
Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 1

Lecture 8:
Attention and Transformers

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Administrative

● Assignment 2 released yesterday (4/23)
● Project proposals are due tomorrow (4/25)

2

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Last Time: Recurrent Neural Networks

3

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Today: Attention + Transformers

4

Attention: A new primitive that

operates on sets of vectors

Transformer: A neural

network architecture that

uses attention everywhere

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Today: Attention + Transformers

5

Attention: A new primitive that

operates on sets of vectors

Transformers are used

everywhere today!

But they developed as

an offshoot of RNNs
so let’s start there

Transformer: A neural

network architecture that

uses attention everywhere

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

x1 x2 x3

h1 h2 h3

x4

h4

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Sequence to Sequence with RNNs: Encoder - Decoder

6

A motivating example for today’s discussion –

machine translation! English → Italian

we see the sky

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

x1 x2 x3

h1 h2 h3 s0

x4

h4

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

From final hidden state predict:

Initial decoder state s0

Context vector c (often c=hT)

Sequence to Sequence with RNNs

7

we see the sky

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

s1

x1 x2 x3

h1 h2 h3 s0

[START]

y0

y1

x4

h4

vediamo

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:

Initial decoder state s0

Context vector c (often c=hT)

Sequence to Sequence with RNNs

8

we see the sky

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

s1

x1

we see the

x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

sky

x4

h4

vediamo

vediamo

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:

Initial decoder state s0

Context vector c (often c=hT)

Sequence to Sequence with RNNs

9

il

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

s1

x1 x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

x4

h4

vediamo il

cielo

y2 y3

vediamo il

s3 s4

y3 y4

cielo [STOP]

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:

Initial decoder state s0

Context vector c (often c=hT)

Sequence to Sequence with RNNs

10

we see the sky

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

s1

x1 x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

x4

h4

y2 y3

s3 s4

y3 y4

[STOP]

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:

Initial decoder state s0

Context vector c (often c=hT)

Sequence to Sequence with RNNs

11

Problem: Input sequence

bottlenecks through fixed

sized c. What if T=1000?

we see the sky cielovediamo il

vediamo il cielo

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

s1

x1 x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

x4

h4

y2 y3

s3 s4

y3 y4

[STOP]

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:

Initial decoder state s0

Context vector c (often c=hT)

Sequence to Sequence with RNNs

12

Solution: Look back at the

whole input sequence on

each step of the output

we see the sky cielovediamo il

vediamo il cielo

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

x1 x2 x3

h1 h2 h3 s0

x4

h4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Encoder: ht = fW(xt, ht-1)
From final hidden state:

Initial decoder state s0

Sequence to Sequence with RNNs and Attention

13

we see the sky

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

x1 x2 x3

h1 h2 h3 s0

x4

h4

e11 e12 e13 e14

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute (scalar) alignment scores

et,i = fatt(st-1, hi) (fatt is a Linear Layer)

Sequence to Sequence with RNNs and Attention

From final hidden state:

Initial decoder state s0

14

we see the sky

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

x1 x2 x3

h1 h2 h3 s0

x4

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

Normalize alignment scores

to get attention weights

0 < at,i < 1 ∑iat,i = 1

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence to Sequence with RNNs and Attention

15

Compute (scalar) alignment scores

et,i = fatt(st-1, hi) (fatt is a Linear Layer)

From final hidden state:

Initial decoder state s0

we see the sky

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

x1 x2 x3

h1 h2 h3 s0

x4

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+

vediamo

Compute context vector as

weighted sum of hidden

states

ct = ∑iat,ihi

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence to Sequence with RNNs and Attention

From final hidden state:

Initial decoder state s0

16

Compute (scalar) alignment scores

et,i = fatt(st-1, hi) (fatt is a Linear Layer)

Normalize alignment scores

to get attention weights

0 < at,i < 1 ∑iat,i = 1

we see the sky

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

x1 x2 x3

h1 h2 h3 s0

x4

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+ s1

y0

y1

Compute context vector as

weighted sum of hidden

states

ct = ∑iat,ihi

Use context vector in

decoder: st = gU(yt-1, st-1, ct)

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

[START]

Sequence to Sequence with RNNs and Attention

From final hidden state:

Initial decoder state s0

17

Normalize alignment scores

to get attention weights

0 < at,i < 1 ∑iat,i = 1

Compute (scalar) alignment scores

et,i = fatt(st-1, hi) (fatt is a Linear Layer)

we see the sky

vediamo

gU is an RNN unit

(e.g. LSTM, GRU)

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

x1 x2 x3

h1 h2 h3 s0

x4

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+ s1

y0

y1

Compute context vector as

weighted sum of hidden

states

ct = ∑iat,ihi

Use context vector in

decoder: st = gU(yt-1, st-1, ct)

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

[START]

Sequence to Sequence with RNNs and Attention

Intuition: Context

vector attends to the

relevant part of the

input sequence

“vediamo” = “we see”

so maybe a11=a12=0.45,

a13=a14=0.05

From final hidden state:

