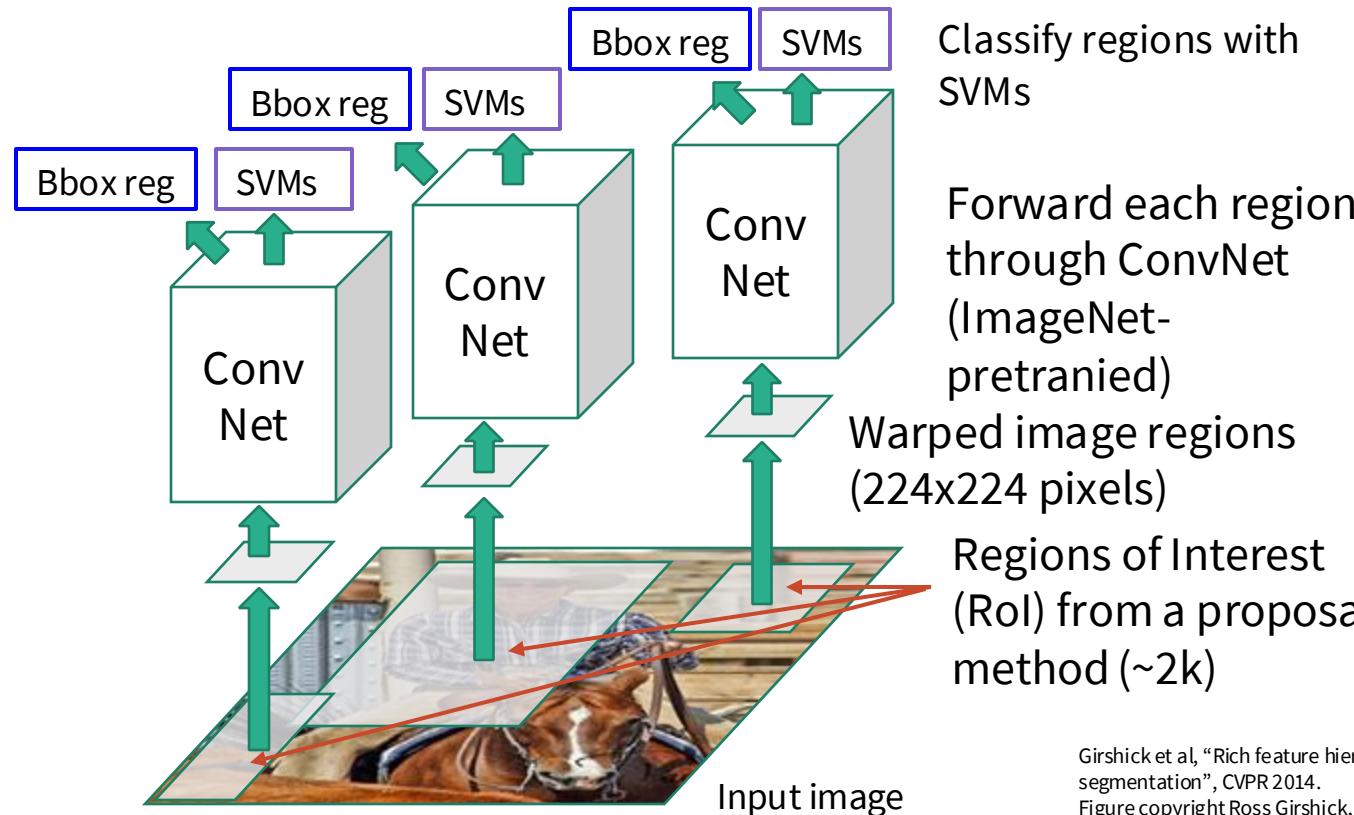


Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Figure copyright Ross Girshick, 2015; [source](#). Reproduced with permission.

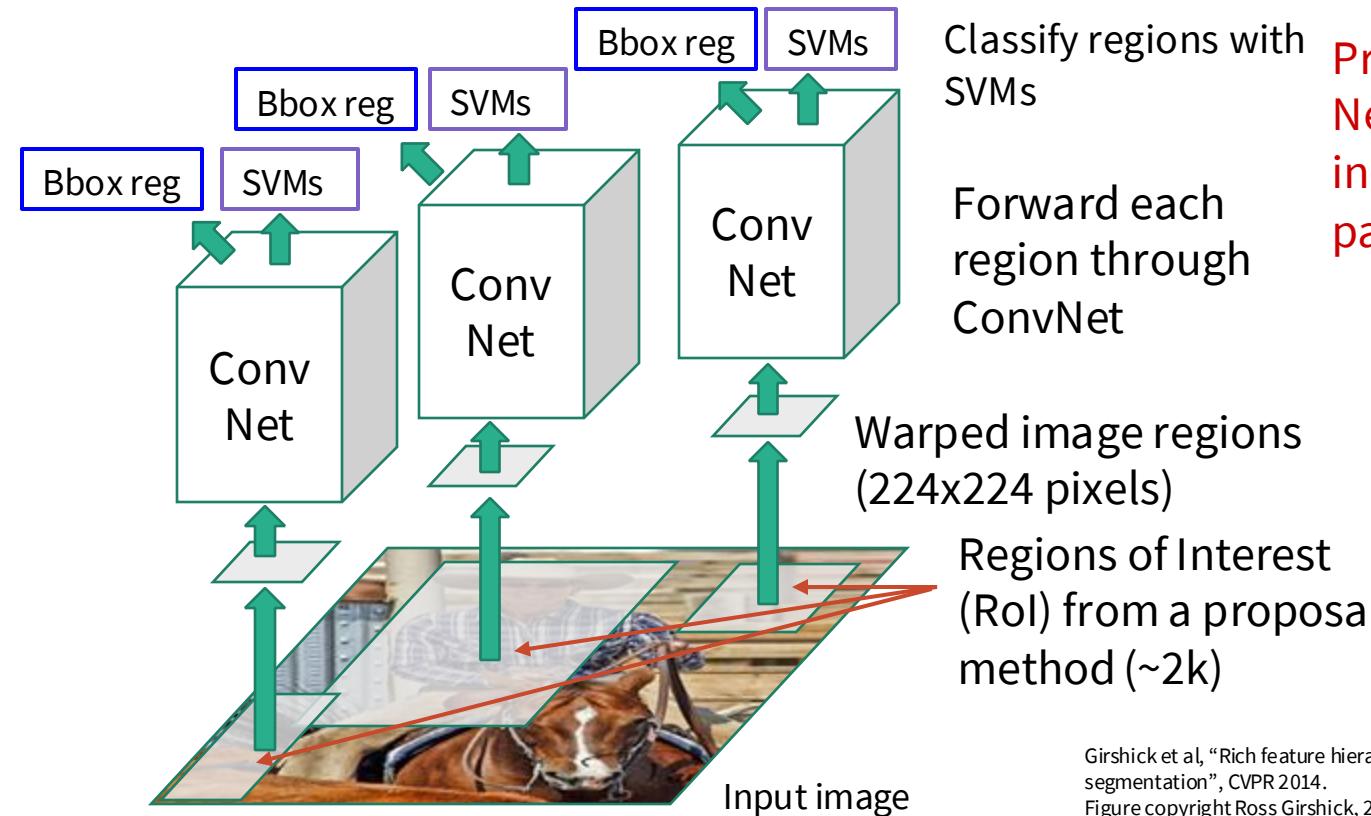
R-CNN

Predict “corrections” to the RoI: 4 numbers: (dx, dy, dw, dh)



Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; [source](#). Reproduced with permission.

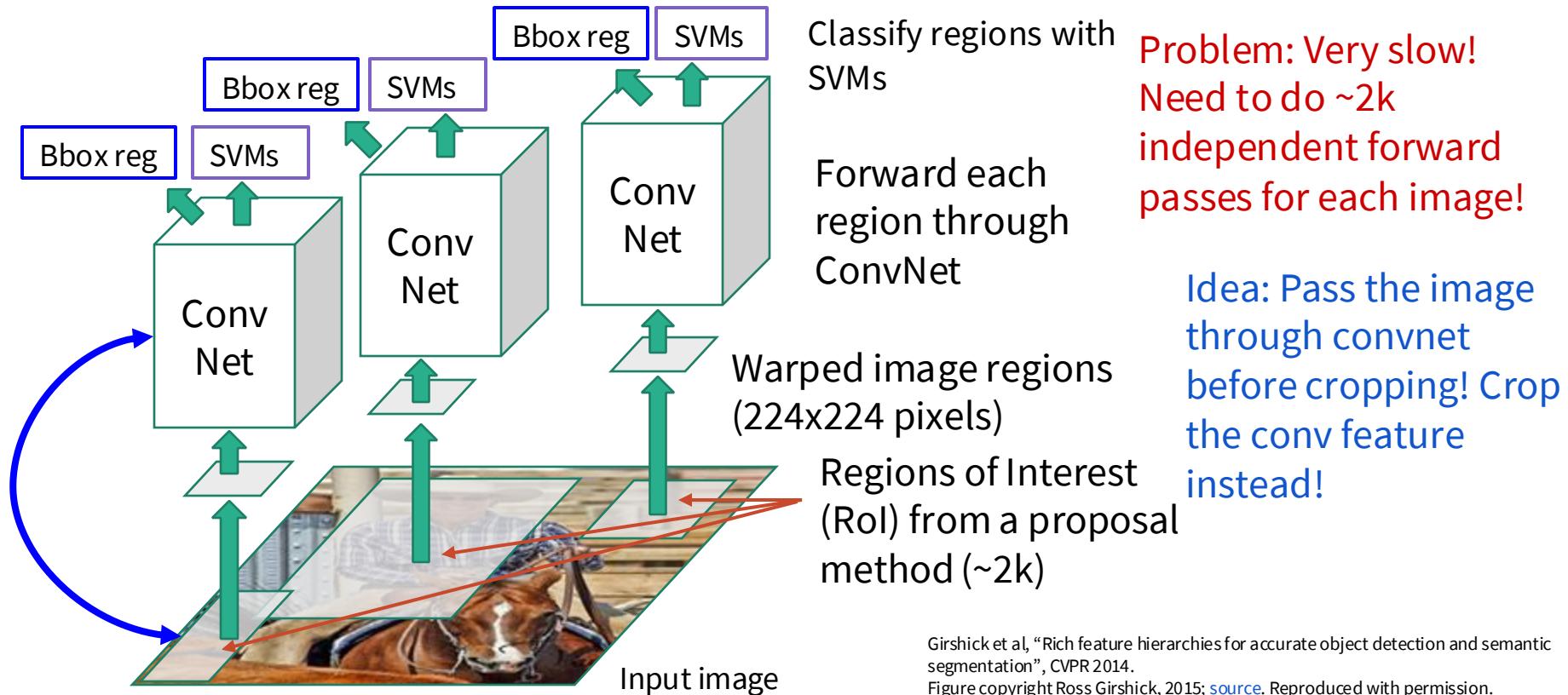
R-CNN



Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.
Figure copyright Ross Girshick, 2015; [source](#). Reproduced with permission.

“Slow” R-CNN

Predict “corrections” to the RoI: 4 numbers: (dx, dy, dw, dh)

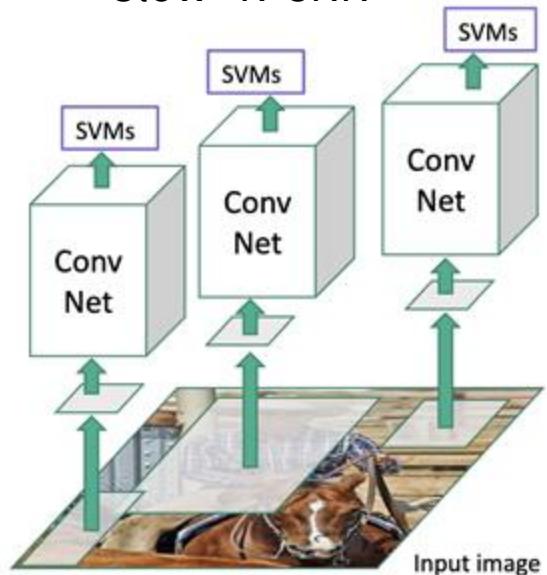


Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; [source](#). Reproduced with permission.

Fast R-CNN

Input image

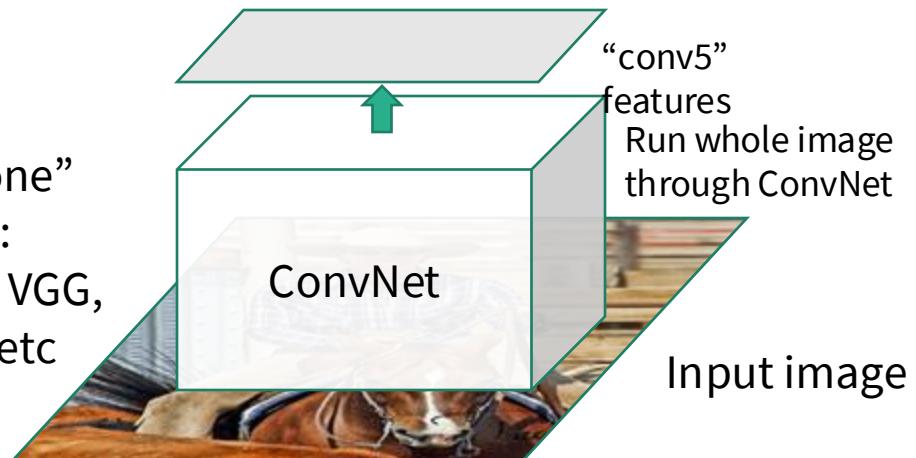
“Slow” R-CNN



Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; [source](#). Reproduced with permission.

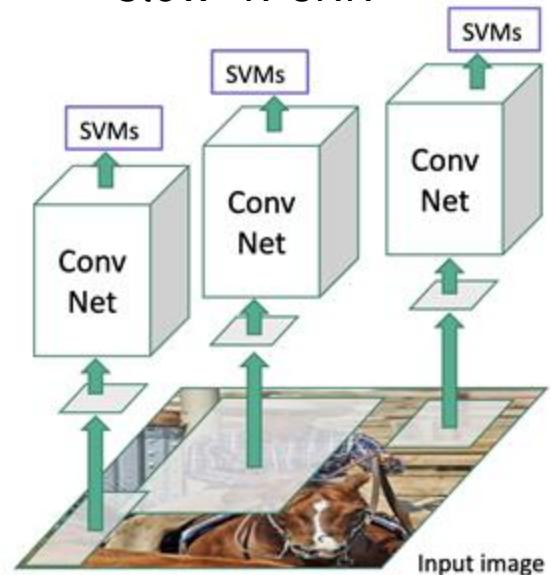
Fast R-CNN

“Backbone” network:
AlexNet, VGG,
ResNet, etc

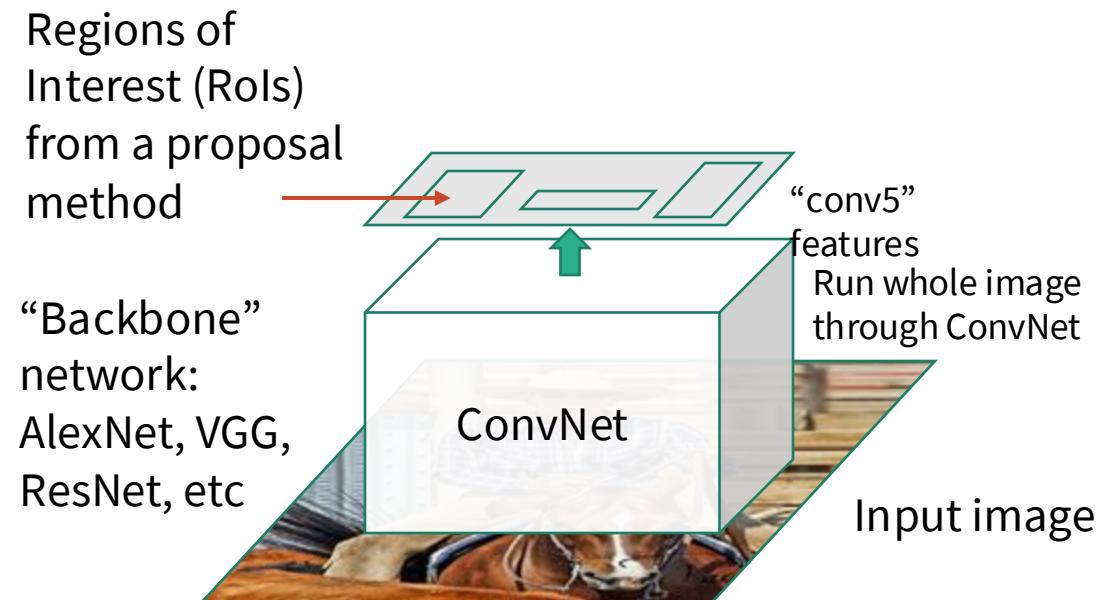


Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; [source](#). Reproduced with permission.

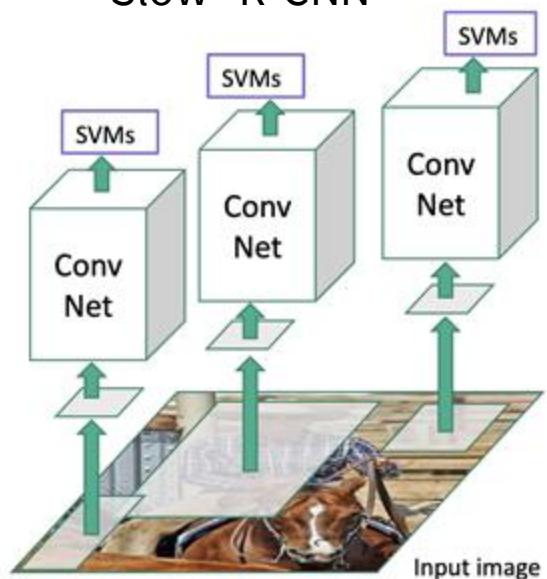
“Slow” R-CNN



Fast R-CNN



“Slow” R-CNN

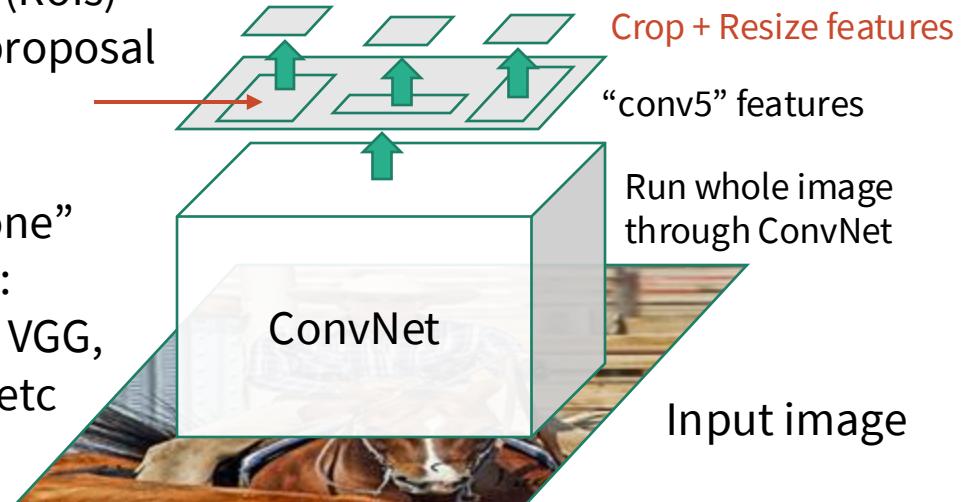


Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; [source](#). Reproduced with permission.

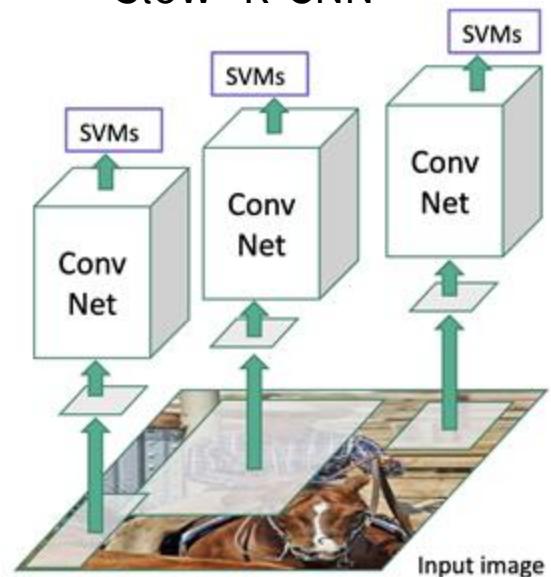
Fast R-CNN

Regions of Interest (Rois)
from a proposal
method

“Backbone”
network:
AlexNet, VGG,
ResNet, etc

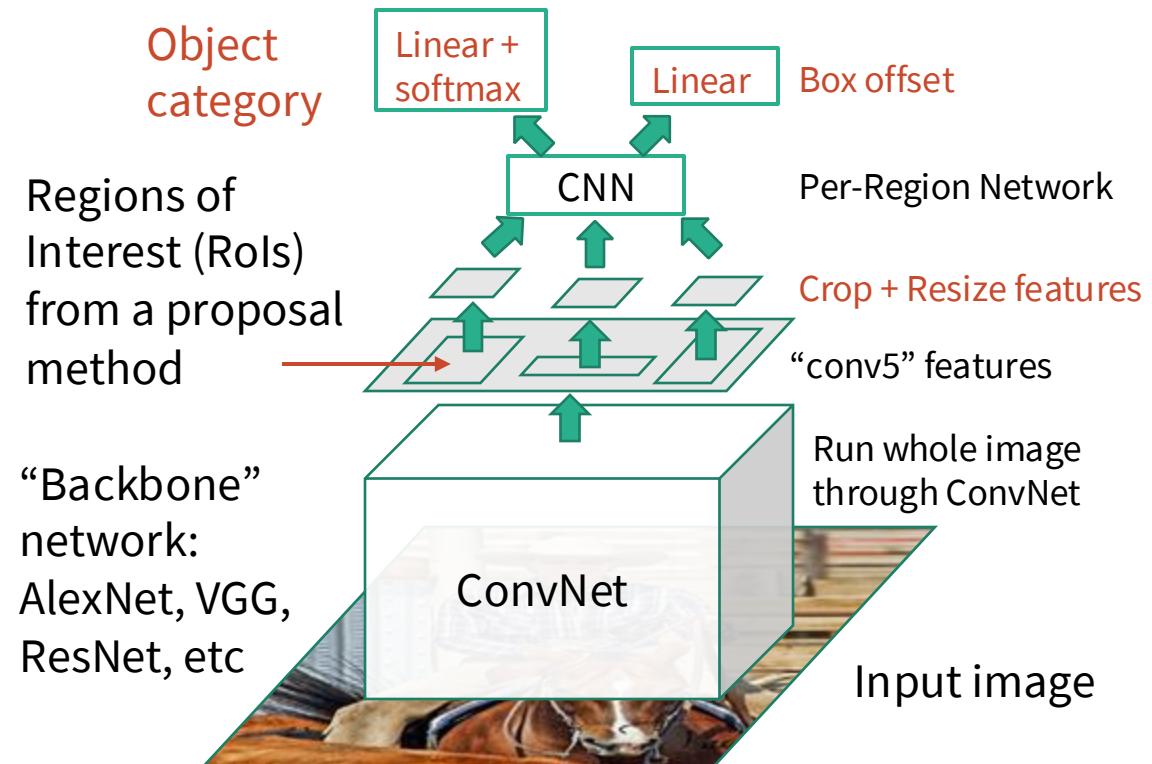
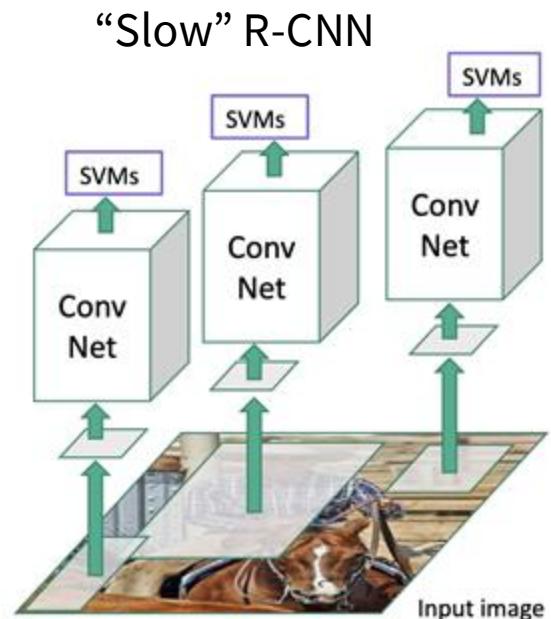


