Lecture T:
Recurrent Neural Networks

Stanford CS231n 10" Anniversary Lecture 7 - 1 April 22, 2025

Course Logistics

e Assignment 1 is due tomorrow (4/23) at 11:59PM!

e Project proposal deadline is due this Friday (4/25)

Stanford CS231n 10" Anniversary Lecture 7 - 2 April 22, 2025

Clarifications from Last Time

e Dropout, how to scale probabilities at test-time

e Question in class about normalization vs weight initialization

Stanford CS231n 10" Anniversary Lecture 7 - 3 April 22, 2025

Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Stanford CS231n 10" Anniversary Lecture 7 - 4 April 22, 2025

Dropout: Test time

def predict(X):

Hl = np.maximum(@, np.dot(Wl, X) + bl) * p # NOTE: scale the activations
H2 = np.maximum(®, np.dot(W2, Hl) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time

Stanford CS231n 10" Anniversary Lecture 7- 5 April 22, 2025

""" Vanilla Dropout: Not recommended implementation (see notes below) """

Dropout Summary

- -~ - - - 7 - - ; | -~ - - : - - S - s e o ~ - ~ - | - -~ b | - - - ~ -~ ~
-— 1T+ NnNroanant |l ™1/ s ODN 1T NN) " . T 7 e 2] Thor s NCC Sronni T
p=0.5# probability of keeping a unit active. higher = less dropout

def train step(X):
"X contains the data """

s rn nacceoe A r 177-7 & >‘/“‘P"_‘j’

np.maximum(®, np.dot(Wl, X) + bl)
np.random.rand(*Hl.shape) < p # 7irst dropout mask
Hl *= Ul # drop! . . .
H2Z = np.maximum(0, np.dot(WZ2, HI) + b2) drop N tra|n t|me
= np.random.rand(*H2.shape) < p # second dropout mask

H2 *= U2 # drop!

out np.dot(W3, H2) + b3

C=
=
nin

def predict(X):

;1L;Dﬁh:ﬁ;;im;ﬁ¥5;vn;f;;t(WI, X) + bl)|* p # NOTE: scale the activations i
i - 1 scate the activation: |- gcgle at test time

np.maximum(®, np.dot(W2, H1) + b2) * p # NO
np.dot(W3, H2) + b3

out =

Stanford CS231n 10" Anniversary Lecture 7 - 6 April 22, 2025

Question In class: can normalization resolve the issues that
arise with having weights initialized incorrectly?

Toy setting, 2d input and 2-layer NN w/ ReLU

Learning Quadrant Function with/without LayerNorm and Good Init

Train Loss Test Loss
2 1 —— Bad Init, No Norm —— Bad Init, No Norm
108 - Good Init, No Norm 4 ——— Good Init, No Norm
—— Bad Init, LayerNorm —— Bad Init, LayerNorm
—— Good Init, LayerNorm —— Good Init, LayerNorm
106 4

MSE Loss

= am
3 ZI 102 1 TP & i LN -
0 200 400 600 800 1000 0 200 400 600 800 1000

Epoch Epoch

Link to code (colab) Link to Ed Post
Stanford CS231n 10" Anniversary Lecture 7 - 7 April 22, 2025

https://edstem.org/us/courses/77520/discussion/6558110
https://colab.research.google.com/drive/1xgXDV1EEktbAvGG0yAbSoM8F2btqDWqT?usp=sharing

Question In class: can normalization resolve the issues that
arise with having weights initialized incorrectly?

Toy setting, 2d input and 2-layer NN w/ ReLU
Significant reduction in error!

Learning Quadrant Function with/without LayerNorm and Good Init

Train Loss Test Loss
2 1 —— Bad Init, No Norm —— Bad Init, No Norm
108 - Good Init, No Norm 4 ——— Good Init, No Norm
—— Bad Init, LayerNorm —— Bad Init, LayerNorm
—— Good Init, LayerNorm —— Good Init, LayerNorm
106 4

MSE Loss

= am
3 ZI 102 1 TP & i LN -
0 200 400 600 800 1000 0 200 400 600 800 1000

Epoch Epoch

Link to code (colab) Link to Ed Post
Stanford CS231n 10" Anniversary Lecture 7 - 8 April 22, 2025

https://edstem.org/us/courses/77520/discussion/6558110
https://colab.research.google.com/drive/1xgXDV1EEktbAvGG0yAbSoM8F2btqDWqT?usp=sharing

Question In class: can normalization resolve the issues that
arise with having weights initialized incorrectly?

Toy setting, 2d input and 2-layer NN w/ ReLU Performance gap still exists, does not
resolve issues entirely, still optimization

issues

Learning Quadrant Function with/without LayerNorm and Good Init
Train Loss Test Loss
2 1 — Bad Init, No Norm — Bad Init, No Norm
108 ——— Good Init, No Norm 4 ——— Good Init, No Norm
—— Bad Init, LayerNorm —— Bad Init, LayerNorm
—— Good Init, LayerNorm —— Good Init, LayerNorm

106 4

104 -

MSE Loss
MSE Loss

102 _

100 4 '\‘

\
Y
= .‘\‘
‘\7‘\‘- e T : -] ’1 - -
3 l 10—2 B —tg S W / 4 .
0 200 400 600 800 1000 0 200 400 600 800 1000

Epoch Epoch

Link to code (colab) Link to Ed Post
Stanford CS231n 10" Anniversary Lecture 7 - 9 April 22, 2025

https://edstem.org/us/courses/77520/discussion/6558110
https://colab.research.google.com/drive/1xgXDV1EEktbAvGG0yAbSoM8F2btqDWqT?usp=sharing

Question In class: can normalization resolve the issues that
arise with having weights initialized incorrectly?

Normalization may not always make sense! In
this case, easy to see why it’s helpful (LayerNorm
does not change quadrant of inputs)

Toy setting, 2d input and 2-layer NN w/ ReLU

Learning Quadrant Function with/without LayerNorm and Good Init
Train Loss Test Loss

2 1 — Bad Init, No Norm — Bad Init, No Norm
108 ——— Good Init, No Norm 4 ——— Good Init, No Norm
—— Bad Init, LayerNorm —— Bad Init, LayerNorm
—— Good Init, LayerNorm —— Good Init, LayerNorm
106 4
@ 10% - 2
o o
- o]
0 7
= 102 - =
‘l
1004 W 1 W\
5 s s : -] ’1 - -
10-2 vt & LAY A 7
3 I 0 200 400 600 800 1000 0 200 400 600 800 1000

Epoch Epoch

Link to code (colab) Link to Ed Post
Stanford CS231n 10" Anniversary Lecture 7 - 10 April 22, 2025

https://edstem.org/us/courses/77520/discussion/6558110
https://colab.research.google.com/drive/1xgXDV1EEktbAvGG0yAbSoM8F2btqDWqT?usp=sharing

Training Non-Recurrent Neural Networks

1. One time setup: activation functions, preprocessing,
weight initialization, normalization, transfer learning

2. Training dynamics: babysitting the learning process,
parameter updates, hyperparameter optimization

3. Evaluation: validation performance, test-time
augmentation

Stanford CS231n 10" Anniversary Lecture 7 - 11 April 22, 2025

Evaluate models and tune hyperparameters
@ Runs (211) is Q_ Search panels X & .. ¢

Q *
Charts 13
=)
batch_size dropout accuracy Accuracy Sandal
® Name (211 visualized o L
260 ___0.50a 0.88 Showing first 10 runs

