Lecture 9:
Detection, Segmentation,
Visualization, and Understanding
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Administrative Announcements

* Makesureto start Assignment 2 early. It is the longest of the three assignments,
and the midterm and project milestone deadlines follow closely after the

Assignment 2 deadline.

* Be sure to check out this Ed post for the best Colab practices to avoid
unnecessary bugs and delays.
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https://edstem.org/us/courses/77520/discussion/6504908
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Three Ways of Processing Sequences

Recurrent Neural Network Convolution Self-Attention
YiT Y2 Y3 T Y Y1 Y5 Y3 2 Y
X X X X
1 2 3 4 Xl X2 X3 X4
Works on 1D ordered sequences Works on N-dimensional grids Works on sets of vectors
(+) Theoretically good at long (-) Bad for long sequences: need to (+) Great for long sequences; each
sequences: O(N) compute and stack many layers to build up large output depends directly on all inputs
memory for a sequence of length N receptive fields (+) Highly parallel, it’s just 4 matmuls
(-) Not parallelizable. Need to (+) Parallelizable, outputs can be (-) Expensive: O(N?) compute, O(N)
compute hidden states sequentially  computed in parallel memory for sequence of length N

Stanford CS231n 10t Anniversary Lecture9- 4 April 29, 2025



Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformersfor image
Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

(YT}

£

Catimageis free for commercial
useunder a Pixabay license
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/

Vision Transformers (ViT)

N input patches, each of ﬁ ‘ ‘g ARy = - .
shape 3x16x16 E , ‘ 9 Lk ‘

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Catimageis free for commercial
useunder a Pixabay license
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Vision Transformers (ViT)

Linear projection to D-
dimensional vector

7 I? - Iﬁ
N input patches, each of ' o
shape 3x16x16 B d : 4
Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
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Catimageis free for commercial
useunder a Pixabay license
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https://pixabay.com/service/license/

Vision Transformers (ViT)

Add positional embedding:
learned D-dim vector per
positien + + + + + + + + +

Linear projection to D-
dimensional vector

N input patches, each of \
shape 3x16x16 B ' 4

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

-

Catimageis free for commercial
useunder a Pixabay license
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Vision Transformers (ViT)

s [0 0 0 0 00 0 1

Exactsame asNLP
Transformer! Transformer
Add positional embedding:
learned D-dim vector per
positien + + + + + + + + +
Linear projection to D-
dimensional vector

=1

-

N input patches, each of \
shape 3x16x16 B ' 4

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Catimageis free for commercial
useunder a Pixabay license
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Vision Transformers (ViT)

w0 0 0 0 0 0 00

Exactsame as NLP
Transformer! Transformer
Add positional embedding: SpeCia_l extra input:
learned D-dim vector per (cllja?lfl caltlon todk)en
- ims, learne
position + + + + + +

Linear projection to D-
dimensional vector

+ + +
N input patches, each of 1 ;L &
shape 3x16x16 E ' | ‘

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Catimageis free for commercial
useunder a Pixabay license
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Vision Transformers (ViT)

Linear projection to
C-dim vector of
I predicted class

w10 DD DD ODODN

Exactsame as NLP
Transformer! Transformer
Add positional embedding: SpeCia_l extra input:
learned D-dim vector per (cllja?lfl caltlon todk)en
- ims, learne
position + + + + + N +

Linear projection to D-
dimensional vector

+ +
N input patches, each of 1 ;L &
shape 3x16x16 E ' | ‘

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Catimageis free for commercial
useunder a Pixabay license
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Vision Transformers (ViT) - a similar approach (different classifier)

BEE®L p

%
Input image: =
e.g. 224x224x3 ~X4

Dosovitskiy et al, “An Image is Worth B rea k I nto patc hes
16x16 Words: Transformersfor image e g 16X 16)(3

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Input image: Ea

e.g. 224x224x3
Dosovitskiy et al, “An Image is Worth Break |nt0 patCheS Flatten and apply a llnear
6x16 Words: Transformersfor image -
! Ricognition at Scale”, ICLR2021g e°g° 16X16X3 tranSform 768 => D
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Vision Transformers (ViT)

1 1 1 t
Layer Normalization

MLP |[MLP |[ MLP |[MLP

Layer Normalization

| Self-Attention
t t t

() [ ¥ 3
4 I £ ]

Layer Normalization

MLP |[MLP |[ MLP |[MLP

Layer Normalization

| Self-Attention
t t t

Inputimage: S
e.g. 224x2243 t
~ D-dim vector per patch are
Dosovitskiy et al, “An Image is Worth Break |nt0 patCheS Flatten and apply a llnear the InPUt VeCtorS to the
rotnialiitolityiriing e.g. 16x16x3 transform 768 => D Transformer
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Vision Transformers (ViT)

1 1 1 t
Layer Normalization

MLP |[MLP |[ MLP |[MLP

Layer Normalization

| Self-Attention
t t t

() [ ¥ 3
4 I £ ]

Layer Normalization

Use positional

MLP | MLP | MLP | MLP encoding to tell
- . the transformer

ayer Normalization
the 2D position

| Self-Attention
. [ of each patch
Input image: UL
e.g. 224x2243 t
~ D-dim vector per patch are
Dosovitskiy et al, “An Image is Worth Break |nt0 patCheS Flatten and apply a llnear the InPUt VeCtorS to the

Transformer
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16x16 Words: Transformersfor image
Recognition at Scale”, ICLR 2021

transform 768 =>D

Lecture 9 - 16

e.g. 16x16x3
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Vision Transformers (ViT)

\
?Layer?Normall.izaliong Don:t use any
MLP |[MLP | MLP | MLP masking; each
image patch can
Layer Normalization
look at all other
oopAtenion image patches

() [ ¥ 3
4 I ] ]

Layer Normalization

> — Use positional

MLP | MLP | MLP | MLP encoding to tell
- . the transformer
ayer Normalization
the 2D position
Self-Attention
. L (I of each patch
Input image: :g P
e.g. 224x2243 t
~ D-dim vector per patch are
Dosovitskiy et al, “An Image is Worth Break |nt0 patCheS Flatten and apply a llnear the InPUt VeCtorS to the
rotnialiitolityiriing e.g. 16x16x3 transform 768 => D Transformer
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Vision Transformers (ViT) Transformer

gives an output

~ vector per patch
?Layer?Normall.izaliong Don:t use any
MLP |[MLP | MLP | MLP masking; each
image patch can
Layer Normalization
look at all other
|y Sephvenen image patches
R — —
Layer Normalization -
> Use positional
MLP | MLP | MLP | MLP encoding to tell
- - the transformer
ayer Normalization .
the 2D position
Self-Attention
| (i L toot of each patch
nputima . = f : f f
s 2= 1
e.g. 224x224x3
~ D-dim vector per patch are
posoutsiy et amagssworn - Br€@K into patches  Flatten and apply a linear the In_||:_Jut victors to the
6x 16 Words: Transformersfor Image —
! Ricognition at Scale”, |CLR2021g e°g° 16X16X3 tranSform 768 => D rans Ormer
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Vision Transformers (ViT)

Input image: =
e.g. 224x224x3 g

Break into patches
e.g. 16x16x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformersfor image
Recognition at Scale”, ICLR 2021

Average pool NxD vectors to
1xD, apply a linear layer D=>C to
predict class scores