“Slow” R-CNN



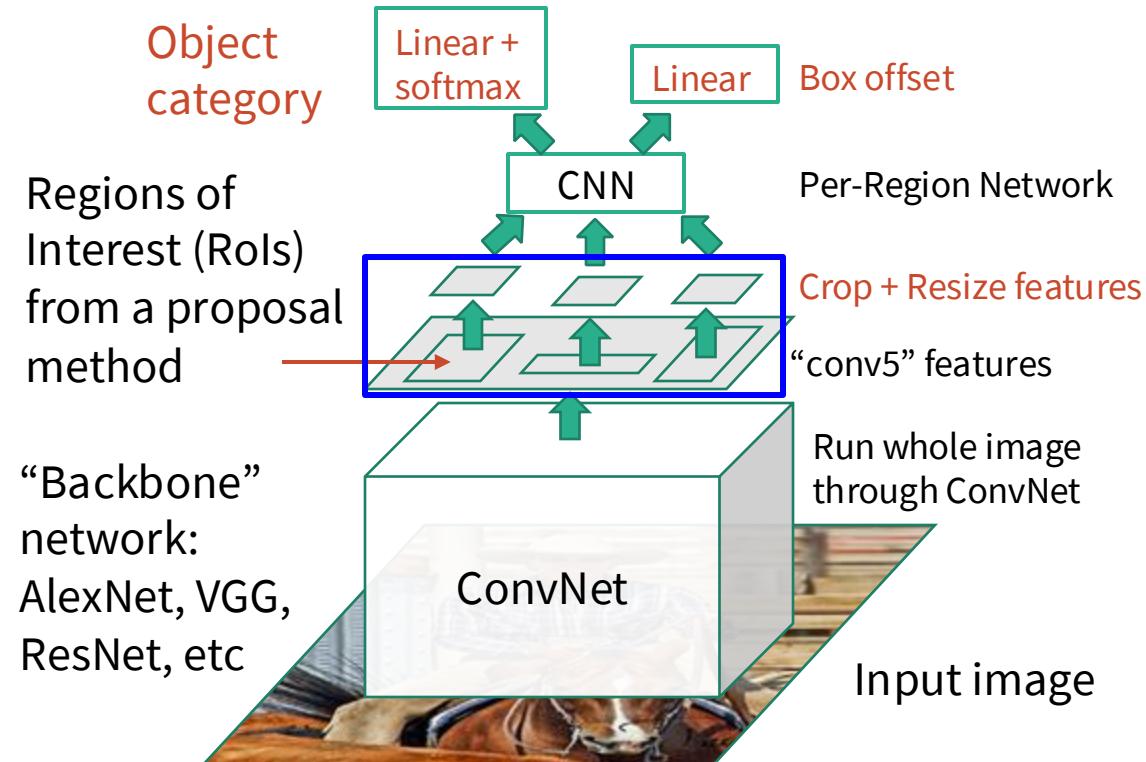
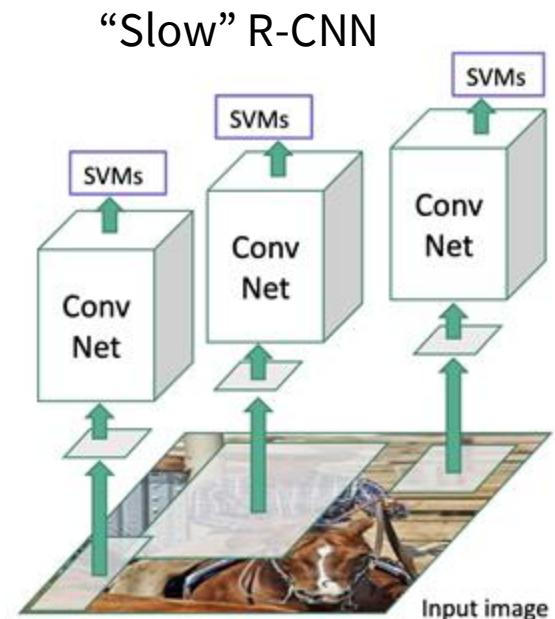
Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; [source](#). Reproduced with permission.

Fast R-CNN



Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; [source](#). Reproduced with permission.

Fast R-CNN



Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; [source](#). Reproduced with permission.

Region Proposal Network

Input Image
(e.g. $3 \times 640 \times 480$)

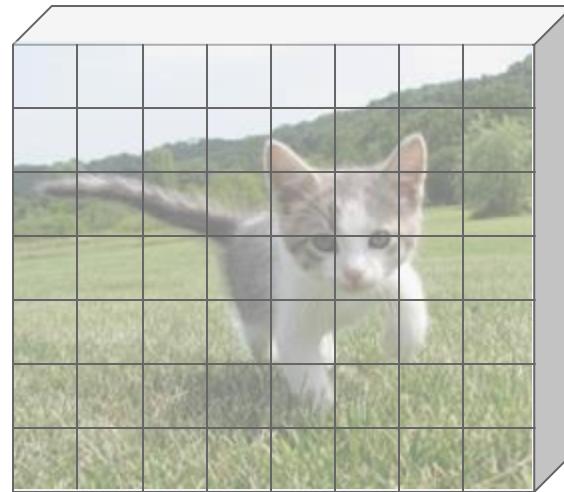
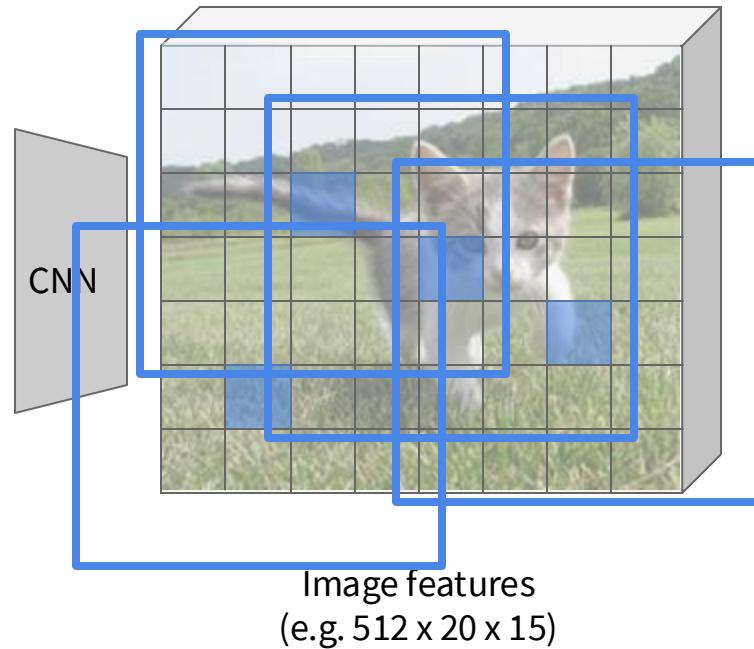


Image features
(e.g. $512 \times 20 \times 15$)

Region Proposal Network

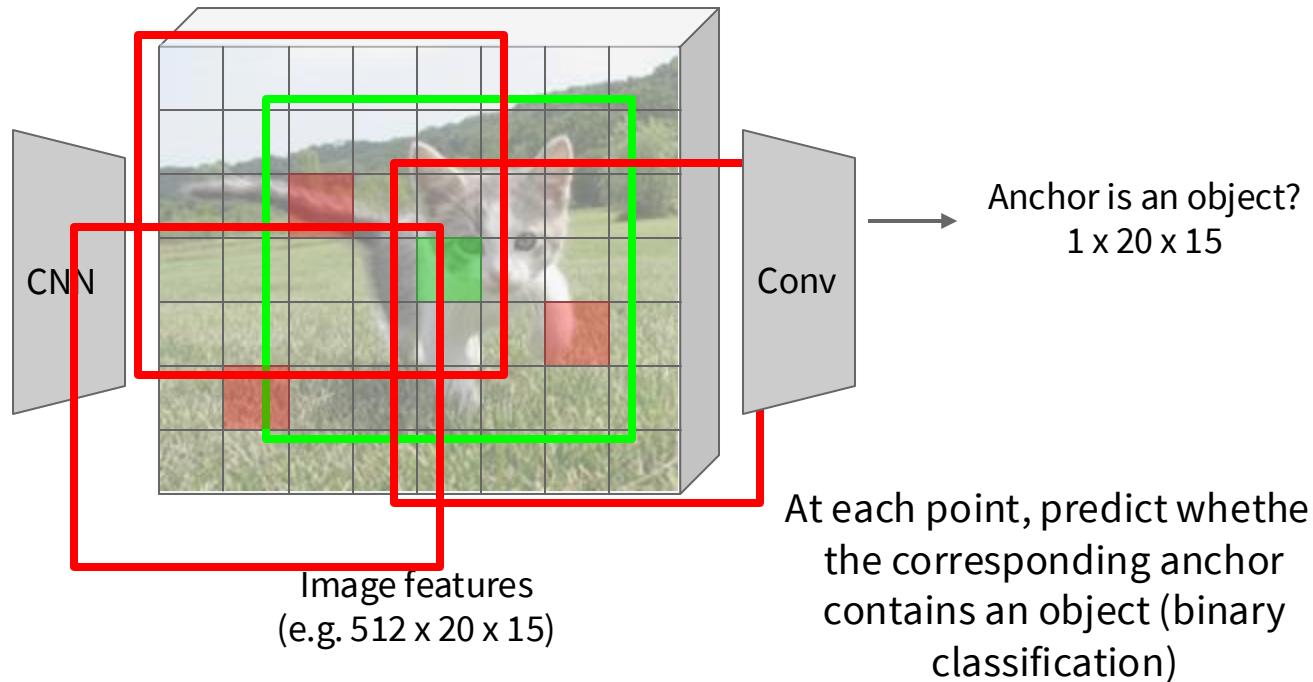
Input Image
(e.g. $3 \times 640 \times 480$)



Imagine an anchor box of fixed size at each point in the feature map

Region Proposal Network

Input Image
(e.g. $3 \times 640 \times 480$)



Region Proposal Network

Input Image
(e.g. $3 \times 640 \times 480$)

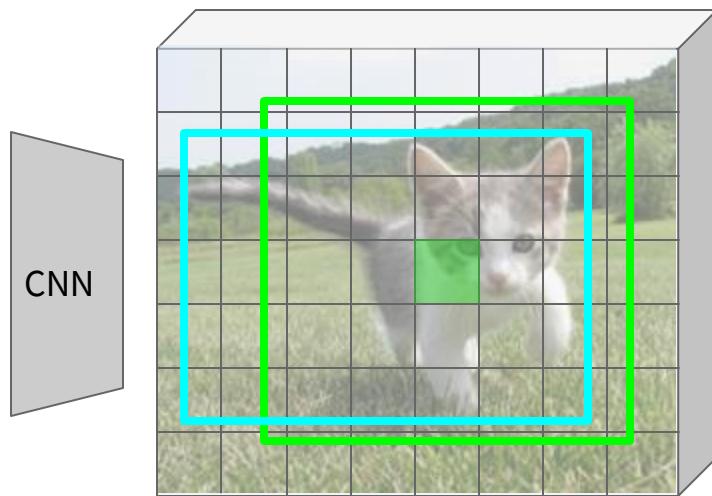


Image features
(e.g. $512 \times 20 \times 15$)

Imagine an anchor box of fixed size at each point in the feature map

Anchor is an object?
 $1 \times 20 \times 15$

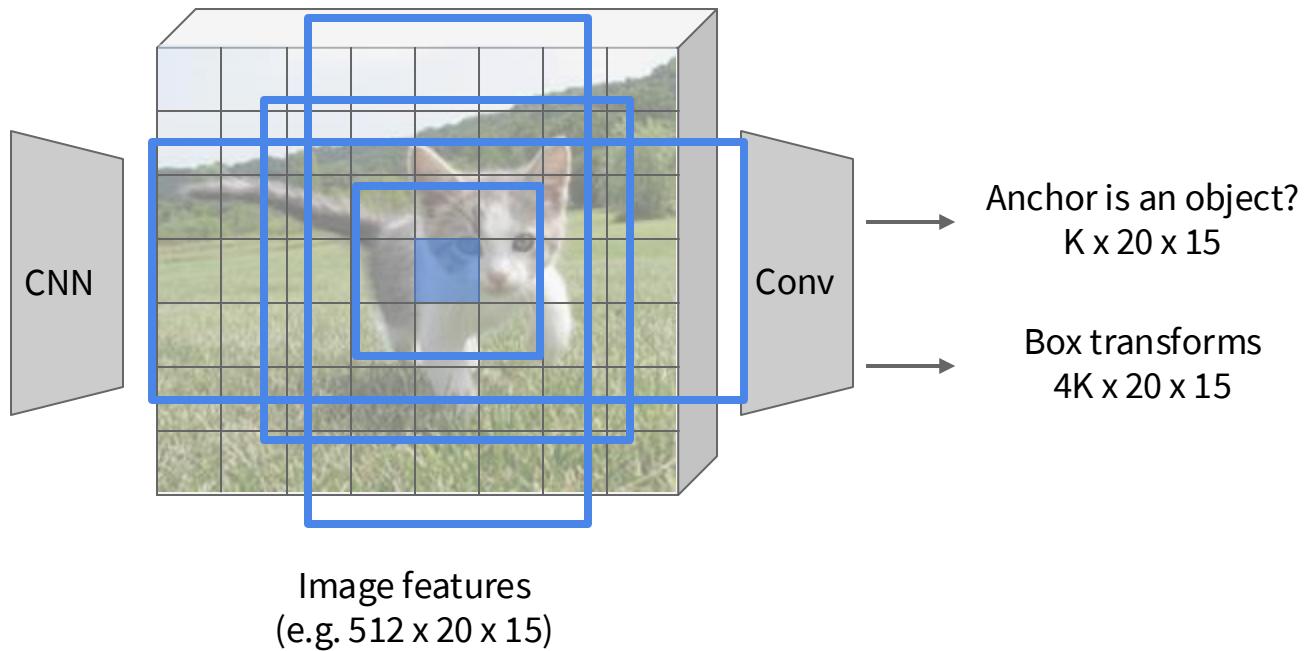
Box corrections
 $4 \times 20 \times 15$

For positive boxes, also predict a corrections from the anchor to the ground-truth box (regress 4 numbers per pixel)

Region Proposal Network

In practice use K different anchor boxes of different size / scale at each point

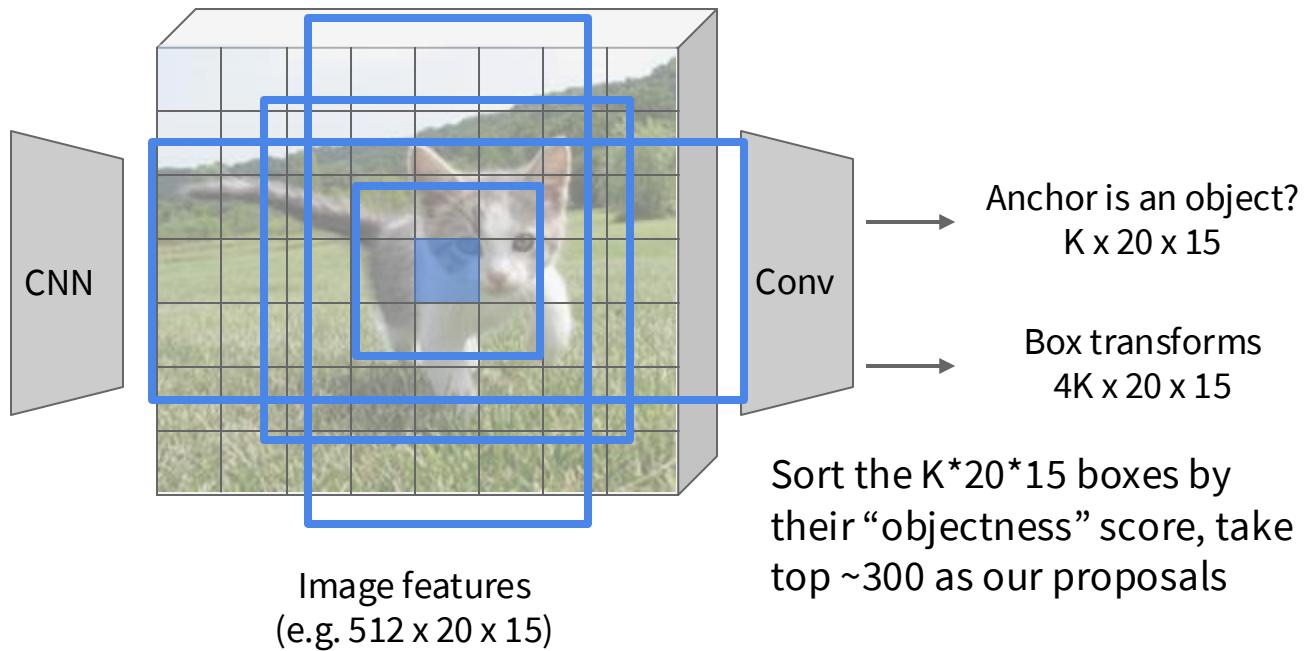
Input Image
(e.g. $3 \times 640 \times 480$)



Region Proposal Network

In practice use K different anchor boxes of different size / scale at each point

Input Image
(e.g. $3 \times 640 \times 480$)



Single-Stage Object Detectors: YOLO / SSD / RetinaNet

Input image
 $3 \times H \times W$

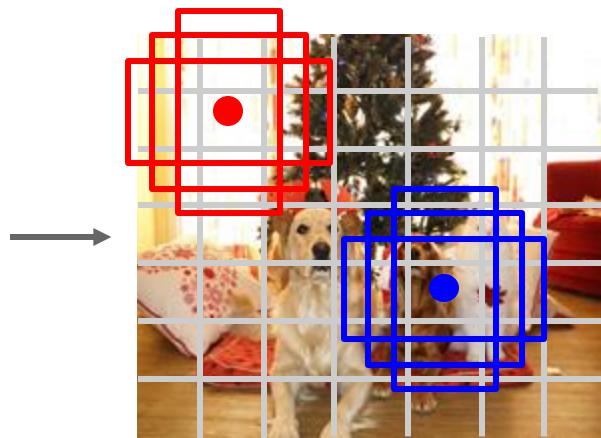


Image a set of base boxes
centered at each grid cell
Here $B = 3$

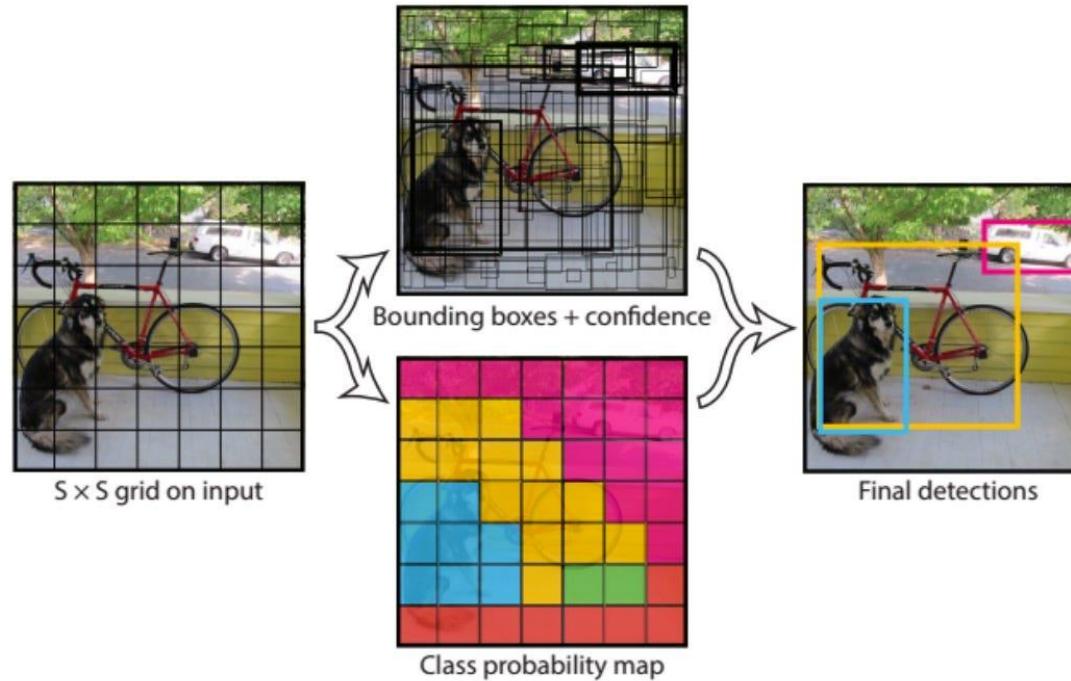
Within each grid cell:

- Regress from each of the B base boxes to a final box with 5 numbers: $(dx, dy, dh, dw, \text{confidence})$
- Predict scores for each of C classes (including background as a class)
- Looks a lot like RPN, but category-specific!

Output:
 $7 \times 7 \times (5 * B + C)$

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", CVPR 2016
Liu et al, "SSD: Single-Shot MultiBox Detector", ECCV 2016
Lin et al, "Focal Loss for Dense Object Detection", ICCV 2017

YOLO (You Only Look Once) real-time object detection



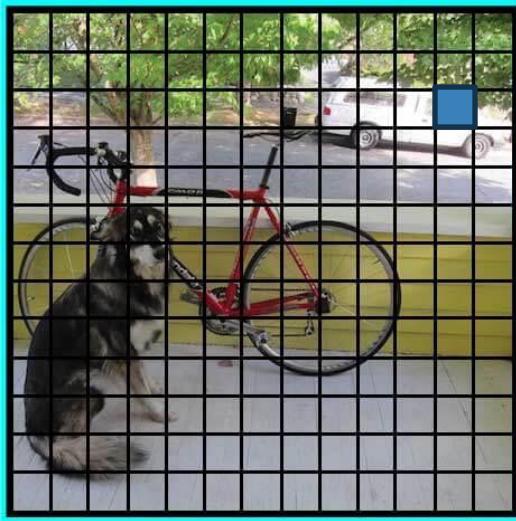
Redmon et al. "You only look once: unified, real-time object detection (2015)."

YOLO

SxS Grid

Redmon et al. "You only look once: unified, real-time object detection (2015)."

YOLO



SxS Grid

For each box output:

- $P(\text{object})$: probability that the box contains an object
- B bounding boxes (x, y, h, w)
- $P(\text{class})$: probability of belonging to a class

Redmon et al. "You only look once: unified, real-time object detection (2015)."