0.87 = brisk-sweep-210 == solar-sweep-210 = ethereal-sweep-209

. 240 — floral-sweep-207
/ ® . bnSk'Sweep'ZJ-O § = onlive-sween-20A Swet
, 220 o~
® @ solar-sweep-210 200 o /\
@ 180
® @ ethereal-sweep-209 Lo I oo
@® (@ blooming-sweep-208 10 -
120 '
® @ floral-sweep-207 100 2
80 0.8
St
® @ olive-sweep-206 °
oL 0 2 4 6 8 10 12

@® @ zesty-sweep-205

https://docs.wandb.ai/guides/track/app
Stanford CS231n 10" Anniversary Lecture 7 - 12 April 22, 2025

Rest of Today's Lecture

e Discuss sequence modeling (assumed fixed-length inputs so far)
o Simple models commonly used before the era of

transformers
o RNNs and some variants

o Relation to modern state-space models (e.g. Mamba)

Stanford CS231n 10" Anniversary Lecture 7 - 13 April 22, 2025

“Vanilla” Neural Network

one to one

\ Vanilla Neural Networks

Stanford CS231n 10" Anniversary Lecture 7 - 14 April 22, 2025

Recurrent Neural Networks: Process Sequences

one to one one to many
! P11
! f

\ e.g. Image Captioning
image -> sequence of words

Stanford CS231n 10" Anniversary Lecture 7 - 15 April 22, 2025

Recurrent Neural Networks: Process Sequences

one to one one to many many to one
! Pt T
! ! P11

\ e.g. action prediction
sequence of video frames -> action class

Stanford CS231n 10" Anniversary Lecture 7 - 16 April 22, 2025

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many
! Pt ! P11
! ! P11 Pt

E.g. Video Captioning
Sequence of video frames -> caption

Stanford CS231n 10" Anniversary Lecture 7 - 17 April 22, 2025

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
! Pt ! Pt Pt
! ! P11 Pt Pt

e.g. Video classification on frame level

Stanford CS231n 10" Anniversary Lecture 7 - 18 April 22, 2025

Recurrent Neural Network

Stanford CS231n 10" Anniversary Lecture 7 - 21 April 22, 2025

Recurrent Neural Network

Key idea: RNNs have an
“internal state” that is

/ updated as a sequence is
processed

Stanford CS231n 10" Anniversary Lecture 7 - 22 April 22, 2025

Unrolled RNN

1 2

Stanford CS231n 10" Anniversary

3

Lecture 7 - 23

Y1 Y2 Y3 Yt
T T T T
T T T T
X X X X

t

April 22, 2025

RNN hidden state update

We can process a sequence of vectors x by applying a
recurrence formula at every time step: y

ht e fW(ht—h xt)
new state / old state input vector at
some time step
some function y

with parameters W

Stanford CS231n 10" Anniversary Lecture 7 - 24 April 22, 2025

RNN output generation

We can process a sequence of vectors x by applying a
recurrence formula at every time step: y

yt - fWhy (ht)
output / new state
another function .

with parameters W,,,

Stanford CS231n 10" Anniversary Lecture 7 - 25 April 22, 2025

Recurrent Neural Network

1 2 3

Stanford CS231n 10" Anniversary Lecture 7 - 26

Y1 Y2 Y3 Yt
T T T T

4 RNN 4 RNN 4 RNN > ... RNN
T T T T
X X X X

t

April 22, 2025

Recurrent Neural Network

We can process a sequence of vectors x by applying a
recurrence formula at every time step: y

hy = fw (ht—la fﬂt)

Notice: the same function and the same set of y
parameters are used at every time step.

Stanford CS231n 10" Anniversary Lecture 7 - 27 April 22, 2025

(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

Tanh

fix) =tanh(x) =S5 1

-10 10

1F

X ht — tanh(Whhht_l + Wmhzt) Yy — Whyht

Sometimes called a “Vanilla RNN” or an Often, we also have an output
“Elman RNN” after Prof. Jeffrey Elman function: fy

Stanford CS231n 10" Anniversary Lecture 7 - 28 April 22, 2025

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

RNN “Many to many” sequence modeling task

v

= OO =2 =0 000K

ht — fW(ht—la ft)

Yt = fy(Whyht)

How could we create an RNN to
do this?

AAOAAAOAOX

Q: What information should be
captured in the “hidden” state?

Stanford CS231n 10" Anniversary Lecture 7 - 29 April 22, 2025

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

RNN “Many to many” sequence modeling task

v

L OO 0000

ht — fW(ht—la ft)

yt = fy(Whyht)

How could we create an RNN to
do this?

AAOAAAOAOX

A: Previous input and current
value for x

Stanford CS231n 10t Anniversary Lecture 7 - 30 April 22, 2025

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

RNN “Many to many” sequence modeling task

v

L OO 0000

ht — fW(ht—la xt)

Yt = fy(Whyht)
Setfwand Jy to

both be RelLU for
simplicity h | Current
t —I|P Initialize

revious
h 0to

1 (0,0, 1)

AAOAAAOAOX

Stanford CS231n 10" Anniversary Lecture 7 - 31 April 22, 2025

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

w_xh = np.array([[1], [@], [@]])
- _ hy = ReLU(Whhht_l + thl’t) ht — P?urljent
w_hh = np.array([[©, ©, ©], TG‘TOUS
1, o, @], —
‘o, 6. 117) Ut ReLU(Whyht)
w_vh = np.array([1, 1, -17) X RNN Y
0 >0
x seq =[0, 1, 0, 1, 1, 1, 0, 1, 1] 1 0
0 0
h_t_prev = np.array([[€], [@], [1]]) 1 0
1 1
for t, X in enumerate(x_seq): 1 1
h t = relu(w hh @ h_t prev + (w xh @ x)) 0 0
y_t = relu(w_yh @ h_t) 1 0
h t prev = h_t 1 1

* Code is missing parts, for full code see here

Stanford CS231n 10" Anniversary Lecture 7 - 32 April 22, 2025

https://colab.research.google.com/drive/15YMP5dVcfUz2M36a_wmL4mEqKUlgJrdE?usp=sharing

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

w_xh = np.array([[1], [0], [@]]) |
. _ h = ReLU (Wyphy—y +|[W,p¢) ht — |§ur1jent|
w_hh = np.array([[©, ©, 0], TG‘TOUS
1, o, @], —
‘o, 6. 117) Ut ReLU(Whyht)
Right hand term X
w_yh = np.array([1, 1, -17) x=0 - [0, 0, 0] RNN Y
X=1->[1, 0, 0] 0 > 0
x seq =[0, 1, 0, 1, 1, 1, 0, 1, 1] 1 0
0 0
h_t_prev = np.array([[€], [@], [1]]) 1 0
1 1
for t, X in enumerate(x_seq): 1 1
h t = relu(w hh @ h_t prev + (w xh @ x)) 0 0
y t = relu(w yh @ h_t) 1 0
h t prev = h_t 1 1

* Code is missing parts, for full code see here

Stanford CS231n 10t Anniversary Lecture 7 - 33 April 22, 2025

https://colab.research.google.com/drive/15YMP5dVcfUz2M36a_wmL4mEqKUlgJrdE?usp=sharing