Initial decoder state s0

18

Normalize alignment scores

to get attention weights

0 < at,i < 1 ∑iat,i = 1

Compute (scalar) alignment scores

et,i = fatt(st-1, hi) (fatt is a Linear Layer)

we see the sky

vediamo

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

x1 x2 x3

h1 h2 h3 s0

x4

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+ s1

y0

y1

Compute context vector as

weighted sum of hidden

states

ct = ∑iat,ihi

Use context vector in

decoder: st = gU(yt-1, st-1, ct)

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

[START]

Sequence to Sequence with RNNs and Attention

Intuition: Context

vector attends to the

relevant part of the

input sequence

“vediamo” = “we see”

so maybe a11=a12=0.45,

a13=a14=0.05

From final hidden state:

Initial decoder state s0

19

Normalize alignment scores

to get attention weights

0 < at,i < 1 ∑iat,i = 1

Compute (scalar) alignment scores

et,i = fatt(st-1, hi) (fatt is a Linear Layer)

we see the sky

vediamo

All differentiable! No

supervision on attention

weights. Backprop

through everything

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

x1 x2 x3

h1 h2 h3 s0

x4

h4 s1

[START]

y0

y1

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

Repeat: Use s1 to compute

new context vector c2

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence to Sequence with RNNs and Attention

20

Compute new alignment

scores e2,i and attention

weights a2,i

we see the sky

vediamo

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

x1 x2 x3

h1 h2 h3 s0

x4

h4 s1

[START]

y0

y1

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

Repeat: Use s1 to compute

new context vector c2

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence to Sequence with RNNs and Attention

21

s2

y2

il

y1

Use context vector

in decoder: st =

gU(yt-1, st-1, ct)

we see the sky

vediamo

vediamo

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

x1 x2 x3

h1 h2 h3 s0

x4

h4 s1

[START]

y0

y1

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

Repeat: Use s1 to compute

new context vector c2

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence to Sequence with RNNs and Attention

22

s2

y2

y1

Use context vector

in decoder: st =

gU(yt-1, st-1, ct)

Intuition: Context vector

attends to the relevant

part of the input sequence

“il” = “the”

so maybe a21=a22=0.05,

a24=0.1, a23=0.8

we see the sky

ilvediamo

vediamo

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

x1 x2 x3

h1 h2 h3 s0

x4

h4 s1 s2

[START]

y0

y1 y2

s3 s4

y3 y4

[STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector

- At each timestep of decoder, context vector “looks at”

different parts of the input sequence

Sequence to Sequence with RNNs and Attention

23

we see the sky

cielovediamo il

vediamo il cielo

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to

French translation
Visualize attention weights at,i

Sequence to Sequence with RNNs and Attention

24

x1 x2 x3

h1 h2 h3

x4

h4

e21 e22 e23 e24

softmax

a21 a22 a23 a24

we see the sky

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to

French translation
Visualize attention weights at,i

Sequence to Sequence with RNNs and Attention

25

Input: “The agreement on the

European Economic Area was

signed in August 1992.”

Output: “L’accord sur la zone
économique européenne a été

signé en août 1992.”

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Visualize attention weights at,i

Sequence to Sequence with RNNs and Attention

26

Input: “The agreement on the

European Economic Area was

signed in August 1992.”

Output: “L’accord sur la zone
économique européenne a été

signé en août 1992.”

Example: English to

French translation

Diagonal attention

means words

correspond in order

Diagonal attention

means words

correspond in order

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Visualize attention weights at,i

Diagonal attention

means words

correspond in order

Sequence to Sequence with RNNs and Attention

27

Input: “The agreement on the

European Economic Area was

signed in August 1992.”

Output: “L’accord sur la zone
économique européenne a été

signé en août 1992.”

Example: English to

French translation

Attention figures

out other word

orders

Diagonal attention

means words

correspond in order

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 28

x1 x2 x3

h1 h2 h3 s0

x4

h4 s1 s2

[START]

y0

y1 y2

s3 s4

y3 y4

[STOP]

c1 y1c2 y2c3 y3c4

we see the sky

cielovediamo il

vediamo il cielo

Sequence to Sequence with RNNs and Attention

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

There’s a general

operator hiding here:

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 29

x1 x2 x3

h1 h2 h3 s0

x4

h4 s1 s2

[START]

y0

y1 y2

s3 s4

y3 y4

[STOP]

c1 y1c2 y2c3 y3c4

we see the sky

cielovediamo il

vediamo il cielo

Sequence to Sequence with RNNs and Attention
Query vectors (decoder RNN states) and

data vectors (encoder RNN states)

get transformed to

output vectors (Context states).