1

Pooling |

1 1 t t
Layer Normalization

MLP |[MLP |[ MLP |[MLP

Layer Normalization

Self-Attention
t t t

[ 3 ¥ ¥ ¥

4 I ] ]

Layer Normalization

MLP |[MLP |[ MLP |[MLP

Layer Normalization

Self-Attention
t t

[ 3 [ 3 ¥ ¥
T T T T

t

Flatten and apply a linear
transform 768 =>D

Transformer
gives an output
vector per patch

Don’t use any
masking; each
image patch can
look at all other
image patches

Use positional
encoding to tell
the transformer
the 2D position

of each patch

D-dim vector per patch are

the input vectors to the

Transformer
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Tweaking Transformers Vi Y2 Y3 Y

4 4 4 4
The Transformer architecture has not changed : : . . '
much since 2017, Layer Normalization
S
But a few changes have become common:

| | |
MLP || MLP || MLP || MLP

A

Layer Normalization
d
R
Self-Attention
t t t t
t t

t t
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Pre-Norm Transformer Yy Y, Vs Vs

t t t t
Layer Normalization
N o)
isoutside the N

| |
MLP || MLP || MLP || MLP

residual connections

Kind of weird, the model can’t
actually learn the identify function

Layer Normalization
d
R
Self-Attention
t t t t
t t

t t

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018
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Pre-Norm Transformer Yy Y, Vs Vs

N <
D)<
isoutside the [ I I ]
residual connections MLP MLP MLP MLP
4 4 3 4
Kind of weird, the model can’t I ; ;
actually learn the identify function Layer Normalization
A
h S

Self-Attention

Layer Normalization
t t t t
t t

t f

—

X4 X, X3 X,

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018
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RMSNorm

Replace Layer Normalization
with Root-Mean-Square
Normalization (RMSNorm)

Input: x [shape D]
Output: y [shape D]
Weight: y [shape D]

Vi = RMS(x)

1 N
RMS(x) = £+—2 x?
N £aj=1

Training is a bit more stable

*Vi

Zhangand Sennrich, “Root Mean Square Layer Normalization”, NeurIPS 2019

|
MLP || MLP || MLP || MLP
i

4 | 4 4
RMSNorm
A
k4
Self-Attention
RMSNorm
t t t t
t 1 t 1
X4 X, X3 X4
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SwiGLU MLP Y1 Y> Y3 Y4

Classic MLP:
):
Input: X [N x D] [ | | l
ights: W,
Weights: s [0 40 MLP |[ MLP |[ MLP |[ MLP
Output: Y = o(XW,;)W, [N x D] : : ! : :
RMSNorm
A
k4
Self-Attention
RMSNorm
t t t t
-
f f f f
X]. X2 X3 X4

Shazeer, “GLU Variants Improve Transformers”, 2020
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SwiGLU MLP Y1 Y> Y3 Y4

Classic MLP:
):
Input: X [N x D] I I I I
Weights: W, [D x 4D]
W, (4D x D] MLP || MLP [ MLP |[ MLP
Output: Y =o(XW,)W, [N x D] 1
RMSNorm
SwiGLU MLP: A
ki
Input: X [N x D] .
Weights: Wl , W2 [D X H] Self-Attenthn
W [H x D] RMSNorm
Output: $ t $ t
Y = (c(XWy) © XW,)Ws -
f f f f
Setting H = 8D/3 keeps
same total params X1 X5 X3 X4

Shazeer, “GLU Variants Improve Transformers”, 2020
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Mixture of Experts (MoE) vi Y2 Y3 Y

Learn E separate sets of MLP weightsin
each block; each MLP is an expert ):
W,: [Dx 4D] => [E x D x 4D] I | | I
W,: [4D x D] => [E x 4D x D] MLP || MLP || MLP || MLP
4 4 | 4 4
RMSNorm
D
h
Self-Attention
RMSNorm
t t t t
S
f f f f
X4 Xo X3 X4

Shazeer et al, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”,2017
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Mixture of Experts (MoE) vi Y2 Y3 Y

Learn E separate sets of MLP weightsin
each block; each MLP is an expert D«
_ | | | |
W;: [Dx4D]=>[E x D x4D]
W [4D x D] => [E x 4D x D] MLP || MLP |[ MLP |[ MLP
1 % | 4 L)
Each token gets routed to.A< E of the RMSNorm
experts. These are the active experts. EY
Increases params by E, Y -
But only increases compute by A Self-Attention
RMSNorm
t t t t
-
f f f f
X4 Xo X3 Xy

Shazeer et al, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”,2017
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Mixture of Experts (MoE)

Learn E separate sets of MLP weightsin
each block; each MLP is an expert

W;: [Dx4D]=>[E x D x4D]
W,: [4D x D] => [E x 4D x D]

Each token gets routed to A<E of the
experts. These are the active experts.

Increases params by E,
But only increases compute by A

All of the biggest LLMs today (e.g. GPT4o,
GPT4.5, Claude 3.7, Gemini 2.5 Pro, etc)
almost certainly use MoE and have > 1T
params; but they don’t publish details
anymore

Stanford CS231n 10t Anniversary

S

L/

|
MLP || MLP || MLP || MLP
i

4 | 4 4
RMSNorm
A
k4
Self-Attention
RMSNorm
t t t t
t 1 t 1
X4 X, X3 X4
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Tweaking Transformers Vi Y2 Y3 Y

The Transformer architecture has not changed
much since 2017. D«
But a few changes have become common: I | | I
- Pre-Norm: Move normalizationinside MLP MLP MLP MLP
residual t 1 | 1 3
- RMSNorm: Different normalization layer
- SwiGLU: Different MLP architecture RMS/L\I\O m
- Mixture of Experts (MoE): Learn E different »d
MLPs, use A < E of them per token. Massively \r .
increase params, modest increase to Self-Attention
compute cost.
RMSNorm
t t t t
-
f f f f
X1 X) X3 X4
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Today

e Transformers Recap

e Computer Vision Tasks
o Semantic Segmentation
o Object Detection
o Instance Segmentation

e \Visualization & Understanding
o Model Layers Visualization
o Saliency Maps
o CAM & Grad-CAM
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Computer Vision Tasks

Semantic Object Instance
Segmentation Detection Segmentation

Classification

CAT GRASS, CAT, TREE, DOG, DOG, CAT DOG, DOG, CAT
N VAN Ky VAN Y,
Y Y Y
No spatial extent No objects, just pixels Multiple Object Insimage ' CCO b domin
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Recall: Image Classification: A core task in Computer Vision

(assume given a set of possible labels)
{dog, cat, truck, plane, ...}

v

cat

licensed under CC-BY2.0
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Semantic Segmentation

Semantic
Segmentation

GRASS, CAT, TREE,

\ SKY )
Y

No objects, just pixels
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Semantic Segmentation: The Problem

GRASS, CAT, TREE,
SKY, ...

Paired training data: for each training image,
each pixelis labeled with a semantic category.

At test time, classify each pixel of a new image.
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Semantic Segmentation Idea: Sliding Window
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Semantic Segmentation Idea: Sliding Window

Impossible to classify without context

Q: how do we include context?
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Semantic Segmentation Idea: Sliding Window

Q: how do we model this?
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Semantic Segmentation Idea: Sliding Window

Classify center pixel
Extract patch  +h NN

Full image

Cow
Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”,ICML 2014
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Semantic Segmentation Idea: Sliding Window

Classify center pixel
Extract patch  +h NN

Full image Bl =iyl
' = Cow
B Rl
= o Cow
-::." f 'ﬂ —1 X '
(LR Grass
L]

Problem: Very inefficient! Not
reusing shared features between

overla Pp Ing P atches Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”,ICML 2014
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Semantic Segmentation Idea: Convolution

Full image

b dmct

An intuitive idea: encode the entire image with conv net, and do semantic segmentation on
top.

