
Stanford CS231n 10th Anniversary Lecture 9 - April 29, 20251

Lecture 9:
Detection, Segmentation, 
Visualization, and Understanding
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Administrative Announcements 

• Make sure to start Assignment 2 early. It is the longest of the three assignments, 
and the midterm and project milestone deadlines follow closely after the 
Assignment 2 deadline.

• Be sure to check out this Ed post for the best Colab practices to avoid 
unnecessary bugs and delays.

2

https://edstem.org/us/courses/77520/discussion/6504908
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Last time: Transformer

Encoder Decoder
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Three Ways of Processing Sequences
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Recurrent Neural Network Convolution Self-Attention

Works on 1D ordered sequences

(+) Theoretically good at long 
sequences: O(N) compute and 
memory for a sequence of length N
(-) Not parallelizable. Need to 
compute hidden states sequentially

Works on N-dimensional grids

(-) Bad for long sequences: need to 
stack many layers to build up large 
receptive fields
(+) Parallelizable, outputs can be 
computed in parallel

Works on sets of vectors

(+) Great for long sequences; each 
output depends directly on all inputs
(+) Highly parallel, it’s just 4 matmuls
(-) Expensive: O(N2) compute, O(N) 
memory for sequence of length N
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Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Wort h 
16x 16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

Vision Transformers (ViT)

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each of 
shape 3x16x16

Vision Transformers (ViT)

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each of 
shape 3x16x16

Linear projection to D-
dimensional vector

Vision Transformers (ViT)

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/


Stanford CS231n 10th Anniversary Lecture 9 - April 29, 20259

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each of 
shape 3x16x16

Linear projection to D-
dimensional vector

+ + + + + + + + +

Add positional embedding: 
learned D-dim vector per 
position

Vision Transformers (ViT)

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each of 
shape 3x16x16

Linear projection to D-
dimensional vector

Transformer

Output vectors

Exact same as NLP 
Transformer!

+ + + + + + + + +

Add positional embedding: 
learned D-dim vector per 
position

Vision Transformers (ViT)

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each of 
shape 3x16x16

Linear projection to D-
dimensional vector

Output vectors

Exact same as NLP 
Transformer!

Special extra input: 
classification token
(D dims, learned)

+ + + + + + + + +

Add positional embedding: 
learned D-dim vector per 
position

Transformer

Vision Transformers (ViT)

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Cat image is free for commercial 

use under a Pixabay license

N input patches, each of 
shape 3x16x16

Linear projection to D-
dimensional vector

Output vectors

Exact same as NLP 
Transformer!

Special extra input: 
classification token
(D dims, learned)

+ + + + + + + + +

Add positional embedding: 
learned D-dim vector per 
position

Linear projection to 
C-dim vector of 
predicted class 
scores

Transformer

Vision Transformers (ViT)

https://pixabay.com/photos/cat-funny-cat-cute-cat-cute-4262034/
https://pixabay.com/service/license/
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Vision Transformers (ViT) – a similar approach (different classifier)

Input image:
e.g. 224x224x3

Break into patches
e.g. 16x16x3

Dosovitskiy et al, “An Image is Wort h 
16x 16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Break into patches
e.g. 16x16x3

Flatten and apply a linear 
transform 768 => D

Dosovitskiy et al, “An Image is Wort h 
16x 16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Break into patches
e.g. 16x16x3

Flatten and apply a linear 
transform 768 => D

D-dim vector per patch are 
the input vectors to the 

Transformer
Dosovitskiy et al, “An Image is Wort h 
16x 16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Break into patches
e.g. 16x16x3

Flatten and apply a linear 
transform 768 => D

D-dim vector per patch are 
the input vectors to the 

Transformer

Use positional 
encoding to tell 
the transformer 
the 2D position 
of each patch

Dosovitskiy et al, “An Image is Wort h 
16x 16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Break into patches
e.g. 16x16x3

Flatten and apply a linear 
transform 768 => D

D-dim vector per patch are 
the input vectors to the 

Transformer

Don’t use any 
masking; each 

image patch can 
look at all other 
image patches

Use positional 
encoding to tell 
the transformer 
the 2D position 
of each patch

Dosovitskiy et al, “An Image is Wort h 
16x 16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Break into patches
e.g. 16x16x3

Flatten and apply a linear 
transform 768 => D

D-dim vector per patch are 
the input vectors to the 

Transformer

Don’t use any 
masking; each 

image patch can 
look at all other 
image patches

Use positional 
encoding to tell 
the transformer 
the 2D position 
of each patch

Transformer 
gives an output 
vector per patch

Dosovitskiy et al, “An Image is Wort h 
16x 16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Break into patches
e.g. 16x16x3

Flatten and apply a linear 
transform 768 => D

D-dim vector per patch are 
the input vectors to the 

Transformer

Don’t use any 
masking; each 

image patch can 
look at all other 
image patches

Use positional 
encoding to tell 
the transformer 
the 2D position 
of each patch

Transformer 
gives an output 
vector per patch

Pooling

Average pool NxD vectors to 
1xD, apply a linear layer D=>C to 

predict class scores

Dosovitskiy et al, “An Image is Wort h 
16x 16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Tweaking Transformers

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

Layer Normalization

+

The Transformer architecture has not changed 
much since 2017.

But a few changes have become common:
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

Layer Normalization

+

Pre-Norm Transformer

Layer normalization is outside the 
residual connections

Kind of weird, the model can’t 
actually learn the identify function

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+
Layer Normalization

+

Pre-Norm Transformer

Layer normalization is outside the 
residual connections

Kind of weird, the model can’t 
actually learn the identify function

Solution: Move layer normalization 
before the Self-Attention and MLP, 
inside the residual connections. 
Training is more stable.