Each query attends to all data vectors and

gives one output vector

There’s a general

operator hiding here:

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 30

Attention Layer
Inputs:

Query vector: q [DQ]

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 31

Attention Layer
Inputs:

Query vector: q [DQ]

Data vectors: X [NX x DX]

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 32

Attention Layer
Inputs:

Query vector: q [DQ]

Data vectors: X [NX x DX]

Computation:

Similarities: e [NX] ei = fatt(q, Xi)

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 33

Attention Layer
Inputs:

Query vector: q [DQ]

Data vectors: X [NX x DX]

Computation:

Similarities: e [NX] ei = fatt(q, Xi)

Attention weights: a = softmax(e) [NX]

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 34

Attention Layer
Inputs:

Query vector: q [DQ]

Data vectors: X [NX x DX]

Computation:

Similarities: e [NX] ei = fatt(q, Xi)

Attention weights: a = softmax(e) [NX]

Output vector: y = ∑iaiXi [DX]

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 35

Attention Layer
Inputs:

Query vector: q [DQ]

Data vectors: X [NX x DX]

Computation:

Similarities: e [NX] ei = fatt(q, Xi)

Attention weights: a = softmax(e) [NX]

Output vector: y = ∑iaiXi [DX]
Let’s generalize this!

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 36

Attention Layer
Inputs:

Query vector: q [DX]

Data vectors: X [NX x DX]

Computation:

Similarities: e [NX] ei = q · Xi

Attention weights: a = softmax(e) [NX]

Output vector: y = ∑iaiXi [DX]

Changes

- Use dot product for similarity

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 37

Attention Layer
Inputs:

Query vector: q [DX]

Data vectors: X [NX x DX]

Computation:

Similarities: e [NX] ei = q · Xi / 𝐷𝑋
Attention weights: a = softmax(e) [NX]

Output vector: y = ∑iaiXi [DX]

Changes

- Use scaled dot product for similarity

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 38

Attention Layer
Inputs:

Query vector: q [DX]

Data vectors: X [NX x DX]

Computation:

Similarities: e [NX] ei = q · Xi / 𝐷𝑋
Attention weights: a = softmax(e) [NX]

Output vector: y = ∑iaiXi [DX]

Changes

- Use scaled dot product for similarity

Large similarities will cause softmax to

saturate and give vanishing gradients
Recall a · b = |a||b| cos(angle)
Suppose that a and b are constant

vectors of dimension D

Then |a| = (∑ia
2)1/2 = a 𝐷

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 39

Attention Layer
Inputs:

Query vector: Q [NQ x DX]

Data vectors: X [NX x DX]

Computation:

Similarities: E = QXT / 𝐷𝑋 [NQ x NX]

Eij = Qi·Xj / 𝐷𝑋
Attention weights: A = softmax(E, dim=1) [NQ x NX]

Output vector: Y = AX [NQ x DX]

Yi = ∑jAijXj

Changes

- Use scaled dot product for similarity

- Multiple query vectors

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 40

Attention Layer
Inputs:

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Key matrix: WK [DX x DQ]

Value matrix: WV [DX x DV]

Computation:

Keys: K = XWK [NX x DQ]

Values: V = XWV [NX x DV]

Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQ x NX]

Output vector: Y = AV [NQ x DV]

Yi = ∑jAijVj

Changes

- Use scaled dot product for similarity

- Multiple query vectors

- Separate key and value

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 41

Attention Layer
Inputs:

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Key matrix: WK [DX x DQ]

Value matrix: WV [DX x DV]

Computation:

Keys: K = XWK [NX x DQ]

Values: V = XWV [NX x DV]

Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQ x NX]

Output vector: Y = AV [NQ x DV]

Yi = ∑jAijVj
Q1

X1

X2

X3

Q2 Q3 Q4

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 42

Attention Layer
Inputs:

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Key matrix: WK [DX x DQ]

Value matrix: WV [DX x DV]

Computation:

Keys: K = XWK [NX x DQ]

Values: V = XWV [NX x DV]

Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQ x NX]

Output vector: Y = AV [NQ x DV]

Yi = ∑jAijVj
Q1

X1

X2

X3

K1

K2

K3

V1

V2

V3

Q2 Q3 Q4

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 43

Attention Layer
Inputs:

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Key matrix: WK [DX x DQ]

Value matrix: WV [DX x DV]

Computation:

Keys: K = XWK [NX x DQ]

Values: V = XWV [NX x DV]

Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQ x NX]

Output vector: Y = AV [NQ x DV]

Yi = ∑jAijVj
Q1

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

V1

V2

V3

Q2 Q3 Q4

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 44

Attention Layer
Inputs:

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Key matrix: WK [DX x DQ]

Value matrix: WV [DX x DV]

Computation:

Keys: K = XWK [NX x DQ]

Values: V = XWV [NX x DV]

Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQ x NX]

Output vector: Y = AV [NQ x DV]

Yi = ∑jAijVj

Softmax()

Q1

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Q2 Q3 Q4

Softmax normalizes each

column: each query predicts
a distribution over the keys

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 45

Attention Layer
Inputs:

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Key matrix: WK [DX x DQ]

Value matrix: WV [DX x DV]

Computation:

Keys: K = XWK [NX x DQ]

Values: V = XWV [NX x DV]

Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQ x NX]

Output vector: Y = AV [NQ x DV]

Yi = ∑jAijVj

Softmax()

Q1

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Product(), Sum()

Q2 Q3 Q4

Y1 Y2 Y3 Y4Each output is a linear

combination of all values,
weighted by attention weights

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 46

Cross-Attention Layer
Inputs:

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Key matrix: WK [DX x DQ]

Value matrix: WV [DX x DV]

Computation:

Keys: K = XWK [NX x DQ]

Values: V = XWV [NX x DV]

Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQ x NX]

Output vector: Y = AV [NQ x DV]

Yi = ∑jAijVj

Softmax()

Q1

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Product(), Sum()

Q2 Q3 Q4

Y1 Y2 Y3 Y4

Each query produces

one output, which is a
mix of information in
the data vectors

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

47

Self-Attention Layer

Each input produces

one output, which is
a mix of information
from all inputs

Softmax()

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1V1

V2

V3

Product(), Sum()

Y1 Y2 Y3

Q1 Q2 Q3

X1 X2 X3

Shapes get a little simpler:

- N input vectors, each Din

- Almost always DQ = DV = Dout

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

48

Self-Attention Layer

Each input produces

one output, which is
a mix of information
from all inputs

K1

K2

K3

V1

V2

V3

Q1 Q2 Q3

X1 X2 X3

From each input:

compute a query,
key, and value vector

Often fused to one matmul:

[Q K V] = X[WQ WK WV]
[N x 3Dout] = [N x Din] [Din x 3Dout]

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

49

Self-Attention Layer

Each input produces

one output, which is
a mix of information
from all inputs

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

V1

V2

V3

Q1 Q2 Q3

X1 X2 X3

Compute similarity

between each query
and each key

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

50

Self-Attention Layer

Each input produces

one output, which is
a mix of information
from all inputs

Softmax()

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1V1

V2

V3

Q1 Q2 Q3

X1 X2 X3

Normalize over each column:

each query computes a
distribution over keys

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

51

Self-Attention Layer

Each input produces

one output, which is
a mix of information
from all inputs

Softmax()

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1V1

V2

V3

Product(), Sum()

Y1 Y2 Y3

Q1 Q2 Q3

X1 X2 X3

Compute output

vectors as linear
combinations of
value vectors

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

52

Self-Attention Layer

Softmax()

Product(), Sum()

X3 X1 X2

Consider permuting inputs:

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

53

Self-Attention Layer

Softmax()

K3

K1

K2

V3

V1

V2

Product(), Sum()

Q3 Q1 Q2

X3 X1 X2

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

54

Self-Attention Layer

Softmax()

K3

K1

K2

E3,3 E1,3

E3,1

E3,2

E1,1

E1,2 E2,2

E2,1

E2,3

V3

V1

V2

Product(), Sum()

Q3 Q1 Q2

X3 X1 X2

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Similarities are the same but

permuted

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

55

Self-Attention Layer

Softmax()

K3

K1

K2

E3,3 E1,3

E3,1

E3,2

E1,1

E1,2 E2,2

E2,1

E2,3

A3,3 A1,3

A3,1

A3,2

A1,1

A1,2 A2,2

A2,1

A2,3V3

V1

V2

Product(), Sum()

Q3 Q1 Q2

X3 X1 X2

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Similarities are the same but

permuted

Attention weights are the

same but permuted

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

56

Self-Attention Layer

Softmax()

K3

K1

K2

E3,3 E1,3

E3,1

E3,2

E1,1

E1,2 E2,2

E2,1

E2,3

A3,3 A1,3

A3,1

A3,2

A1,1

A1,2 A2,2

A2,1

A2,3V3

V1

V2

Product(), Sum()

Y3 Y1 Y2

Q3 Q1 Q2

X3 X1 X2

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Similarities are the same but

permuted

Attention weights are the

same but permuted

Outputs are the same but
permuted

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

57

Self-Attention Layer

Softmax()

K3

K1

K2

E3,3 E1,3

E3,1

E3,2

E1,1

E1,2 E2,2

E2,1

E2,3

A3,3 A1,3

A3,1

A3,2

A1,1

A1,2 A2,2

A2,1

A2,3V3

V1

V2

Product(), Sum()

Y3 Y1 Y2

Q3 Q1 Q2

X3 X1 X2

Self-Attention is

permutation equivariant:

F(σ(X)) = σ(F(X))

This means that Self-Attention
works on sets of vectors

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

58

Self-Attention Layer

Softmax()

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1V1

V2

V3

Product(), Sum()

Y1 Y2 Y3

Q1 Q2 Q3

X1 X2 X3

Problem: Self-Attention

does not know the order of

the sequence

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

59

Self-Attention Layer

Problem: Self-Attention

does not know the order of

the sequence

Solution: Add positional

encoding to each input; this

is a vector that is a fixed

function of the index

Softmax()

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1V1

V2

V3

Product(), Sum()

Y1 Y2 Y3

Q1 Q2 Q3

X1 X2 X3

E(1) E(2) E(3)

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

60

Masked Self-Attention Layer

Override similarities with -inf;

this controls which inputs each

vector is allowed to look at.

