

Lecture 7: Recurrent Neural Networks

Course Logistics

- Assignment 1 is due **tomorrow** (4/23) at 11:59PM!
- Project proposal deadline is due this **Friday** (4/25)

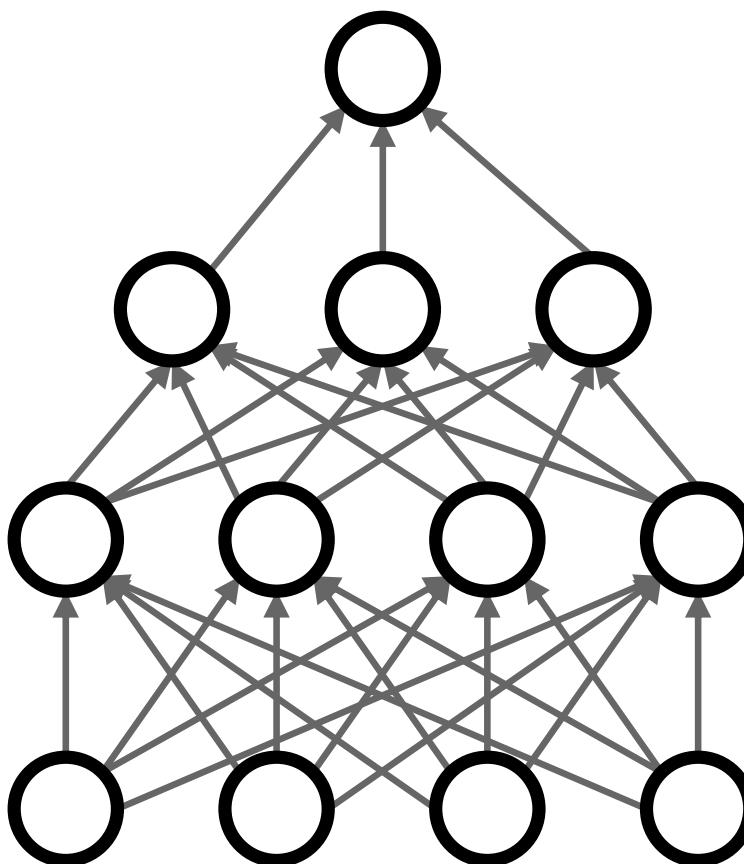
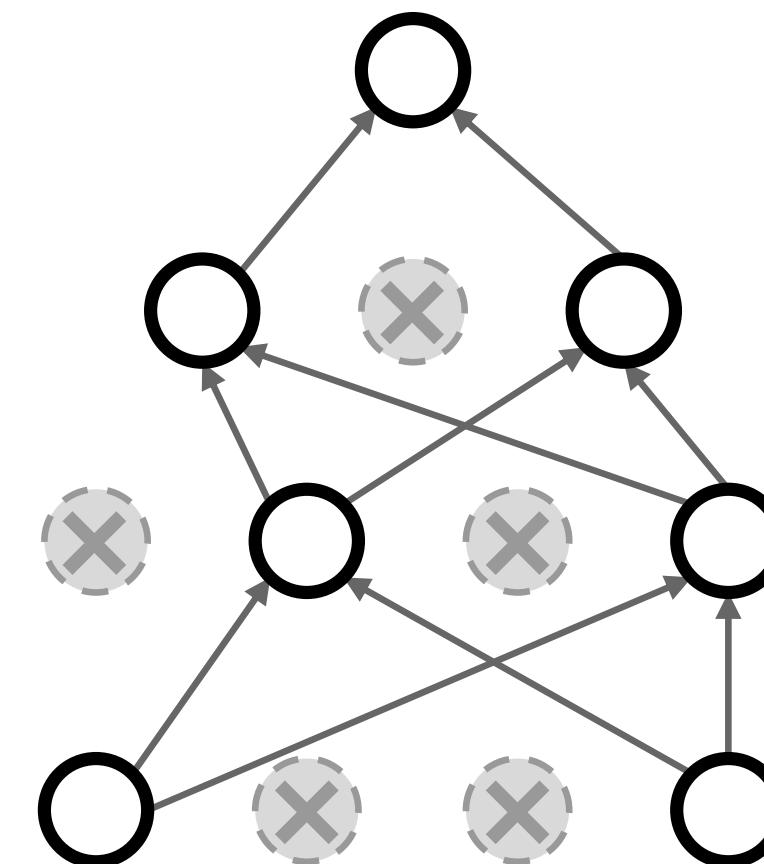
Clarifications from Last Time

- Dropout, how to scale probabilities at test-time
- Question in class about normalization vs weight initialization

Regularization: Dropout

In each forward pass, randomly set some neurons to zero

Probability of dropping is a hyperparameter; 0.5 is common



Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014

Dropout: Test time

```
def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
    out = np.dot(W3, H2) + b3
```

At test time all neurons are active always

=> We must scale the activations so that for each neuron:

output at test time = expected output at training time

```

""" Vanilla Dropout: Not recommended implementation (see notes below) """
p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
    """ X contains the data """

    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = np.random.rand(*H1.shape) < p # first dropout mask
    H1 *= U1 # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = np.random.rand(*H2.shape) < p # second dropout mask
    H2 *= U2 # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)

def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
    out = np.dot(W3, H2) + b3

```

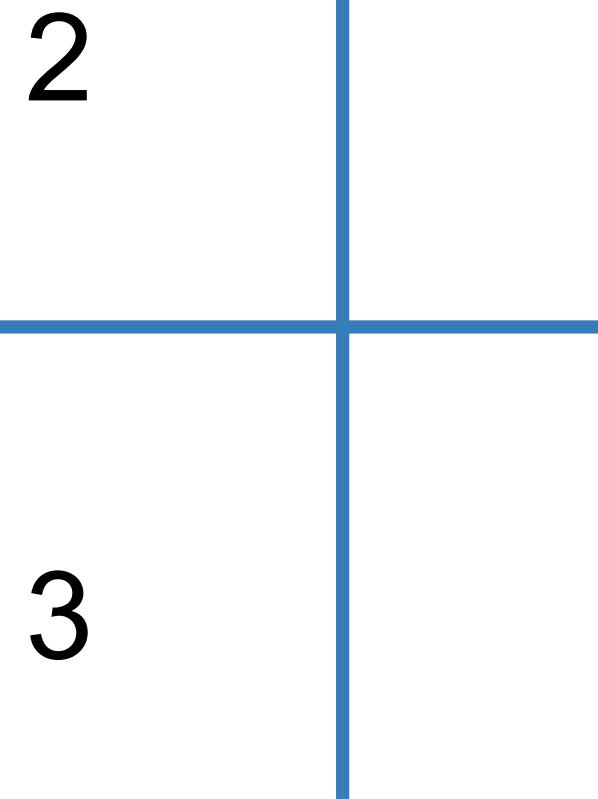
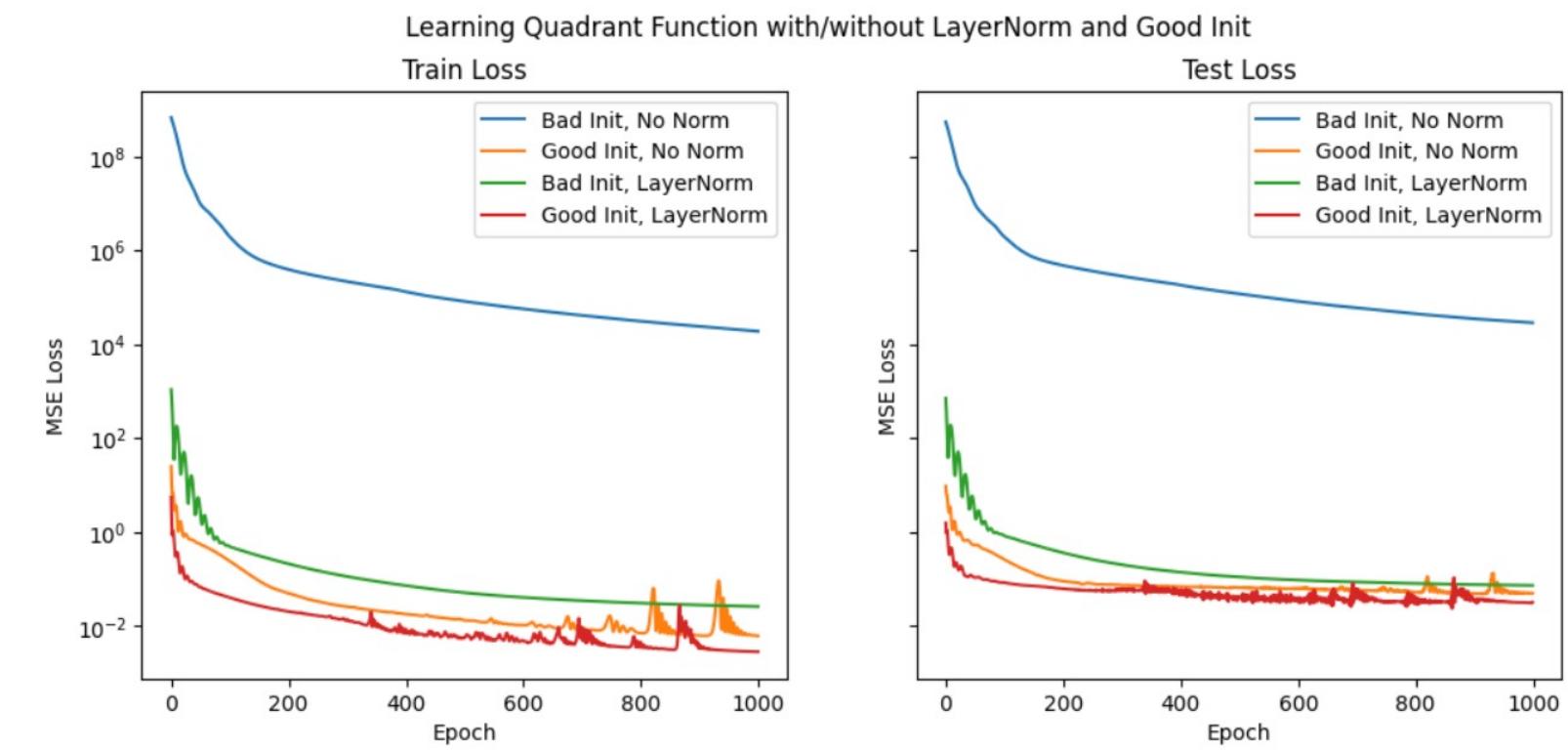
Dropout Summary

drop in train time

scale at test time

Question in class: can normalization resolve the issues that arise with having weights initialized incorrectly?