YOLO



SxS Grid

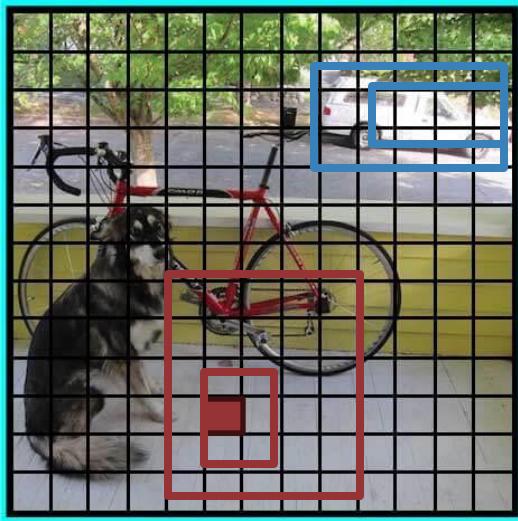
For each box output:

- $P(\text{object})$: probability that the box contains an object
- B bounding boxes (x, y, h, w)
- $P(\text{class})$: probability of belonging to a class

$B=2$

Redmon et al. "You only look once: unified, real-time object detection (2015)."

YOLO



SxS Grid

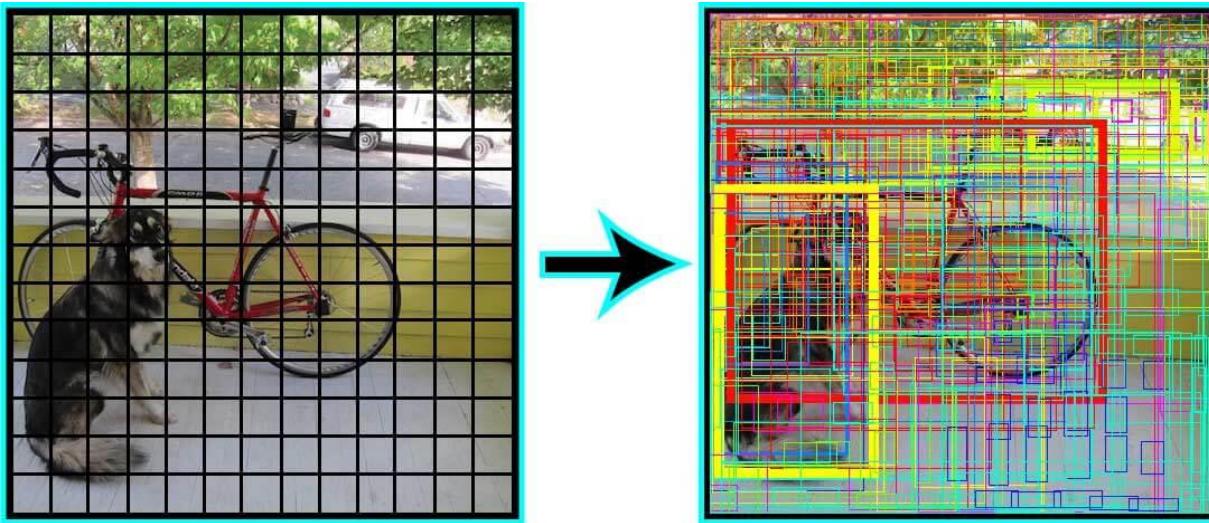
For each box output:

- $P(\text{object})$: probability that the box contains an object
- B bounding boxes (x, y, h, w)
- $P(\text{class})$: probability of belonging to a class

$B=2$

Redmon et al. "You only look once: unified, real-time object detection (2015)."

YOLO

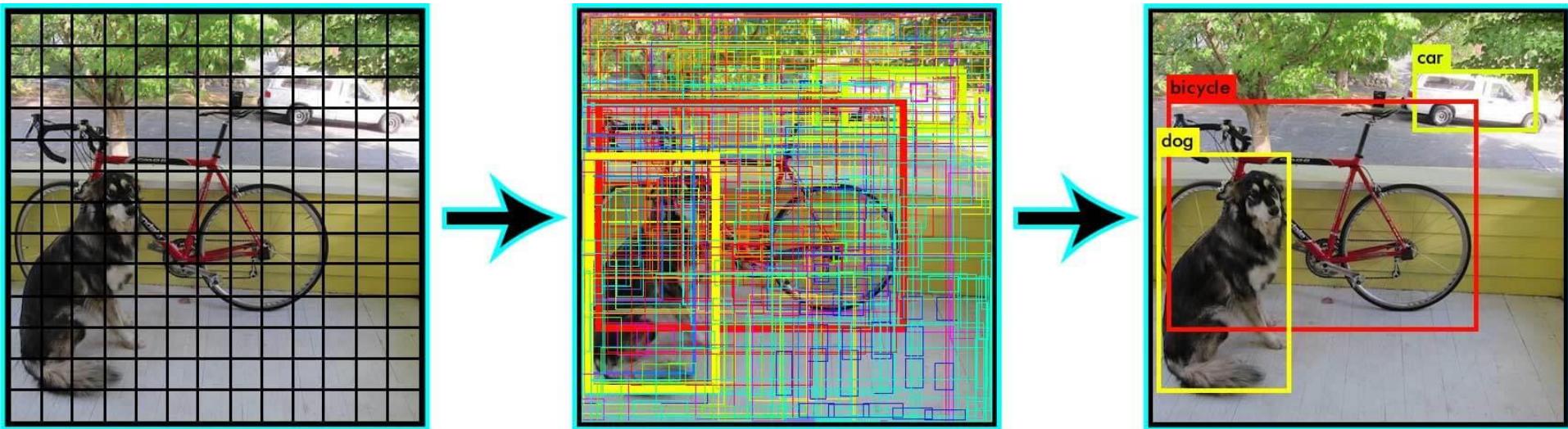


SxS Grid

Many bounding boxes with different object probabilities

Redmon et al. "You only look once: unified, real-time object detection (2015)."

YOLO



$S \times S$ Grid

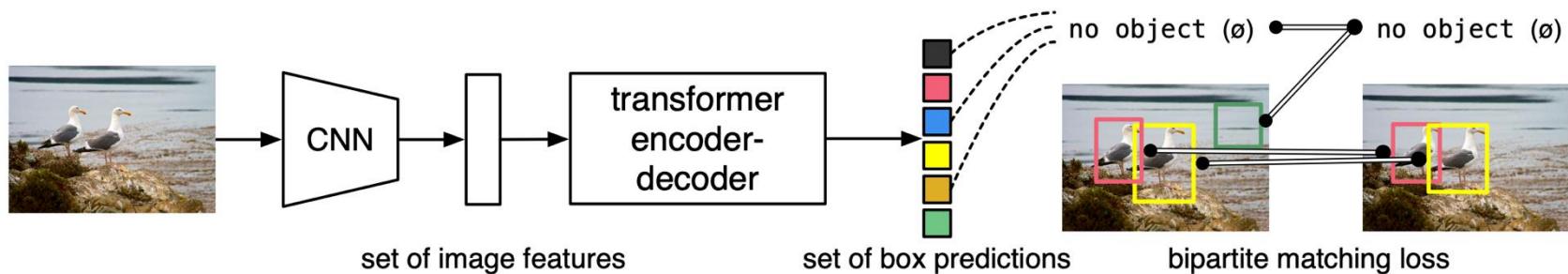
Redmon et al. "You only look once: unified, real-time object detection (2015)."

Object **D**etection with **T**ransformers: DETR

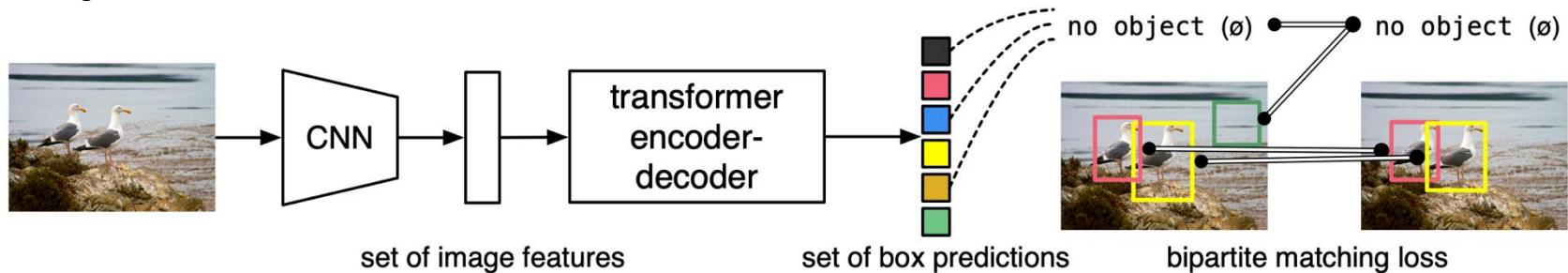
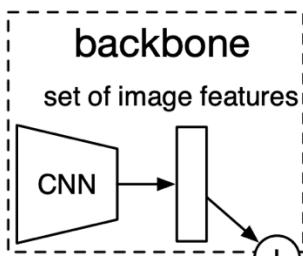
Simple object detection pipeline: directly output a set of boxes from a Transformer

No anchors, no regression of box transforms

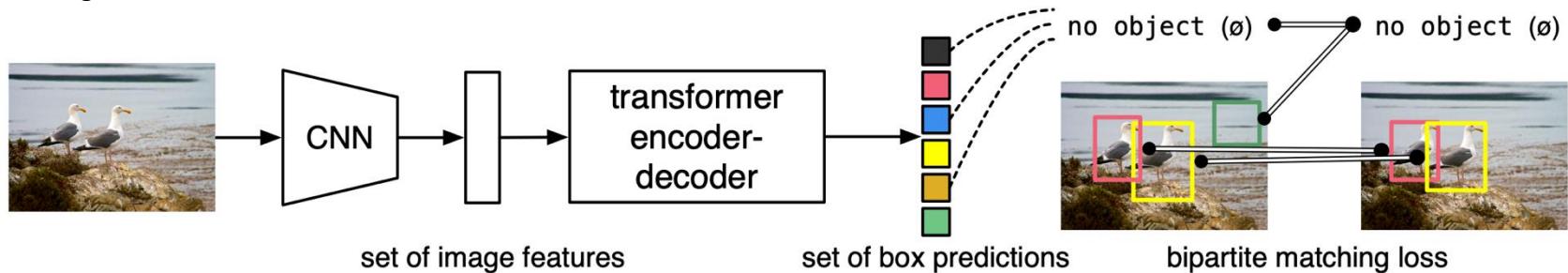
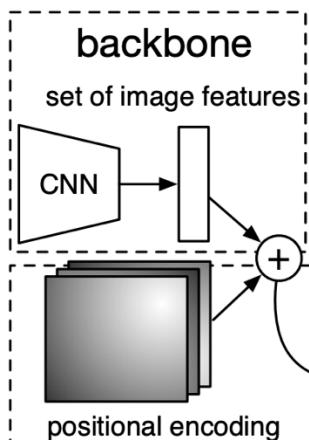
Match predicted boxes to GT boxes with bipartite matching; train to regress box coordinates



Object Detection with Transformers: DETR

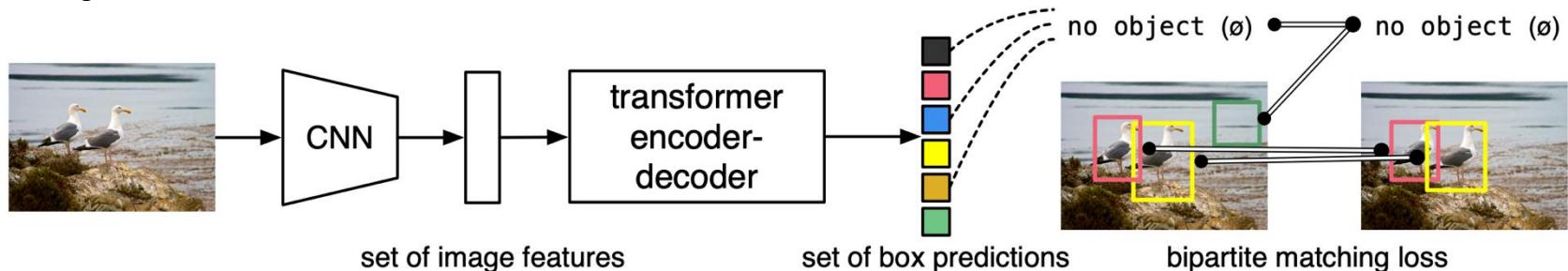
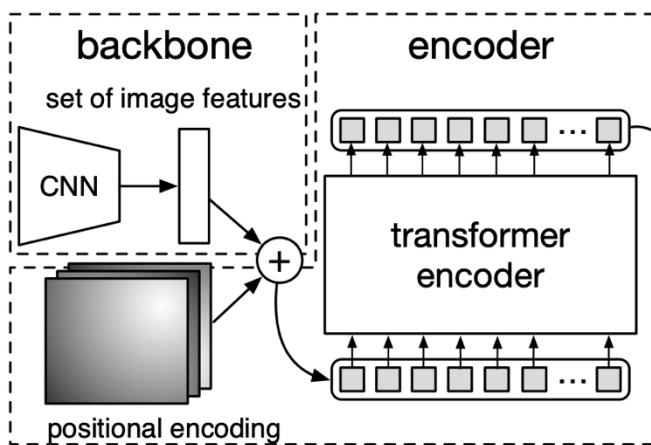


Object Detection with Transformers: DETR



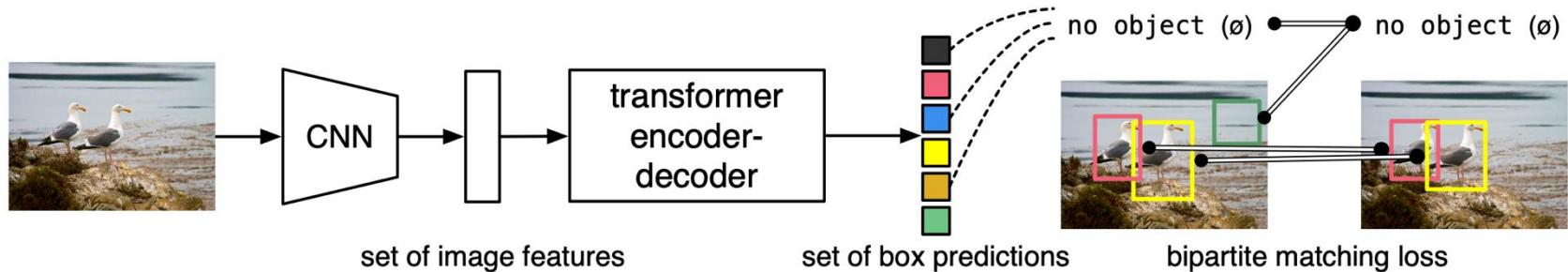
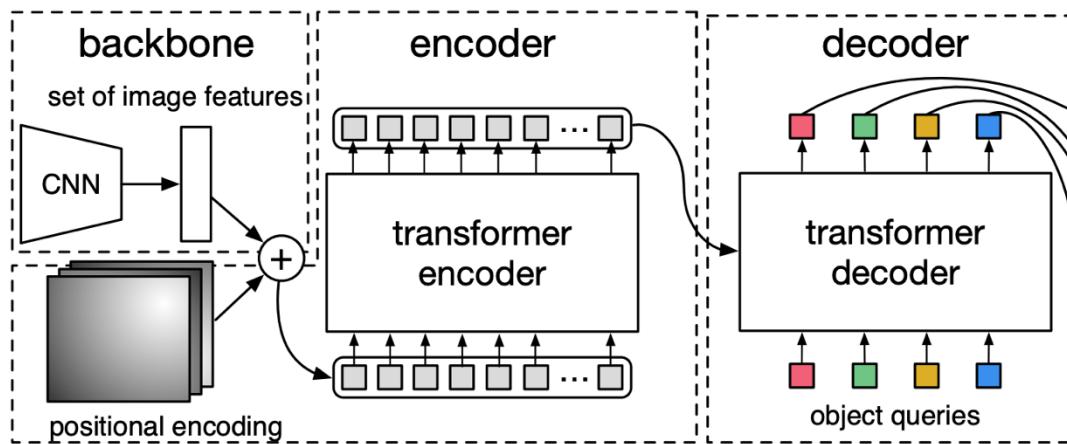
Carion et al, "End-to-End Object Detection with Transformers", ECCV 2020

Object Detection with Transformers: DETR



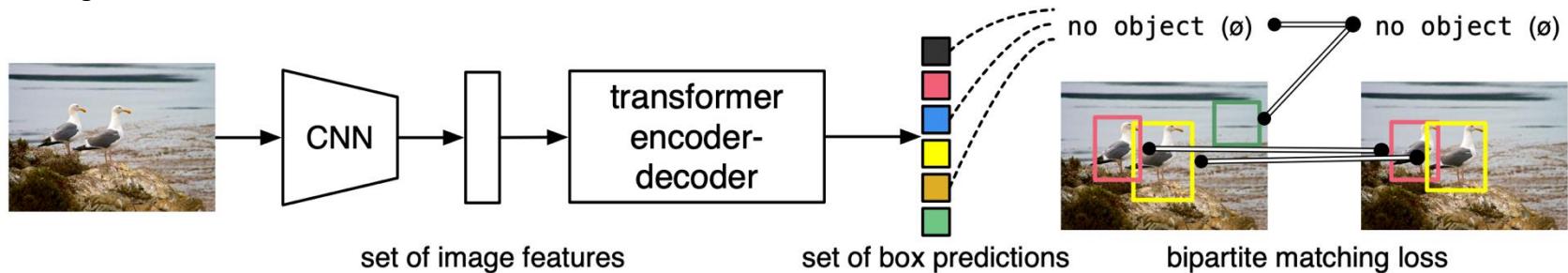
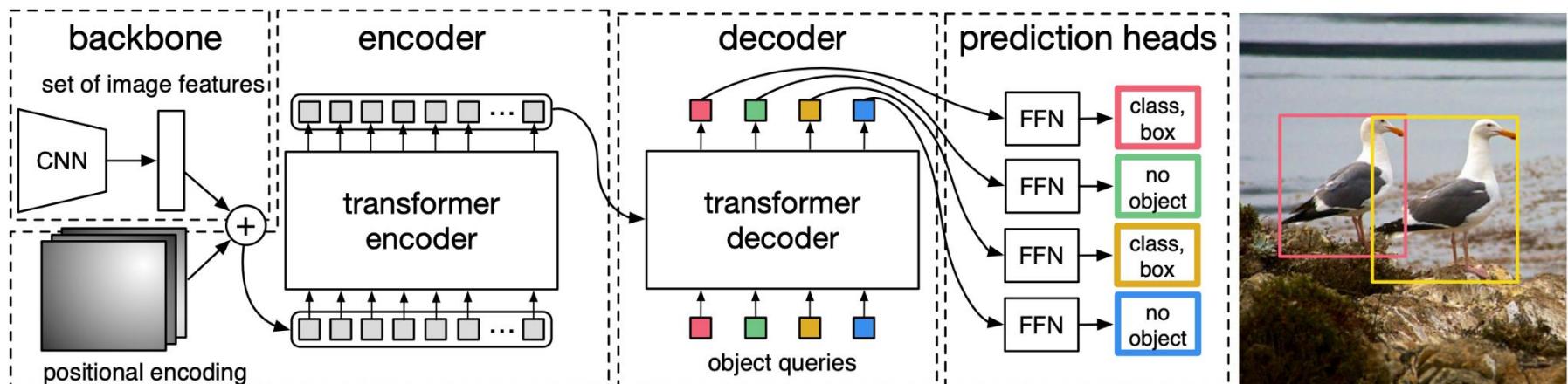
Carion et al, "End-to-End Object Detection with Transformers", ECCV 2020

Object Detection with Transformers: DETR



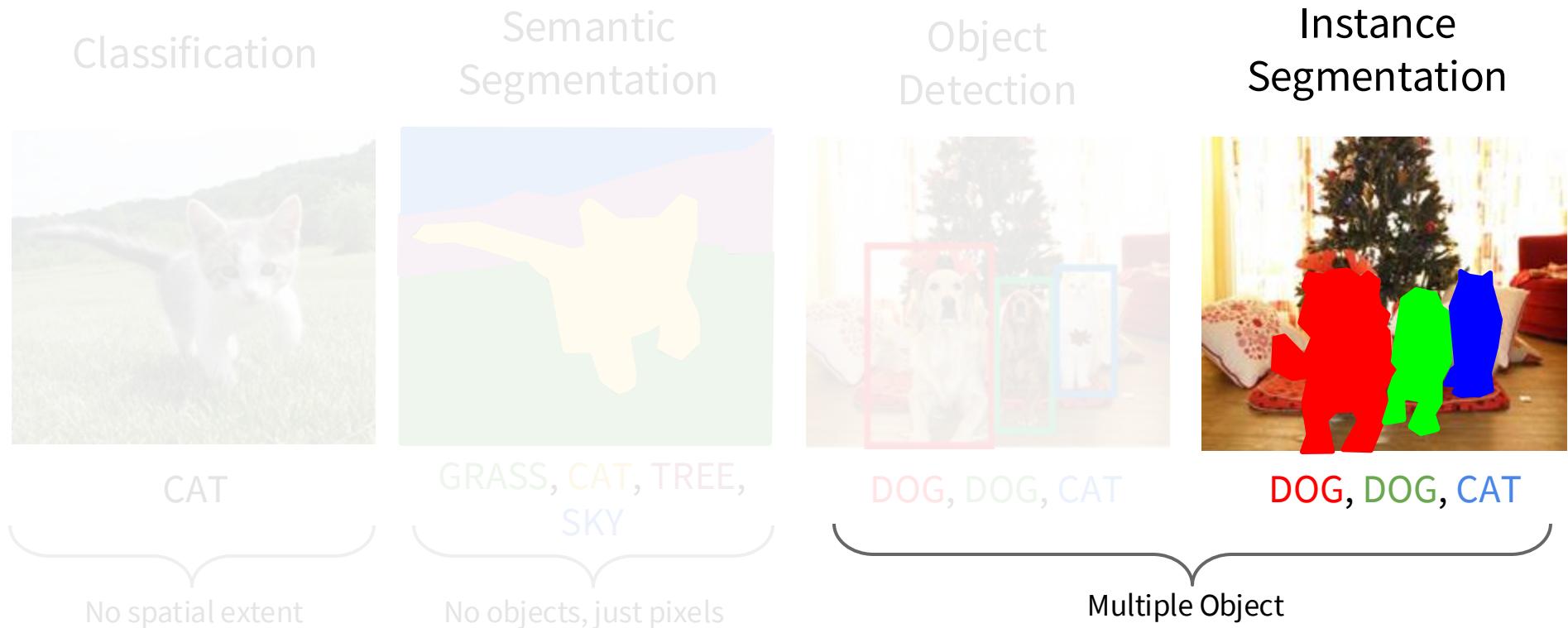
Carion et al, "End-to-End Object Detection with Transformers", ECCV 2020