Softmax()

K1

K2

K3

E1,1 E2,1

-∞

-∞

E2,2

-∞ E3,3

E3,2

E3,1

A1,1 A2,1

0

0

A2,2

0 A3,3

A3,2

A3,1V1

V2

V3

Product(), Sum()

Q1 Q2 Q3

Don’t let vectors “look ahead” in the sequence

Y1 Y2 Y3

X1 X2 X3

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

61

Masked Self-Attention Layer

Override similarities with -inf;

this controls which inputs each

vector is allowed to look at.

Used for language modeling

where you want to predict the

next word

Softmax()

K1

K2

K3

V1

V2

V3

Product(), Sum()

Q1 Q2 Q3

Don’t let vectors “look ahead” in the sequence

Attention is very

is very cool

A1,1 A2,1

0

0

A2,2

0 A3,3

A3,2

A3,1

E1,1 E2,1

-∞

-∞

E2,2

-∞ E3,3

E3,2

E3,1

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AX [N x Dout]

Yi = ∑jAijVj

62

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X1 X2 X3

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AX [N x Dout]

Yi = ∑jAijVj

63

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X1 X2 X3

H = 3 independent

self-attention layers

(called heads), each

with their own weights

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AX [N x Dout]

Yi = ∑jAijVj

64

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X1 X2 X3

Y1,1

Y1,2

Y1,3

Y2,1

Y2,2

Y2,3

Y3,1

Y3,2

Y3,3

H = 3 independent

self-attention layers

(called heads), each

with their own weights

Stack up the H

independent outputs

for each input X

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys: K = XWK [N x Dout]

Values: V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: Y = AX [N x Dout]

Yi = ∑jAijVj

65

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X1 X2 X3

Y1,1

Y1,2

Y1,3

Y2,1

Y2,2

Y2,3

Y3,1

Y3,2

Y3,3

O1 O2 O3

H = 3 independent

self-attention layers

(called heads), each

with their own weights

Stack up the H

independent outputs

for each input X

Output projection fuses

data from each head

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys: K = XWK [H x N x DH]

Values: V = XWV [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

66

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X1 X2 X3

Y1,1

Y1,2

Y1,3

Y2,1

Y2,2

Y2,3

Y3,1

Y3,2

Y3,3

O1 O2 O3

Each of the H parallel

layers use a qkv dim of

DH = “head dim”

Usually DH = D / H, so

inputs and outputs have

the same dimension

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys: K = XWK [H x N x DH]

Values: V = XWV [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

67

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X1 X2 X3

Y1,1

Y1,2

Y1,3

Y2,1

Y2,2

Y2,3

Y3,1

Y3,2

Y3,3

O1 O2 O3

In practice, compute

all H heads in parallel

using batched matrix

multiply operations.

Used everywhere in

practice.

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys: K = XWK [H x N x DH]

Values: V = XWV [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

68

Self-Attention is Four Matrix Multiplies!

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys: K = XWK [H x N x DH]

Values: V = XWV [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

69

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of

shape [H x N x DH]

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys: K = XWK [H x N x DH]

Values: V = XWV [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

70

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x DH x N] => [H x N x N]

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys: K = XWK [H x N x DH]

Values: V = XWV [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

71

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting

[H x N x N] [H x N x DH] => [H x N x DH]

Reshape to [N x HDH]

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys: K = XWK [H x N x DH]

Values: V = XWV [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

72

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting

[H x N x N] [H x N x DH] => [H x N x DH]

Reshape to [N x HDH]

4. Output Projection

[N x HDH] [HDH x D] => [N x D]

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys: K = XWK [H x N x DH]

Values: V = XWV [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

73

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting

[H x N x N] [H x N x DH] => [H x N x DH]

Reshape to [N x HDH]

4. Output Projection

[N x HDH] [HDH x D] => [N x D]

Q: How much compute does this take

as the number of vectors N increases?

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys: K = XWK [H x N x DH]

Values: V = XWV [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

74

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting

[H x N x N] [H x N x DH] => [H x N x DH]

Reshape to [N x HDH]

4. Output Projection

[N x HDH] [HDH x D] => [N x D]

Q: How much compute does this take

as the number of vectors N increases?
A: O(N2)

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys: K = XWK [H x N x DH]

Values: V = XWV [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

75

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting

[H x N x N] [H x N x DH] => [H x N x DH]

Reshape to [N x HDH]

4. Output Projection

[N x HDH] [HDH x D] => [N x D]

Q: How much memory does this take

as the number of vectors N increases?

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys: K = XWK [H x N x DH]

Values: V = XWV [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

76

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting

[H x N x N] [H x N x DH] => [H x N x DH]

Reshape to [N x HDH]

4. Output Projection

[N x HDH] [HDH x D] => [N x D]

Q: How much memory does this take

as the number of vectors N increases?
A: O(N2)

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys: K = XWK [H x N x DH]

Values: V = XWV [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

77

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting

[H x N x N] [H x N x DH] => [H x N x DH]

Reshape to [N x HDH]

4. Output Projection

[N x HDH] [HDH x D] => [N x D]

Q: How much memory does this take

as the number of vectors N increases?
A: O(N2)

If N=100K, H=64 then

HxNxN attention weights
take 1.192 TB! GPUs don’t
have that much memory…

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Inputs:

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys: K = XWK [H x N x DH]

Values: V = XWV [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

78

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting

[H x N x N] [H x N x DH] => [H x N x DH]

Reshape to [N x HDH]

4. Output Projection

[N x HDH] [HDH x D] => [N x D]

Q: How much memory does this take

as the number of vectors N increases?
A: O(N) with Flash Attention

If N=100K, H=64 then

HxNxN attention weights
take 1.192 TB! GPUs don’t
have that much memory…

Dao et al, “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness”, 2022

Flash Attention

algorithm computes
2+3 at the same time
without storing the

full attention matrix!