Toy setting, 2d input and 2-layer NN w/ ReLU

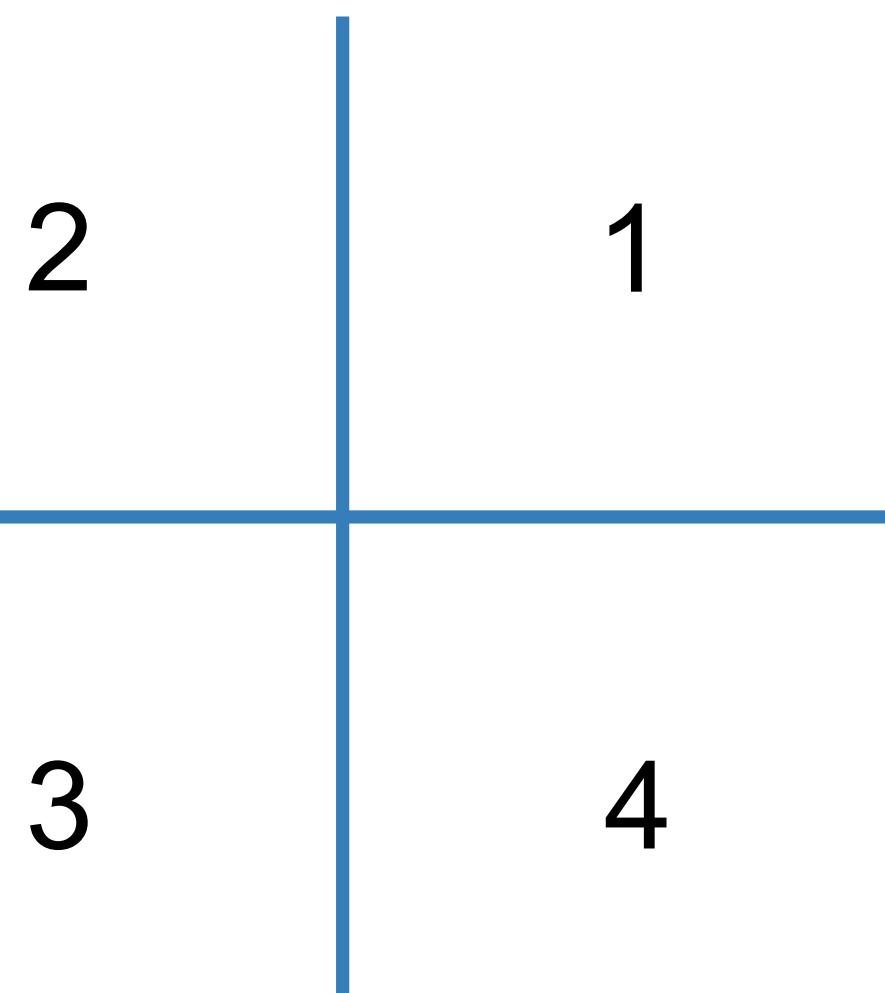
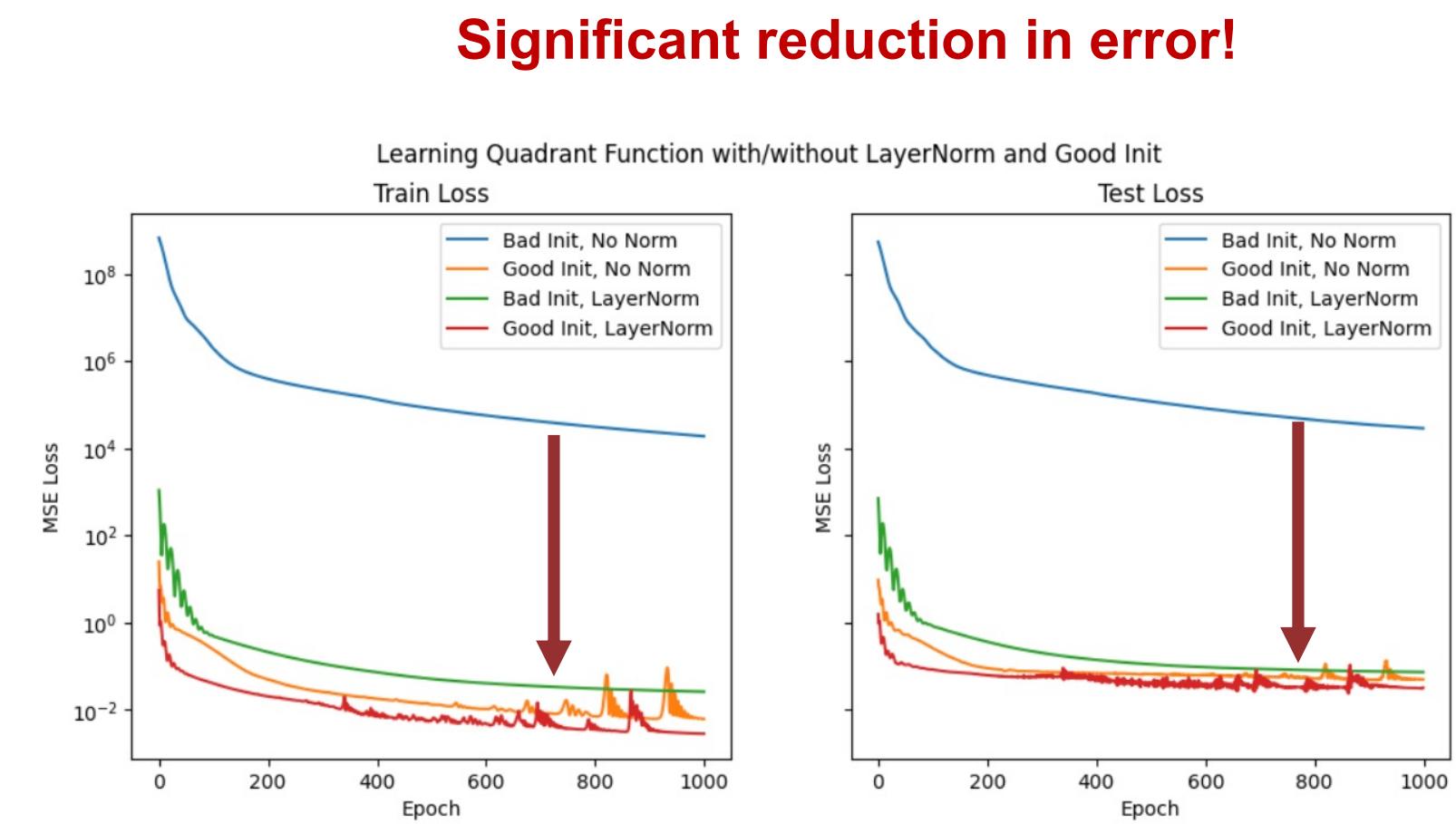


[Link to code \(colab\)](#)

[Link to Ed Post](#)

Question in class: can normalization resolve the issues that arise with having weights initialized incorrectly?

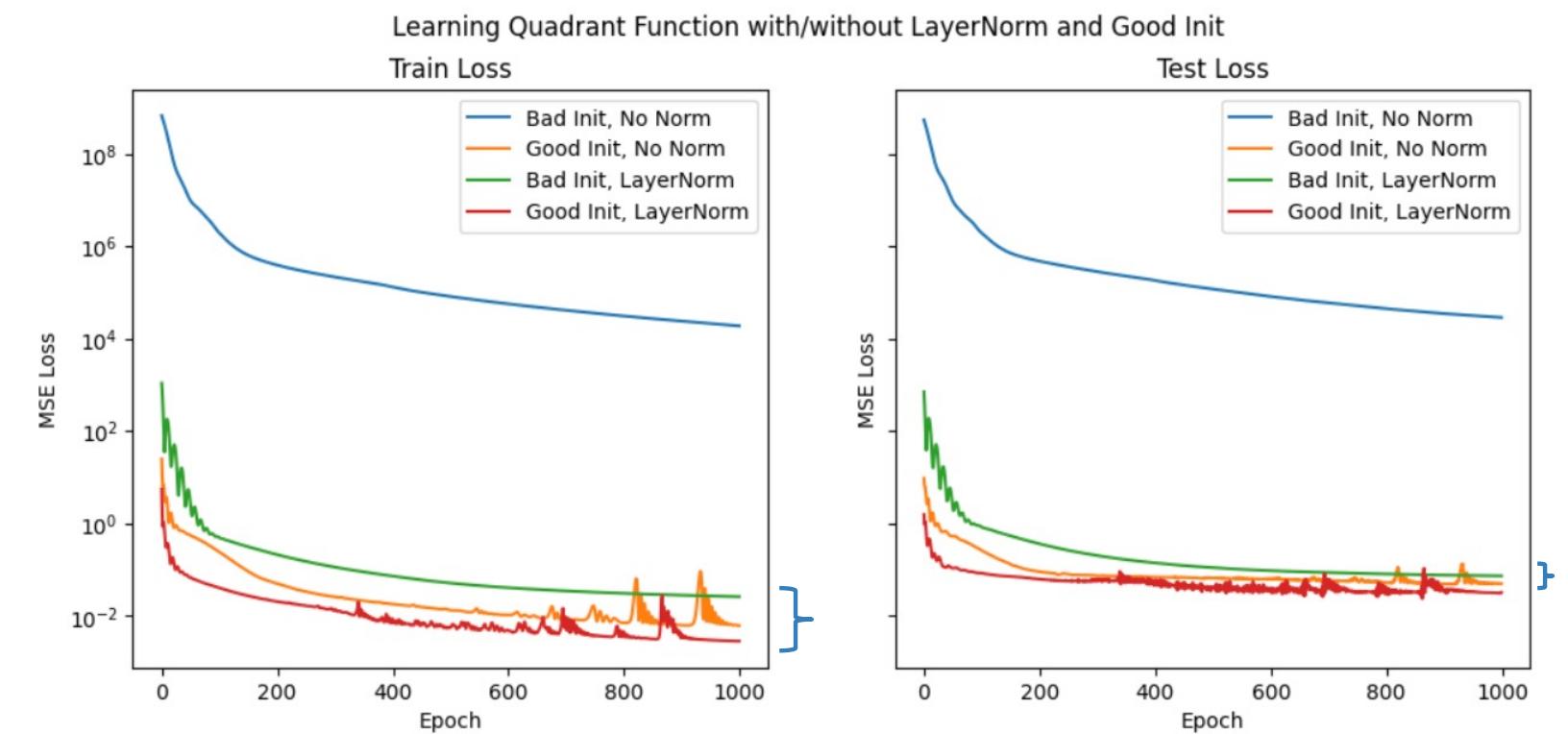
Toy setting, 2d input and 2-layer NN w/ ReLU



Question in class: can normalization resolve the issues that arise with having weights initialized incorrectly?

Toy setting, 2d input and 2-layer NN w/ ReLU

Performance gap still exists, does not resolve issues entirely, still optimization issues

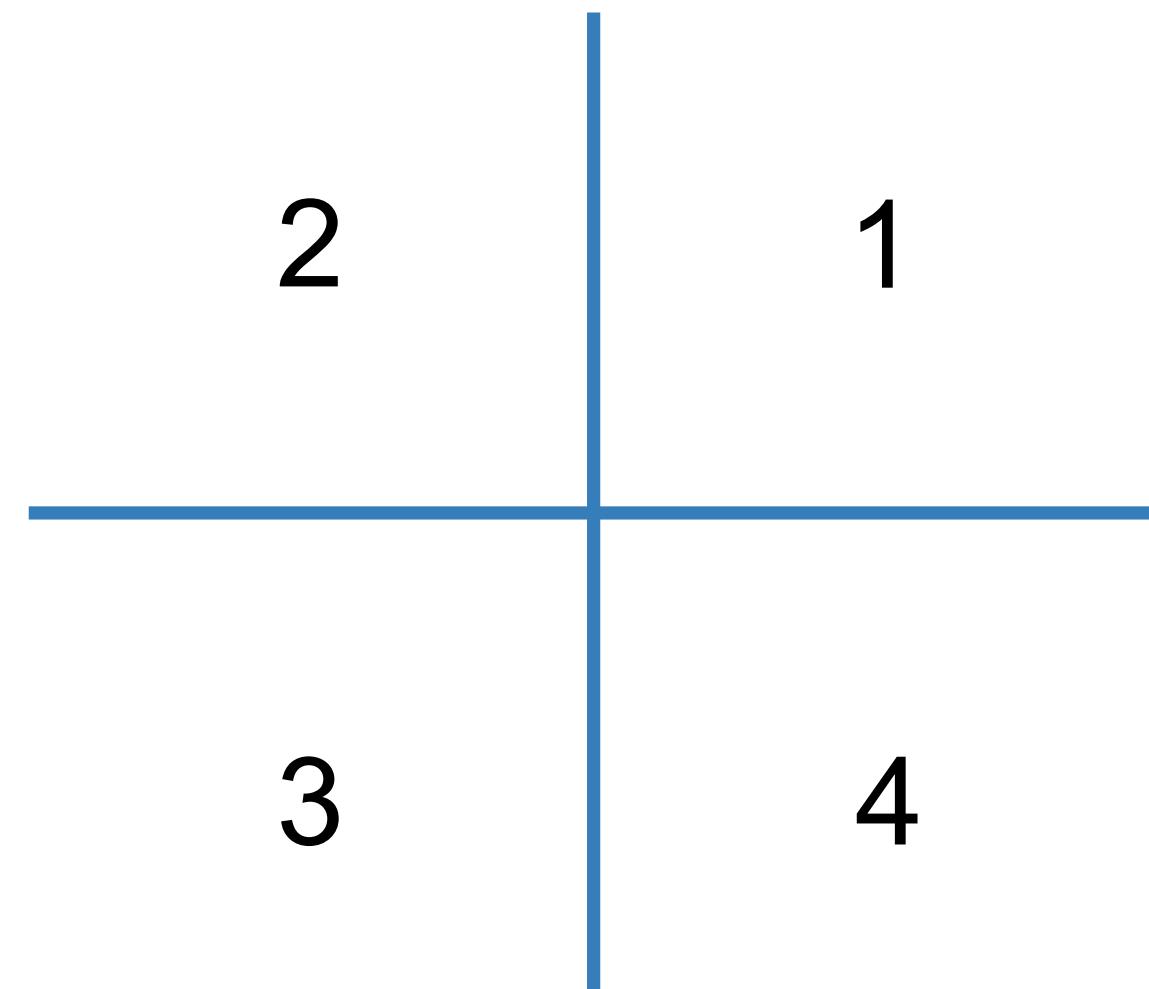


[Link to code \(colab\)](#)