Object Detection with Transformers: DETR



Carion et al, "End-to-End Object Detection with Transformers", ECCV 2020

Instance Segmentation



Object Detection: Faster R-CNN

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Classification
loss

Bounding-box
regression loss

Classification
loss

Bounding-box
regression loss

RoI pooling

proposals

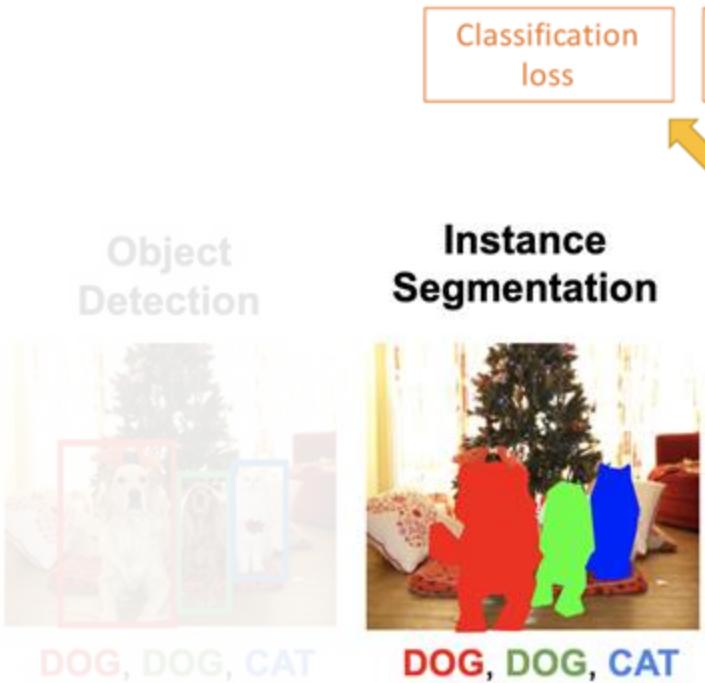
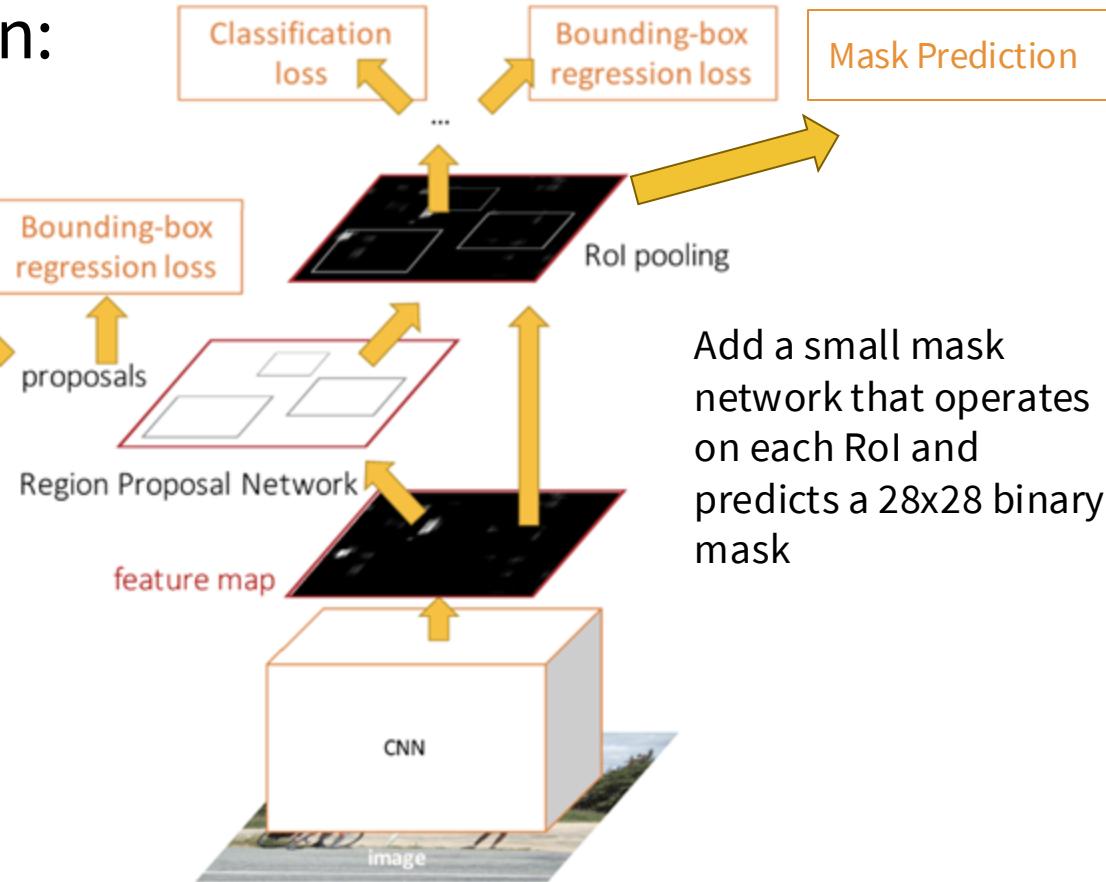
Region Proposal Network

feature map

CNN

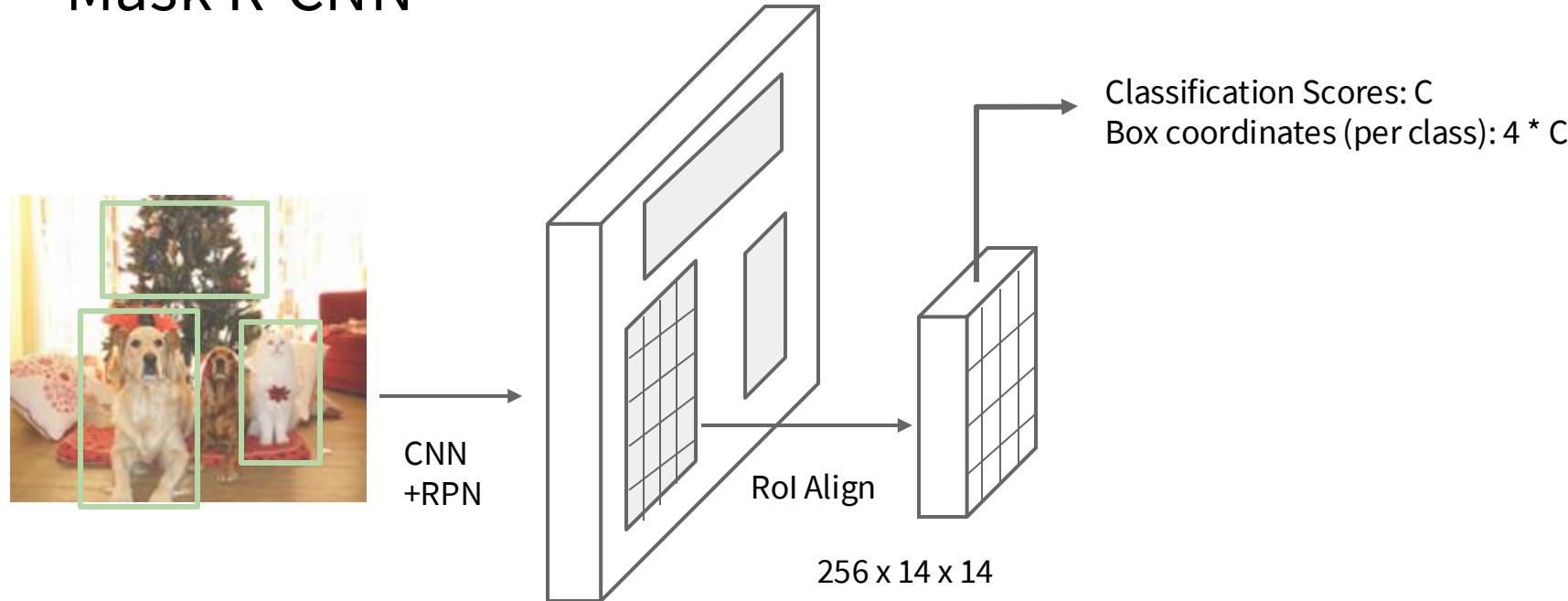
image

Instance Segmentation: Mask R-CNN



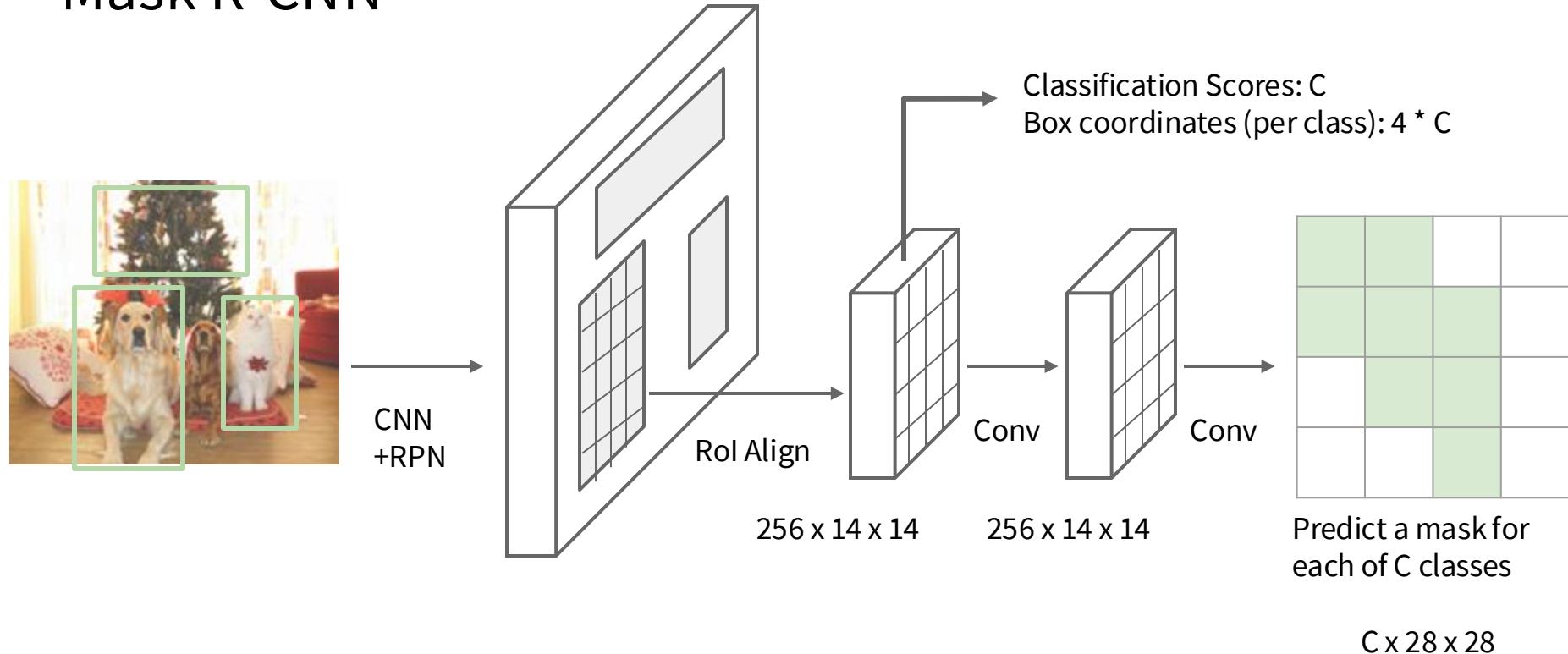
He et al, "Mask R-CNN", ICCV 2017

Mask R-CNN



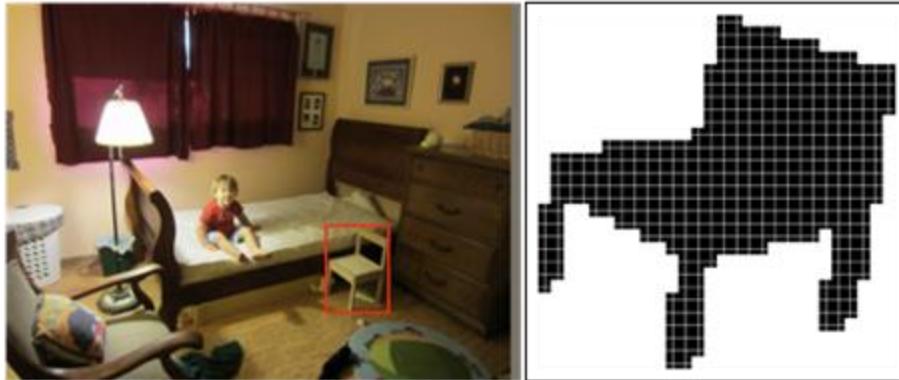
He et al, "Mask R-CNN", arXiv 2017

Mask R-CNN

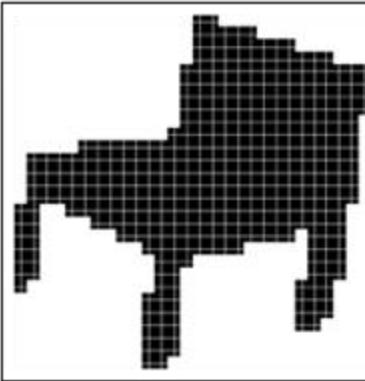
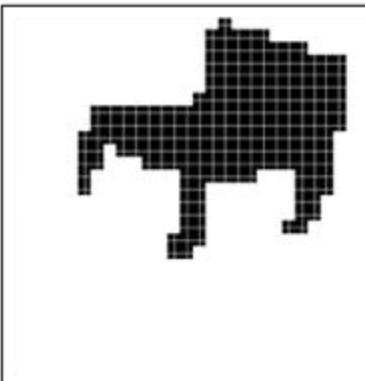


He et al, "Mask R-CNN", arXiv 2017

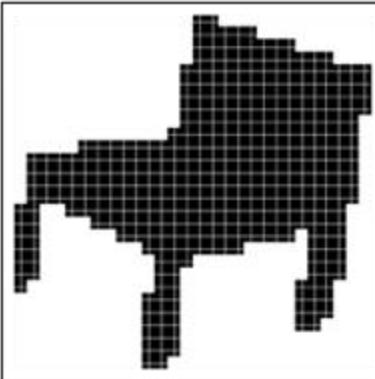
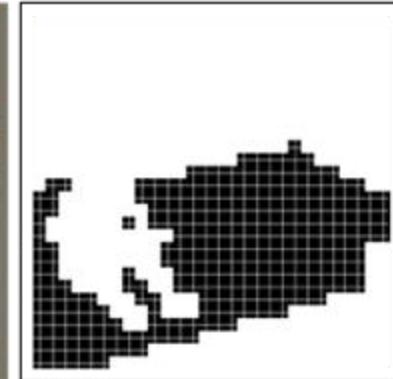
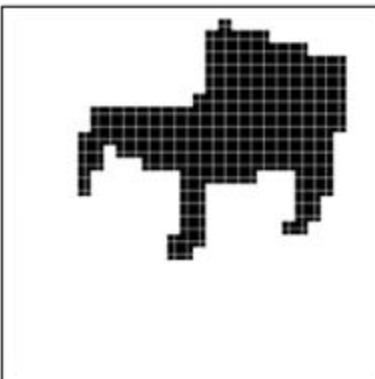
Mask R-CNN: Example Mask Training Targets



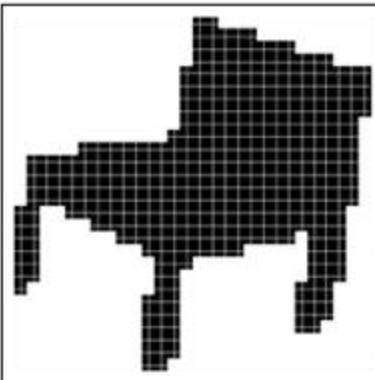
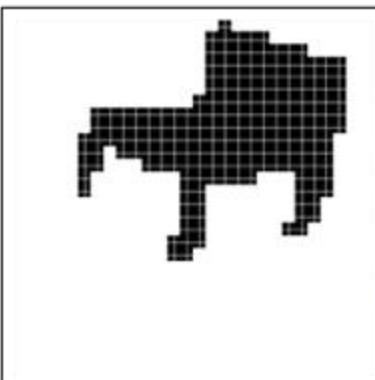
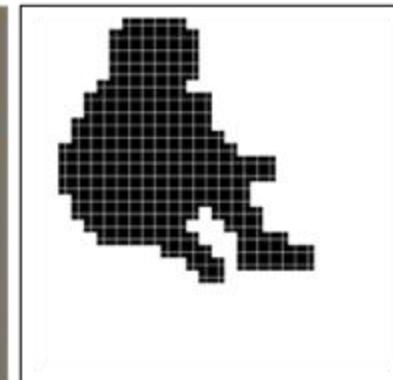
Mask R-CNN: Example Mask Training Targets



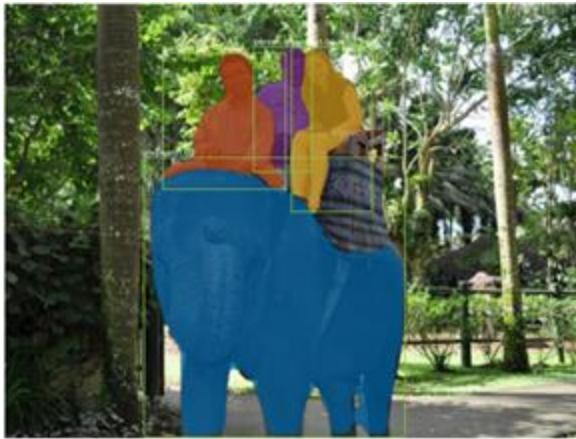
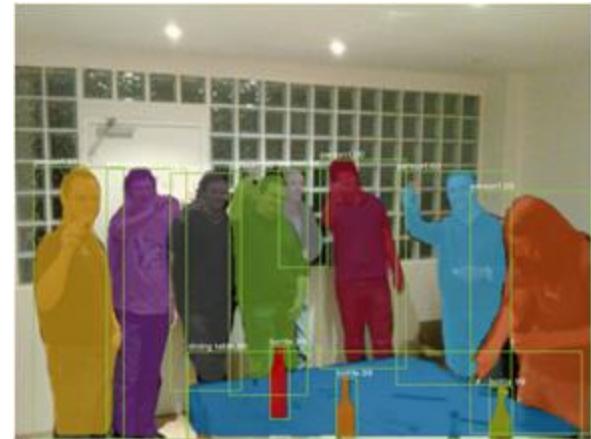
Mask R-CNN: Example Mask Training Targets



Mask R-CNN: Example Mask Training Targets



Mask R-CNN: Very Good Results!



He et al, "Mask R-CNN", ICCV 2017

Mask R-CNN

Also does pose

He et al, "Mask R-CNN", ICCV 2017

Open Source Frameworks

Lots of good implementations on GitHub!

TensorFlow Detection API:

https://github.com/tensorflow/models/tree/master/research/object_detection

Faster RCNN, SSD, RFCN, Mask R-CNN, ...

Detectron2 (PyTorch)

<https://github.com/facebookresearch/detectron2>

Mask R-CNN, RetinaNet, Faster R-CNN, RPN, Fast R-CNN, R-FCN, ...

Finetune on your own dataset with pre-trained models

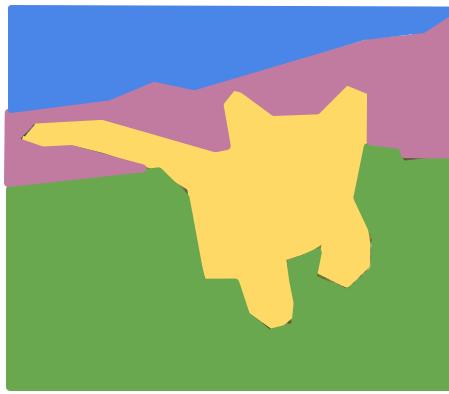
Recap: Lots of computer vision tasks!

Classification

CAT

No spatial extent

Semantic Segmentation



GRASS, CAT, TREE,
SKY

No objects, just pixels

Object Detection

DOG, DOG, CAT

Multiple Object

Instance Segmentation

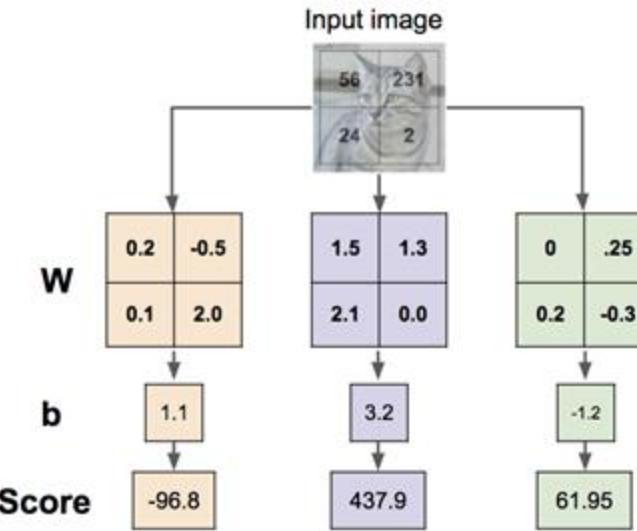
DOG, DOG, CAT

[This image](#) is [CC0](#) public domain

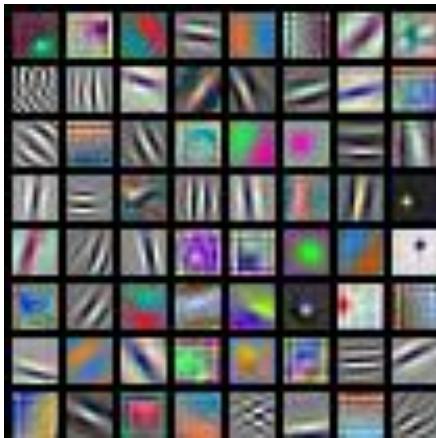
Today

- Transformers Recap
- **Computer Vision Tasks**
 - Semantic Segmentation
 - Object Detection
 - Instance Segmentation
- Visualization & Understanding
 - Model Layers Visualization
 - Saliency Maps
 - CAM & Grad-CAM

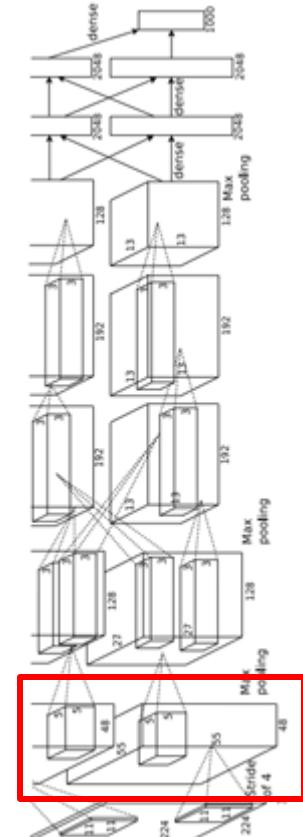
Interpreting a Linear Classifier: Visual Viewpoint



First Layer: Visualize Filters



AlexNet:
 $64 \times 3 \times 11 \times 11$

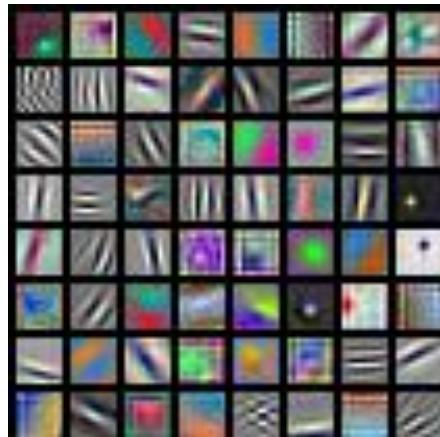


Krizhevsky, "One weird trick for parallelizing convolutional neural networks", arXiv 2014

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Huang et al, "Densely Connected Convolutional Networks", CVPR 2017