Makes large N
possible

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 79

Three Ways of Processing Sequences

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 80

Three Ways of Processing Sequences

y1 y2 y3 y4

x1 x2 x3 x4

Recurrent Neural Network

Works on 1D ordered sequences

(+) Theoretically good at long
sequences: O(N) compute and

memory for a sequence of length N
(-) Not parallelizable. Need to

compute hidden states sequentially

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 81

Three Ways of Processing Sequences

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

Recurrent Neural Network Convolution

Works on 1D ordered sequences

(+) Theoretically good at long
sequences: O(N) compute and

memory for a sequence of length N
(-) Not parallelizable. Need to

compute hidden states sequentially

Works on N-dimensional grids

(-) Bad for long sequences: need to
stack many layers to build up large

receptive fields
(+) Parallelizable, outputs can be

computed in parallel

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 82

Three Ways of Processing Sequences

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network Convolution Self-Attention

Works on 1D ordered sequences

(+) Theoretically good at long
sequences: O(N) compute and

memory for a sequence of length N
(-) Not parallelizable. Need to

compute hidden states sequentially

Works on N-dimensional grids

(-) Bad for long sequences: need to
stack many layers to build up large

receptive fields
(+) Parallelizable, outputs can be

computed in parallel

Works on sets of vectors

(+) Great for long sequences; each
output depends directly on all inputs

(+) Highly parallel, it’s just 4 matmuls
(-) Expensive: O(N2) compute, O(N)

memory for sequence of length N

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 83

Three Ways of Processing Sequences

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network Convolution Self-Attention

Works on 1D ordered sequences

(+) Theoretically good at long
sequences: O(N) compute and

memory for a sequence of length N
(-) Not parallelizable. Need to

compute hidden states sequentially

Works on N-dimensional grids

(-) Bad for long sequences: need to
stack many layers to build up large

receptive fields
(+) Parallelizable, outputs can be

computed in parallel

Works on sets of vectors

(+) Great for long sequences; each
output depends directly on all inputs

(+) Highly parallel, it’s just 4 matmuls
(-) Expensive: O(N2) compute, O(N)

memory for sequence of length N

Attention is All You Need
Vaswani et al, NeurIPS 2017

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 84

x1 x2 x3 x4

The Transformer

Transformer Block

Input: Set of vectors x

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 85

x1 x2 x3 x4

Self-Attention

The Transformer

Transformer Block

Input: Set of vectors x

All vectors interact through

(multiheaded) Self-Attention

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 86

The Transformer

Transformer Block

Input: Set of vectors x

Residual connection

x1 x2 x3 x4

Self-Attention

+

All vectors interact through

(multiheaded) Self-Attention

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 87

The Transformer

Transformer Block

Input: Set of vectors x

Layer normalization

normalizes all vectors

x1 x2 x3 x4

Self-Attention

Layer Normalization

+

Recall Layer Normalization:

Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shift: 𝛽 (Shape: D)

𝜇i = (∑j hi,j)/D (scalar)
𝜎i = (∑j (hi,j - 𝜇i)

2/D)1/2 (scalar)

zi = (hi - 𝜇i) / 𝜎i

yi = 𝛾 * zi + 𝛽

Ba et al, 2016

Residual connection

All vectors interact through

(multiheaded) Self-Attention

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 88

The Transformer

Transformer Block

Input: Set of vectors x

x1 x2 x3 x4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

Layer normalization

normalizes all vectors

Residual connection

All vectors interact through

(multiheaded) Self-Attention

MLP independently

on each vector

Usually a two-layer MLP;

classic setup is
D => 4D => D

Also sometimes called FFN
(Feed-Forward Network)

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 89

The Transformer

Transformer Block

Input: Set of vectors x

Layer normalization

normalizes all vectors

Residual connection

All vectors interact through

(multiheaded) Self-Attention

x1 x2 x3 x4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

+
MLP independently

on each vector

Residual connection

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 90

The Transformer

Transformer Block

Input: Set of vectors x

Layer normalization

normalizes all vectors

Residual connection

All vectors interact through

(multiheaded) Self-Attention

MLP independently

on each vector

Residual connection

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

Layer Normalization

+

Another Layer Norm

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 91

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

Layer Normalization

+

The Transformer

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only

interaction between vectors

LayerNorm and MLP work on

each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention

2 from MLP

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 92

The Transformer

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only

interaction between vectors

LayerNorm and MLP work on

each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention

2 from MLP

Vaswani et al, “Attention is all you need,” NeurIPS 2017

A Transformer is just a stack of

identical Transformer blocks!