Problem: classification architectures often reduce feature spatial sizes to go deeper, but
semantic segmentation requires the output size to be the same as input size.
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Semantic Segmentation Idea: Fully Convolutional

Design a network with only convolutional layers
without downsampling operators to make predictions
for pixels all at once!

Conv Conv

Conv argmax
— e

Y Scores: Predictions:

CxHxW HxW
Convolutions:

DxHxW
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Semantic Segmentation Idea: Fully Convolutional

Design a network with only convolutional layers
without downsampling operators to make predictions
for pixels all at once!

Conv Conv

Conv argmax
— e

Y Scores: Predictions:

CxHxW HxW

Problem: luti Convolutions:
roblem: convolutions at Dx Hx W

originalimage resolution will be
very expensive ...
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Semantic Segmentation Idea: Fully Convolutional

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:
D,x H/4 x W/4 D,x H/4 x W/4
Low-res:
D;x H/4 x W/4
Input: High-res: High-res: CXxHXW Predictions:
3xHxW D, x H/2 x W/2 D, x H/2 x W/2 HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015
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Semantic Segmentation Idea: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:

Pooling, strided downsampling and upsampling inside the network! 272

convolution Med-res: Med-res:

D,x H/4 x W/4 D,x H/4 x W/4
Low-res:
D;x H/4 x W/4
SInEIUt;N High-res: High-res: CXxHxXW Predictions:
XA X D, x H/2 x W/2 D, x H/2 x W/2 HXxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015
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In-Network upsampling: “Unpooling”

i “Bed of Nails”
Nearest Neighbor 11l 2l I 110l21 o
1| 2 1 112 2 1] 2 O 0|0 | O
— —>
3 4 3 3|4 4 3| 4 3,014 o0
3 3 4 4 0 0 00
Input: 2 x 2 Output: 4 x 4 Input: 2 x2 Output: 4 x4
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In-Network upsampling: “Max Unpooling”

Max Pooling

. Max Unpoolin
Remember which element was max! P &

Use positions from

1 2 6 3 pooling layer 0 0 2 0
3 5|21 5 6 12 O/ 1 0 0
e —_—p o 006 — P E—

3 4
1 212 1 r 8 Rest of the network 01010710
7 3 4 8 3 0 0 | 4
Input: 4 x 4 Output:2x2 Input: 2 x2 Output: 4 x4

Corresponding pairs of
downsampling and
upsampling layers
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Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output:4 x4
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Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Dot product
between filter
and input

Input: 4 x 4 Output:4 x4
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Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Dot product
between filter
and input

Input: 4 x 4 Output:4 x4
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Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride2 pad 1

Input: 4 x 4 Output:2x2
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Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride2 pad 1

Dot product
between filter
and input

Input: 4 x 4 Output:2x2
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Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride2 pad 1

Filter moves 2 pixels in the
input for every one pixel in

v

the output
Dot product
between filter Stride gives ratio between
and input movement in input and
output

We caninterpret strided
Input: 4 x 4 Output:2x2 convolution as “learnable
downsampling”.
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Learnable Upsampling: Transposed Convolution

3 x 3 transposed convolution, stride2 pad 1

Input: 2 x2 Output: 4 x4
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Learnable Upsampling: Transposed Convolution

3 x 3 transposed convolution, stride2 pad 1

Input gives
weight for
filter

Input: 2 x2 Output: 4 x4
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Learnable Upsampling: Transposed Convolution

3 x 3 transposed convolution, stride2 pad 1

v

Filter moves 2 pixels in the

Input gives output for every one pixel
weight for in the input
filter

Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output:4 x4
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Learnable Upsampling: Transposed Convolution

Sum where

3 x 3 transposed convolution, stride 2 pad 1 output overlaps

v

Filter moves 2 pixels in the

Input gives output for every one pixel
weight for in the input
filter

Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output:4 x4
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Learnable Upsampling: Transposed Convolution

Sum where

3 x 3 transposed convolution, stride 2 pad 1 output overlaps

v

Filter moves 2 pixels in the

Input gives output for every one pixel
weight for in the input
filter

Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output:4 x4
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Learnable Upsampling: 1D Example

Input Filter/
a / " \
y
b k ) /

\

|

Output

axX

ay

aZ

58

Output contains
copies of the filter
weighted by the
input, summing at
where at overlapsin
the output

April 29, 2025
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Semantic Segmentation Idea: Fully Convolutional

Downsampling; Design network as a bunch of convolutional layers, with BE:&(\;QE:;%} e
Pooling, strided downsampling and upsampling inside the network! transposed convolution
convolution Med-res: Med-res:
D,x H/4 x W/4 D,x H/4 x W/4
/ Low-res:
D;x H/4 x W/4 4
Input: High-res: High-res: Predictions:
3xHxXW D, X H/2 x W/2 D, x H/2 x W/2 H x W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015
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U-Net

64 64
1 64 6
input
i output
image |w-|s» _
tEi]Ie | . ’_ t ‘: segmentation
g1 2 & & map
o % *
N

256 128

512 256
3 I"’I'ZI = conv 3x3, ReLU

copy and crop
¥ max pool 2x2

4 up-conv 2x2
= conv 1x1

Ronneberger etal. (2015) U-net Architecture
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U-Net

64 64
128 64 64 2
input
im;"ge AR output
el el segmentation
tile map
o

- Increases field of view
¥ 126 128 - Lose Spatial Information

2842

104

[ ¥
02 '
[
002 :

=»conv 3x3, RelLU
[", ) % 8 8 copy and crop
512 512 1024 512
Tl - e $ max pool 2x2
£ 2y 1004 45 O 4 up-conv 2x2
x”-t_t_ = conv 1x1
™ o~
Ronneberger etal. (2015) U-net Architecture
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U-Net

64 64
128 64 64 2
input
i output
image |a{# _
tEi]Ie | . "_ t ‘: segmentation
2 28 map
- Create High Resolution

Mapping

';I = conv 3x3, RelLU
- copy and crop

El' 512 512
Nl — Eemem # max pool 2x2
- E 4 up-conv 2x2

S e = conv 1x1

Ronneberger etal. (2015) U-net Architecture
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U-Net

64 64
Concatenate with high-resolution feature maps 128 64 64 2
from the downsampling Phase
input
image |w|# output _
tile segmentation
3 map
o x

256 128

I : I'tl 3 I":I':I = conv 3x3, RelLU

. ' RS copy and crop
512 512 1024 512
M-+l - - # max pool 2x2
R T R 4 up-conv 2x2
S E— E— = conv 1x1
N o~
Ronneberger etal. (2015) U-net Architecture
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Semantic Segmentation: Summary
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Semantic Segmentation

This image is CCO public domain

Label each pixelin the
image with a category label

Don’t differentiate
instances, only care about
pixels
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https://pixabay.com/p-1246693/?no_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/

Object Detection

Instance
Segmentation

DOG, DOG, CAT
_/

(
> Object
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Object Detection

Object Instance
Detection Segmentation

DOG, DOG, CAT DOG, DOG, CAT

- 4

Y
Multiple Object
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Object Detection: Single Object

(Classification + Localization)

!
.....