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

w_xh = np.array([[1], [@], [©]])
_ _ he = ReLU (Wyphe—{ + Wpze) h, = I}?urrentl
w_hh = np.ar~r~ay(|__e, e, 0], | revious
: 3 1
1, 6, ol yt = ReLU(W}, hy)
(@, 0, 1]])
0 for top row of left X
w_yh = np.array([1, 1, -1]) term (only use value RNN Y
from right term) 0 0
x seq =[0, 1, 0, 1, 1, 1, 0, 1, 1] 1 0
0 0
h_t_prev = np.array([[@], [@], [1]]) 1 0
1 1
for t, X in enumerate(x_seq): 1 1
h t = relu(w hh @ h_t prev + (w xh @ x)) 0 0
y_t = relu(w_yh @ h_t) 1 0
h t prev = h_t 1 1

* Code is missing parts, for full code see here

Stanford CS231n 10" Anniversary Lecture 7 - 34 April 22, 2025

https://colab.research.google.com/drive/15YMP5dVcfUz2M36a_wmL4mEqKUlgJrdE?usp=sharing

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

w_xh = np.array([[1], [@], [€]])
hi = ReLU Wy, hi + W2 Current
w_hh = np.array([[©, ©, @], 4 hh ia oh Tt }lt — | [Previous|
L[L. o, e:,)I yt = ReLU(W}, hy) :
[0, 6, 1]]

Copy over “current”
w_yh = np.array([1, 1, -11) value from previous RNN

X
<

hidden state to be 0 0

x seq = [6, 1, ©, 1, 1, 1, 8, 1, 1] Pprevious” 1 0
0 0

h_t_prev = np.array([[@], [@], [1]]) 1 0
1 1

for t, X in enumerate(x_seq): 1 1
h t = relu(w hh @ h_t prev + (w xh @ x)) 0 0

y_t = relu(w_yh @ h_t) 1 0

h t prev = h_t 1 1

* Code is missing parts, for full code see here

Stanford CS231n 10" Anniversary Lecture 7 - 35 April 22, 2025

https://colab.research.google.com/drive/15YMP5dVcfUz2M36a_wmL4mEqKUlgJrdE?usp=sharing

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

w_xh = np.array([[1], [@], [@]])
- _ hy = RGLU(IWhhht—]I + thl’t) ht — P?urljent
w_hh = np.array([[©, ©, ©], | “ﬂTousl
1, 6, @], —
et yt = ReLU (W ht)
Keep 1 on the bottom X
w yh = np.array([1, 1, -1]) (helpful for output) RNN Y
0 >0
x seq =[0, 1, 0, 1, 1, 1, 0, 1, 1] 1 0
0 0
h_t_prev = np.array([[@], [@], [1]]) 1 0
1 1
for t, X in enumerate(x_seq): 1 1
h t = relu(w hh @ h_t prev + (w xh @ x)) 0 0
y_t = relu(w_yh @ h_t) 1 0
h t prev = h_t 1 1

* Code is missing parts, for full code see here

Stanford CS231n 10t Anniversary Lecture 7 - 30 April 22, 2025

https://colab.research.google.com/drive/15YMP5dVcfUz2M36a_wmL4mEqKUlgJrdE?usp=sharing

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

w_xh = np.array([[1], [@], [@]])
y _ hi = ReLU(Whyphe—1 + Wopat) ht — Sur?em
w_hh = np.array([[©, ©, 6], 1firous
1, o, 6], —
0, 0, 1]]) It ReLU(Whyht)
wyh = np.array{[L, 1, -1D)] Max(Current + Previous —1,0) X NN Y
0 >0
x_seq =[06, 1,90, 1,1, 1, 6, 1, 1] 1 0
0 0
h_t_prev = np.array([[@], [@], [1]]) 1 0
1 1
for t, x in enumerate(x_seq): 1 1
h_t = relu(w_hh @ h_t_prev + (w_xh @ x)) 0 0
y_t = relu(w_yh @ h_t) 1 0
h t prev = h_t 1 1

* Code is missing parts, for full code see here

Stanford CS231n 10" Anniversary Lecture 7 - 37 April 22, 2025

https://colab.research.google.com/drive/15YMP5dVcfUz2M36a_wmL4mEqKUlgJrdE?usp=sharing

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

w_xh = np.array([[1], [@], [@]])
- _ hy = ReLU(Whhht_l + thl’t) ht — P?urljent
w_hh = np.array([[©, ©, ©],]firous
1, e, e, = ReLU Wy, h
0, 0, 1]]) St (Whyht)
_ _ And it just works! But X Y
S0 S WL S <2 how do we findtheWs ~ RNN
in practice?
x seq =[0, 1, 0, 1, 1, 1, 0, 1, 1] 1 0
0 0
h_t_prev = np.array([[€], [@], [1]]) 1 0
1 1
for t, x in enumerate(x_seq): 1 1
h t = relu(w hh @ h_t prev + (w xh @ x)) 0 0
y_t = relu(w_yh @ h_t) 1 0
h t prev = h_t 1 1

* Code is missing parts, for full code see here

Stanford CS231n 10t Anniversary Lecture 7 - 38 April 22, 2025

https://colab.research.google.com/drive/15YMP5dVcfUz2M36a_wmL4mEqKUlgJrdE?usp=sharing

RNN: Computational Graph

Stanford CS231n 10" Anniversary Lecture 7 - 39 April 22, 2025

RNN: Computational Graph

Stanford CS231n 10" Anniversary Lecture 7 - 40 April 22, 2025

RNN: Computational Graph

h0—>fW —>h1—>fW —>h2—>fW —>h3—>...—>h.|.
X1 X2 X3

Stanford CS231n 10" Anniversary Lecture 7 - 41 April 22, 2025

RNN: Computational Graph

Re-use the same weight matrix at every time-step

Stanford CS231n 10" Anniversary Lecture 7 - 42 April 22, 2025

RNN: Computational Graph: Many to Many

Y1 Y2 Y3 YT

T T T T

Stanford CS231n 10" Anniversary Lecture 7 - 43 April 22, 2025

RNN: Computational Graph: Many to Many

Vi 1 Ly Yo 1 L ys 1 Ls yr — Ly

T T T T

Stanford CS231n 10" Anniversary Lecture 7 - 44 April 22, 2025

RNN: Computational Graph: Many to Many

Y2

T

— L, k!

T

Lecture 7 -

45

Stanford CS231n 10" Anniversary

April 22, 2025

RNN: Computational Graph: Many to One

Stanford CS231n 10" Anniversary Lecture 7 - 46 April 22, 2025

RNN: Computational Graph: Many to One

Stanford CS231n 10" Anniversary Lecture 7 - 47 April 22, 2025

RNN: Computational Graph: One to Many

Y1 Y2 Y3 YT

T T T T

Stanford CS231n 10" Anniversary Lecture 7 - 48 April 22, 2025

RNN: Computational Graph: One to Many

Y1 Y2 Y3 YT

T T T T

Stanford CS231n 10" Anniversary Lecture 7 - 49 April 22, 2025

RNN: Computational Graph: One to Many

Y1 Y2 Y3 YT

T T T T

Stanford CS231n 10" Anniversary Lecture 7 - 50 April 22, 2025

RNN: Computational Graph: One to Many

Y2

T

X Y1

k!