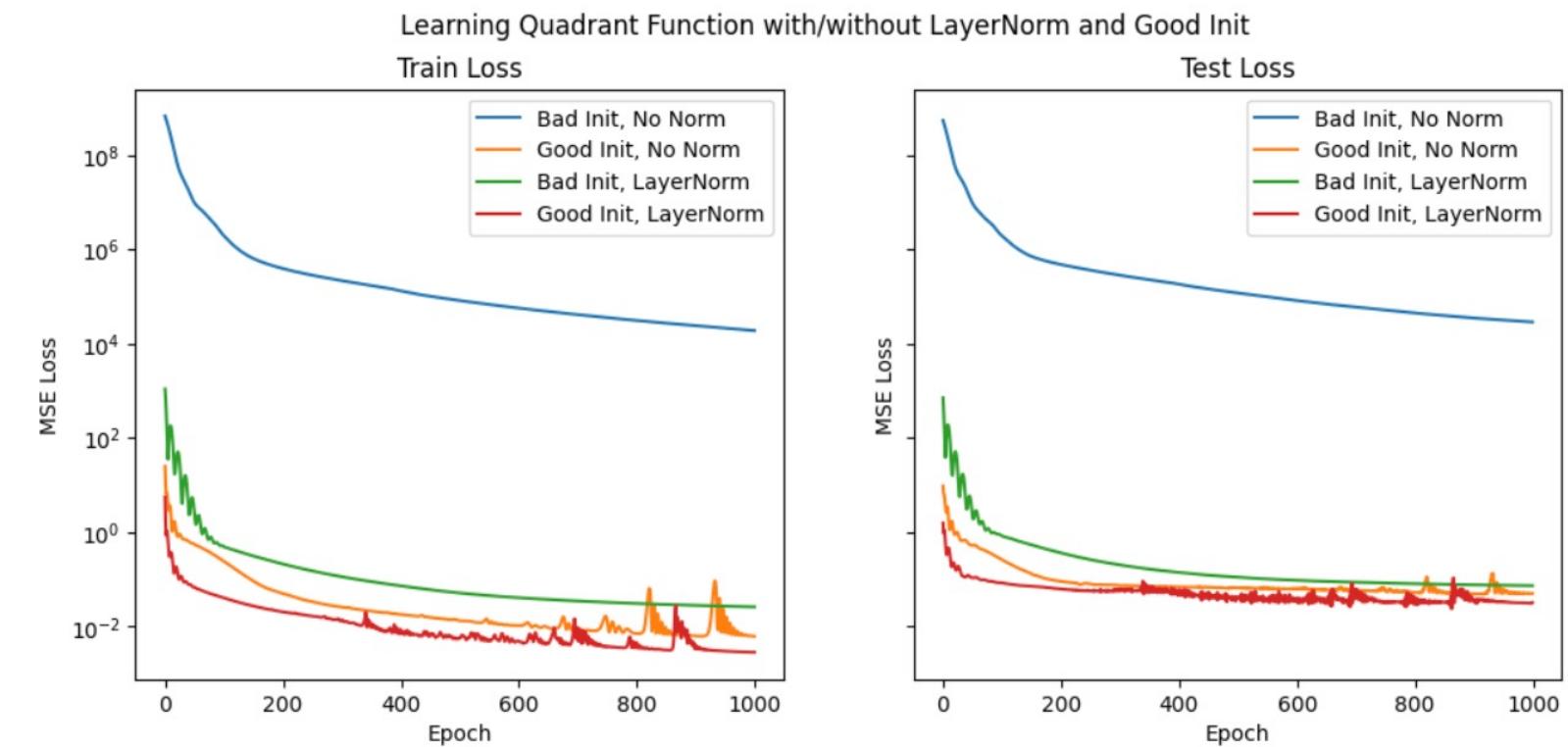
[Link to Ed Post](#)

Question in class: can normalization resolve the issues that arise with having weights initialized incorrectly?

Toy setting, 2d input and 2-layer NN w/ ReLU



Normalization may not always make sense! In this case, easy to see why it's helpful (LayerNorm does not change quadrant of inputs)



[Link to code \(colab\)](#)

[Link to Ed Post](#)

Training Non-Recurrent Neural Networks

- 1. One time setup:** activation functions, preprocessing, weight initialization, normalization, transfer learning
- 2. Training dynamics:** babysitting the learning process, parameter updates, hyperparameter optimization
- 3. Evaluation:** validation performance, test-time augmentation

Evaluate models and tune hyperparameters



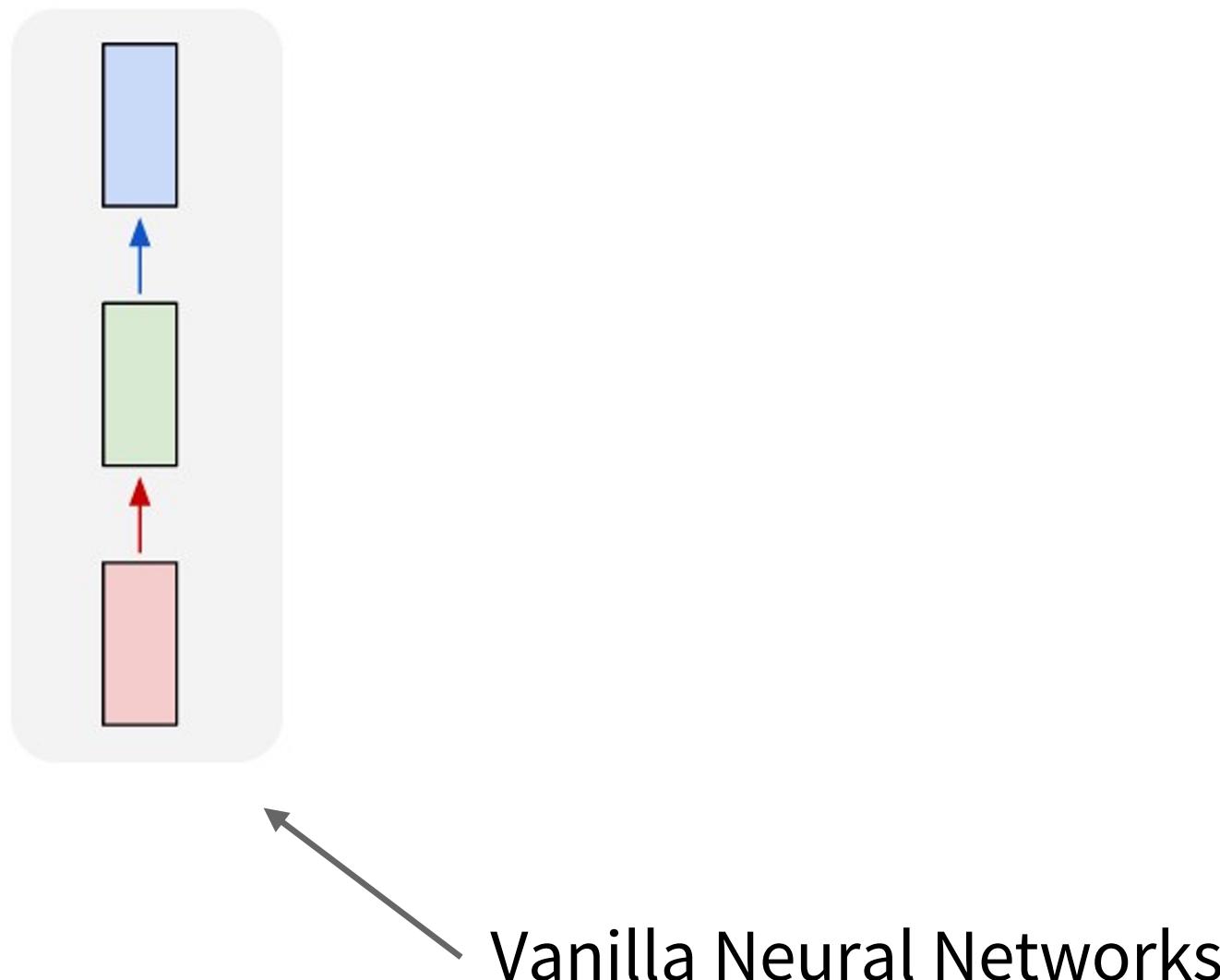
<https://docs.wandb.ai/guides/track/app>

Rest of Today's Lecture

- Discuss sequence modeling (assumed fixed-length inputs so far)
- Simple models commonly used before the era of transformers
 - RNNs and some variants
- Relation to modern state-space models (e.g. Mamba)

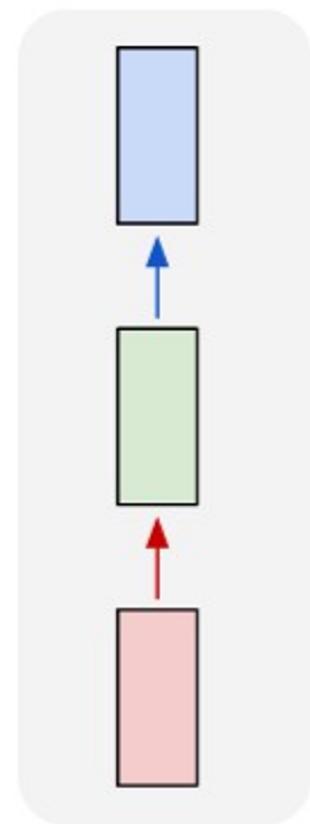
“Vanilla” Neural Network

one to one

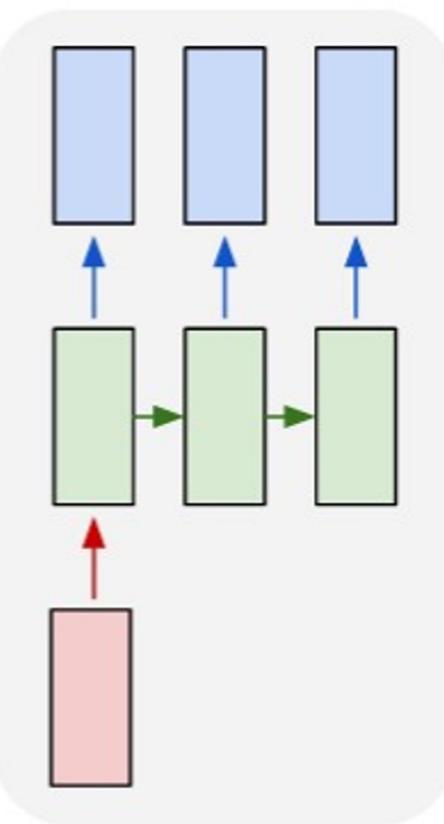


Recurrent Neural Networks: Process Sequences

one to one



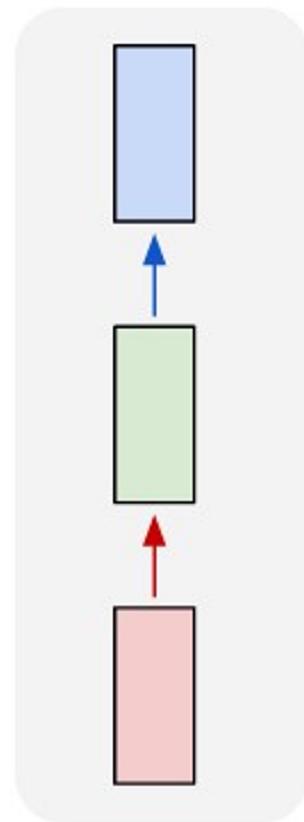
one to many



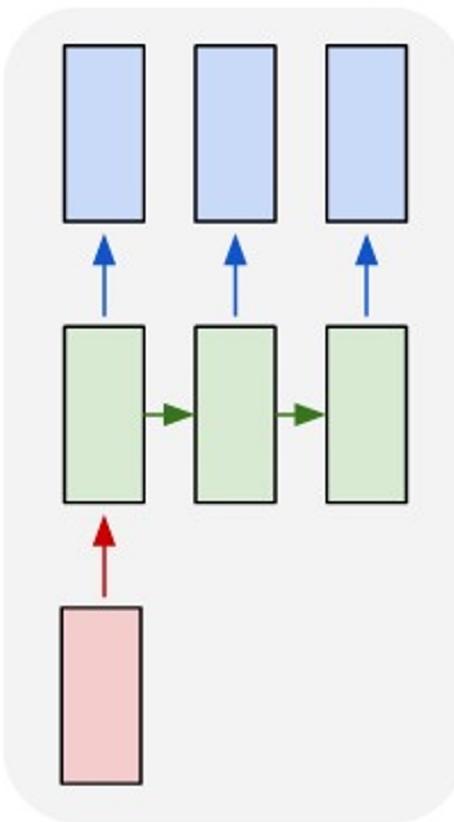
e.g. Image Captioning
image \rightarrow sequence of words

