Lecture 8:
Attention and Transformers

Stanford CS231n 10t Anniversary Lecture 8- 1 April 24,2025



Administrative

e Assignment 2 released yesterday (4/23)
® Project proposals are due tomorrow (4/25)
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Last Time: Recurrent Neural Networks

one to one one to many many to one many to many many to many
f Pt t t t 1 Pt ¢t
! ! Pt 1 Pt 1 T
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Today: Attention + Transformers

Attention: A new primitive that Transformer: A neural
operates on sets of vectors network architecture that
2 W uses attention everywhere
| 'Product{—)'), Sum('ﬂ' | ?Layer?NormaI?izalion’
Vs = A s (A MLP | MLP | MLP | MLP
— 1 V2 7 A, A A,
_.EI_. Al.l Az,l A3,1 Layer Normalization
' .
| Softm'axl']"] | = Sel1f-Attent'|on |
_' Ks |_" Eys Exz Ess ? f' f' f+
~ % |-k, E,, E,, Layer Normalization
(K |—|[Eaa] [E2a] [Ea MLP |[MLP | MLP |[MLP
t t ot
Q Q, ‘ Q; ‘ Layer Normalization
‘ Xy ‘ ‘ X, | ‘ X3 ‘ Self-Attention
I Lttt |
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Today: Attention + Transformers

Attention: A new primitive that Transformer: A neural
operates on sets of vectors network architecture that
7 W uses attention everywhere
| 'Product{—)'}, Sum('ﬂ' | ?Layer?NormaI?izalion’
LY - Al [Azal [Ass MLP | [MLP | MLP |[MLP
— 1 V2 7 A, A A,
— Vi = A, - » Layer Normalization
Vi~ A, N A Transformers are used -
[ Softm'axl']"] | eve rywhe re today' = Sel1f-Attent'|on -
_' Ks |_' Eia) | Eaa) [Eaz { ! { {
Layer Normalization
K 7™ By, E; Es ﬂ'_‘
Il—p E:l,:l E2,1 E3‘1 But they developed aS MLPHMLP MLPHMLP
(;1 CI; ‘C;;‘ an OffShOOt Of RN NS Layer Normalization
A B B so let’s start there —
[ ] L -t |
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Sequence to Sequence with RNNs: Encoder - Decoder

Input: Sequence X4, ... X7 A motivating example for today’s discussion —
: . . :
Output: Sequence vy, ..., Yo machine translation! English - Italian

Encoder: h, = (X, hi.1)

hy > h, > hs > hy,
X1 X2 X3 X4
we see the sky

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
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Sequence to Sequence with RNNs

Input: Sequence xq, ... X1
Output: Sequence y;,, ..., yr

From final hidden state predict:

Encoder: h, = fy(x, hi4) Initial decoder state s,
Context vector c (often c=hy)

h1 > h2 > h3 > h4 So
X4 X2 X3 X4 > c
we see the sky

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
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Sequence to Sequence with RNNs

Input: Sequence X, ... Xt Decoder: s; = gy(Yt.1, St.1, C)
Output: Sequence y;,, ..., yr

vediamo

From final hidden state predict:

Encoder: h, = fy(x, hi4) Initial decoder state s,
Context vector c (often c=hy)

Y4

=
v
=
N
4
>
w
v
=
5
v
@

So

I |

X4 X2 X3 X4

v
o

Yo

we see the sky [START]

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
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Sequence to Sequence with RNNs

Input: Sequence X, ... Xt Decoder: s; = gy(Yt.1, St.1, C)
Output: Sequence y,, ..., yp Cediame ”
From final hidden state predict:
g Y1 Y2
Encoder: ht — fW(Xt’ ht-1) Initial decoder state s, ‘ ‘
Context vector c (often c=h;) 1
h, » h, > h; » h, So » s > s,
1 I ] ] 11; 11;
X1 X2 X3 X4 g Yo Y1
we see the sky [START] vediamo

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
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Sequence to Sequence with RNNs

Input: Sequence X, ... Xt Decoder: s; = gy(Yt.1, St.1, C)
Output: Sequence y;,, ..., yr

vediamo il cielo [STOP]

From final hidden state predict:
agm Y1 Y2 Y3 Y4
Encoder: ht — fW(Xt’ ht-1) Initial decoder state s, i N N i
Context vector c (often c=h)
h1 > hz > h3 > h4 So > S1 > Sy > S3 > Sy
1 I ] ] 11; 11; 11; fu
X4 X2 X3 X4 > c Yo Y4 Y2 Y3
we see the sky [START] vediamo il cielo

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
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Sequence to Sequence with RNNs

Input: Sequence X, ... Xt Decoder: s; = gy(Yt.1, St.1, C)
Output: Sequence y;,, ..., yr

vediamo il cielo [STOP]

From final hidden state predict:
agm Y1 Y2 Y3 Y4
Encoder: ht — fW(Xt’ ht-1) Initial decoder state s, i N N i
Context vector c (often c=h)
h1 > hz > h3 > h4 So > S1 > Sy > S3 > Sy
1 I ] ] 11; 11; 11; fu
X4 X2 X3 X4 > c Yo Y4 Y2 Y3
Problem: Input sequence
we see the sky [START] vediamo il cielo

bottlenecks through fixed
sized c. What if T=10007

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014

Stanford CS231n 10t Anniversary Lecture 8- 11 April 24,2025



Sequence to Sequence with RNNs

Input: Sequence X, ... Xt Decoder: s; = gy(Yt.1, St.1, C)
Output: Sequence yy, ..., yr vediamo i cielo [STOP]
From final hidden state predict:
g n Y1 Y2 Y3 Y4
Encoder: h, = fy(x;, h.1) Initial decoder state s, ‘
Context vector c (often c=h;) | 1 1 1
h, » h, > h; » h, So » s > s, » S;3 » s,
1 I ] ] 11; 11; 11; fu
X4 Xo X3 X4 > cC Yo Y1 Y2 Y3
Solution: Look back at the
we see the sky [START] vediamo il cielo

whole input sequence on
each step of the output

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014
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Sequence to Sequence with RNNs and Attention

Input: Sequence xq, ... X1
Output: Sequence y;,, ..., yr

From final hidden state:

Encoder: h; = fy(x;, hi.4) Initial decoder state s,

=
v
=
N
\
>
w
v
=
5

So

I

X4 X2 X3 X4

we see the sky

Bahdanau et al, “Neural machine translation by jointly leaming to align and translate”, ICLR 2015

Stanford CS231n 10t Anniversary Lecture8- 13 April 24,2025



Sequence to Sequence with RNNs and Attention

Compute (scalar) alignment scores
e = fau(Seq, y) (. is a Linear Layer)

From final hidden state:

e €12 €13 €14 Initial decoder state s,
A A AA A AL
1
hy > hy > hs > h S0
X4 X2 X3 X4
we see the sky

Bahdanau et al, “Neural machine translation by jointly leaming to align and translate”, ICLR 2015
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Sequence to Sequence with RNNs and Attention

Compute (scalar) alignment scores

a a a ans € = fatt(st-h h.) (fatt is a Linear Layer)
1 fSoftmaxf 1 Normalize alignment scores
f— t T T Fromfinal hidden state: Eofzt_a:tf"t'z"_z weights

&1 “e &3 “¢ | Initial decoder state s, t =

hy » h, » hj > h, So

I

X4 X2 X3 X4

we see the sky

Bahdanau et al, “Neural machine translation by jointly leaming to align and translate”, ICLR 2015
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Sequence to Sequence with RNNs and Attention

1 1 1 1
X % /%@ x
¢ t 4t )
soffmax
i t  From final hidden state:
€11 S Initial decoder state s,

\

a

X1

we

Bahdanau et al, “Neural machine translation by jointly leaming to align and translate”, ICLR 2015

h, > h,
X2 X3
see the

X4

sky

Compute (scalar) alignment scores
e = fan(Seq, y) (f,i is a Linear Layer)

vediamo
Normalize alignment scores

to get attention weights

O<a;<1 a;=1
Compute context vector as
weighted sum of hidden

So

states

Stanford CS231n 10t Anniversary

Ci = 2i@yhy

v

C1
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Sequence to Sequence with RNNs and Attention

| | 1 1
X % /%@ x
) t t t
soffmax
t t

\

a

From final hidden state:
Initial decoder state s,

X1

we

Bahdanau et al, “Neural machine translation by jointly learmning to align and translate”, ICLR 2015

Stanford CS231n 10 Anniversary

Compute (scalar) alignment scores

ey = fau(St.1, hy)
vediamo

Y4

AN

X2 X3
see the

X4

sky

v

C1 Yo

[START]

Lecture8- 17

(f,i is a Linear Layer)

Normalize alignment scores
to get attention weights
O<a;<1

Compute context vector as
weighted sum of hidden

S1 states

: 3 Ci = Yiagh;

Use context vector in
decoder: s; = gy(Yt.1, St-1, Ct)

diag =1

gy is an RNN unit
(e.g. LSTM, GRU)

April 24, 2025



Sequence to Sequence with RNNs and Attention

2:@ §)I@ 2|@ 2;@ Compute (scalar) alignment scores
. : : . e = fan(Seq, y) (fui is a Linear Layer)
fﬂ : : : vediamo
soffmax Normalize alignment scores
t 1 t t From final hidden state: i ’E)oigzt.a:t?ntlzo.g Yv=e|19hts
o &1 &1 ®+ | Initial decoder state s, ' t el
ﬁ \ t1 11 11 Compute context vector as
! , weighted sum of hidden
h, \ h, \ hs \ hy So /+\ S1 StateS
] I I I Intuition: Context t 1 C = 2iah,
vector attends to the Use context vector in
y ' . ., | relevant part of the o o || v decoder: s; = gy(Yi1, St.1, Ct)
input sequence
we see the sy  vediamo’=‘we see”
so maybe a,;=a,,=0.45, [START]

a3=a,4,=0.05

Bahdanau et al, “Neural machine translation by jointly learmning to align and translate”, ICLR 2015
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Sequence to Sequence with RNNs and Attention