T

Y2

Lecture 7 -

51

YT

T

Stanford CS231n 10" Anniversary

April 22, 2025

Forward through entire sequence to

BaCkp o pagatio N th rou gh ti me compute loss, then backward through

entire sequence to compute gradient

A

Stanford CS231n 10" Anniversary Lecture 7 - 54 April 22, 2025

Truncated Backpropagation through time

Loss

ot 1
// \\ Run forward and backward
through chunks of the

sequence instead of whole
sequence

Stanford CS231n 10" Anniversary Lecture 7 - 55 April 22, 2025

Truncated Backpropagation through time

Loss

/] 1]

\

AN\

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller number
of steps

Stanford CS231n 10" Anniversary

Lecture 7 -

56 April 22, 2025

Truncated Backpropagation through time

Stanford CS231n 10" Anniversary Lecture 7 - 57 April 22, 2025

Truncated BPTT: Single Output

Still calculate gradients at each time step, rely on Loss
upstream gradients (no more loss per time-step) N
N
> > > > > > —> > > > > > —p > > > > >

Stanford CS231n 10" Anniversary Lecture 7 - 58 April 22, 2025

A more practical

example:
Character-level
Language Model
Vocabulary:
[h,e,l,0]
1 0 0 0

Example training input layer | o 8 : "
sequence: | - - ° .

input chars: “h” e I I
“hello”

Stanford CS231n 10" Anniversary Lecture 7 - 59 April 22, 2025

A more practical

hi = tanh(Whphi—1 + Wepxt)

example:
Character-level
Language Model

nidden layer | 0.1 |—| 03 |—{ 05 ["=" 09
Vocabulary: 0.9 0.1 0.3 0.7
[h,e,l,0] T T T TW_xh

1 0 0 0

Example training input layer | o ; ; ;
sequence: input chars: r? : IO (I)
“hello”

Stanford CS231n 10t Anniversary Lecture 7 - 60 April 22, 2025

target Chars: “e” “I” “l” “O”

A more practical 10 05 01 02
example: ouputiaver | 561 40| [18| |01
Character-level ul e s
Language Model | T | [Wy
0.3 1.0 0.1 |w hn|-0.3
hidden layer | .01 ——> 0.3 —| -05 ——{ 0.9
Vocabulary: 0.9 0.1 03 0.7
[h,e,l,O] T T T TW_xh
1 0 0 0
Example training input layer | o . g .
sequence: | =2 = = .
)y he[[o” input chars: “h e I I

Stanford CS231n 10" Anniversary Lecture 7 - 61 April 22, 2025

“e

Example: Character-level sample 4

Language Model i
. Softmax 00
Sampling
*

Vocabulary: oo | 50
[h,e,l,0] |

03
hidden layer | -0.1 —

0.9

At test-time sample characters
one at a time, feed back to

mOdel input layer

1
0
0
0
“h”

input chars:

Stanford CS231n 10" Anniversary Lecture 7 - 62 April 22, 2025

“;\

Example: Character-level sample
Language Model 0:
. Softmax 00
Sampling
*
1.0
. output layer _2'2
Vocabulary: 30
[h,e,1,0] T
03
hidden layer | -0.1
At test-time sample characters >
one at a time, feed back to T
1 0
m Od el input layer 8 :)
0 0
input chars: “h” L‘ e

Stanford CS231n 10t Anniversary Lecture 7 - 63 April 22, 2025

“;\ “I”

Example: Character-level sample 4 h
Language Model RE
1 Softmax :()0 :50
Sampling
. :

1.0 05
Vocabulary: uptirer | 5o | g
[h,e,1,0] b
| 0.3 1.0

. hidden layer | -0.1 » 03 |

At test-time sample characters 0.9 0.1
one at a time, feed back to T T
1 0

m Od el input layer 8 :)
0 0

input chars: “h” \A aaE

Stanford CS231n 10" Anniversary Lecture 7 - 064 April 22, 2025

Example: Character-level sampl e '[\ 1[\ «
m O
Language Model e sl N
S] .03 25 11 11
amp lin g Softmax | oo 20 17 02
* * 03 s
*
Vocabulary: m | | o |
: output layer ?é% 2% 0.5 15
[h,e,l,0] 4{ | B | B
T T T W_hy
At teSt t hidden layer s b 0.1 |w |hh| 03
-time sample characters TS T8
. . =0 0.
one at a time, feed back to !] :
model 1 0 | g
input layer 8 (1) 8 8
T | (L
input chars: “h” \,4 “g” \jl \/‘I

Stanford CS231n 10t Anniver
sary Lecture 7 - 65 |
April 22, 2025

Example: Character-level

target chars: “e” Al “I” “0”

Language M()del 1.0 0.5 0.1 0.2

. output layer %% (?I?) ?g :(1)?

Sam P i ng 4.1 1.2 A1 2.2
[R I

- 111 piaden taver (RN OER| [/ hn e

Wi Wy Wis Wil [1] 0 [wy] 00| loa| |o3| |o7

W1 Woy Woz Wiyl [0] = Wy t ¢ t ¢

(W31 W3y W33 Wiy :O: :W31: Embedding P 2% P P

[W41 Wy Wys W44] 0 Wy er . p 03 03
Matrix multiplication with a one-hot vector | | | [won

. . . 1 0 0 0

just extracts a column from the weight matrix. nput taver B 1 0 0

We often put a separate embedding layer 0 i : ;

between the input and hidden layers. nputenars: e T |

Stanford CS231n 10t Anniversary Lecture 7 - 606 April 22, 2025

min-char-rnn.py gist: 112 lines of Python

Minimal character-level vanilla RNN model. written by Andrej Karpathy (@karpathy) def sample(h, seed_ix, n):

BSD License e

taid sample a sequence of integers from the model

import numpy as np h is memory state, seed_ix is seed letter for first time step

wan

i I x = np.zeros((vocab_size, 1))
data = open('input.txt', 'r').read() 1d t imple plain text fil x[seed_ix] = 1

chars = list(set(data)) ixes = []

data_size, vocab_size = len(data), len(chars) for t in xrange(n):

print 'data has %d characters, %d unique.' % (data_size, vocab_size) h = np.tanh(np.dot(wxh, x) + np.dot(whh, h) + bh)
char_to_ix = { ch:i for i,ch in enumerate(chars) } y = np.dot(why, h) + by

ix_to_char = { i:ch for i,ch in enumerate(chars) } p = np.exp(y) 7/ np.sum(np.exp(y))

ix = np.random.choice(range(vocab_size), p=p.ravel())
X = np.zeros((vocab_size, 1))

hidden_size = 160 ize of hi n laye f x[ix] = 1
seq_length = 25 r f st t 11 t RNN f ixes.append(ix)
learning_rate = 1le-1 return ixes
1 pa - n, p=9, 0
wxh = np.random.randn(hidden_size, vocab_size)’©.01 # input t idde mwxh, mwhh, mwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
whh = np.random.randn(hidden_size, hidden_size)*0.01 idden t idd mbh, mby = np.zeros_like(bh), np.zeros_like(by) 1 1 f Ada
why = np.random.randn(vocab_size, hidden_size)*@.01 i t tput smooth_loss = -np.log(1.0/vocab_size)*seq_length
bh = np.zeros((hidden_size, 1)) iden bia while True:
by = np.zeros((vocab_size, 1)) e i X epi
if p+seq_length+1 >= len(data) or n == @:

def lossFun(inputs, targets, hprev): hprev = np.zeros((hidden_size,1))

inputs, targets are botfj llst of integers. inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]

hprev is Hx1 array of initial hidden state targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

returns the loss, gradients on model parameters, and last hidden state

xs, hs, ys, ps = {}, {}, {}, {3 if n % 100 == @:

hs[-1] = np.copy(hprev) sample_ix = sample(hprev, inputs[e], 200)

loss = @ txt = ''.join(ix_to_char[ix] for ix in sample_ix)

print '----\n %s \n----' % (txt,)