This image is CCO public domain

Class Scores
Fully Cat: 0.9
Connected: Dog: 0.05
4096 to 1000 Car: 0.01
, FN
Vector: Connected:
409 4096t04  Box
Coordinates
(x,y,w, h)

Stanford CS231n 10t Anniversary

Lecture 9 - 68
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https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Object Detection: Single Object Correct label
(Classification + Localization) Cat

Class Scores l
Fully Cat: 0.9 , Softmax

Connected: Dog: 0.05 Loss
4096 t0 1000 Car:0.01

'''''''

- N [Was 0 {
g |4 o M K v 1
= - e 3 v [ ' [
el ‘:;':‘ . | N |rE - ,:-__.‘1:.-. o
el o X - X I T T e ML
iy VI (8 Sora Y pack T sy
w PR e e , -
A Full
This image is CCO public domain VeCtor: y .
s Connected:

409 4096t04  Box
Coordinates — |2 Loss

(x,y,w, h) T

Treat localization as a

regression problem! Correct box:
(X,7 y,’ W,’ h’)
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https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Object Detection: Single Object Correct label
(Classification + Localization) Cat

Class Scores l
Fully Cat: 0.9 , Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car:0.01 l

Multitask Loss 4 —toss

'''''''

: < 0 e . “ ~ i — I T ",‘,.',__ E- -
G e o
w e e ' b
L . Fully
This image is CCO public domain VeCtor‘ Connected:

409 4096t04  Box
Coordinates — |2 Loss

(x,y,w, h) T

Treat localization as a

regression problem! Correct box:
(X,7 y,’ W,’ h’)
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https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Object Detection: Multiple Objects

DUCK: (x,y, w, h)
DUCK: (x,y, w, h)
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. . . . Each image needs a different
Object Detection: Multiple Objects | imber of outoute:

CAT: (x, y, w, h) 4 numbers

DOG: (x,y, w, h) 12 numbers

DUCK: (x,y,w,h)  Many
DUCK: (x,y, w, h) numbers!
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Object Detection: Multiple Objects

Apply a CNN to many different crops of the

image, CNN classifies each crop as object or
background

Stanford CS231n 10t Anniversary Lecture 9 - 73

Dog? NO
Cat? NO
Background? YES
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Object Detection: Multiple Objects

Apply a CNN to many different crops of the

image, CNN classifies each crop as object or
background

Stanford CS231n 10t Anniversary Lecture9- 74

Dog? YES
Cat? NO
Background? NO
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Object Detection: Multiple Objects

Apply a CNN to many different crops of the
image, CNN classifies each crop as object or

background

(. F——}id . HH |
T e | s &l WA
= eu =y
| — \sls
'\L.—ll' ! - L T =

h [E] ] s h

Lecture 9 - 75

Dog? YES
Cat? NO
Background? NO

April 29, 2025
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Object Detection: Multiple Objects

Apply a CNN to many different crops of the
image, CNN classifies each crop as object or

background

n“ N i J&_ LY L‘_,:"": b e l_': _i l

N = B et = M AL AD

@u \l\\z [:‘ N L \q = l‘al 2 Dog? NO

L P = Cat? YES

N =R )

Q\:-:}._“ - .-.'1 o o " . N::;.q._, b e BaCkgrou nd? NO

Q: What’s the problem with this approach?

April 29, 2025
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Object Detection: Multiple Objects

Apply a CNN to many different crops of the
image, CNN classifies each crop as object or

background
' i\
ST o
===t P B2 LA Cat? YES
ke : = qw P — v - Background? NO

Problem: Need to apply CNN to huge number
of locations, scales, and aspect ratios, very
computationally expensive!
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Region Proposals: Selective Search

e Find “blobby” image regionsthat are likely to contain objects
e Relatively fast to run; e.g. Selective Search gives 2000 region
proposals in a few seconds on CPU

A 4

Alexe et al, “Measuring the objectness of image windows”, TPAMI2012

Uijlings etal, “Selective Search for Object Recognition”,1JCV 2013

Cheng etal, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014
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R-CNN

Girshick et al, “Rich feature hierarchiesfor accurate object detection and semantic
segmentation”, CVPR 2014.

In pU tim age Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchiesfor accurate object detection and semantic
segmentation”, CVPR 2014.

I n pU t Im age Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN

LT Warped image regions
(224x224 pixels)

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchiesfor accurate object detection and semantic
segmentation”, CVPR 2014.

I n pU tim age Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN

Conv Forward each region
Conv Net through ConvNet |
Net (ImageNet-pretranied)
Conv
Net ¥ ﬁ Warped image regions
(224x224 pixels)

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchiesfor accurate object detection and semantic
segmentation”, CVPR 2014.

I n pU tim age Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN

SVMs | Classify regions with

SVMs SVMs
> Conv Forward each region
Conv Net through ConvNet |
Net (ImageNet-pretranied)
Conv
Net ¥ ﬁ Warped image regions
(224x224 pixels)

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchiesfor accurate object detection and semantic
segmentation”, CVPR 2014.

I n pU tim age Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Predict “corrections” to the Rol: 4 numbers: (dx, dy, dw, dh)

R-CNN
Bboxreg || SVMs | Classify regions with
Bboxreg || SVMs SVMs
Bboxreg | | SVMs o .
Conv Forward each region

Conv Net through ConvNet

(ImageNet-

Net :

Conv i pretranied)
Net E Warped image regions

(224x224 pixels)

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchiesfor accurate object detection and semantic
segmentation”, CVPR 2014.

I n pU tim age Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Predict “corrections” to the Rol: 4 numbers: (dx, dy, dw, dh)

R-CNN
Bboxreg || SVMs Classify regions with Problem: Very slow!
Bboxreg || SVMs SVMs Need to do ~2k
o independent forward
Bbox reg SVMs Forward each ' P .W
Conv ion th h passes for each image!
Conv Net rCegloE roug
Cony Net onvNet
Net E ﬁ Warped image regions
(224x224 pixels)

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchiesfor accurate object detection and semantic
segmentation”, CVPR 2014.

I n pU t Im age Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Predict “corrections” to the Rol: 4 numbers: (dx, dy, dw, dh)

“Slow” R-CNN

Bboxreg || SVMs | Classify regions with pqh|om: very slow!

Bboxreg || SVMs SVMs Need to do ~2k
Bboxreg | | SVMs o independent forward
Conv Forwa rtdheachh passes for each image!
Conv Net region throug
Conv Net Conviet |dea: Pass the image
ﬁ , . through convnet
Warped image regions

. before cropping! Crop
(224x224 pixels) the conv feature

Regions of Interest  jhctead!
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchiesfor accurate object detection and semantic
segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Inputimage
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

“Slow” R-CNN

SVMs

Input image

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Fast R-CNN

“Slow” R-CNN

SVMs

/ / “conv5” Conv
* features
« ” Run whole image
Backbone through ConvNet
network:
AlexNet, VGG, ConvNet
ResNet, etc £ Input image

Input image
Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

“Slow” R-CNN

Regions of
Interest (Rols)

from a proposal
method : /“convS”
features
. Run whole image
Backbone” through ConvNet
network:
AlexNet, VGG, 4  ConvNet -
ResNet, etc f‘f- > Inputimage

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Regions of Slow” R-CNN =

Interest (Rols)
/7 ﬂ Crop + Resize features
S

from a proposal
method ﬁ@ /“ConVS” features

Run whole image

Conv

“Backbone” through ConvNet
network:

AlexNet, VGG, 4  ConvNet

ResNet, etc £ > Inputimage

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Object Linear +
catego ry softmax Linear | Box offset
Regions of CN N Per-Region Network “Slow” R-CNN
SVMs
Interest (Rols) D
/7 /7 Crop+Resize features m

Conv

from a proposal
method ﬁ@ 5 conv5” features

. , Run whole image
Backbone through ConvNet

network:

AlexNet, VGG,

ResNet, etc Inputimage

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Object Linear +

category softmax Linear | Box offset
Regions of CNN Per-Region Network “Slow” R-CNN S