Recurrent Neural Networks: Process Sequences

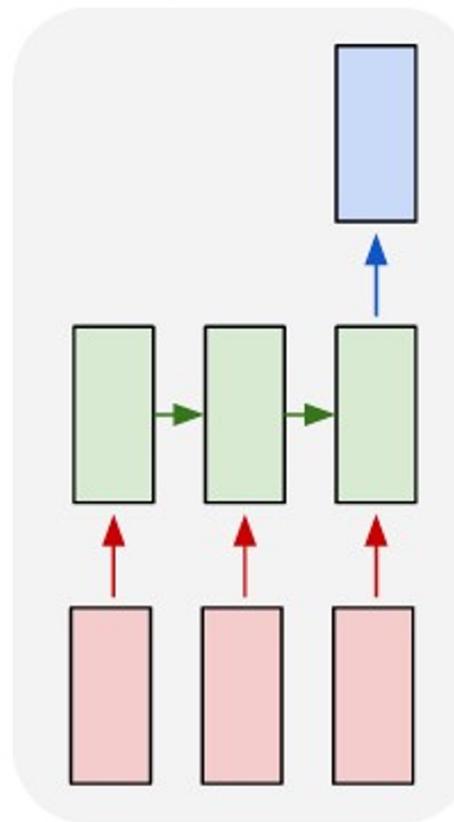
one to one



one to many



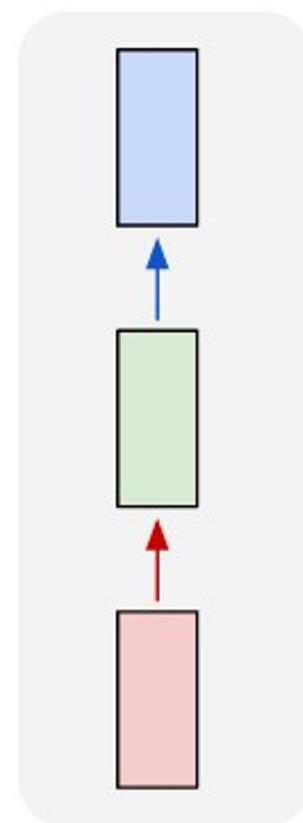
many to one



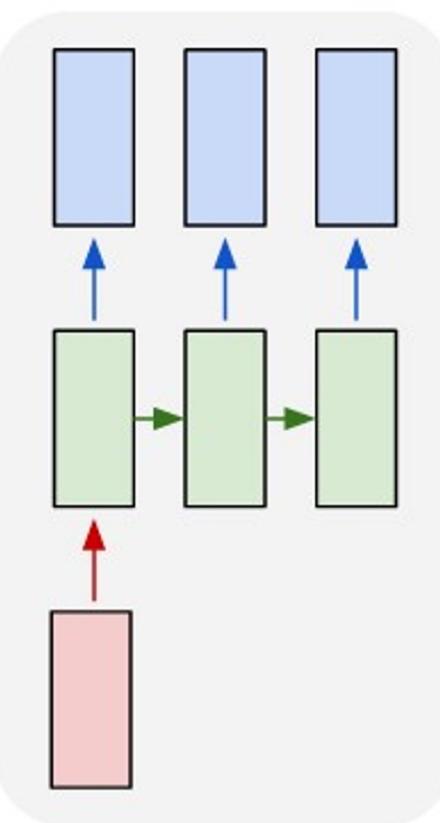
e.g. action prediction
sequence of video frames -> action class

Recurrent Neural Networks: Process Sequences

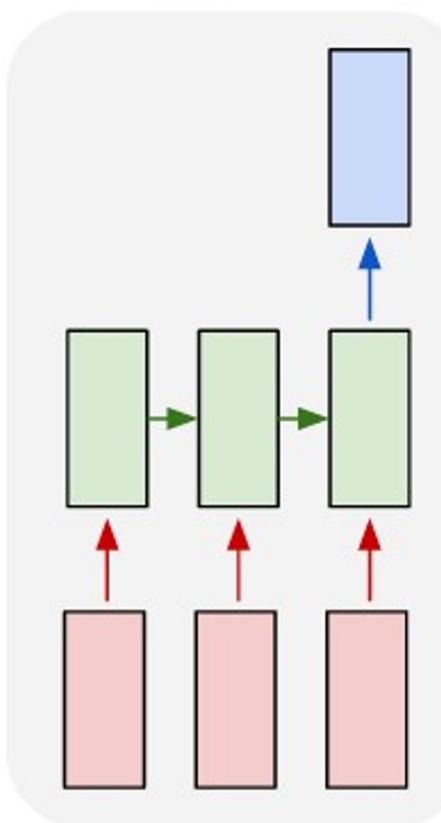
one to one



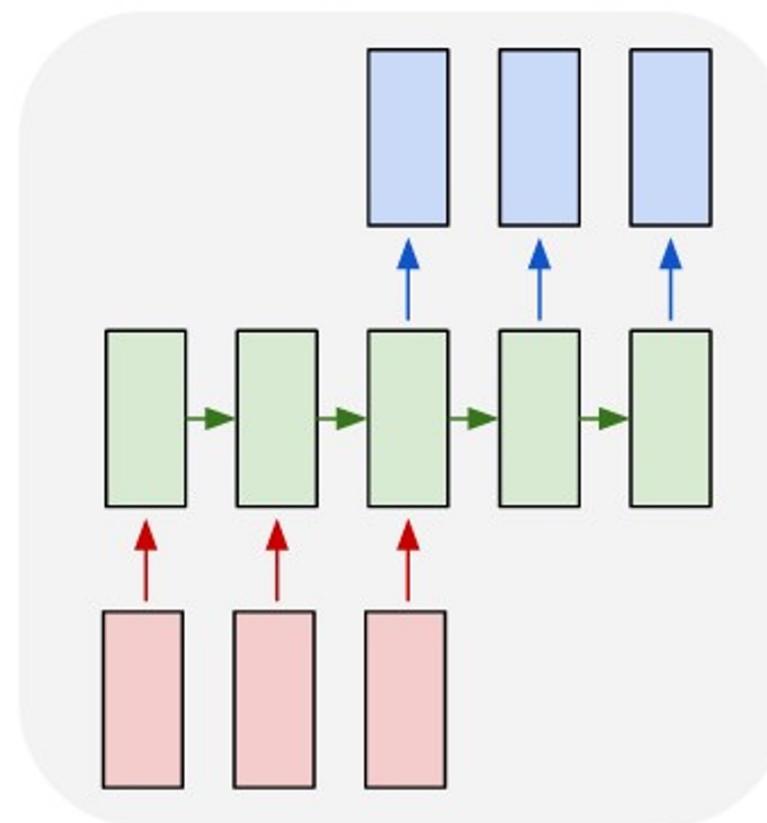
one to many



many to one



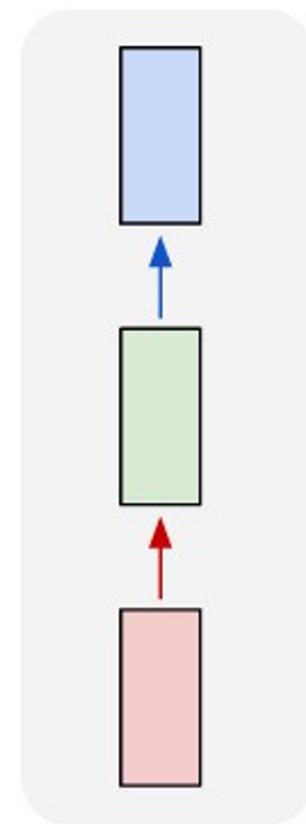
many to many



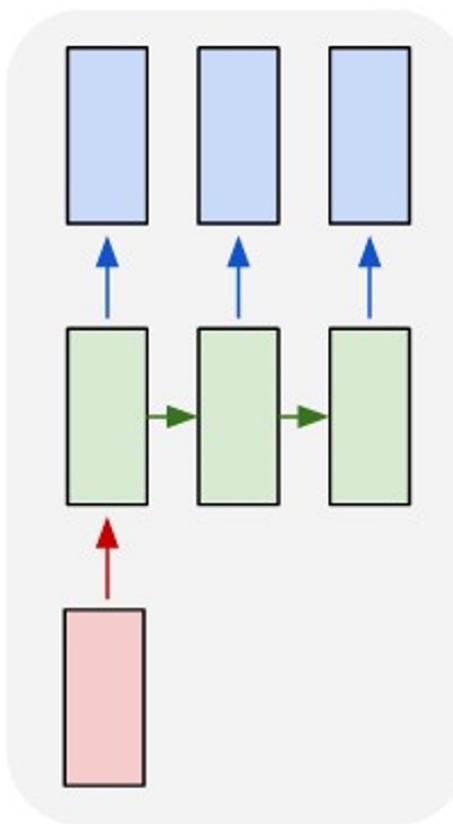
E.g. Video Captioning
Sequence of video frames \rightarrow caption