First Layer: Visualize Filters

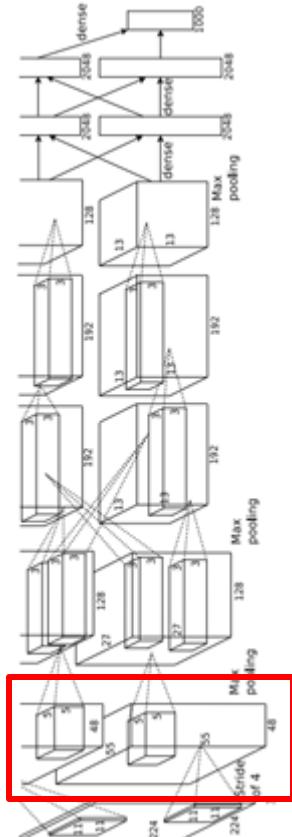


AlexNet:
 $64 \times 3 \times 11 \times 11$

ResNet-18:
 $64 \times 3 \times 7 \times 7$

ResNet-101:
 $64 \times 3 \times 7 \times 7$

DenseNet-121:
 $64 \times 3 \times 7 \times 7$



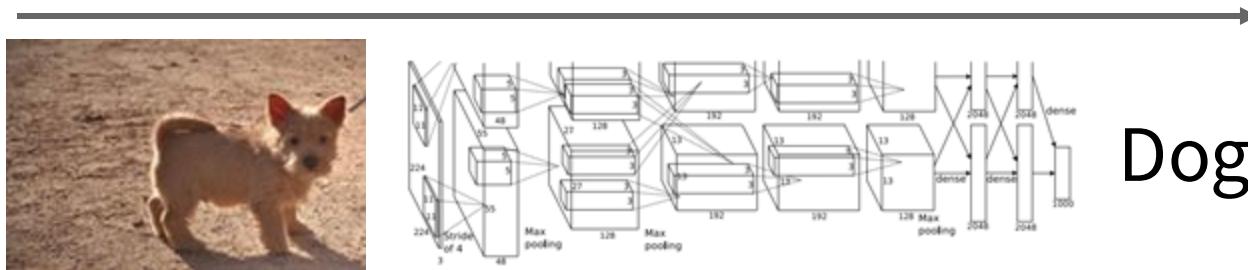
Krizhevsky, "One weird trick for parallelizing convolutional neural networks", arXiv 2014

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Huang et al, "Densely Connected Convolutional Networks", CVPR 2017

Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

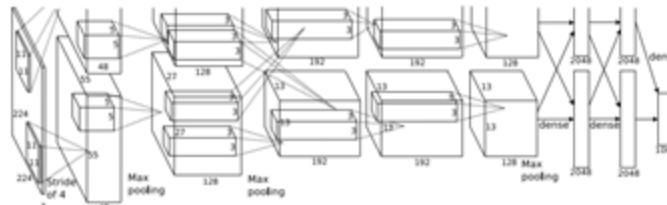


Simonyan, Vedaldi, and Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

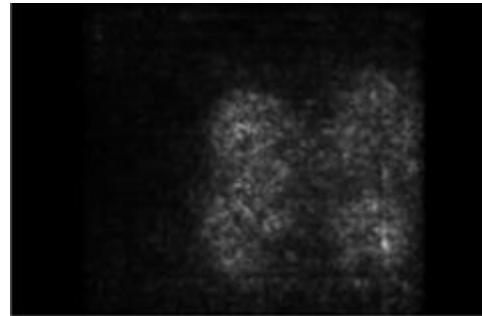
Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities



Dog

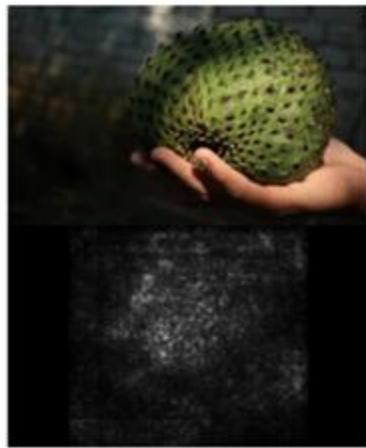
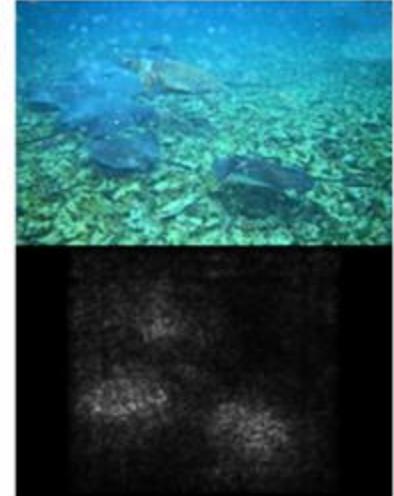
Compute gradient of (unnormalized) class score
with respect to image pixels, take absolute value
and max over RGB channels



Simonyan, Vedaldi, and Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

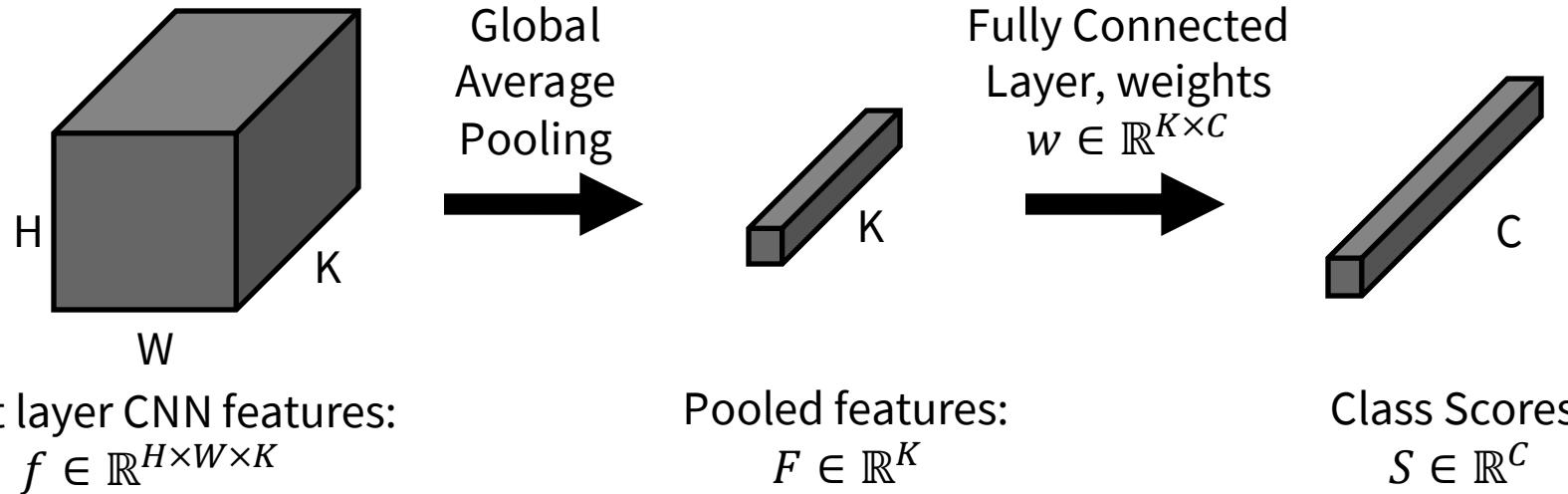
Saliency Maps



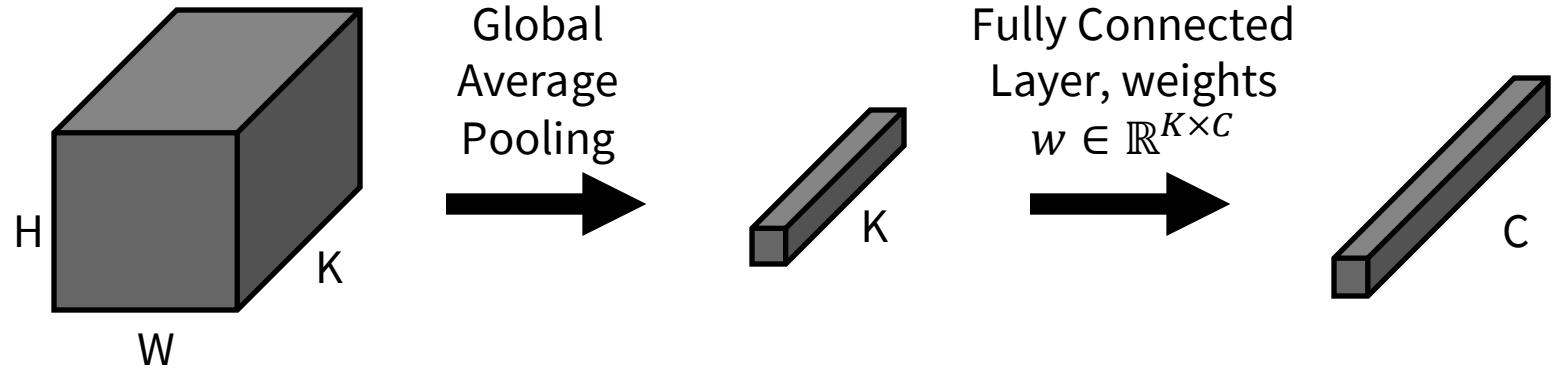
Simonyan, Vedaldi, and Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Class Activation Mapping (CAM)



Class Activation Mapping (CAM)



Last layer CNN features:
 $f \in \mathbb{R}^{H \times W \times K}$

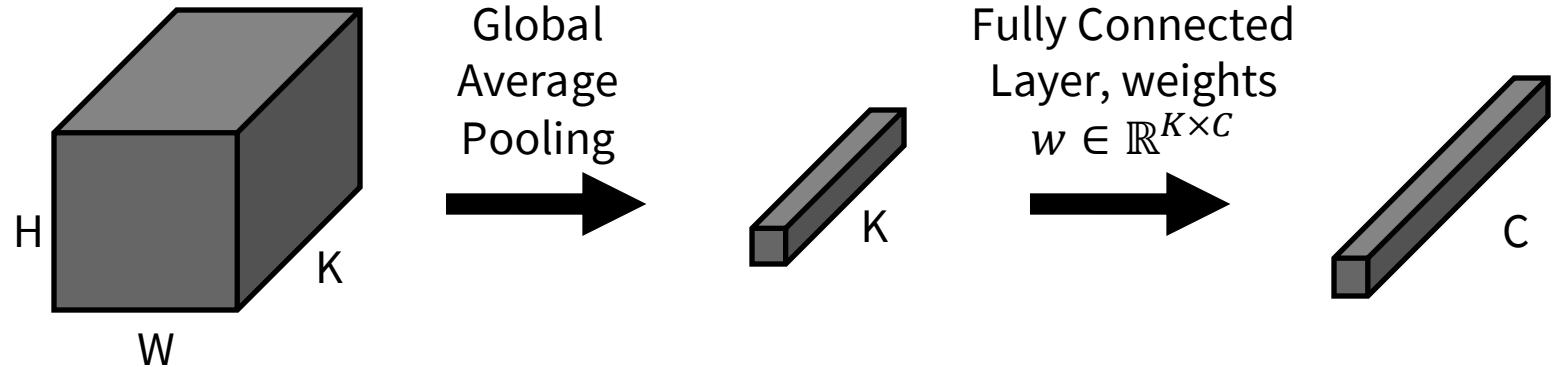
Pooled features:
 $F \in \mathbb{R}^K$

Class Scores:
 $S \in \mathbb{R}^C$

$$F_k = \frac{1}{HW} \sum_{h,w} f_{h,w,k}$$

Zhou et al, "Learning Deep Features for Discriminative Localization", CVPR 2016

Class Activation Mapping (CAM)



Last layer CNN features:
 $f \in \mathbb{R}^{H \times W \times K}$

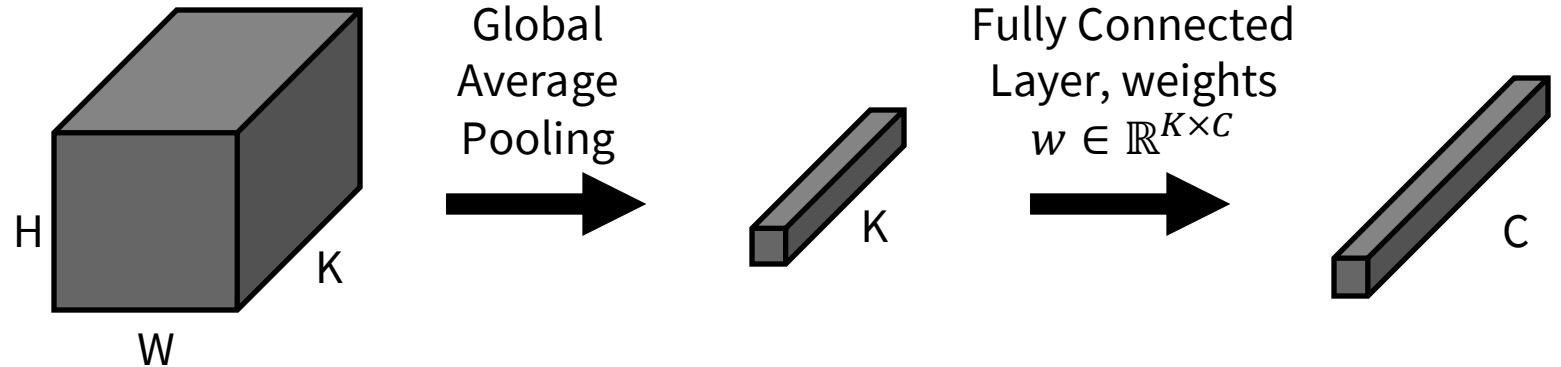
Pooled features:
 $F \in \mathbb{R}^K$

Class Scores:
 $S \in \mathbb{R}^C$

$$F_k = \frac{1}{HW} \sum_{h,w} f_{h,w,k} \quad S_c = \sum_k w_{k,c} F_k$$

Zhou et al, "Learning Deep Features for Discriminative Localization", CVPR 2016

Class Activation Mapping (CAM)



Last layer CNN features:
 $f \in \mathbb{R}^{H \times W \times K}$

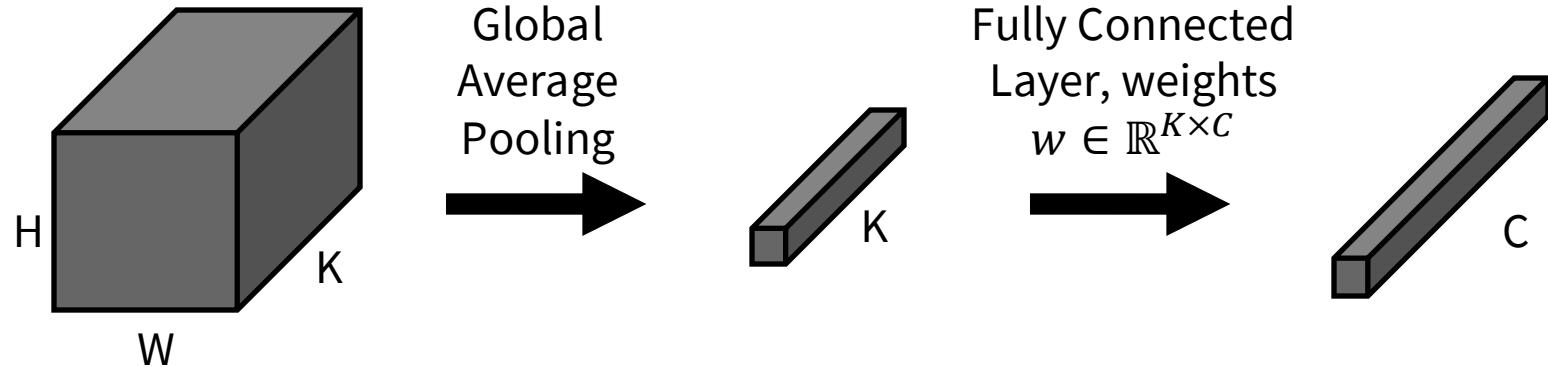
Pooled features:
 $F \in \mathbb{R}^K$

Class Scores:
 $S \in \mathbb{R}^C$

$$F_k = \frac{1}{HW} \sum_{h,w} f_{h,w,k} \quad S_c = \sum_k w_{k,c} F_k = \frac{1}{HW} \sum_k w_{k,c} \sum_{h,w} f_{h,w,k}$$

Zhou et al, "Learning Deep Features for Discriminative Localization", CVPR 2016

Class Activation Mapping (CAM)



Last layer CNN features:
 $f \in \mathbb{R}^{H \times W \times K}$

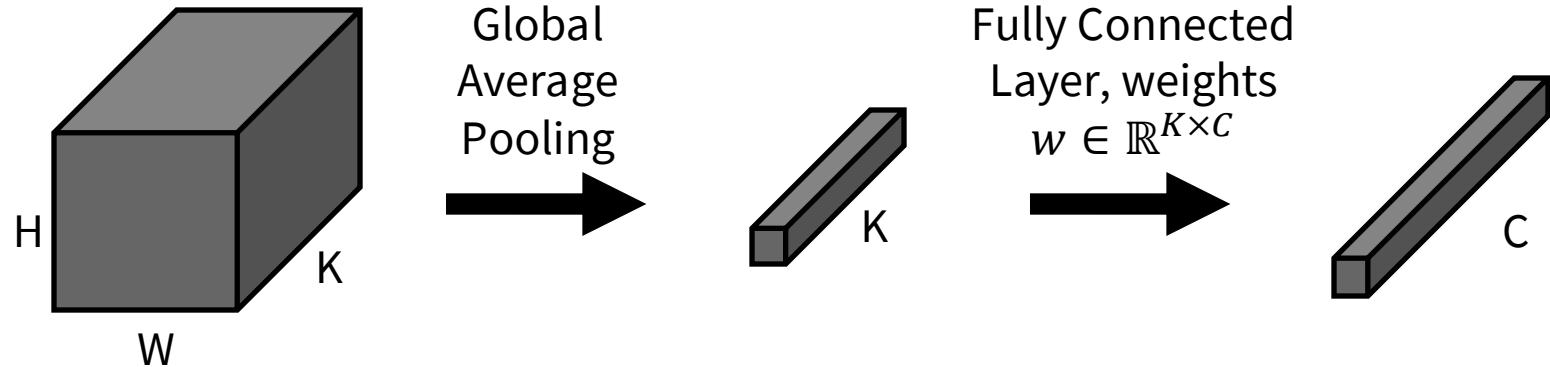
Pooled features:
 $F \in \mathbb{R}^K$

Class Scores:
 $S \in \mathbb{R}^C$

$$\begin{aligned} F_k &= \frac{1}{HW} \sum_{h,w} f_{h,w,k} & S_c &= \sum_k w_{k,c} F_k = \frac{1}{HW} \sum_k w_{k,c} \sum_{h,w} f_{h,w,k} \\ & & &= \frac{1}{HW} \sum_{h,w} \sum_k w_{k,c} f_{h,w,k} \end{aligned}$$

Zhou et al, "Learning Deep Features for Discriminative Localization", CVPR 2016

Class Activation Mapping (CAM)



Last layer CNN features:
 $f \in \mathbb{R}^{H \times W \times K}$

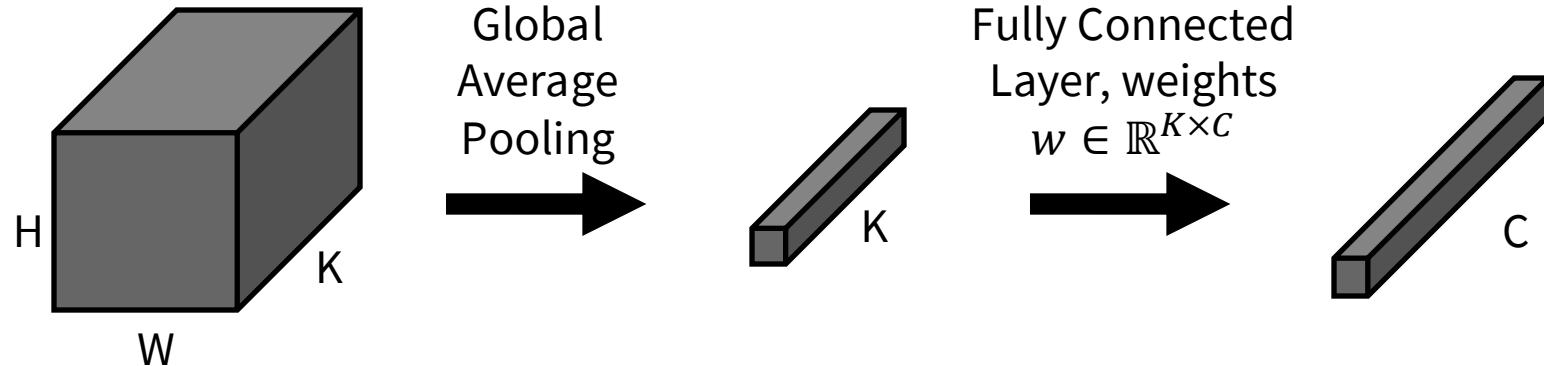
Pooled features:
 $F \in \mathbb{R}^K$

Class Scores:
 $S \in \mathbb{R}^C$

$$\begin{aligned} F_k &= \frac{1}{HW} \sum_{h,w} f_{h,w,k} & S_c &= \sum_k w_{k,c} F_k = \frac{1}{HW} \sum_k w_{k,c} \sum_{h,w} f_{h,w,k} \\ & & &= \frac{1}{HW} \sum_{h,w} \sum_k w_{k,c} f_{h,w,k} \end{aligned}$$

Zhou et al, "Learning Deep Features for Discriminative Localization", CVPR 2016

Class Activation Mapping (CAM)



Last layer CNN features:
 $f \in \mathbb{R}^{H \times W \times K}$

Pooled features:
 $F \in \mathbb{R}^K$

Class Scores:
 $S \in \mathbb{R}^C$

$$F_k = \frac{1}{HW} \sum_{h,w} f_{h,w,k} \quad S_c = \sum_k w_{k,c} F_k = \frac{1}{HW} \sum_k w_{k,c} \sum_{h,w} f_{h,w,k} \\ = \frac{1}{HW} \sum_{h,w} \sum_k w_{k,c} f_{h,w,k}$$

Class Activation Maps:
 $\mathbf{M} \in \mathbb{R}^{C,H,W}$

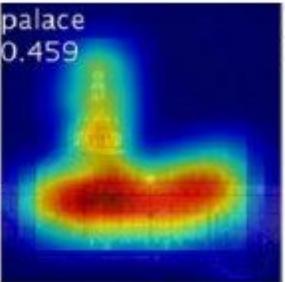
$$\mathbf{M}_{c,h,w} = \sum_k w_{k,c} f_{h,w,k}$$

Zhou et al, "Learning Deep Features for Discriminative Localization", CVPR 2016

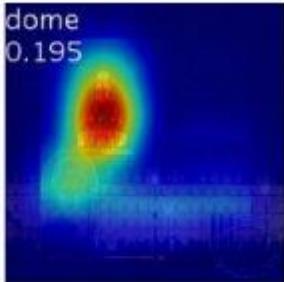
Class Activation Mapping (CAM)

dome

palace



dome



church

0.146

altar

0.091

monastery

0.051

Class activation maps of top 5 predictions

barbell

0.761

barbell

0.447

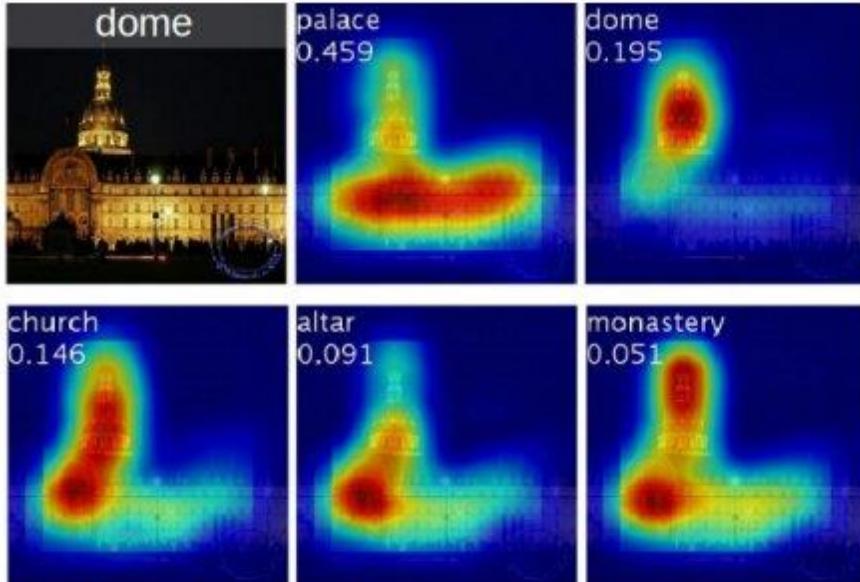
barbell

0.999

Class activation maps for one object class

Class Activation Mapping (CAM)