2;@ §)I@ 2|@ 2;@ Compute (scalar) alignment scores
. : : . e = fan(Seq, y) (fa is a Linear Layer)
fﬂ : : : vediamo
soffmax Normalize alignment scores
t 1 t t  From final hidden state: Y E)szt.a:ﬂe“t;g YV=9|19htS
o e i ®« | |nitial decoder state s, t =t
ﬁ \ t1 11 1 ] Compute context vector as
! , weighted sum of hidden
h, \ h, \ h3 \ hy So /+\ S1 StateS
] I I I Intuition: Context I 1 C = 2iah,
vector attends to the Use context vector in
y ' . ., | relevant part of the o o || v decoder: s; = gy(Yi1, St.1, Ct)
input sequence
we see the sy  vediamo’=‘we see”
so maybe a,;=a,,=0.45, [START]

a3=a,4,=0.05

Bahdanau et al, “Neural machine translation by jointly learmning to align and translate”, ICLR 2015
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Sequence to Sequence with RNNs and Attention

Repeat: Use s, to compute

% % % % new context vector ¢,
t 4 () ()
az az azs a4 _ Compute new alignment
vediamo .
1 % [\ t scores e,; and attention
soffmax weights a,
t 1 t t 2
€21 €22 €23 \ €24 Y A
A f \ A f A * A f +
hy \ hy \ hs \ hy So > s
X1 X2 X3 X4 C1 Yo Cz
we see the sky
[START]

Bahdanau et al, “Neural machine translation by jointly learmning to align and translate”, ICLR 2015

Stanford CS231n 10t Anniversary
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Sequence to Sequence with RNNs and Attention

Repeat: Use s, to compute

2‘@ 2‘@ 2‘@ 2‘@ new context vector c,
3 ) / 3 )
arq aso ass s . .
§ 3 3 ? vediamo il
soffmax
t 1 t t Vi V2
€71 €27 \ €23 €24 \ A A
11 \ 11 11 \ [ X1 + Use context vector
\ \ \ in decoder: s; =
h; > h, » h; hy So g P s gU(yt-1’ St-1s Ct)
I R Ul |
X4 Xo X3 X4 C1 Yo Cz Y1
we see the sky

[START] vediamo

Bahdanau et al, “Neural machine translation by jointly learmning to align and translate”, ICLR 2015
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Sequence to Sequence with RNNs and Attention

Repeat: Use s, to compute

2‘@ % % % new context vector c,
t ) () ()
a: a: / a: a: vediamo il
soffmax
t 1 \ t t Vi V2
€21 €2 €23 €24 . A A
11 \ 11 11 \ 11 + Use context vector
\ \ \ in decoder: s; =
[ g " hs hs So g P s 9u(Ye-1, St1, Ct)
I I ] ] Intuition: Context vector
attends to the relevant * Y
Xi X2 X3 X4 part of the input sequence | & || Y c || v
“GiI” = “the”
we see the sky SO maybe 321=322=0_05,
2,,=0.1, 3,3,=0.8 [START]  vediamo

Bahdanau et al, “Neural machine translation by jointly learmning to align and translate”, ICLR 2015
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Sequence to Sequence with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector
- At each timestep of decoder, context vector “looks at”
different parts of the input sequence

vediamo il cielo [STOP]

Y1 Y2 Y3 Y4

A 4

\ 4

v
(2]
FN

=
v
>
N
v
>
@
v
=
i
v
»n
N
\ 4

So

a a a a a a a s
\ 4 v A 4 A\ 4

S1 S3

»
>

X4 X2 X3 X4 C1 Yo Cz Y1 C3 Y2 Cy Y3
1 t 1 )

we see the sky
[START] vediamo il cielo

Bahdanau et al, “Neural machine translation by jointly learming to align and translate”, ICLR 2015
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Sequence to Sequence with RNNs and Attention

Example: English to

Visualize attention weights a; ;
French translation Isuallz lon weig t

)
c
azq a az3 Ay E %E
A A A iy - i A
1 1 1 1 * 8 S e m 2 a5 o =
ff 25c258¢85 _ 9§ &
[ =
sorfmax F R oS LW T LE I A W

t 1 t t L

€24 €25 €23 €24 accord
WA i
h3

Zone
hy > h, >

hy

economigue

européenne
eté

% % s % signé
en

aodt

we see the sky 1992

<end>

Bahdanau et al, “Neural machine translation by jointly learmning to align and translate”, ICLR 2015
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Sequence to Sequence with RNNs and Attention

Example: English to

Visualize attention weights a; ;
French translation Isuallz lon weig t

The
agreement
on

the
European
Economic
Area

was
signed
1992
=end=>

in
August

Input: “The agreement on the

European Economic Area was ’

accord

signed in August 1992.” sur
la

Zone

Output: “L’accord sur la zone économique
économique européenne a été suropssmn®
signé en aout 1992.” été
signé

en
aout
1992

<end>

Bahdanau et al, “Neural machine translation by jointly learmning to align and translate”, ICLR 2015
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Sequence to Sequence with RNNs and Attention

Example: English to

French translation Visualize attention weights a;

e
agreamen

on
European

the
Economic

Input: “The agreement on the
European Economic Area was
signed in August 1992

Diagonal attention
means words
correspond in order

Output: “L’accord sur la zone économique
économique européenne aq été européenne

d

signé en aout 19927 été
signé
Diagonal attention
means words
correspond in order

Bahdanau et al, “Neural machine translation by jointly learmning to align and translate”, ICLR 2015
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Sequence to Sequence with RNNs and Attention

Example: English to

French translation Visualize attention weights a;

agreemen
on
European
Economic
Area

was

the
signed

Input: “The agreement on the

Diagonal attention

was means words

signed in August 1992. correspond in order
Output: “L’accord sur la économique
a Eétfé européenne
d
signé en aout 19927 été

signé

Diagonal attention
means words
correspond in order

Bahdanau et al, “Neural machine translation by jointly learmning to align and translate”, ICLR 2015

Stanford CS231n 10 Anniversary Lecture 8 - 27 April 24, 2025



Sequence to Sequence with RNNs and Attention

There’s a general

[
%@ %@ %@ 2§ operator hiding here:
a: 3;2 a: a: vediamo il cielo [STOP]
soffmax
t 1 \ 1 t y ", . 5
€21 €22 €23 €24
A f \ “f A * \

m \hz N \“f ’ — I I I

> h;

e N (e

X4 X2 X3 X4 C1 Yo C2 Y1 C3 Y2 Cs Y3
1 t t )
we see the sky
[START] vediamo il cielo
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Sequence to Sequence with RNNs and Attention

Query vectors (decoder RNN states) and There’s a general
data vectors (encoder RNN states) operator hiding here:
get transformed to
vediamo il cielo [STOP]
Each query attends to all data vectors and
gives one vector 4 y2 ¥ va
h1 > hz > h3 > h4 So Jj S1 > Sy > S3 > Sy
X4 X2 X3 X4 C1 Yo C2 Y1 C3 Y2 Cs Y3
1 t t )
we see the sky
[START] vediamo il cielo
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Inputs:
Query vector: ¢ [Dq]

sn max |

Attention Layer ’i‘ /
-]
1

|.°f1‘ | nl\ SrdlT
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Attention Layer Tk

Inputs:
Query vector: ¢ [Dq]

Data vectors: X [Ny x Dy]
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Attention Layer Tk /i‘ r’."T
Inputs: T a; E: a’r
Query vector: q [Dg] | soffmax |
Data vectors: X [Ny x Dy] =TT I ol ||
£ | 4 £\ 5

Computation:
Similarities: e [Ny] e, = f,u(qa, X;)

Stanford CS231n 10t Anniversary Lecture 8 - 32
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Attention Layer —r
Inputs: T a; E: a;
Query vector: q [Dg] | soffmax |

Data vectors: X [Ny x Dy]

Computation:
Similarities: e [Nx] €; = f,u(q, X))
Attention weights: a = softmax(e) [Ny]
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Attention Layer VIR IS,
Inputs: a; 1

Query vector: q [Dg] |
Data vectors: X [Ny x Dy]

Computation:

Similarities: e [Nx] €; = f,u(q, X))
Attention weights: a = softmax(e) [Ny]
Output vector: y = >;aX; [D«]

Stanford CS231n 10 Anniversary
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Attention Layer VIR IS,
Inputs: a; 1

Query vector: q [Dg] |
Data vectors: X [Ny x Dy]

Computation:

Similarities: e [Nx] €; = f,u(q, X))
Attention weights: a = softmax(e) [Ny]
Output vector: y = >;aX; [D«]

Let's generalize this!
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Attention Layer

Inputs:
Query vector: q [Dy] |

Data vectors: X [Ny x Dy]

W SEE the sky

Computation:

Similarities: e [Ny] |ei =q- X I Changes
Attention weights: a = softmax(e) [Ny] - Use dot product for similarity
Output vector: y = >;aX; [D«]
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Attention Layer

Inputs:
Query vector: q [Dy] |

Data vectors: X [Ny x Dy]

W SEE the sky

Computation:
Similarities: e [Ny] | e =q - X//Dx |
Attention weights: a = softmax(e) [Ny]
Output vector: y = >;aX; [D«]

