

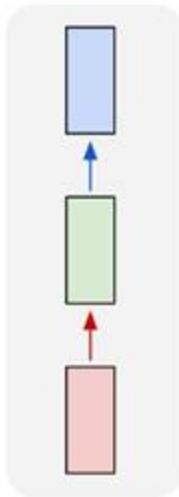
Lecture 8: Attention and Transformers

Administrative

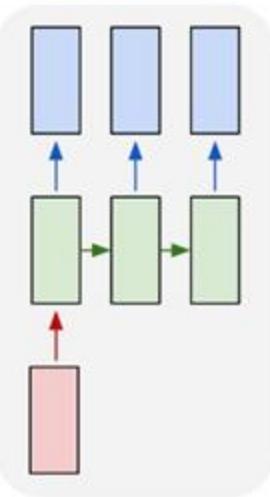
- Assignment 2 released yesterday (4/23)
- Project proposals are due tomorrow (4/25)

Last Time: Recurrent Neural Networks

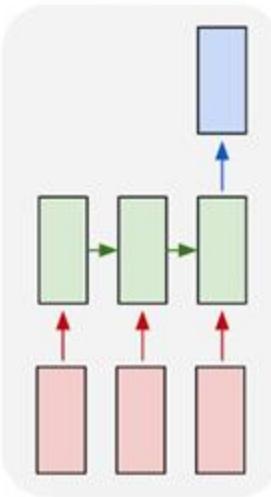
one to one



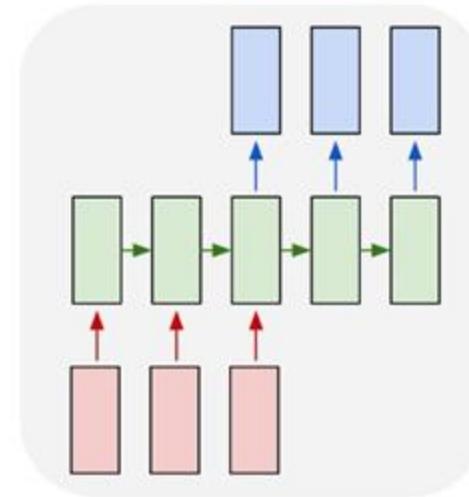
one to many



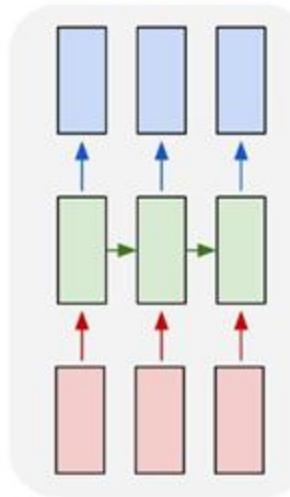
many to one



many to many

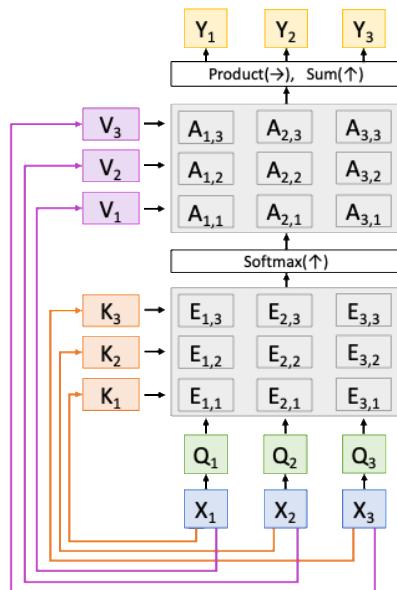


many to many

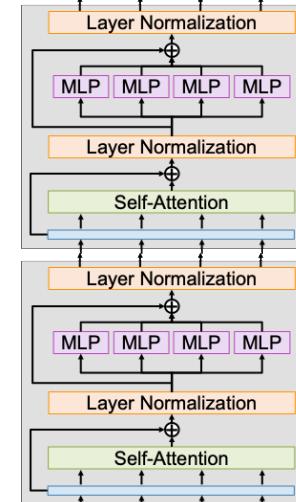


Today: Attention + Transformers

Attention: A new primitive that operates on sets of vectors

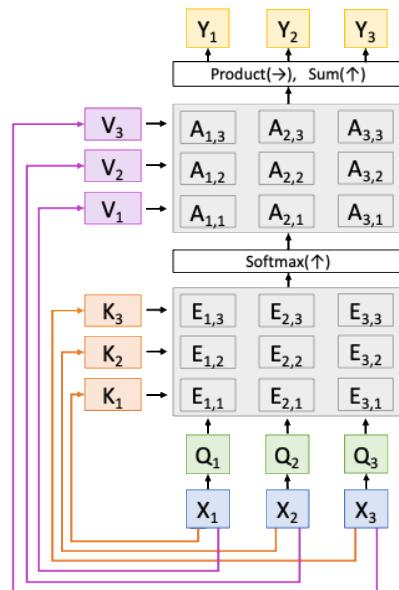


Transformer: A neural network architecture that uses attention everywhere



Today: Attention + Transformers

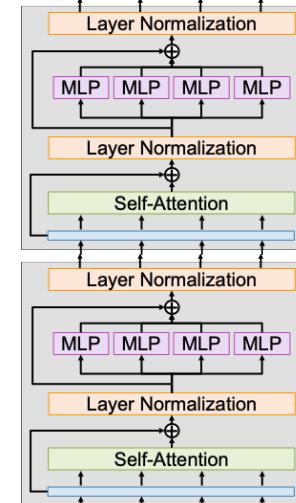
Attention: A new primitive that operates on sets of vectors



Transformers are used everywhere today!

But they developed as an offshoot of RNNs so let's start there

Transformer: A neural network architecture that uses attention everywhere



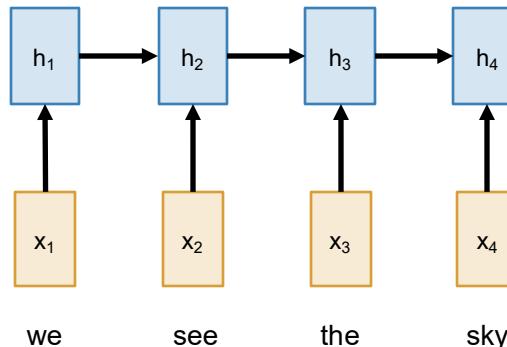
Sequence to Sequence with RNNs: Encoder - Decoder

Input: Sequence x_1, \dots, x_T

Output: Sequence $y_1, \dots, y_{T'}$

A motivating example for today's discussion – machine translation! English \rightarrow Italian

Encoder: $h_t = f_W(x_t, h_{t-1})$



Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Sequence to Sequence with RNNs

Input: Sequence x_1, \dots, x_T

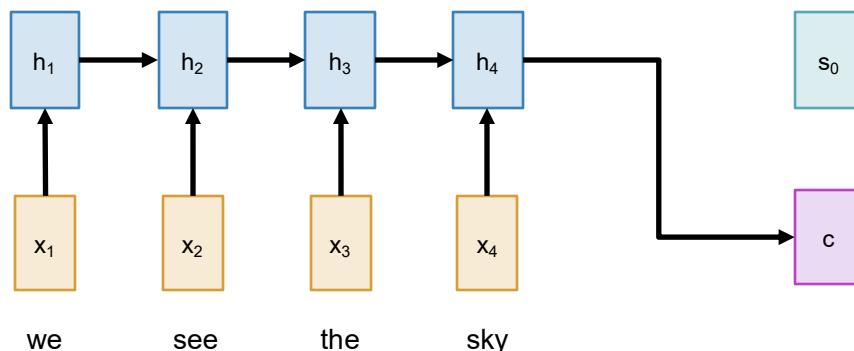
Output: Sequence $y_1, \dots, y_{T'}$

Encoder: $h_t = f_W(x_t, h_{t-1})$

From final hidden state predict:

Initial decoder state s_0

Context vector c (often $c=h_T$)



Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

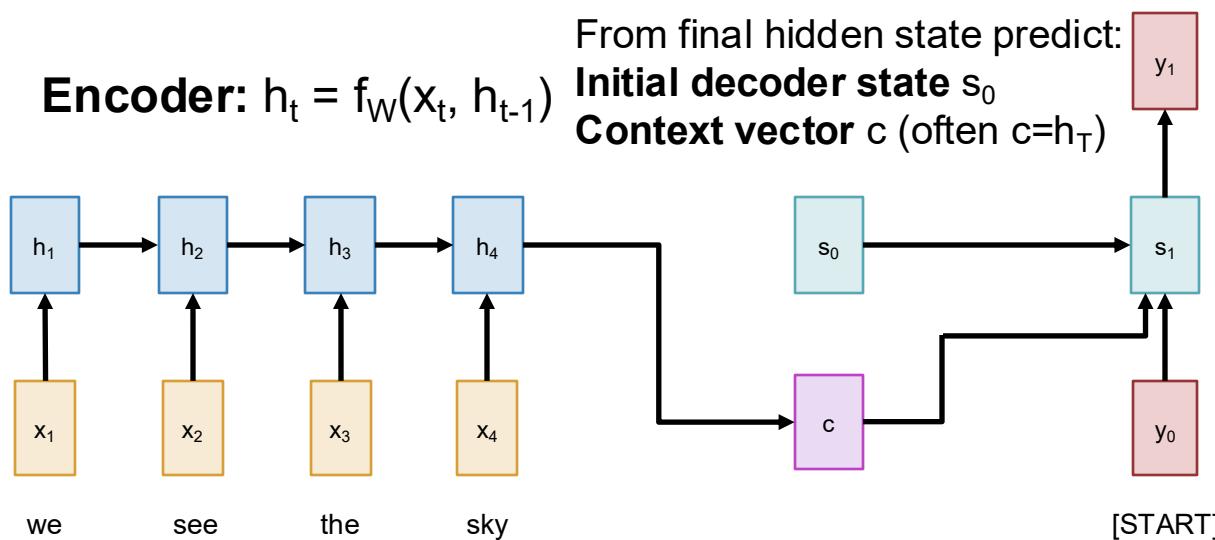
Sequence to Sequence with RNNs

Input: Sequence x_1, \dots, x_T

Output: Sequence $y_1, \dots, y_{T'}$

Decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c)$

vediamo



Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Sequence to Sequence with RNNs

Input: Sequence x_1, \dots, x_T

Output: Sequence $y_1, \dots, y_{T'}$

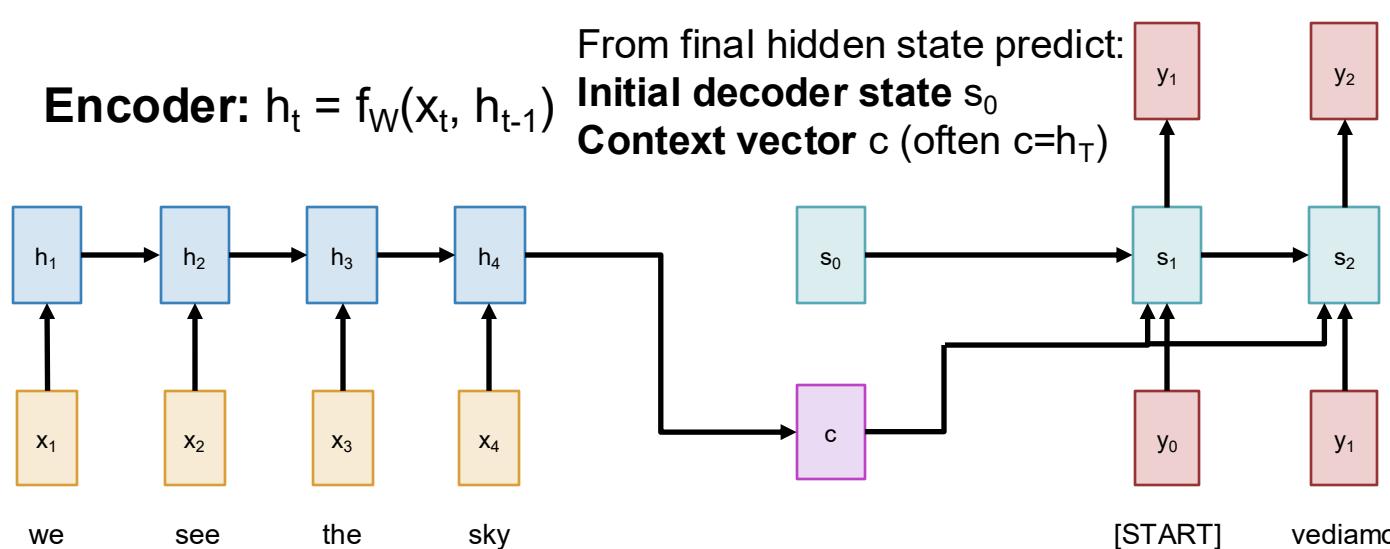
Decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c)$

Encoder: $h_t = f_W(x_t, h_{t-1})$

From final hidden state predict:

Initial decoder state s_0

Context vector c (often $c=h_T$)



Sequence to Sequence with RNNs

Input: Sequence x_1, \dots, x_T

Output: Sequence $y_1, \dots, y_{T'}$

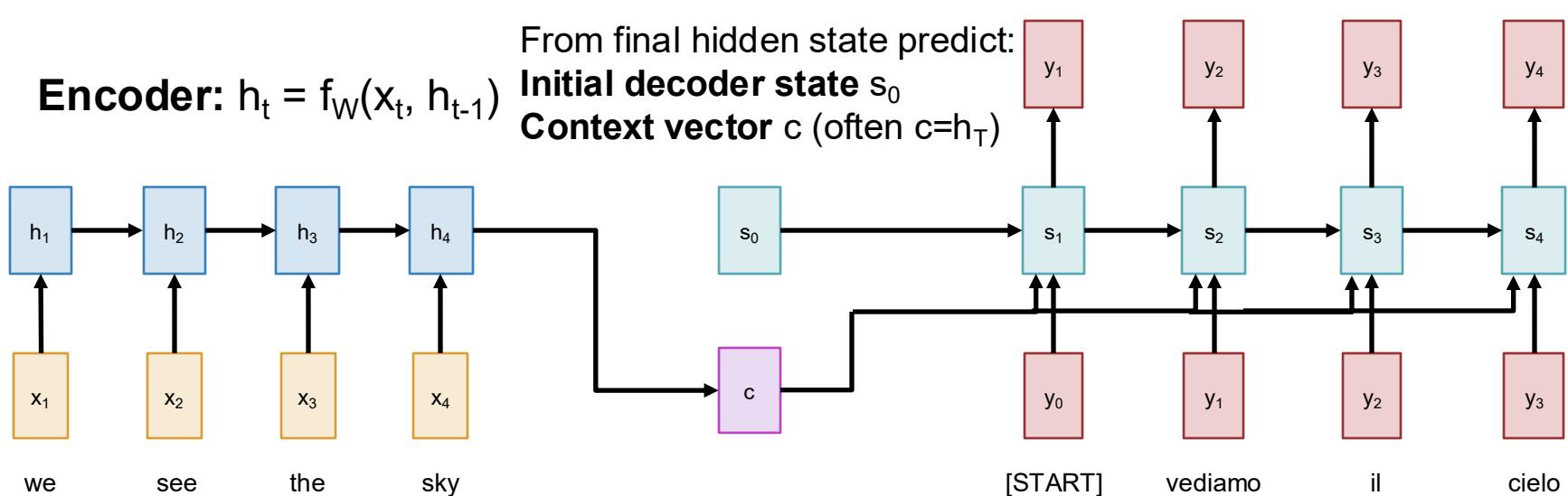
Decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c)$

Encoder: $h_t = f_W(x_t, h_{t-1})$

From final hidden state predict:

Initial decoder state s_0

Context vector c (often $c=h_T$)



Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Sequence to Sequence with RNNs

Input: Sequence x_1, \dots, x_T

Output: Sequence $y_1, \dots, y_{T'}$

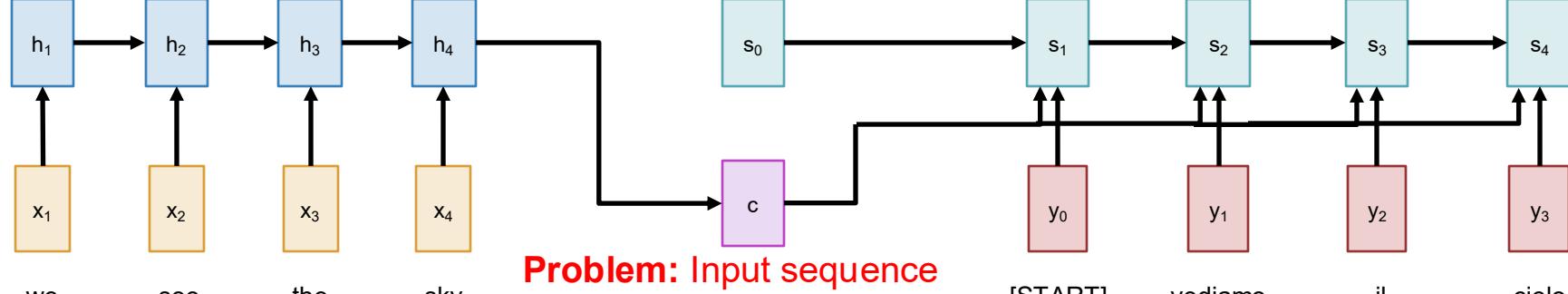
Decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c)$

Encoder: $h_t = f_W(x_t, h_{t-1})$

From final hidden state predict:

Initial decoder state s_0

Context vector c (often $c=h_T$)



Problem: Input sequence bottlenecks through fixed sized c . What if $T=1000$?

Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Sequence to Sequence with RNNs

Input: Sequence x_1, \dots, x_T

Output: Sequence $y_1, \dots, y_{T'}$

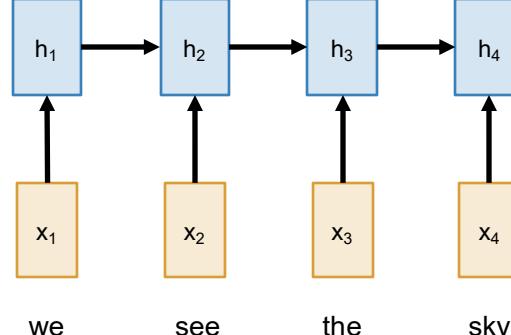
Decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c)$

Encoder: $h_t = f_W(x_t, h_{t-1})$

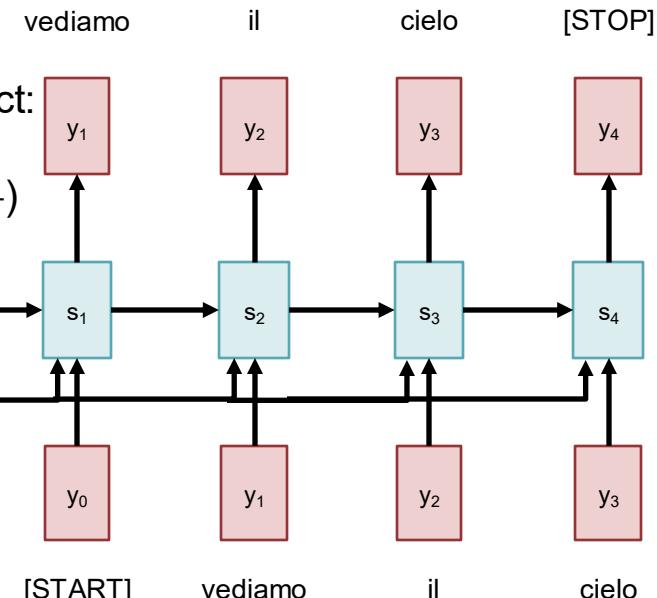
From final hidden state predict:

Initial decoder state s_0

Context vector c (often $c=h_T$)



Solution: Look back at the whole input sequence on each step of the output

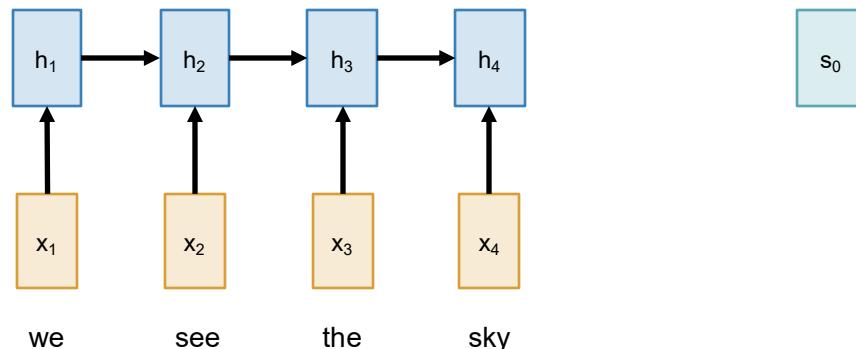


Sequence to Sequence with RNNs and **Attention**

Input: Sequence x_1, \dots, x_T

Output: Sequence $y_1, \dots, y_{T'}$

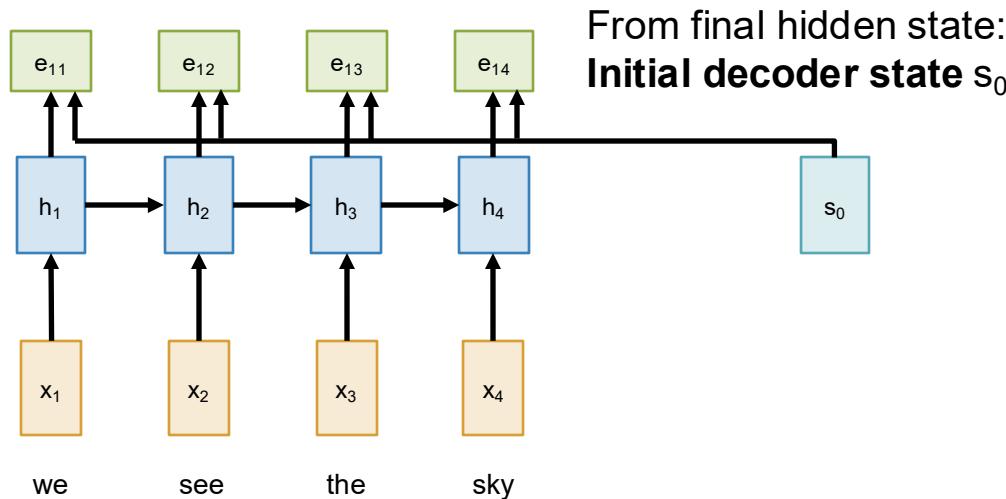
Encoder: $h_t = f_W(x_t, h_{t-1})$ From final hidden state:
Initial decoder state s_0



Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

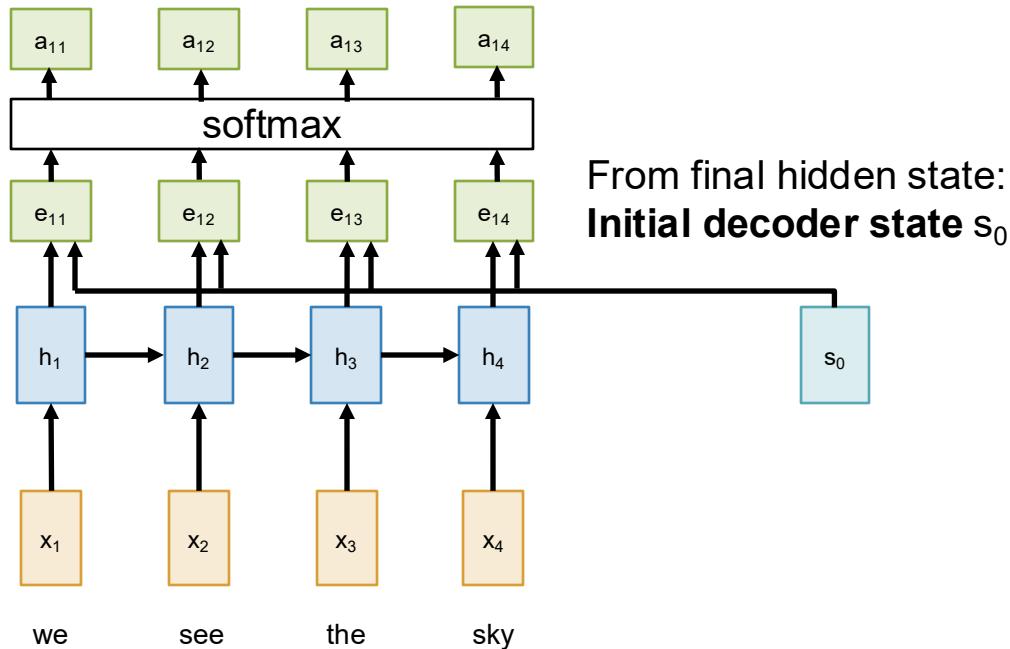
Sequence to Sequence with RNNs and **Attention**

Compute (scalar) **alignment scores**
 $e_{t,i} = f_{\text{att}}(s_{t-1}, h_i)$ (f_{att} is a Linear Layer)



Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

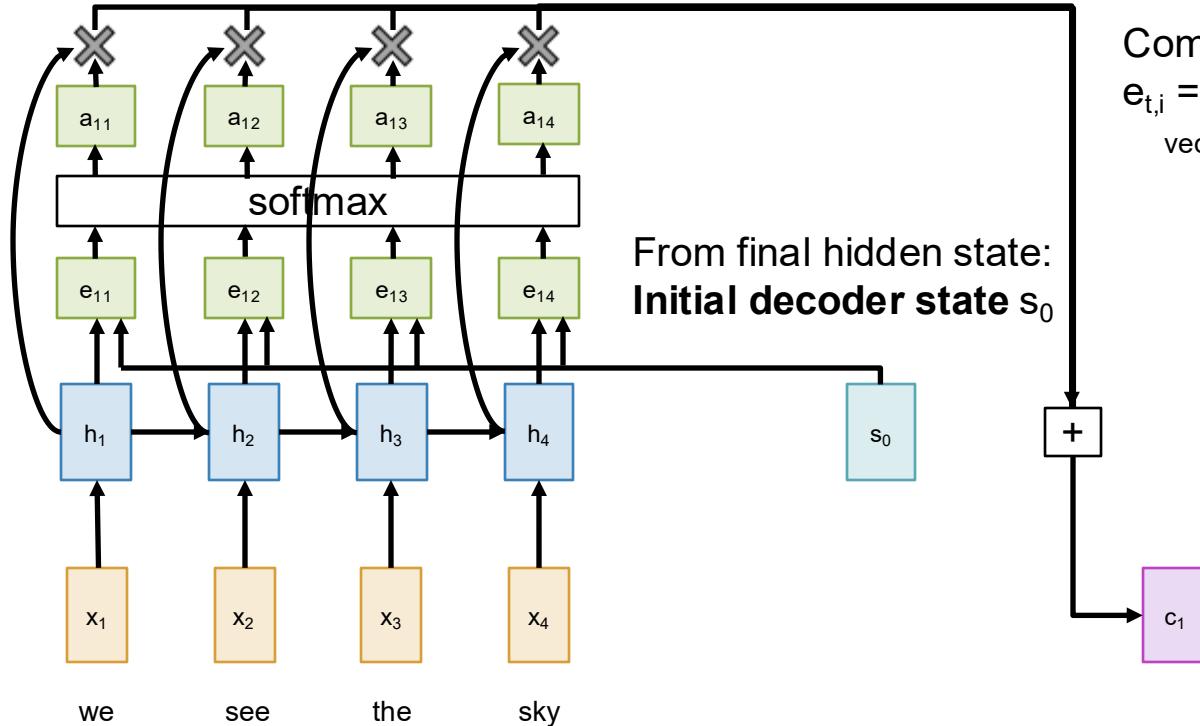
Sequence to Sequence with RNNs and **Attention**



Compute (scalar) **alignment scores**
 $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is a Linear Layer)

Normalize alignment scores
to get **attention weights**
 $0 < a_{t,i} < 1$ $\sum_i a_{t,i} = 1$

Sequence to Sequence with RNNs and **Attention**

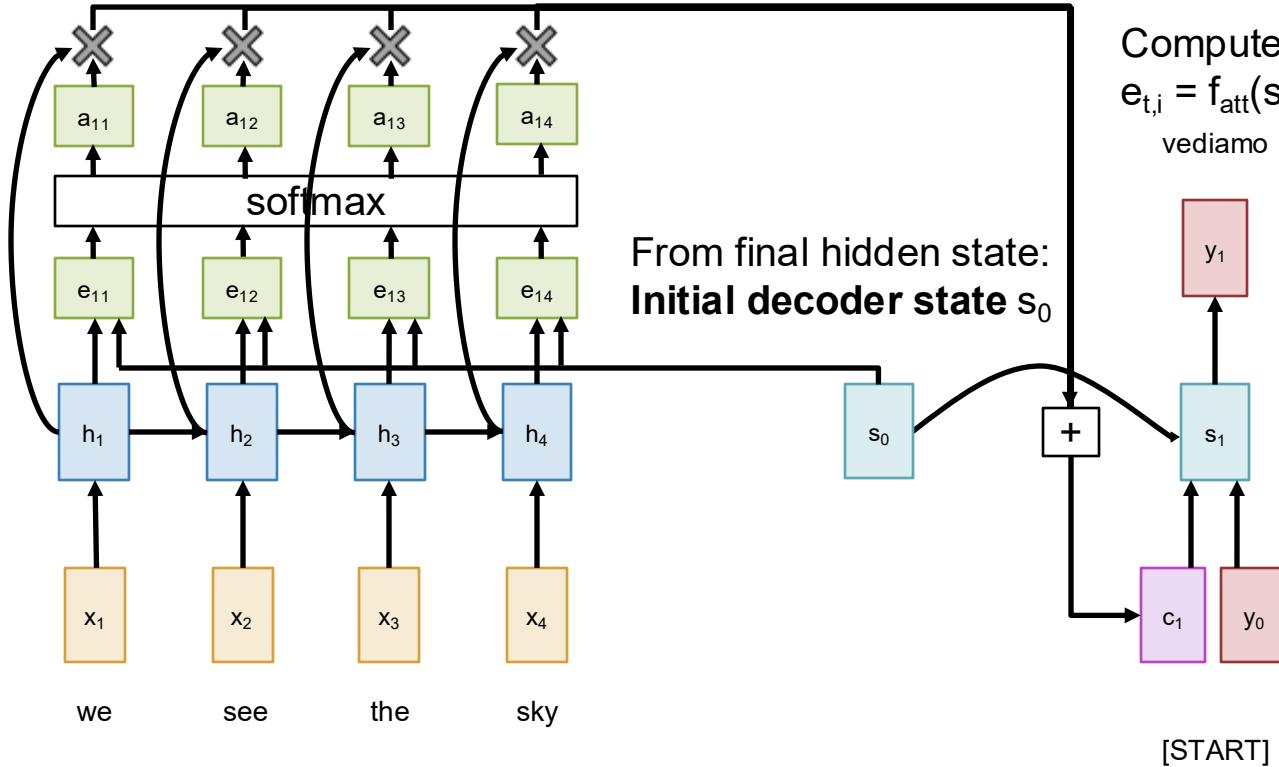


Compute (scalar) **alignment scores**
 $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is a Linear Layer)
vediamo