Problem: Can only apply to last conv layer



Gradient-Weighted Class Activation Mapping (Grad-CAM)

1. Pick any layer, with activations $A \in \mathbb{R}^{H \times W \times K}$

Gradient-Weighted Class Activation Mapping (Grad-CAM)

1. Pick any layer, with activations $A \in \mathbb{R}^{H \times W \times K}$
2. Compute gradient of class score S_c with respect to A:

$$\frac{\partial S_c}{\partial A} \in \mathbb{R}^{H \times W \times K}$$

Gradient-Weighted Class Activation Mapping (Grad-CAM)

1. Pick any layer, with activations $A \in \mathbb{R}^{H \times W \times K}$
2. Compute gradient of class score S_c with respect to A:

$$\frac{\partial S_c}{\partial A} \in \mathbb{R}^{H \times W \times K}$$

3. Global Average Pool the gradients to get weights $\alpha \in \mathbb{R}^K$:

$$\alpha_k = \frac{1}{HW} \sum_{h,w} \frac{\partial S_c}{\partial A_{h,w,k}}$$

Gradient-Weighted Class Activation Mapping (Grad-CAM)

1. Pick any layer, with activations $A \in \mathbb{R}^{H \times W \times K}$
2. Compute gradient of class score S_c with respect to A:

$$\frac{\partial S_c}{\partial A} \in \mathbb{R}^{H \times W \times K}$$

3. Global Average Pool the gradients to get weights $\alpha \in \mathbb{R}^K$:

$$\alpha_k = \frac{1}{HW} \sum_{h,w} \frac{\partial S_c}{\partial A_{h,w,k}}$$

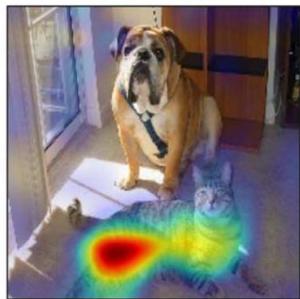
4. Compute activation map $M^c \in \mathbb{R}^{H,W}$:

$$M_{h,w}^c = \text{ReLU} \left(\sum_k \alpha_k A_{h,w,k} \right)$$

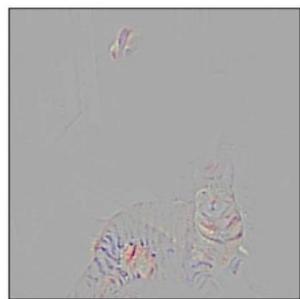
Gradient-Weighted Class Activation Mapping (Grad-CAM)

(a) Original Image

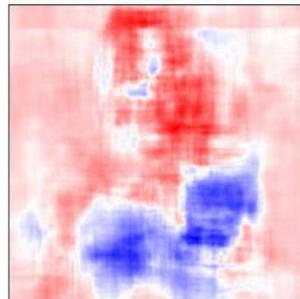
(b) Guided Backprop 'Cat'



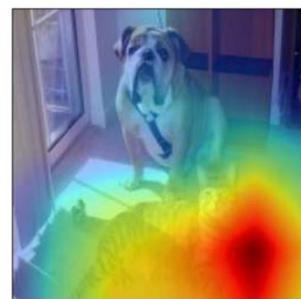
(c) Grad-CAM 'Cat'



(d) Guided Grad-CAM 'Cat'



(e) Occlusion map for 'Cat'



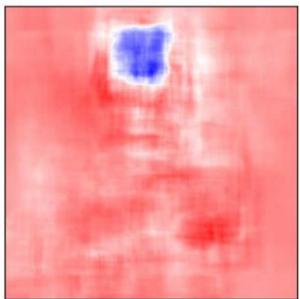
(f) ResNet Grad-CAM 'Cat'

(g) Original Image

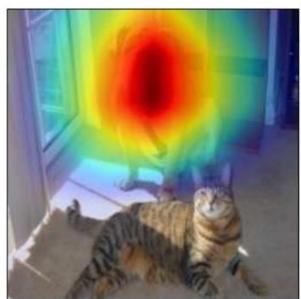
(h) Guided Backprop 'Dog'

(i) Grad-CAM 'Dog'

(j) Guided Grad-CAM 'Dog'



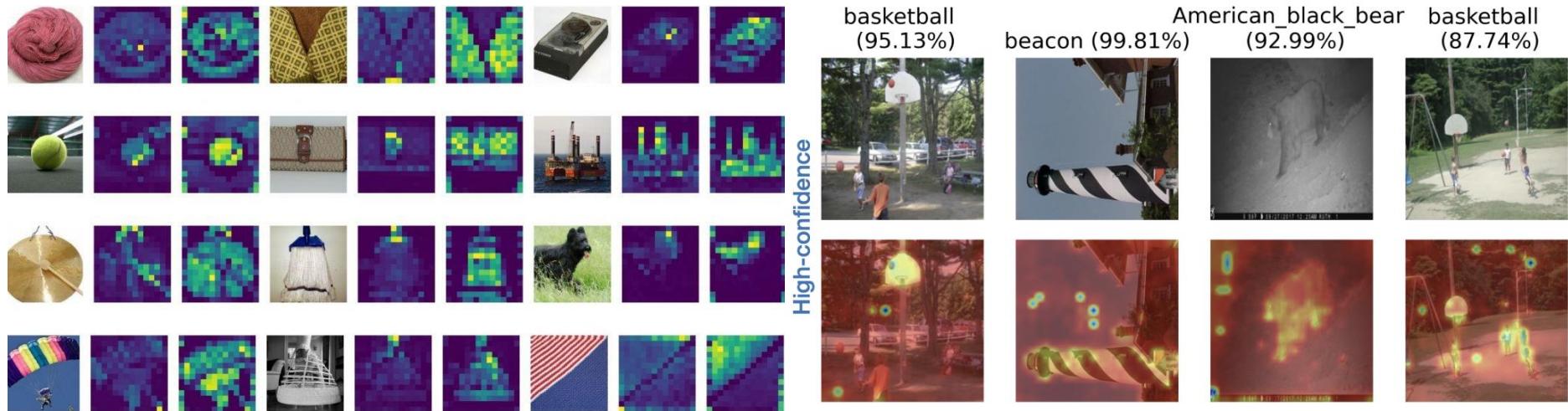
(k) Occlusion map for 'Dog'



(l) ResNet Grad-CAM 'Dog'

Selvaraju et al, "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization", CVPR 2017

Visualizing ViT features



Chen et al., When Vision Transformers Outperform Resnets Without Pre-training Or Strong Data Augmentations, ICLR 2022; Paul and Chen, Vision Transformers are Robust Learners, AAAI 2022. Reproduced for educational purposes.

Today

- Transformers Recap
- **Computer Vision Tasks**
 - Semantic Segmentation
 - Object Detection
 - Instance Segmentation
- Visualization & Understanding
 - Model Layers Visualization
 - Saliency Maps
 - CAM & Grad-CAM

Next time: Video Understanding

Additional Reading Material

Convolution as Matrix Multiplication (1D Example)

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & 0 & x & y & z & 0 \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix}$$

Example: 1D conv, kernel size=3,
stride=2, padding=1

Convolution as Matrix Multiplication (1D Example)

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & 0 & x & y & z & 0 \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=2, padding=1

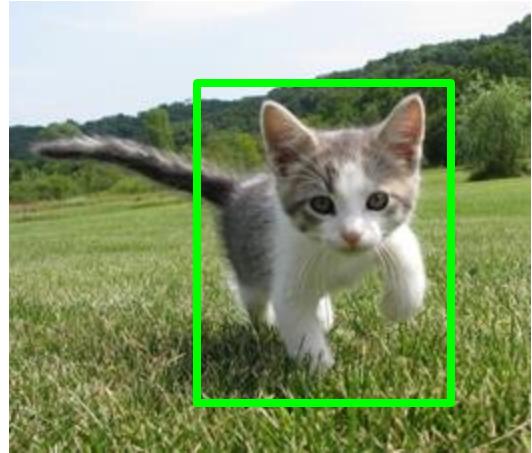
Transposed convolution multiplies by the transpose of the same matrix:

$$\vec{x} *^T \vec{a} = X^T \vec{a}$$

$$\begin{bmatrix} x & 0 \\ y & 0 \\ z & x \\ 0 & y \\ 0 & z \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ az + bx \\ by \\ bz \\ 0 \end{bmatrix}$$

Example: 1D transposed conv, kernel size=3, stride=2, padding=0

Cropping Features: RoI Pool



Input Image
(e.g. $3 \times 640 \times 480$)

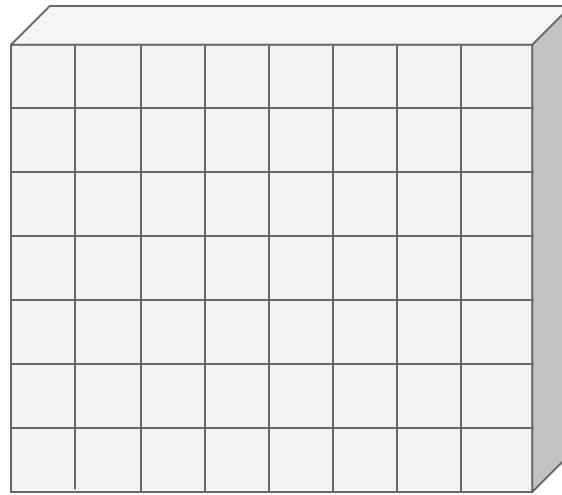
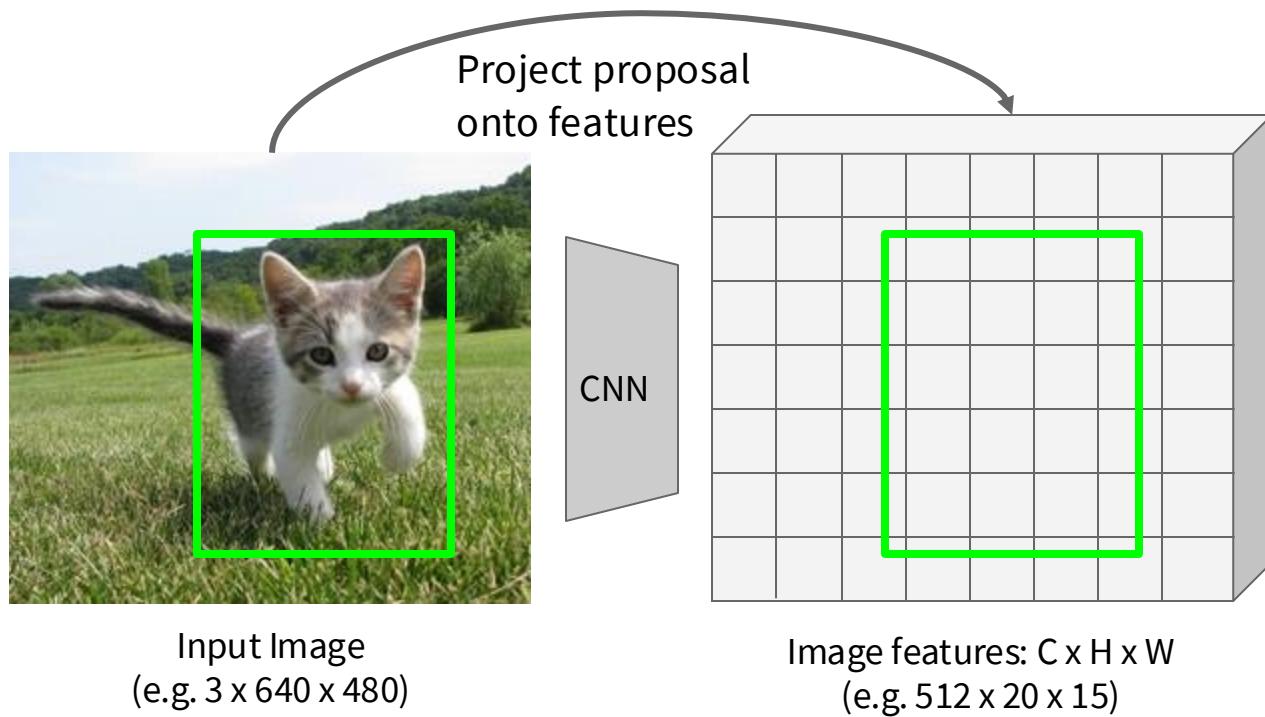


Image features: $C \times H \times W$
(e.g. $512 \times 20 \times 15$)

Girshick, "Fast R-CNN", ICCV 2015.

Girshick, "Fast R-CNN", ICCV 2015.

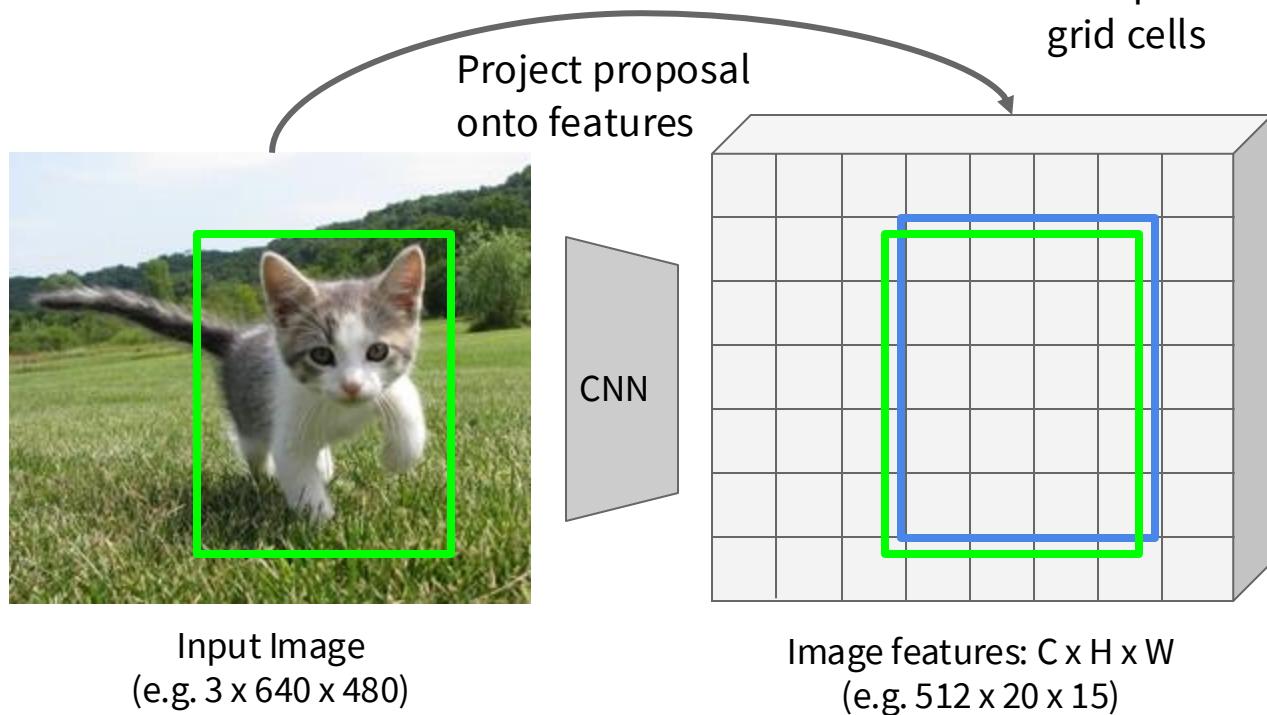
Cropping Features: RoI Pool



Girshick, "Fast R-CNN", ICCV 2015.

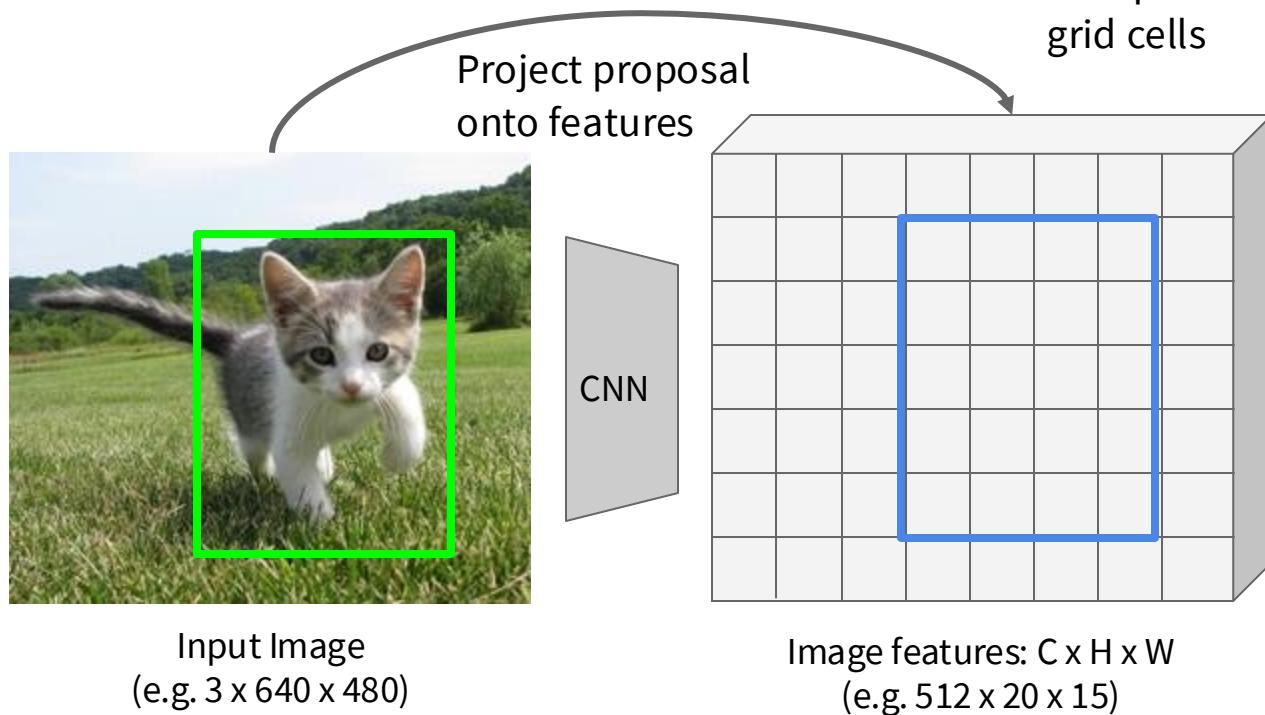
Girshick, "Fast R-CNN", ICCV 2015.

Cropping Features: RoI Pool



Girshick, “Fast R-CNN”, ICCV 2015.

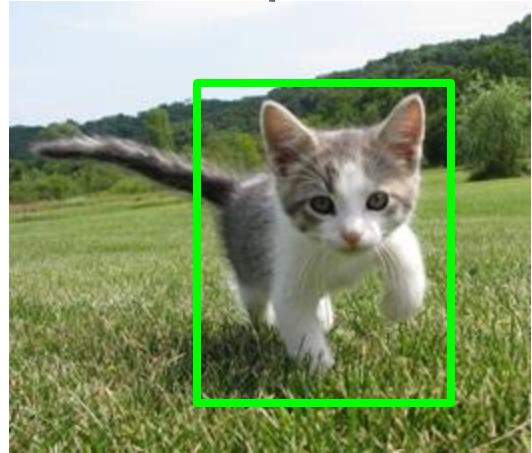
Cropping Features: RoI Pool



Q: how do we resize the $512 \times 5 \times 4$ region to, e.g., a $512 \times 2 \times 2$ tensor?

Girshick, “Fast R-CNN”, ICCV 2015.

Cropping Features: RoI Pool

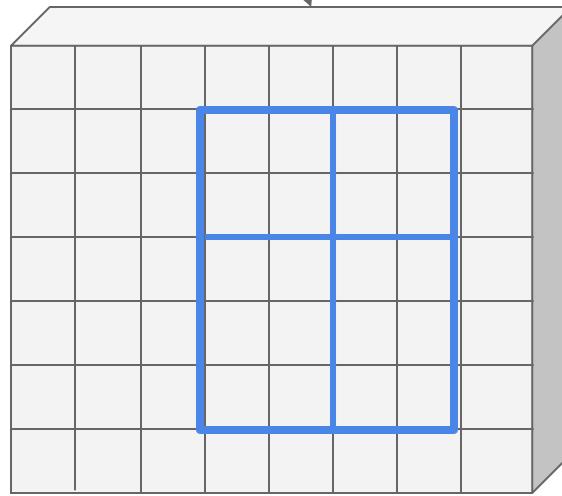


Input Image
(e.g. $3 \times 640 \times 480$)

Project proposal
onto features

Image features: $C \times H \times W$
(e.g. $512 \times 20 \times 15$)

“Snap” to
grid cells

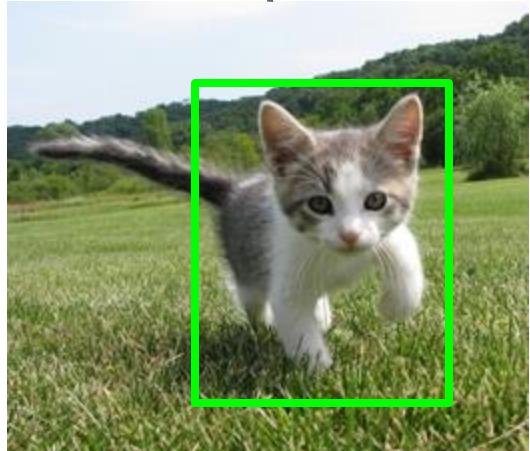


Divide into 2×2
grid of (roughly)
equal subregions

Q: how do we resize the 512×5
 $\times 4$ region to, e.g., a $512 \times 2 \times 2$
tensor?.

Girshick, “Fast R-CNN”, ICCV 2015.

Cropping Features: RoI Pool



Input Image
(e.g. $3 \times 640 \times 480$)

Project proposal
onto features

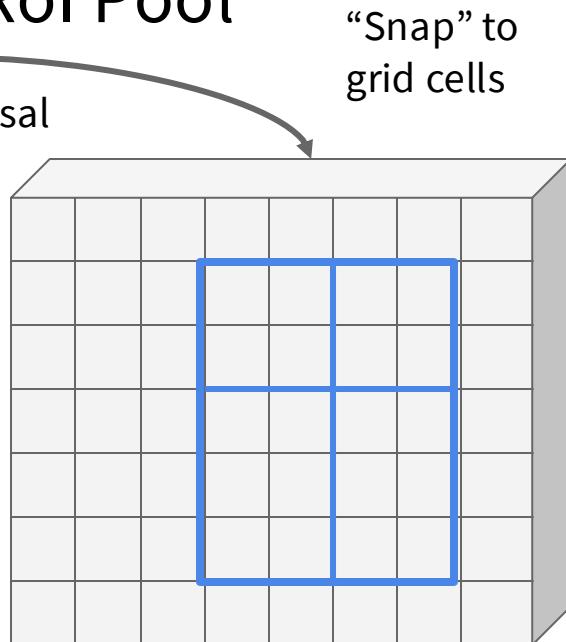
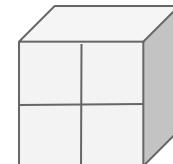


Image features: $C \times H \times W$
(e.g. $512 \times 20 \times 15$)

Divide into 2×2
grid of (roughly)
equal subregions

Max-pool within
each subregion

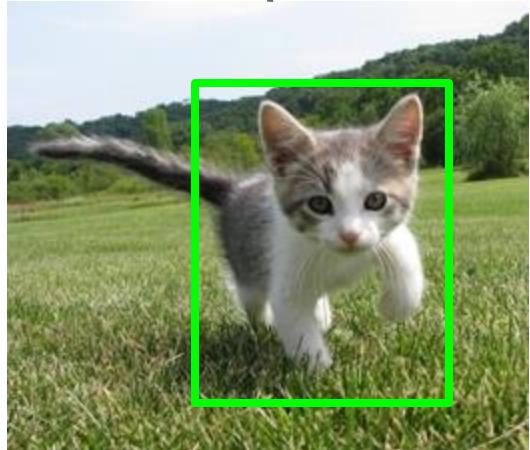


Region features
(here $512 \times 2 \times 2$;
In practice e.g. $512 \times 7 \times 7$)

Region features always the
same size even if input regions
have different sizes!