Changes
- Use scaled dot product for similarity
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- % k%
Attention Layer Y/ /+
Inputs: a+ a; E:I a;
Query vector: q [Dy] | . rSﬂf’meI+ - |
Data vectors: X [Ny x Dy] T\ \ el B
ft |t ft\ it
Large similarities will cause softmax to — ! ‘\ ' !
saturate and give vanishing gradients z }A h # hy hy 80 [+]
Recall a - b = |a||b| cos(angle) ~ : T
Suppose that a and b are constant 1 1 |
vectors of dimension D \ ) \ " Ll .
Then [a| = (F@?)"2=a+/D
Computation: weoo s e s
Similarities: e [Ny] | e =q - X//Dx | Changes
Attention weights: a = softmax(e) [Nx] - Use scaled dot product for similarity

Output vector: y = >;aX; [D«]

Stanford CS231n 10t Anniversary Lecture 8 - 38 April 24,2025



Attention Layer

Inputs:
Query vector:lQ [Ng x Dy I |
Data vectors: X [Ny x Dy]

1 8g | + |
Computation: " ** e =
Similarities: E = QXT /,/Dy [Ng x Ny] Changes
Ej = Qi X; /\/Dx - Use scaled dot product for similarity
Attention weights: A = softmax(E, dim=1) [Nqg x Nx] - Multiple query vectors
Output vector: ¥ = AX [Nq x Dy]
= 2AX
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. I

Attention Layer Tk /i‘ 3
Inputs: T a; E:I a;
Query vector: Q [Nq x Dg] | soffmax |

Data vectors: X [Ny x Dy] | + | :3 \ el B

Key matrix: [Dy x Dq] TT \ Tttt |t
Value matrix: W, [Dx x Dy] - }A ! # X '\ X 1

L hz hy hy g | + |
Computation: 2 % 2 % —
Keys: =X [Nx X Dq] '
Values: V = XW, [Ny x Dy] weoo s e s
Similarities: E = QK" /,/Dy [Nq X Ny] Changes
Ej= QK /\/Dg - Use scaled dot product for similarity
Attention weights: A = softmax(E, dim=1) [Nqg x Nx] - Multiple query vectors
Output vector: ¥ = AV [Nq x Dy] - Separate and value
=2AiVi
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Attention Layer

Inputs:
Query vector: O [Nq x Dg]

Data vectors: X [Ny x Dy]

Stanford CS231n 10t Anniversary Lecture 8 - 41 April 24,2025



Attention Layer

Inputs:
Query vector: O [Nq x Dg]

Data vectors: X [Ny x Dy] Ry,
Key matrix: W, [Dy x Dg] :
Value matrix: W, [Dx x Dy] >V,

> V3

Computation:
Keys: =X [Ny x Dq] =4 Xq ™ Ky
Values: V = XW,, [Ny x Dy]
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Attention Layer

Inputs:
Query vector: O [Nq x Dg]

Data vectors: X [Ny x Dy]
Key matrix: [Dx X Dq]
Value matrix: W, [Dx x Dy]

Computation:

Keys: =X [Nx X Dq]

Values: V = XW,, [Ny x Dy]
Similarities: E = QK" /,/D, [Nq X Ny]

E; = Qi /Do

Stanford CS231n 10 Anniversary

v
<
RN

v
<
N

-X1—>K1—>

v
<
w

X3 ™ K3 ™

Lecture 8 - 43

E11 E2 1 Es 1 E41
Eqo Ezo Es» E4
Ei3 E23 Eas Eas
| t t t
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Attention Laye r Softmax normalizes each

column: each query predicts
Inputs: a distribution over the

Query vector: O [Nq x Dg]

Data vectors: X [Ny x Dy] > \/ A1 1 Ao, A1 As1
Key matrix: [Dx X Dq] : ' l
Value matrix: W, [Dy x Dy] » V, Az || Aoz | | Asz | | A4z
> V3 Ais Azs As3 Ags
_ Softmax( 1)
Computation:

Keys: =X [Ny X DQ] - X4 ™ Ky 7| Eus Ez,1 Es1 Ea1
Values: V = XW,, [Ny x Dy]

Similarities: E = QK" /,/Dy [Ng x Ny] LK PR [ B | | B | | 2] | B
Eij = Q /\/D_Q X3 ™ K3y = Eis Ezs Ess =
Attention weights: A = softmax(E, dim=1) [Ng X Nx] 3 1 1 1
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Attention Laye r Each is a linear Yo [ Yo Yz Yy

combination of all values, 1 ) ) 1
Inputs: weighted by attention weights Product(— ), Sum( 4 )
Query vector: O [Nq x Dg] 1
Data vectors: X [Ny x Dy] SRV Ag s As s As
Key matrix: [Dx X Dq]
Value matrix: W, [Dx x Dy] > Vo | A Aoz Asz Asz
> V3 —> | A3 Az Az Asz
_ Softmax( 1)
Computation:
Keys: =X [Ny X DQ] - X4 ™ Ky 7| Eus Ez,1 Es1 Ea1
Values: V = XW,, [Ny x Dy] |
Similarities: E = QK' //Dg [Na X Ny] Ko 1Ko [ Era] [ Bz ] | Bz ] | Bue
Eij = W /\/D_Q X3 ™ K3y = Eis Ezs Ess =
Attention weights: A = softmax(E, dim=1) [Ng X Ny] $ $ $ $
Output vector: ¥ = AV [Nq x Dy]
= ZinjVj Q1 Q2 Q3 Q4
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. Y Y Y Y
Cross-Attention Layer e L
Inputs: Product(=> ), Sum( %)
Query vector: O [Nq x Dg] Each produces t
Data vectors: X [Ny x Dy] one output, which is a JV, . o w o
Key matrix: [Dy x Dq] mix of information in
Value matrix: W, [Dy x D,]  the datavectors >\, Mz | | oz | | Asz | | Auz
> V3 A13 Az Az Asz
_ Softmax( 1)
Computation:
Keys: =X [Ny X DQ] - X1 ™ K, E11 Ez,1 Es1 Ea1
Values: V = XW,, [Ny x Dy]
Similarities: E = QK /,/Dy [Ng X NyJ Ko 1Ko [ Bz ] [ Bz | [ Esa| | Bz
Eij = W /\/D_Q X3 ™ Ky Eis Ezs Ess =
Attention weights: A = softmax(E, dim=1) [Ng X Ny]
o ft t t t
Output vector: ¥ = AV [Nq x Dy]
Q, Q| | Qsz | | Qq

=2AiVi
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Y.l Y, Y,

Self-Attention Layer TS S

Product(=>), Sum(4)
1
Inputs:
Input vectors: X [N x D;,] Each input produces Vi [P A | [P ] [ A
Key matrix: [Di, X Dgyil one , Which is >\, | A Aoz Az
Value matrix: W, [D;, x D, @ mix of information
Query matrix: D, X Dy from all inputs » V3 | Ans Aos | | Pas
: Shapes get a little simpler: Softmax( 1)
Computation: - l?l inpgut vectors, eapch D,
Queries: () = X [NXDouwl - Almostalways Dy = Dy = Dy, e N I T Y
Keys: =X [N X Doy > Ky = | Eiz Es» Ess
Values: V =XW, [N X Dgyl )
Similarities: E = /Dy N x N] Ks | Ewa| [ Bes| [ Bss
£, = 0Ky &
Attention weights: A = softmax(E, dim=1) [N x N] f1 *2 *3
Output vector: ¥ = AV [N X Dyl X X, | [ X,
=2 iAV, . ]
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Self-Attention Layer

Inputs:
Input vectors: X [N x D;] Each input produces
Key matrix: [Di, X Douil one , Which is

Value matrix: Wy, [D;, x Do, @ mix of information
Query matrix: W [D;, X Doy from all inputs

Computation:

Queries: Q = XWq [N X Dy
Keys: = XWy [N X Doyl
Values: V = XW, [N x Dl

Vi From each input:
compute a query,
, and value vector

v
<
N

v
<
w

Often fused to one matmul:

[Q K'V] = X[Wq W W]

> K2 [N x 3Dout] = [N x Din] [Din x 3Dout]

> KS
Q Q, | | Qg
1 1 1
Xy || X | | Xs

Stanford CS231n 10 Anniversary

Lecture 8- 48 April 24,2025



Self-Attention Layer

Inputs:

Input vectors: X [N x Djp] Each input produces
Key matrix: [Di, X Douil one , Which is
Value matrix: W, [D;, x D, @ mix of information
Query matrix: W, [D;, X Dy  omallinputs

Computation:
Queries: O =X [N X Dyl

Keys: =X [N X Dyl

Values: V =XW, [N x Dy

Similarities: E = I/Dq IN x N]
Ei = QK /\/Dg

v
<
N

v
<
w

Compute similarity
between each
and each

—> K1 > | Eq1 = =
> Kz = | Ei2 Ezo Esp
< K3 =» | Ei3 E23 Esz3

1 ) [}
Q| | Q| | Qg
4 4 4
X4 Xo | | X3
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Normalize over each column:

Se|f-Attenti0n Layer each computes a

distribution over

Inputs:

Input vectors: X [N x D] Each input produces Ui Aot | [ Rz ] [ B

Key matrix: [Di, X Dgyil one , Which is > \/, Als Aoz Az

Value matrix: W, [D;, x D, @ mix of information

Query matrix: D, X Dy from all inputs » V3 At Aos | | Pas

Softmax( 4 )

Computation:

Queries: O = X [N X Doy — Ky | Eui | | Bea | | Bas

Keys: =X [N X Doy > Ky = | Eiz Es» Ess

Values: V =XW, [N X Dgyl )