Normalize alignment scores
to get **attention weights**
 $0 < a_{t,i} < 1 \quad \sum_i a_{t,i} = 1$

Compute context vector as
**weighted sum of hidden
states**
 $c_t = \sum_i a_{t,i} h_i$

Sequence to Sequence with RNNs and **Attention**



Compute (scalar) **alignment scores**
 $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is a Linear Layer)
vediamo

Normalize alignment scores
to get **attention weights**
 $0 < a_{t,i} < 1$ $\sum_i a_{t,i} = 1$

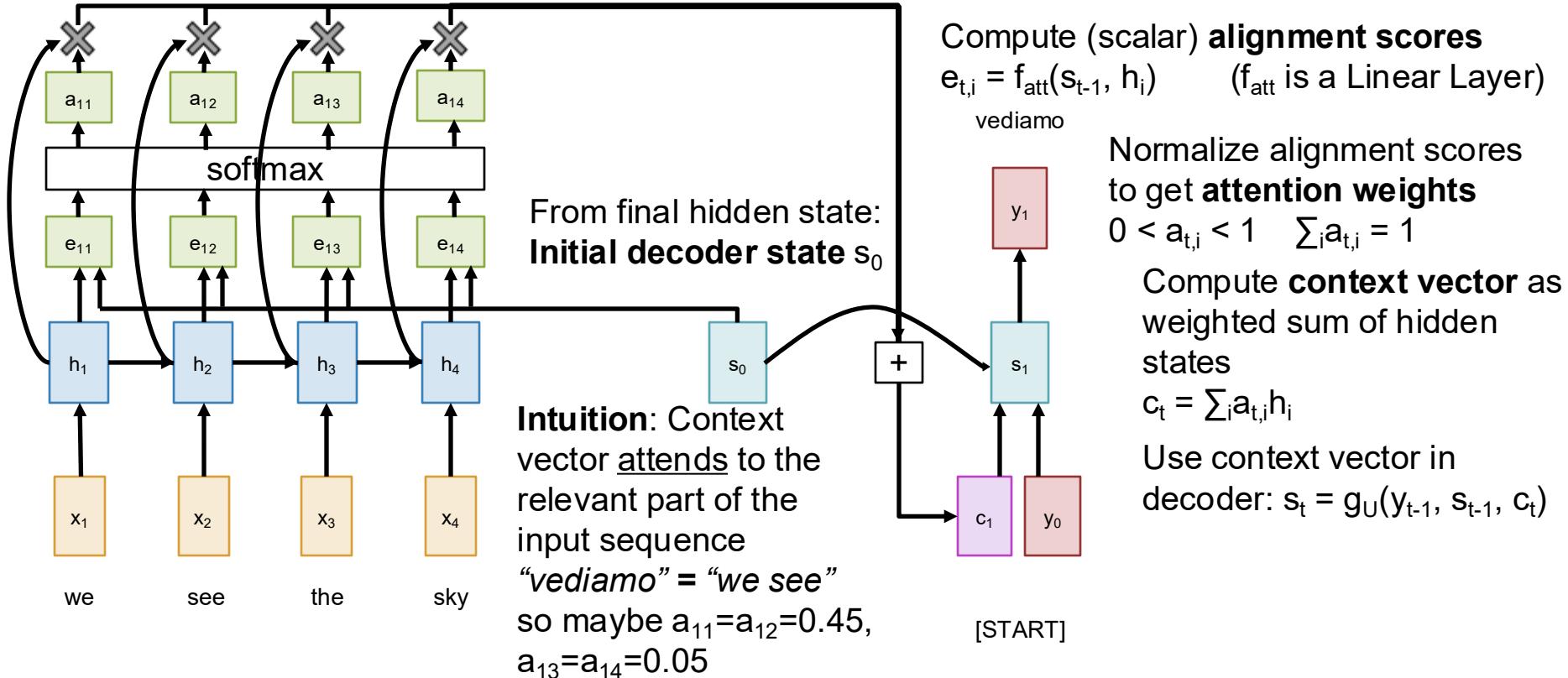
Compute **context vector** as
weighted sum of hidden
states

$$c_t = \sum_i a_{t,i} h_i$$

Use context vector in
decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c_t)$

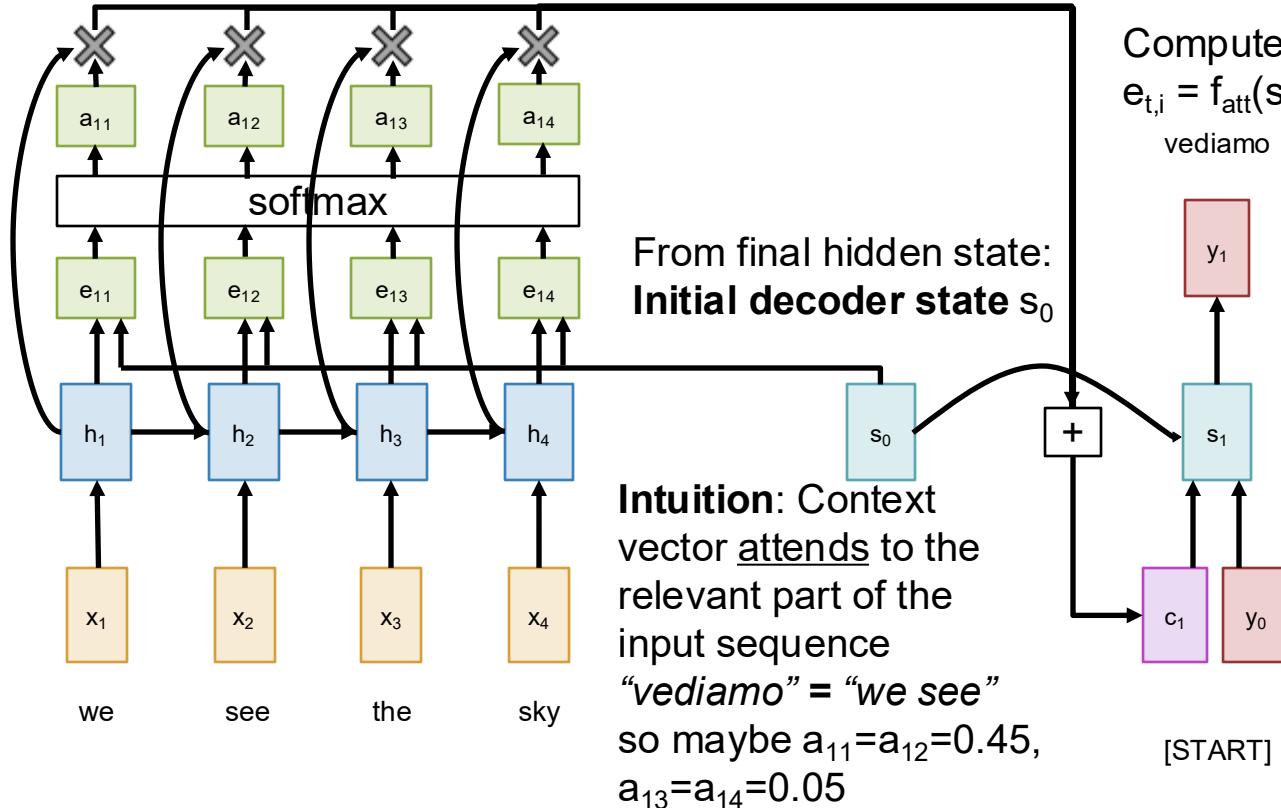
g_U is an RNN unit
(e.g. LSTM, GRU)

Sequence to Sequence with RNNs and **Attention**



Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence to Sequence with RNNs and **Attention**



Compute (scalar) **alignment scores**
 $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is a Linear Layer)
vediamo

Normalize alignment scores
to get **attention weights**
 $0 < a_{t,i} < 1 \quad \sum_i a_{t,i} = 1$

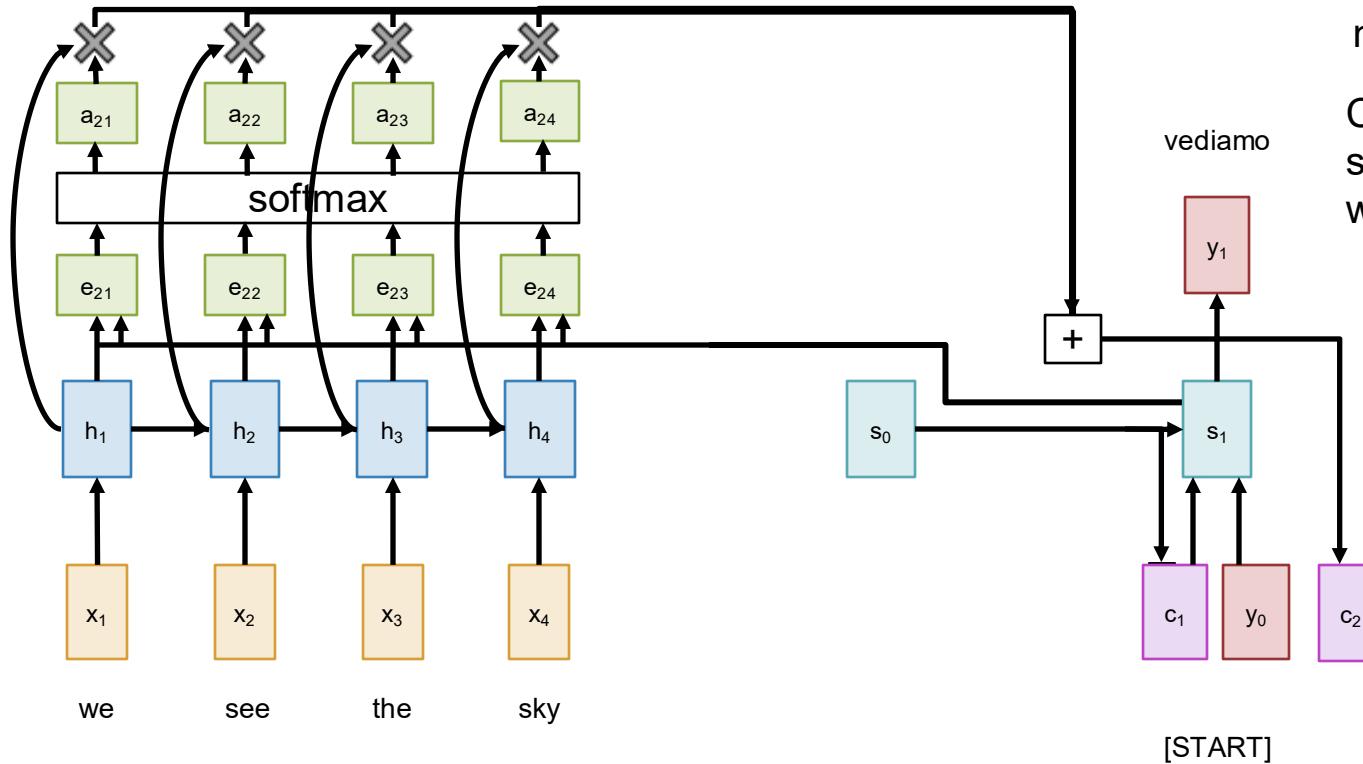
Compute **context vector** as
weighted sum of hidden
states

$$c_t = \sum_i a_{t,i} h_i$$

Use context vector in
decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c_t)$

**All differentiable! No
supervision on attention
weights. Backprop
through everything**

Sequence to Sequence with RNNs and Attention

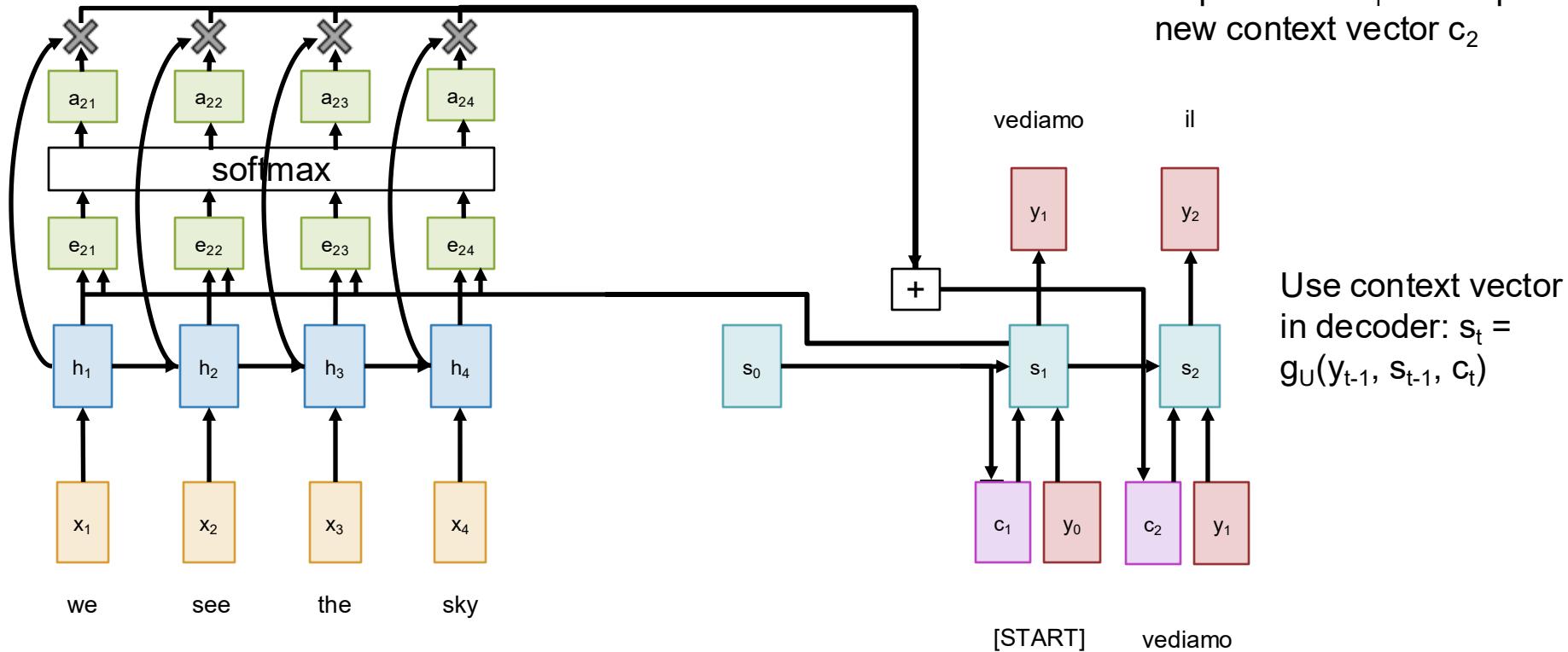


Repeat: Use s_1 to compute new context vector c_2

Compute new alignment scores $e_{2,i}$ and attention weights $a_{2,i}$

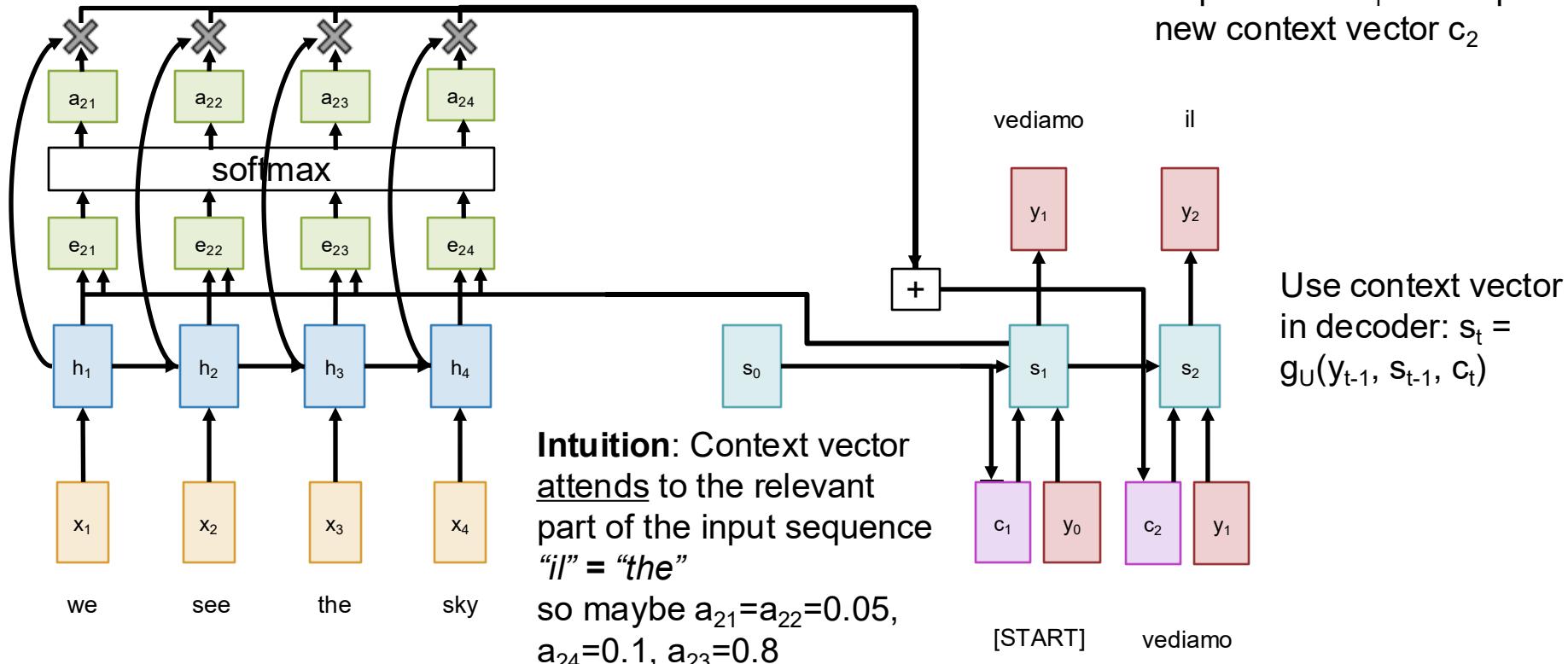
[START]

Sequence to Sequence with RNNs and **Attention**



Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Sequence to Sequence with RNNs and **Attention**

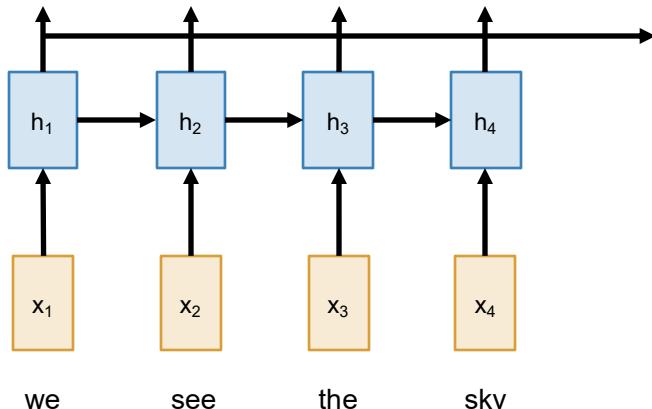
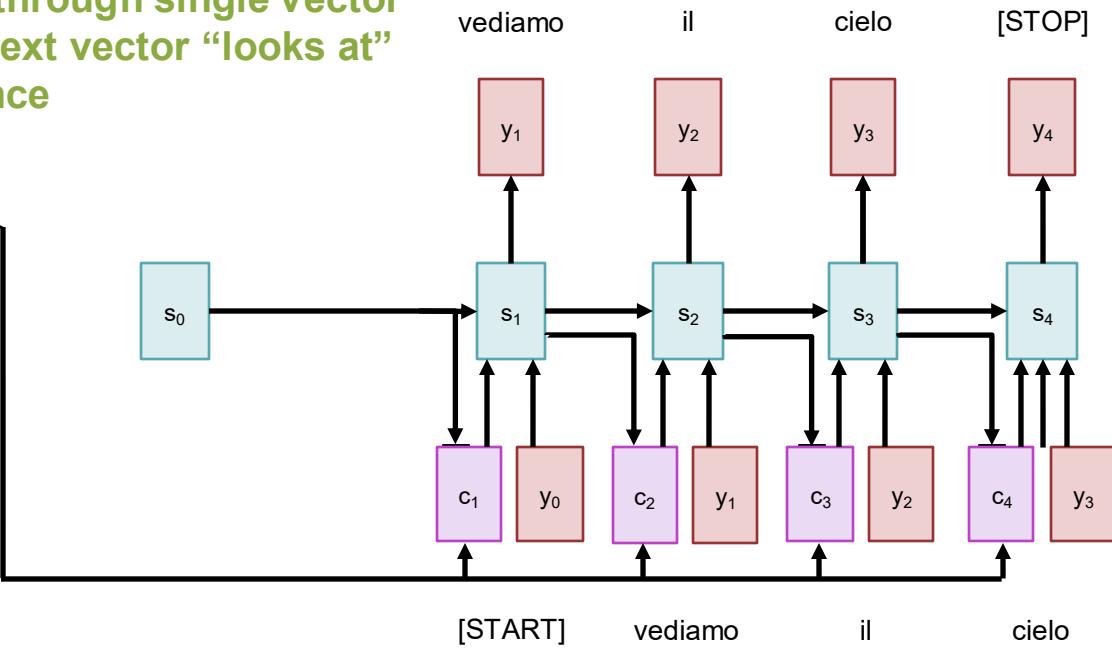


Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Sequence to Sequence with RNNs and Attention

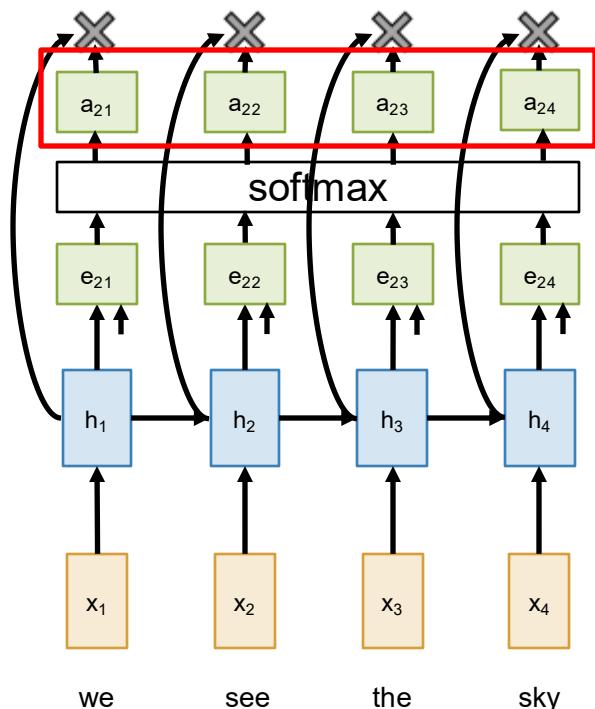
Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector
- At each timestep of decoder, context vector “looks at” different parts of the input sequence



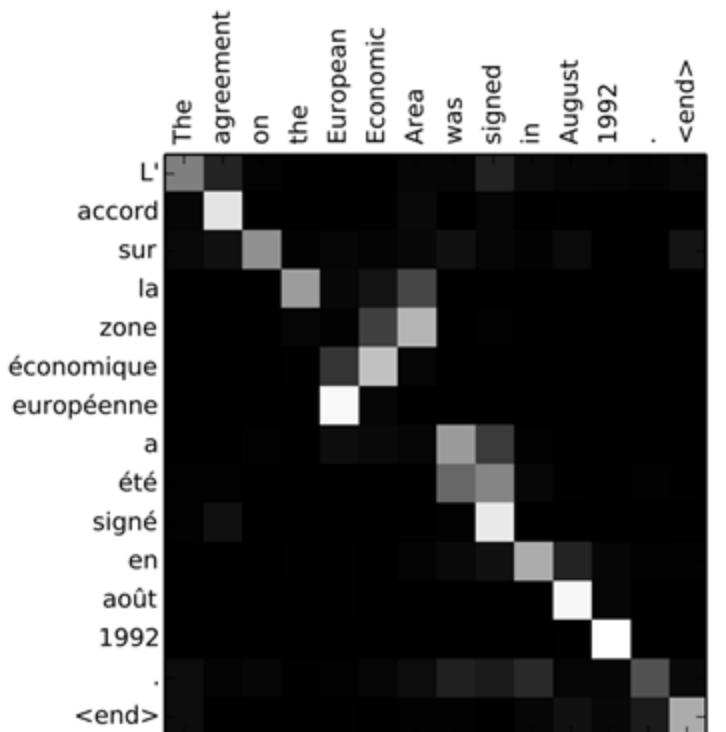
Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence to Sequence with RNNs and **Attention**



Example: English to French translation

Visualize attention weights $a_{t,i}$



Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

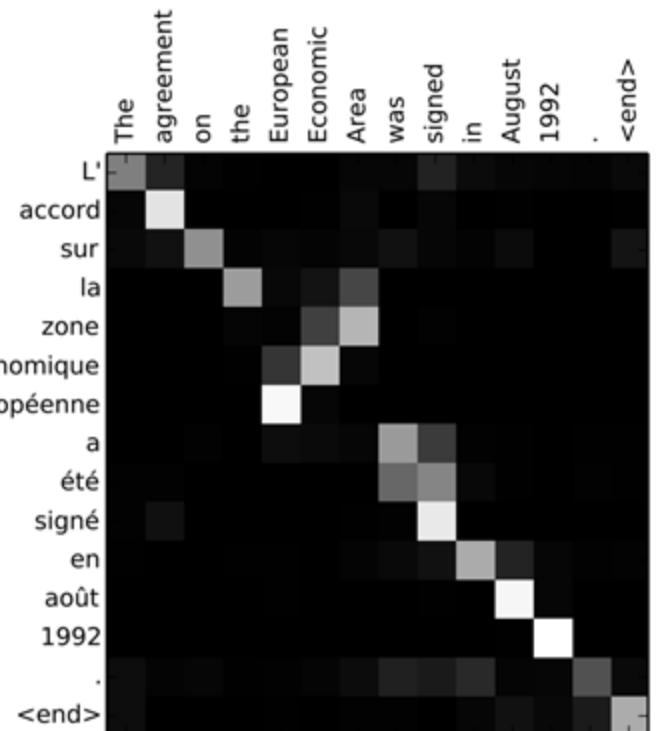
Sequence to Sequence with RNNs and **Attention**

Example: English to French translation

Input: “The agreement on the European Economic Area was signed in August 1992.”

Output: “L'accord sur la zone économique européenne a été signé en août 1992.”

Visualize attention weights $a_{t,i}$



Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence to Sequence with RNNs and **Attention**

Input: “**The agreement on the European Economic Area was signed in August 1992.**”

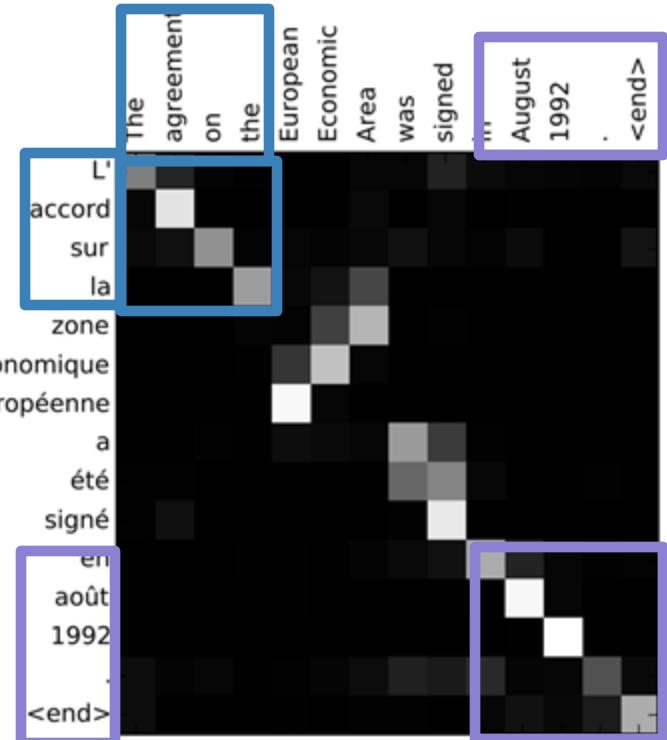
Output: “**L'accord sur la zone économique européenne a été signé en août 1992.**”

Example: English to French translation

Diagonal attention means words correspond in order

Diagonal attention means words correspond in order

Visualize attention weights $a_{t,i}$



Sequence to Sequence with RNNs and **Attention**

Input: “The agreement on the European Economic Area was signed in **August 1992**.”

Output: “L'accord sur la **zone économique européenne** a été signé **en août 1992**.”