Girshick, "Fast R-CNN", ICCV 2015.

Cropping Features: RoI Pool



Input Image
(e.g. $3 \times 640 \times 480$)

Project proposal
onto features

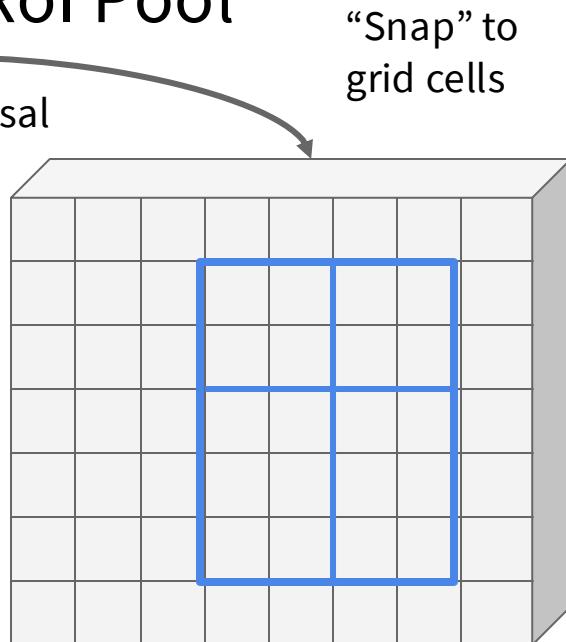


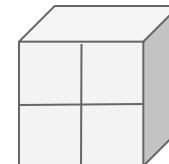
Image features: $C \times H \times W$
(e.g. $512 \times 20 \times 15$)

Problem: Region features slightly misaligned

“Snap” to
grid cells

Divide into 2×2
grid of (roughly)
equal subregions

Max-pool within
each subregion

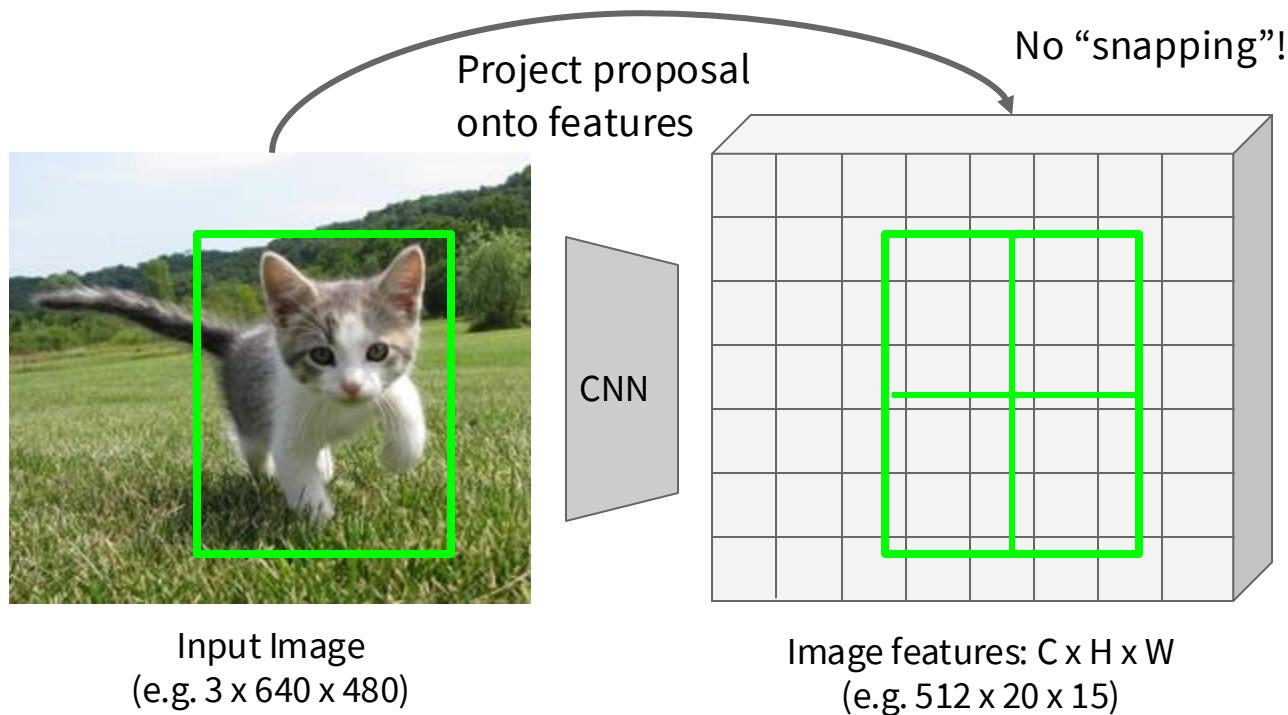


Region features
(here $512 \times 2 \times 2$;
In practice e.g. $512 \times 7 \times 7$)

Region features always the
same size even if input regions
have different sizes!

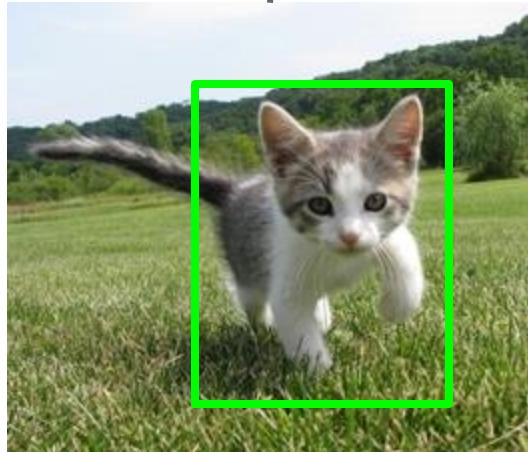
Girshick, “Fast R-CNN”, ICCV 2015.

Cropping Features: RoI Align



He et al, “Mask R-CNN”, ICCV 2017

Cropping Features: RoI Align



Input Image
(e.g. $3 \times 640 \times 480$)

Project proposal
onto features

No “snapping”!

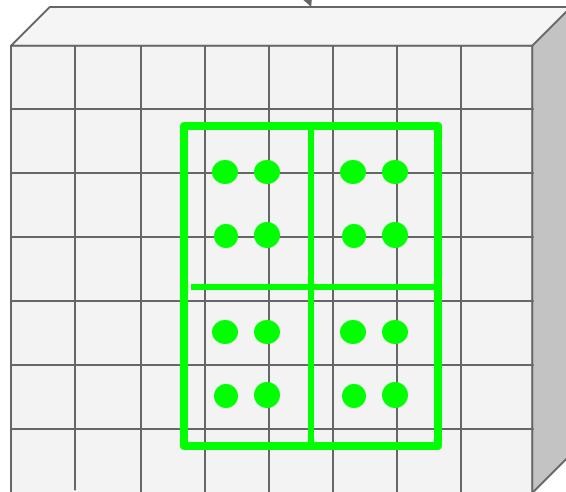
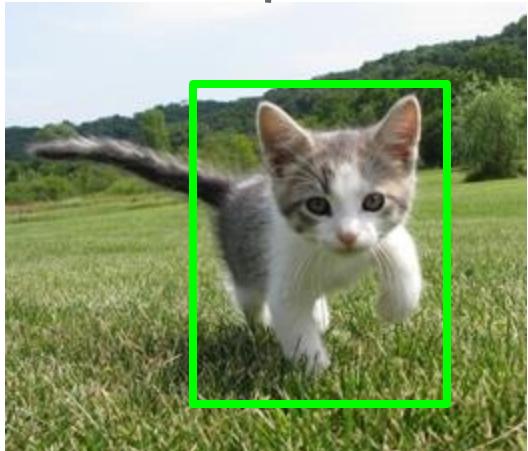


Image features: $C \times H \times W$
(e.g. $512 \times 20 \times 15$)

Sample at regular points in
each subregion using
bilinear interpolation

Cropping Features: RoI Align



Input Image
(e.g. $3 \times 640 \times 480$)

Project proposal
onto features

No “snapping”!

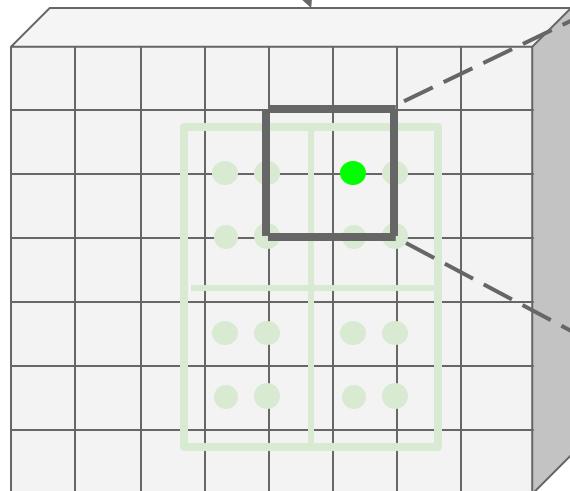
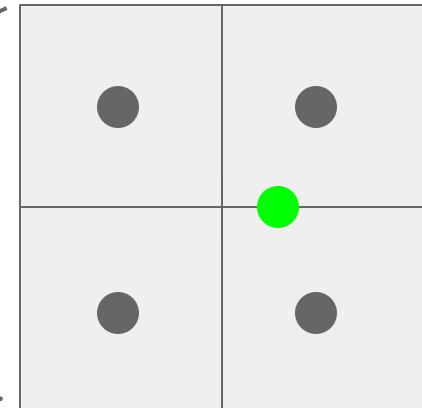


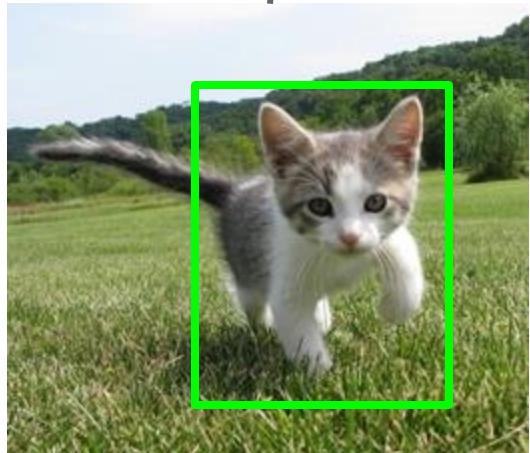
Image features: $C \times H \times W$
(e.g. $512 \times 20 \times 15$)

Sample at regular points in
each subregion using
bilinear interpolation



Feature f_{xy} for point (x, y) is
a linear combination of
features at its four
neighboring grid cells:

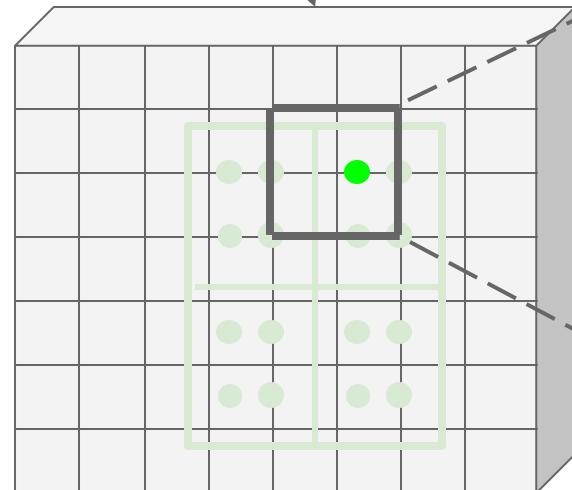
Cropping Features: RoI Align



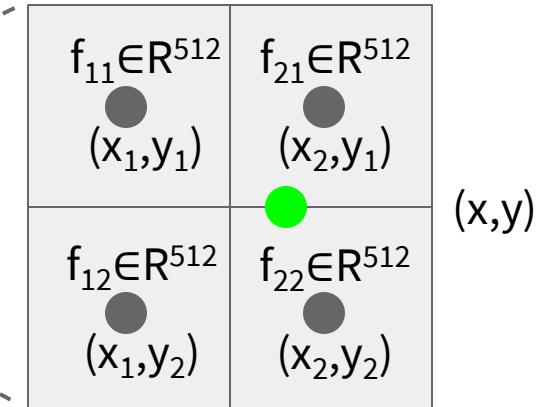
Input Image
(e.g. 3 x 640 x 480)

Project proposal
onto features

No “snapping”!



Sample at regular points in
each subregion using
bilinear interpolation

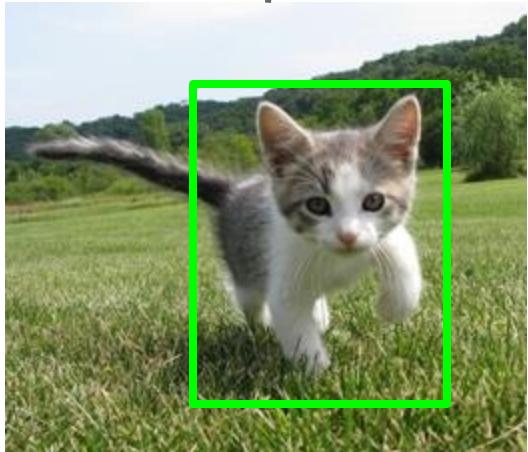


Feature f_{xy} for point (x, y) is
a linear combination of
features at its four
neighboring grid cells:

$$f_{xy} = \sum_{i,j=1}^2 f_{i,j} \max(0, 1 - |x - x_i|) \max(0, 1 - |y - y_j|)$$

He et al, “Mask R-CNN”, ICCV 2017

Cropping Features: RoI Align



Input Image
(e.g. $3 \times 640 \times 480$)

Project proposal
onto features

No “snapping”!

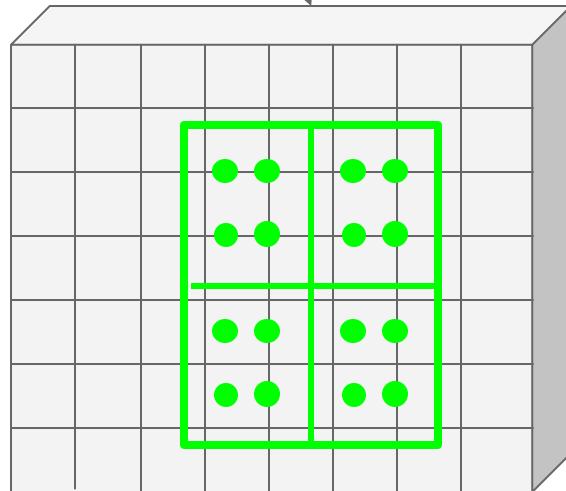
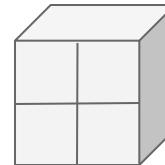


Image features: $C \times H \times W$
(e.g. $512 \times 20 \times 15$)

Sample at regular points in
each subregion using
bilinear interpolation

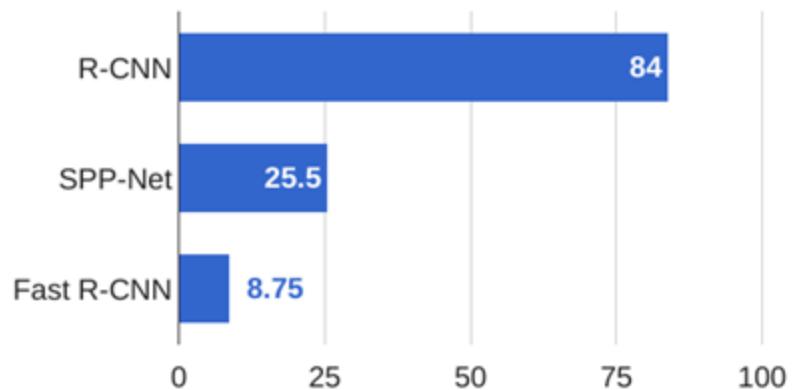
Max-pool within
each subregion



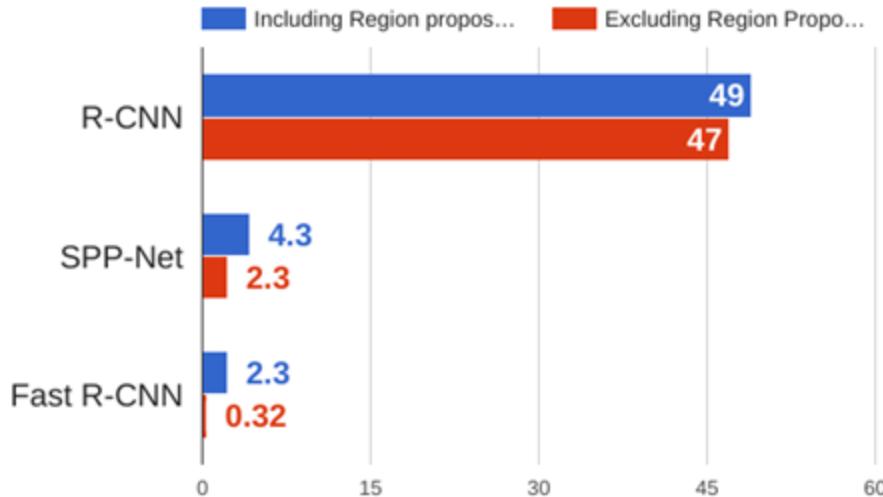
Region features
(here $512 \times 2 \times 2$;
In practice e.g. $512 \times 7 \times 7$)

R-CNN vs Fast R-CNN

Training time (Hours)



Test time (seconds)



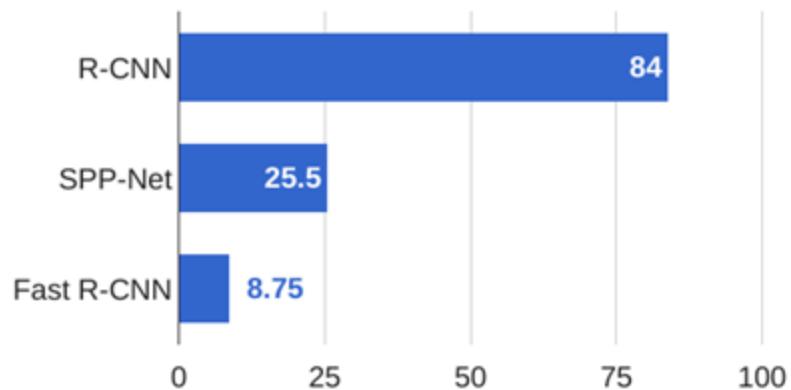
Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

He et al, "Spatial pyramid pooling in deep convolutional networks for visual recognition", ECCV 2014

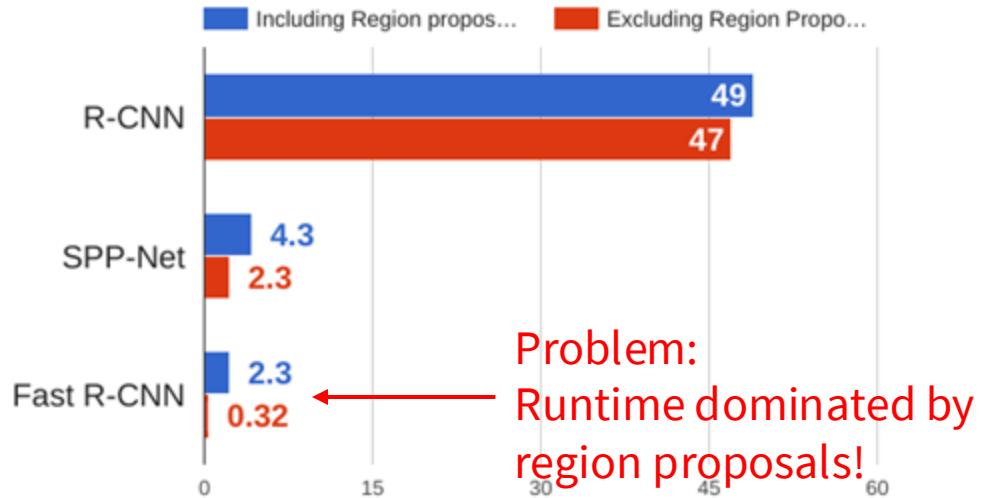
Girshick, "Fast R-CNN", ICCV 2015

R-CNN vs Fast R-CNN

Training time (Hours)



Test time (seconds)



Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

He et al, "Spatial pyramid pooling in deep convolutional networks for visual recognition", ECCV 2014

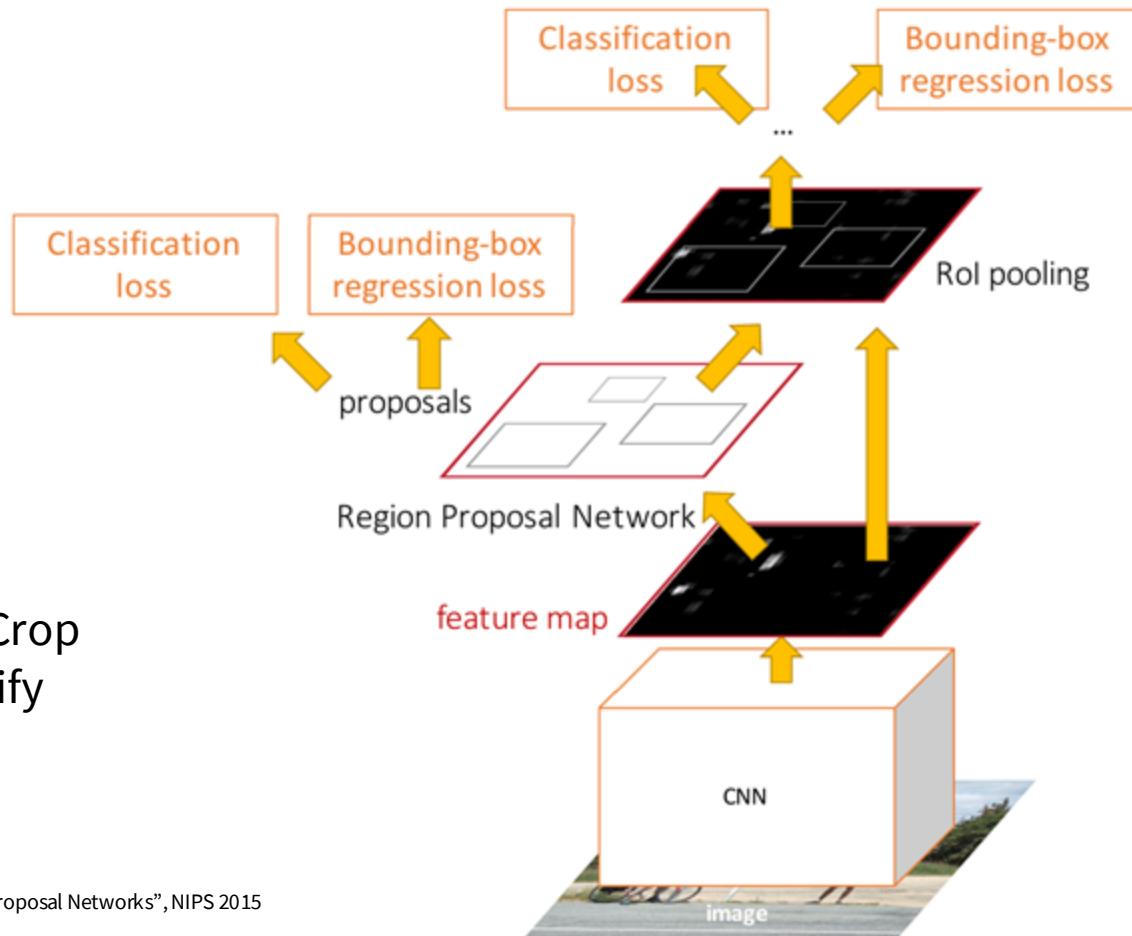
Girshick, "Fast R-CNN", ICCV 2015

Faster R-CNN:

Make CNN do proposals!