Similarities: E = /Dy N x N] " K [ Eis | [Bas | | Bes

£\ = 0D, o o I

Attention weights: A = softmax(E, dim=1) [N x N] f1 *2 *3

X >§z X3
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Compute Y, Y, Y,

Self-Attention Layer vectors as linear % t t
combinations of Product(=>), Sum(4)
value vectors 4
Inputs:
Input vectors: X [N x D] Each input produces Va A ] [P ] [
Key matrix: [Di, X Dgyil one , Which is >\, | A Aoz Az
Value matrix: W, [D;, x D, @ mix of information
Query matrix: [D, x D,,] fromallinputs > Vg | Aus | | Aas | | Ass
Softmax( 4 )
Computation:
Queries: O = X [N X Doy — Ky | Eui | | Bea | | Bas
Keys: =X [N X Doy » K, ™| Bz | | Eao | | Es2
Values: V =XW, [N x D ‘
Similarities: E = QK" /,/Dy [N x N] " Ks 1B ] [Ees ] | B
e, = 3Ky & o 2
Attention weights: A = softmax(E, dim=1) [N x N] S 2 S
Output vector: ¥ = AV [N x Dy X X, | | Xq
=2 iAV, . ]
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Self-Attention Layer T S

Product(=>), Sum(4)
Consider permuting inputs: 4
Inputs: N
Input vectors: X [N x D;]
Key matrix: [Din X Dguil > —
Value matrix: W, [D;, X Dgyi R
Query matrix: W, [D;, X Doy g S
Softmax( 4 )
Computation:
Queries: O = X [N X Dgyil ) )
Keys: =X [N X Dyl > N
Values: V =XW, [N x Dy ‘
Similarities: E = QK' /,/Dg [N x N] |
E; = O /\/D_Q 1 ) )
Attention weights: A = softmax(E, dim=1) [N x N] 3 3 3
Output vector: ¥ = AV [N x Dyl X3 X, X,
=2 iAV, . ]
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Self-Attention Layer T S

Product(=>), Sum(4)
Consider permuting inputs: 4
Inputs:
Input vectors: X [N x D;] , ,and values Vs ™
Key matrix: [Di, X Doyl will be the same but permuted >\, —
Value matrix: W, [D;, X Dgyi R
Query matrix: W, [D;, X Dyl Va2 ™
Softmax( 4 )
Computation:
Queries: Q = XW, [N x Dy — K3 ™
Keys: =X [N X Dyl > K, —
Values: V =XW, [N x Dy, ‘
Similarities: E = QK' /,/D [N x N] K2 ™
- 0. o o IS
Attention weights: A = softmax(E, dim=1) [N x N] S S
Output vector: ¥ = AV [N x D X5 X4 X
=2 iAV, . ]

Stanford CS231n 10t Anniversary Lecture 8 - 53 April 24,2025



Self-Attention Layer

Consider permuting inputs:

Inputs:
Input vectors: X [N x D;] : , and values
Key matrix: [Di, X Doyl will be the same but permuted

Value matrix: W, [D;, x D

Query matrix: D, x Dyy Similarities are the same but

permuted

Computation:
Queries: O =X [N X Dyl

Keys: =X [N X Dyl

Values: V =XW, [N x Dy

Similarities: E = I/Dq IN x N]
Ei = QK /\/Dg

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: ¥ = AV [N x D
=2AiVi

4 t 4
Product(=>), Sum(4)
4
V3 =
> V1 —
> V2 >
Softmax( 4 )
—> K3 = | E33 E13 Ezs
> K1 = | E31 E11 E2 1
> K2 = | E3» E12 Ezo
1 ) 4
Qs Q; Q,
4 4 4
Xs | [ X ] [ Xy
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Self-Attention Layer T S

Product(=>), Sum(4)

| . Consider permuting inputs: 4
nputs:
Input vectors: X [N x D;] , ,and values Va [ fon | [Ara] Ao
Key matrix: [Di, X Doyl will be the same but permuted >V, | Aa A Aot
Value matri_x: Wy [Bin X Doul Similarities are the same but > Vo = Asz | | Az | | A
Query matrix: [Di, X Doyl bermuted —
ortmax
Computation: Attention weights are the
Queries: O =X [N X Dyl same but permuted — Kg ™| Bss S02 F2s
Keys: =X [N X Doy > K ™| Eax Eq 4 Ez.1
Values: V =XW, [N x Dy, ‘
Similarities: E = QK" /\/D, [N x N] Ko [ 5e] [ | B
c\- 0K DI
Attention weights: A = softmax(E, dim=1) [N x N] S S
Output vector: ¥ = AV [N x D X, X4 X,
=2 iAV, . ]
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Y, Y, Y,

Self-Attention Layer TS S

Product(=>), Sum(4)

: . Consider permuting inputs: 4
nputs:
Input vectors: X [N x D;] , ,and values Va [ fon | [Ara] Ao
Key matrix: [Di, X Doyl will be the same but permuted >V, | Aa A Aot
Value matri_x: Wy [Bin X Doul Similarities are the same but > Vo = Asz | | Az | | A
Query matrix: [Di, X Doyl bermuted —
ortmax
Computation: Attention weights are the
Queries: O =X [N X Dyl same but permuted — Kg ™| Bss S02 F2s
Keys: =X [N X Doy > K ™| Eax Eq 4 Ez.1
Values: V =XW, [N x D,,] are the same but ‘
Similarities: E = QK™ //D, [N x N] Permuted Ko [ 5e] [ | B
-0 Tk
Attention weights: A = softmax(E, dim=1) [N x N] S S
Output vector: ¥ = AV [N x D X, X4 X,
=2 iAV, . ]
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Y, Y, Y,

Self-Attention Layer TS S

Product(=>), Sum(4)
4
Inputs:
Input vectors: X [N x D] Va [P [Aes | [Aue ] | e
Key matrix: [Din X Doydl Self-Attention is > V| As At Az
Value matrix: W, [D;, X Dgyi permutation equivariant:
Query matrix: W, [D,, x Dy,]  F(o(X)) = o(F(X)) Vo | o | [Pz ] | A2
Softmax( 4 )
Computation: This means that Self-Attention
Queries: O = X [Nx D,  works on sets of vectors > K3 ™[ Bss | | B | | Bes
Keys: =X [N X Doy > K ™| Eax Eq 4 Ez.1
Values: V =XW, [N x Dy, ‘
Similarities: E = QK" /\/D, [N x N] Ko | Boz | | Bz | [ Bez
e =0 o B
Attention weights: A = softmax(E, dim=1) [N x N] f’ *1 *2
Output vector: ¥ = AV [N x D X, X4 X,
=2 iAV, . ]
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Y, Y, Y,
t 4 4

Self-Attention Layer

Product(=»), Sum(4)
4
Inputs:
Input vectors: X [N x D] Problem: Self-Attention Vi [ A | [fer | [ Ao
Key matrix: [Di, X Dgyd does not know the order of V, = | A Ao Asz
Value matrix: W, [Di, X Dy the sequence
Query matrix: W, [Dj, X Doy Va [ Aa | Ao ] [ Ao
Softmax( 4

Computation: )
Queries: Q = XWg [N x Dy Ky =| Eui | | B2 | | Eon
Keys: =X [N X Douil K, =[] [E2] [E
Values: V =XW, [N x D
Similarities: E = QK" //Dg [N x N] Ka LB | | Bes | | B

= 0% Tl
Attention weights: A = softmax(E, dim=1) [N x N] S TS
Output vector: ¥ = AV [N x Dy X, X, | | X,

=2AiVi
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Self-Attention Layer

Inputs:

Input vectors: X [N x D] Problem: Self-Attention
Key matrix: [Di, X Doy does not know the order of
Value matrix: Wy, [D;, x Dy the sequence

Query matrix: W [D;, X Doy
Solution: Add positional

Computation: encoding to each input; this
Queries: Q = XWg [N x Dy, is a vector that is a fixed
Keys: =X [N X Dgyil function of the index

Values: V =XW, [N x Dy,
Similarities: E = QK" /,/Dy [N x N]
Eij = Qi' /\/D_Q
Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: ¥ = AV [N x D
=2AiVi

Y, Y, Y,
t 4 4

Product(=»), Sum(4)

4
V1 » | Aqg Az Az
V2 > | A2 Az Az
V3 > | A3 Az3 Az 3
Softmax( 4 )
K1 > | Eq1 = =
Kz = | Ei2 Eso Esp
K3 =» | Ei3 E23 Esz3
1 ) [}
Q| Q| | Qg
t 1 4
X, Xy | | X3
E(1) E(2) E(3)
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Y.l Y, Y,

Masked Self-Attention Layer S S—
Don't let vectors “look ahead” in the sequence PrOd“Ct(';)’ Sum(t)
Inputs:
Input vectors: X [N x D] o AT | T O N i
Kev matrix: D, X Doyl Oyerrlde S|m|Iar'|t|e§ with -inf; V. =l o ros s
y : in 7 =out this controls which inputs each 2
Value matrix: W, [D;, X Dgyi :
Query matrix: D, X Doyl vector is allowed to look at. Vs | o 0 Ass
Softmax( 4 )
Computation:
Queries: O = X [N X Doy Ky ™| Eur | | Eaa | | Eas
Keys: =X [N X Doui] Ky, = | - Ezp Esz
Values: V =XW, [N x Dy,
Similarities: E = QK' /,/D [N x N] Ks ML= ] =] [ B
c\= % o
Attention weights: A = softmax(E, dim=1) [N x N] f *2 *3
Output vector: ¥ = AV [N x D X, X X,

=2AiVi
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Masked Self-Attention Layer

Don’t let vectors “look ahead” in the sequence

Inputs:
Input vectors: X [N x D;,]

Key matrix: [Din X Doy
Value matrix: W, [D;, x D
Query matrix: [Din X Douil

Computation:

Queries: O = X [N X Dgyil
Keys: =X [N X Dyl
Values: V =XW, [N x Dy,

Override similarities with -inf;
this controls which inputs each
vector is allowed to look at.