Recurrent Neural Networks: Process Sequences

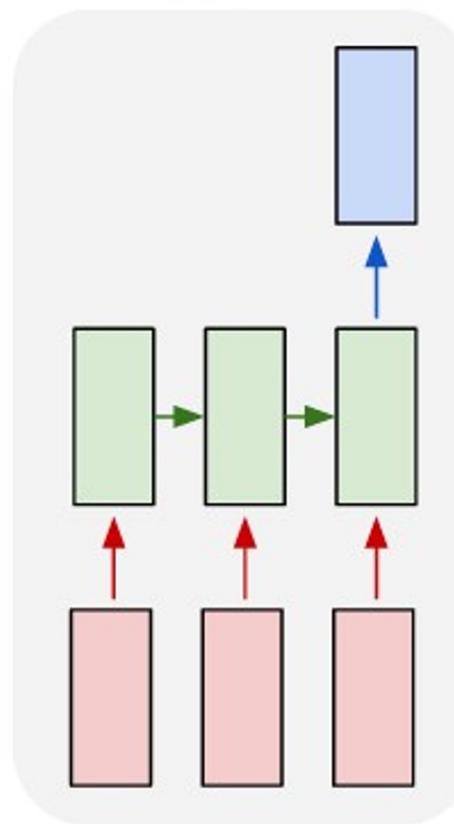
one to one



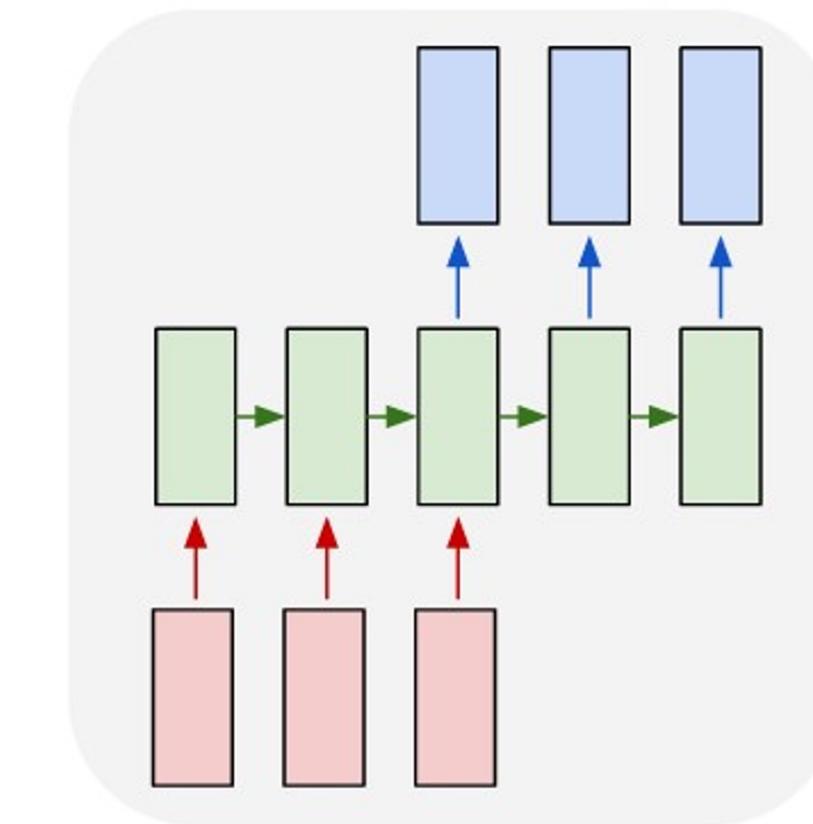
one to many



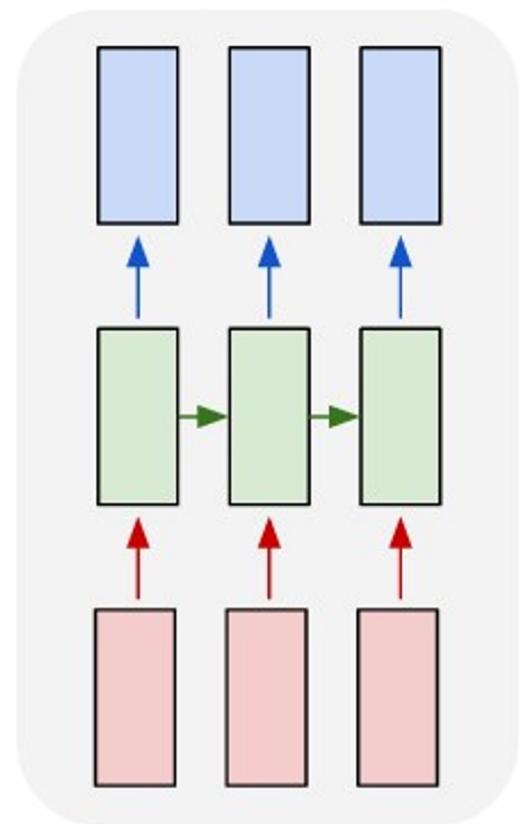
many to one



many to many

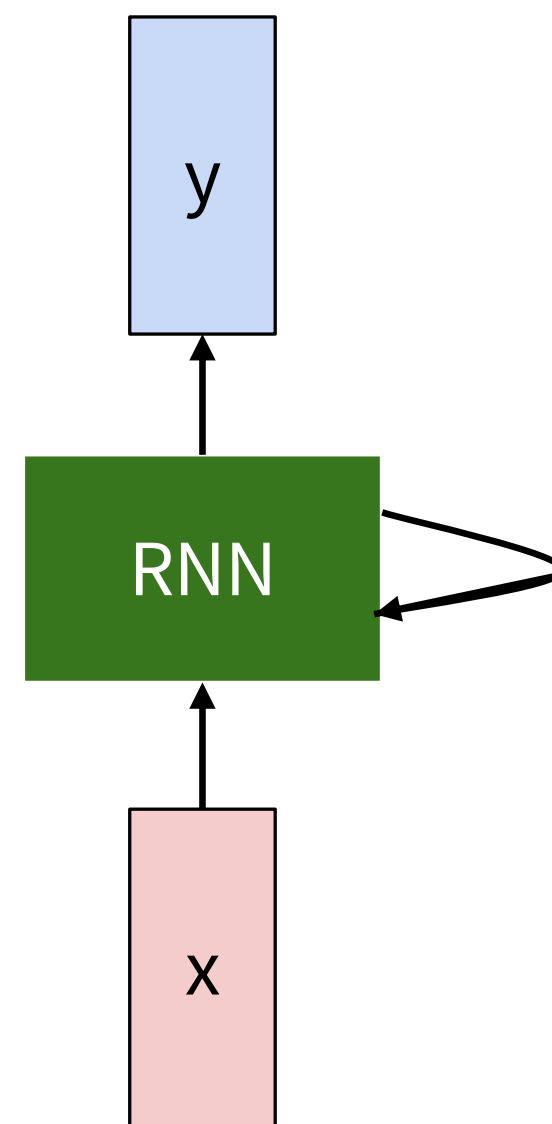


many to many

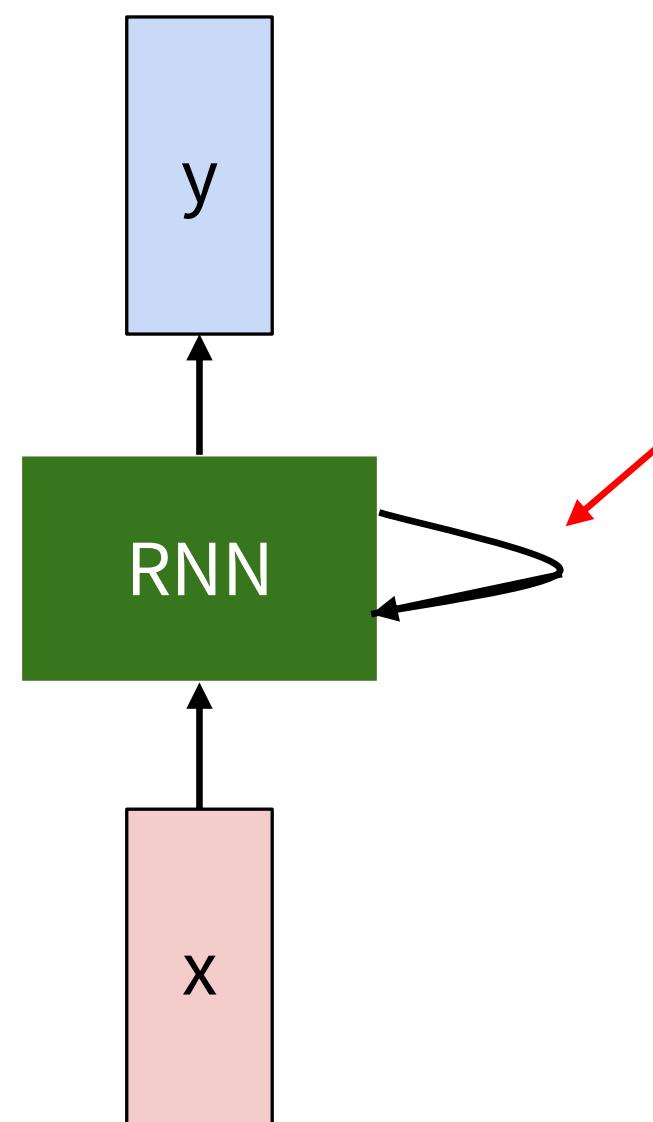


e.g. Video classification on frame level

Recurrent Neural Network

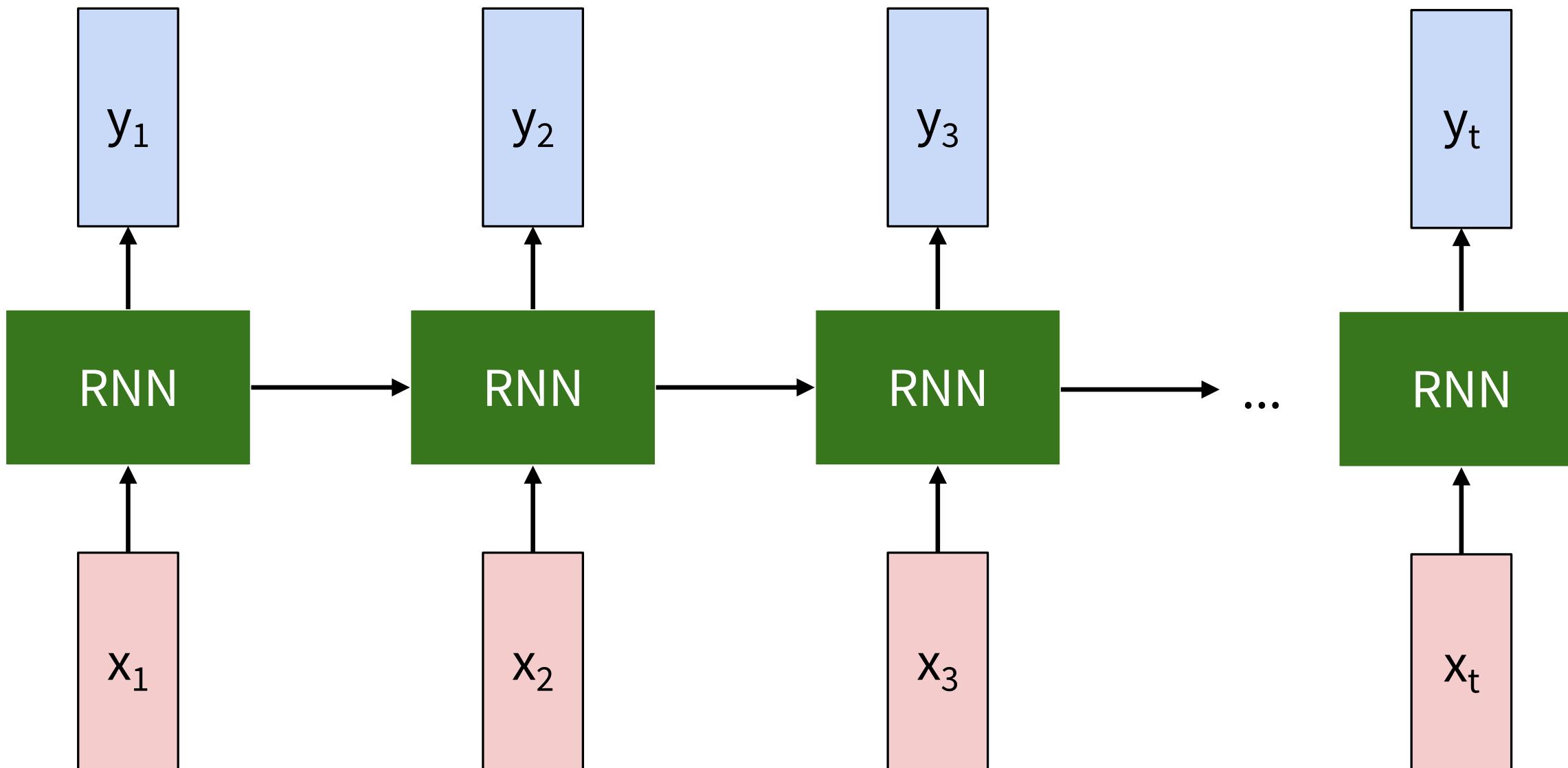


Recurrent Neural Network



Key idea: RNNs have an
“internal state” that is
updated as a sequence is
processed

Unrolled RNN

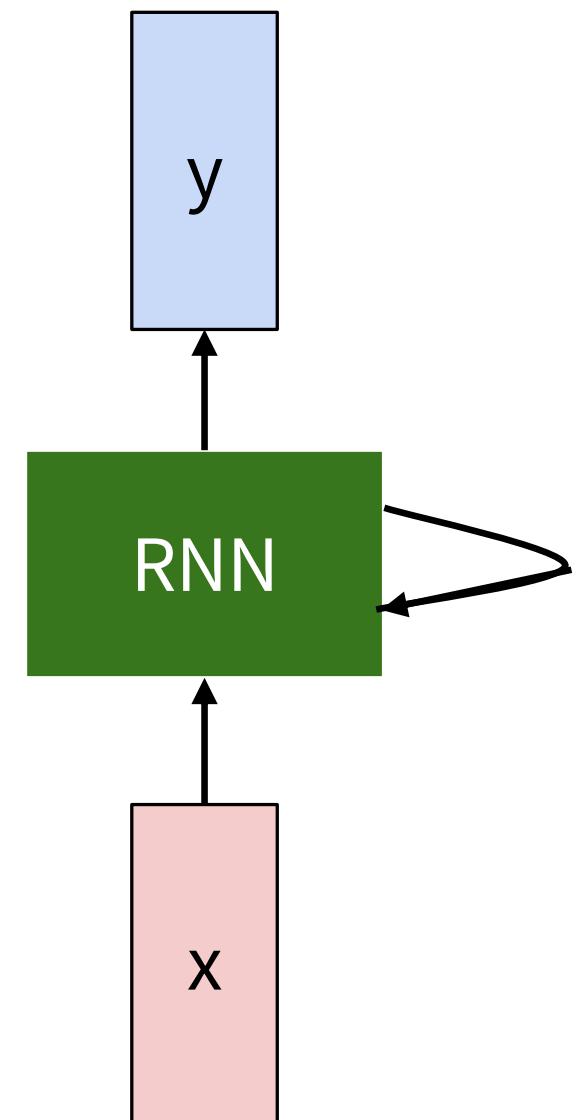


RNN hidden state update

We can process a sequence of vectors x by applying a recurrence formula at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

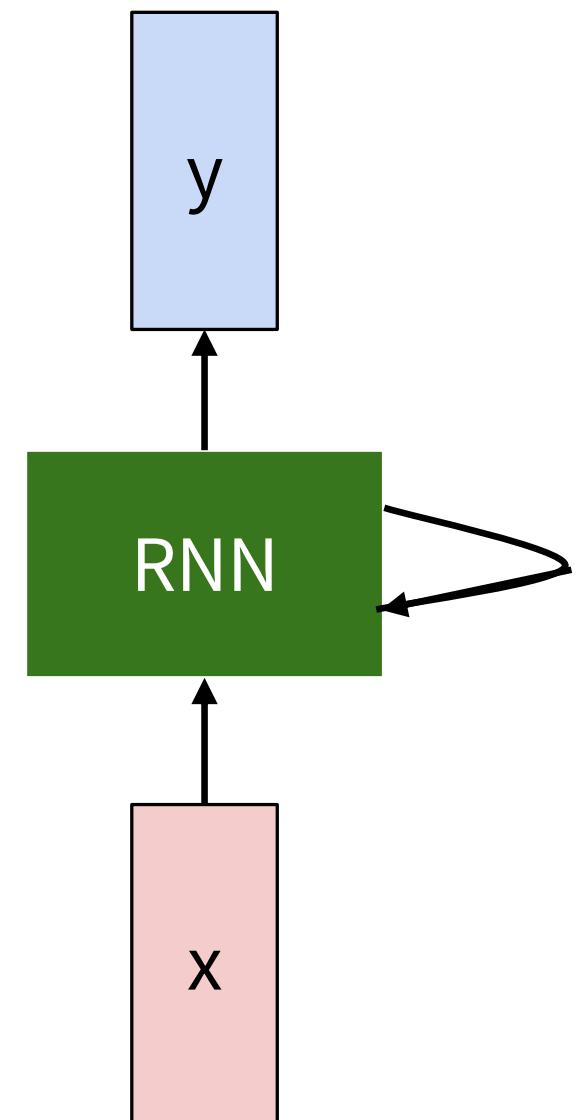
new state old state input vector at
some function with parameters W some time step