for t in xrange(len(inputs)):
xs[t] = np.zeros((vocab_size,1))
xs[t][inputs[t]] = 1
hs[t] = np.tanh(np.dot(wxh, xs[t]) + np.dot(whh, hs[t-1]) + bh)
ys[t] = np.dot(why, hs[t]) + by lized log iliti
ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t]))
loss += -np.log(ps[t][targets[t],@]) f

loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * ©.999 + loss * ©.001
if n % 100 == @: print 'iter %d, loss: %f' % (n, smooth_loss)

for param, dparam, mem in zip([wxh, whh, why, bh, by],
[dwxh, dwhh, dwhy, dbh, dby],
[mwxh, mwhh, mwhy, mbh, mby]):

dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(Why)
dbh, dby = np.zeros_like(bh), np.zeros_like(by)
dhnext = np.zeros_like(hs[@])
for t in reversed(xrange(len(inputs))):
dy = np.copy(ps[t])
dy[targets[t]] -= 1
dwhy += np.dot(dy, hs[t].T)
dby += dy
dh = np.dot(why.T, dy) + dhnext
dhraw = (1 - hs[t] * hs[t]) * dh
dbh += dhraw . .
dwxh += np.dot(dhraw, xs[t].T) °
(https://gist.github.com/karpathy/d4dee5
1 < <G 1 L g

dhnext = np.dot(whh.T, dhraw)

for dparam in [dwxh, dwhh, dwhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam) lip t tigat ploding g ient 66867 8291 086

return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]

mem += dparam * dparam
param += -learning_rate * dparam / np.sqrt(mem + 1e-8)

©

+= seq_length
+= 1 t

-

Stanford CS231n 10" Anniversary Lecture 7 - 067 April 22, 2025

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086

THE SONNETS

by William Shakespeare y

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament, —
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held: X
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,’'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

Blogpost from Andrej Karpathy back in 2015!

Stanford CS231n 10" Anniversary Lecture 7 - 068 April 22, 2025

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

fi i tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
atTirst: plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

l train more

“Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

Stanford CS231n 10" Anniversary Lecture 7 - 69 April 22, 2025

PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Stanford CS231n 10" Anniversary

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

Lecture 7 - 70

April 22, 2025

O This repository Explore Gist Blog Help a‘lurpathy +- Q. & \

torvalds / linux @ Watch- 3711 4 Star 23,054 UFork 9,141

Linux kermel source tree

o
520,037 commits 1 branch 420 releases 5,039 contributors Code
2 ¥ 74
m Y branch: master - linux / + = > &
Pull requests
Merge branch 'drm-fixes’ of git.//people.freedesktop.org/~airliedlinux «--
o A
M torvalds authored 9 hours ago latest commit 4b1706927d f=
Pulse
M Documentation Merge git/igit kemel.org/pub/scmiAinux/kemel/git/nabtarget-pending 6 days ago
M arch Merge branch xB6-urgent-for-linus’ of gitJ//git. xermel.org/pub/scmi a gday ago ole
Graphs
M block block: discard bdi_unregister() in favour of bdi_destroy() 9 days ago
" crypto Merge git//igit kemel.org/pubVscmiAinuxd/kemel/git/herbert/crypto-2.6 10 days ago HTTPS clone URL
M drivers Merge branch 'arm-fixes’ of git//people.freedeskiop.org/~airkedlinux ¥ hours ago https://github.«¢ @,
M firmware firmwarefhex2iw.c: restore missing default in switch statement 2 months ago You can clone with HTTPS.
H rersion.
= s vis: read file handle ley oncea In handie 0 path 4 (ja-"g ago SS OF Subversio @
M include Merge branch ‘perf-urgent-for-linus’ of git//git. kemel.org/pub/scm/ a day ago & Clone in Desktop
M init nit: fix regression by supporting devices with major:minor:offset fo a month ago <> Download ZIP
LT VN Mlarnn hennndn VNar linne' A mnt st barnal sesbeu b v Rea v e arnnl n ot A

Stanford CS231n 10" Anniversary Lecture 7 - 74 April 22, 2025

static void do_command(struct seq file *m, void *v)

{
int column = 32 << (cmd[2] & 0x80); G t d
if (state) enera e
cmd = (int)(int state ® (in 8(&ch->ch flags) & Cmd) ? 2 : 1);
else C COde
seq = 1;
for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in use & UMXTHREAD UNCCA) +
((count & 0x00000000ff£ff£f£f£f8) & 0x000000f) << 8;
if (count == 0)
sub(pid, ppc md.kexec handle, 0x20000000);
pipe set bytes(i, 0);
}

-~ - TT-r - S - . ~ s v de g . e] & e —~ - < . s £ | ~
11 S8y r Tofl - > > Y ¢ & ™ £ NS Y T 3 ¢
Ly U Cd »'k«t1(o l)\,)A 11 LCJ O DJ Al C Caliel -,i A 4 alld W4 C

subsystem info = &of changes[PAGE SIZE];
rek controls(offset, idx, &soffset);
Now we want to deliberately put it to device
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)

seq_puts(s, "policy ");

Stanford CS231n 10" Anniversary Lecture 7 - 75 April 22, 2025

OpenAl Codex, GitHub Copilot, Cursor IDE

/* Add this image of a
rocketship:
https://1i1.sndcdn.com/artworks
-18x3G7zcTwmTe07b-06183w-
t500x500. jpg */
var rocketship =
.createElement('img’);
rocketship.src =
https://i1.sndcdn.com/artwork
s-j8xjG7zc1wmTe07b-06183w-
t500x500.jpg’ ;
.body .appendChild(rock
etship);

Add this image of a rocketship: r@
https://il.sndcdn.com/artworks-j8xjG7zclwmTeO7b- L
06183w-t500x500.jpg

A4

https://openai.com/blog/openai-codex/

Stanford CS231n 10" Anniversary Lecture 7 - 76 April 22, 2025

https://openai.com/blog/openai-codex/

Searching for interpretable cells

Stanford CS231n 10" Anniversary Lecture 7 - 77 April 22, 2025

Searching for interpretable cells

lter fileld"SWsitring Fépres@ntation firom WSer-space
packlstring(WOlid *Mbufp, siizelt | MrEmas,, s@lzel: Wen)

= ;_n))
r
ple nt“t,’r g fields, PRTHINAX
n st lid th

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Stanford CS231n 10" Anniversary Lecture 7 - 78 April 22, 2025

Searching for interpretable cells

—
_

guote detection cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Stanford CS231n 10" Anniversary Lecture 7 - 79 April 22, 2025

Searching for interpretable cells

Cell sensitive to position in line:

The sole importance of the crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
line of action--the one Kutuzov and the general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled
at a continually increasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and it was impossible
to block its path. This was shown not so much by the arrangements it
made for crossing as by what took place at the bridges. wWhen the bridges
broke down, unarmed soldiers, people from Moscow and women with children
Wwho were with the French transport, all--carried on by vis inertiae--
pressed forward into boats and into the ice-covered water and did not,

surrender .

line length tracking cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Stanford CS231n 10" Anniversary Lecture 7 - 80 April 22, 2025

Searching for interpretable cells

c
IF_SIGPENDING) ;

if statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Stanford CS231n 10" Anniversary Lecture 7 - 81 April 22, 2025

Searching for interpretable cells

Cell that turns on inside comments and quotes:

/

guote/comment cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Stanford CS231n 10t Anniversary Lecture 7 - 82 April 22, 2025

Searching for interpretable cells

ifdef CONFIG_AUDITSYSCALL
tatic inline int audit_match_class_bits(int class, u32 *"mask)