VMs
Interest (Rols) VAR L I
L7 v tures

from a proposal £/ | ~rop T Resizelea
method E— iﬁ “conv5” features Conv

Run whole image

“Backbone” through ConvNet
network:

AlexNet, VGG, 4  ConvNet

ResNet, etc £ Inputimage

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Region Proposal Network

b
-
-~
3
{ v
't.")‘ 0l s NP v;", A5 ol 'J AL E 3 ':"
PURY Y 'é;.;w QUrNE
Rt PO T s ﬁf;-.m
X ‘v;f‘pﬂa”)’;\'., j : N ,ﬂ’wz\"
SN TS EN A 5P o : S
',‘“,_J,. A ‘.:- _\_(;_".y \.-" VAT g
‘?‘. LY W .\_;‘. S| A
R B R RRNN S

Input Image
(e.g. 3x 640 x480) Image features
(e.8.512x20x 15)
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Region Proposal Network Imagine an anchor box of

fixed size at each pointin
the feature map

*
R D st
R R e ;
:‘*. ﬁ.ﬁ‘f ' o o L o e ﬂ(:
Input Image I
(e.g. 3x 640 x480) Image features
(e.8.512x20x 15)
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Region Proposal Network Imagine an anchor box of

fixed size at each pointin
the feature map

-\
Anchor is an object?
1x20x15
Conv

T | Y ias 1 _‘ 4l .,’ ‘ .

M

‘- ‘ 5 g v

:‘ ‘; h\.)" g it F20 Jincl i(l‘, . .
nout | I At each point, predict whether
nput Image :

(e.g.3x640x480) Image features the co.rrespond.lng an.chor
(e.8.512x 20 X 15) contains an object (binary

classification)
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Region Propcsal Network Imagine an anchor box of

fixed size at each pointin
the feature map

/
I =
4 oy
- : _ . .
!. . SARE | | Anchor is an object?
H AT Conv
. Box corrections
— 4x20x15

For positive boxes, also predict a
(e.gl;g L>J<t6|4r1]2)ax§:3,:1%80) Image features corrections from the anchor to
(e.8.512 X 20X 15) the ground-truth box (regress 4
numbers per pixel)
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Region Proposal Network

Input Image

(e.g. 3x 640 x480) Image features

(e.8.512x20x 15)

Stanford CS231n 10t Anniversary

In practice use K different
anchor boxes of different
size [ scale at each point

+
-\
~ Anchor is an object?
: i : Kx20x15
3 Conv

g o I A 1"J B Box transforms

\ _, ] | . ! N FIE K p—— 4Kx20x 15
AR
1 iiat \ MY n 114
.’W%'g ‘\h‘*‘e‘ v ‘.‘? 2 =N

Lecture 9 - 97
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In practice use K different

Region Proposal Network anchor boxes of different

size [ scale at each point

i I -\
? b | Anchor is an object?
g Kx20x15
I 3 Conv
g 17J L Box transforms
DRI AY IR i i U | 4K x20x 15
\; ,'_il, 5 : T —-/
I"i;"!-‘- '.‘:‘ ) L A IS T4 »
B A0 O PIRANIN OLE VA Y Sort the K*20*15 boxes by
Input Image their “objectness” score, take
(e.g. 3 x 640 x 480) Image features top ~300 as our proposals

(e.8.512x20x 15)
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Single-Stage Object Detectors: YOLO / SSD / RetinaNet

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
5 numbers:

(dx, dy, dh, dw, confidence)

- Predictscores for each of C
classes (including
background as a class)

- Looks a lot like RPN, but
category-specific!

Inputimage Divide image into grid
3XHxW 7x7
Output:

7Tx7x(5*B+C)

Image a set of base boxes
Redmon et al, “You Only Look Once:

Unified, Real-Time Object Detection”, CVPR 2016 centered at each grld cell

Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016 H B _ 3
Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017 ereb=
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YOLO (You Only Look Once)
real-time object detection

JNE

S x S grid on input

Class probability map
Redmon etal. "You only look once: unified, real-time object detection (2015)."

Stanford CS231n 10t Anniversary Lecture9- 100 April 29, 2025



SxS Grid

Redmon etal. "You only look once: unified, real-time object detection (2015).'
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YOLO

= ke L1 - For each box output:
- - * P(object): probability that the box contains an object
— T «  Bbounding boxes (x,y, h,w)
* P(class): probability of belonging to a class
: g e L
‘!)' s J Ll | | k. LI
SxS Grid

Redmon etal. "You only look once: unified, real-time object detection (2015)."
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For each box output:
* P(object): probability that the box contains an object

* Bbounding boxes (x,y, h,w)
* P(class): probability of belonging to a class

B=2

SxS Grid

Redmon etal. "You only look once: unified, real-time object detection (2015).'
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For each box output:
P(object): probability that the box contains an object

B bounding boxes (x,y, h, w)
P(class): probability of belonging to a class

B=2

SxS Grid

Redmon etal. "You only look once: unified, real-time object detection (2015)."
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YOLO

' Bl BEBea——u T 0™ Many bounding boxes with
i? I B e "‘ = ] . . HHH
‘ | prpmeni 8t el different object probabilities
—_— | ; e i HI!J
|
Kl W ‘(‘

|
JEN

1 I

SxS Grid

Redmon etal. "You only look once: unified, real-time object detection (2015)."

April 29, 2025
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Rl | |====2b S

SxS Grid

Redmon etal. "You only look once: unified, real-time object detection (2015)."
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Object Detection with Transformers: DETR

Simple object detection pipeline: directly output a set of boxes from a Transformer
No anchors, no regression of box transforms

Match predicted boxes to GT boxes with bipartite matching; train to regress box coordinates

-~~".-= no object no object
- . object (o) bject (o)
e transformer | I
encoder- —>5
decoder o
set of image features set of box predictions bipartite matching loss

Carionetal, “End-to-End Object Detection with Transformers”, ECCV 2020
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Object Detection with Transformers: DETR

.-~~".-= no object (o) no object (o)

’
td P ’d
’ 0
’ o
LA ¢

T transformer =
= encoder-  ——>5
decoder Y f -
D Pt =4 d/
set of image features set of box predictions bipartite matching loss

backbone i

1
set of image features:

Carionetal, “End-to-End Object Detection with Transformers”, ECCV 2020
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Object Detection with Transformers: DETR

.’/“,—;_ no object (@) no object (o)
— transformer =
: encoder-  ——>5
decoder Y
D -
set of image features set of box predictions bipartite matching loss

Carionetal, “End-to-End Object Detection with Transformers”, ECCV 2020

Stanford CS231n 10t Anniversary Lecture9- 109 April 29, 2025



Object Detection with Transformers: DETR

.-~~".-= no object (o) no object (o)

’
td P ’d
’ 0
’ o
LA ¢

A transformer =
' encoder-  ——>5
decoder Y : =
set of image features set of box predictions bipartite matching loss

backbone | encoder

=

transformer
encoder

S L
Dooooo--0

Carionetal, “End-to-End Object Detection with Transformers”, ECCV 2020
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Object Detection with Transformers: DETR

-~~~ no object (o) no object (o)
- B A
T = transformer =
encoder- —>— /
decoder O
set of image features set of box predictions bipartite matching loss

—————————————————— —|I_._.__.-._—————————-———-|
encoder decoder :
LEE
|
|

transformer
decoder

TIEN

transformer
encoder

S S
Doooog--0g

object queries

Carionetal, “End-to-End Object Detection with Transformers”, ECCV 2020
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Object Detection with Transformers: DETR