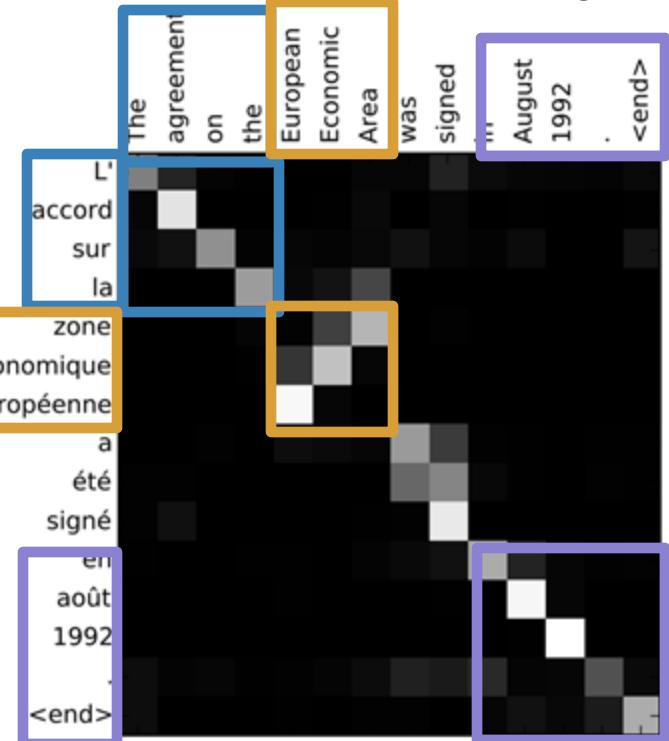
Example: English to French translation

Diagonal attention means words correspond in order

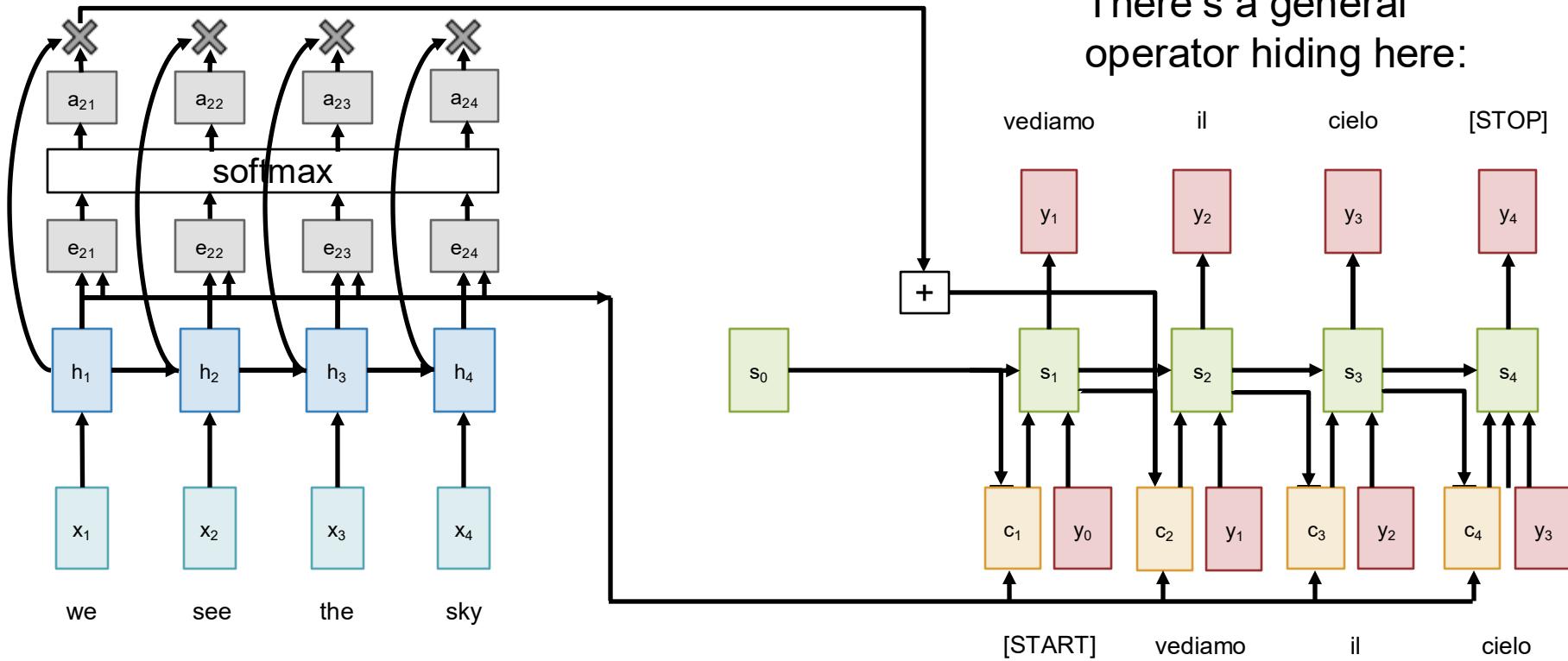
Attention figures out other word orders

Diagonal attention means words correspond in order

Visualize attention weights $a_{t,i}$



Sequence to Sequence with RNNs and **Attention**



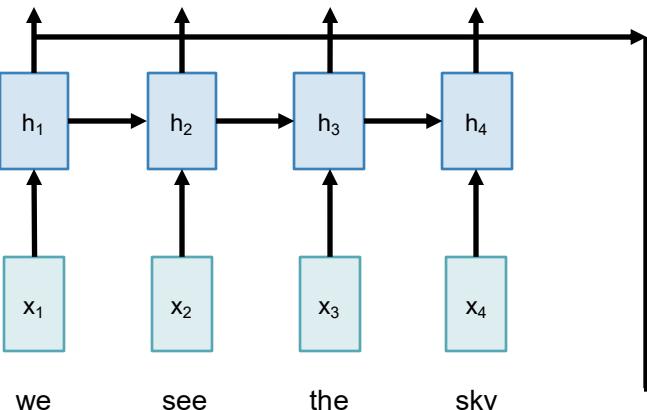
Sequence to Sequence with RNNs and **Attention**

Query vectors (decoder RNN states) and data vectors (encoder RNN states)

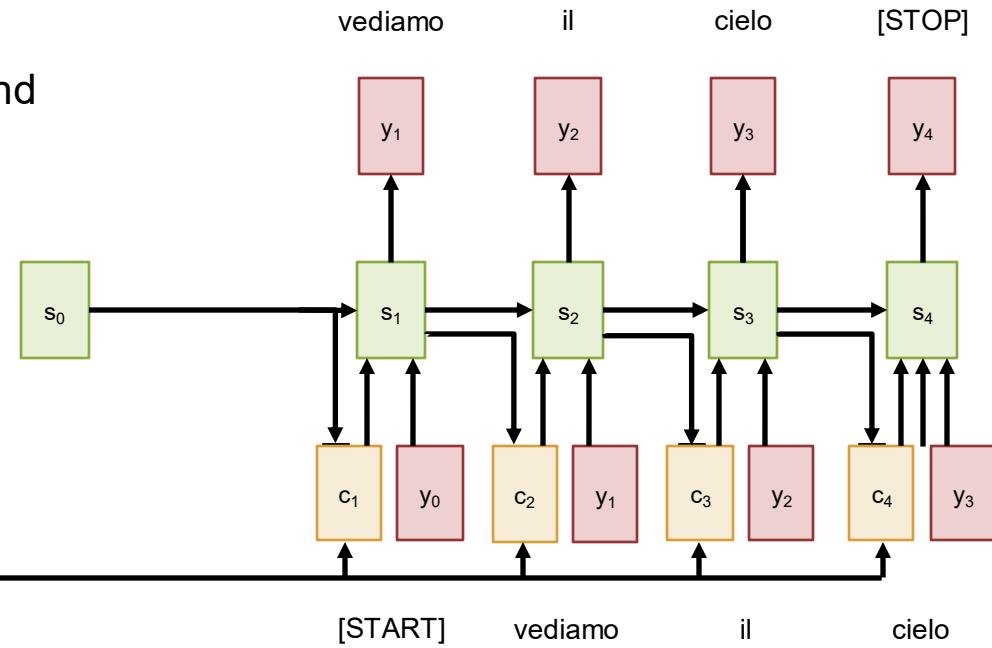
get transformed to

output vectors (Context states).

Each **query** attends to all **data** vectors and gives one **output** vector



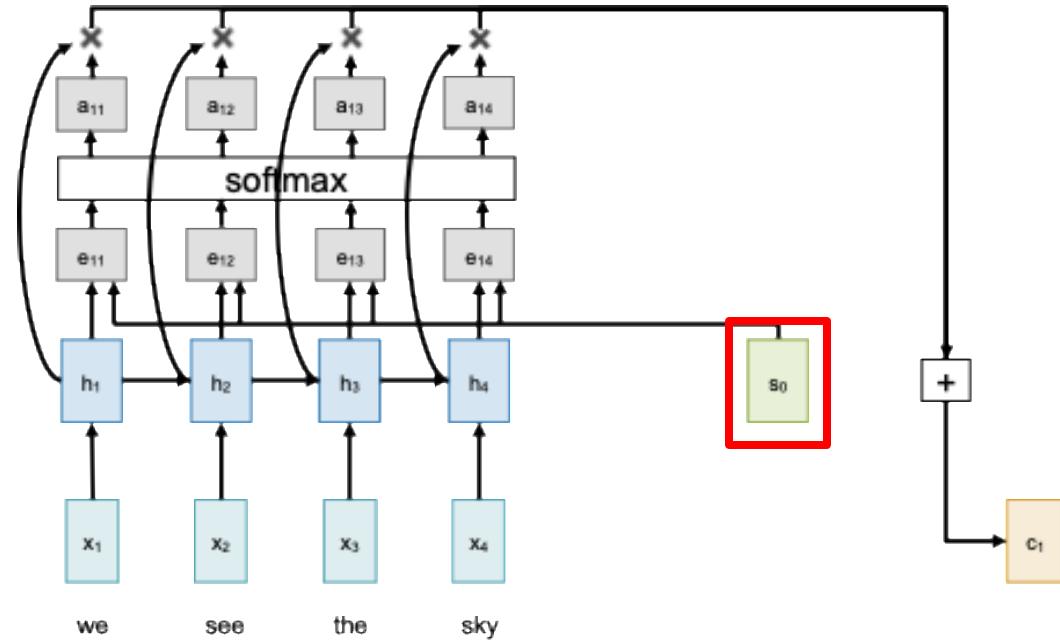
There's a general operator hiding here:



Attention Layer

Inputs:

Query vector: q [D_Q]

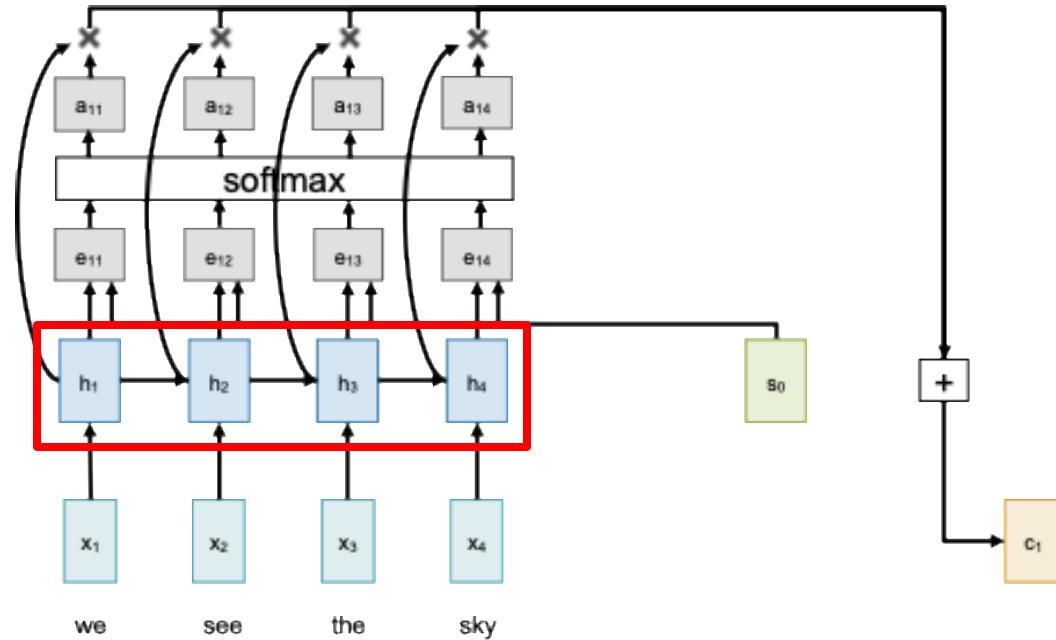


Attention Layer

Inputs:

Query vector: q [D_Q]

Data vectors: X [$N_X \times D_X$]

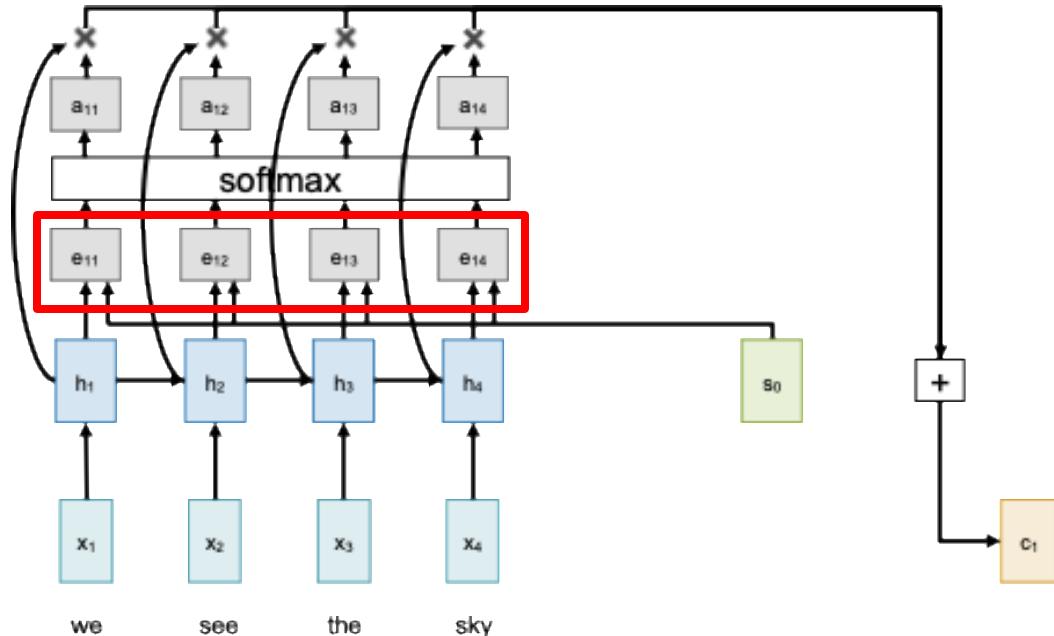


Attention Layer

Inputs:

Query vector: q [D_Q]

Data vectors: X [$N_X \times D_X$]



Computation:

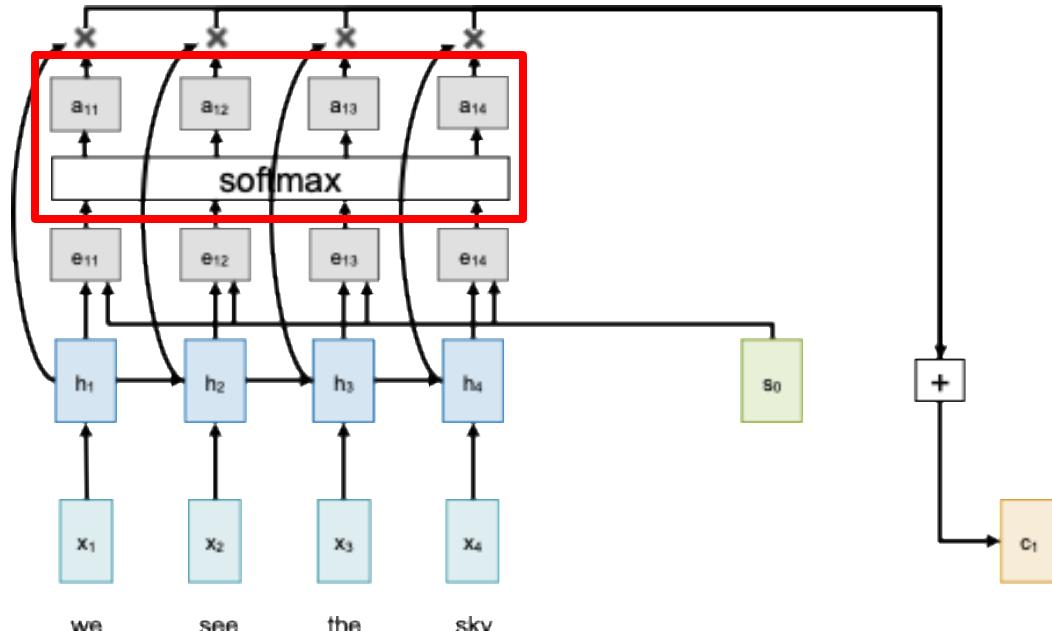
Similarities: e [N_X] $e_i = f_{att}(q, X_i)$

Attention Layer

Inputs:

Query vector: q [D_Q]

Data vectors: X [$N_X \times D_X$]



Computation:

Similarities: e [N_X] $e_i = f_{att}(q, X_i)$

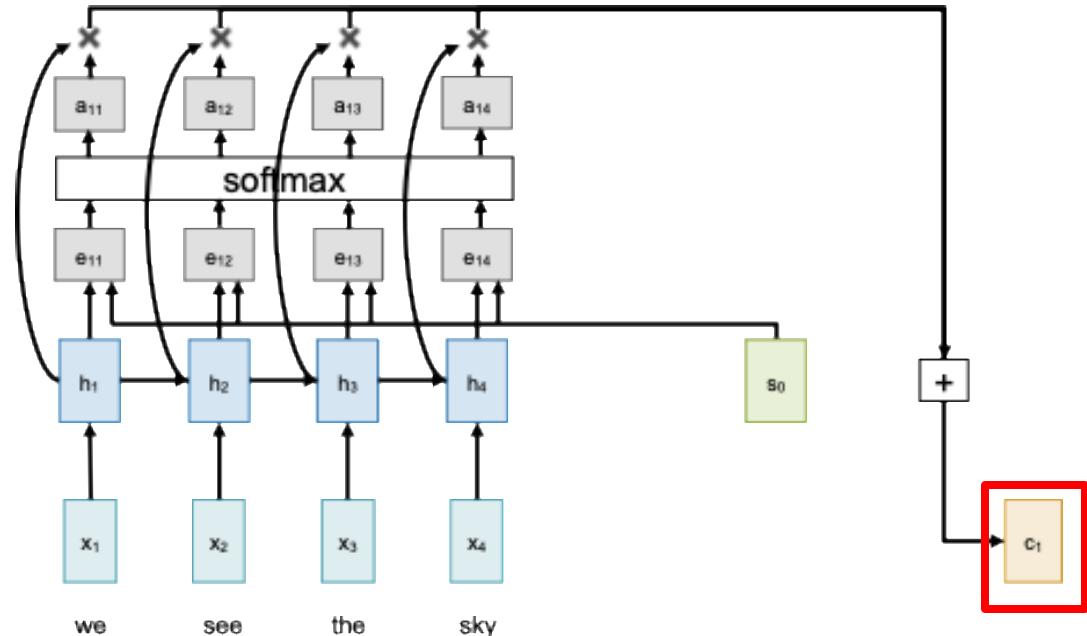
Attention weights: a = $\text{softmax}(e)$ [N_X]

Attention Layer

Inputs:

Query vector: q [D_Q]

Data vectors: X [$N_X \times D_X$]



Computation:

Similarities: e [N_X] $e_i = f_{att}(q, X_i)$

Attention weights: a = $\text{softmax}(e)$ [N_X]

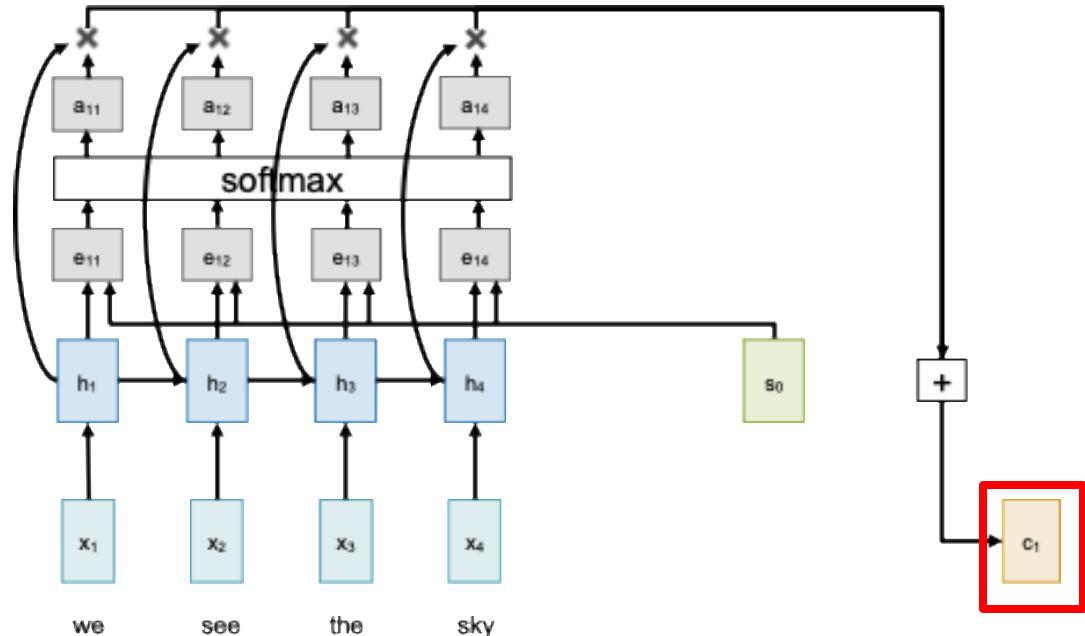
Output vector: y = $\sum_i a_i X_i$ [D_X]

Attention Layer

Inputs:

Query vector: q [D_Q]

Data vectors: X [$N_X \times D_X$]



Computation:

Similarities: e [N_X] $e_i = f_{att}(q, X_i)$

Attention weights: $a = \text{softmax}(e)$ [N_X]

Output vector: $y = \sum_i a_i X_i$ [D_X]

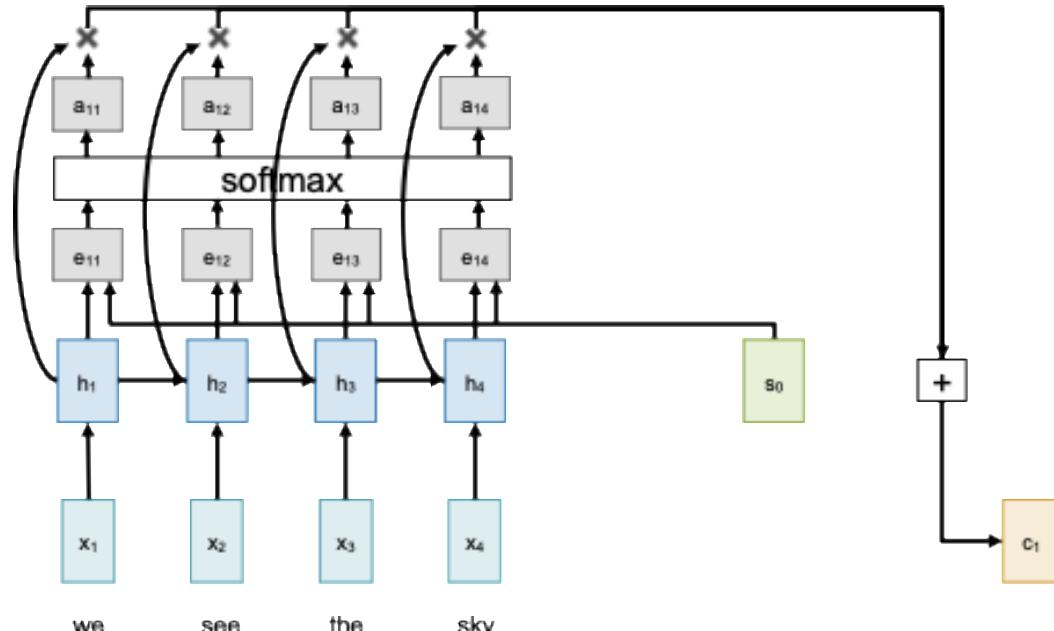
Let's generalize this!

Attention Layer

Inputs:

Query vector: q [D_x]

Data vectors: X [$N_x \times D_x$]



Computation:

Similarities: e [N_x] $e_i = q \cdot X_i$

Attention weights: $a = \text{softmax}(e)$ [N_x]

Output vector: $y = \sum_i a_i X_i$ [D_x]

Changes

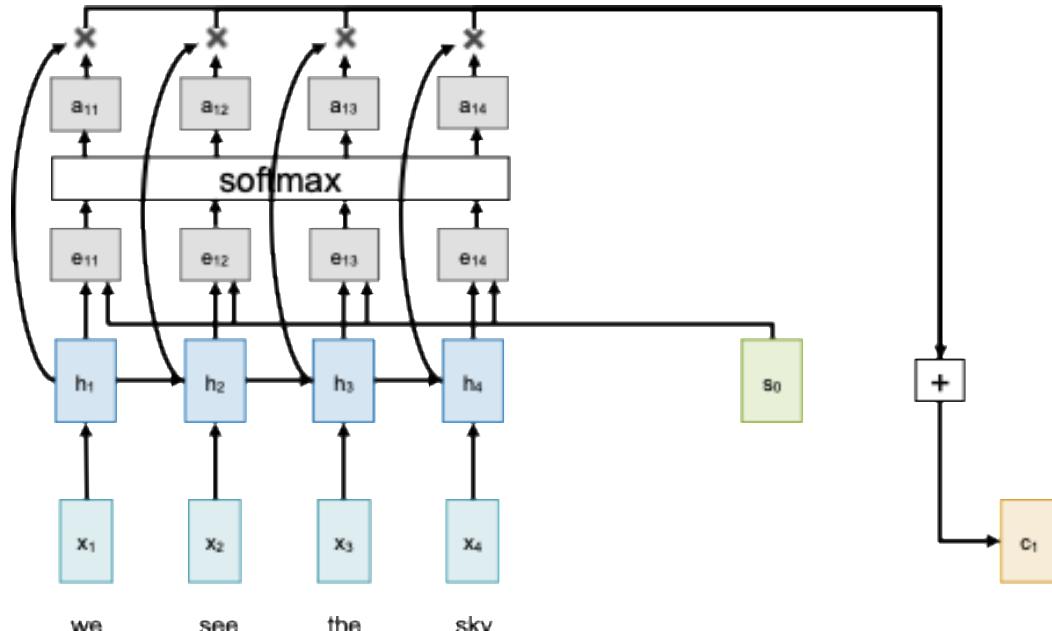
- Use dot product for similarity

Attention Layer

Inputs:

Query vector: q [D_x]

Data vectors: X [$N_x \times D_x$]



Computation:

Similarities: e_i [N_x] $e_i = q \cdot X_i / \sqrt{D_x}$

Attention weights: $a = \text{softmax}(e)$ [N_x]

Output vector: $y = \sum_i a_i X_i$ [D_x]

Changes

- Use **scaled** dot product for similarity

Attention Layer

Inputs:

Query vector: q [D_x]

Data vectors: X [$N_x \times D_x$]

Large similarities will cause softmax to saturate and give vanishing gradients

Recall $a \cdot b = |a||b| \cos(\text{angle})$

Suppose that a and b are constant vectors of dimension D

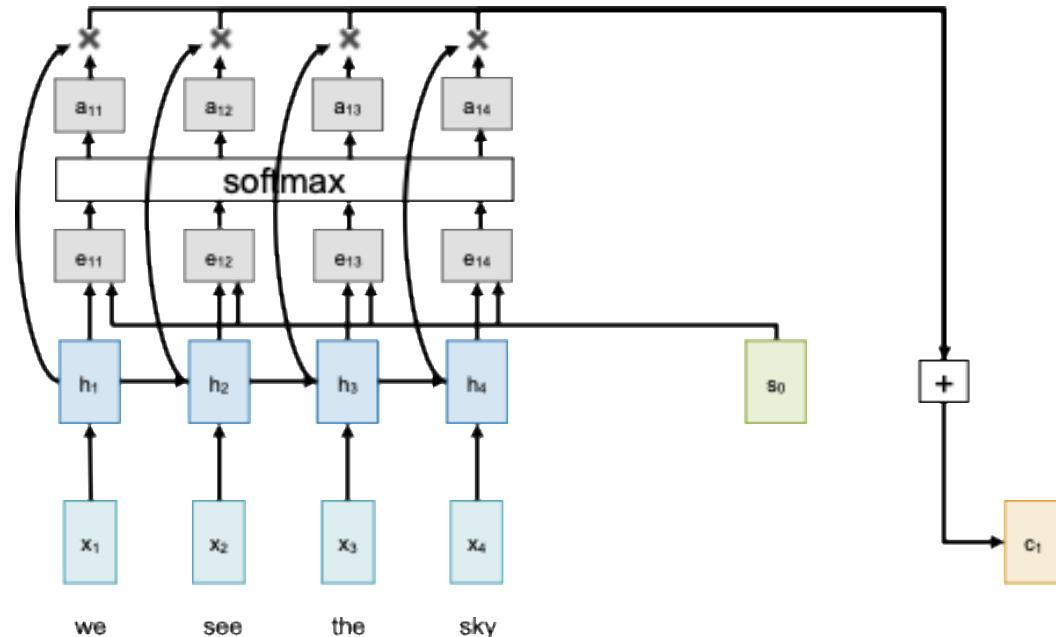
Then $|a| = (\sum_i a_i^2)^{1/2} = a \sqrt{D}$

Computation:

Similarities: e [N_x] $e_i = q \cdot X_i / \sqrt{D_x}$

Attention weights: $a = \text{softmax}(e)$ [N_x]

Output vector: $y = \sum_i a_i X_i$ [D_x]



Changes

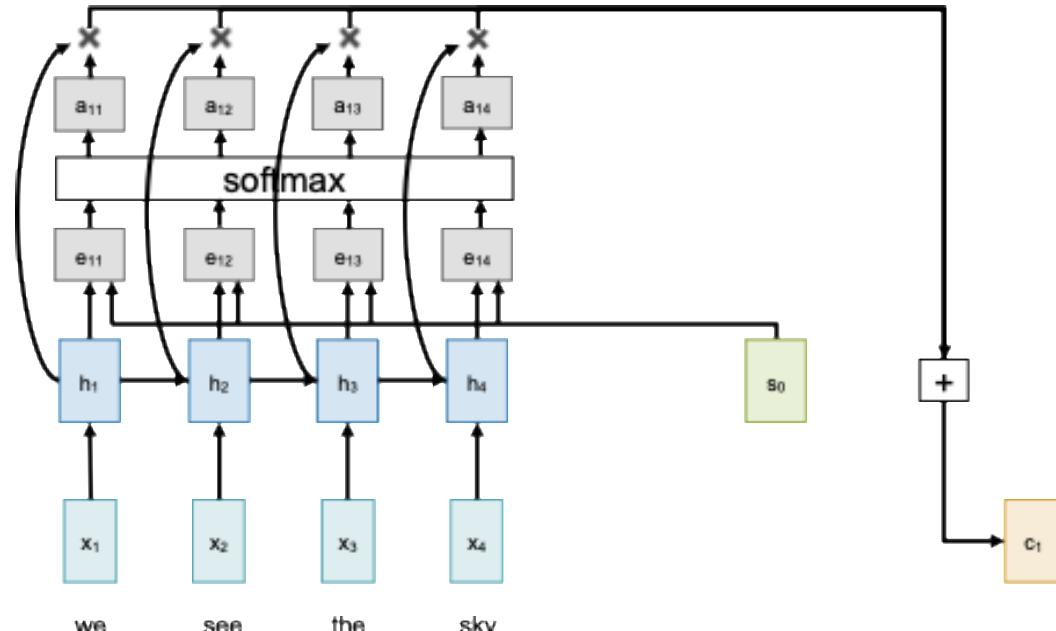
- Use **scaled** dot product for similarity

Attention Layer

Inputs:

Query vector: $Q [N_Q \times D_X]$

Data vectors: $X [N_X \times D_X]$



Computation:

Similarities: $E = QX^T / \sqrt{D_X} [N_Q \times N_X]$

$$E_{ij} = Q_i \cdot X_j / \sqrt{D_X}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1) [N_Q \times N_X]$

Output vector: $Y = AX [N_Q \times D_X]$

$$Y_i = \sum_j A_{ij} X_j$$

Changes

- Use scaled dot product for similarity
- Multiple **query** vectors

Attention Layer

Inputs:

Query vector: Q [$N_Q \times D_Q$]

Data vectors: X [$N_X \times D_X$]

Key matrix: W_K [$D_X \times D_Q$]

Value matrix: W_V [$D_X \times D_V$]

Computation:

Keys: $K = XW_K$ [$N_X \times D_Q$]

Values: $V = XW_V$ [$N_X \times D_V$]

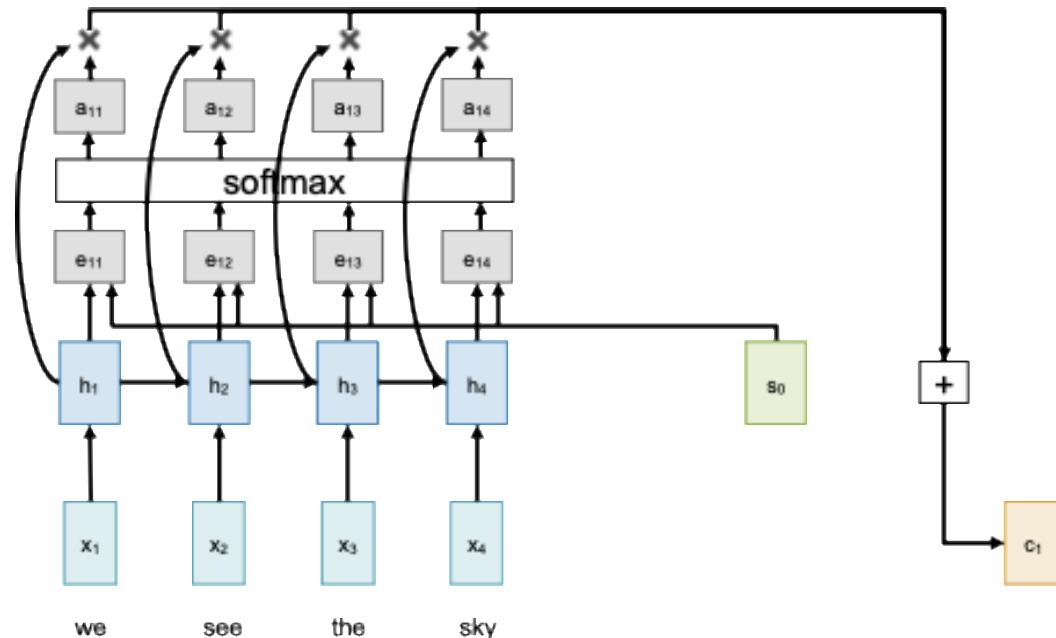
Similarities: $E = QK^T / \sqrt{D_Q}$ [$N_Q \times N_X$]

$$E_{ij} = Q_i \cdot K_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ [$N_Q \times N_X$]

Output vector: $Y = AV$ [$N_Q \times D_V$]

$$Y_i = \sum_j A_{ij} V_j$$



Changes

- Use scaled dot product for similarity
- Multiple **query** vectors
- Separate **key** and **value**

Attention Layer

Inputs:

Query vector: Q $[N_Q \times D_Q]$

Data vectors: X $[N_X \times D_X]$

Key matrix: W_K $[D_X \times D_Q]$

Value matrix: W_V $[D_X \times D_V]$

Computation:

Keys: $K = XW_K$ $[N_X \times D_Q]$

Values: $V = XW_V$ $[N_X \times D_V]$

Similarities: $E = QK^T / \sqrt{D_Q}$ $[N_Q \times N_X]$

$$E_{ij} = Q_i \cdot K_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ $[N_Q \times N_X]$

Output vector: $Y = AV$ $[N_Q \times D_V]$

$$Y_i = \sum_j A_{ij} V_j$$

X_1

X_2

X_3

Q_1 Q_2 Q_3 Q_4

Attention Layer

Inputs:

Query vector: Q $[N_Q \times D_Q]$

Data vectors: X $[N_X \times D_X]$

Key matrix: W_K $[D_X \times D_Q]$

Value matrix: W_V $[D_X \times D_V]$

Computation:

Keys: $K = XW_K$ $[N_X \times D_Q]$

Values: $V = XW_V$ $[N_X \times D_V]$

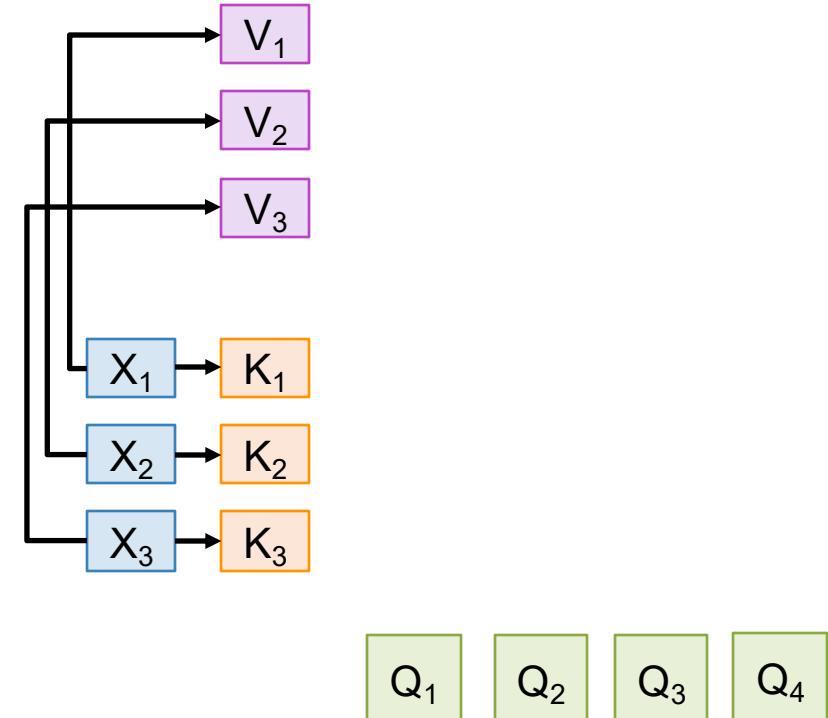
Similarities: $E = QK^T / \sqrt{D_Q}$ $[N_Q \times N_X]$

$$E_{ij} = Q_i \cdot K_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ $[N_Q \times N_X]$

Output vector: $Y = AV$ $[N_Q \times D_V]$

$$Y_i = \sum_j A_{ij} V_j$$



Attention Layer

Inputs:

Query vector: Q $[N_Q \times D_Q]$

Data vectors: X $[N_X \times D_X]$

Key matrix: W_K $[D_X \times D_Q]$

Value matrix: W_V $[D_X \times D_V]$

Computation:

Keys: $K = XW_K$ $[N_X \times D_Q]$

Values: $V = XW_V$ $[N_X \times D_V]$

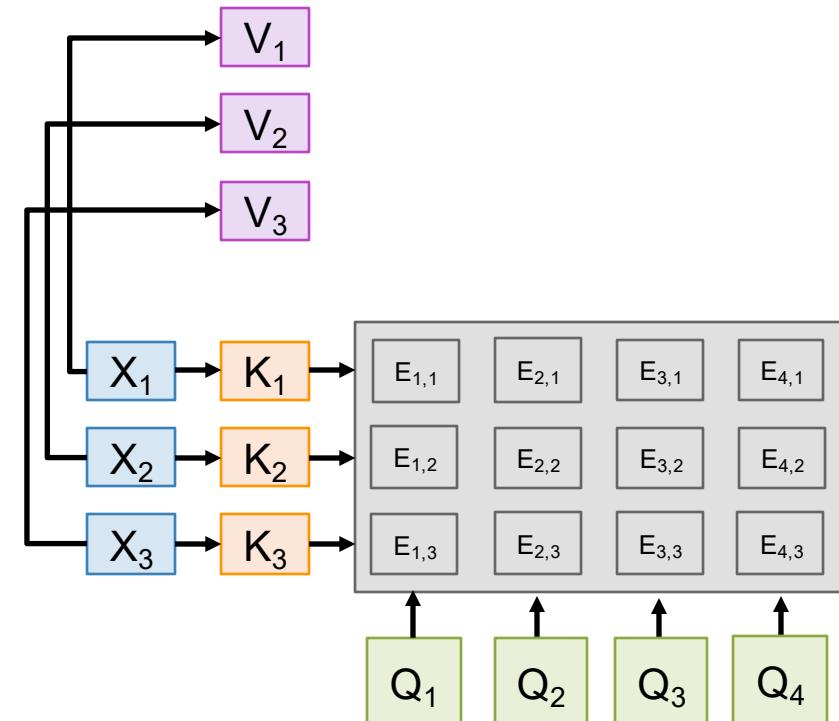
Similarities: $E = QK^T / \sqrt{D_Q}$ $[N_Q \times N_X]$

$$E_{ij} = Q_i \cdot K_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ $[N_Q \times N_X]$

Output vector: $Y = AV$ $[N_Q \times D_V]$

$$Y_i = \sum_j A_{ij} V_j$$



Attention Layer

Inputs:

Query vector: Q $[N_Q \times D_Q]$

Data vectors: X $[N_X \times D_X]$

Key matrix: W_K $[D_X \times D_Q]$

Value matrix: W_V $[D_X \times D_V]$

Computation:

Keys: $K = XW_K$ $[N_X \times D_Q]$

Values: $V = XW_V$ $[N_X \times D_V]$

Similarities: $E = QK^T / \sqrt{D_Q}$ $[N_Q \times N_X]$

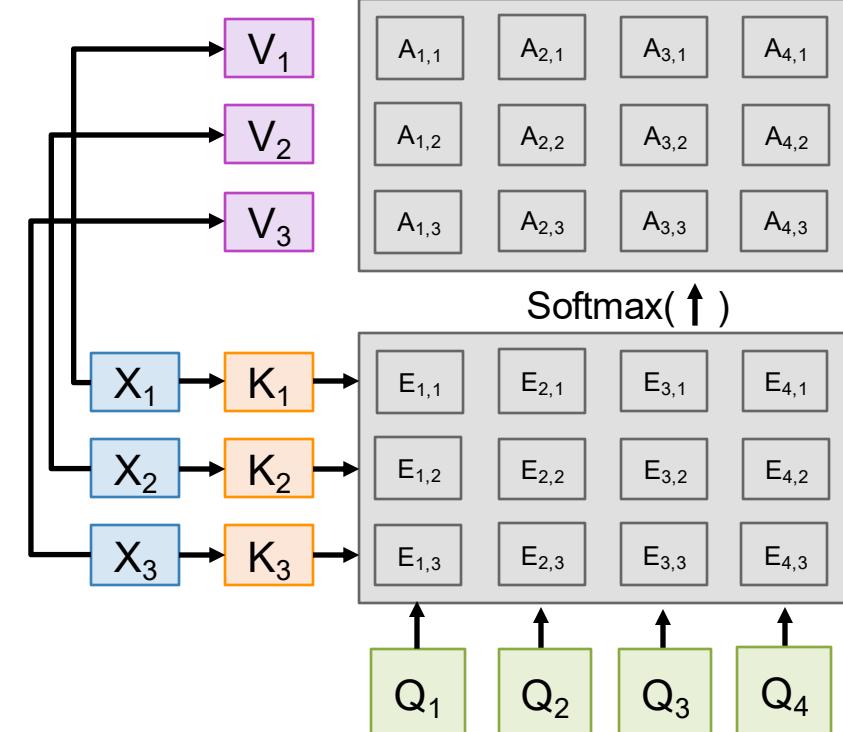
$$E_{ij} = Q_i \cdot K_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ $[N_Q \times N_X]$

Output vector: $Y = AV$ $[N_Q \times D_V]$

$$Y_i = \sum_j A_{ij} V_j$$

Softmax normalizes each column: each **query** predicts a distribution over the **keys**



Attention Layer

Inputs:

Query vector: Q [$N_Q \times D_Q$]

Data vectors: X [$N_X \times D_X$]

Key matrix: W_K [$D_X \times D_Q$]

Value matrix: W_V [$D_X \times D_V$]

Computation:

Keys: $K = XW_K$ [$N_X \times D_Q$]

Values: $V = XW_V$ [$N_X \times D_V$]

Similarities: $E = QK^T / \sqrt{D_Q}$ [$N_Q \times N_X$]

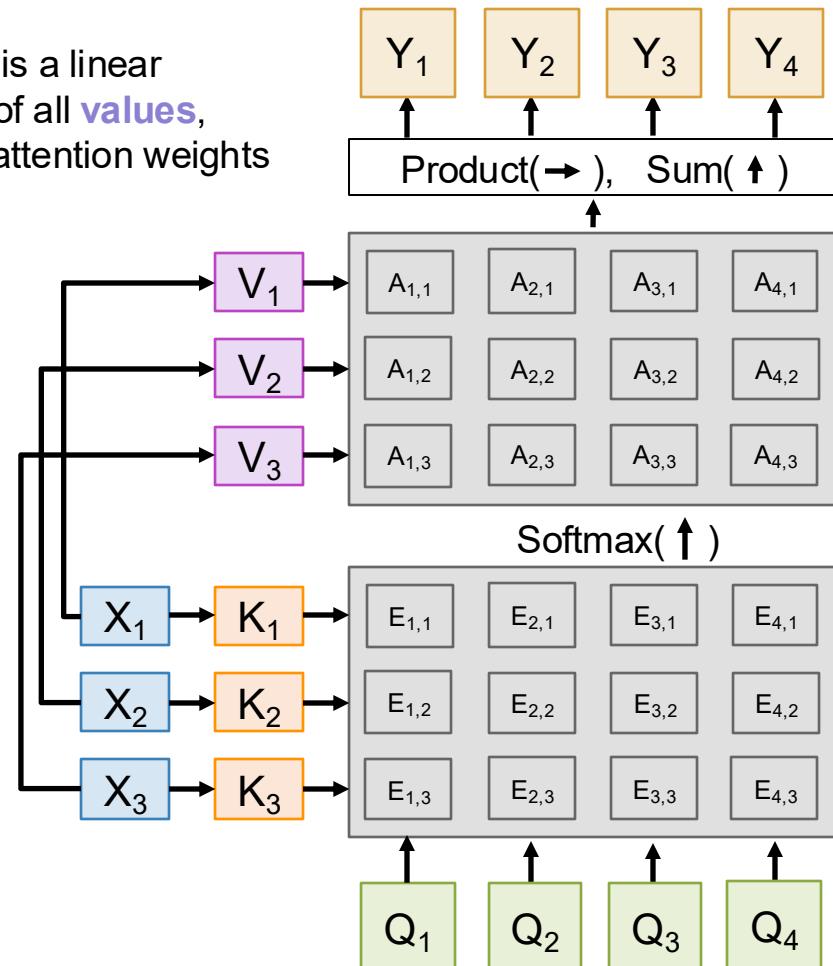
$$E_{ij} = Q_i \cdot K_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ [$N_Q \times N_X$]

Output vector: $Y = AV$ [$N_Q \times D_V$]

$$Y_i = \sum_j A_{ij} V_j$$

Each **output** is a linear combination of all **values**, weighted by attention weights



Cross-Attention Layer

Inputs:

Query vector: Q $[N_Q \times D_Q]$

Data vectors: X $[N_X \times D_X]$

Key matrix: W_K $[D_X \times D_Q]$

Value matrix: W_V $[D_X \times D_V]$

Each **query** produces one **output**, which is a mix of information in the **data** vectors

Computation:

Keys: $K = XW_K$ $[N_X \times D_Q]$

Values: $V = XW_V$ $[N_X \times D_V]$

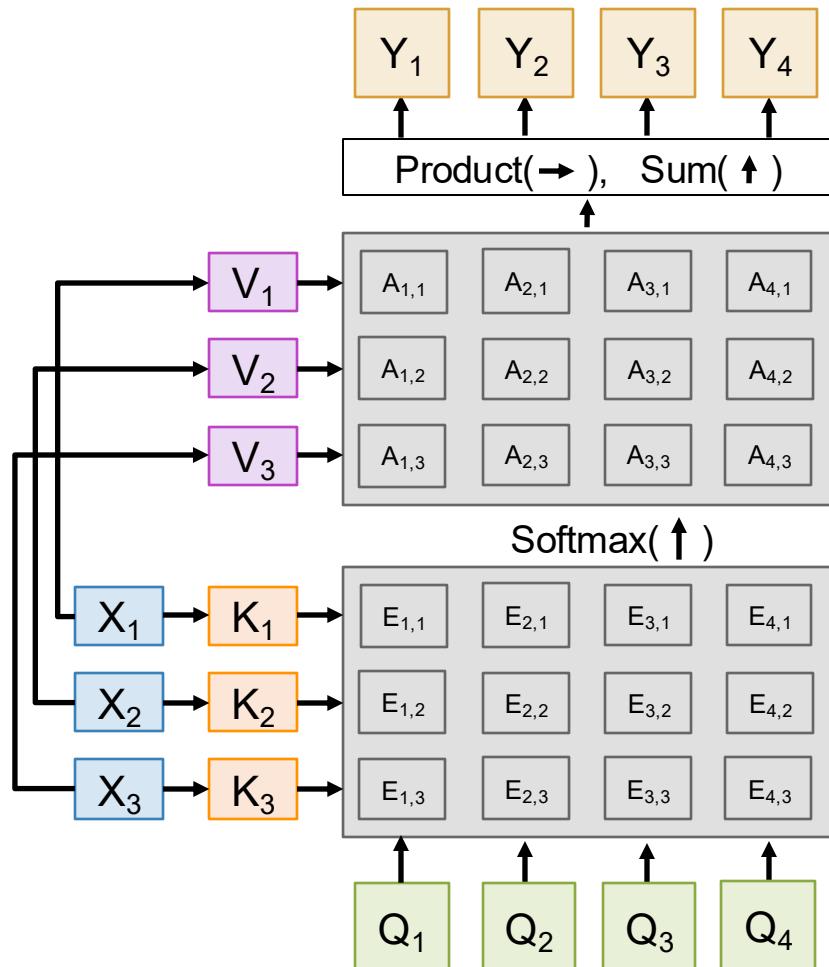
Similarities: $E = QK^T / \sqrt{D_Q}$ $[N_Q \times N_X]$

$$E_{ij} = Q_i \cdot K_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ $[N_Q \times N_X]$

Output vector: $Y = AV$ $[N_Q \times D_V]$

$$Y_i = \sum_j A_{ij} V_j$$



Self-Attention Layer

Inputs:

Input vectors: \mathbf{X} [N x D_{in}]

Key matrix: \mathbf{W}_K [D_{in} x D_{out}]

Value matrix: \mathbf{W}_V [D_{in} x D_{out}]

Query matrix: \mathbf{W}_Q [D_{in} x D_{out}]

Each **input** produces one **output**, which is a mix of information from all **inputs**

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [N x D_{out}]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [N x D_{out}]

Values: $\mathbf{V} = \mathbf{XW}_V$ [N x D_{out}]

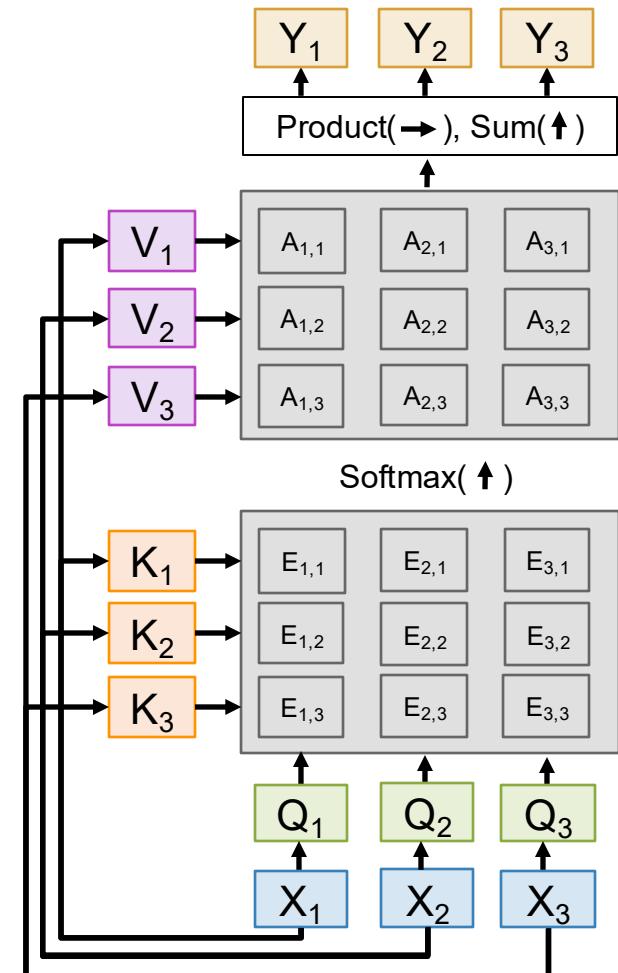
Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [N x N]

$$E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_j / \sqrt{D_Q}$$

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=1)$ [N x N]

Output vector: $\mathbf{Y} = \mathbf{AV}$ [N x D_{out}]

$$\mathbf{Y}_i = \sum_j \mathbf{A}_{ij} \mathbf{V}_j$$



Self-Attention Layer

Inputs:

Input vectors: \mathbf{X} [N x D_{in}]

Each **input** produces one **output**, which is a mix of information from all **inputs**

Key matrix: \mathbf{W}_K [D_{in} x D_{out}]

Value matrix: \mathbf{W}_V [D_{in} x D_{out}]

Query matrix: \mathbf{W}_Q [D_{in} x D_{out}]

Computation:

Queries: $\mathbf{Q} = \mathbf{X}\mathbf{W}_Q$ [N x D_{out}]

Keys: $\mathbf{K} = \mathbf{X}\mathbf{W}_K$ [N x D_{out}]

Values: $\mathbf{V} = \mathbf{X}\mathbf{W}_V$ [N x D_{out}]

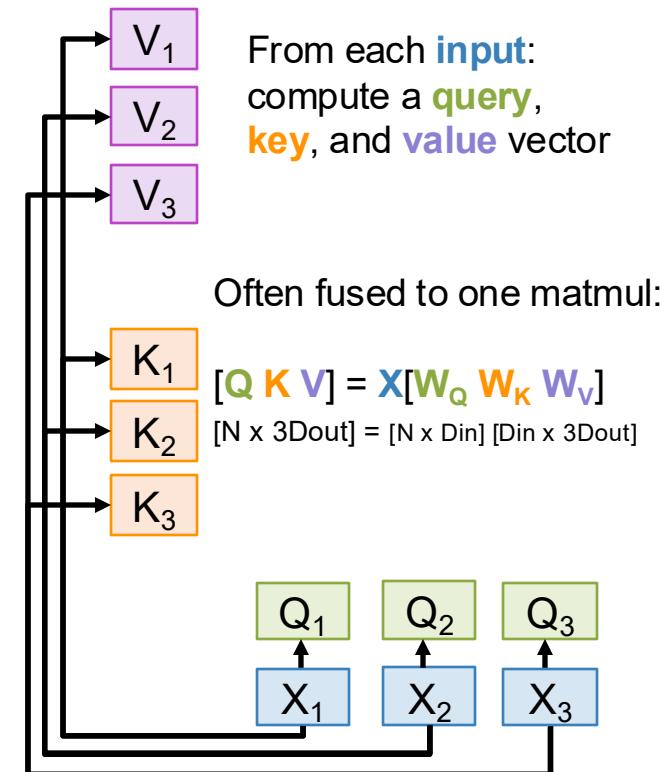
Similarities: $E = \mathbf{Q}\mathbf{K}^T / \sqrt{D_Q}$ [N x N]

$$E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_j / \sqrt{D_Q}$$

Attention weights: $\mathbf{A} = \text{softmax}(E, \text{dim}=1)$ [N x N]

Output vector: $\mathbf{Y} = \mathbf{AV}$ [N x D_{out}]

$$\mathbf{Y}_i = \sum_j \mathbf{A}_{ij} \mathbf{V}_j$$



Self-Attention Layer

Inputs:

Input vectors: \mathbf{X} [N x D_{in}]

Each **input** produces one **output**, which is a mix of information from all **inputs**

Key matrix: \mathbf{W}_K [D_{in} x D_{out}]

Value matrix: \mathbf{W}_V [D_{in} x D_{out}]

Query matrix: \mathbf{W}_Q [D_{in} x D_{out}]

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [N x D_{out}]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [N x D_{out}]

Values: $\mathbf{V} = \mathbf{XW}_V$ [N x D_{out}]

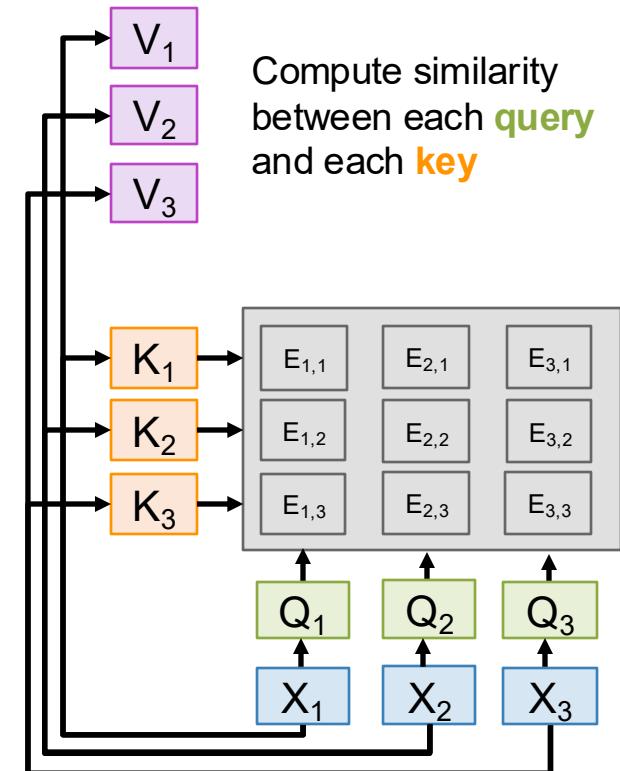
Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [N x N]

$$E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_j / \sqrt{D_Q}$$

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=1)$ [N x N]

Output vector: $\mathbf{Y} = \mathbf{AV}$ [N x D_{out}]

$$\mathbf{Y}_i = \sum_j \mathbf{A}_{ij} \mathbf{V}_j$$



Self-Attention Layer

Inputs:

Input vectors: X [N x D_{in}]

Key matrix: W_K [D_{in} x D_{out}]

Value matrix: W_V [D_{in} x D_{out}]

Query matrix: W_Q [D_{in} x D_{out}]

Each **input** produces one **output**, which is a mix of information from all **inputs**

Computation:

Queries: $Q = XW_Q$ [N x D_{out}]

Keys: $K = XW_K$ [N x D_{out}]

Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q}$ [N x N]

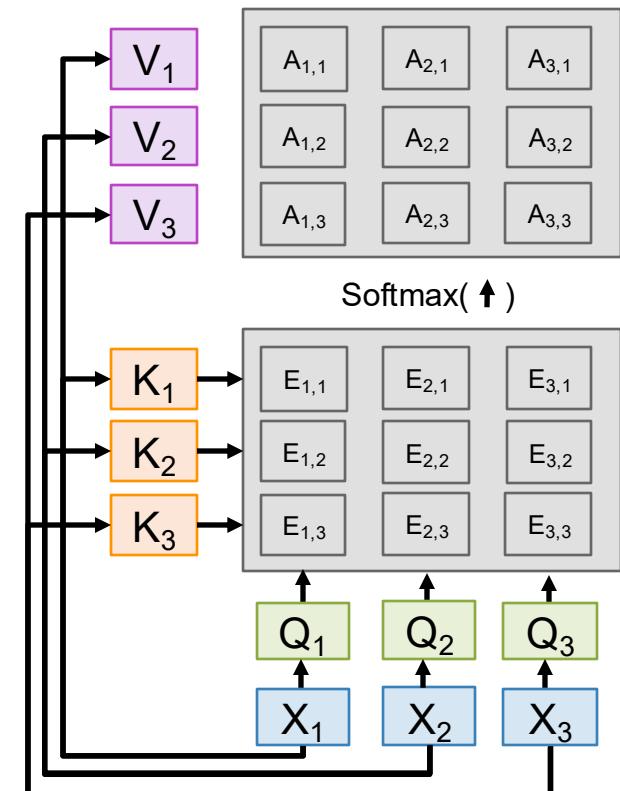
$$E_{ij} = Q_i \cdot K_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ [N x N]

Output vector: $Y = AV$ [N x D_{out}]

$$Y_i = \sum_j A_{ij} V_j$$

Normalize over each column: each **query** computes a distribution over **keys**



Self-Attention Layer

Inputs:

Input vectors: X [N x D_{in}]

Key matrix: W_K [D_{in} x D_{out}]

Value matrix: W_V [D_{in} x D_{out}]

Query matrix: W_Q [D_{in} x D_{out}]

Each **input** produces one **output**, which is a mix of information from all **inputs**

Computation:

Queries: $Q = XW_Q$ [N x D_{out}]

Keys: $K = XW_K$ [N x D_{out}]

Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q}$ [N x N]

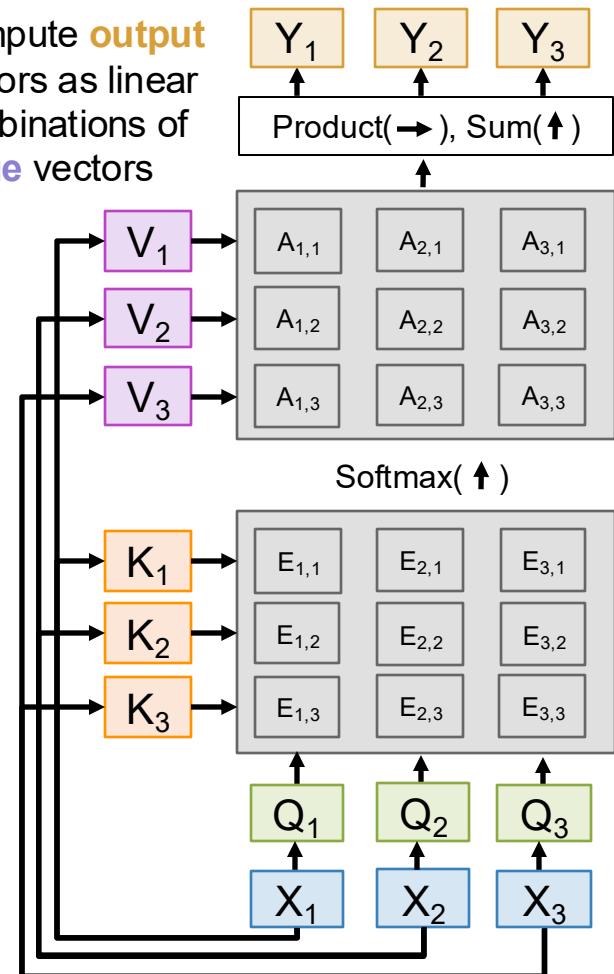
$$E_{ij} = Q_i \cdot K_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ [N x N]