"
S
{

for (1 = ©; 1 < AUDIT_BITMASK_SIZE; i++)
if ilaskiil & classes[class][i])
}
return 1;
}

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Stanford CS231n 10" Anniversary Lecture 7 - 83 April 22, 2025

RNN tradeoffs

RNN Advantages:
- Can process any length of the input (no context length)
- Computation for step t can (in theory) use information from many steps back
- Model size does not increase for longer input
- The same weights are applied on every timestep, so there is symmetry in
how inputs are processed.
RNN Disadvantages:
- Recurrent computation is slow
- In practice, difficult to access information from many steps back

Stanford CS231n 10" Anniversary Lecture 7 - 84 April 22, 2025

Image Captioning

“straw” “hat” END

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Stanford CS231n 10" Anniversary Lecture 7 - 85 April 22, 2025

Recurrent Neural Network
“straw” “hat” END

® ® O

"‘/'o 1
Whh '
® 0 h

v‘/h T

® ©® @O

START “straw” “hat”

Convolutional Neural Network

Stanford CS231n 10" Anniversary Lecture 7 - 86 April 22, 2025

test image

This image is CCO public domain

Stanford CS231n 10" Anniversary Lecture 7 - 87 April 22, 2025

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

image | «

test image

conv-64
conv-64

maxpool

conv-128
conv-128

max_pool

conv-256
conv-256
maxpool

conv-512
conv-512

maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000
softmax

Stanford CS231n 10" Anniversary Lecture 7 - 88 April 22, 2025

image |

test image

conv-64
conv-64
maxpool

conv-128
conv-128

maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096

F 0
soffiNax

Stanford CS231n 10" Anniversary Lecture 7 - 89 April 22, 2025

image | <

test image

conv-64
conv-64
maxpool

conv-128
conv-128

maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

x0
<START>

Stanford CS231n 10" Anniversary Lecture 7 - 90 April 22, 2025

image | <

test image

conv-64
conv-64

maxpool

conv-128

conv-128

maxpool

conv-256 y0
conv-256

maxpool I D efO e.
— n=tanh(W,, * x+W,, * h)

conv-512

maxpool

now:
h=tanh(W, *x+W,, *h+ W, *v)

conv-512

conv-512 W| h I

maxpool

FC-4096 X0
FC-4096 <START>

Stanford CS231n 10" Anniversary Lecture 7 - 91 April 22, 2025

image | <

test image

conv-64
conv-64

maxpool

conv-128

conv-128

maxpool

conv-256 y0
conv-256 I

maxpool

conv-512 samp lel

conv-512 hO
maxpool

conv-512

conv-512 I

maxpool

FC-4096 SO straw
FC-4096

Stanford CS231n 10" Anniversary Lecture 7 - 92 April 22, 2025

image <

test image

conv-64
conv-64

maxpool

conv-128

conv-128
maxpool

conv-256 y0 yl
conv-256

maxpoo I T

conv-512

conv-512 ho h1

maxpool

conv-512 A A

conv-512

maxpool

FC-4096 X0
FC-4096 <START>

straw

Stanford CS231n 10" Anniversary Lecture 7 - 93 April 22, 2025

image | <

test image

conv-64
conv-64

maxpool

conv-128

conv-128

max_pool

conv-256 y0 yl
conv-256

m— I T

conv-512

conv-512 ho —» h1 Sample!

maxpool

conv-512 A A

conv-512

maxpool

FC-4096 X0
F C- 4 09 6 <START>

straw hat

Stanford CS231n 10" Anniversary Lecture 7 - 94 April 22, 2025

image <

test image

conv-64
conv-64

maxpool

conv-128

conv-128

maxpool

conv-256 y0 yl y2

conv-256

maxpool I I I

conv-512

conv-512
hO > hl —>| h2
maxpool

conv-512
conv-512 I I I
maxpool

FC-4096 "
FC-4096 START

straw hat

Stanford CS231n 10" Anniversary Lecture 7 - 95 April 22, 2025

image | <«

test image

conv-64
conv-64

maxpool

conv-128

conv-128

maxpool
conv-256 y0 yl y2
conv-256

maxpool I T T Sam p le

conv-512 <E N D> tO ken

conv-512

ho | h1 =] h2 => finish.

maxpool

conv-512
conv-512 I I I
maxpool

FC-4096 "
FC-4096 START

straw hat

Stanford CS231n 10" Anniversary Lecture 7 - 96 April 22, 2025

neuraltalk2
CCO Public domain: cat

| m a ge Ca ptl onin g Exa mp le Res U ltS AT

A cat sitting on a suitcase A catissitting on a tree A dogisrunningin the grass A white teddy bear sitting in
on the floor branch with a frisbee the grass

.lk
i

Two people walking on the A tennis player in action Two giraffes standingin a A man riding a dirt bike on a
beach with surfboards on the court grassy field dirt track

Stanford CS231n 10" Anniversary Lecture 7 - 97 April 22, 2025

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/

Captions generated using neuraltalk2
Allimages are CCO Public domain: fur coat,

Image Captioning: Failure Cases

’,, A bird is perched on a

Awoman IS holdlng a cat |
in her hand

Amanina
baseball uniform
throwing a ball

A woman standing on a beach
holding a surfboard

A person holding a computer
mouse on a desk

Stanford CS231n 10" Anniversary Lecture 7 - 98 April 22, 2025

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Visual Question Answering (VQA)

Q: What endangered animal Q: Where will the driver go Q: When was the picture Q: Who is under the
is featured on the truck? if turning right? taken? umbrella?
A: A bald eagle. A: Onto 24 % Rd. A: During a wedding. A: Two women.
A: A sparrow. A: Onto 25 % Rd. A: During a bar mitzvah. A: A child.
A: A humming bird. A: Onto 23 % Rd. A: During a funeral. A: An old man.
A: Araven. A: Onto Main Street. A: During a Sunday church A: A husband and a wife.

carvira

Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015

Zhu et al, “Visual TW: Grounded Question Answering in Images”, CVPR 2016
Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

Stanford CS231n 10" Anniversary Lecture 7 - 99 April 22, 2025

Visual Dialog: Conversations about images

Visual Dialog

White and red

Yes, they are

°
®
.' No, something is there can't tell what it is
®
°

Das et al, “Visual Dialog”, CVPR 2017 Start typing question here
Figures from Das et al, copyright IEEE 2017. Reproduced with permission.

Stanford CS231n 10" Anniversary Lecture 7 - 101 April 22, 2025

Visual Language Navigation: Go to the living room

: : : Instruction
Agent encodes instructions in language
Turn right and head

and uses an RNN to .gener.ate aseriesof 1 the kitchen.
movements as the visual input changes Then turn left, pass a

after each move. table and enter the
hallway. Walk down
the hallway and turn
into the entry way to
your right without
doors. Stop in front
of the toilet.