They have not changed much since

2017… but have gotten a lot bigger

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 93

The Transformer

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only

interaction between vectors

LayerNorm and MLP work on

each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention

2 from MLP

Vaswani et al, “Attention is all you need,” NeurIPS 2017

A Transformer is just a stack of

identical Transformer blocks!

They have not changed much since

2017… but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, D=1024, H=16, N=512
213M params

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 94

The Transformer

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only

interaction between vectors

LayerNorm and MLP work on

each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention

2 from MLP

Vaswani et al, “Attention is all you need,” NeurIPS 2017

A Transformer is just a stack of

identical Transformer blocks!

They have not changed much since

2017… but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, D=1024, H=16, N=512
213M params

GPT-2: [Radford et al, 2019]

48 blocks, D=1600, H=25, N=1024
1.5B params

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 95

The Transformer

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only

interaction between vectors

LayerNorm and MLP work on

each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention

2 from MLP

Vaswani et al, “Attention is all you need,” NeurIPS 2017

A Transformer is just a stack of

identical Transformer blocks!

They have not changed much since

2017… but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, D=1024, H=16, N=512
213M params

GPT-2: [Radford et al, 2019]

48 blocks, D=1600, H=25, N=1024
1.5B params

GPT-3: [Brown et al, 2020]
96 blocks, D=12288, H=96, N=2048

175B params

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 96

Transformers for Language Modeling (LLM)

Attention is all you

Embedding Matrix

[V x D]

Learn an embedding matrix at the start of

the model to convert words into vectors.

Given vocab size V and model dimension

D, it’s a lookup table of shape [V x D]

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 97

Transformers for Language Modeling (LLM)

Attention is all you

Embedding Matrix

[V x D]

Learn an embedding matrix at the start of

the model to convert words into vectors.

Given vocab size V and model dimension

D, it’s a lookup table of shape [V x D]

Use masked attention inside each
transformer block so each token can only
see the ones before it

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 98

Transformers for Language Modeling (LLM)

Attention is all you

Embedding Matrix

[V x D]

Learn an embedding matrix at the start of

the model to convert words into vectors.

Given vocab size V and model dimension

D, it’s a lookup table of shape [V x D]

Use masked attention inside each
transformer block so each token can only
see the ones before it

At the end, learn a projection matrix of

shape [D x V] to project each D-dim
vector to a V-dim vector of scores for
each element of the vocabulary.

Projection Matrix

[D x V]

is all you need

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 99

Transformers for Language Modeling (LLM)

Attention is all you

Embedding Matrix

[V x D]

Learn an embedding matrix at the start of

the model to convert words into vectors.

Given vocab size V and model dimension

D, it’s a lookup table of shape [V x D]

Use masked attention inside each
transformer block so each token can only
see the ones before it

At the end, learn a projection matrix of

shape [D x V] to project each D-dim
vector to a V-dim vector of scores for
each element of the vocabulary.

Train to predict next token using softmax

+ cross-entropy loss

Projection Matrix

[D x V]

is all you need

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 100

Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth

16x16 Words: Transformers for Image

Recognition at Scale”, ICLR 2021

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 101

Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3
Dosovitskiy et al, “An Image is Worth

16x16 Words: Transformers for Image

Recognition at Scale”, ICLR 2021

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 102

Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear

transform 768 => D
Dosovitskiy et al, “An Image is Worth

16x16 Words: Transformers for Image

Recognition at Scale”, ICLR 2021

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 103

Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear

transform 768 => D
Dosovitskiy et al, “An Image is Worth

16x16 Words: Transformers for Image

Recognition at Scale”, ICLR 2021

Q: Any other way to

describe this operation?

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 104

Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear

transform 768 => D
Dosovitskiy et al, “An Image is Worth

16x16 Words: Transformers for Image

Recognition at Scale”, ICLR 2021

Q: Any other way to

describe this operation?