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018



Stanford CS231n 10th Anniversary Lecture 9 - April 29, 202523

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+
RMSNorm

+

RMSNorm

Replace Layer Normalization 
with Root-Mean-Square 
Normalization (RMSNorm)

Input: x [shape D]
Output: y [shape D]
Weight: 𝛾 [shape D]

𝑦𝑖 =
𝑥𝑖

𝑅𝑀𝑆(𝑥)
∗ 𝛾𝑖

𝑅𝑀𝑆 𝑥 = 𝜀 +
1

𝑁
෍

𝑖=1

𝑁

𝑥𝑖
2

Training is a bit more stable

Zhang and Sennrich, “Root Mean Square Layer Normalization”, NeurIPS 2019
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+
RMSNorm

+

SwiGLU MLP

Classic MLP:

Input: X [N x D]
Weights: W1 [D x 4D]

W2 [4D x D]
Output: Y = σ(XW1)W2 [N x D]

Shazeer, “GLU Variants Improve Transformers”, 2020
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+
RMSNorm

+

SwiGLU MLP

Classic MLP:

Input: X [N x D]
Weights: W1 [D x 4D]

W2 [4D x D]
Output: Y = σ(XW1)W2 [N x D]

Shazeer, “GLU Variants Improve Transformers”, 2020

SwiGLU MLP:

Input: X [N x D]
Weights: W1 , W2 [D x H]

W3 [H x D]
Output: 

𝑌 = 𝜎 𝑋𝑊1 ⊙𝑋𝑊2 𝑊3

Setting H = 8D/3 keeps 
same total params
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+
RMSNorm

+

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in 
each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]
W2: [4D x D] => [E x 4D x D]

Shazeer et al, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, 2017
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+
RMSNorm

+

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in 
each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]
W2: [4D x D] => [E x 4D x D]

Each token gets routed to A < E of the 
experts. These are the active experts.

Increases params by E,
But only increases compute by A

Shazeer et al, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, 2017
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+
RMSNorm

+

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in 
each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]
W2: [4D x D] => [E x 4D x D]

Each token gets routed to A < E of the 
experts. These are the active experts.

Increases params by E,
But only increases compute by A

All of the biggest LLMs today (e.g. GPT4o, 
GPT4.5, Claude 3.7, Gemini 2.5 Pro, etc) 
almost certainly use MoE and have > 1T 
params; but they don’t publish details 
anymore
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Tweaking Transformers

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+
RMSNorm

+
The Transformer architecture has not changed 
much since 2017.

But a few changes have become common:
- Pre-Norm: Move normalization inside 

residual
- RMSNorm: Different normalization layer
- SwiGLU: Different MLP architecture
- Mixture of Experts (MoE): Learn E different 

MLPs, use A < E of them per token. Massively 
increase params, modest increase to 
compute cost.
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Today

● Transformers Recap 

● Computer Vision Tasks

○ Semantic Segmentation

○ Object Detection 
○ Instance Segmentation 

● Visualization & Understanding 

○ Model Layers Visualization

○ Saliency Maps
○ CAM & Grad-CAM

30
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Computer Vision Tasks

Classification 
Semantic

Segmentation
Object 

Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Recall: Image Classification: A core task in Computer Vision

32

cat

This image by Nikita is 
licensed under CC-BY 2.0

(assume given a set of possible labels)
{dog, cat, truck, plane, ...}

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Semantic Segmentation

Classification 
Semantic

Segmentation
Object 

Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels
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Semantic Segmentation: The Problem

34

Paired training data: for each training image, 
each pixel is labeled with a semantic category.

At test time, classify each pixel of a new image.

?

GRASS, CAT, TREE, 
SKY, ...
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Semantic Segmentation Idea: Sliding Window

Full image

?



Stanford CS231n 10th Anniversary Lecture 9 - April 29, 202536

Semantic Segmentation Idea: Sliding Window

Full image

?

Impossible to classify without context

Q: how do we include context?
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Semantic Segmentation Idea: Sliding Window

Full image

Q: how do we model this?
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Semantic Segmentation Idea: Sliding Window

Full image

Extract patch
Classify center pixel 
with CNN

Cow

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014
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Semantic Segmentation Idea: Sliding Window

Full image

Extract patch
Classify center pixel 
with CNN

Cow

Cow

Grass

Problem: Very inefficient! Not 
reusing shared features between 
overlapping patches Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014
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Semantic Segmentation Idea: Convolution

Full image

An intuitive idea: encode the entire image with conv net, and do semantic segmentation on 
top.

Problem: classification architectures often reduce feature spatial sizes to go deeper, but 
semantic segmentation requires the output size to be the same as input size. 
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Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network with only convolutional layers 
without downsampling operators to make predictions 
for pixels all at once!
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Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network with only convolutional layers 
without downsampling operators to make predictions 
for pixels all at once!

Problem: convolutions at 
original image resolution will be 
very expensive ...
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Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Predictions:
H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

C x H x W
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Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Predictions:
H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided
convolution

Upsampling:
???

C x H x WHigh-res:
D1 x H/2 x W/2
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In-Network upsampling: “Unpooling”

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

“Bed of Nails”



Stanford CS231n 10th Anniversary Lecture 9 - April 29, 202546

In-Network upsampling: “Max Unpooling”

Input: 4 x 4

1 2 6 3

3 5 2 1

1 2 2 1

7 3 4 8

1 2

3 4

Input: 2 x 2 Output: 4 x 4

0 0 2 0

0 1 0 0

0 0 0 0

3 0 0 4

Max Unpooling
Use positions from 
pooling layer

5 6

7 8

Max Pooling
Remember which element was max!