Global
&l trajectories
" f /| in top-down

/\ Initial Position
i i Target Position
Demonstration Path A

Wang et al, “Reinforced Cross-Modal Matching and Self-Supervised Imitation EXECUtEd Path B

Learning for Vision-Language Navigation”, CVPR 2018
Figures from Wang et al, copyright IEEE 2017. Reproduced with permission. Exe Cu te d Pat h C

Stanford CS231n 10" Anniversary Lecture 7 - 102 April 22, 2025

Multilayer RNNs

depth

time

Stanford CS231n 10" Anniversary Lecture 7 - 104 April 22, 2025

RNN Variants: Long Short Term Memory (LSTM)

Vanilla RNN LSTM

he = tanh (W (h))
Lt

=[O 1+10g
ht = 0 () tanh(ct)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Stanford CS231n 10" Anniversary Lecture 7 - 105 April 22, 2025

® ° Bengio et al, “Learning long-term dependencies with gradient descent is
Va n I l la R N N G ra d I e nt F IOW difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Yt

W_’?—’ o h, = tanh(Whhht_l -+ tha:t)

hi—1
— tanh [(W Wi, ..
ht-l > stack > ht a <(hh .) (Lt))

e - (w ())

Stanford CS231n 10" Anniversary Lecture 7 - 106 April 22, 2025

® ° Bengio et al, “Learning long-term dependencies with gradient descent is
Va n I l la R N N G ra d I e nt F IOW difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Backpropagation from h,
to h,; multiplies by W yt

(actually W)
A

W_’?—’ o h, = tanh(Whhht_l -+ thilit)

hi—1
= tanh | (W Wha
h 1~ . StaCk > h, - ((" ") (Lt))

- | o = tanh (W (ht_1>>
Lt
Xy

Stanford CS231n 10" Anniversary Lecture 7 - 107 April 22, 2025

° ° Bengio et al, “Learning long-term dependencies with gradient descent is
Va n I a R N N G ra I e nt F OW difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
Backpropagation from h,
to h,; multiplies by W yt
(actually W)
A
: hy = tanh(Winhe_1 + Wanz:)
— lall _ X
W ? . t hhltt—1 xhdt
hi—1
= tanh ((Whr, Wha)
h > stack > h Lt
t-1 < t

- | o — tanh (W (ht_1>>
Lt
Xy

O _ tanh’(Whh hi_1 + tha:t)Whh

Ohi_1
Stanford CS231n 10" Anniversary Lecture 7 - 108 April 22, 2025

® ° Bengio et al, “Learning long-term dependencies with gradient descent is
Va n I l la R N N G ra d I e nt F IOW difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Stanford CS231n 10" Anniversary Lecture 7 - 109 April 22, 2025

° ° Bengio et al, “Learning long-term dependencies with gradient descent is
Va n I a R N N G ra I e nt F OW difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
Gradients over multiple time steps:

ICML 2013
Y1 Y2 Y3 '
j !

N 4 N 4) 4 N

I
-
=
o
-
g
v
=
o
-
Wi
.
=
Y
-
e
L

h0 s stfick —> hl o — st;i h2 o — st;i —> h3 s stfi —> h4
\ / o / o / \ /
X4 X5 X3 X,

Ly _ OLp Ok Ohy
OW ~ Ohr Oh,, T OW

Stanford CS231n 10" Anniversary Lecture 7 - 110 April 22, 2025

° ° Bengio et al, “Learning long-term dependencies with gradient descent is
Va n I a R N N G ra I e nt F OW difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
Gradients over multiple time steps:

ICML 2013
Y1 Y2 Y3 '
N 4 N e N 4 N
QZ tanh j W—> < tanh J W—> - tanh j W—> - tanh
: : : :
- h2

\ |ia = =
hy <1——* stack E—_» h, .1~ stack —> < stack —> h; " stack — h,

N

8LT L 8LT 3ht 8h1 8LT (HT 8ht)8h1
OW ~ Ohy Oh,_q ~ " OW Ohr

Stanford CS231n 10" Anniversary Lecture 7 - 111 April 22, 2025

° ° Bengio et al, “Learning long-term dependencies with gradient descent is
Va n I a R N N G ra I e nt F OW difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
Gradients over multiple time steps:

ICML 2013
Y1 Y2 Y3 '
N 4 N e N 4 N
QZ tanh j W—> < tanh J W—> - tanh j W—> - tanh
: : : :
- h2

\ |ia = =
hy <1——* stack E—_» h, .1~ stack —> < stack —> h; " stack — h,

N

N\ ! Y N\ ! Y . A ~ - ! 7
0L ~~T OL; Ohy '
o t=1 o T — tanh (Whhht—l + thmt)Whh

OL~ o OLT 3ht Oh 8LT (HT 8ht)8h1
ow Ohyr Ohi—y =~ OW QBhy t=2| 0h,_1 | OW

Stanford CS231n 10" Anniversary Lecture 7 - 112 April 22, 2025

° ° Bengio et al, “Learning long-term dependencies with gradient descent is
Va n I a R N N G ra I e nt F OW difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
Gradients over multiple time steps:

ICML 2013
Y1 bE .

Y2
Y 4) 4) C N
QZ tanh j W—> < tanh J W—> - tanh j W—> - tanh
L E L E L E AN | =
h0 <" stack E—_» hl <> stack M —> h2 <> stack E—_» h3 <> stack E—_» h 4

N

oL T 0Ly Almost always <1] \
ow t=1 oW Vanishing gradients | |

o _ L (T1L, ltankh! (Winhe—1 + Wapa,)WL 120

Stanford CS231n 10" Anniversary Lecture 7 - 113 April 22, 2025

° ° Bengio et al, “Learning long-term dependencies with gradient descent is
Va n I a R N N G ra I e nt F OW difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
Gradients over multiple time steps:

ICML 2013
Y1 Y2 Y3 '
j !

N 4 N 4) 4 N

7
e
-
=
o
-
g
v
=
o
-
Wi
.
=
Y
-
e
L

—_— — > — >
-« " — h; sta h, & sta — h; & e — h,
\ 4 \ J \ J \ J
X, X, X X,

Stanford CS231n 10" Anniversary Lecture 7 - 114 April 22, 2025

° ° Bengio et al, “Learning long-term dependencies with gradient descent is
Va n I a R N N G ra I e nt F OW difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Gradients over multiple time steps:

Dl
2|3
|
fﬂ

|_\
Q.')
F

Largest singular value > 1:
Exploding gradients

8LT 8LT WT_]_ 8h1 .
OW dhr| hh | oW Larges’F smgula.r value<1:
Vanishing gradients

Y1 Y2 Y3 '
e - [=
hO bn stfick T_—_» hl o —— stick T_ h2 o —— stick h3 <> stack —> h4

—

Stanford CS231n 10" Anniversary Lecture 7 - 115 April 22, 2025

° ° Bengio et al, “Learning long-term dependencies with gradient descent is
Va n I a R N N G ra I e nt F OW difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
Gradients over multiple time steps:

ICML 2013
Y1 Y2 Y3 '
j !

N 4 N 4 N 4
< tanh j W—> — tanh T W—> < tanh j W—> < tanh j
\EJ AN Al AN EJ e B
hg o I—*~ stfick — h, . ——* stfick — h, T——* stfick — h, T~ stfick — h,
\ J & / & / \ /

Dl
2|3
|
fﬂ

|_\
QD
p

Largest singularvalue>1: |— Gradient clipping: Scale

Exploding gradients gradient if its norm is too
OLr _ OLrlyz,T—1 Ol | big
8W o 8hT hh 8W Largest Slngular value<1; g;ag;zzjo:mns.igr:ég;zid’: grad)

VanIShlng gradlents grad *= (threshold / grad_norm)

Stanford CS231n 10" Anniversary Lecture 7 - 116 April 22, 2025

° ° Bengio et al, “Learning long-term dependencies with gradient descent is
Va n I a R N N G ra I e nt F OW difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
Gradients over multiple time steps:

ICML 2013
Y1 Y2 Y3 '
j !