.-~~".-= no object (o) no object (o)

td
4 P ”
Ve
K

FFN > "

transformer object |

decoder

e transformer =
encoder- —»— /
decoder O
set of image features set of box predictions bipartite matching loss
_______________ I'_-_——__-——-___———--'r____—'___________"I'__'______________"
E backbone || encoder decoder ' prediction heads
|

, setofimage featuresii h ;
| class,
| ! X FFN e
|
|
|
|

transformer
encoder

FEN > class,

; box
onooo -0 R IRE IS

Carionetal, “End-to-End Object Detection with Transformers”, ECCV 2020
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Instance Segmentation

Instance
Segmentation

DOG, DOG, CAT

- _/

Y
Multiple Object
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Object Detection:
Faster R-CNN

) egression lo ’pmling
Proposals/ /
Object /
Detection Region Proposal Network '
:‘{‘ ‘4.‘ . feaiurernap'
‘ CNN
) p 4

DOG, DOG, CAT LS _ —"f =
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Instance Segmentation:
Mask R-CNN

. ' | Add a small mask
- PFDDDSM/ network that operates
nstance

: on each Rol and
Segmentatlon Region Proposal Ne

twork predicts a 28x28 binary
feature map

CHN

DOG, DOG, CAT S g

He et al, “Mask R-CNN”, ICCV 2017
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Mask R-CNN

Classification Scores: C
Box coordinates (per class): 4 * C

—_—

AN

AN

/

Rol Align /

v

NN N NN

N N NN\

AN N N NN\

256x14x 14

He et al, “Mask R-CNN”, arXiv 2017
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Mask R-CNN

. Classificatjon Scores: C
Box coordinates (per class): 4 * C
71 A /
“ //
(AN - -
dB%
/// Rol Align )/ Conv )/ Conv
/
256x14x 14 256x 14 x 14 Predict a mask for

each of C classes

Cx28x28

He et al, “Mask R-CNN”, arXiv 2017
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Mask R-CNN: Example Mask Training Targets
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Mask R-CNN: Example Mask Training Targets
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Mask R-CNN: Example Mask Training Targets
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Mask R-CNN: Example Mask Training Targets
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Mask R-CNN: Very Good Results!

He et al, “Mask R-CNN”, ICCV 2017
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Mask R-CNN
Also does pose

He et al, “Mask R-CNN”, ICCV 2017
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Open Source Frameworks

Lots of good implementations on GitHub!

TensorFlow Detection API:

https://github.com/tensorflow/models/tree/master/research/object_detection
Faster RCNN, SSD, RFCN, Mask R-CNN, ...

Detectron2 (PyTorch)

https://github.com/facebookresearch/detectron2
Mask R-CNN, RetinaNet, Faster R-CNN, RPN, Fast R-CNN, R-FCN, ...

Finetune on your own dataset with pre-trained models
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https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/facebookresearch/detectron2

Recap: Lots of computer vision tasks!

Semantic Object Instance
Segmentation Detection Segmentation

Classification

CAT GRASS, CAT, TREE, DOG, DOG, CAT DOG, DOG, CAT
N VAN Ky VAN Y,
Y Y Y
No spatial extent No objects, just pixels Multiple Object Insimage ' CCO b domin
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Today

e Transformers Recap

e Computer Vision Tasks
o Semantic Segmentation
o Object Detection
o Instance Segmentation

e \Visualization & Understanding
o Model Layers Visualization
o Saliency Maps
o CAM & Grad-CAM
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Interpreting a Linear Classifier: Visual Viewpoint
airplane S 5 wlﬂziil

Input image

automobile . , a ! = ﬁ . ﬂ

bird q

cat

deer . 5 02 | -05 15 | 13 0 | .25
dog E :| W 01 | 20 21 | 00 02 | 03
frog o B 3 > . ; y
horse |y HIEEII!IE b
ship -- g 2 --i.qg Score -9:.8 4:7.9 6:95

truck ﬂ‘i‘ﬂ‘.?’ﬁ‘ﬁ
horse truck
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First Layer: Visualize Filters

‘ENESEREEE
SN -]
SENEFRE=NR
==

ﬂ ARIEINN

AlexNet:
64x3x11x11

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017
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First Layer: Visualize Filters

~. | B
EEKEBEERS
'l'ﬂﬂﬂ Hnm =

-~ ”"k-.

a1 =
NN /:x
SENEFE=N
HE= AR

: ES l" SEE
e - ' |~ l | ‘ ’
7 RSN TLLL A
' I/ "‘ - . . I | 4 .
m 05: N I".i —1~ ResNet-18: ResNet-101: DenseNet-121:

64 X3XTXT 64 X3XTXT 64 X3XTXT
AlexNet:
64x3x11x11

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017
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Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”,|CLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

v

-t %4
x| I L |
i | I 1}
! |
A \ T e
i .
Yy 1@l )
| T - Fay
"-' - s/
g 14
Ji ! Lt

a

Compute gradient of (unnormalized) class score
with respect to image pixels, take absolute value
and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”,|CLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Saliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”,|CLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Class Activation Mapping (CAM)

Global Fully Connected
Average Layer, weights
Pooling w € RE*C

q K

W
Last layer CNN features: Pooled features: Class Scores:
f € RIXWXK F e RK S € R¢

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)

Global Fully Connected
Average Layer, weights
Pooling w € RE*C

q K

W
Last layer CNN features: Pooled features: Class Scores:
f € RIXWXK F e RK S € R¢

1
F, = — E
T Hw h,Wf ik

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)

Global Fully Connected
Average Layer, weights
Pooling w € RE*C

q K

W
Last layer CNN features: Pooled features: Class Scores:
f € RIXWXK F e RK S € R¢

1
F, = —2 Sc = z Wy o F
k HW h'th,W,k c K kclt'k

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)

Global Fully Connected
Average Layer, weights
Pooling w € RE*C

q K

W
Last layer CNN features: Pooled features: Class Scores:
f € RIXWXK F e RK S € R¢

1 1
F=—E Se= ) WicFy =772 w
k HW h'th,W,k (of K kctk HW k k,c h'wfh,W,k

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)

Global Fully Connected
Average Layer, weights
Pooling w € RE*C

W
Last layer CNN features: Pooled features: Class Scores:
f € RIXWXK F e RK S € R¢

1 1
F, = — Sc = Z Wi o Fr = —Z w
k HW h'th,W,k (of K kctk HW k k,c h'wfh,W,k

7 Do 2
= w
HW Ly L kcfnwk

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)

Global Fully Connected
Average Layer, weights
Pooling w € RE*C

W
Last layer CNN features: Pooled features: Class Scores:
f € RIXWXK F e RK S € R¢

1 1
F, = — Sc = Z Wi o Fr = —Z w
k HW h'th,W,k (of K kctk HW k k,c h'wfh,W,k

Ty
= w
oW zh,w ) kel hwk

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)

Global Fully Connected
Average Layer, weights
Pooling w € RE*C

W
Last layer CNN features: Pooled features: Class Scores:
f € RIXWXK F e RK S € R¢

1 1 Class Activation Maps:
fel B .
k HW h,wf h,w,k c , kctk HW , k,c h,wf h,w,k M € ]RC’H’W

: Z
= — w Mc,h,w - Wk,th,W,k
HW Zh,w Zk kel hwk k

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)

church
0.146

Class activation maps of top 5 predictions Class activation maps for one object class

Zhouet al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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. . . Problem: Can only
Class Activation Mapping (CAM)  .pply to last conv layer

church

Class activation maps of top 5 predictions Class activation maps for one object class