… 
Rest of the network

Output: 2 x 2

Corresponding pairs of 
downsampling and 
upsampling layers
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Learnable Upsampling

Input: 4 x 4 Output: 4 x 4

Recall: Normal 3 x 3 convolution, stride 1 pad 1
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Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Dot product 
between filter 
and input

Learnable Upsampling
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Input: 4 x 4 Output: 4 x 4

Dot product 
between filter 
and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Learnable Upsampling
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Input: 4 x 4 Output: 2 x 2

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Learnable Upsampling
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Input: 4 x 4 Output: 2 x 2

Dot product 
between filter 
and input

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Learnable Upsampling
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Input: 4 x 4 Output: 2 x 2

Dot product 
between filter 
and input

Filter moves 2 pixels in the 
input for every one pixel in 
the output

Stride gives ratio between 
movement in input and 
output

We can interpret strided
convolution as “learnable 
downsampling”.

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Learnable Upsampling
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3 x 3 transposed convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4

Learnable Upsampling: Transposed Convolution
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Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

3 x 3 transposed convolution, stride 2 pad 1

Learnable Upsampling: Transposed Convolution
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Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

3 x 3 transposed convolution, stride 2 pad 1

Filter moves 2 pixels in the 
output for every one pixel 
in the input

Stride gives ratio between 
movement in output and 
input

Learnable Upsampling: Transposed Convolution
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Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps3 x 3 transposed convolution, stride 2 pad 1

Filter moves 2 pixels in the 
output for every one pixel 
in the input

Stride gives ratio between 
movement in output and 
input

Learnable Upsampling: Transposed Convolution
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Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps3 x 3 transposed convolution, stride 2 pad 1

Filter moves 2 pixels in the 
output for every one pixel 
in the input

Stride gives ratio between 
movement in output and 
input

Learnable Upsampling: Transposed Convolution
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Learnable Upsampling: 1D Example

a

b

x

y

z

ax

ay

az + bx

by 

bz

Input Filter

Output

Output contains 
copies of the filter 
weighted by the 
input, summing at 
where at overlaps in 
the output
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Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Predictions:
H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided
convolution

Upsampling:
Unpooling or strided
transposed convolution
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U-Net

Ronneberger et al. (2015) U-net Architecture

60
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U-Net

Ronneberger et al. (2015) U-net Architecture

- Increases field of view

- Lose Spatial Information

“downsampling” Phase

61
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U-Net

- Create High Resolution 
Mapping

“Upsampling” Phase

Ronneberger et al. (2015) U-net Architecture

62
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U-Net

Concatenate with high-resolution feature maps 
from the downsampling Phase

Ronneberger et al. (2015) U-net Architecture

63
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Semantic Segmentation: Summary

64
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Semantic Segmentation

Cow

Grass

Sky

Label each pixel in the 
image with a category label

Don’t differentiate 
instances, only care about 
pixels

This image is CC0 public domain

Grass

Cat

Sky

https://pixabay.com/p-1246693/?no_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/
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Object Detection

Classification 
Semantic

Segmentation
Object 

Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels
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Object Detection

Classification 
Semantic

Segmentation
Object 

Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels
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Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Object Detection: Single Object
(Classification + Localization)

This image is CC0 public domain Vector:
4096

Fully
Connected:
4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

x, y 

h

w

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully
Connected:
4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Softmax
Loss

L2 Loss

Correct label:
Cat

Correct box:
(x’, y’, w’, h’)

Treat localization as a 
regression problem!

Object Detection: Single Object
(Classification + Localization)

This image is CC0 public domain

x, y 

h

w

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Vector:
4096

Fully
Connected:
4096 to 1000

Box 
Coordinates
(x, y, w, h)

Fully
Connected:
4096 to 4

Softmax
Loss

L2 Loss

Loss

Correct label:
Cat

Correct box:
(x’, y’, w’, h’)

+

Treat localization as a 
regression problem!

Multitask Loss

Object Detection: Single Object
(Classification + Localization)

This image is CC0 public domain

x, y 

h

w

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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CAT: (x, y, w, h)

DOG: (x, y, w, h)
DOG: (x, y, w, h)
CAT: (x, y, w, h)

DUCK: (x, y, w, h)
DUCK: (x, y, w, h)
….

Object Detection: Multiple Objects
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CAT: (x, y, w, h)

DOG: (x, y, w, h)
DOG: (x, y, w, h)
CAT: (x, y, w, h)

DUCK: (x, y, w, h)
DUCK: (x, y, w, h)
….

4 numbers

12 numbers

Many 
numbers!

Each image needs a different 
number of outputs!Object Detection: Multiple Objects
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Dog? NO
Cat? NO
Background? YES

Apply a CNN to many different crops of the 
image, CNN classifies each crop as object or 
background

Object Detection: Multiple Objects
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Dog? YES
Cat? NO
Background? NO

Apply a CNN to many different crops of the 
image, CNN classifies each crop as object or 
background

Object Detection: Multiple Objects
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Dog? YES
Cat? NO
Background? NO

Apply a CNN to many different crops of the 
image, CNN classifies each crop as object or 
background

Object Detection: Multiple Objects
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Dog? NO
Cat? YES
Background? NO

Apply a CNN to many different crops of the 
image, CNN classifies each crop as object or 
background

Object Detection: Multiple Objects

Q: What’s the problem with this approach?
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Dog? NO
Cat? YES
Background? NO

Apply a CNN to many different crops of the 
image, CNN classifies each crop as object or 
background

Problem: Need to apply CNN to huge number 
of locations, scales, and aspect ratios, very 
computationally expensive!