Output vector: $Y = AV$ [N x D_{out}]

$$Y_i = \sum_j A_{ij} V_j$$

Compute **output** vectors as linear combinations of **value** vectors



Self-Attention Layer

Consider permuting **inputs**:

Inputs:

Input vectors: X [N x D_{in}]

Key matrix: W_K [D_{in} x D_{out}]

Value matrix: W_V [D_{in} x D_{out}]

Query matrix: W_Q [D_{in} x D_{out}]

Computation:

Queries: $Q = XW_Q$ [N x D_{out}]

Keys: $K = XW_K$ [N x D_{out}]

Values: $V = XW_V$ [N x D_{out}]

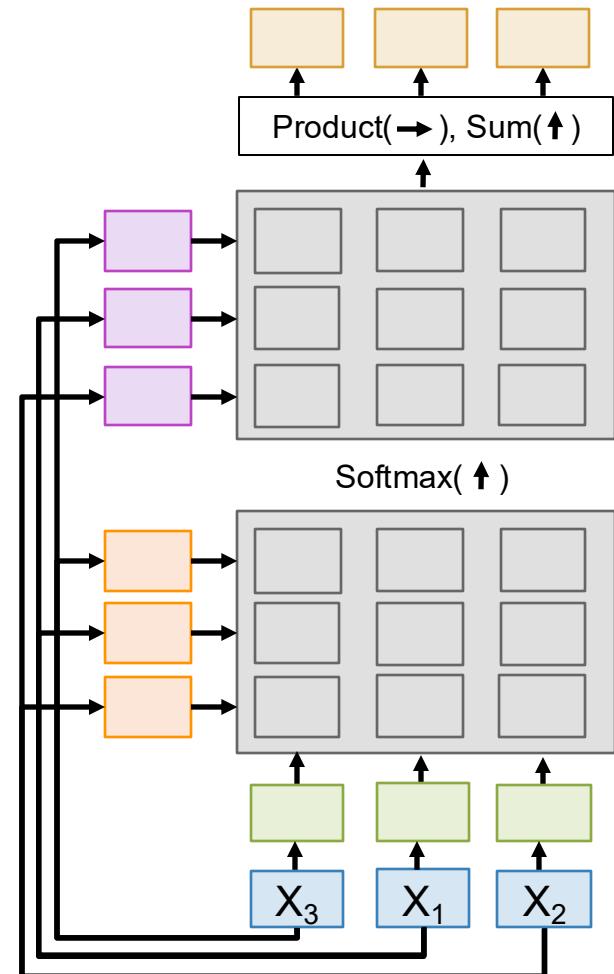
Similarities: $E = QK^T / \sqrt{D_Q}$ [N x N]

$$E_{ij} = Q_i \cdot K_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ [N x N]

Output vector: $Y = AV$ [N x D_{out}]

$$Y_i = \sum_j A_{ij} V_j$$



Self-Attention Layer

Inputs:

Input vectors: \mathbf{X} [N x D_{in}]

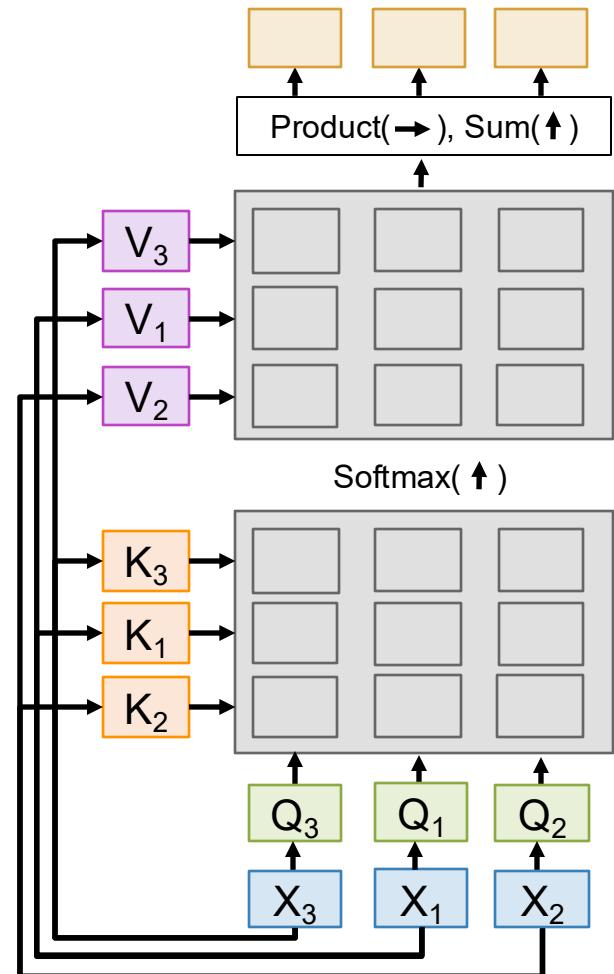
Key matrix: \mathbf{W}_K [D_{in} x D_{out}]

Value matrix: \mathbf{W}_V [D_{in} x D_{out}]

Query matrix: \mathbf{W}_Q [D_{in} x D_{out}]

Consider permuting **inputs**:

Queries, **keys**, and **values**
will be the same but permuted



Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [N x D_{out}]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [N x D_{out}]

Values: $\mathbf{V} = \mathbf{XW}_V$ [N x D_{out}]

Similarities: $E = \mathbf{QK}^T / \sqrt{D_Q}$ [N x N]

$$E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ [N x N]

Output vector: $\mathbf{Y} = \mathbf{AV}$ [N x D_{out}]

$$Y_i = \sum_j A_{ij} V_j$$

Self-Attention Layer

Inputs:

Input vectors: X [N x D_{in}]

Key matrix: W_K [D_{in} x D_{out}]

Value matrix: W_V [D_{in} x D_{out}]

Query matrix: W_Q [D_{in} x D_{out}]

Computation:

Queries: $Q = XW_Q$ [N x D_{out}]

Keys: $K = XW_K$ [N x D_{out}]

Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q}$ [N x N]

$$E_{ij} = Q_i \cdot K_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ [N x N]

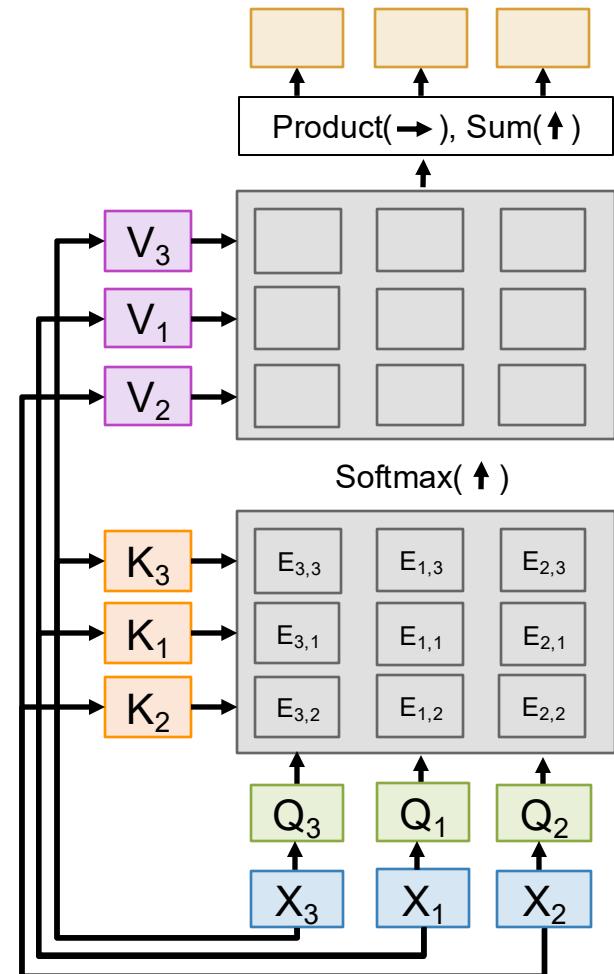
Output vector: $Y = AV$ [N x D_{out}]

$$Y_i = \sum_j A_{ij} V_j$$

Consider permuting **inputs**:

Queries, **keys**, and **values**
will be the same but permuted

Similarities are the same but
permuted



Self-Attention Layer

Inputs:

Input vectors: \mathbf{X} [N x D_{in}]

Key matrix: \mathbf{W}_K [D_{in} x D_{out}]

Value matrix: \mathbf{W}_V [D_{in} x D_{out}]

Query matrix: \mathbf{W}_Q [D_{in} x D_{out}]

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [N x D_{out}]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [N x D_{out}]

Values: $\mathbf{V} = \mathbf{XW}_V$ [N x D_{out}]

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [N x N]

$$E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_j / \sqrt{D_Q}$$

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=1)$ [N x N]

Output vector: $\mathbf{Y} = \mathbf{AV}$ [N x D_{out}]

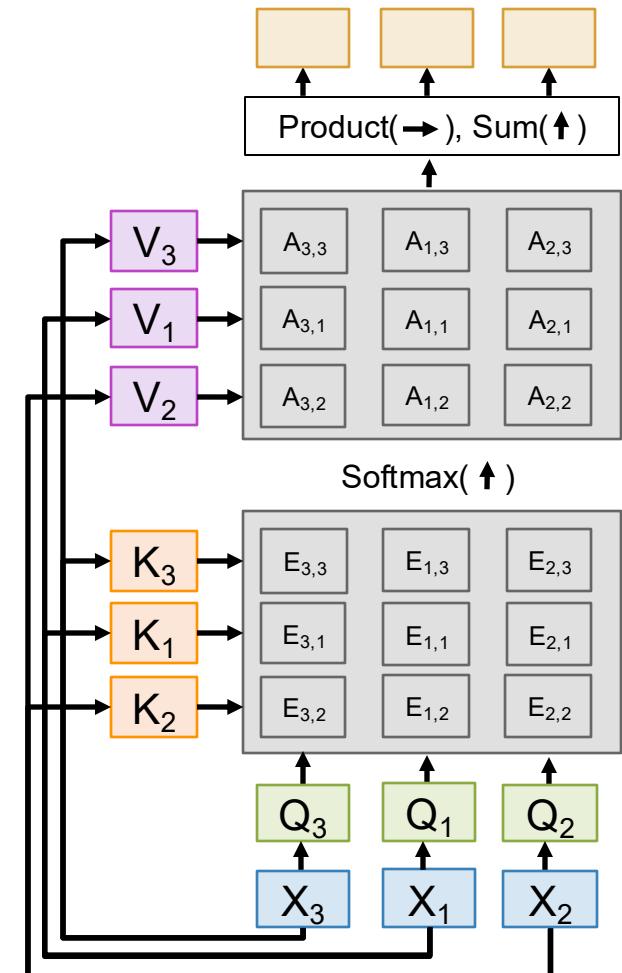
$$Y_i = \sum_j A_{ij} V_j$$

Consider permuting **inputs**:

Queries, keys, and values will be the same but permuted

Similarities are the same but permuted

Attention weights are the same but permuted



Self-Attention Layer

Inputs:

Input vectors: \mathbf{X} [N x D_{in}]

Key matrix: \mathbf{W}_K [D_{in} x D_{out}]

Value matrix: \mathbf{W}_V [D_{in} x D_{out}]

Query matrix: \mathbf{W}_Q [D_{in} x D_{out}]

Computation:

Queries: $\mathbf{Q} = \mathbf{X}\mathbf{W}_Q$ [N x D_{out}]

Keys: $\mathbf{K} = \mathbf{X}\mathbf{W}_K$ [N x D_{out}]

Values: $\mathbf{V} = \mathbf{X}\mathbf{W}_V$ [N x D_{out}]

Similarities: $\mathbf{E} = \mathbf{Q}\mathbf{K}^T / \sqrt{D_Q}$ [N x N]

$$E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_j / \sqrt{D_Q}$$

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=1)$ [N x N]

Output vector: $\mathbf{Y} = \mathbf{A}\mathbf{V}$ [N x D_{out}]

$$Y_i = \sum_j A_{ij} V_j$$

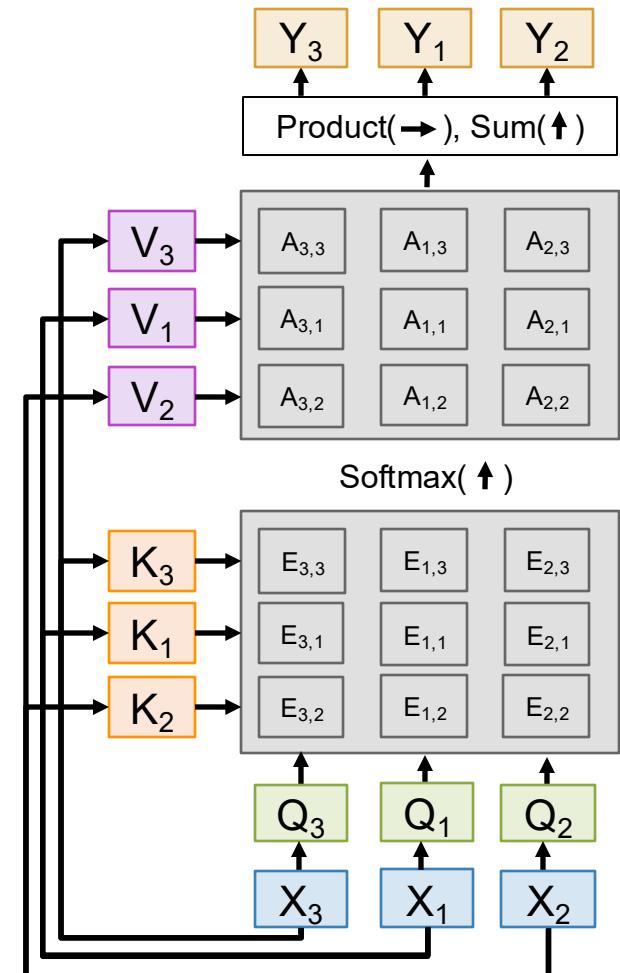
Consider permuting **inputs**:

Queries, keys, and values will be the same but permuted

Similarities are the same but permuted

Attention weights are the same but permuted

Outputs are the same but permuted



Self-Attention Layer

Inputs:

Input vectors: \mathbf{X} [N x D_{in}]

Key matrix: \mathbf{W}_K [D_{in} x D_{out}]

Value matrix: \mathbf{W}_V [D_{in} x D_{out}]

Query matrix: \mathbf{W}_Q [D_{in} x D_{out}]

Self-Attention is
permutation equivariant:
 $F(\sigma(X)) = \sigma(F(X))$

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [N x D_{out}]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [N x D_{out}]

Values: $\mathbf{V} = \mathbf{XW}_V$ [N x D_{out}]

Similarities: $E = \mathbf{QK}^T / \sqrt{D_Q}$ [N x N]

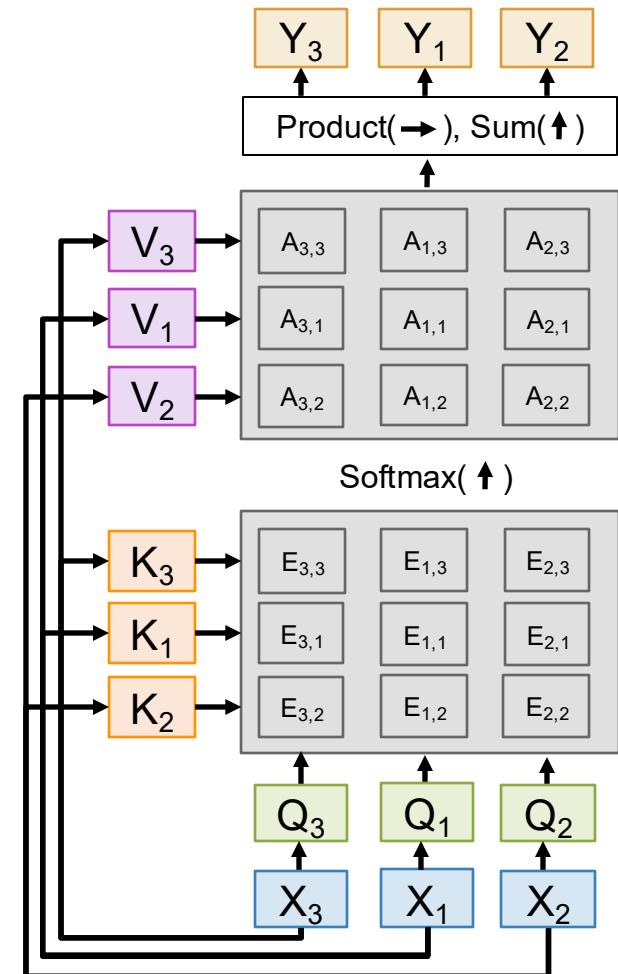
$$E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ [N x N]

Output vector: $\mathbf{Y} = \mathbf{AV}$ [N x D_{out}]

$$\mathbf{Y}_i = \sum_j A_{ij} \mathbf{V}_j$$

This means that Self-Attention
works on **sets of vectors**



Self-Attention Layer

Inputs:

Input vectors: \mathbf{X} [N x D_{in}]

Key matrix: \mathbf{W}_K [D_{in} x D_{out}]

Value matrix: \mathbf{W}_V [D_{in} x D_{out}]

Query matrix: \mathbf{W}_Q [D_{in} x D_{out}]

Problem: Self-Attention does not know the order of the sequence

Computation:

Queries: $\mathbf{Q} = \mathbf{X}\mathbf{W}_Q$ [N x D_{out}]

Keys: $\mathbf{K} = \mathbf{X}\mathbf{W}_K$ [N x D_{out}]

Values: $\mathbf{V} = \mathbf{X}\mathbf{W}_V$ [N x D_{out}]

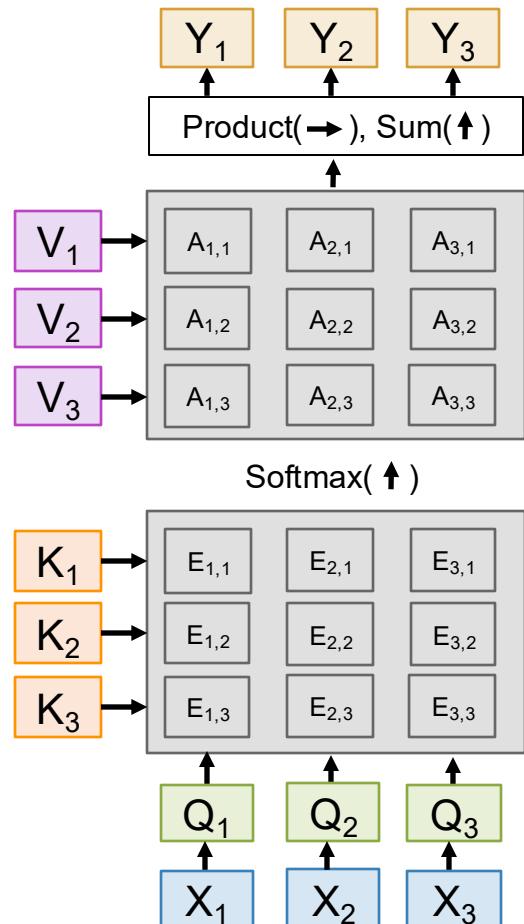
Similarities: $\mathbf{E} = \mathbf{Q}\mathbf{K}^T / \sqrt{D_Q}$ [N x N]

$$E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_j / \sqrt{D_Q}$$

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=1)$ [N x N]

Output vector: $\mathbf{Y} = \mathbf{A}\mathbf{V}$ [N x D_{out}]

$$Y_i = \sum_j A_{ij} V_j$$



Self-Attention Layer

Inputs:

Input vectors: X [N x D_{in}]

Key matrix: W_K [D_{in} x D_{out}]

Value matrix: W_V [D_{in} x D_{out}]

Query matrix: W_Q [D_{in} x D_{out}]

Computation:

Queries: $Q = XW_Q$ [N x D_{out}]

Keys: $K = XW_K$ [N x D_{out}]

Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q}$ [N x N]

$$E_{ij} = Q_i \cdot K_j / \sqrt{D_Q}$$

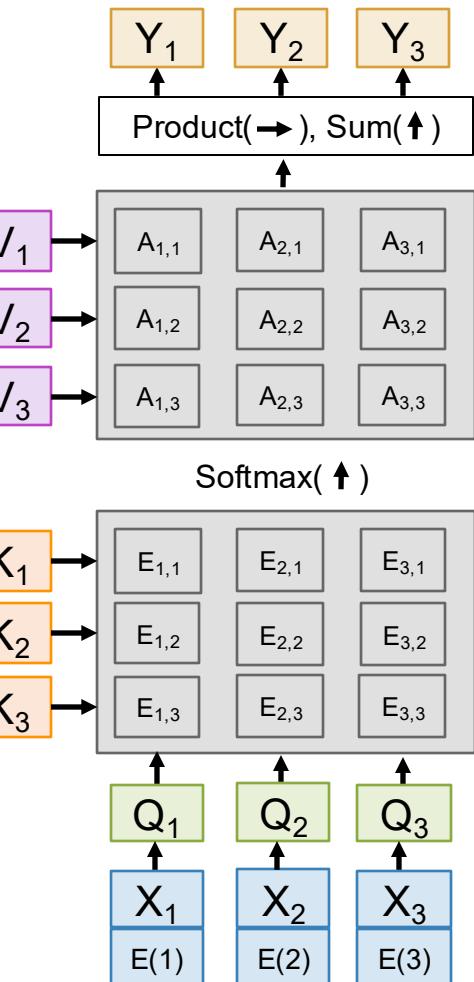
Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ [N x N]

Output vector: $Y = AV$ [N x D_{out}]

$$Y_i = \sum_j A_{ij} V_j$$

Problem: Self-Attention does not know the order of the sequence

Solution: Add positional encoding to each input; this is a vector that is a fixed function of the index



Masked Self-Attention Layer

Don't let vectors "look ahead" in the sequence

Inputs:

Input vectors: X [N x D_{in}]

Key matrix: W_K [D_{in} x D_{out}]

Value matrix: W_V [D_{in} x D_{out}]

Query matrix: W_Q [D_{in} x D_{out}]

Override similarities with -inf;
this controls which inputs each
vector is allowed to look at.

Computation:

Queries: $Q = XW_Q$ [N x D_{out}]

Keys: $K = XW_K$ [N x D_{out}]

Values: $V = XW_V$ [N x D_{out}]

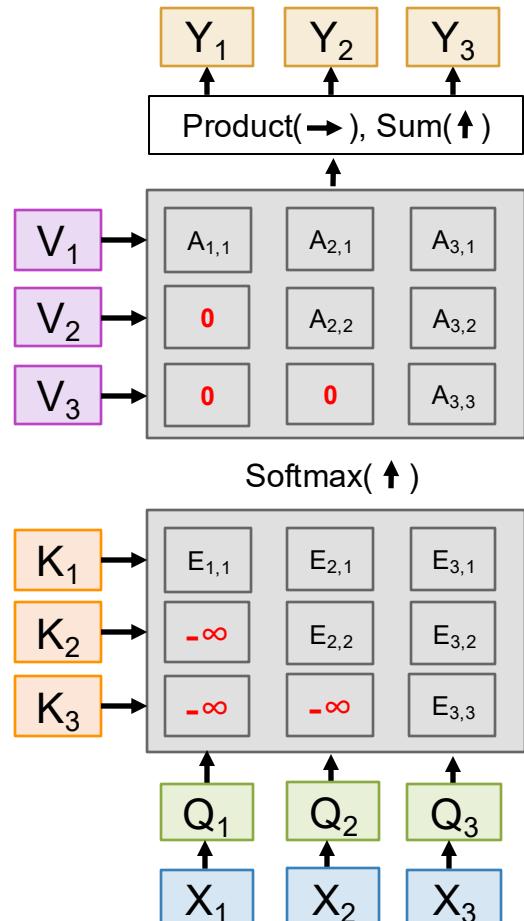
Similarities: $E = QK^T / \sqrt{D_Q}$ [N x N]

$$E_{ij} = Q_i \cdot K_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ [N x N]

Output vector: $Y = AV$ [N x D_{out}]

$$Y_i = \sum_j A_{ij} V_j$$



Masked Self-Attention Layer

Don't let vectors "look ahead" in the sequence

Inputs:

Input vectors: \mathbf{X} [N x D_{in}]

Key matrix: \mathbf{W}_K [D_{in} x D_{out}]

Value matrix: \mathbf{W}_V [D_{in} x D_{out}]

Query matrix: \mathbf{W}_Q [D_{in} x D_{out}]

Override similarities with -inf;
this controls which inputs each
vector is allowed to look at.

Computation:

Queries: $\mathbf{Q} = \mathbf{X}\mathbf{W}_Q$ [N x D_{out}]

Keys: $\mathbf{K} = \mathbf{X}\mathbf{W}_K$ [N x D_{out}]

Values: $\mathbf{V} = \mathbf{X}\mathbf{W}_V$ [N x D_{out}]

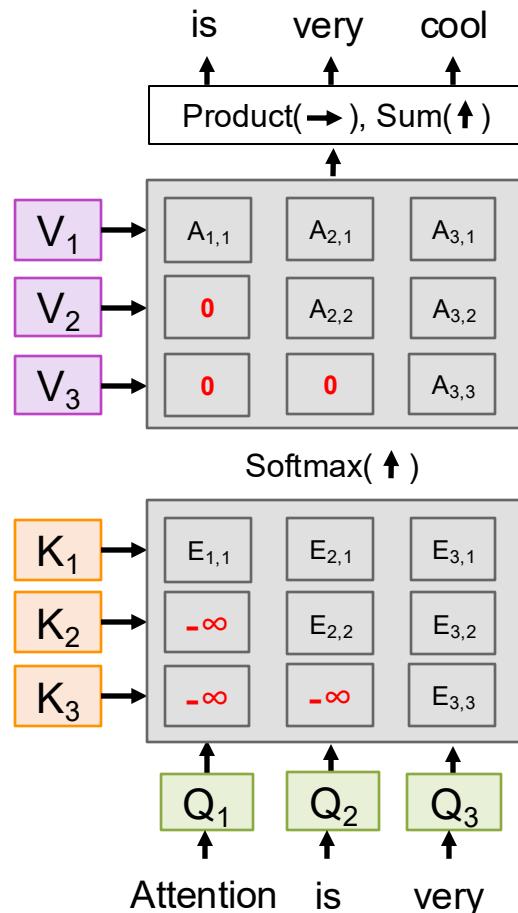
Similarities: $\mathbf{E} = \mathbf{Q}\mathbf{K}^T / \sqrt{D_Q}$ [N x N]

$$E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_j / \sqrt{D_Q}$$

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=1)$ [N x N]

Output vector: $\mathbf{Y} = \mathbf{A}\mathbf{V}$ [N x D_{out}]

$$Y_i = \sum_j A_{ij} V_j$$



Multiheaded Self-Attention Layer

Run H copies of Self-Attention in parallel

Inputs:

Input vectors: \mathbf{X} [N x D_{in}]

Key matrix: \mathbf{W}_K [D_{in} x D_{out}]

Value matrix: \mathbf{W}_V [D_{in} x D_{out}]

Query matrix: \mathbf{W}_Q [D_{in} x D_{out}]

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [N x D_{out}]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [N x D_{out}]

Values: $\mathbf{V} = \mathbf{XW}_V$ [N x D_{out}]

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [N x N]

$$E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_j / \sqrt{D_Q}$$

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=1)$ [N x N]

Output vector: $\mathbf{Y} = \mathbf{AX}$ [N x D_{out}]

$$\mathbf{Y}_i = \sum_j \mathbf{A}_{ij} \mathbf{V}_j$$

\mathbf{X}_1

\mathbf{X}_2

\mathbf{X}_3

Multiheaded Self-Attention Layer

Run H copies of Self-Attention in parallel

Inputs:

Input vectors: \mathbf{X} [$N \times D_{in}$]

Key matrix: \mathbf{W}_K [$D_{in} \times D_{out}$]

Value matrix: \mathbf{W}_V [$D_{in} \times D_{out}$]

Query matrix: \mathbf{W}_Q [$D_{in} \times D_{out}$]

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [$N \times D_{out}$]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [$N \times D_{out}$]

Values: $\mathbf{V} = \mathbf{XW}_V$ [$N \times D_{out}$]

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [$N \times N$]

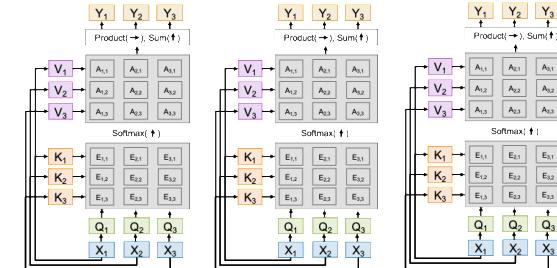
$$E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_j / \sqrt{D_Q}$$

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=1)$ [$N \times N$]

Output vector: $\mathbf{Y} = \mathbf{AX}$ [$N \times D_{out}$]

$$\mathbf{Y}_i = \sum_j \mathbf{A}_{ij} \mathbf{V}_j$$

$H = 3$ independent self-attention layers (called heads), each with their own weights



\mathbf{X}_1

\mathbf{X}_2

\mathbf{X}_3

Multiheaded Self-Attention Layer

Run H copies of Self-Attention in parallel

Inputs:

Input vectors: X [$N \times D_{in}$]

Key matrix: W_K [$D_{in} \times D_{out}$]

Value matrix: W_V [$D_{in} \times D_{out}$]

Query matrix: W_Q [$D_{in} \times D_{out}$]

Computation:

Queries: $Q = XW_Q$ [$N \times D_{out}$]

Keys: $K = XW_K$ [$N \times D_{out}$]

Values: $V = XW_V$ [$N \times D_{out}$]

Similarities: $E = QK^T / \sqrt{D_Q}$ [$N \times N$]

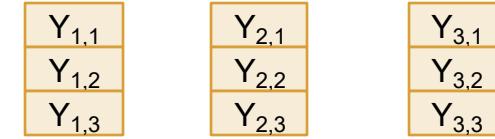
$$E_{ij} = Q_i \cdot K_j / \sqrt{D_Q}$$

Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ [$N \times N$]