N 4 N 4 N 4
< tanh j W—> < tanh T W—> < tanh j W—> < tanh j
\EJ AN Al AN EJ e B
hg o I—*~ stfick — h, . ——* stick — h, T——* stick — h, T~ stfick — h,
& J & J & J o J
X4 X, X3 X,

Dl
2|3
|
fﬂ

|_\
Q.')
F

Largest singular value > 1:
Exploding gradients

OLt OL7 |vx7T—1| Ohs .
oW Ohr Whh W Larges’F smgula.r value<1l: |— Chan.ge RNN
Vanishing gradients architecture

Stanford CS231n 10" Anniversary Lecture 7 - 117 April 22, 2025

Long Short Term Memory (LSTM) - A Historical Note

Vanilla RNN LSTM

=[O 1+10g
ht = 0 () tanh(ct)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Stanford CS231n 10" Anniversary Lecture 7 - 118 April 22, 2025

Long Short Term Memory (LSTM)

Vanilla RNN
Four gates
. hi—1
o (0 (")
Cell state ¢t =1 Oc_1+10g
Hidden state hi =0 ® tanh(ct)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Stanford CS231n 10" Anniversary Lecture 7 - 119 April 22, 2025

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from

below (x)
X sigmoid | —> | i

—»
h sigmoid | —> | f

W

vector from sigmoid | — | o

before (h)
tanh —> | g
4h x 2h 4h 4*h

Stanford CS231n 10" Anniversary Lecture 7 - 120 April 22, 2025

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from g: Gate gate (?), How much to write to cell
below (x)
X sigmoid | —> | i
— >
h sigmoid | — | f
W
vector from sigmoid | — | o
before (h)
tanh —> | g ‘ .
ct = fOci—1+i0[g]
*
4h x 2h 4h 4”h h: = o ® tanh(c)

Stanford CS231n 10" Anniversary Lecture 7 - 121 April 22, 2025

Long Short Term Memory (LSTM)

vector from g: Gate gate (?), How much to write to cell
below (x)
X sigmoid | —> | i
— >
h sigmoid | — | f
W
vector from sigmoid | — | o
before (h)
tanh —> | g .
" Ct:f®ct—1+g
4h x 2h 4h 4”h h: = o ® tanh(c)

Stanford CS231n 10" Anniversary Lecture 7 - 122 April 22, 2025

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]

sigmoid

sigmoid

sigmoid

tanh

vector from
below (x)

X

h

W
vector from
before (h)
4h x 2h 4h

I: Input gate, whether to write to cell

f: Forget gate, Whether to erase cell

g: Gate gate (?), How much to write to cell

Lecture 7 -

¢ =|fPe-1+i0yg

123

Stanford CS231n 10" Anniversary

April 22, 2025

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]

sigmoid

sigmoid

sigmoid

tanh

vector from
below (x)

X

h

W
vector from
before (h)
4h x 2h 4h

i: Input gate, whether to write to cell

Lecture 7 -

ct=f0Oc-1+10g
ht :|§|@ tanh(ct)

124

Stanford CS231n 10" Anniversary

April 22, 2025

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

4 N
Ct-l > GT) —> -l— — Ct >
-~ f
Wﬁ?* — 0 tanh . T \w (ht_l)
h
ht 1 > stack 9 tan
.0 -0 — h, —— |
o ! t ¢t =JfOc-1+10g
| hy = o ® tanh(c;)
Xt

Stanford CS231n 10" Anniversary Lecture 7 - 125 April 22, 2025

Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]

/
Ct'l< >?:T:Ct<
- f
— | — +
W— — 0 tanh
htl > stack o h
R Bt o
|
Xt

Lecture 7 -

Backpropagation from c, to
C.; only elementwise
multiplication by f, no matrix
multiply by W

HES
o) Lt
tanh

ct=f0Oc_1+10g
hy = o ® tanh(c;)

@ O = .
Q

126

Stanford CS231n 10" Anniversary

April 22, 2025

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

a N a . N a . N
> (O)—>» + —>» > B > + > - B > + —> -
CO< T - | - ¢ < Cl< T - - C - C2< T - S — C - C3
W_’?_L g__Ll_: ® talnh W_’?_L g__Ll_: ® talnh W_’?_L g__Ll_: ® talnh
— > stack — > stack — > stack ., S
N 4 =0 "e—~hT L 4 =0 "e—~hT U 4 =0 e h7

Stanford CS231n 10" Anniversary Lecture 7 - April 22, 2025

Do LSTMs solve the vanishing gradient problem??

The LSTM architecture makes it easier for the RNN to preserve information
over many timesteps
- e.g.ifthe f=1and thei =0, then the information of that cell is preserved
indefinitely.
- By contrast, it's harder for vanilla RNN to learn a recurrent weight matrix
Wh that preserves info in hidden state

LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it
does provide an easier way for the model to learn long-distance dependencies

Stanford CS231n 10" Anniversary Lecture 7 - 128 April 22, 2025

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

a N a N a N
> () > + —> - > () > + —> - > () > + —> -
> | | |
W_’%>_L> g:LI_: ® tainh W_’%>_L> g:LI_: ® tainh W_’%>_L> g:LI_: ® tainh
——> stack —T > stack ——> stack
.t =0 ro—~hy— (L Ty o o hg (L} o o ho

|
d
—
O X
eXE
Xt
e Xe
e XE
eXE

Similar to ResNet! 3 ::II %;I

2]
79
8CL
SCT TOOSTX
3CL
SCL
8CL

Stanford CS231n 10" Anniversary Lecture 7 - 129 April 22, 2025

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

a N O N O N
CO‘ —Ci)<_>+<—_>C4 >C]_< —C?<_>+<—_>C< >C2< —C?<_>+<—_>C< >C3
- | - | - |
W_’%>_L> g:LI_: ® tanh W_’%>_L> g:LI_: ® tanh W_’%>_L> g:LI_: ® tanh
——> stack —T > stack l ——> stack l
Ly > () —>» — Ly > () —>» — Ly > () —>» e
N T 0 h,~ N T 0 h,~ N T 0 h,~
In between:
5IBlE alnln Highway Networks
Similarto ResNet! | ||| | [kl i §j||§ HE | EIE]| |HY g="T(x,Wr)
g 8_% 0:0 i-%%-%%-% g % 8_'%% y:g@H($,WH)+(1—g)@$
i 1 FH A FF FF)l 9l Srivastava et al, “Highway Networks”,
ICML DL Workshop 2015

Stanford CS231n 10" Anniversary Lecture 7 - 130 April 22, 2025

Modern RNNs

e
e Sometimes called “state space models” y
o Hidden state /
e Main advantages: 7
o Unlimited context length 0 / - vt
o Compute scales linearly with sequence length K

RWKYV Scaling (arXiv)

SIMPLIFIED STATE SPACE LAYERS FOR SEQUENCE
MODELING

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Stanford CS231n 10" Anniversary Lecture 7 - 131 April 22, 2025

https://arxiv.org/pdf/2305.13048

Summary

- RNNs allow a lot of flexibility in architecture design

- Vanilla RNNs are simple but don’t work very well

- More complex variants (e.g. LSTMs, Mamba) can introduce ways to
selectively pass information forward

- Backward flow of gradients in RNN can explode or vanish. Exploding
is controlled with gradient clipping. Backpropagation through time
Is often needed.

- Better/simpler architectures are a hot topic of current research, as
well as new paradigms for reasoning over sequences

Stanford CS231n 10" Anniversary Lecture 7 - 132 April 22, 2025

Next time: Attention and Transformers

Stanford CS231n 10" Anniversary Lecture 7 - 133 April 22, 2025