Object Detection: Multiple Objects
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Region Proposals: Selective Search

● Find “blobby” image regions that are likely to contain objects
● Relatively fast to run; e.g. Selective Search gives 2000 region 

proposals in a few seconds on CPU

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012
Uijlings et al, “Selective Search for Object Recognition”, I JCV 2013
Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV  2014
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R-CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic 
segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.Input image

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic 
segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.Input image

Regions of Interest 
(RoI) from a proposal 
method (~2k)

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN

Input image

Warped image regions 
(224x224 pixels)

Regions of Interest 
(RoI) from a proposal 
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic 
segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN

Input image

Conv
Net

Conv
Net

Conv
Net Warped image regions 

(224x224 pixels)

Regions of Interest 
(RoI) from a proposal 
method (~2k)

Forward each region 
through ConvNet
(ImageNet-pretranied)

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic 
segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN

Input image

Conv
Net

Conv
Net

Conv
Net

SVMs

SVMs

SVMs

Warped image regions 
(224x224 pixels)

Regions of Interest 
(RoI) from a proposal 
method (~2k)

Forward each region 
through ConvNet
(ImageNet-pretranied)

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic 
segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify regions with 
SVMs

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN

Input image

Conv
Net

Conv
Net

Conv
Net

SVMs

SVMs

SVMs

Warped image regions 
(224x224 pixels)

Regions of Interest 
(RoI) from a proposal 
method (~2k)

Forward each region 
through ConvNet
(ImageNet-
pretranied)

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic 
segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify regions with 
SVMs

Bbox reg

Bbox reg

Bbox reg

Predict “corrections” to the RoI: 4 numbers: (dx, dy, dw, dh)

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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R-CNN

Input image

Conv
Net

Conv
Net

Conv
Net

SVMs

SVMs

SVMs

Warped image regions 
(224x224 pixels)

Regions of Interest 
(RoI) from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic 
segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify regions with 
SVMs

Bbox reg

Bbox reg

Bbox reg Problem: Very slow! 
Need to do ~2k 
independent forward 
passes for each image!

Predict “corrections” to the RoI: 4 numbers: (dx, dy, dw, dh)

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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“Slow” R-CNN

Input image

Conv
Net

Conv
Net

Conv
Net

SVMs

SVMs

SVMs

Warped image regions 
(224x224 pixels)

Regions of Interest 
(RoI) from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic 
segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify regions with 
SVMs

Bbox reg

Bbox reg

Bbox reg

Predict “corrections” to the RoI: 4 numbers: (dx, dy, dw, dh)

Problem: Very slow! 
Need to do ~2k 
independent forward 
passes for each image!

Idea: Pass the image 
through convnet 
before cropping! Crop 
the conv feature 
instead!

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

“Slow” R-CNN

Input image

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

“Slow” R-CNN

ConvNet

Input image

Run whole image
through ConvNet

“conv5” 
features

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

“Slow” R-CNN

ConvNet

Input image

Run whole image
through ConvNet

“conv5” 
features

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of
Interest (RoIs)
from a proposal
method

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

“Slow” R-CNN

ConvNet

Input image

Run whole image
through ConvNet

“conv5” features

Crop + Resize features

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of
Interest (RoIs)
from a proposal
method

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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ConvNet

Input image

Run whole image
through ConvNet

“conv5” features

Crop + Resize features

Linear +
softmax

CNN Per-Region Network

Object 
category Linear Box offset

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

“Slow” R-CNN

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of
Interest (RoIs)
from a proposal
method

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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ConvNet

Input image

Run whole image
through ConvNet

“conv5” features

Crop + Resize features

Linear +
softmax

CNN Per-Region Network

Object 
category Linear Box offset

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

“Slow” R-CNNRegions of
Interest (RoIs)
from a proposal
method

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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Region Proposal Network

93

CNN

Input Image
(e.g. 3 x 640 x 480) Image features

(e.g. 512 x 20 x 15)
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Region Proposal Network

94

CNN

Input Image
(e.g. 3 x 640 x 480) Image features

(e.g. 512 x 20 x 15)

Imagine an anchor box of 
fixed size at each point in 

the feature map
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Region Proposal Network

95

CNN

Input Image
(e.g. 3 x 640 x 480) Image features

(e.g. 512 x 20 x 15)

Imagine an anchor box of 
fixed size at each point in 

the feature map

Conv

Anchor is an object?
1 x 20 x 15

At each point, predict whether 
the corresponding anchor 
contains an object (binary 

classification)
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Region Proposal Network

96

CNN

Input Image
(e.g. 3 x 640 x 480) Image features

(e.g. 512 x 20 x 15)

Imagine an anchor box of 
fixed size at each point in 

the feature map

Conv

Anchor is an object?
1 x 20 x 15

For positive boxes, also predict a 
corrections from the anchor to 
the ground-truth box (regress 4 

numbers per pixel)

Box corrections
4 x 20 x 15
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Region Proposal Network

97

CNN

Input Image
(e.g. 3 x 640 x 480) Image features

(e.g. 512 x 20 x 15)

In practice use K different 
anchor boxes of different 
size / scale at each point

Conv

Anchor is an object?
K x 20 x 15

Box transforms
4K x 20 x 15
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Region Proposal Network

98

CNN

Input Image
(e.g. 3 x 640 x 480) Image features

(e.g. 512 x 20 x 15)

In practice use K different 
anchor boxes of different 
size / scale at each point

Conv

Anchor is an object?
K x 20 x 15

Box transforms
4K x 20 x 15

Sort the K*20*15 boxes by 
their “objectness” score, take 
top ~300 as our proposals
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Single-Stage Object Detectors: YOLO / SSD / RetinaNet

Divide image into grid
7 x 7

Image a set of base boxes 
centered at each grid cell

Here B = 3

Input image
3 x H x W

Within each grid cell:
- Regress from each of the B 

base boxes to a final box with 
5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C 
classes (including 
background as a class)

- Looks a lot like RPN, but 
category-specific!