A: 16x16 conv with stride

16, 3 input channels, D

output channels

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 105

Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear

transform 768 => D

D-dim vector per patch

are the input vectors to
the Transformer

Dosovitskiy et al, “An Image is Worth

16x16 Words: Transformers for Image

Recognition at Scale”, ICLR 2021

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 106

Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear

transform 768 => D

D-dim vector per patch

are the input vectors to
the Transformer

Use positional

encoding to tell
the transformer
the 2D position

of each patch

Dosovitskiy et al, “An Image is Worth

16x16 Words: Transformers for Image

Recognition at Scale”, ICLR 2021

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 107

Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear

transform 768 => D

D-dim vector per patch

are the input vectors to
the Transformer

Don’t use any

masking; each
image patch can
look at all other

image patches

Use positional

encoding to tell
the transformer
the 2D position

of each patch

Dosovitskiy et al, “An Image is Worth

16x16 Words: Transformers for Image

Recognition at Scale”, ICLR 2021

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 108

Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear

transform 768 => D

D-dim vector per patch

are the input vectors to
the Transformer

Don’t use any

masking; each
image patch can
look at all other

image patches

Use positional

encoding to tell
the transformer
the 2D position

of each patch

Transformer

gives an output
vector per patch

Dosovitskiy et al, “An Image is Worth

16x16 Words: Transformers for Image

Recognition at Scale”, ICLR 2021

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 109

Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear

transform 768 => D

D-dim vector per patch

are the input vectors to
the Transformer

Don’t use any

masking; each
image patch can
look at all other

image patches

Use positional

encoding to tell
the transformer
the 2D position

of each patch

Transformer

gives an output
vector per patch

Pooling

Average pool NxD vectors to

1xD, apply a linear layer
D=>C to predict class scores

Dosovitskiy et al, “An Image is Worth

16x16 Words: Transformers for Image

Recognition at Scale”, ICLR 2021

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 110

Tweaking Transformers

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

Layer Normalization

+

The Transformer architecture has not

changed much since 2017.

But a few changes have become common:

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 111

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

Layer Normalization

+

Pre-Norm Transformer

Layer normalization is outside

the residual connections

Kind of weird, the model can’t

actually learn the identify function

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 112

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

Layer Normalization

+

Pre-Norm Transformer

Layer normalization is outside

the residual connections

Kind of weird, the model can’t

actually learn the identify function

Solution: Move layer
normalization before the Self-
Attention and MLP, inside the

residual connections. Training is
more stable.

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 113

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+

RMSNorm

Replace Layer Normalization

with Root-Mean-Square
Normalization (RMSNorm)

Input: x [shape D]
Output: y [shape D]

Weight: 𝛾 [shape D]

𝑦𝑖 =
𝑥𝑖

𝑅𝑀𝑆(𝑥)
∗ 𝛾𝑖

𝑅𝑀𝑆 𝑥 = 𝜀 +
1

𝑁
෍

𝑖=1

𝑁

𝑥𝑖
2

Training is a bit more stable

Zhang and Sennrich, “Root Mean Square Layer Normalization”, NeurIPS 2019

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 114

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+

SwiGLU MLP

Classic MLP:

Input: X [N x D]
Weights: W1 [D x 4D]

W2 [4D x D]
Output: Y = σ(XW1)W2 [N x D]

Shazeer, “GLU Variants Improve Transformers”, 2020

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 115

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+

SwiGLU MLP

Classic MLP:

Input: X [N x D]
Weights: W1 [D x 4D]

W2 [4D x D]
Output: Y = σ(XW1)W2 [N x D]

Shazeer, “GLU Variants Improve Transformers”, 2020

SwiGLU MLP:

Input: X [N x D]
Weights: W1 , W2 [D x H]

W3 [H x D]
Output:

𝑌 = 𝜎 𝑋𝑊1 ⊙𝑋𝑊2 𝑊3

Setting H = 8D/3 keeps

same total params

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 116

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+

SwiGLU MLP

Classic MLP:

Input: X [N x D]
Weights: W1 [D x 4D]

W2 [4D x D]
Output: Y = σ(XW1)W2 [N x D]

Shazeer, “GLU Variants Improve Transformers”, 2020

SwiGLU MLP:

Input: X [N x D]
Weights: W1 , W2 [D x H]

W3 [H x D]
Output:

𝑌 = 𝜎 𝑋𝑊1 ⊙𝑋𝑊2 𝑊3

We offer no explanation as

to why these architectures
seem to work; we attribute
their success, as all else,

to divine benevolence.

Setting H = 8D/3 keeps

same total params

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 117

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in

each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]

W2: [4D x D] => [E x 4D x D]

Shazeer et al, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, 2017

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 118

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in

each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]

W2: [4D x D] => [E x 4D x D]

Each token gets routed to A < E of the
experts. These are the active experts.

Increases params by E,
But only increases compute by A

Shazeer et al, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, 2017

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 119

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in

each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]

W2: [4D x D] => [E x 4D x D]

Each token gets routed to A < E of the
experts. These are the active experts.

Increases params by E,
But only increases compute by A

All of the biggest LLMs today (e.g.
GPT4o, GPT4.5, Claude 3.7, Gemini 2.5

Pro, etc) almost certainly use MoE and
have > 1T params; but they don’t publish

details anymore

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 120

Tweaking Transformers

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+
The Transformer architecture has not

changed much since 2017.

But a few changes have become common:

- Pre-Norm: Move normalization inside
residual

- RMSNorm: Different normalization layer
- SwiGLU: Different MLP architecture
- Mixture of Experts (MoE): Learn E

different MLPs, use A < E of them per
token. Massively increase params,

modest increase to compute cost.

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

Summary: Attention + Transformers

121

Attention: A new primitive that

operates on sets of vectors

Transformer: A neural

network architecture that

uses attention everywhere

Transformers are the

backbone of all large

AI models today!

Used for language,
vision, speech, …

Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 122

Next Time:
Detection, Segmentation,
Visualization

	Slide 1
	Slide 2: Administrative
	Slide 3: Last Time: Recurrent Neural Networks
	Slide 4: Today: Attention + Transformers
	Slide 5: Today: Attention + Transformers
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121: Summary: Attention + Transformers
	Slide 122