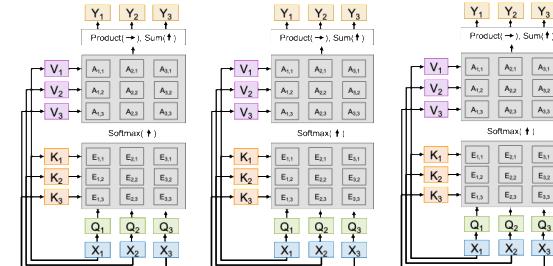
Output vector: $Y = AX$ [$N \times D_{out}$]

$$Y_i = \sum_j A_{ij} V_j$$

Stack up the H independent outputs for each input X



$H = 3$ independent self-attention layers (called heads), each with their own weights



X_1

X_2

X_3

Multiheaded Self-Attention Layer

Run H copies of Self-Attention in parallel

Inputs:

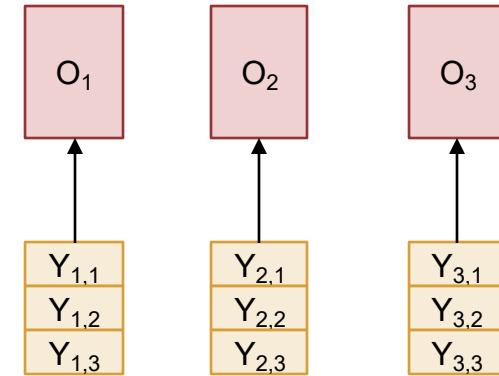
Input vectors: X [N x D_{in}]

Key matrix: W_K [D_{in} x D_{out}]

Value matrix: W_V [D_{in} x D_{out}]

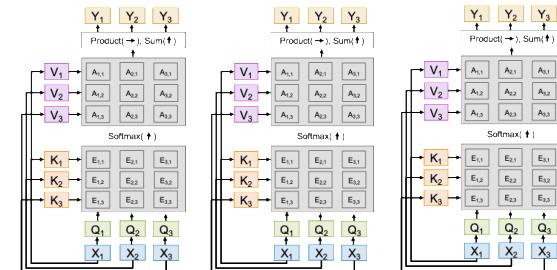
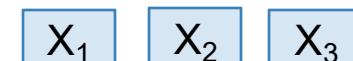
Query matrix: W_Q [D_{in} x D_{out}]

Output projection fuses data from each head



Stack up the H independent outputs for each input X

$H = 3$ independent self-attention layers (called heads), each with their own weights



Attention weights: $A = \text{softmax}(E, \text{dim}=1)$ [N x N]

Output vector: $Y = AX$ [N x D_{out}]

$$Y_i = \sum_j A_{ij} V_j$$

Multiheaded Self-Attention Layer

Run H copies of Self-Attention in parallel

Inputs:

Input vectors: \mathbf{X} [N x D]

Key matrix: \mathbf{W}_K [D x HD_H]

Value matrix: \mathbf{W}_V [D x HD_H]

Query matrix: \mathbf{W}_Q [D x HD_H]

Output matrix: \mathbf{W}_O [HD_H x D]

Each of the H parallel layers use a qkv dim of D_H = “head dim”

Usually $D_H = D / H$, so inputs and outputs have the same dimension

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [H x N x D_H]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [H x N x D_H]

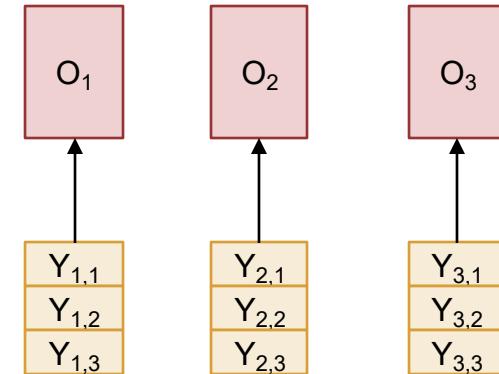
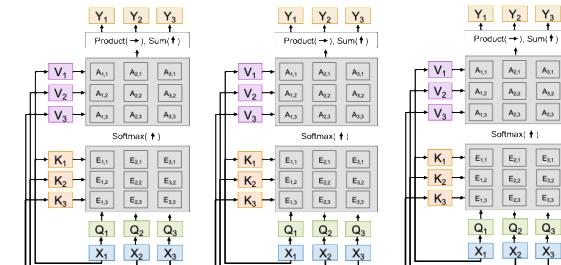
Values: $\mathbf{V} = \mathbf{XW}_V$ [H x N x D_H]

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [H x N x N]

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=2)$ [H x N x N]

Head outputs: $\mathbf{Y} = \mathbf{AV}$ [H x N x D_H] \Rightarrow [N x HD_H]

Outputs: $\mathbf{O} = \mathbf{YW}_O$ [N x D]



\mathbf{X}_1

\mathbf{X}_2

\mathbf{X}_3

Multiheaded Self-Attention Layer

Run H copies of Self-Attention in parallel

Inputs:

Input vectors: \mathbf{X} [N x D]

Key matrix: \mathbf{W}_K [D x HD_H]

Value matrix: \mathbf{W}_V [D x HD_H]

Query matrix: \mathbf{W}_Q [D x HD_H]

Output matrix: \mathbf{W}_O [HD_H x D]

In practice, compute all H heads in parallel using batched matrix multiply operations.

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [H x N x D_H]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [H x N x D_H]

Values: $\mathbf{V} = \mathbf{XW}_V$ [H x N x D_H]

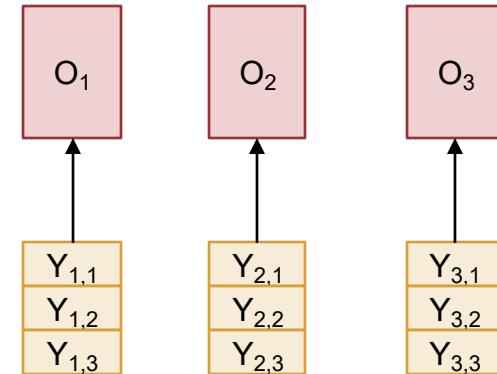
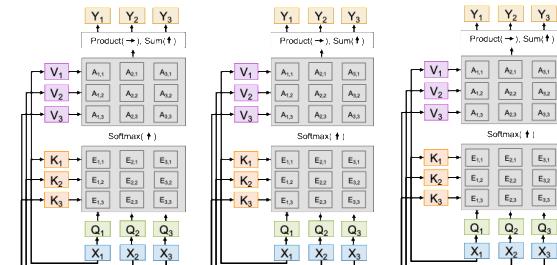
Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [H x N x N]

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=2)$ [H x N x N]

Head outputs: $\mathbf{Y} = \mathbf{AV}$ [H x N x D_H] \Rightarrow [N x HD_H]

Outputs: $\mathbf{O} = \mathbf{YW}_O$ [N x D]

Used everywhere in practice.



X_1

X_2

X_3

Self-Attention is Four Matrix Multiplies!

Inputs:

Input vectors: \mathbf{X} [N x D]

Key matrix: \mathbf{W}_K [D x HD_H]

Value matrix: \mathbf{W}_V [D x HD_H]

Query matrix: \mathbf{W}_Q [D x HD_H]

Output matrix: \mathbf{W}_O [HD_H x D]

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [H x N x D_H]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [H x N x D_H]

Values: $\mathbf{V} = \mathbf{XW}_V$ [H x N x D_H]

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [H x N x N]

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=2)$ [H x N x N]

Head outputs: $\mathbf{Y} = \mathbf{AV}$ [H x N x D_H] => [N x HD_H]

Outputs: $\mathbf{O} = \mathbf{YW}_O$ [N x D]

Self-Attention is Four Matrix Multiplies!

Inputs:

Input vectors: \mathbf{X} [N x D]

Key matrix: \mathbf{W}_K [D x HD_H]

Value matrix: \mathbf{W}_V [D x HD_H]

Query matrix: \mathbf{W}_Q [D x HD_H]

Output matrix: \mathbf{W}_O [HD_H x D]

1. QKV Projection

$[\mathbf{N} \times \mathbf{D}]$ [D x 3HD_H] => [N x 3HD_H]

Split and reshape to get \mathbf{Q} , \mathbf{K} , \mathbf{V} each of shape [H x N x D_H]

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [H x N x D_H]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [H x N x D_H]

Values: $\mathbf{V} = \mathbf{XW}_V$ [H x N x D_H]

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [H x N x N]

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=2)$ [H x N x N]

Head outputs: $\mathbf{Y} = \mathbf{AV}$ [H x N x D_H] => [N x HD_H]

Outputs: $\mathbf{O} = \mathbf{YW}_O$ [N x D]

Self-Attention is Four Matrix Multiplies!

Inputs:

Input vectors: \mathbf{X} [N x D]

Key matrix: \mathbf{W}_K [D x HD_H]

Value matrix: \mathbf{W}_V [D x HD_H]

Query matrix: \mathbf{W}_Q [D x HD_H]

Output matrix: \mathbf{W}_O [HD_H x D]

1. QKV Projection

$[\mathbf{N} \times \mathbf{D}]$ [D x 3HD_H] => [N x 3HD_H]

Split and reshape to get \mathbf{Q} , \mathbf{K} , \mathbf{V} each of shape [H x N x D_H]

2. QK Similarity

$[\mathbf{H} \times \mathbf{N} \times \mathbf{D}_H]$ $[\mathbf{H} \times \mathbf{D}_H \times \mathbf{N}]$ => $[\mathbf{H} \times \mathbf{N} \times \mathbf{N}]$

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [H x N x D_H]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [H x N x D_H]

Values: $\mathbf{V} = \mathbf{XW}_V$ [H x N x D_H]

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [H x N x N]

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=2)$ [H x N x N]

Head outputs: $\mathbf{Y} = \mathbf{AV}$ [H x N x D_H] => [N x HD_H]

Outputs: $\mathbf{O} = \mathbf{YW}_O$ [N x D]

Self-Attention is Four Matrix Multiplies!

Inputs:

Input vectors: \mathbf{X} [N x D]

Key matrix: \mathbf{W}_K [D x HD_H]

Value matrix: \mathbf{W}_V [D x HD_H]

Query matrix: \mathbf{W}_Q [D x HD_H]

Output matrix: \mathbf{W}_O [HD_H x D]

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [H x N x D_H]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [H x N x D_H]

Values: $\mathbf{V} = \mathbf{XW}_V$ [H x N x D_H]

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [H x N x N]

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=2)$ [H x N x N]

Head outputs: $\mathbf{Y} = \mathbf{AV}$ [H x N x D_H] \Rightarrow [N x HD_H]

Outputs: $\mathbf{O} = \mathbf{YW}_O$ [N x D]

1. QKV Projection

[N x D] [D x 3HD_H] \Rightarrow [N x 3HD_H]

Split and reshape to get \mathbf{Q} , \mathbf{K} , \mathbf{V} each of shape [H x N x D_H]

2. QK Similarity

[H x N x D_H] [H x D_H x N] \Rightarrow [H x N x N]

3. V-Weighting

[H x N x N] [H x N x D_H] \Rightarrow [H x N x D_H]

Reshape to [N x HD_H]

Self-Attention is Four Matrix Multiplies!

Inputs:

Input vectors: \mathbf{X} [N x D]

Key matrix: \mathbf{W}_K [D x HD_H]

Value matrix: \mathbf{W}_V [D x HD_H]

Query matrix: \mathbf{W}_Q [D x HD_H]

Output matrix: \mathbf{W}_O [HD_H x D]

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [H x N x D_H]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [H x N x D_H]

Values: $\mathbf{V} = \mathbf{XW}_V$ [H x N x D_H]

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [H x N x N]

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=2)$ [H x N x N]

Head outputs: $\mathbf{Y} = \mathbf{AV}$ [H x N x D_H] \Rightarrow [N x HD_H]

Outputs: $\mathbf{O} = \mathbf{YW}_O$ [N x D]

1. QKV Projection

[N x D] [D x 3HD_H] \Rightarrow [N x 3HD_H]

Split and reshape to get \mathbf{Q} , \mathbf{K} , \mathbf{V} each of shape [H x N x D_H]

2. QK Similarity

[H x N x D_H] [H x D_H x N] \Rightarrow [H x N x N]

3. V-Weighting

[H x N x N] [H x N x D_H] \Rightarrow [H x N x D_H]

Reshape to [N x HD_H]

4. Output Projection

[N x HD_H] [HD_H x D] \Rightarrow [N x D]

Self-Attention is Four Matrix Multiplies!

Inputs:

Input vectors: \mathbf{X} [N x D]

Key matrix: \mathbf{W}_K [D x HD_H]

Value matrix: \mathbf{W}_V [D x HD_H]

Query matrix: \mathbf{W}_Q [D x HD_H]

Output matrix: \mathbf{W}_O [HD_H x D]

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [H x N x D_H]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [H x N x D_H]

Values: $\mathbf{V} = \mathbf{XW}_V$ [H x N x D_H]

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [H x N x N]

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=2)$ [H x N x N]

Head outputs: $\mathbf{Y} = \mathbf{AV}$ [H x N x D_H] => [N x HD_H]

Outputs: $\mathbf{O} = \mathbf{YW}_O$ [N x D]

1. QKV Projection

$[\mathbf{N} \times \mathbf{D}]$ [D x 3HD_H] => [N x 3HD_H]

Split and reshape to get \mathbf{Q} , \mathbf{K} , \mathbf{V} each of shape [H x N x D_H]

2. QK Similarity

$[\mathbf{H} \times \mathbf{N} \times \mathbf{D}_H]$ $[\mathbf{H} \times \mathbf{D}_H \times \mathbf{N}]$ => [H x N x N]

3. V-Weighting

$[\mathbf{H} \times \mathbf{N} \times \mathbf{N}]$ $[\mathbf{H} \times \mathbf{N} \times \mathbf{D}_H]$ => [H x N x D_H]

Reshape to $[\mathbf{N} \times \mathbf{HD}_H]$

4. Output Projection

$[\mathbf{N} \times \mathbf{HD}_H]$ $[\mathbf{HD}_H \times \mathbf{D}]$ => [N x D]

Q: How much compute does this take as the number of vectors N increases?

Self-Attention is Four Matrix Multiplies!

Inputs:

Input vectors: \mathbf{X} [N x D]

Key matrix: \mathbf{W}_K [D x HD_H]

Value matrix: \mathbf{W}_V [D x HD_H]

Query matrix: \mathbf{W}_Q [D x HD_H]

Output matrix: \mathbf{W}_O [HD_H x D]

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [H x N x D_H]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [H x N x D_H]

Values: $\mathbf{V} = \mathbf{XW}_V$ [H x N x D_H]

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [H x N x N]

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=2)$ [H x N x N]

Head outputs: $\mathbf{Y} = \mathbf{AV}$ [H x N x D_H] => [N x HD_H]

Outputs: $\mathbf{O} = \mathbf{YW}_O$ [N x D]

1. QKV Projection

[N x D] [D x 3HD_H] => [N x 3HD_H]

Split and reshape to get \mathbf{Q} , \mathbf{K} , \mathbf{V} each of shape [H x N x D_H]

2. QK Similarity

[H x N x D_H] [H x D_H x N] => [H x N x N]

3. V-Weighting

[H x N x N] [H x N x D_H] => [H x N x D_H]

Reshape to [N x HD_H]

4. Output Projection

[N x HD_H] [HD_H x D] => [N x D]

Q: How much compute does this take as the number of vectors N increases?

A: O(N²)

Self-Attention is Four Matrix Multiplies!

Inputs:

Input vectors: \mathbf{X} [N x D]

Key matrix: \mathbf{W}_K [D x HD_H]

Value matrix: \mathbf{W}_V [D x HD_H]

Query matrix: \mathbf{W}_Q [D x HD_H]

Output matrix: \mathbf{W}_O [HD_H x D]

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [H x N x D_H]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [H x N x D_H]

Values: $\mathbf{V} = \mathbf{XW}_V$ [H x N x D_H]

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [H x N x N]

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=2)$ [H x N x N]

Head outputs: $\mathbf{Y} = \mathbf{AV}$ [H x N x D_H] => [N x HD_H]

Outputs: $\mathbf{O} = \mathbf{YW}_O$ [N x D]

1. QKV Projection

$[\mathbf{N} \times \mathbf{D}]$ [D x 3HD_H] => [N x 3HD_H]

Split and reshape to get \mathbf{Q} , \mathbf{K} , \mathbf{V} each of shape [H x N x D_H]

2. QK Similarity

$[\mathbf{H} \times \mathbf{N} \times \mathbf{D}_H]$ $[\mathbf{H} \times \mathbf{D}_H \times \mathbf{N}]$ => [H x N x N]

3. V-Weighting

$[\mathbf{H} \times \mathbf{N} \times \mathbf{N}]$ $[\mathbf{H} \times \mathbf{N} \times \mathbf{D}_H]$ => [H x N x D_H]

Reshape to $[\mathbf{N} \times \mathbf{HD}_H]$

4. Output Projection

$[\mathbf{N} \times \mathbf{HD}_H]$ $[\mathbf{HD}_H \times \mathbf{D}]$ => [N x D]

Q: How much memory does this take as the number of vectors N increases?

Self-Attention is Four Matrix Multiplies!

Inputs:

Input vectors: \mathbf{X} [N x D]

Key matrix: \mathbf{W}_K [D x HD_H]

Value matrix: \mathbf{W}_V [D x HD_H]

Query matrix: \mathbf{W}_Q [D x HD_H]

Output matrix: \mathbf{W}_O [HD_H x D]

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [H x N x D_H]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [H x N x D_H]

Values: $\mathbf{V} = \mathbf{XW}_V$ [H x N x D_H]

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [H x N x N]

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=2)$ [H x N x N]

Head outputs: $\mathbf{Y} = \mathbf{AV}$ [H x N x D_H] => [N x HD_H]

Outputs: $\mathbf{O} = \mathbf{YW}_O$ [N x D]

1. QKV Projection

[N x D] [D x 3HD_H] => [N x 3HD_H]

Split and reshape to get \mathbf{Q} , \mathbf{K} , \mathbf{V} each of shape [H x N x D_H]

2. QK Similarity

[H x N x D_H] [H x D_H x N] => [H x N x N]

3. V-Weighting

[H x N x N] [H x N x D_H] => [H x N x D_H]

Reshape to [N x HD_H]

4. Output Projection

[N x HD_H] [HD_H x D] => [N x D]

Q: How much memory does this take as the number of vectors N increases?

A: $O(N^2)$

Self-Attention is Four Matrix Multiplies!

If $N=100K$, $H=64$ then
 $H \times N \times N$ attention weights
take 1.192 TB! GPUs don't
have that much memory...

Inputs:

Input vectors: \mathbf{X} $[N \times D]$

Key matrix: \mathbf{W}_K $[D \times HD_H]$

Value matrix: \mathbf{W}_V $[D \times HD_H]$

Query matrix: \mathbf{W}_Q $[D \times HD_H]$

Output matrix: \mathbf{W}_O $[HD_H \times D]$

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ $[H \times N \times D_H]$

Keys: $\mathbf{K} = \mathbf{XW}_K$ $[H \times N \times D_H]$

Values: $\mathbf{V} = \mathbf{XW}_V$ $[H \times N \times D_H]$

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ $[H \times N \times N]$

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=2)$ $[H \times N \times N]$

Head outputs: $\mathbf{Y} = \mathbf{AV}$ $[H \times N \times D_H] \Rightarrow [N \times HD_H]$

Outputs: $\mathbf{O} = \mathbf{YW}_O$ $[N \times D]$

1. QKV Projection

$[N \times D]$ $[D \times 3HD_H] \Rightarrow [N \times 3HD_H]$

Split and reshape to get \mathbf{Q} , \mathbf{K} , \mathbf{V} each of
shape $[H \times N \times D_H]$

2. QK Similarity

$[H \times N \times D_H]$ $[H \times D_H \times N] \Rightarrow [H \times N \times N]$

3. V-Weighting

$[H \times N \times N]$ $[H \times N \times D_H] \Rightarrow [H \times N \times D_H]$

Reshape to $[N \times HD_H]$

4. Output Projection

$[N \times HD_H]$ $[HD_H \times D] \Rightarrow [N \times D]$

Q: How much memory does this take
as the number of vectors N increases?

A: $O(N^2)$

Self-Attention is Four Matrix Multiplies!

Inputs:

Input vectors: \mathbf{X} [N x D]

Key matrix: \mathbf{W}_K [D x HD_H]

Value matrix: \mathbf{W}_V [D x HD_H]

Query matrix: \mathbf{W}_Q [D x HD_H]

Output matrix: \mathbf{W}_O [HD_H x D]

Flash Attention

algorithm computes
2+3 at the same time
without storing the
full attention matrix!

Makes large N
possible

Computation:

Queries: $\mathbf{Q} = \mathbf{XW}_Q$ [H x N x D_H]

Keys: $\mathbf{K} = \mathbf{XW}_K$ [H x N x D_H]

Values: $\mathbf{V} = \mathbf{XW}_V$ [H x N x D_H]

Similarities: $\mathbf{E} = \mathbf{QK}^T / \sqrt{D_Q}$ [H x N x N]

Attention weights: $\mathbf{A} = \text{softmax}(\mathbf{E}, \text{dim}=2)$ [H x N x N]

Head outputs: $\mathbf{Y} = \mathbf{AV}$ [H x N x HD_H] \Rightarrow [N x HD_H]

Outputs: $\mathbf{O} = \mathbf{YW}_O$ [N x D]

If N=100K, $H=64$ then
HxNxN attention weights
take 1.192 TB! GPUs don't
have that much memory...

1. QKV Projection

$[\mathbf{N} \times \mathbf{D}]$ [D x $3HD_H$] \Rightarrow [N x $3HD_H$]

Split and reshape to get \mathbf{Q} , \mathbf{K} , \mathbf{V} each of
shape [H x N x D_H]

2. QK Similarity

[H x N x D_H] [H x D_H x N] \Rightarrow [H x N x N]

3. V-Weighting

[H x N x N] [H x N x D_H] \Rightarrow [H x N x D_H]

Reshape to [N x HD_H]

4. Output Projection

[N x HD_H] [HD_H x D] \Rightarrow [N x D]

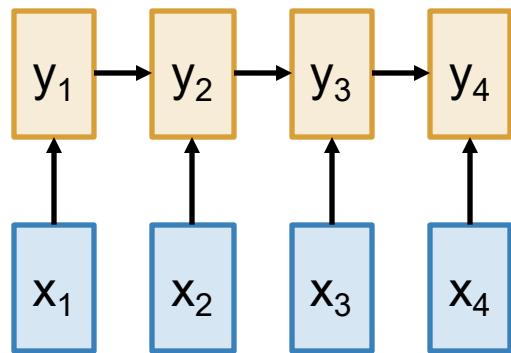
Q: How much memory does this take
as the number of vectors N increases?

A: $O(N)$ with Flash Attention

Three Ways of Processing Sequences

Three Ways of Processing Sequences

Recurrent Neural Network

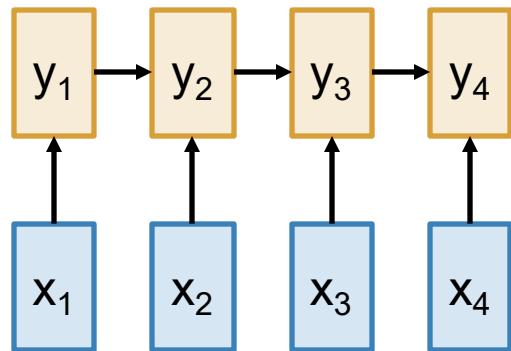


Works on **1D ordered sequences**

- (+) Theoretically good at long sequences: $O(N)$ compute and memory for a sequence of length N
- (-) Not parallelizable. Need to compute hidden states sequentially

Three Ways of Processing Sequences

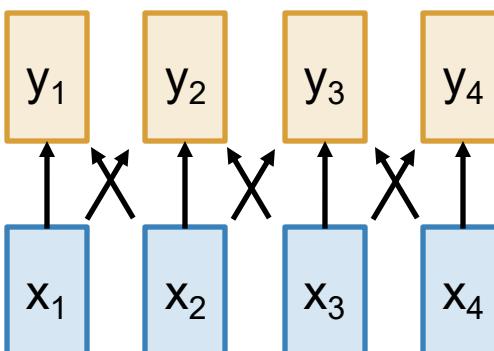
Recurrent Neural Network



Works on **1D ordered sequences**

- (+) Theoretically good at long sequences: $O(N)$ compute and memory for a sequence of length N
- (-) Not parallelizable. Need to compute hidden states sequentially

Convolution

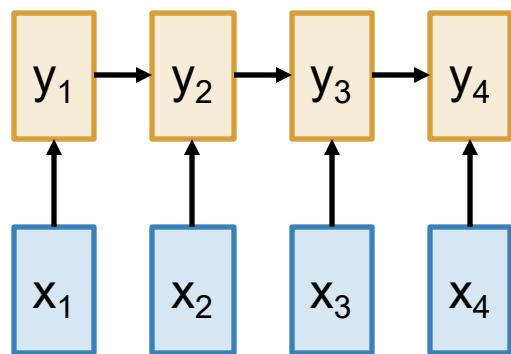


Works on **N-dimensional grids**

- (-) Bad for long sequences: need to stack many layers to build up large receptive fields
- (+) Parallelizable, outputs can be computed in parallel

Three Ways of Processing Sequences

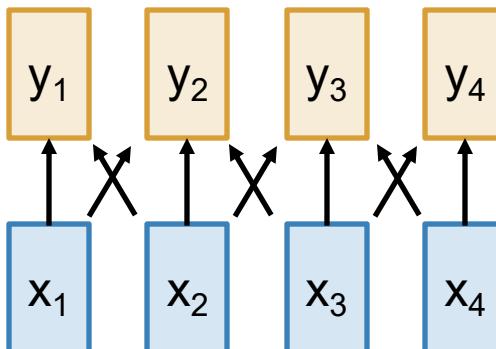
Recurrent Neural Network



Works on **1D ordered sequences**

- (+) Theoretically good at long sequences: $O(N)$ compute and memory for a sequence of length N
- (-) Not parallelizable. Need to compute hidden states sequentially

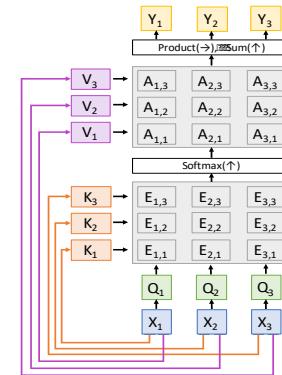
Convolution



Works on **N-dimensional grids**

- (-) Bad for long sequences: need to stack many layers to build up large receptive fields
- (+) Parallelizable, outputs can be computed in parallel

Self-Attention



Works on **sets of vectors**

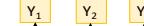
- (+) Great for long sequences; each output depends directly on all inputs
- (+) Highly parallel, it's just 4 matmuls
- (-) Expensive: $O(N^2)$ compute, $O(N)$ memory for sequence of length N

Three Ways of Processing Sequences

Recurrent Neural Network

Convolution

Self-Attention



Attention is All You Need

Vaswani et al, NeurIPS 2017

sequences. $O(N)$ compute and
memory for a sequence of length N
(-) Not parallelizable. Need to
compute hidden states sequentially

stack many layers to build up large
receptive fields
(+) Parallelizable, outputs can be
computed in parallel

Output depends directly on all inputs
(+) Highly parallel, it's just 4 matmuls
(-) Expensive: $O(N^2)$ compute, $O(N)$
memory for sequence of length N

The Transformer

Transformer Block

Input: Set of vectors x

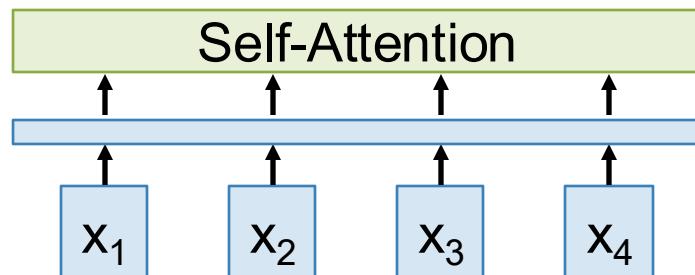
Vaswani et al, "Attention is all you need," NeurIPS 2017

The Transformer

Transformer Block

Input: Set of vectors x

All vectors interact through
(multiheaded) Self-Attention

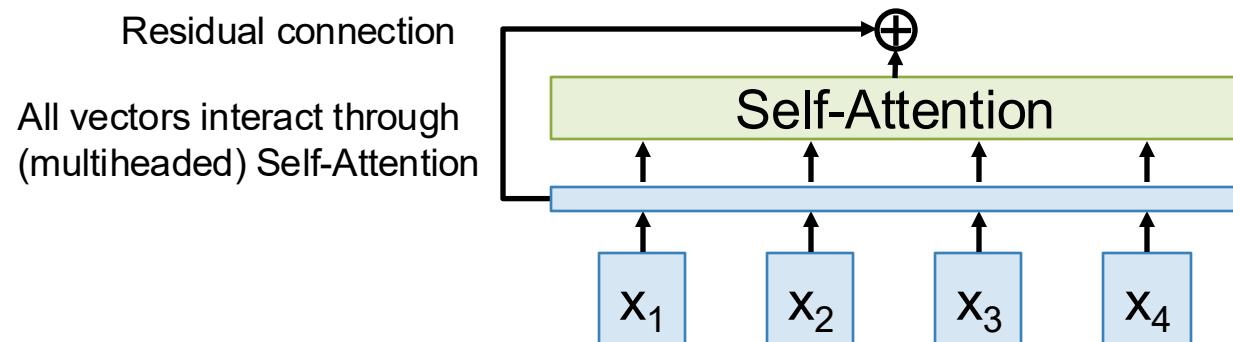


Vaswani et al, "Attention is all you need," NeurIPS 2017

The Transformer

Transformer Block

Input: Set of vectors x



Vaswani et al, "Attention is all you need," NeurIPS 2017

The Transformer

Transformer Block

Input: Set of vectors x

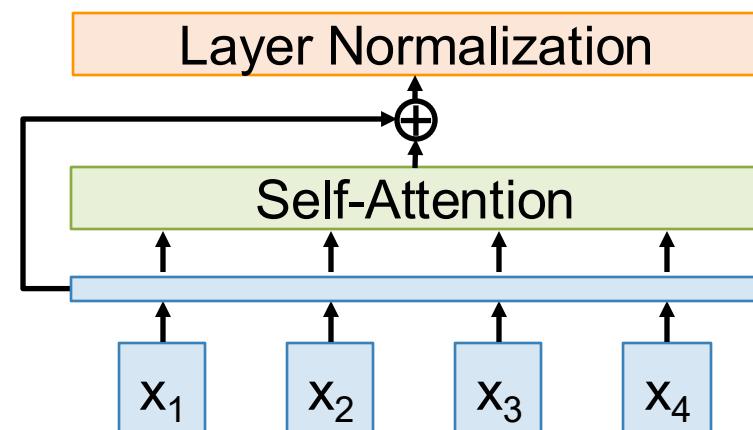
Layer normalization
normalizes all vectors