Output:
7 x 7 x (5 * B + C)Redmon et al, “You Only Look Once: 

Unified, Real-Time Object Detection”, CVPR 2016
Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017
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YOLO (You Only Look Once)
real-time object detection

100

Redmon et al. "You only look once: unified, real-time object detection (2015)."
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YOLO

101

SxS Grid

Redmon et al. "You only look once: unified, real-time object detection (2015)."
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YOLO

102

SxS Grid

For each box output:
• P(object): probability that the box contains an object 
• B bounding boxes  (x, y, h, w)
• P(class): probability of belonging to a class

Redmon et al. "You only look once: unified, real-time object detection (2015)."
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YOLO

103

SxS Grid

For each box output:
• P(object): probability that the box contains an object 
• B bounding boxes  (x, y, h, w)
• P(class): probability of belonging to a class

B=2

Redmon et al. "You only look once: unified, real-time object detection (2015)."
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YOLO

104

SxS Grid

For each box output:
• P(object): probability that the box contains an object 
• B bounding boxes  (x, y, h, w)
• P(class): probability of belonging to a class

B=2

Redmon et al. "You only look once: unified, real-time object detection (2015)."
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YOLO

105

SxS Grid

Many bounding boxes with 

different object probabilities

Redmon et al. "You only look once: unified, real-time object detection (2015)."



Stanford CS231n 10th Anniversary Lecture 9 - April 29, 2025

YOLO

106

SxS Grid

Redmon et al. "You only look once: unified, real-time object detection (2015)."
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Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020

Simple object detection pipeline: directly output a set of boxes from a Transformer

No anchors, no regression of box transforms

Match predicted boxes to GT boxes with bipartite matching; train to regress box coordinates

107
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Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020

108
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Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020
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Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020

110
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Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020
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Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020

112
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Instance Segmentation

Classification 
Semantic

Segmentation
Object 

Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels
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Object Detection:
Faster R-CNN
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Instance Segmentation:
Mask R-CNN

Mask Prediction

He et al, “Mask R-CNN”, ICCV 2017

Add a small mask 
network that operates 
on each RoI and 
predicts a 28x28 binary 
mask
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Mask R-CNN

He et al, “Mask R-CNN”, arXiv 2017

RoI Align

Classification Scores: C 
Box coordinates (per class): 4 * C

CNN
+RPN

256 x 14 x 14
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Mask R-CNN

He et al, “Mask R-CNN”, arXiv 2017

RoI Align
Conv

Classification Scores: C 
Box coordinates (per class): 4 * C

CNN
+RPN

Conv

Predict a mask for 
each of C classes

C x 28 x 28

256 x 14 x 14 256 x 14 x 14
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Mask R-CNN: Example Mask Training Targets

118
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Mask R-CNN: Example Mask Training Targets

119



Stanford CS231n 10th Anniversary Lecture 9 - April 29, 2025

Mask R-CNN: Example Mask Training Targets
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Mask R-CNN: Example Mask Training Targets

121
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Mask R-CNN: Very Good Results!

He et al, “Mask R-CNN”, ICCV 2017
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Mask R-CNN
Also does pose

He et al, “Mask R-CNN”, ICCV 2017
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Open Source Frameworks

Lots of good implementations on GitHub! 

TensorFlow Detection API: 
https://github.com/tensorflow/models/tree/master/research/object_detection

Faster RCNN, SSD, RFCN, Mask R-CNN, ...

Detectron2 (PyTorch)
https://github.com/facebookresearch/detectron2

Mask R-CNN, RetinaNet, Faster R-CNN, RPN, Fast R-CNN, R-FCN, ...

Finetune on your own dataset with pre-trained models 

124

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/facebookresearch/detectron2
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Recap: Lots of computer vision tasks!

Classification 
Semantic

Segmentation
Object 

Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Today

● Transformers Recap 

● Computer Vision Tasks

○ Semantic Segmentation

○ Object Detection 
○ Instance Segmentation 

● Visualization & Understanding 

○ Model Layers Visualization

○ Saliency Maps
○ CAM & Grad-CAM

126
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Interpreting a Linear Classifier: Visual Viewpoint

127
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First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11 

Krizhevsky, “On e weird trick for parallelizing convolution al n eural networks”, arXiv 2014
He et  al,  “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al,  “Densely Conn ected  Convolutional Networks”,  CVPR 2017

128
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First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11 

ResNet-18:
64 x 3 x 7 x 7

ResNet-101:
64 x 3 x 7 x 7

DenseNet-121:
64 x 3 x 7 x 7

Krizhevsky, “On e weird trick for parallelizing convolution al n eural networks”, arXiv 2014
He et  al,  “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al,  “Densely Conn ected  Convolutional Networks”,  CVPR 2017
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Which pixels matter: Saliency via Backprop

Dog

Forward pass: Compute probabilities

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, I CLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Which pixels matter: Saliency via Backprop

Dog

Forward pass: Compute probabilities

Compute gradient of (unnormalized) class score 
with respect to image pixels, take absolute value 
and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, I CLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Saliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, I CLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Class Activation Mapping (CAM)

133
Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016

Last layer CNN features:
𝑓 ∈ ℝ𝐻×𝑊×𝐾

Pooled features:
𝐹 ∈ ℝ𝐾

Class Scores:
𝑆 ∈ ℝ𝐶

KH

W

K
C

Global 
Average 
Pooling

Fully Connected 
Layer, weights
𝑤 ∈ ℝ𝐾×𝐶



Stanford CS231n 10th Anniversary Lecture 9 - April 29, 2025

Class Activation Mapping (CAM)

134
Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016

Pooled features:
𝐹 ∈ ℝ𝐾

Class Scores:
𝑆 ∈ ℝ𝐶

KH

W

K
C

Global 
Average 
Pooling

Fully Connected 
Layer, weights
𝑤 ∈ ℝ𝐾×𝐶

𝐹𝑘 =
1

𝐻𝑊
෍

ℎ,𝑤
𝑓ℎ,𝑤,𝑘

Last layer CNN features:
𝑓 ∈ ℝ𝐻×𝑊×𝐾
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Class Activation Mapping (CAM)