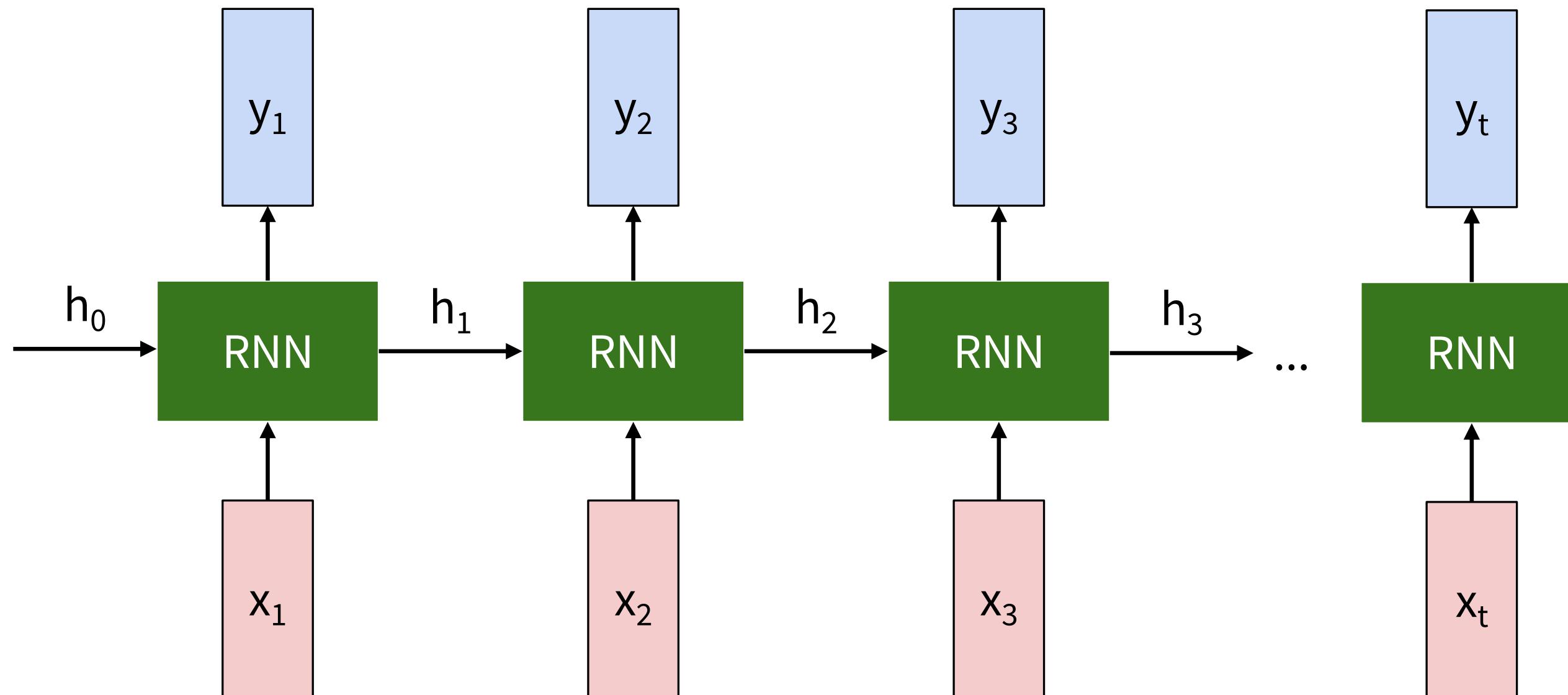
RNN output generation

We can process a sequence of vectors x by applying a recurrence formula at every time step:

$$y_t = f_{W_{hy}}(h_t)$$



Recurrent Neural Network

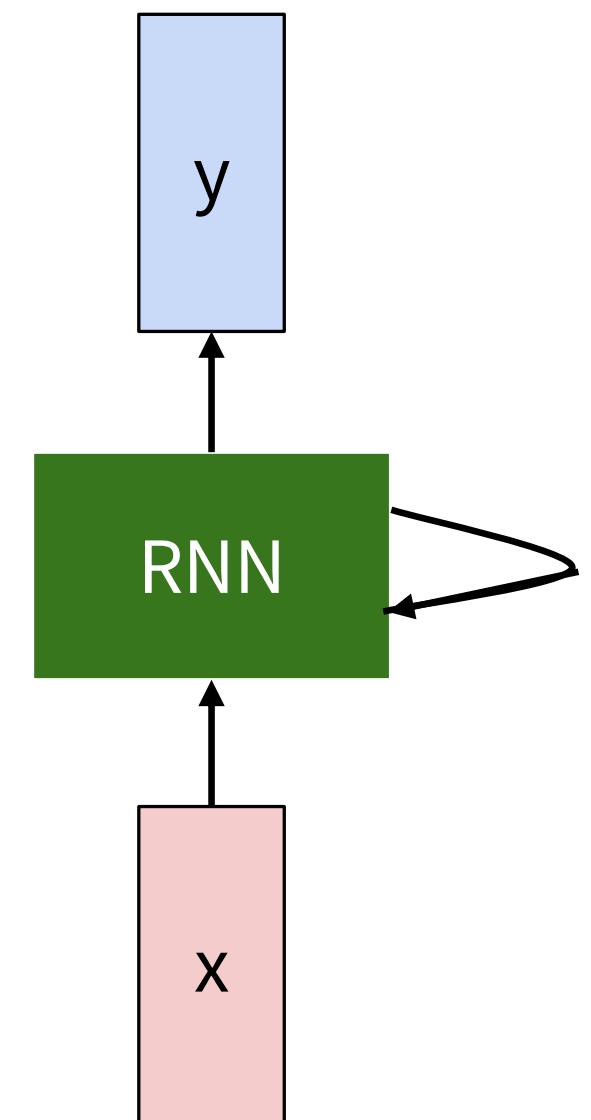


Recurrent Neural Network

We can process a sequence of vectors x by applying a recurrence formula at every time step:

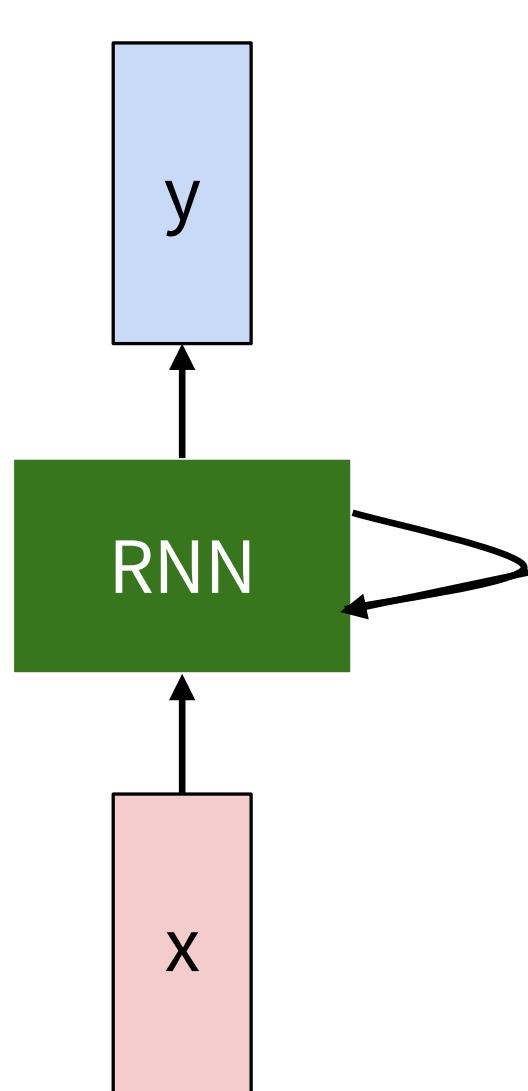
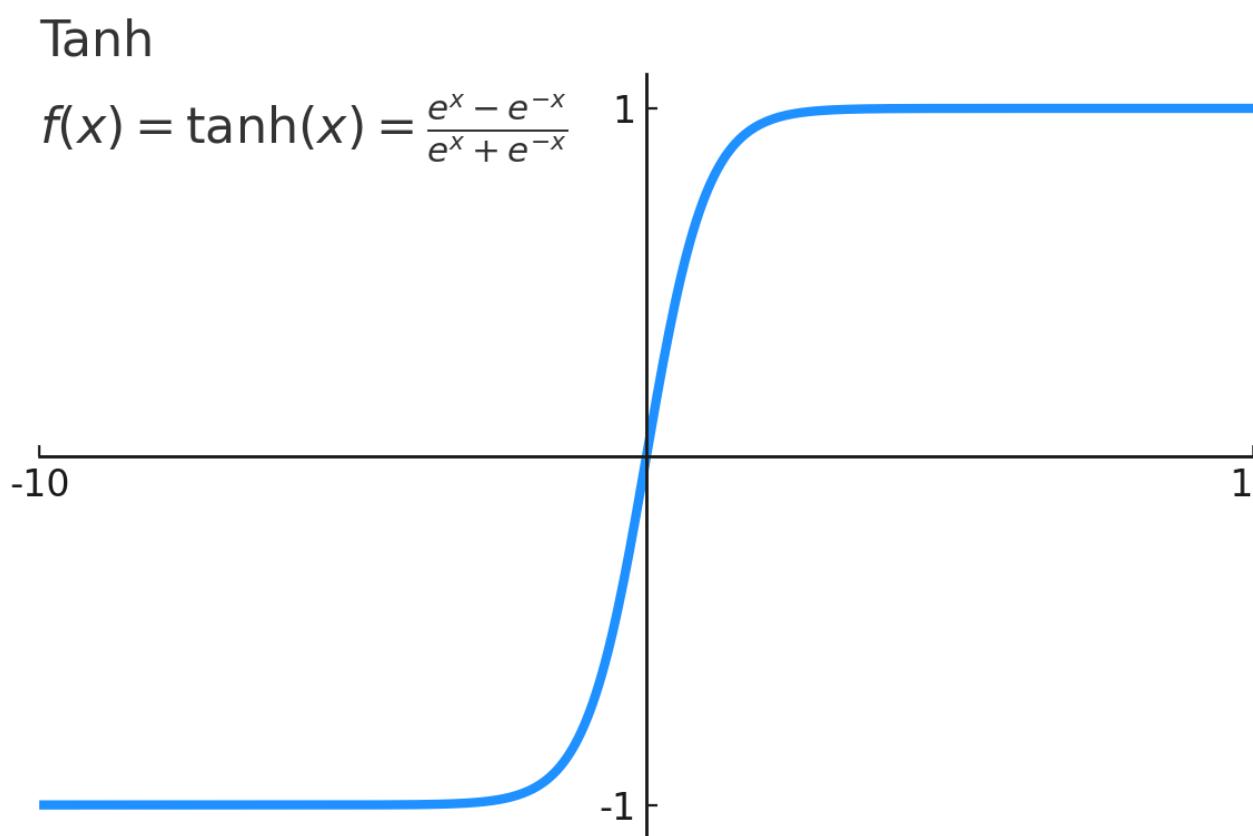
$$h_t = f_W(h_{t-1}, x_t)$$

Notice: the same function and the same set of parameters are used at every time step.



(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h :



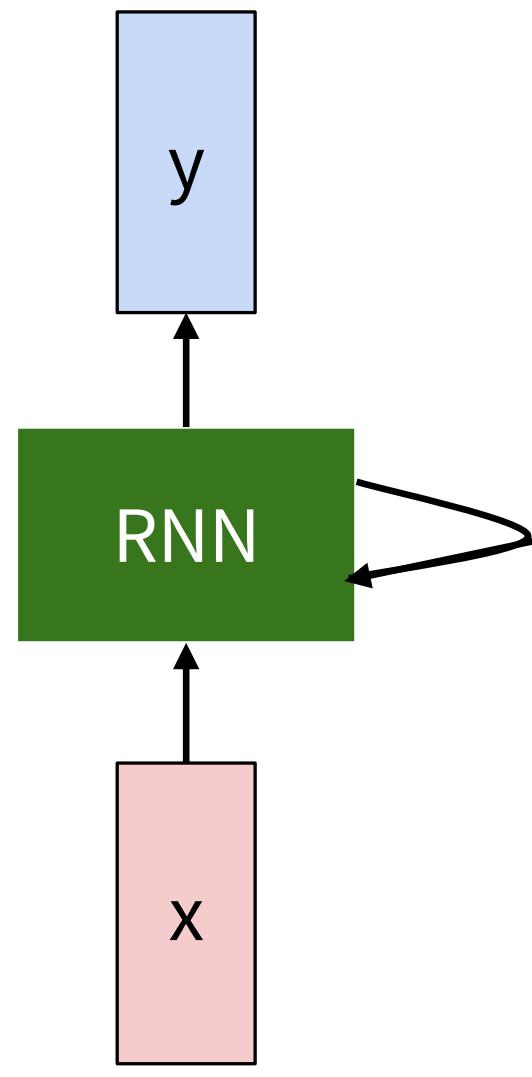
$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t) \quad y_t = W_{hy}h_t$$

Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman

Often, we also have an output function: f_y

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s



X	RNN	Y
0		0
1		0
0		0
1		0
1		1
1		1
1		1
0		0
1		0
1		1

“Many to many” sequence modeling task

$$h_t = f_W(h_{t-1}, x_t)$$

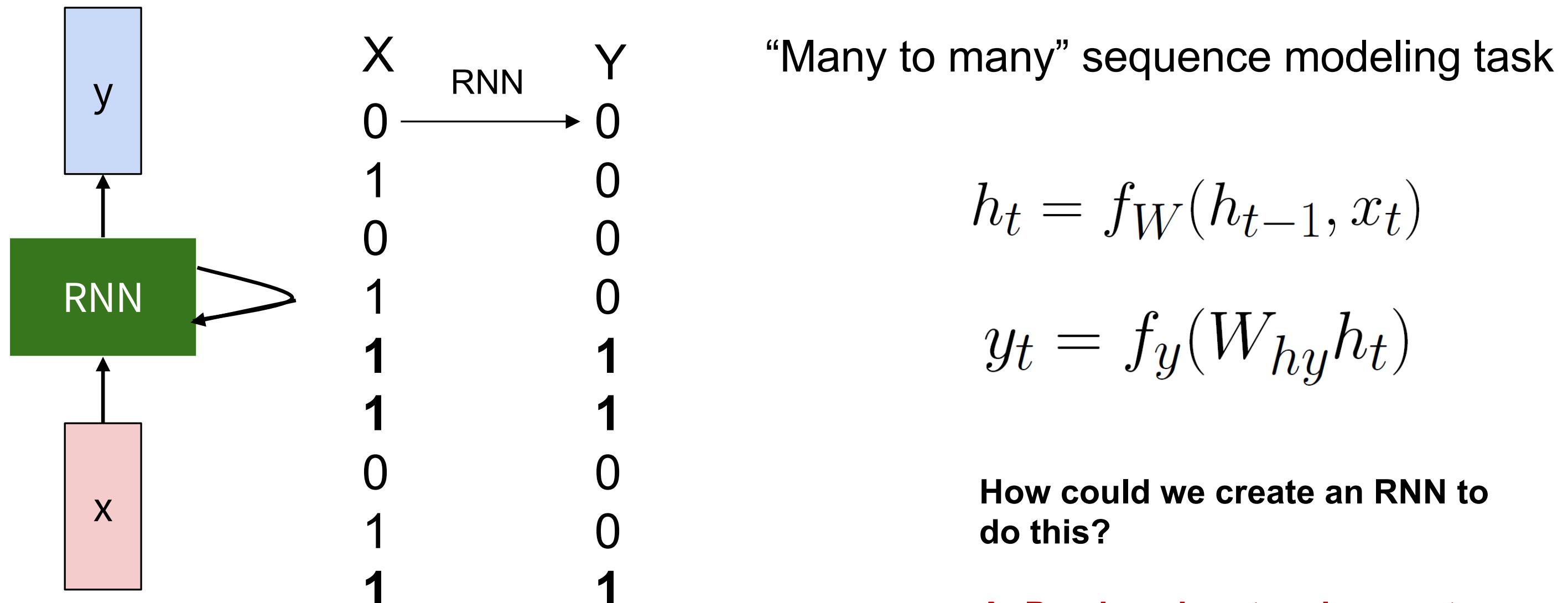
$$y_t = f_y(W_{hy}h_t)$$

How could we create an RNN to do this?

Q: What information should be captured in the “hidden” state?

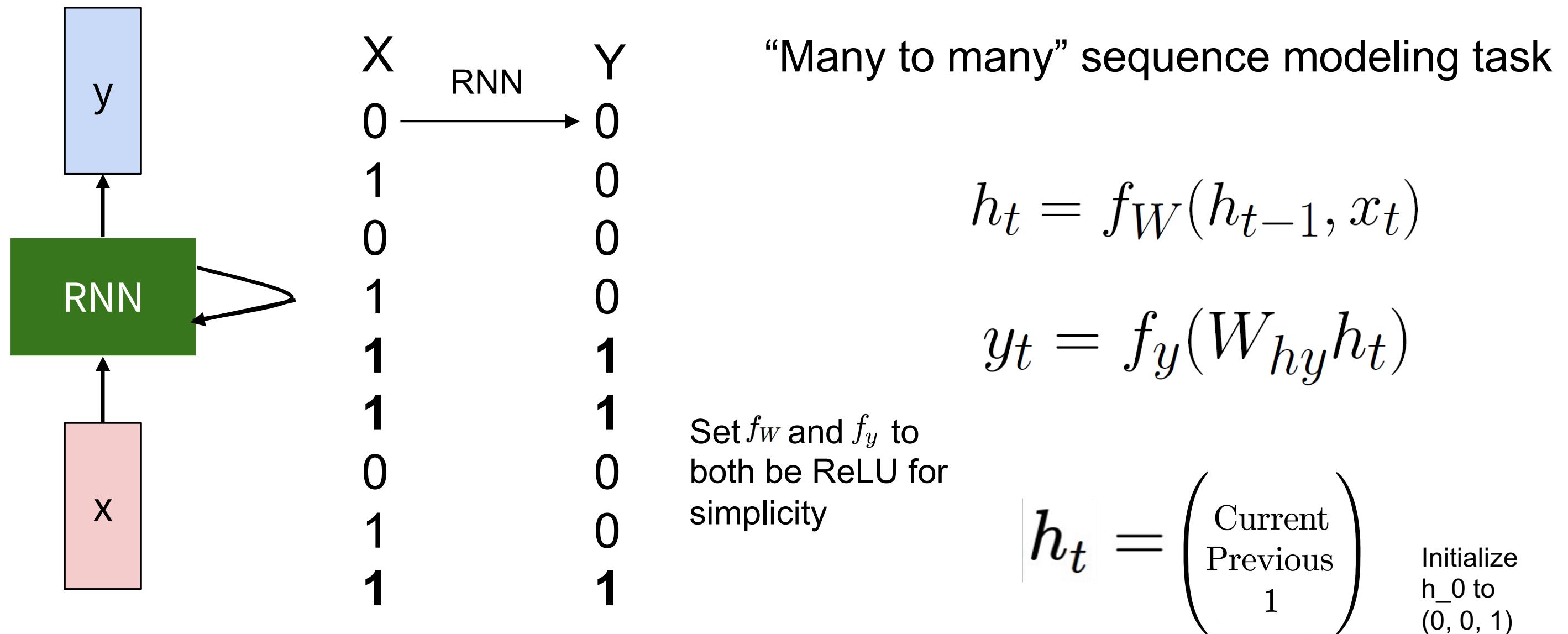
Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s



Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s



Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

```
w_xh = np.array([[1], [0], [0]])  
w_hh = np.array([[0, 0, 0],  
                 [1, 0, 0],  
                 [0, 0, 1]])  
  
w_yh = np.array([1, 1, -1])  
  
x_seq = [0, 1, 0, 1, 1, 1, 0, 1, 1]  
  
h_t_prev = np.array([[0], [0], [1]])  
  
for t, x in enumerate(x_seq):  
    h_t = relu(w_hh @ h_t_prev + (w_xh @ x))  
    y_t = relu(w_yh @ h_t)  
    h_t_prev = h_t
```

$$h_t = \text{ReLU}(W_{hh}h_{t-1} + W_{xh}x_t) \quad h_t = \begin{pmatrix} \text{Current} \\ \text{Previous} \\ 1 \end{pmatrix}$$
$$y_t = \text{ReLU}(W_{yh}h_t)$$

X	Y
0	0
1	0
0	0
1	0
1	1
1	1
0	0
1	0
1	1

* Code is missing parts, for full code see [here](#)

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

```
w_xh = np.array([[1], [0], [0]])
```

```
w_hh = np.array([[0, 0, 0],  
                 [1, 0, 0],  
                 [0, 0, 1]])
```

```
w_yh = np.array([1, 1, -1])
```

```
x_seq = [0, 1, 0, 1, 1, 1, 0, 1, 1]
```

```
h_t_prev = np.array([[0], [0], [1]])
```

```
for t, x in enumerate(x_seq):  
    h_t = relu(w_hh @ h_t_prev + (w_xh @ x))  
    y_t = relu(w_yh @ h_t)  
    h_t_prev = h_t
```

* Code is missing parts, for full code see [here](#)

$$h_t = \text{ReLU}(W_{hh}h_{t-1} + W_{xh}x_t) \quad h_t = \begin{pmatrix} \text{Current} \\ \text{Previous} \\ 1 \end{pmatrix}$$
$$y_t = \text{ReLU}(W_{yh}h_t)$$

Right hand term

$x=0 \rightarrow [0, 0, 0]$

$x=1 \rightarrow [1, 0, 0]$

X	Y
0	0
1	0
0	0
1	0
1	1
1	1
0	0
1	0
1	1

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

```
w_xh = np.array([[1], [0], [0]])  
w_hh = np.array([[0, 0, 0],  
                 [1, 0, 0],  
                 [0, 0, 1]])  
  
w_yh = np.array([1, 1, -1])  
  
x_seq = [0, 1, 0, 1, 1, 1, 0, 1, 1]  
  
h_t_prev = np.array([[0], [0], [1]])  
  
for t, x in enumerate(x_seq):  
    h_t = relu(w_hh @ h_t_prev + (w_xh @ x))  
    y_t = relu(w_yh @ h_t)  
    h_t_prev = h_t
```

0 for top row of left term (only use value from right term)

$$h_t = \text{ReLU}(W_{hh}h_{t-1} + W_{xh}x_t) \quad h_t = \begin{pmatrix} \text{Current} \\ \text{Previous} \\ 1 \end{pmatrix}$$
$$y_t = \text{ReLU}(W_{yh}h_t)$$

X	Y
0	0
1	0
0	0
1	0
1	1
1	1
0	0
1	0
1	1

* Code is missing parts, for full code see [here](#)

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

```
w_xh = np.array([[1], [0], [0]])  
w_hh = np.array([[0, 0, 0],  
                 [1, 0, 0],  
                 [0, 0, 1]])  
  
w_yh = np.array([1, 1, -1])  
  
x_seq = [0, 1, 0, 1, 1, 1, 0, 1, 1]  
  
h_t_prev = np.array([[0], [0], [1]])  
  
for t, x in enumerate(x_seq):  
    h_t = relu(w_hh @ h_t_prev + (w_xh @ x))  
    y_t = relu(w_yh @ h_t)  
    h_t_prev = h_t
```

**Copy over “current”
value from previous
hidden state to be
“previous”**

$$h_t = \text{ReLU}(W_{hh}h_{t-1} + W_{xh}x_t) \quad h_t = \begin{pmatrix} \text{Current} \\ \text{Previous} \\ 1 \end{pmatrix}$$
$$y_t = \text{ReLU}(W_{yh}h_t)$$

X	Y
0	0
1	0
0	0
1	0
1	1
1	1
0	0
1	0
1	1

* Code is missing parts, for full code see [here](#)

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

```
w_xh = np.array([[1], [0], [0]])  
w_hh = np.array([[0, 0, 0],  
                 [1, 0, 0],  
                 [0, 0, 1]])  
w_yh = np.array([1, 1, -1])  
x_seq = [0, 1, 0, 1, 1, 1, 0, 1, 1]  
h_t_prev = np.array([[0], [0], [1]])  
  
for t, x in enumerate(x_seq):  
    h_t = relu(w_hh @ h_t_prev + (w_xh @ x))  
    y_t = relu(w_yh @ h_t)  
    h_t_prev = h_t
```

Keep 1 on the bottom
(helpful for output)

$$h_t = \text{ReLU}(W_{hh}h_{t-1} + W_{xh}x_t)$$
$$y_t = \text{ReLU}(W_{yh}h_t)$$

$$h_t = \begin{pmatrix} \text{Current} \\ \text{Previous} \\ 1 \end{pmatrix}$$

X	Y
0	0
1	0
0	0
1	0
1	1
1	1
0	0
1	0
1	1

* Code is missing parts, for full code see [here](#)

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

```
w_xh = np.array([[1], [0], [0]])
```

```
w_hh = np.array([[0, 0, 0],  
                 [1, 0, 0],  
                 [0, 0, 1]])
```

```
w_yh = np.array([1, 1, -1])  
  
x_seq = [0, 1, 0, 1, 1, 1, 0, 1, 1]  
  
h_t_prev = np.array([[0], [0], [1]])  
  
for t, x in enumerate(x_seq):  
    h_t = relu(w_hh @ h_t_prev + (w_xh @ x))  
    y_t = relu(w_yh @ h_t)  
    h_t_prev = h_t
```

* Code is missing parts, for full code see [here](#)

$$h_t = \text{ReLU}(W_{hh}h_{t-1} + W_{xh}x_t)$$

$$y_t = \text{ReLU}(W_{yh}h_t)$$

$$h_t = \begin{pmatrix} \text{Current} \\ \text{Previous} \\ 1 \end{pmatrix}$$

Max(Current + Previous - 1, 0)

X	Y
0	0
1	0
0	0
1	0
1	1
1	1
0	0
1	0
1	1

Vanilla(-ish) RNN: Concrete Example

Manually creating a recurrent network for detecting repeated 1s

```
w_xh = np.array([[1], [0], [0]])  
w_hh = np.array([[0, 0, 0],  
                 [1, 0, 0],  
                 [0, 0, 1]])  
  
w_yh = np.array([1, 1, -1])  
x_seq = [0, 1, 0, 1, 1, 1, 0, 1, 1]  
  
h_t_prev = np.array([[0], [0], [1]])  
  
for t, x in enumerate(x_seq):  
    h_t = relu(w_hh @ h_t_prev + (w_xh @ x))  
    y_t = relu(w_yh @ h_t)  
    h_t_prev = h_t
```

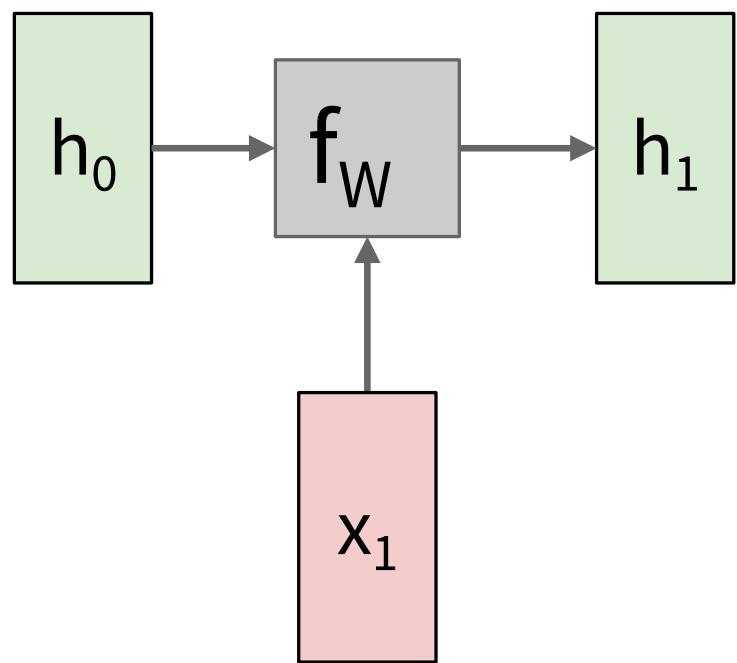
$$h_t = \text{ReLU}(W_{hh}h_{t-1} + W_{xh}x_t) \quad h_t = \begin{pmatrix} \text{Current} \\ \text{Previous} \\ 1 \end{pmatrix}$$
$$y_t = \text{ReLU}(W_{yh}h_t)$$

And it just works! But
how do we find the Ws
in practice?