Insert Region Proposal Network (RPN) to predict proposals from features

Otherwise same as Fast R-CNN: Crop features for each proposal, classify each one



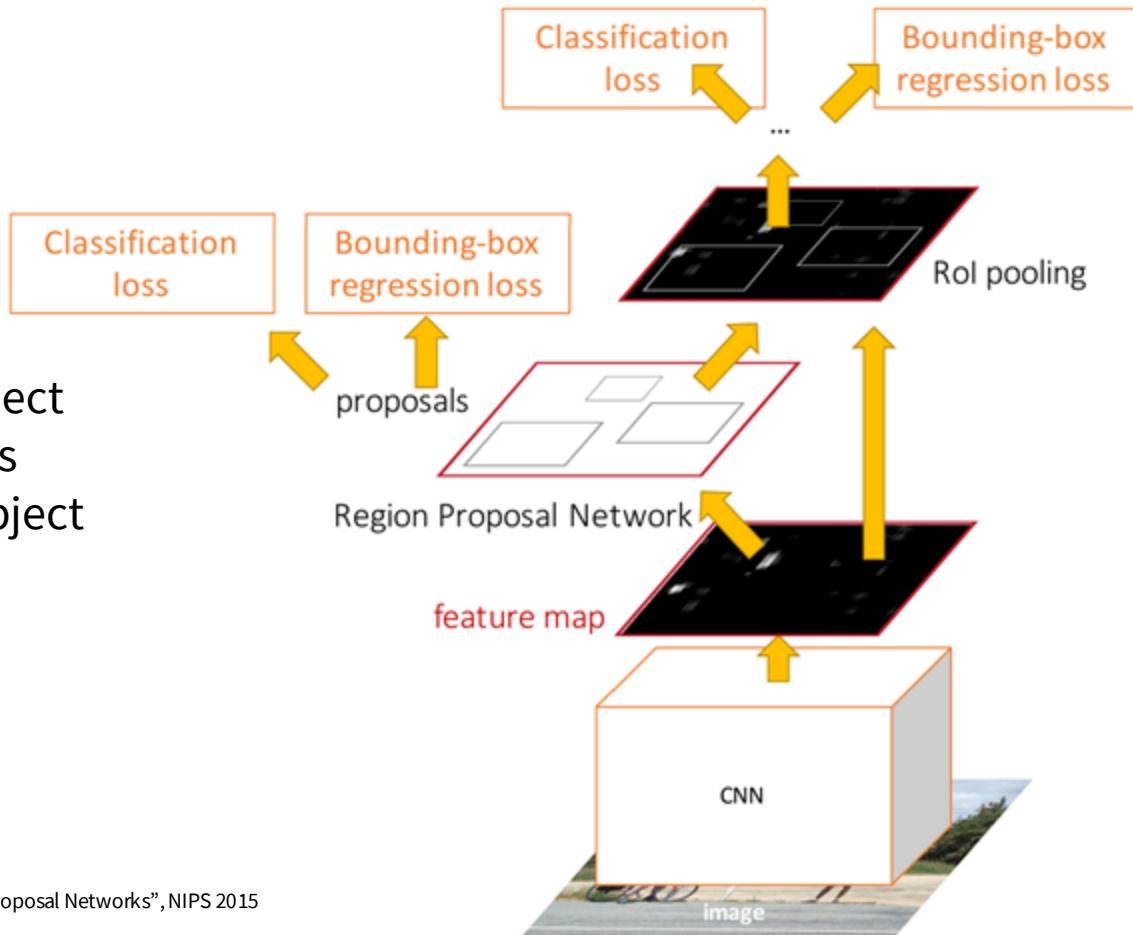
Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015
Figure copyright 2015, Ross Girshick; reproduced with permission

Faster R-CNN:

Make CNN do proposals!

Jointly train with 4 losses:

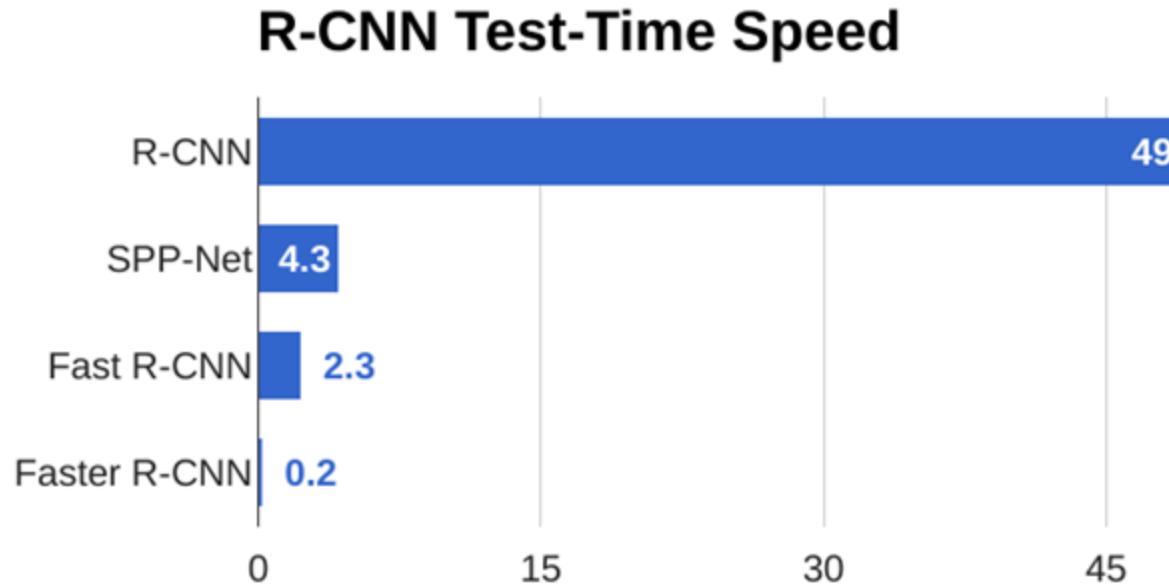
1. RPN classify object / not object
2. RPN regress box coordinates
3. Final classification score (object classes)
4. Final box coordinates



Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015
Figure copyright 2015, Ross Girshick; reproduced with permission

Faster R-CNN:

Make CNN do proposals!

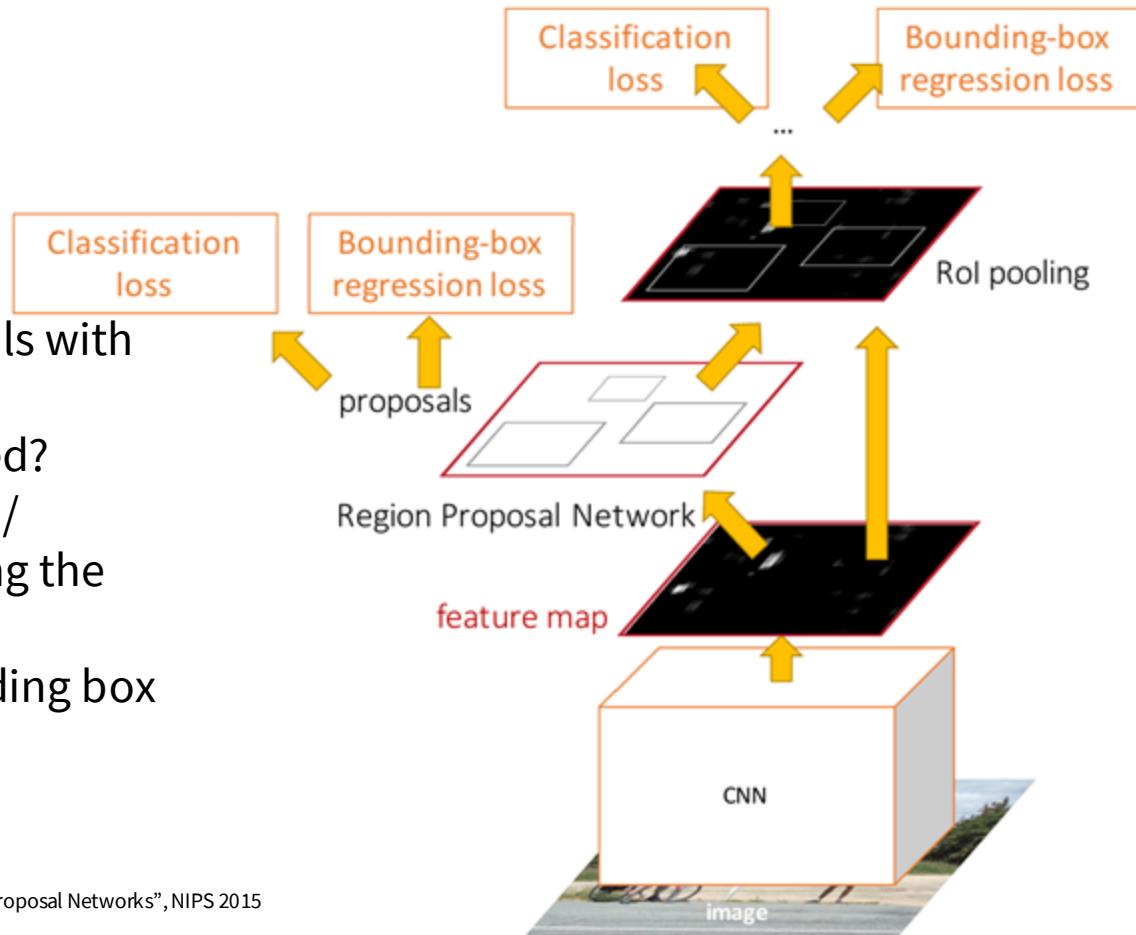


Faster R-CNN:

Make CNN do proposals!

Glossing over many details:

- Ignore overlapping proposals with non-max suppression
- How are anchors determined?
- How do we sample positive / negative samples for training the RPN?
- How to parameterize bounding box regression?



Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015
Figure copyright 2015, Ross Girshick; reproduced with permission

Faster R-CNN:

Make CNN do proposals!

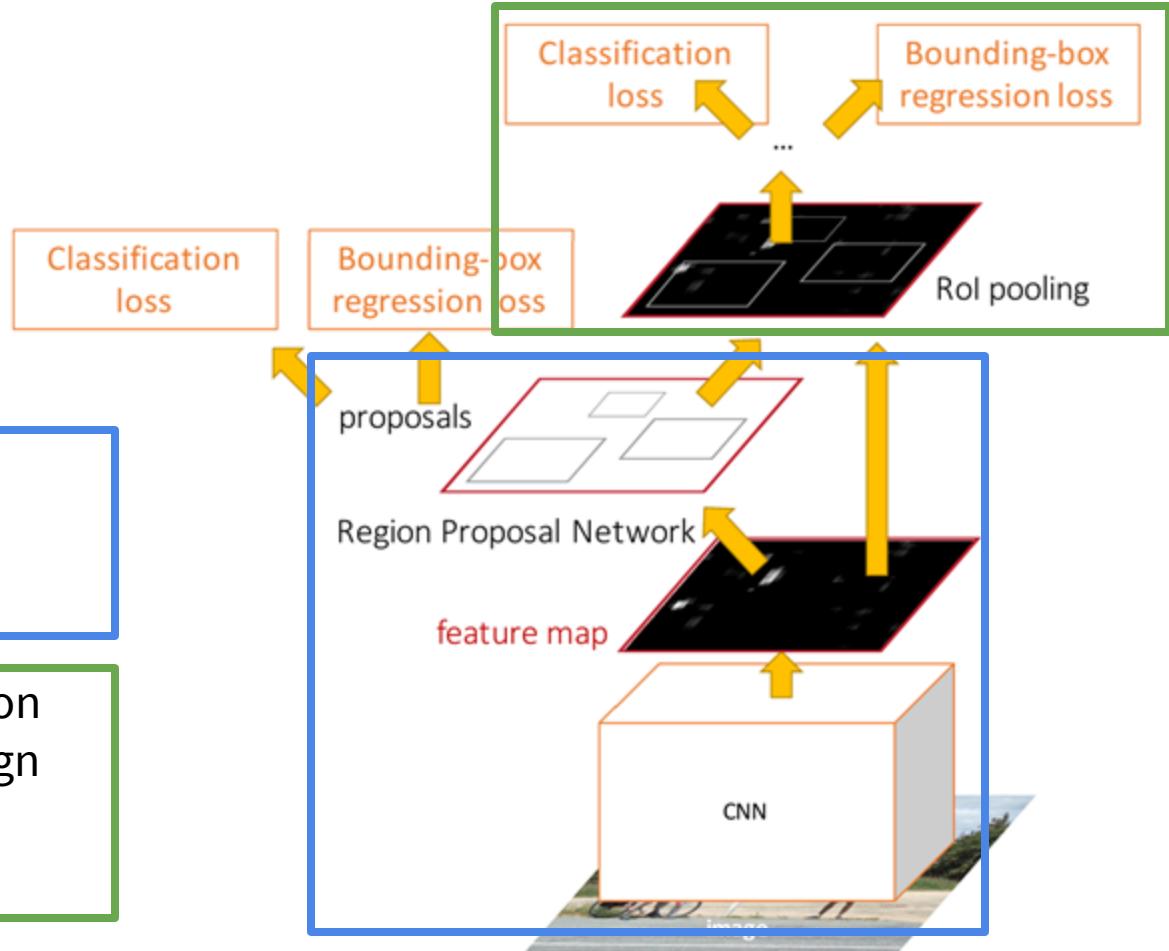
Faster R-CNN is a
Two-stage object detector

First stage: Run once per image

- Backbone network
- Region proposal network

Second stage: Run once per region

- Crop features: RoI pool / align
- Predict object class
- Prediction bbox offset



Faster R-CNN:

Make CNN do proposals!

Faster R-CNN is a
Two-stage object detector

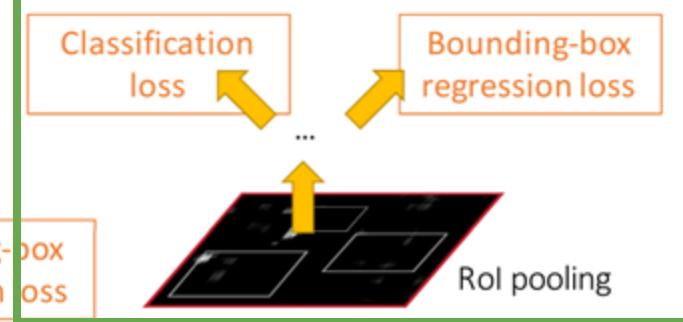
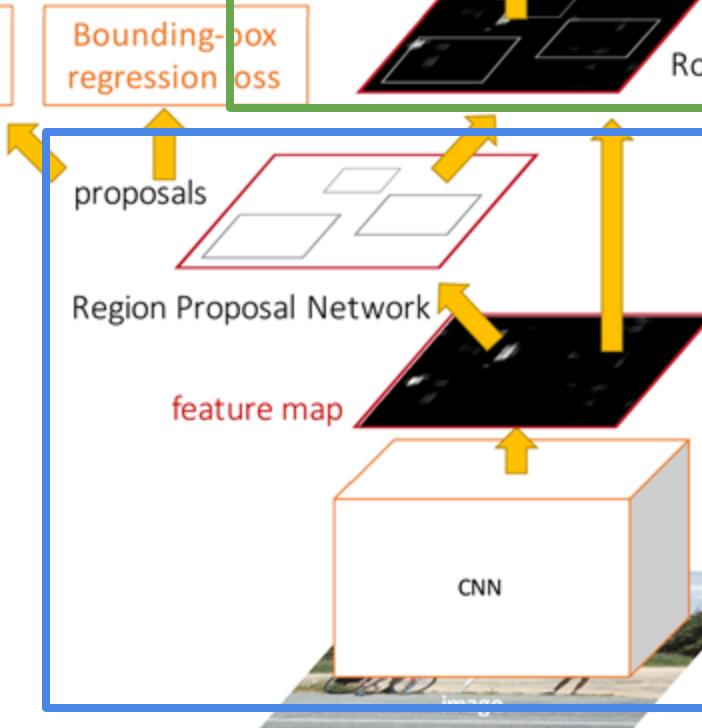
First stage: Run once per image

- Backbone network
- Region proposal network

Second stage: Run once per region

- Crop features: RoI pool / align
- Predict object class
- Prediction bbox offset

Do we really need
the second stage?



Object Detection: Lots of variables ...

Backbone Network	“Meta-Architecture”	Takeaways
VGG16	Two-stage: Faster R-CNN	Faster R-CNN is slower but more accurate
ResNet-101	Single-stage: YOLO / SSD	
Inception V2	Hybrid: R-FCN	
Inception V3	Image Size	SSD is much faster but not as accurate
Inception ResNet	# Region Proposals	
MobileNet	...	Bigger / Deeper backbones work better

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

R-FCN: Dai et al, “R-FCN: Object Detection via Region-based Fully Convolutional Networks”, NIPS 2016

Inception-V2: Ioffe and Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, ICML 2015

Inception V3: Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, arXiv 2016

Inception ResNet: Szegedy et al, “Inception-V4, Inception-ResNet and the Impact of Residual Connections on Learning”, arXiv 2016

MobileNet: Howard et al, “Efficient Convolutional Neural Networks for Mobile Vision Applications”, arXiv 2017

Object Detection: Lots of variables ...

Backbone Network	“Meta-Architecture”	Takeaways
VGG16	Two-stage: Faster R-CNN	Faster R-CNN is slower but more accurate
ResNet-101	Single-stage: YOLO / SSD	
Inception V2	Hybrid: R-FCN	
Inception V3	Image Size	SSD is much faster but not as accurate
Inception ResNet	# Region Proposals	
MobileNet	...	Bigger / Deeper backbones work better

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

Zou et al, “Object Detection in 20 Years: A Survey”, arXiv 2019

R-FCN: Dai et al, “R-FCN: Object Detection via Region-based Fully Convolutional Networks”, NIPS 2016

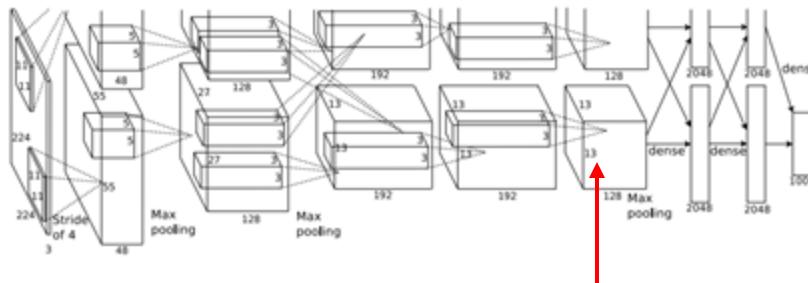
Inception-V2: Ioffe and Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, ICML 2015

Inception V3: Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, arXiv 2016

Inception ResNet: Szegedy et al, “Inception-V4, Inception-ResNet and the Impact of Residual Connections on Learning”, arXiv 2016

MobileNet: Howard et al, “Efficient Convolutional Neural Networks for Mobile Vision Applications”, arXiv 2017

Intermediate Features via (guided) backprop

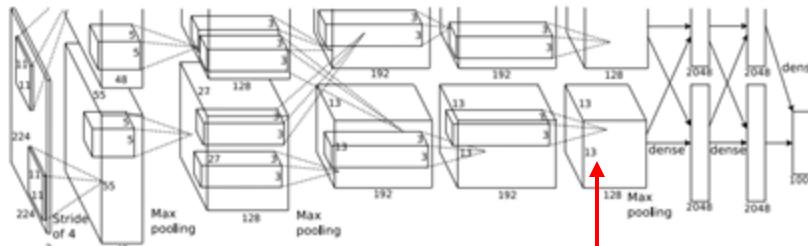


Pick a single intermediate channel, e.g. one value in $128 \times 13 \times 13$ conv5 feature map

Compute gradient of activation value with respect to image pixels

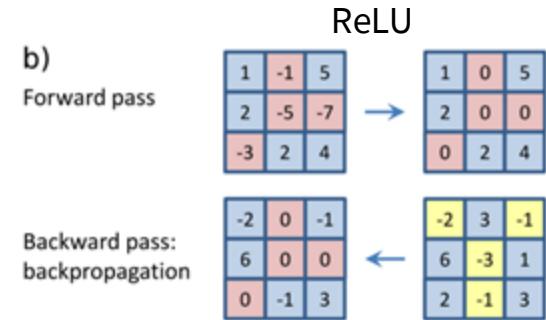
Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014
Springenberg et al, "Striving for Simplicity: The All Convolutional Net", ICLR Workshop 2015

Intermediate Features via (guided) backprop



Pick a single intermediate neuron, e.g. one value in 128 x 13 x 13 conv5 feature map

Compute gradient of neuron value with respect to image pixels

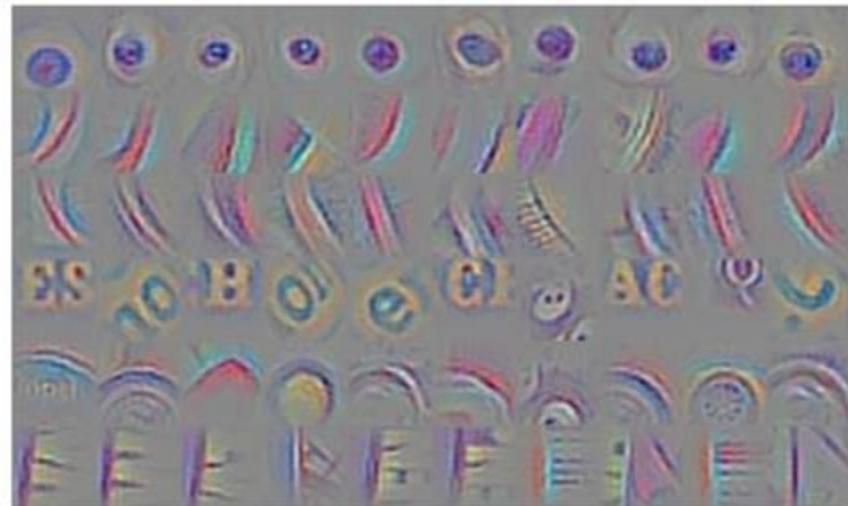


Images come out nicer if you only backprop positive gradients through each ReLU (guided backprop)

Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Intermediate features via (guided) backprop

Maximally activating patches
(Each row is a different neuron)



Guided Backprop

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014
Springenberg et al, "Striving for Simplicity: The All Convolutional Net", ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Intermediate features via (guided) backprop

Maximally activating patches
(Each row is a different neuron)

Guided Backprop

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014
Springenberg et al, "Striving for Simplicity: The All Convolutional Net", ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.