Residual connection

All vectors interact through
(multiheaded) Self-Attention

Recall **Layer Normalization**:
Given h_1, \dots, h_N (Shape: D)
scale: γ (Shape: D)
shift: β (Shape: D)
 $\mu_i = (\sum_j h_{i,j})/D$ (scalar)
 $\sigma_i = (\sum_j (h_{i,j} - \mu_i)^2/D)^{1/2}$ (scalar)
 $z_i = (h_i - \mu_i) / \sigma_i$
 $y_i = \gamma * z_i + \beta$

Ba et al, 2016



Vaswani et al, "Attention is all you need," NeurIPS 2017

The Transformer

Transformer Block

Input: Set of vectors x

MLP independently on each vector

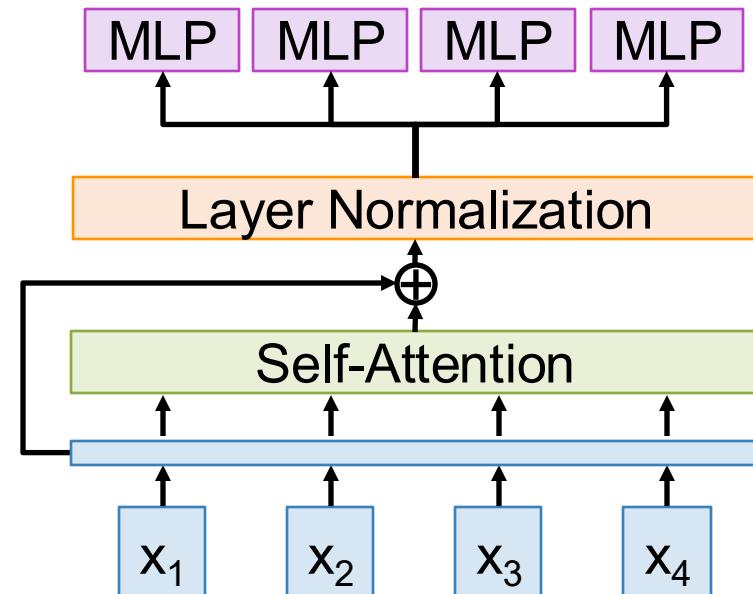
Layer normalization normalizes all vectors

Residual connection

All vectors interact through (multiheaded) Self-Attention

Usually a two-layer MLP;
classic setup is
 $D \Rightarrow 4D \Rightarrow D$

Also sometimes called FFN
(Feed-Forward Network)



Vaswani et al, "Attention is all you need," NeurIPS 2017

The Transformer

Transformer Block

Input: Set of vectors x

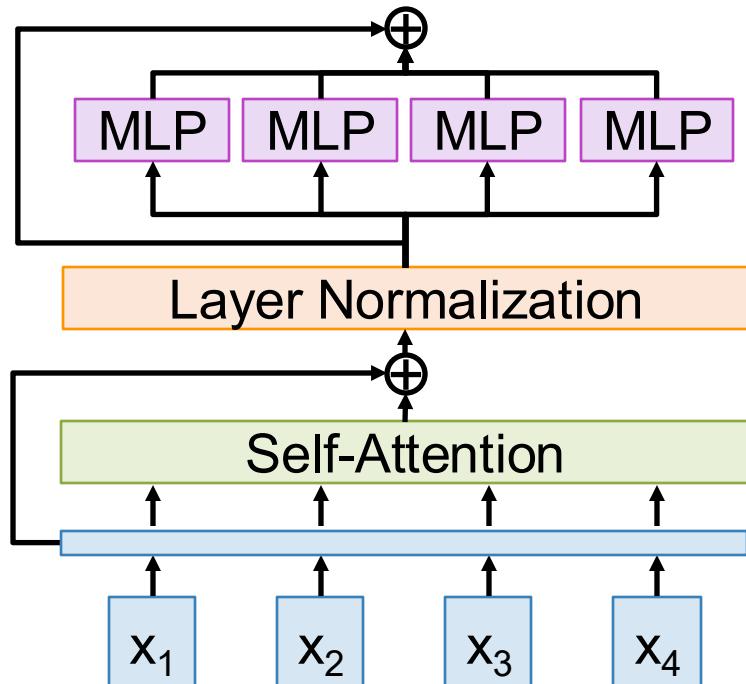
Residual connection

MLP independently
on each vector

Layer normalization
normalizes all vectors

Residual connection

All vectors interact through
(multiheaded) Self-Attention



Vaswani et al, "Attention is all you need," NeurIPS 2017

The Transformer

Transformer Block

Input: Set of vectors x

Another Layer Norm

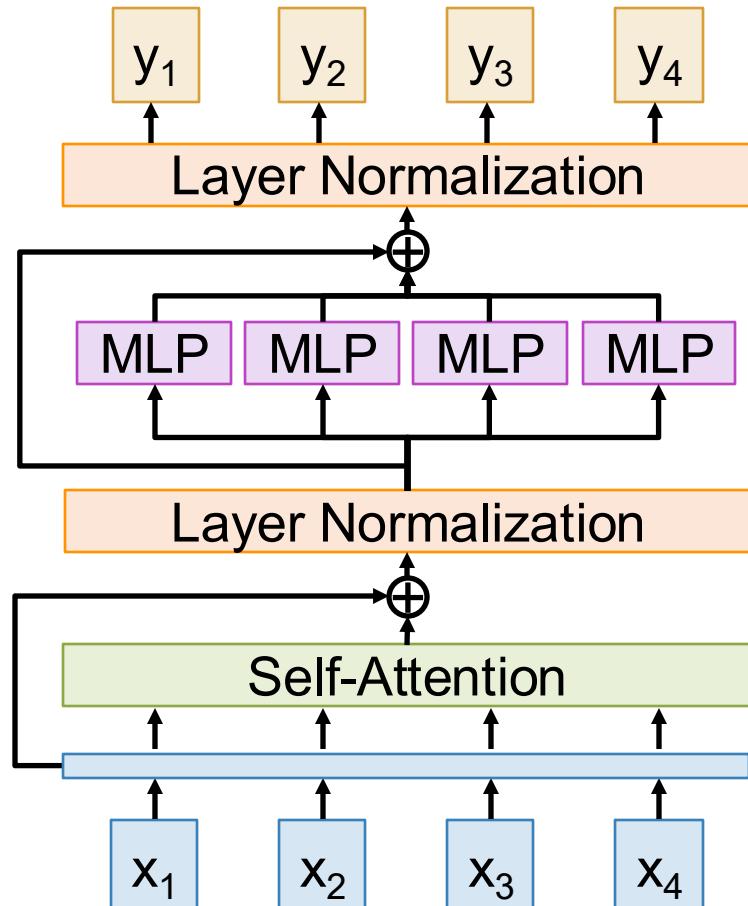
Residual connection

MLP independently
on each vector

Layer normalization
normalizes all vectors

Residual connection

All vectors interact through
(multiheaded) Self-Attention



Vaswani et al, "Attention is all you need," NeurIPS 2017

The Transformer

Transformer Block

Input: Set of vectors x

Output: Set of vectors y

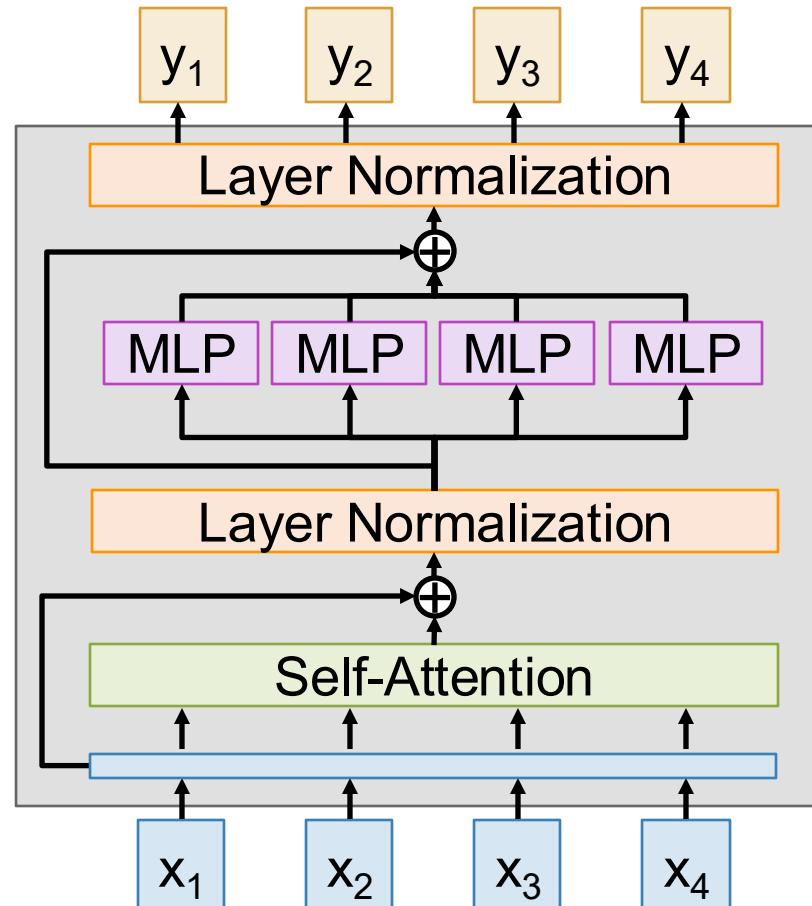
Self-Attention is the only interaction between vectors

LayerNorm and MLP work on each vector independently

Highly scalable and parallelizable, most of the compute is just 6 matmuls:

4 from Self-Attention

2 from MLP



Vaswani et al, "Attention is all you need," NeurIPS 2017

The Transformer

Transformer Block

Input: Set of vectors x

Output: Set of vectors y

Self-Attention is the only interaction between vectors

LayerNorm and MLP work on each vector independently

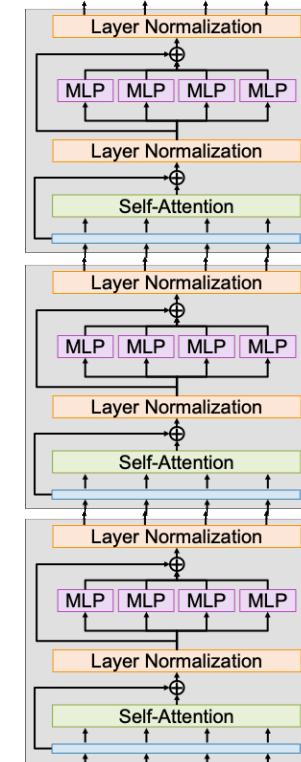
Highly scalable and parallelizable, most of the compute is just 6 matmuls:

4 from Self-Attention

2 from MLP

A **Transformer** is just a stack of identical Transformer blocks!

They have not changed much since 2017... but have gotten a lot bigger



Vaswani et al, "Attention is all you need," NeurIPS 2017

The Transformer

Transformer Block

Input: Set of vectors x

Output: Set of vectors y

Self-Attention is the only interaction between vectors

LayerNorm and MLP work on each vector independently

Highly scalable and parallelizable, most of the compute is just 6 matmuls:

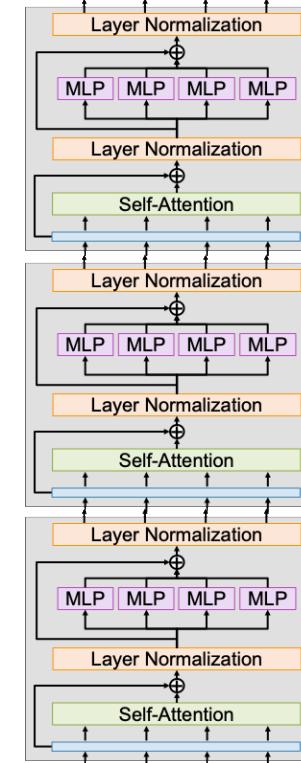
4 from Self-Attention

2 from MLP

A **Transformer** is just a stack of identical Transformer blocks!

They have not changed much since 2017... but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, $D=1024$, $H=16$, $N=512$
213M params



Vaswani et al, "Attention is all you need," NeurIPS 2017

The Transformer

Transformer Block

Input: Set of vectors x

Output: Set of vectors y

Self-Attention is the only interaction between vectors

LayerNorm and MLP work on each vector independently

Highly scalable and parallelizable, most of the compute is just 6 matmuls:

4 from Self-Attention

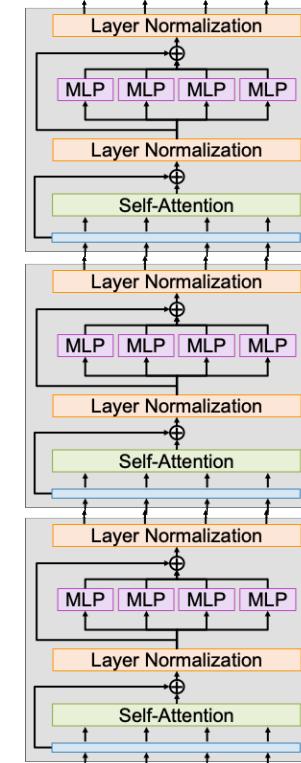
2 from MLP

A **Transformer** is just a stack of identical Transformer blocks!

They have not changed much since 2017... but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, $D=1024$, $H=16$, $N=512$
213M params

GPT-2: [Radford et al, 2019]
48 blocks, $D=1600$, $H=25$, $N=1024$
1.5B params



Vaswani et al, "Attention is all you need," NeurIPS 2017

The Transformer

Transformer Block

Input: Set of vectors x

Output: Set of vectors y

Self-Attention is the only interaction between vectors

LayerNorm and MLP work on each vector independently

Highly scalable and parallelizable, most of the compute is just 6 matmuls:

4 from Self-Attention
2 from MLP

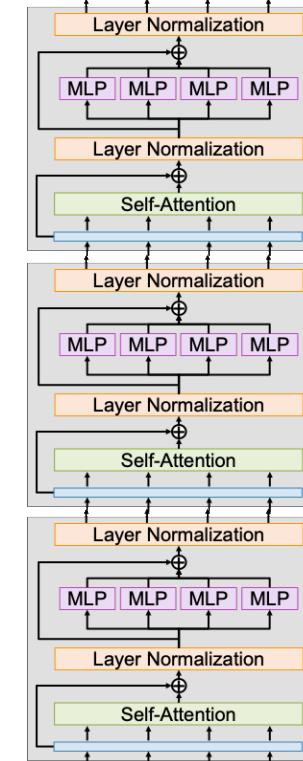
A **Transformer** is just a stack of identical Transformer blocks!

They have not changed much since 2017... but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, $D=1024$, $H=16$, $N=512$
213M params

GPT-2: [Radford et al, 2019]
48 blocks, $D=1600$, $H=25$, $N=1024$
1.5B params

GPT-3: [Brown et al, 2020]
96 blocks, $D=12288$, $H=96$, $N=2048$
175B params

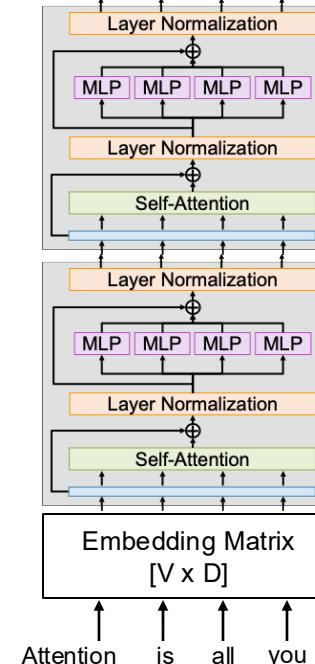


Vaswani et al, "Attention is all you need," NeurIPS 2017

Transformers for Language Modeling (LLM)

Learn an embedding matrix at the start of the model to convert words into vectors.

Given vocab size V and model dimension D , it's a lookup table of shape $[V \times D]$

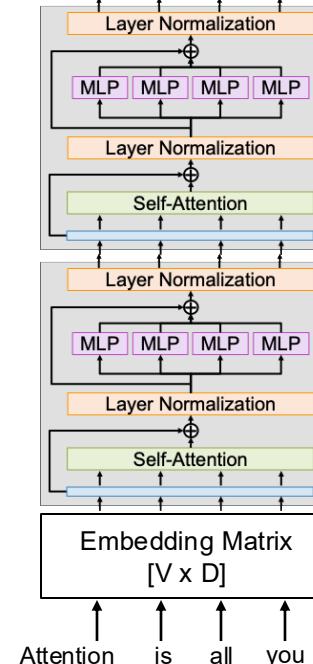


Transformers for Language Modeling (LLM)

Learn an embedding matrix at the start of the model to convert words into vectors.

Given vocab size V and model dimension D , it's a lookup table of shape $[V \times D]$

Use masked attention inside each transformer block so each token can only see the ones before it



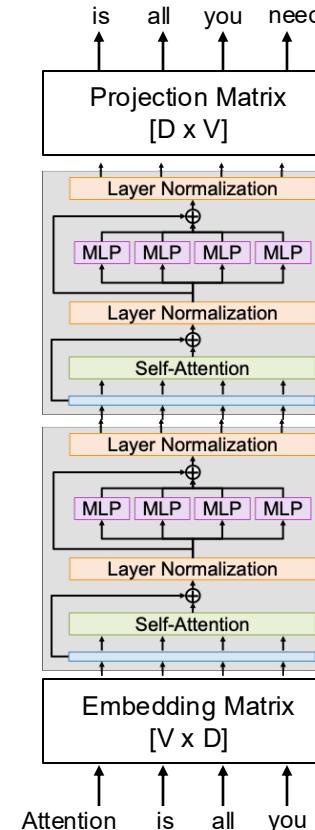
Transformers for Language Modeling (LLM)

Learn an embedding matrix at the start of the model to convert words into vectors.

Given vocab size V and model dimension D , it's a lookup table of shape $[V \times D]$

Use masked attention inside each transformer block so each token can only see the ones before it

At the end, learn a projection matrix of shape $[D \times V]$ to project each D -dim vector to a V -dim vector of scores for each element of the vocabulary.



Transformers for Language Modeling (LLM)

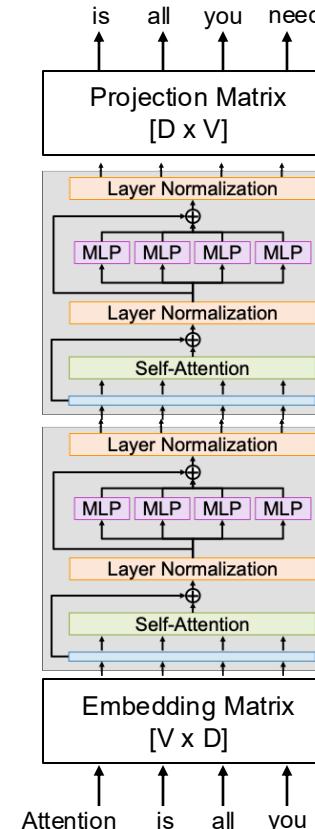
Learn an embedding matrix at the start of the model to convert words into vectors.

Given vocab size V and model dimension D , it's a lookup table of shape $[V \times D]$

Use masked attention inside each transformer block so each token can only see the ones before it

At the end, learn a projection matrix of shape $[D \times V]$ to project each D -dim vector to a V -dim vector of scores for each element of the vocabulary.

Train to predict next token using softmax + cross-entropy loss



Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Dosovitskiy et al, "An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale", ICLR 2021

Vision Transformers (ViT)

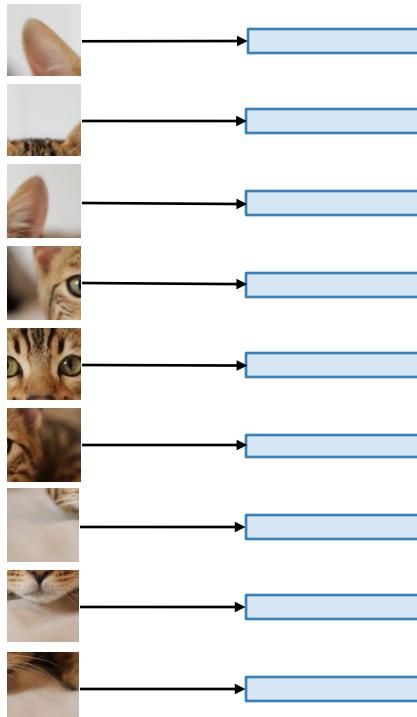
Input image:
e.g. 224x224x3

Break into patches
e.g. 16x16x3

Dosovitskiy et al, "An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale", ICLR 2021

Vision Transformers (ViT)

Input image:
e.g. 224x224x3



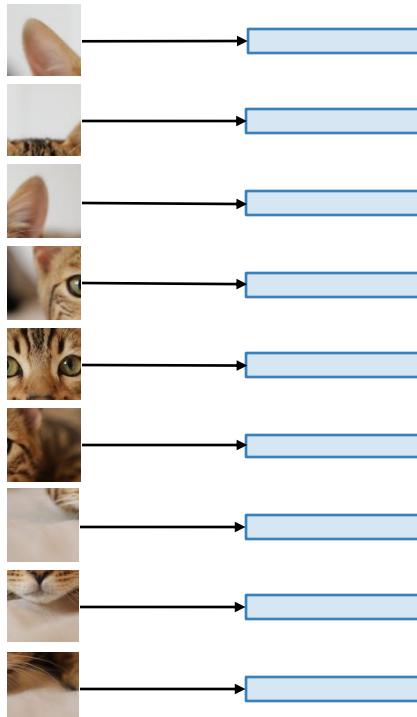
Break into patches
e.g. 16x16x3

Flatten and apply a linear
transform $768 \Rightarrow D$

Dosovitskiy et al, "An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale", ICLR 2021

Vision Transformers (ViT)

Input image:
e.g. 224x224x3



Break into patches
e.g. 16x16x3

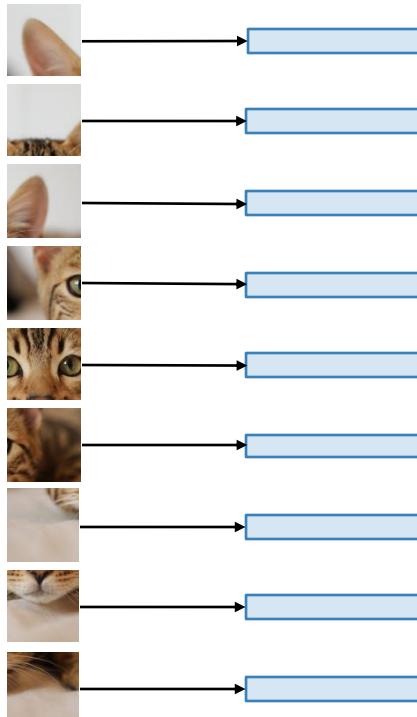
Flatten and apply a linear
transform 768 => D

Q: Any other way to
describe this operation?

Dosovitskiy et al, "An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale", ICLR 2021

Vision Transformers (ViT)

Input image:
e.g. 224x224x3



Break into patches
e.g. 16x16x3

Flatten and apply a linear
transform $768 \Rightarrow D$

Q: Any other way to
describe this operation?

A: 16x16 conv with stride
16, 3 input channels, D
output channels

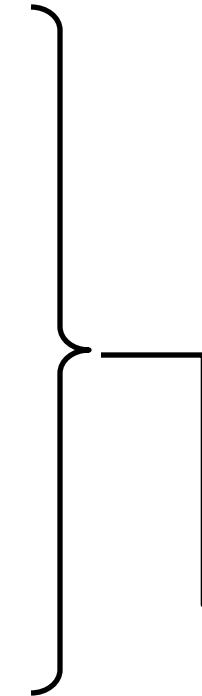
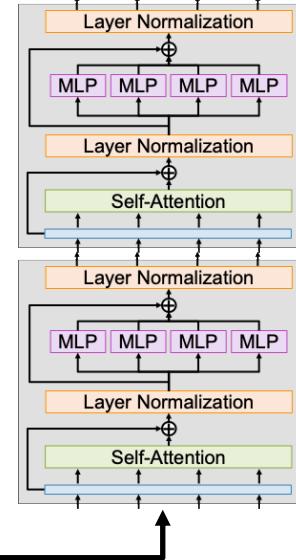
Dosovitskiy et al, "An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale", ICLR 2021

Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Break into patches
e.g. 16x16x3

Flatten and apply a linear
transform $768 \Rightarrow D$

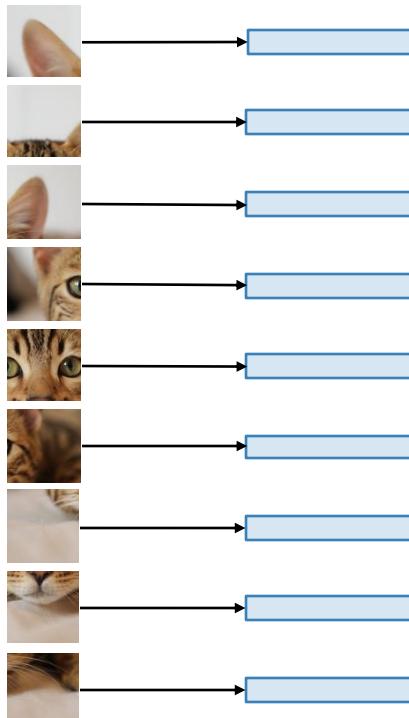


D-dim vector per patch
are the input vectors to
the Transformer

Dosovitskiy et al, "An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale", ICLR 2021

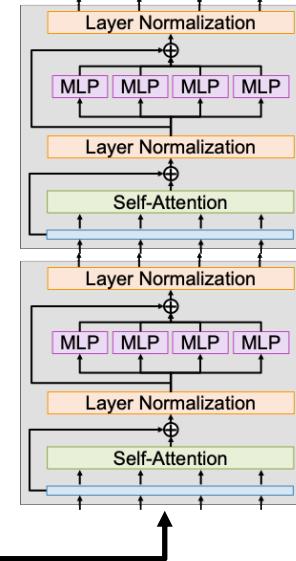
Vision Transformers (ViT)

Input image:
e.g. 224x224x3



Break into patches
e.g. 16x16x3

Flatten and apply a linear
transform $768 \Rightarrow D$



D-dim vector per patch
are the input vectors to
the Transformer

Use positional
encoding to tell
the transformer
the 2D position
of each patch

Dosovitskiy et al, "An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale", ICLR 2021

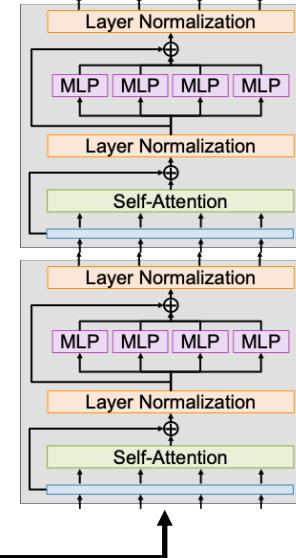
Vision Transformers (ViT)

Input image:
e.g. 224x224x3



Break into patches
e.g. 16x16x3

Flatten and apply a linear
transform $768 \Rightarrow D$



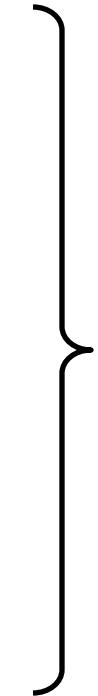
D-dim vector per patch
are the input vectors to
the Transformer

Don't use any
masking; each
image patch can
look at all other
image patches

Use positional
encoding to tell
the transformer
the 2D position
of each patch

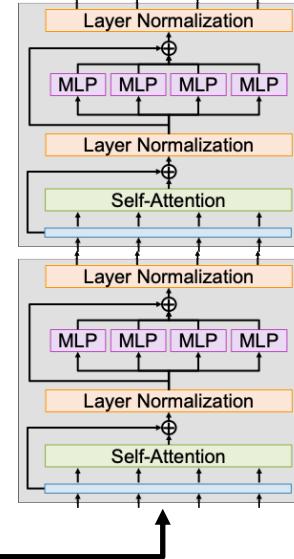
Vision Transformers (ViT)

Input image:
e.g. 224x224x3



Break into patches
e.g. 16x16x3

Flatten and apply a linear
transform 768 => D



D-dim vector per patch
are the input vectors to
the Transformer

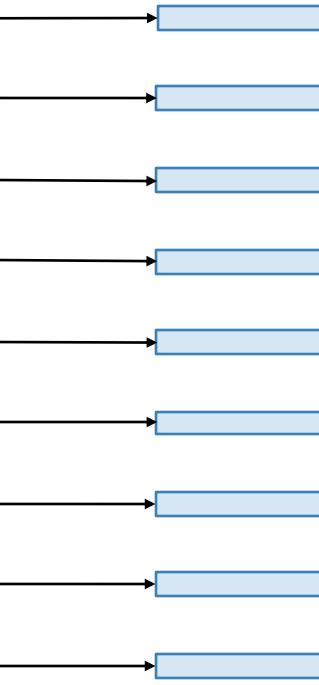
Transformer
gives an output
vector per patch

Don't use any
masking; each
image patch can
look at all other
image patches

Use positional
encoding to tell
the transformer
the 2D position
of each patch

Vision Transformers (ViT)

Input image:
e.g. 224x224x3



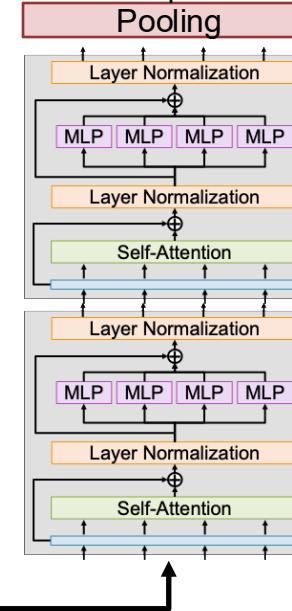
Flatten and apply a linear
transform $768 \Rightarrow D$

Average pool $N \times D$ vectors to
1xD, apply a linear layer
 $D \Rightarrow C$ to predict class scores

Transformer
gives an output
vector per patch

Don't use any
masking; each
image patch can
look at all other
image patches

Use positional
encoding to tell
the transformer
the 2D position
of each patch

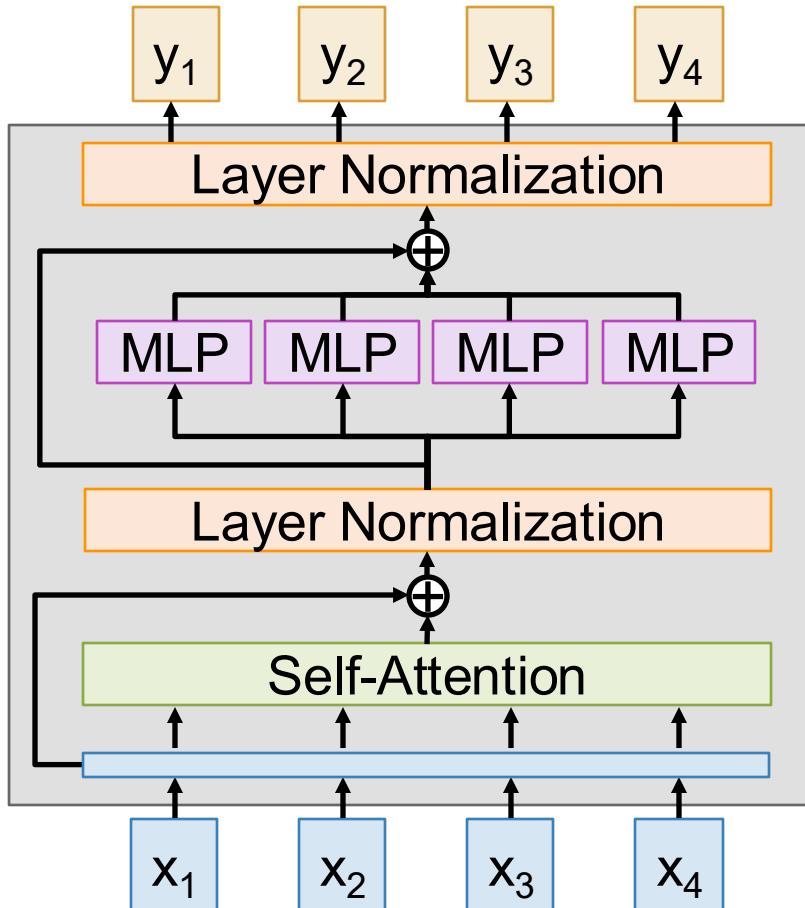


D-dim vector per patch
are the input vectors to
the Transformer

Tweaking Transformers

The Transformer architecture has not changed much since 2017.