135
Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016

Pooled features:
𝐹 ∈ ℝ𝐾

Class Scores:
𝑆 ∈ ℝ𝐶

KH

W

K
C

Global 
Average 
Pooling

Fully Connected 
Layer, weights
𝑤 ∈ ℝ𝐾×𝐶

𝐹𝑘 =
1

𝐻𝑊
෍

ℎ,𝑤
𝑓ℎ,𝑤,𝑘 𝑆𝑐 =෍

𝑘
𝑤𝑘,𝑐𝐹𝑘 =

1

𝐻𝑊
෍

𝑘
𝑤𝑘,𝑐෍

ℎ,𝑤
𝑓ℎ,𝑤,𝑘

=
1

𝐻𝑊
෍

ℎ,𝑤
෍

𝑘
𝑤𝑘,𝑐𝑓ℎ,𝑤,𝑘

Last layer CNN features:
𝑓 ∈ ℝ𝐻×𝑊×𝐾
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Class Activation Mapping (CAM)

136
Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016

Pooled features:
𝐹 ∈ ℝ𝐾

Class Scores:
𝑆 ∈ ℝ𝐶

KH

W

K
C

Global 
Average 
Pooling

Fully Connected 
Layer, weights
𝑤 ∈ ℝ𝐾×𝐶

𝐹𝑘 =
1

𝐻𝑊
෍

ℎ,𝑤
𝑓ℎ,𝑤,𝑘 𝑆𝑐 =෍

𝑘
𝑤𝑘,𝑐𝐹𝑘 =

1

𝐻𝑊
෍

𝑘
𝑤𝑘,𝑐෍

ℎ,𝑤
𝑓ℎ,𝑤,𝑘

=
1

𝐻𝑊
෍

ℎ,𝑤
෍

𝑘
𝑤𝑘,𝑐𝑓ℎ,𝑤,𝑘

Last layer CNN features:
𝑓 ∈ ℝ𝐻×𝑊×𝐾
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Class Activation Mapping (CAM)

137
Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016

Pooled features:
𝐹 ∈ ℝ𝐾

Class Scores:
𝑆 ∈ ℝ𝐶

KH

W

K
C

Global 
Average 
Pooling

Fully Connected 
Layer, weights
𝑤 ∈ ℝ𝐾×𝐶

𝐹𝑘 =
1

𝐻𝑊
෍

ℎ,𝑤
𝑓ℎ,𝑤,𝑘 𝑆𝑐 =෍

𝑘
𝑤𝑘,𝑐𝐹𝑘 =

1

𝐻𝑊
෍

𝑘
𝑤𝑘,𝑐෍

ℎ,𝑤
𝑓ℎ,𝑤,𝑘

=
1

𝐻𝑊
෍

ℎ,𝑤
෍

𝑘
𝑤𝑘,𝑐𝑓ℎ,𝑤,𝑘

Last layer CNN features:
𝑓 ∈ ℝ𝐻×𝑊×𝐾
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Class Activation Mapping (CAM)

138
Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016

Pooled features:
𝐹 ∈ ℝ𝐾

Class Scores:
𝑆 ∈ ℝ𝐶

KH

W

K
C

Global 
Average 
Pooling

Fully Connected 
Layer, weights
𝑤 ∈ ℝ𝐾×𝐶

𝐹𝑘 =
1

𝐻𝑊
෍

ℎ,𝑤
𝑓ℎ,𝑤,𝑘 𝑆𝑐 =෍

𝑘
𝑤𝑘,𝑐𝐹𝑘 =

1

𝐻𝑊
෍

𝑘
𝑤𝑘,𝑐෍

ℎ,𝑤
𝑓ℎ,𝑤,𝑘

=
1

𝐻𝑊
෍

ℎ,𝑤
෍

𝒌
𝒘𝒌,𝒄𝒇𝒉,𝒘,𝒌

Last layer CNN features:
𝑓 ∈ ℝ𝐻×𝑊×𝐾
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Class Activation Mapping (CAM)

139
Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016

Pooled features:
𝐹 ∈ ℝ𝐾

Class Scores:
𝑆 ∈ ℝ𝐶

KH

W

K
C

Global 
Average 
Pooling

Fully Connected 
Layer, weights
𝑤 ∈ ℝ𝐾×𝐶

𝐹𝑘 =
1

𝐻𝑊
෍

ℎ,𝑤
𝑓ℎ,𝑤,𝑘 𝑆𝑐 =෍

𝑘
𝑤𝑘,𝑐𝐹𝑘 =

1

𝐻𝑊
෍

𝑘
𝑤𝑘,𝑐෍

ℎ,𝑤
𝑓ℎ,𝑤,𝑘

=
1

𝐻𝑊
෍

ℎ,𝑤
෍

𝒌
𝒘𝒌,𝒄𝒇𝒉,𝒘,𝒌

Class Activation Maps:
𝑴 ∈ ℝ𝑪,𝑯,𝑾

𝑴𝒄,𝒉,𝒘 =෍
𝒌
𝒘𝒌,𝒄𝒇𝒉,𝒘,𝒌

Last layer CNN features:
𝑓 ∈ ℝ𝐻×𝑊×𝐾
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Class Activation Mapping (CAM)

140
Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)

141
Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016

Problem: Can only 
apply to last conv layer
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