Zhouet al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

1. Pick any layer, with activations A € RE*W*K

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

1. Pick any layer, with activations A € RE*W>*K
2. Compute gradient of class score S, with respect to A:
dS,

e REXWXK
d0A

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

1. Pick any layer, with activations A € RE*W>*K

2. Compute gradient of class score S, with respect to A:

aS € ]RHXWXK

04
3. Global Average Pool the gradients to get weights a € RX:

a
k= HW hwaAhwk

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

1. Pick any layer, with activations A € RE*W*K

2. Compute gradient of class score S, with respect to A:

aS € ]RHXWXK

04
3. Global Average Pool the gradients to get weights a € RX:

a
k= HW hwaAhwk

4. Compute activation map M¢ € REW:

M}i,w = RelLU (z akAh’W,k)
k

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

, , X ‘ = J
(b) Guided Backprop ‘Cat’ (¢) Grad-CAM ‘Cat’ (d) Guided Grad-CAM “Cat’ (e) Occlusion map for ‘Cat’ (f) ResNet Grad-CAM ‘Cat’
, . T - y ~

s

(g) Original Image (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’  (j)Guided Grad-CAM ‘Dog’ (k) Occlusion map for ‘Dog’ (I)ResNet Grad-CAM ‘Dog’

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017
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Visualizing ViT features

¢HBETHYHE
] +] o R * [y
i‘g...ﬁe—ﬂ.ﬂ%-'
DGR 4N

Chen etal., When Vision Transformers O utperformResnets Without Pre-training Or
StrongData Augmentations, ICLR 2022; Paul and Chen, Vision Transformers are Robust
Learners, AAAI 2022. Reproduced for educational purposes.

igh-confidence

basketball

American_black_bear basketball

(95 13%) beacon (99.81%) (92.99%) (87.74%)
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Today

e Transformers Recap

e Computer Vision Tasks
o Semantic Segmentation
o Object Detection
o Instance Segmentation

e \Visualization & Understanding
o Model Layers Visualization
o Saliency Maps
o CAM & Grad-CAM
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Next time: Video Understanding
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Additional Reading Material
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Convolution as Matrix Multiplication (1D Example)

We can express convolutionin
terms of a matrix multiplication

r*xd=Xd

o
(L

r y z 0 0 O |b] | ay+bz

0 0 =z vy =z U] c _[ba:+cy+dz]
d
-[}—

Example: 1D conv, kernel size=3,

stride=2, padding=1
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Convolution as Matrix Multiplication (1D Example)

We can express convolutionin Transposed convolution multiplies by the
terms of a matrix multiplication transpose of the same matrix:
rxa=Xa il da=X"q
01 z 0 azx
a y 0 ay
r y z 0 0 0]|b| [ ay+bz z x| |a|  |az+bx
0 0 =z y z 0| |e| |bx+ecy+dz 0 wy| |b by
d 0 =z bz
0] 0 0 0
Example: 1D conv, kernel size=3, Example: 1D transposed conv, kernel size=3,
stride=2, padding=1 stride=2, padding=0
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Cropping Features: Rol Pool

Input Image Image features: Cx HxW
(e.g. 3 x 640 x 480) (e.g.512x 20 x 15)

Girshick, “FastR-CNN”, ICCV 2015.
Girshick, “FastR-CNN”, ICCV 2015.
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Cropping Features: Rol Pool

Project proposal\
onto features

Input Image Image features: Cx HxW
(e.g. 3 x 640 x 480) (e.g.512x 20 x 15)

Girshick, “FastR-CNN”, ICCV 2015.
Girshick, “FastR-CNN”, ICCV 2015.
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Cropping Features: Rol Pool .

grid cells
Project proposa[\
onto features

Input Image Image features: Cx HxW
(e.g. 3 x 640 x 480) (e.g.512x 20 x 15)

Girshick, “FastR-CNN”, ICCV 2015.
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Cropping Features: Rol Pool .

grid cells
Project proposa[\
onto features

Q: how do we resizethe 512 x5
X4 region to, e.g.,a512x2x?2
tensor?.

Input Image Image features: Cx HxW
(e.g. 3 x 640 x 480) (e.g.512x 20 x 15)

Girshick, “FastR-CNN”, ICCV 2015.
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Cropping Features: Rol Pool .

grid cells
Project proposa[\
onto features

Input Image Image features: Cx HxW
(e.g. 3 x 640 x 480) (e.g.512x 20 x 15)

Girshick, “FastR-CNN”, ICCV 2015.

Divide into 2x2
grid of (roughly)
equal subregions

Q: how do we resize the 512 x5
X4 regionto, e.g.,a512x2x2
tensor?.
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Cropping Features: Rol Pool .. ... Divide into 2x2
pp g Shap”to grid of (roughly)

Project proposal\ grid cells equal subregions
onto features

Max-pool within
each subregion

Region features
(here512x2x2;
In practice e.g 512 x 7 x7)

Inputimage Image features: Cx Hx W Region features always the

(€.8.3x 640 x480) (e.g.512x20x 15) same size evenif input regions

have different sizes!
Girshick, “FastR-CNN”, ICCV 2015.
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Cropping Features: Rol Pool .. ... Divide into 2x2
pp g Shap”to grid of (roughly)

Project proposal\ grid cells equal subregions
onto features

Max-pool within
each subregion

Region features
(here512x2x2;
In practice e.g 512 x 7 x7)

Input Image Image features: Cx HxW Region features always the

(€.g.3x640x480) (e.g.512x20x 15) same size evenif input regions

have different sizes!

Sirshick, “Fast R-CNN ICCY 2015, Problem: Region features slightly misaligned
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Cropping Features: Rol Align

“« : ”|
Project proposal\NO snapping”!
onto features

Input Image Image features: Cx HxW
(e.g. 3 x 640 x 480) (e.g.512x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017
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Sample atregular pointsin

Cro pp'ng Features: Rol L“gﬂ each subregion using

« ing”1  bilinearinterpolation
/roject proposal\No shapping-:

onto features

S

o0 |00
RIS

Input Image Image features: Cx HxW
(e.g. 3 x 640 x 480) (e.g.512x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017
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Sample atregular pointsin

Cro pp'ng Features: Rol L“gﬂ each subregion using

« ino”1  bilinearinterpolation
/roject |:>ro|fJosal\'No ke .
~

onto features g
~
//’ . .
1 1_lel— @
-1 —|——|<\\
| T — ¢
| I T~
| I N
| |
| i | i Feature f,, for point (x, y) is

a linear combination of
Input Image Image features: Cx Hx W features at its four
(e.8- 3x640x 480) (e.g.512x20x15) neighboring grid cells:

He et al, “Mask R-CNN”, ICCV 2017
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Cropping Features: Rol Align

onto features _ 3 flle R512 lee R512
-7 O
(X1,¥1) (X2,Y1)
1 _ ___._ | ‘
| @ |__|< 1 leE R512 f226 R512
| | N N q .
: : RN - (X1,Y2) (X2,¥2)
[ [ -
| |
| |

Image features: Cx H x W
(e.g. 512 x 20 x 15)

Input Image
(e.g.3x640x480)

He et al, “Mask R-CNN”, ICCV 2017

Sample atregular pointsin
each subregion using

« ing”1  bilinearinterpolation
/roject |:>ro|fJosal\'No ke .
~

(X,y)

Feature f,, for point (x, y) is
a linear combination of
features at its four
neighboring grid cells:

fmy = Z?,jzl fi,j ma}{(o,. 1 — ‘33 - mtl) ma,x([], I - ‘y - yjl)

Stanford CS231n 10t Anniversary
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Sample atregular pointsin

Cro pp'ng Features: Rol L“gﬂ each subregion using

« ing”1  bilinearinterpolation
/roject proposal\No shapping-:

onto features

Max-pool within
each subregion

S

® ’ ® ’
oo |loe® Region features
(here512x2x2;
In practice e.g 512 x 7 x7)
Input Image Image features: Cx HxW
(e.g. 3 x 640 x 480) (e.g.512x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017
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R-CNN vs Fast R-CNN

. Test time (seconds)
Tralnlng tlme (HourS) B ncluding Region propos... [l Excluding Region Propo...