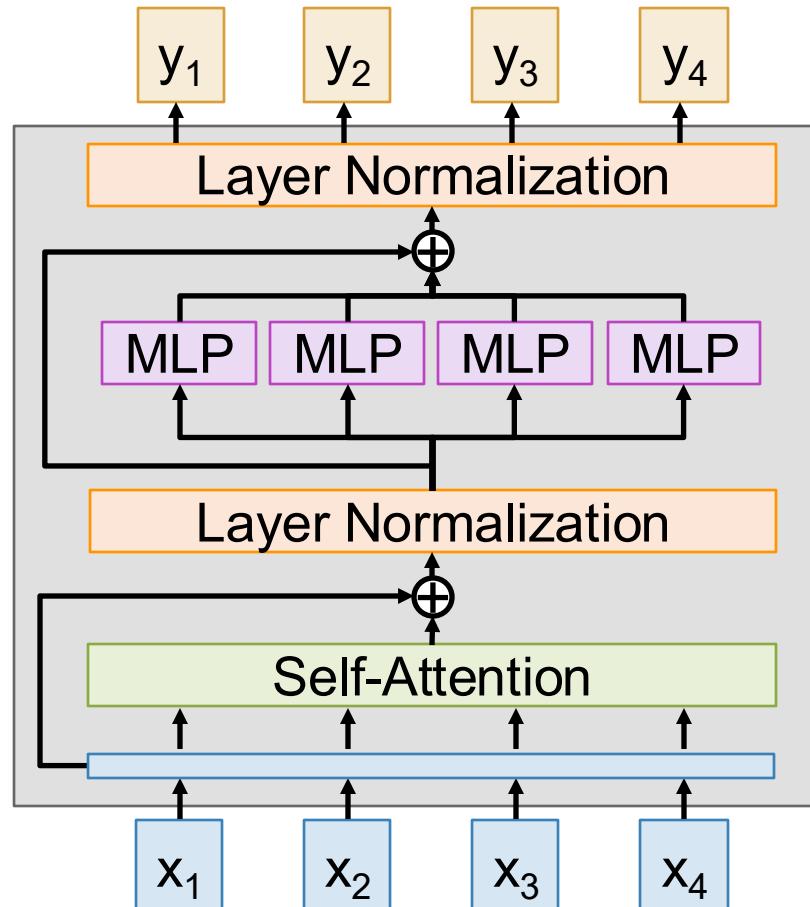
But a few changes have become common:



Pre-Norm Transformer

Layer normalization is outside the residual connections

Kind of weird, the model can't actually learn the identity function



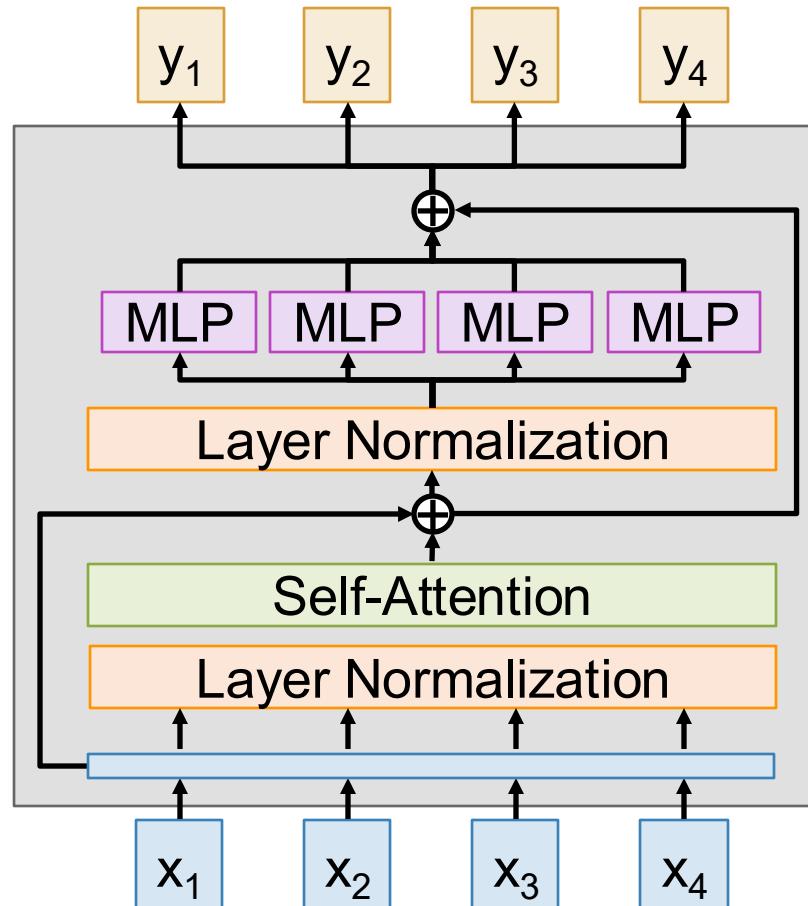
Baevski & Auli, "Adaptive Input Representations for Neural Language Modeling", arXiv 2018

Pre-Norm Transformer

Layer normalization is outside the residual connections

Kind of weird, the model can't actually learn the identity function

Solution: Move layer normalization before the Self-Attention and MLP, inside the residual connections. Training is more stable.



Baevski & Auli, "Adaptive Input Representations for Neural Language Modeling", arXiv 2018

RMSNorm

Replace Layer Normalization
with Root-Mean-Square
Normalization (RMSNorm)

Input: x [shape D]

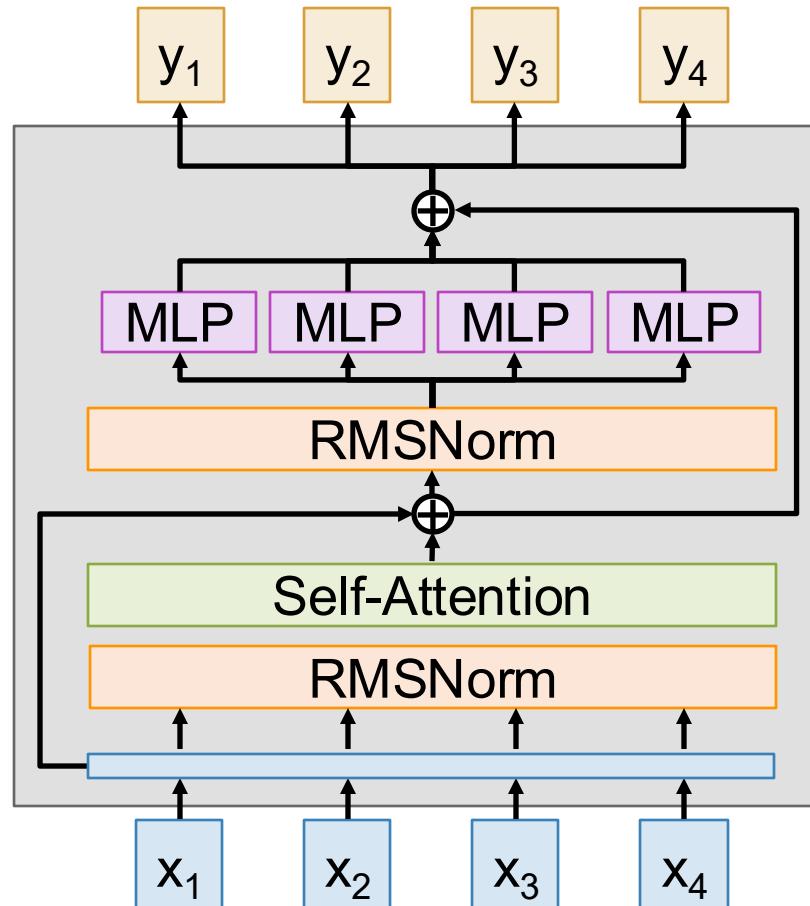
Output: y [shape D]

Weight: γ [shape D]

$$y_i = \frac{x_i}{RMS(x)} * \gamma_i$$

$$RMS(x) = \sqrt{\varepsilon + \frac{1}{N} \sum_{i=1}^N x_i^2}$$

Training is a bit more stable



Zhang and Sennrich, "Root Mean Square Layer Normalization", NeurIPS 2019

SwiGLU MLP

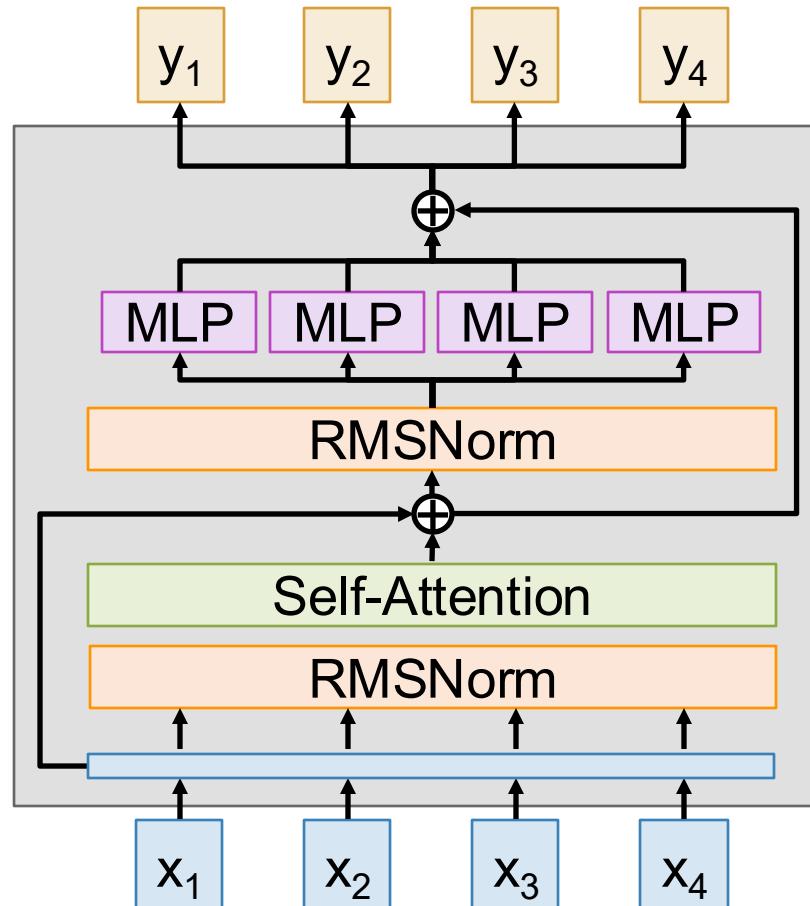
Classic MLP:

Input: X $[N \times D]$

Weights: W_1 $[D \times 4D]$

W_2 $[4D \times D]$

Output: $Y = \sigma(XW_1)W_2$ $[N \times D]$



Shazeer, "GLU Variants Improve Transformers", 2020

SwiGLU MLP

Classic MLP:

Input: X [N x D]

Weights: W_1 [D x 4D]

W_2 [4D x D]

Output: $Y = \sigma(XW_1)W_2$ [N x D]

SwiGLU MLP:

Input: X [N x D]

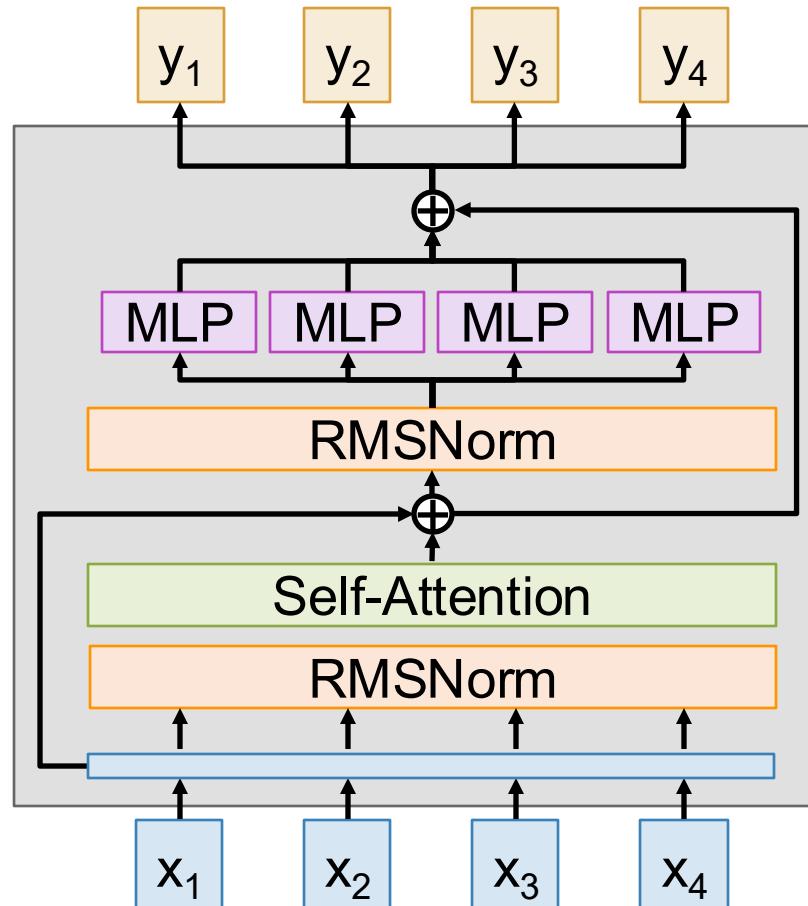
Weights: W_1, W_2 [D x H]

W_3 [H x D]

Output:

$$Y = (\sigma(XW_1) \odot XW_2)W_3$$

Setting $H = 8D/3$ keeps
same total params



Shazeer, "GLU Variants Improve Transformers", 2020

SwiGLU MLP

Classic MLP:

Input: X [N x D]

Weights: W_1 [D x 4D]

W_2 [4D x D]

Output: $Y = \sigma(XW_1)W_2$ [N x D]

SwiGLU MLP:

Input: X [N x D]

Weights: W_1, W_2 [D x H]

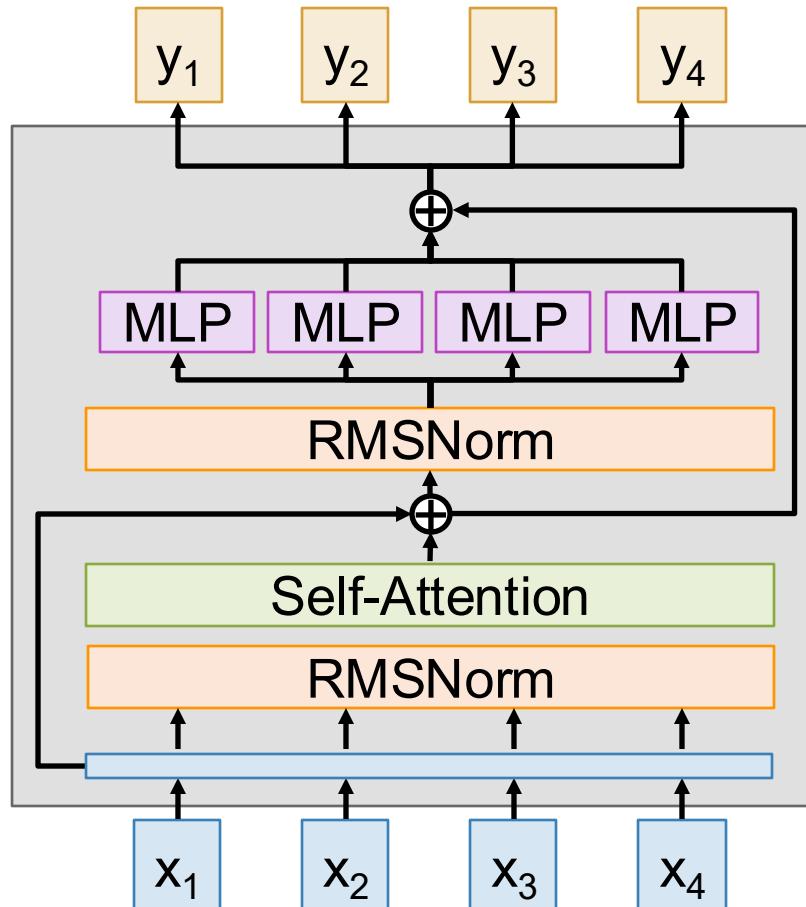
W_3 [H x D]

Output:

$$Y = (\sigma(XW_1) \odot XW_2)W_3$$

Setting $H = 8D/3$ keeps
same total params

*We offer no explanation as
to why these architectures
seem to work; we attribute
their success, as all else,
to divine benevolence.*



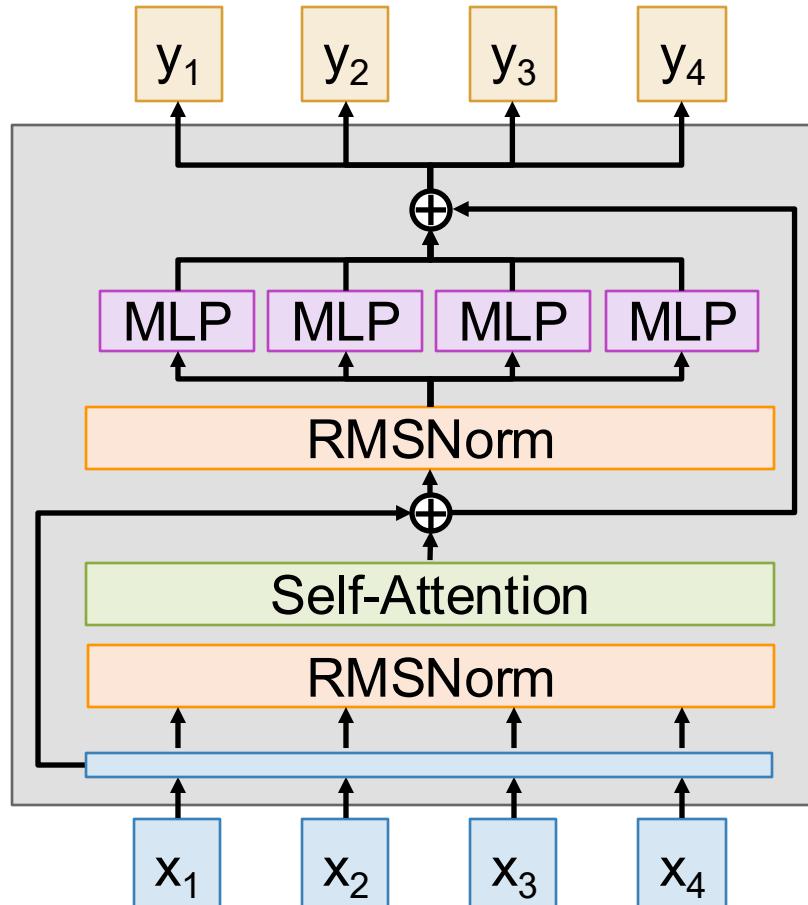
Shazeer, "GLU Variants Improve Transformers", 2020

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in each block; each MLP is an *expert*

$$W_1: [D \times 4D] \Rightarrow [E \times D \times 4D]$$

$$W_2: [4D \times D] \Rightarrow [E \times 4D \times D]$$



Shazeer et al, "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer", 2017

Mixture of Experts (MoE)

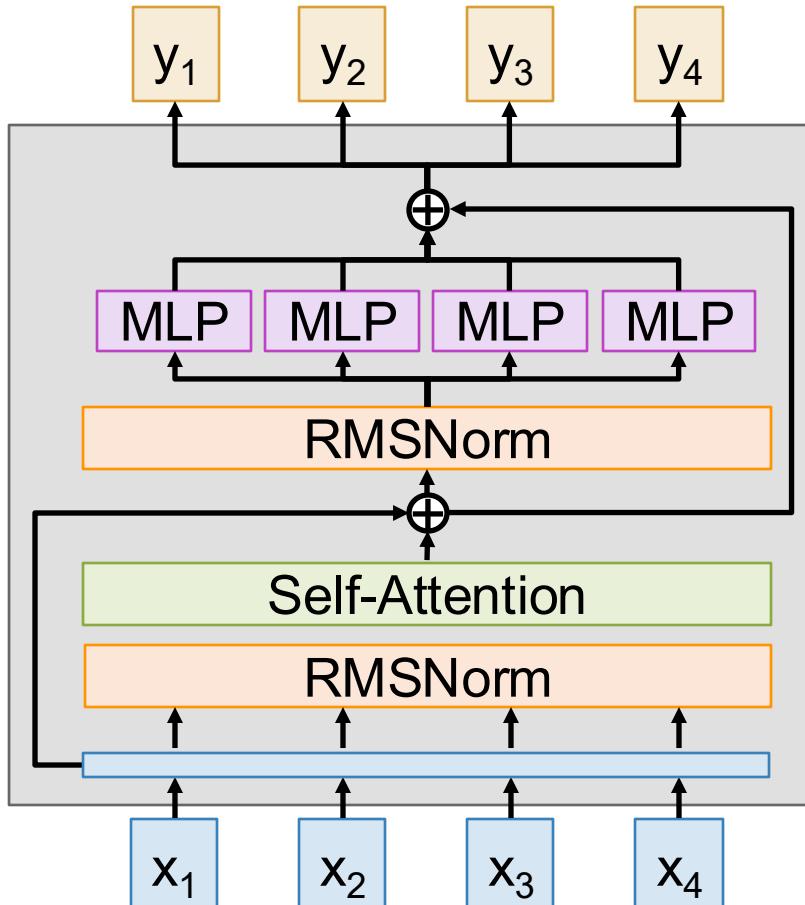
Learn E separate sets of MLP weights in each block; each MLP is an *expert*

$$W_1: [D \times 4D] \Rightarrow [E \times D \times 4D]$$

$$W_2: [4D \times D] \Rightarrow [E \times 4D \times D]$$

Each token gets *routed* to $A < E$ of the experts. These are the *active experts*.

Increases params by E ,
But only increases compute by A



Shazeer et al, "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer", 2017

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in each block; each MLP is an *expert*

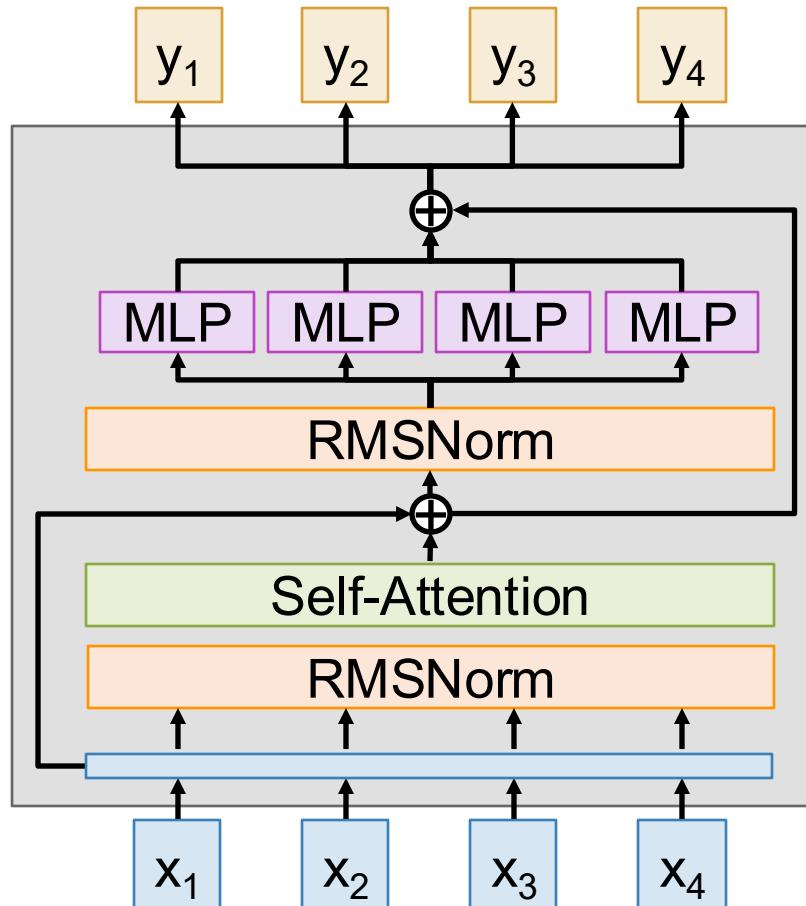
$$W_1: [D \times 4D] \Rightarrow [E \times D \times 4D]$$

$$W_2: [4D \times D] \Rightarrow [E \times 4D \times D]$$

Each token gets *routed* to $A < E$ of the experts. These are the *active experts*.

Increases params by E ,
But only increases compute by A

All of the biggest LLMs today (e.g. GPT4o, GPT4.5, Claude 3.7, Gemini 2.5 Pro, etc) almost certainly use MoE and have $> 1T$ params; but they don't publish details anymore

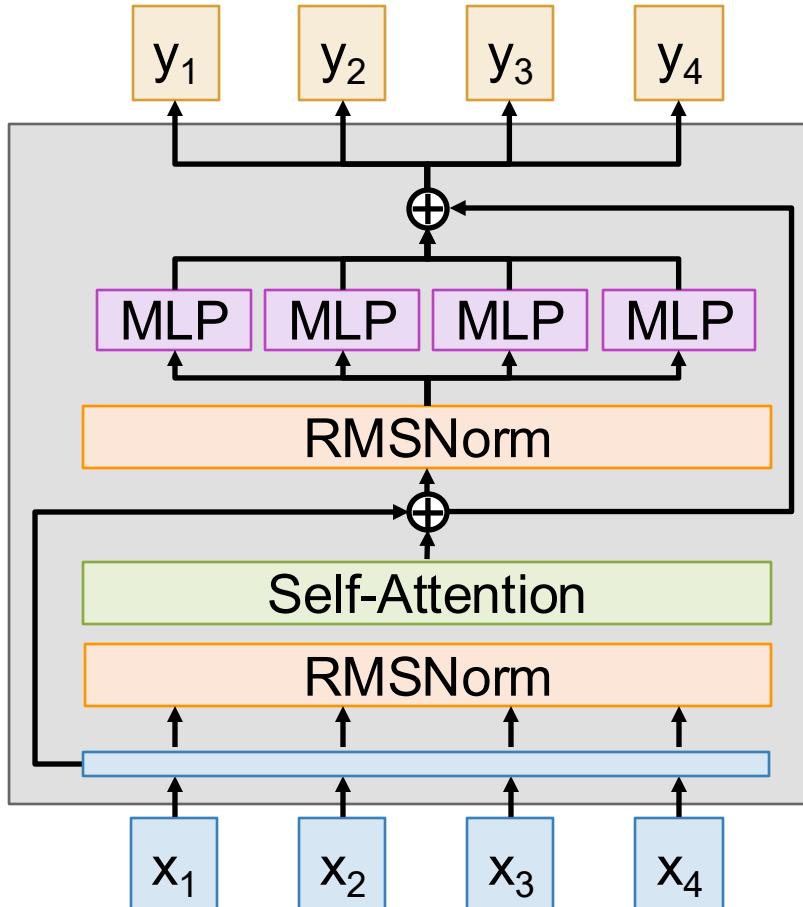


Tweaking Transformers

The Transformer architecture has not changed much since 2017.

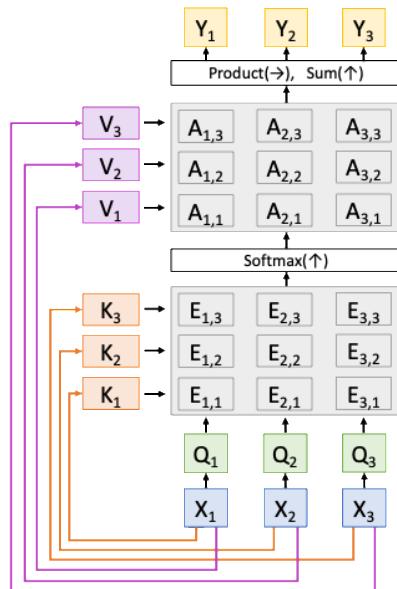
But a few changes have become common:

- **Pre-Norm:** Move normalization inside residual
- **RMSNorm:** Different normalization layer
- **SwiGLU:** Different MLP architecture
- **Mixture of Experts (MoE):** Learn E different MLPs, use $A < E$ of them per token. Massively increase params, modest increase to compute cost.



Summary: Attention + Transformers

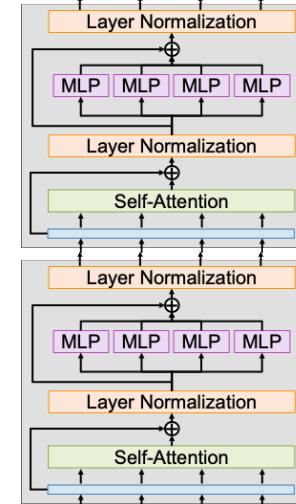
Attention: A new primitive that operates on sets of vectors



Transformers are the backbone of all large AI models today!

Used for language, vision, speech, ...

Transformer: A neural network architecture that uses attention everywhere



Next Time:
Detection, Segmentation,
Visualization