Used for language modeling
where you want to predict the
next word

Similarities: E = [\/Dq IN x NJ
E; = Q1 /\/Dg

Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: ¥ = AV [N x Dl
=2AiVi

is very  cool

t t 4
Product(=>), Sum(4)
)
V1 —> | A4 Az, 1 Az 1
V2 —> 0 Az Az
V3 el 0 0 A3,3
Softmax( 4 )
K1 = | Eq1 E2 1 Es 1
Kz = | - E22 Es»
K3 r— =00 -00 E33
1 L) I}
Q| | Q| | Qg
) ] )

Attention is very
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Multineaded Self-Attention Layer

Run H copies of Self-Attention in parallel
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Multineaded Self-Attention Layer

Run H copies of Self-Attention in parallel

H = 3 independent
self-attention layers
(called heads), each
with their own weights

— | |— P

Lo 2
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Multineaded Self-Attention Layer

Run H copies of Self-Attention in parallel

Stack up the H

_ Y14 \CY Y31
independent outputs Yo Yoo Yas
for each input X Yi3 Yo3 Y33

H = 3 independent | —
self-attention layers Sl
(called heads), each

with their own weights

Fhx
INENES
7|z 2H=
z|(z ;z-f
DIns
e

BEE

[e]le ][]
11
B

)

] [
[e][e]z]
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Multineaded Self-Attention Layer

Run H copies of Self-Attention in parallel
Output projection fuses O 2 Os
data from each head I X I
Stack up the H Yi 4 Y, Ys 1
independent outputs Y12 Yoo Yas
for each input X Yi3 Yo3 Y33

H = 3 independent
self-attention layers
(called heads), each
with their own weights
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Multineaded Self-Attention Layer

Run H copies of Self-Attention in parallel

Inputs: O 0, Os
Input vectors: X [N x D] Each of the H parallel
Key matrix: [D x HDy] layers use a gkv dim of I X I
Value matrix: W, [D x HD] Dy = "head dim”

- Y11 Y21 Y31
Query matrix: [D x HDy] Y, Yo Yas
Output matrix: W [HDy x D] Usually Dy =D /H, so Y1 Yas Yss

inputs and outputs have ’ ’

Computation: the same dimension
Queries: O = X [Hx N x Dy]
Keys: =X [Hx N x Dy]
Values: V =XW, [Hx N x Dy]
Similarities: E = /Do [Hx N x N]
Attention weights: A = softmax(E, dim=2) [H x N x N]
Head outputs: ¥ = AV [H x N x Dy] => [N x HDy] X X, X5

Outputs: O = YW, [N x D]
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Multineaded Self-Attention Layer

Run H copies of Self-Attention in parallel

Inputs: O; e O3
Input vectors: X [N x D] _

Key matrix: [D x HDy] In practice, _compute I I I

Value matrix: W, [D x HD,] all H heads in parallel

Query matrix: [D X HDH] using batched matrix im ¥2,1 ¥3’1
Output matrix: W, [HD, x D] multiply operations. Y, Y., Y.,
Computation: Used everywhere in

Queries: Q = XW, [HxNxD,] Practce.

Keys: =X [Hx N x Dy]

Values: V =XW, [Hx N x Dy]

Similarities: E = [\/Do [Hx N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: ¥ = AV [H x N x Dy] => [N x HDy] X X, X5

Outputs: O = YW, [N x D]
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Self-Attention is Four Matrix Multiplies!

Inputs:
Input vectors: X [N x D]

Key matrix: [D x HDy]
Value matrix: W, [D x HDy]
Query matrix: [D x HDy]
Output matrix: Wq [HD,, x D]

Computation:
Queries: O = X [Hx N x Dy]

Keys: =X [Hx N x Dy]
Values: V =XW, [Hx N x Dy]
Similarities: E = [\/Do [Hx N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]
Head outputs: ¥ = AV [H x N x Dy] => [N x HDy]
Outputs: O = YW, [N x D]
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Self-Attention is Four Matrix Multiplies!

Inputs: 1. QKV Projection

Input vectors: X [N x D] [N x D] [D x 3HDy] => [N x 3HDy]

Key matrix: [D x HDy] Split and reshape to get Q, K, V each of
Value matrix: W, [D x HDy] shape [H x N x Dy]

Query matrix: W, [D x HDy]
Output matrix: Wy [HDy x D]

Queries: O = XW, [Hx N x Dy]
Keys: =X [Hx N x Dy]
Values: V =XW, [HxXx N x D]
Similarities: E = QK" //Dy [H x N x N]

Attention weights: A = softmax(E, dim=2) [H x N x N]
Head outputs: ¥ = AV [H x N x Dy] => [N x HDy]
Outputs: O = YW, [N x D]
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Self-Attention is Four Matrix Multiplies!

Inputs: 1. QKV Projection

Input vectors: X [N x D] [N x D] [D x 3HDy] => [N x 3HDy]

Key matrix: [D x HDy] Split and reshape to get Q, K, V each of
Value matrix: W, [D x HDy] shape [H x N x Dy]

Query matrix: W, [D x HDy] 2. QK Similarity

Output matrix: Wy [HDy x D] [Hx N x Dy] =>[H x N x N]

Computation:
Queries: O = XW, [Hx N x Dy]
Keys: =X [H X N x Dy]

D.]
Similarities: E = QK" /,/Dy [H x N x N]
Attention weights: A = softmax(E, dim=2) [H x N x N]
Head outputs: ¥ = AV [H x N x Dy] => [N x HDy]
Outputs: O = YW, [N x D]
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Self-Attention is Four Matrix Multiplies!

Inputs: 1. QKV Projection

Input vectors: X [N x D] [N x D] [D x 3HDy] => [N x 3HDy]

Key matrix: [D x HDy] Split and reshape to get Q, K, V each of

Value matrix: W, [D x HDy] shape [H x N x Dy]

Query matrix: W, [D x HDy] 2. QK Similarity

Output matrix: Wy [HDy x D] [H x N x D] =>[H x N x N]
3. V-Weighting

Computation: [HxNXxN][HxN xDy] =>

Queries: O = XW, [Hx N x Dy] Reshape to

Keys: =X [Hx N x Dy]

Values: V =XW, [Hx N x Dy]
Similarities: E = QK" / /Dy [H x N x N]

X N]
Head outputs: ¥ = AV [H x N x Dy] => [N x HDy]
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Self-Attention is Four Matrix Multiplies!

Inputs: 1. QKV Projection

Input vectors: X [N x D] [N x D] [D x 3HDy] => [N x 3HDy]

Key matrix: [D x HDy] Split and reshape to get Q, K, V each of

Value matrix: W, [D x HDy] shape [H x N x Dy]

Query matrix: [D x HDy] 2. QK Similarity

Output matrix: Wy [HDy x D] =>[H x N x N]
3. V-Weighting

Computation: [HXxN XxN][HxN xDy] =>

Queries: O = X [Hx N x Dy] Reshape to

Keys: =X [Hx N x Dy] 4. Output Projection

Values: V =XW, [Hx N x Dy] [HDy x D] => [N x D]

Similarities: E = /Do [Hx N x N]

Attention welghts A = softmax(E, dim=2) [H x N x N]
= N x Dy] => [N x HDy]
Outputs: O = YW, [N x D]
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Self-Attention is Four Matrix Multiplies!

Inputs: 1.

Input vectors: X [N x D]
Key matrix: [D x HDy]
Value matrix: W, [D x HDy]

Query matrix: [D x HDy] 2.
Output matrix: Wq [HD,, x D]

3.
Computation:
Queries: O = X [Hx N x Dy]
Keys: =X [Hx N x Dy] 4.

Values: V =XW, [Hx N x Dy]
Similarities: E = [\/Do [Hx N x N]

QKYV Projection

[N x D] [D x 3HDy] => [N x 3HD4]

Split and reshape to get Q, K, V each of
shape [H x N x Dy]

QK Similarity

=>[H x N x N]
V-Weighting

[HxN xN][HxN xDy] =>
Reshape to
Qutput Projection

[HD,, x D] => [N x D]

Attention weights: A = softmax(E, dim=2) [H xN xN] & How much compute does this take

Head outputs: ¥ = AV [H x N x Dy] => [N x HDy]
Outputs: O = YW, [N x D]

as the number of vectors N increases?
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Self-Attention is Four Matrix Multiplies!

Inputs: 1. QKV Projection

Input vectors: X [N x D] [N x D] [D x 3HDy] => [N x 3HDy]

Key matrix: [D x HDy] Split and reshape to get Q, K, V each of

Value matrix: W, [D x HDy] shape [H x N x Dy]

Query matrix: [D x HDy] 2. QK Similarity

Output matrix: Wy [HDy x D] =>[H x N x N]
3. V-Weighting

Computation: [HXxN XxN][HxN xDy] =>

Queries: O = X [Hx N x Dy] Reshape to

Keys: =X [Hx N x Dy] 4. Output Projection

Values: V =XW, [Hx N x Dy] [HDy x D] => [N x D]

Similarities: E = /Do [Hx N x N]

Attention weights: A = softmax(E, dim=2) [H xN xN] & How much compue does ihis fake
Head outputs: ¥ = AV [H x N x Dy] => [N x HD] A: O(N?) '
Outputs: O = YW, [N x D] '
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Self-Attention is Four Matrix Multiplies!

Inputs: 1.