R-CNN

SPP-Net 4.3
SPP-Met rz.a
Fast R-CNMN
Fast R-CNN l 2.3
0 25 50 75 100 0.32
o 15 30 45 60

Girshick et al, “Rich feature hierarchiesfor accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “FastR-CNN”, ICCV 2015
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R-CNN vs Fast R-CNN

Training time (Hours)

R-CNN R-CNN

SPP-Net
SPP-Met

Fast R-CNM

Fast R-CNM
0 25 50 75 100

Girshick et al, “Rich feature hierarchiesfor accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “FastR-CNN”, ICCV 2015

Test time (seconds)

B ncluding Region propos... [l Excluding Region Propo...

4.3
2.3
N 23 Problem:
032 ¥ Runtime dominated by
i |
: . region prgposals.m
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Faster R-CNN:

Make CNN do proposals!

ition Bounding-box .

Insert Region Proposal R 1 p . P
Network (RPN) to predict ' propcisey /
proposals from features .

Region Proposal Network 2

Otherwise same as Fast R-CNN: Crop feature map
features for each proposal, classify
each one
CHN
4 /

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 E 7 =
Figure copyright2015, Ross Girshick; reproduced with permission
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Faster R-CNN:

Make CNN do proposals!

ition Bounding-box .

Jointly train with 4 losses: i & A &
1. RPN classify object / not object "propcssey /
2. RPN regress box coordinates .
3. Final classification score (object Region Proposal Network

classes)
4. Final box coordinates

feature map 4

CMMN
4 /

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 E 7 =
Figure copyright2015, Ross Girshick; reproduced with permission
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Faster R-CNN:

Make CNN do proposals!

R-CNN Test-Time Speed
R-CNN
SPP-Net
Fast R-CNN 2.3

Faster R-CNN| 0.2

0 15 30 45
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Faster R-CNN:

Make CNN do proposals!

Classification Bounding-box .
Glossing over many details: 0s regression lo ”pm]'”g

- lgnore overlapping proposals with

non-max suppression | 'propcsseV /

- How are anchors determined? .

- How do we sample positive / Region Proposal Network 8
negative samples for training the
RPN? feature map 4

- How to parameterize bounding box
regression?

CHNN
y /

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 E 7 =
Figure copyright2015, Ross Girshick; reproduced with permission
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Classification ooOuUnNaIng-nox

Faster R-CNN: Joss By | A regressionloss

Make CNN do proposals!

Classification Bounding-pox .
Faster R-CNN is a loss regression Joss ” pooling

Two-stage object detector N < — v
proprjséy — (:/
First stage: Run once perimage |

- Backbone network Region Proposal Netwcrk
- Region proposal network

feature map 4

Second stage: Run once per region
- Crop features: Rol pool / align

- Predict object class o )
- Prediction bbox offset b
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Classification
Faste_r R-CNN: Do we really need
Make CNN do proposals! the second stage?
Classification Bounding-pox
Faster R-CNN is a loss regression Joss
Two-stage object detector N .

L r an
propasey o /
First stage: Run once per image Z |

- Backbone network
- Region proposal network

Second stage: Run once per region
- Crop features: Rol pool / align

- Predict object class o )
- Prediction bbox offset b
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Object Detection: Lots of variables ...

Backbone “Meta-Architecture” Takeaways
Network Two-stage: Faster R-CNN Faster R-CNN is slower but

VGG16 Single-stage: YOLO / SSD more accurate

ResNet-101 Hybrid: R-FCN .
Inception V2 SSD is much faster but not

Inception V3 Image Size as accurate

Inception ResNet # Region Proposals

MobileNet Bigger / Deeper backbones
work better

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

R-FCN: Dai et al, “R-FCN: Object Detection via Region-based Fully Convolutional Networks”, NIPS 2016

Inception-V2:loffe and Szegedy, “Batch Normalization: Accelerating Deep Network Training by ReducingInternal Covariate Shift”, ICML2015
Inception V3: Szegedy et al, “Rethinking the In ception Architecture for Computer Vision”, arXiv 2016

Inception ResNet: Szegedy et al, “Inception-V4, Inception-ResNetand the Impact of Residual Connections on Learning”, arXiv 2016
MobileNet: Howard et al, “Efficient Convolutional Neural Networksfor Mobile Vision Ap plications”, arXiv 2017

Stanford CS231n 10t Anniversary Lecture9- 173 April 29, 2025



Object Detection: Lots of variables ...

Backbone “Meta-Architecture” Takeaways

Network Two-stage: Faster R-CNN Faster R-CNN is slower but
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Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017
Zou et al, “Object Detection in 20 Years: A Survey”, arXiv 2019

R-FCN: Dai et al, “R-FCN: Object Detection via Region-based Fully Convolutional Networks”, NIPS 2016

Inception-V2:loffe and Szegedy, “Batch Normalization: Accelerating Deep Network Training by ReducingInternal Covariate Shift”, ICML2015
Inception V3: Szegedy et al, “Rethinking the In ception Architecture for Computer Vision”, arXiv 2016
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MobileNet: Howard et al, “Efficient Convolutional Neural Networksfor Mobile Vision Ap plications”, arXiv 2017
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Intermediate Features via (guided) backprop
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Pick a single intermediate channel, e.g. one value
in 128 x 13 x 13 conv5 feature map

Compute gradient of activation value with respect
to image pixels

Zeiler and Fergus, “Visualizingand Und erstanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
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Intermediate Features via (guided) backprop

RelLU
b) 1|-1]5 1|0

N Forward pass 2lsla| — [ 0
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Pick a single intermediate neuron, e.g. one value in

128 x 13 x 13 conv5 feature map
Backward pass; ocjojo 212
i H gw'ded &E|0D] O - 6l1-3l1
Compute gradient of neuron value with respect to backpropagation =117 e

image pixels o
Images come out nicer if you only

backprop positive gradients through
each RelLU (guided backprop)

Zeiler and Fergus, “Visualizingand Und erstanding Convolutional Networks”, ECCV 2014 Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox,
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015 Martin Riedmiller, 2015; reproduced with permission.
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Intermediate features via (guided) backprop
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Maximally activating patches Guided Backprop
(Each row is a different neuron)

eiler and Fergus, “Visu l ing and Understanding Convolu u nal Networks”, ECCV 2014
Sp g nberget l “Striving for Simplicity: The All Col nvol nal Net”, ICLR Workshop 2015
Figure copyright Jost Tol b as Springenberg, Alexey Dos k iy, Thomas Brox, Martin Riedmiller, 2015; reproduced with pemission.
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Intermediate features via (guided) backprop

Maximally activating patches Guided Backprop
(Each row is a different neuron)

Zeiler and Fergus, “Visualizingand Understanding Convo lutional Networks”, ECCV 2014
Springenberg etal, “Striving for Simplicity: T he All Convo lutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission,
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