142
Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017

1. Pick any layer, with activations 𝐴 ∈ ℝ𝐻×𝑊×𝐾
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

143
Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017

1. Pick any layer, with activations 𝐴 ∈ ℝ𝐻×𝑊×𝐾

2. Compute gradient of class score 𝑆𝑐 with respect to A:
𝜕𝑆𝑐
𝜕𝐴

∈ ℝ𝐻×𝑊×𝐾
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

144
Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017

1. Pick any layer, with activations 𝐴 ∈ ℝ𝐻×𝑊×𝐾

2. Compute gradient of class score 𝑆𝑐 with respect to A:
𝜕𝑆𝑐
𝜕𝐴

∈ ℝ𝐻×𝑊×𝐾

3. Global Average Pool the gradients to get weights 𝛼 ∈ ℝ𝐾:

𝛼𝑘 =
1

𝐻𝑊
෍

ℎ,𝑤

𝜕𝑆𝑐
𝜕𝐴ℎ,𝑤,𝑘
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

145
Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017

1. Pick any layer, with activations 𝐴 ∈ ℝ𝐻×𝑊×𝐾

2. Compute gradient of class score 𝑆𝑐 with respect to A:
𝜕𝑆𝑐
𝜕𝐴

∈ ℝ𝐻×𝑊×𝐾

3. Global Average Pool the gradients to get weights 𝛼 ∈ ℝ𝐾:

𝛼𝑘 =
1

𝐻𝑊
෍

ℎ,𝑤

𝜕𝑆𝑐
𝜕𝐴ℎ,𝑤,𝑘

4. Compute activation map 𝑀𝑐 ∈ ℝ𝐻,𝑊:

𝑀ℎ,𝑤
𝑐 = 𝑅𝑒𝐿𝑈 ෍

𝑘
𝛼𝑘𝐴ℎ,𝑤,𝑘
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

146
Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017
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Visualizing ViT features

Chen et al., When Vision Transformers Outperform Resnets Without Pre-training Or 
Strong Data Augmentations, ICLR 2022; Paul and Chen, Vision Transformers are Robust 
Learners, AAAI 2022. Reproduced for educational purposes.
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Today

● Transformers Recap 

● Computer Vision Tasks

○ Semantic Segmentation

○ Object Detection 
○ Instance Segmentation 

● Visualization & Understanding 

○ Model Layers Visualization

○ Saliency Maps
○ CAM & Grad-CAM
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Next time: Video Understanding
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Additional Reading Material

150
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Convolution as Matrix Multiplication (1D Example)

We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel size=3, 
stride=2, padding=1
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Convolution as Matrix Multiplication (1D Example)

We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel size=3, 
stride=2, padding=1

Transposed convolution multiplies by the 
transpose of the same matrix: 

Example: 1D transposed conv, kernel size=3, 
stride=2, padding=0
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Cropping Features: RoI Pool

Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features: C x H x W
(e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.



Stanford CS231n 10th Anniversary Lecture 9 - April 29, 2025154

Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Project proposal 
onto features

Girshick, “Fast R-CNN”, ICCV 2015.

Cropping Features: RoI Pool

Image features: C x H x W
(e.g. 512 x 20 x 15)
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Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Project proposal 
onto features

“Snap” to 
grid cells

Cropping Features: RoI Pool

Image features: C x H x W
(e.g. 512 x 20 x 15)
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Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Project proposal 
onto features

“Snap” to 
grid cells

Cropping Features: RoI Pool

Q: how do we resize the 512 x 5 
x 4 region to, e.g., a 512 x 2 x 2 
tensor?.

Image features: C x H x W
(e.g. 512 x 20 x 15)
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Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Project proposal 
onto features

“Snap” to 
grid cells

Divide into 2x2 
grid of (roughly) 
equal subregions

Cropping Features: RoI Pool

Q: how do we resize the 512 x 5
x 4 region to, e.g., a 512 x 2 x 2 
tensor?.

Image features: C x H x W
(e.g. 512 x 20 x 15)
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Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Project proposal 
onto features

“Snap” to 
grid cells

Divide into 2x2 
grid of (roughly) 
equal subregions

Max-pool within 
each subregion

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Region features always the 
same size even if input regions 

have different sizes!

Cropping Features: RoI Pool

Image features: C x H x W
(e.g. 512 x 20 x 15)
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Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Project proposal 
onto features

“Snap” to 
grid cells

Divide into 2x2 
grid of (roughly) 
equal subregions

Max-pool within 
each subregion

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Region features always the 
same size even if input regions 

have different sizes!
Problem: Region features slightly misaligned 

Cropping Features: RoI Pool

Image features: C x H x W
(e.g. 512 x 20 x 15)
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Input Image
(e.g. 3 x 640 x 480)

CNN

Project proposal 
onto features

He et al, “Mask R-CNN”, ICCV 2017

No “snapping”!

Cropping Features: RoI Align

Image features: C x H x W
(e.g. 512 x 20 x 15)
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Cropping Features: RoI Align

Input Image
(e.g. 3 x 640 x 480)

CNN

Project proposal 
onto features

He et al, “Mask R-CNN”, ICCV 2017

Sample at regular points in 
each subregion using 
bilinear interpolationNo “snapping”!

Image features: C x H x W
(e.g. 512 x 20 x 15)
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Cropping Features: RoI Align

Input Image
(e.g. 3 x 640 x 480)

CNN

Project proposal 
onto features

He et al, “Mask R-CNN”, ICCV 2017

Sample at regular points in 
each subregion using 
bilinear interpolationNo “snapping”!

Feature fxy for point (x, y) is 
a linear combination of 
features at its four 
neighboring grid cells:

Image features: C x H x W
(e.g. 512 x 20 x 15)
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Cropping Features: RoI Align

Input Image
(e.g. 3 x 640 x 480)

CNN

Project proposal 
onto features

He et al, “Mask R-CNN”, ICCV 2017

Sample at regular points in 
each subregion using 
bilinear interpolationNo “snapping”!