Input vectors: X [N x D]
Key matrix: [D x HDy]
Value matrix: W, [D x HDy]

Query matrix: [D x HDy] 2.
Output matrix: Wq [HD,, x D]

3.
Computation:
Queries: O = X [Hx N x Dy]
Keys: =X [Hx N x Dy] 4.

Values: V =XW, [Hx N x Dy]
Similarities: E = [\/Do [Hx N x N]

QKYV Projection

[N x D] [D x 3HDy] => [N x 3HD4]

Split and reshape to get Q, K, V each of
shape [H x N x Dy]

QK Similarity

=>[H x N x N]
V-Weighting

[HxN xN][HxN xDy] =>
Reshape to
Qutput Projection

[HD,, x D] => [N x D]

Attention weights: A = softmax(E, dim=2) [HxN xN] @ How much memory does this take

Head outputs: ¥ = AV [H x N x Dy] => [N x HDy]
Outputs: O = YW, [N x D]

as the number of vectors N increases?
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Self-Attention is Four Matrix Multiplies!

Inputs: 1. QKV Projection

Input vectors: X [N x D] [N x D] [D x 3HDy] => [N x 3HDy]

Key matrix: [D x HDy] Split and reshape to get Q, K, V each of

Value matrix: W, [D x HDy] shape [H x N x Dy]

Query matrix: [D x HDy] 2. QK Similarity

Output matrix: Wy [HDy x D] =>[H x N x N]
3. V-Weighting

Computation: [HXxN XxN][HxN xDy] =>

Queries: O = X [Hx N x Dy] Reshape to

Keys: =X [Hx N x Dy] 4. Output Projection

Values: V =XW, [Hx N x Dy] [HDy x D] => [N x D]

Similarities: E = /Do [Hx N x N]

Attention weights: A = softmax(E, dim=2) [H xN xN] & How much memory does this take_
Head outputs: ¥ = AV [H x N x Dy] => [N x HD] A: O(N?) '
Outputs: O = YW, [N x D] '
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If N=100K, H=64 then

Self-Attention is Four Matrix Multiplies!  rxuxn attention weights
take 1.192 TB! GPUs don’t
have that much memory...

Inputs: 1. QKV Projection

Input vectors: X [N x D] [N x D] [D x 3HDy] => [N x 3HDy]

Key matrix: [D x HDy] Split and reshape to get Q, K, V each of

Value matrix: W, [D x HDy] shape [H x N x Dy]

Query matrix: W, [D x HDy] 2. QK Similarity

Output matrix: Wy [HDy x D] [H x N x D] =>[H x N x N]
3. V-Weighting

Computation: [HxNXxN][HxN xDy] =>

Queries: O = XW, [Hx N x Dy] Reshape to

Keys: =X [Hx N x Dy] 4. Output Projection

Values: V =XW, [Hx N x Dy] [HDy x D] => [N x D]

Similarities: E = QK" / /Dy [H x N x N] |
Attention weights: A = softmax(E, dim=2) [H x N x N] gs- &:ﬁ?;ggr% gosslr:g'fe ;2“62 .
Head outputs: ¥ = AV [H x N x Dy] => [N x HDy] A: O(N?) '
Outputs: O = YW, [N x D] '
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If N=100K, H=64 then

Self-Attention is Four Matrix Multiplies!  rxuxn attention weights
Flash Attention take 1.192 TB! GPUs don’t

Inputs: algorithm computes 1, QKV Projection  2ve that much memory...

Input vectors: X [N x D] fvjtf]jstﬂs‘teoﬁimfhte‘me [N x D] [D x 3HDy] => [N x 3HD,]
Key matrix: [D x HDy] J Split and reshape to get Q, K, V each of

full attention matrix!

Value matrix: W, [D x HDy] shape [H x N x Dy]

Query matrix: W, [D x HDy] nakes large N 2. QK Similarity

Output matrix: Wy [HDy x D] possible [Hx N x Dy] =>[H x N x N]
3. V-Weighting

Computation: [HxNXxN][HxN xDy] =>

Queries: O = XW, [Hx N x Dy] Reshape to

Keys: =X [Hx N x Dy] 4. Output Projection

Values: V =XW, [Hx N x Dy] [HDy x D] => [N x D]

Similarities: E = QK" / /Dy [H x N x N] |
Attention weights: A = softmax(E, dim=2) [H x N x N] gs- ggmr;ggr% g"sslrfzz ;2“62 .
Head outputs: Y = AV [H x N x Dy] => [N x HD4] A: O(N) with Flash Attention |
Outputs: O = YW, [N x D]

Dao et al, “FlashAttention: Fast and Memory-Efficient Exact Attention with I0-Awareness”, 2022
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Three Ways of Processing Sequences
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Three Ways of Processing Sequences

Recurrent Neural Network

Y1IT Yo Y3 Vs

I R

X4 Xo X3 X4

Works on 1D ordered sequences

(+) Theoretically good at long
sequences: O(N) compute and
memory for a sequence of length N
(-) Not parallelizable. Need to
compute hidden states sequentially
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Three Ways of Processing Sequences

Recurrent Neural Network Convolution
y1 > y2 > y3 > y4 y1 y2 y3 y4
X1 X2 X3 X4 X1 X2 X3 X4

Works on 1D ordered sequences \Works on N-dimensional grids

(+) Theoretically good at long (-) Bad for long sequences: need to
sequences: O(N) compute and stack many layers to build up large
memory for a sequence of length N receptive fields

(-) Not parallelizable. Need to (+) Parallelizable, outputs can be

compute hidden states sequentially computed in parallel
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Three Ways of Processing Sequences

Recurrent Neural Network Convolution Self-Attention
Yi T Yo Ys T Yy 2 Yo Y3 Y4 Y
z
X4 X X3 X4 X4 X5 X3 X4
Works on 1D ordered sequences \Works on N-dimensional grids Works on sets of vectors
(+) Theoretically good at long (-) Bad for long sequences: need to  (+) Great for long sequences; each
sequences: O(N) compute and stack many layers to build up large  output depends directly on all inputs
memory for a sequence of length N receptive fields (+) Highly parallel, it's just 4 matmuls
(-) Not parallelizable. Need to (+) Parallelizable, outputs can be (-) Expensive: O(N?) compute, O(N)
compute hidden states sequentially computed in parallel memory for sequence of length N
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Three Ways of Processing Sequences

Recurrent Neural Network Convolution Self-Attention

Yy Y2 Y3
7S 4 7S

Attention is All You Need

Vaswani et al, NeurlPS 2017

memory for a sequence of length N receptive fields (+) Highly parallel, it's just 4 matmuls
(-) Not parallelizable. Need to (+) Parallelizable, outputs can be (-) Expensive: O(N?) compute, O(N)
compute hidden states sequentially computed in parallel memory for sequence of length N
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The Transformer

Transformer Block

Input: Set of vectors x

Vaswani et al, “Attention is all you need,” NeurlPS 2017
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The Transformer

Transformer Block

Input: Set of vectors x

All vectors interact through Self-Attention
(multiheaded) Self-Attention ) ) ) )
t t t t
X1 Xs X3 Xy

Vaswani et al, “Attention is all you need,” NeurlPS 2017
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The Transformer

Transformer Block

Input: Set of vectors x

Residual connection P
All vectors interact through Self-Attention
(multiheaded) Self-Attention 1 1 t t
—I
t | t |
X4 X, Xs| | X4

Vaswani et al, “Attention is all you need,” NeurlPS 2017
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The Transformer

Transformer Block

Input: Set of vectors x

Layer normalization
normalizes all vectors

Residual connection

All vectors interact through
(multiheaded) Self-Attention

Vaswani et al, “Attention is all you need,” NeurlPS 2017

Recall Layer Normalization:

(Shape: D)
(Shape: D)
(Shape: D)

Given hy, ..., h
scale: y

shift: 5

i = (Zj hi,j)/D

N

0; = (3 (hij - w)?/D)'?

z, = (h - w)/ o
Y=y *z+p

Ba et al, 2016

(scalar)
(scalar)

Layer Normalization

N
b 3
Self-Attention
t t t t
—[
t t t t
X1 Xy X3 X4
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The Transformer

Transformer Block

Input: Set of vectors x

MLP independently
on each vector

Layer normalization
normalizes all vectors

Residual connection

All vectors interact through
(multiheaded) Self-Attention

Vaswani et al, “Attention is all you need,” NeurlPS 2017

Usually a two-layer MLP;
classic setup is
D=>4D=>D

Also sometimes called FFN
(Feed-Forward Network)

MLP || MLP

MLP || MLP

Layer Normalization

N
b 3
Self-Attention
t t t t
—[
t t t t
X1 Xy X3 X4
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The Transformer

Transformer Block

Input: Set of vectors x Residual connection P

MLP independently |\/||I_P MLP |V||I_P |\/||I_P

on each vector

Layer normalization

normalizes all vectors Layer NO;f;na"ZHtiOn
Residual connection »d
Y [
All vectors interact through Self-Attention
(multiheaded) Self-Attention 1 1 t t
—l
t t t t
X X2 X3 X4

Vaswani et al, “Attention is all you need,” NeurlPS 2017
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The Transformer Y, Vs Vs V4

| t | t
Transformer Block . .
Another Layer Norm Layer Normalization
Input: Set of vectors x Residual connection :5)

MLP independently |\/||I_P |\/||I_P |V||I_P |\/||I_P

on each vector

Layer normalization

normalizes all vectors Layer NOST\T]a"ZHtiOn
Residual connection »d
Y [
All vectors interact through Self-Attention
(multiheaded) Self-Attention 1 1 t t
—[
t | t |
X4 Xo| | Xs| | Xa

Vaswani et al, “Attention is all you need,” NeurlPS 2017
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The Transformer Y, Vs Vs V4
4