(x,y)

f11∈R512

(x1,y1)

f12∈R512

(x1,y2)

f22∈R512

(x2,y2)

f21∈R512

(x2,y1)

Feature fxy for point (x, y) is 
a linear combination of 
features at its four 
neighboring grid cells:

Image features: C x H x W
(e.g. 512 x 20 x 15)
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Input Image
(e.g. 3 x 640 x 480)

CNN

Project proposal 
onto features

He et al, “Mask R-CNN”, ICCV 2017

Sample at regular points in 
each subregion using 
bilinear interpolation

Max-pool within 
each subregion

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Cropping Features: RoI Align
No “snapping”!

Image features: C x H x W
(e.g. 512 x 20 x 15)
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R-CNN vs Fast R-CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015
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R-CNN vs Fast R-CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015

Problem:
Runtime dominated by 
region proposals!
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Faster R-CNN: 
Make CNN do proposals!

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
Figure copyright 2015, Ross Girshick; reproduced with permission

Insert Region Proposal 
Network (RPN) to predict 
proposals from features

Otherwise same as Fast R-CNN: Crop 
features for each proposal, classify 
each one
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Faster R-CNN: 
Make CNN do proposals!

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
Figure copyright 2015, Ross Girshick; reproduced with permission

Jointly train with 4 losses:
1. RPN classify object / not object
2. RPN regress box coordinates
3. Final classification score (object 

classes)
4. Final box coordinates
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Faster R-CNN: 
Make CNN do proposals!
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Faster R-CNN: 
Make CNN do proposals!

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
Figure copyright 2015, Ross Girshick; reproduced with permission

Glossing over many details:
- Ignore overlapping proposals with 

non-max suppression
- How are anchors determined?
- How do we sample positive / 

negative samples for training the 
RPN?

- How to parameterize bounding box 
regression?
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Faster R-CNN: 
Make CNN do proposals!

Faster R-CNN is a 
Two-stage object detector

First stage: Run once per image
- Backbone network
- Region proposal network

Second stage: Run once per region
- Crop features: RoI pool / align
- Predict object class
- Prediction bbox offset
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Faster R-CNN: 
Make CNN do proposals!

Faster R-CNN is a 
Two-stage object detector

First stage: Run once per image
- Backbone network
- Region proposal network

Second stage: Run once per region
- Crop features: RoI pool / align
- Predict object class
- Prediction bbox offset

Do we really need 
the second stage?
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Object Detection: Lots of variables ...

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

Backbone 
Network
VGG16
ResNet-101
Inception V2
Inception V3
Inception ResNet
MobileNet

R-FCN: Dai et  al,  “R-FCN: Ob ject Detect ion via Region-based  Fully Convolutional Networks”, NIPS 2016
Inception-V2: Ioffe and Szegedy, “Bat ch Normalization: Accelerating Deep Net work Training by Reducin g Internal Covariate Shift”, ICML 2015
Inception  V3: Szegedy et al, “Rethin king the In ception Architecture for Computer Vision”, arXiv 2016
Inception  ResNet: Szegedy et al, “In ception-V4, Incep tion-ResNet and the Impact of Residual Connections on Learning”, arXiv 2016

MobileNet: Howard et al, “Effic ient Convolutional Neural Networks for Mobile Vision  Ap plicat ions”, arXiv 2017

“Meta-Architecture”
Two-stage: Faster R-CNN
Single-stage: YOLO / SSD
Hybrid: R-FCN

Image Size
# Region Proposals
… 

Takeaways
Faster R-CNN is slower but 
more accurate

SSD is much faster but not 
as accurate

Bigger / Deeper backbones 
work better
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Object Detection: Lots of variables ...

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017
Zou et al, “Object Detection in 20 Years: A Survey”, arXiv 2019

Backbone 
Network
VGG16
ResNet-101
Inception V2
Inception V3
Inception ResNet
MobileNet

R-FCN: Dai et  al,  “R-FCN: Ob ject Detect ion via Region-based  Fully Convolutional Networks”, NIPS 2016
Inception-V2: Ioffe and Szegedy, “Bat ch Normalization: Accelerating Deep Net work Training by Reducin g Internal Covariate Shift”, ICML 2015
Inception  V3: Szegedy et al, “Rethin king the In ception Architecture for Computer Vision”, arXiv 2016
Inception  ResNet: Szegedy et al, “In ception-V4, Incep tion-ResNet and the Impact of Residual Connections on Learning”, arXiv 2016

MobileNet: Howard et al, “Effic ient Convolutional Neural Networks for Mobile Vision  Ap plicat ions”, arXiv 2017

“Meta-Architecture”
Two-stage: Faster R-CNN
Single-stage: YOLO / SSD
Hybrid: R-FCN

Image Size
# Region Proposals
… 

Takeaways
Faster R-CNN is slower but 
more accurate

SSD is much faster but not 
as accurate

Bigger / Deeper backbones 
work better
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Intermediate Features via (guided) backprop

Zeiler and Fergus, “Visualizing and Und erstanding Convolutional Networks”,  ECCV 2014
Springenb erg et al, “Striving for Simplic ity: The All Convolution al Net”,  ICLR Workshop 2015

Pick a single intermediate channel, e.g. one value 
in 128 x 13 x 13 conv5 feature map

Compute gradient of activation value with respect 
to image pixels

175
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Intermediate Features via (guided) backprop

Pick a single intermediate neuron, e.g. one value in 
128 x 13 x 13 conv5 feature map

Compute gradient of neuron value with respect to 
image pixels

Images come out nicer if you only 
backprop positive gradients through 
each ReLU (guided backprop)

ReLU

Zeiler and Fergus, “Visualizing and Und erstanding Convolutional Networks”,  ECCV 2014
Springenb erg et al, “Striving for Simplic ity: The All Convolution al Net”,  ICLR Workshop 2015

Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, 
Martin Riedmiller, 2015; reproduced with permission.
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Intermediate features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Maximally activating patches
(Each row is a different neuron)

Guided Backprop
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Intermediate features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Maximally activating patches
(Each row is a different neuron)

Guided Backprop
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