4 4 4
1 i

Transformer Block

Layer Normalization
D

Input: Set of vectors x .
L/

Output: Set of vectors y : | : :
Self-Attention is the only M!TP M!TP M!TP M!TP

interaction between vectors

LayerNorm and MLP work on Layer Normalization

each vector independently EY
Highly scalable and Y -
parallelizable, most of the Self-Attention
compute is just 6 matmuls: 1 1 1 1
—[

_ ¥ ) ¥ )
4 from Self-Attention ! ! ! !
2 from MLP X4 X5 X3 X4

Vaswani et al, “Attention is all you need,” NeurlPS 2017
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The Transformer

4 4 4 4
t t t t
Layer Normalization

Transformer Block A Transformer is just a stack of
identical Transformer blocks! WP [MP[MP [MP
Input: Set of vectors x B el
Output: Set of vectors y They have not changed much since T
2017... but have gotten a lot bigger —
Self-Attention is the only Layer Normalization'

interaction between vectors

MLP | MLP || MLP || MLP

LayerNorm and MLP work on Layer Normalization
each vector independently | SeltAtlenion
H|gh|y scalable and Layer Normalization
parallelizable, most of the e M AE

compute is just 6 matmuls:

Layer Normalization

4 from Self-Attention ooprenion

2 from MLP er e

Vaswani et al, “Attention is all you need,” NeurlPS 2017
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The Transformer

Transformer Block A Transformer is just a stack of i
identical Transformer blocks! MPI{Mp [P [MP
Input: Set of vectors x B el
Output: Set of vectors y They have not changed much since P
2017... but have gotten a lot bigger —
Self'Attention iS the Only 'Layer Normalization
interaction between vectors Original: [Vaswani et al, 2017] N ST
] N SMLP work on ;?3b|\l/|00ks, D=1024, H=16, N=512 —
ayerNorm an arams ayer Normalization
each vector independently P | SeltAtlenion
H|gh|y Scalable and 'Layer'NormaIIization'

parallelizable, most of the
compute is just 6 matmuls:

MLP |[MLP | MLP |[MLP

Layer Normalization

4 from Self-Attention  SelfAtention

t
2 from MLP e

Vaswani et al, “Attention is all you need,” NeurlPS 2017
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The Transformer

Transformer Block A Transformer is just a stack of i
identical Transformer blocks! MPI{Mp [P [MP
Input: Set of vectors x B el
Output: Set of vectors y They have not changed much since . S
2017... but have gotten a lot bigger —
Self-Attention is the only Layer Normalization'
interaction between vectors Original: [Vaswani et al, 2017] N ST
] \ S MLP work o ;$3b|\l/|00ks’ D=1024, H=16, N=512 —L—
ayerNorm an arams ayer Normalization
each vector independently P | SelfAtention
GPT-2: [Radford et al, 2019] R
Highly scalable and 48 blocks, D=1600, H=25, N=1024 ever o aleaten
parallelizable, most of the 1.5B params WiLP | [MLP | MiP [ MLP

compute is just 6 matmuls:

Layer Normalization

4 from Self-Attention  SelfAtention

L t
2 from MLP e

Vaswani et al, “Attention is all you need,” NeurlPS 2017
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The Transformer

4 4 4 4
t t t t
Layer Normalization

Transformer Block A Transformer is just a stack of

identical Transformer blocks! MPI{Mp [P [MP
Input: Set of vectors x B el
Output: Set of vectors y They have not changed much since . S

2017... but have gotten a lot bigger —
Self-Attention is the only Layer Normalization'
interaction between vectors Original: [Vaswani et al, 2017] N ST
] \ S MLP work o ;$3b|\l/|00ks’ D=1024, H=16, N=512 —L—

ayerNorm an arams ayer Normalization

each vector independently P | SelfAtention

GPT-2: [Radford et al, 2019] R
Highly scalable and 48 blocks, D=1600, H=25, N=1024 %ﬁﬁ
parallelizable, most of the 1.5B params WiLP | [MLP | MiP [ MLP

compute is just 6 matmuls:

Layer Normalization

_ GPT-3: [Brown et al, 2020] — 5
4 from Self-Attention 96 blocks, D=12288, H=96, N=2048 | O Sohuenion
2 from MLP 175B params s

Vaswani et al, “Attention is all you need,” NeurlPS 2017
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Transformers for Language Modeling (LLM)

Learn an embedding matrix at the start of
the model to convert words into vectors.

Given vocab size V and model dimension " Layer Normatization'
D, it's a lookup table of shape [V x D]

MLP |[MLP || MLP |[MLP

Layer Normalization

Self-Attention
t t t
i § ¥ P—
{ { { {

Layer Normalization

MLP |[MLP || MLP |[MLP

Layer Normalization

Self-Attention
Lt t t t |

¥ [ [ ¥
t + i t

Embedding Matrix
[V x D]

I

Attention is all you
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Transformers for Language Modeling (LLM)

Learn an embedding matrix at the start of
the model to convert words into vectors.

Given vocab size V and model dimension
D, it's a lookup table of shape [V x D]

Use masked attention inside each
transformer block so each token can only
see the ones before it

1 h t t
Layer Normalization

MLP |[MLP || MLP |[MLP

Layer Normalization

Self-Attention
t t t |

¥ [ [ ¥

] I t ¢
I

Layer Normalization

MLP |[MLP || MLP |[MLP

Layer Normalization

Self-Attention
t t t t

¥ [ [ ¥
t + i t

Embedding Matrix
[V x D]

I

Attention is all you
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Transformers for Language Modeling (LLM)

Learn an embedding matrix at the start of
the model to convert words into vectors.

Given vocab size V and model dimension
D, it's a lookup table of shape [V x D]

Use masked attention inside each
transformer block so each token can only
see the ones before it

At the end, learn a projection matrix of
shape [D x V] to project each D-dim
vector to a V-dim vector of scores for
each element of the vocabulary.

is al you need

P 111
Projection Matrix
[D x V]

4 4 3 ]
t t t t
Layer Normalization

MLP |[MLP || MLP |[MLP

Layer Normalization

Self-Attention
t t t |

¥ [ [ ¥

] 4 t ¢
I

Layer Normalization

MLP |[MLP || MLP |[MLP

Layer Normalization

Self-Attention
t t t t

¥ [ [ ¥
t t i t

Embedding Matrix
[V x D]

I

Attention is all you
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Transformers for Language Modeling (LLM)

Learn an embedding matrix at the start of
the model to convert words into vectors.

Given vocab size V and model dimension
D, it's a lookup table of shape [V x D]

Use masked attention inside each
transformer block so each token can only
see the ones before it

At the end, learn a projection matrix of
shape [D x V] to project each D-dim
vector to a V-dim vector of scores for
each element of the vocabulary.

Train to predict next token using softmax
+ cross-entropy loss

is al you need

P 111
Projection Matrix
[D x V]

4 4 3 ]
t t t t
Layer Normalization

MLP |[MLP || MLP |[MLP

Layer Normalization

Self-Attention
t t t |

¥ [ [ ¥

] 4 t ¢
I

Layer Normalization

MLP |[MLP || MLP |[MLP

Layer Normalization

Self-Attention
t t t t

¥ [ [ ¥
t t i t

Embedding Matrix
[V x D]

I

Attention is all you
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Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

BEE®L p

)

Input image: =
e.g. 224x224x3 a

Dosovitskiy et al, “An Image is Worth Break |nt0 patCh es

16x16 Words: Transformers for Image
Recognition at Scale”, ICLR 2021 e. g 1 6X1 6X3
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Vision Transformers (ViT)

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth Break |nt0 patCheS Flatten and apply a Iinear
16x16 Words: Transformers for Image e. g 1 6X1 6X3 tra nsform 768 => D

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Q: Any other way to
describe this operation?

Input image: :g

e.g. 224x224x3
Dosovitskiy et al, “An Image is Worth Break Into patCheS Flatten and apply a Ilnear
e Tk ke e.g. 16x16X3 transform 768 => D
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Vision Transformers (ViT)

Q: Any other way to
describe this operation?

A: 16x16 conv with stride
16, 3 input channels, D
output channels

Input image: :g

e.g. 224x224x3
Dosovitskiy et al, “An Image is Worth Break |nt0 patCheS Flatten and apply a Ilnear
focle Wore Trsomes el @, 16x16x3 transform 768 => D

Stanford CS231n 10t Anniversary Lecture 8- 104 April 24,2025



Vision Transformers (ViT)

1 1 1 t
Layer Normalization

MLP |[MLP |[ MLP |[MLP

Layer Normalization

| Self-Attention
t t t

() [ ¥ 3
4 I £ ]

Layer Normalization

MLP |[MLP |[ MLP |[MLP

Layer Normalization

| Self-Attention
t t t

[ 3 [ 3 ¥ ¥
T T T T

t

Input image: =
e.g. 224x224x3 g

~ D-dim vector per patch
Dosovitskiy et al, “An Image is Worth Break |nt0 patCheS Flatten and apply a Ilnear are the InpUt VeCtorS to
1616 Words: Transformers for mage e.g. 16x16x3 transform 768 => D the Transformer
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Vision Transformers (ViT)

\
! LayerfNorma\Il.izalion=
MLP |[MLP || MLP || MLP
Layer Normalization
Self-Attention
Lt t t
——
> Layer Normalization USG positional
MLP |[MLP | MLP | MLP encoding to tell
Layer Normalization the tra nSformer
the 2D position
Self-Attention
. P I R N of each patch
Input image: :g L
e.q. 224x224x3 |
~ D-dim vector per patch
Dosovitskiy et al, “An Image is Worth Break |nt0 patCheS Flatten and apply a Ilnear are the InpUt VeCtorS to
e e.g. 16x16x3 transform 768 => D the Transformer
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Vision Transformers (ViT)

\
?Layer?Normall.izaliong Don’t use any
MLP |[MLP || MLP |[MLP masking; each
— image patch can
Layer Normalization
look at all other
|y Sephvenen image patches
S S——
> Layer Normalization USG positional
MLP |[MLP | MLP |[MLP encoding to tell
Layer Normalization the tra nSformer
the 2D position
Self-Attention
. L (R of each patch
Input image: :g et f
e.q. 224x224x3 t
~ D-dim vector per patch
Dosovitskiy et al, “An Image is Worth Break |nt0 patCheS Flatten and apply a Iinear are the InpUt VeCtorS to
o e Rt e.g. 16x16x3 transform 768 => D the Transformer
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Transformer

Vision Transformers (ViT) qivos an output

vector per patch

\
?Layer?Normall.izaliong Don’t use any
MLP |[MLP || MLP |[MLP masking; each
— image patch can
Layer Normalization
look at all other
|y Sephvenen image patches
I ——
> Layer Normalization USG positional
MLP |[MLP | MLP |[MLP encoding to tell
Layer Normalization the tra nSformer
the 2D position
Self-Attention
. L (R of each patch
Input image: :g et f
e.q. 224x224x3 t
~ D-dim vector per patch
Break into patches Flatten and apply a linear are the input vectors to

Dosovitskiy et al, “An Image is Worth

16x16 Words: Transformers for Image e. g 1 6X1 6X3 tra nsform 768 => D

Recognition at Scale”, ICLR 2021

the Transformer
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Average pool NxD vectors to

- : 1xD, apply a linear layer Transformer
Vision Transformers (ViT) D=>C to predict class SCOreS givas an output
t
~ | Booiing | vector per patch
ILayerlNormaIIizalion' Don’t use any
MLP |[MLP | MLP | MLP masking; each

image patch can
look at all other

Layer Normalization

| Sephenen image patches

I ——
> Layer Normalization USG positional
MLP |[MLP | MLP | MLP encoding to tell

the transformer
the 2D position

Layer Normalization

: [ e of each patch
Input image: :g s
e.q. 224x224x3 3 |
S
~ D-dim vector per patch
Break into patches Flatten and apply a linear are the input vectors to

Dosovitskiy et al, “An Image is Worth

16x16 Words: Transformers for Image e. g 1 6X1 6X3 tra nsform 768 => D

Recognition at Scale”, ICLR 2021

the Transformer

Stanford CS231n 10t Anniversary Lecture 8 - 109 April 24,2025



Tweaking Transformers Vol |¥2| |Ya| |Va
4

4 4 4
The Transformer architecture has not : L 'N I' f :
changed much since 2017. ayer o;rna IZation
D
But a few changes have become common: ¥

| 1 I |
MLP || MLP || MLP || MLP

Layer Normalization

A
b d
Self-Attention
t t t t
—[
t t t t
X1 Xy X3 X4
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Pre-Norm Transformer

is outside
the residual connections

Kind of weird, the model can't
actually learn the identify function

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018

Y1 Y2 Y3 Ya
4

4 4 4
1 1 1 1
Layer Normalization
D
"\

| 1 I |
MLP || MLP || MLP || MLP

Layer Normalization

A
b d
Self-Attention
t t t t
—I
t t t t
X1 X2 X3 X4
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Pre-Norm Transformer Vi Vs Vs V4

D
is outside [ I I ]
the residual connections MLP || MLP || MLP || MLP
Kind of weird, the model can't : : ! : d
actually learn the identify function Layer Normalization
D
¥
Self-Attention
Layer Normalization
t t t t
-
f f f f
X1 Xo X3 Xy

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018
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RMSNorm Y1 Yo Y3 Y4

Replace Layer Normalization
with Root-Mean-Square D+
Normalization (RMSNorm)

[
MLP MI:P MLP || MLP

Input: x [shape D]
Output: y [shape D] 1

. D
I — l
RMS(x) Self-Attention
1 N
RMS(x) =\/s+N2' x? RMSNorm
i=1
t t t t
—
Training is a bit more stable t t t t
X4 Xo X3 X4

Zhang and Sennrich, “Root Mean Square Layer Nomalization”, NeurlPS 2019
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SwiGLU MLP Vi Y2, Y3 Va

Classic MLP:
D-
Input: X [N x D] I I I I
Weights: W, [D x 4D]
W, [4D x D] M|;P Ml*_P MI:P MI;P
Output: Y = o(XW,)W, [N x D] I
RMSNorm
D
¥
Self-Attention
RMSNorm
t t t t
S
t 1 t 1
X4 Xy X3 Xy

Shazeer, “GLU Variants Improve Transformers”, 2020
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SwiGLU MLP Vi Y2, Y3 Va

Classic MLP:
D+
Input: X [N x D] I I I I
Weights: W, [D x 4D]
W, [4D x D] MLP | MLP |[MLP | MLP
Output: Y = o(XW,)W, [N x D] 1
RMSNorm
SwiGLU MLP: A
k3
Input: X [N x D] .
Weights: W, , W, [D x H] Self-Attention
W, [H x D]
Output: 1 R1MSNor1m 1
Y = (O'(le) @ XWZ)W3 _—
f f f f
Setting H = 8D/3 keeps
same total params X4 X5 X3 Xy

Shazeer, “GLU Variants Improve Transformers”, 2020
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SwiGLU MLP

Classic MLP:

Input: X [N x D]
Weights: W, [D x 4D]
W, [4D x D]

Output: Y = o(XW,)W, [N x D]

SwiGLU MLP:

Input: X [N x D]
Weights: W, , W, [D x H]
W, [H x D]
Output:
Y = (c(XWy) © XW,)Ws

Setting H = 8D/3 keeps
same total params

Shazeer, “GLU Variants Improve Transformers”, 2020

We offer no explanation as
to why these architectures
seem to work; we attribute
their success, as all else,
to divine benevolence.

N
\J/

[
MLP MI:P MLP || MLP

4 | 4 4
RMSNorm
D
k4
Self-Attention
RMSNorm
t t t t
S
t 1 t 1
X1 Xy X3 X4

Stanford CS231n 10 Anniversary

Lecture 8- 116

April 24, 2025




Mixture of Experts (MoE) Yo Yo Ya  Va

Learn E separate sets of MLP weights in
each block; each MLP is an expert \>:
W,: [D x 4D] => [E x D x 4D] l I I |
W,: [4D x D] => [E x 4D x D] M|;P M|;P MI:P Ml*_P
|
RMSNorm
D
¥
Self-Attention
RMSNorm
t t t t
_—
f 1 f 1
X1 Xo X3 X4

Shazeer et al, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, 2017
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Mixture of Experts (MoE) Yo Yo Ya  Va

Learn E separate sets of MLP weights in
each block; each MLP is an expert \):
W,: [D x 4D] => [E x D x 4D] ' ' | l
W,: [4D x D] => [E x 4D x D] M|;P M|;P MI:P Ml*_P
|
Each token gets routed to A < E of the RMSNorm
experts. These are the active experts. EY
Increases params by E, k1 :
But only increases compute by A Self-Attention
RMSNorm
t t t t
—
f f f f
X1 X2 X3 X4

Shazeer et al, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, 2017
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Mixture of Experts (MoE) Vi Yo Y3 Va

Learn E separate sets of MLP weights in

each block; each MLP is an expert \):

W,: [D x 4D] => [E x D x 4D] I | I |

W,: [4D x D] => [E x 4D x D] M|;P M|;P MI:P Ml*_P
|

Each token gets routed to A < E of the RMSNorm

experts. These are the active experts. EY

Increases params by E, k1 :

But only increases compute by A Self-Attention

All of the biggest LLMs today (e.g. RMSNorm

GPT4o0, GPTA4.5, Claude 3.7, Gemini 2.5 = t t t t

Pro, etc) almost certainly use MoE and f $ $ $

have > 1T params; but they don’t publish

details anymore X4 Xo X3 X4
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Tweaking Transformers

The Transformer architecture has not
changed much since 2017.

But a few changes have become common:

- Pre-Norm: Move normalization inside
residual

- RMSNorm: Different normalization layer

- SwiGLU: Different MLP architecture

- Mixture of Experts (MoE): Learn E
different MLPs, use A < E of them per
token. Massively increase params,
modest increase to compute cost.

N
\J/

[
MLP MI:P MLP || MLP

4 | 4 4
RMSNorm
D
k4
Self-Attention
RMSNorm
t t t t
S
t 1 t 1
X1 Xy X3 X4

Stanford CS231n 10 Anniversary
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Summary: Attention + Transformers

Attention: A new primitive that Transformer: A neural
operates on sets of vectors network architecture that
uses attention everywhere

Yy Y, Ys
1 ) )

[ Product(), sum(t) | ILayerlNDrmallizalionI
_' Vs |_' Azl Az [Ags
— -] (A [Ass Transformers are the i s s
— V, |— A, A?I As, ba CkbOﬂ e of a ” |a rge Layer Normalization
| | Softm'axl']"] | Al mOdel S tod ay' = Sel1f-Attent'ion |
— K3 |_" Ey s E s Ejs ?L f'N If' - f+
) Kz —_ El R Ez , E3‘2 ayer Norma ization
[ Ky |—|[Eya]| [Eay] [Eay Used for |ang uage, MLP | MLP | MLP | MLP
t . t . il_l_l
Q Q; ‘ Q; ‘ viSion ’ S pee Ch7 RN Layer Normalization
‘ Xy ‘ ‘ Xy ‘ X3 ‘ : Sel1f-Attent'ion
— s
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Next Time:
Detection, Segmentation,
Visualization
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