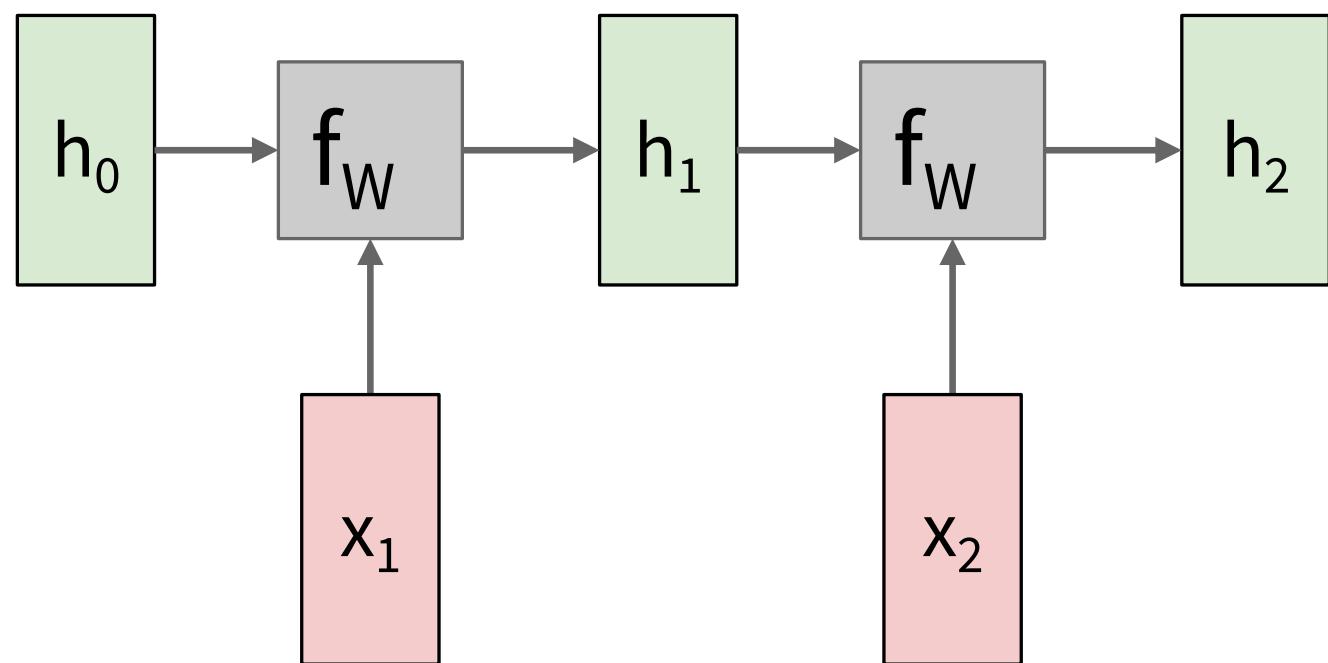
X	Y
0	0
1	0
0	0
1	0
1	1
1	1
0	0
1	0
1	1

* Code is missing parts, for full code see [here](#)

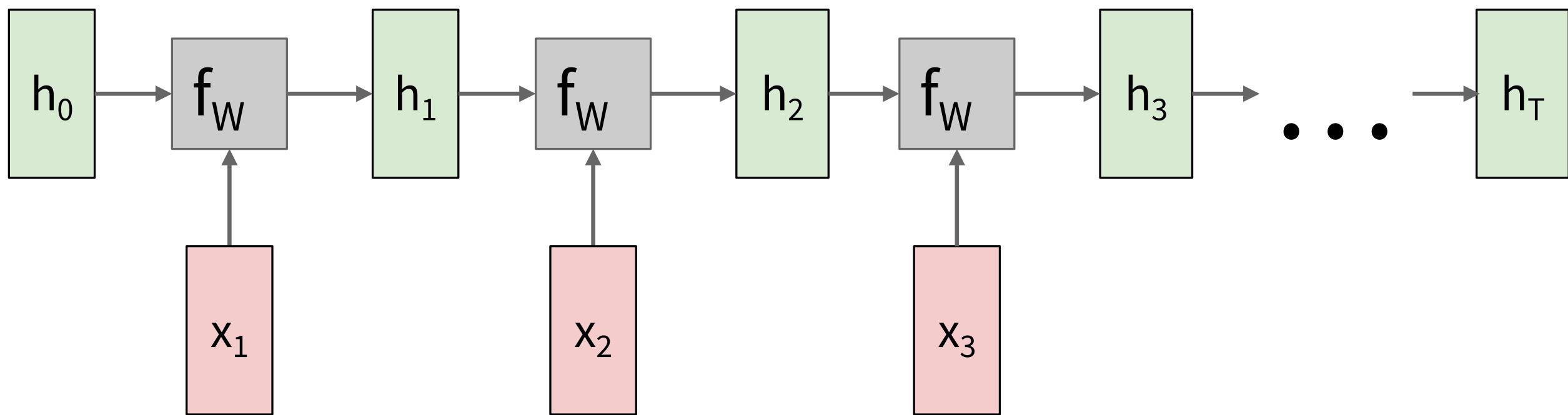
RNN: Computational Graph



RNN: Computational Graph

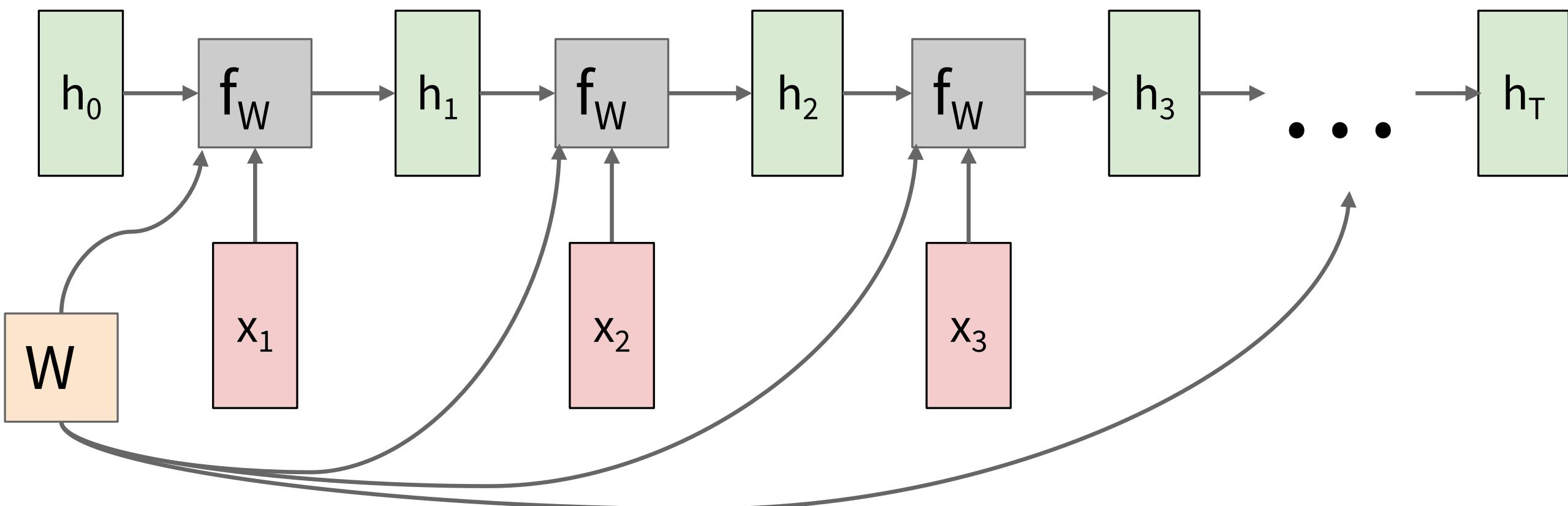


RNN: Computational Graph

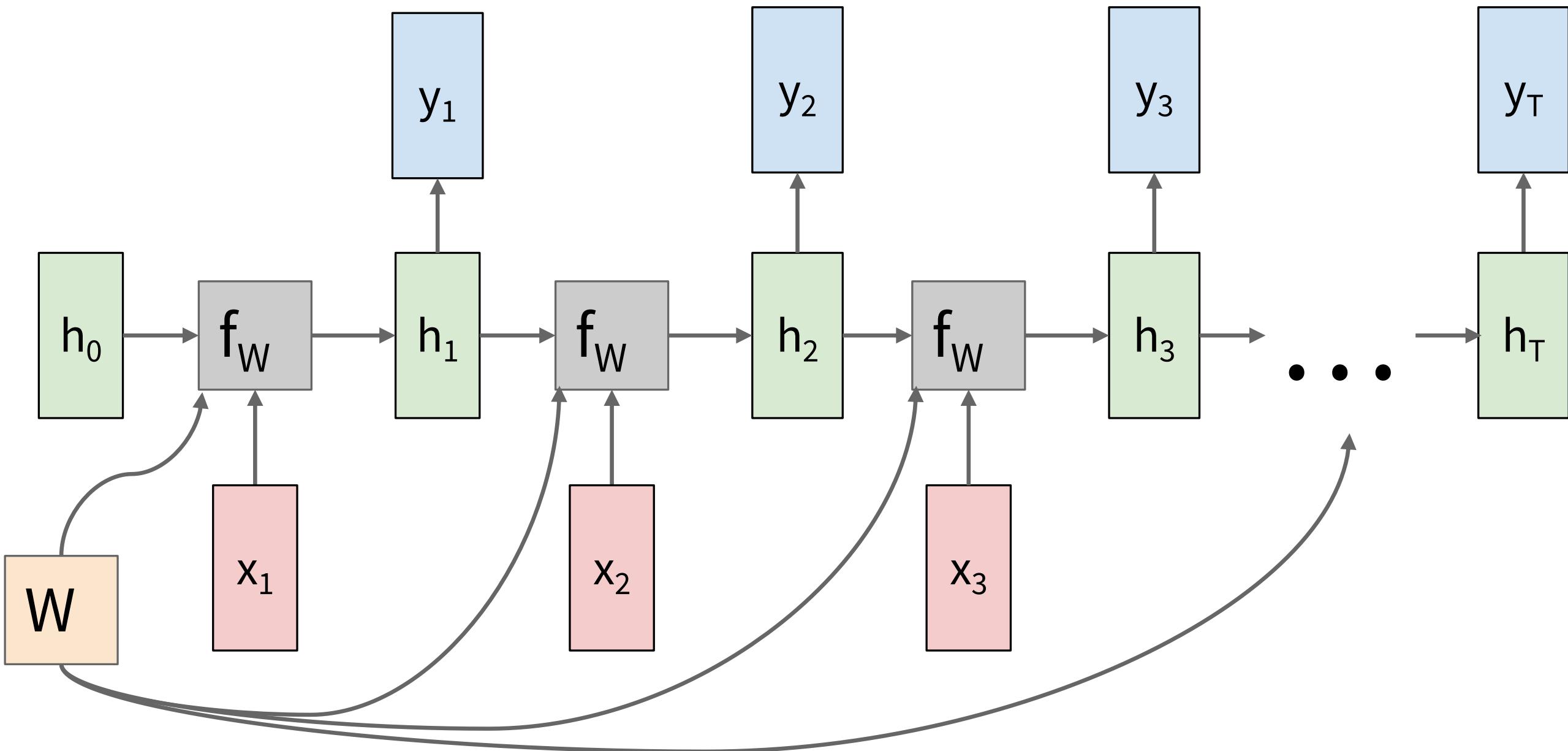


RNN: Computational Graph

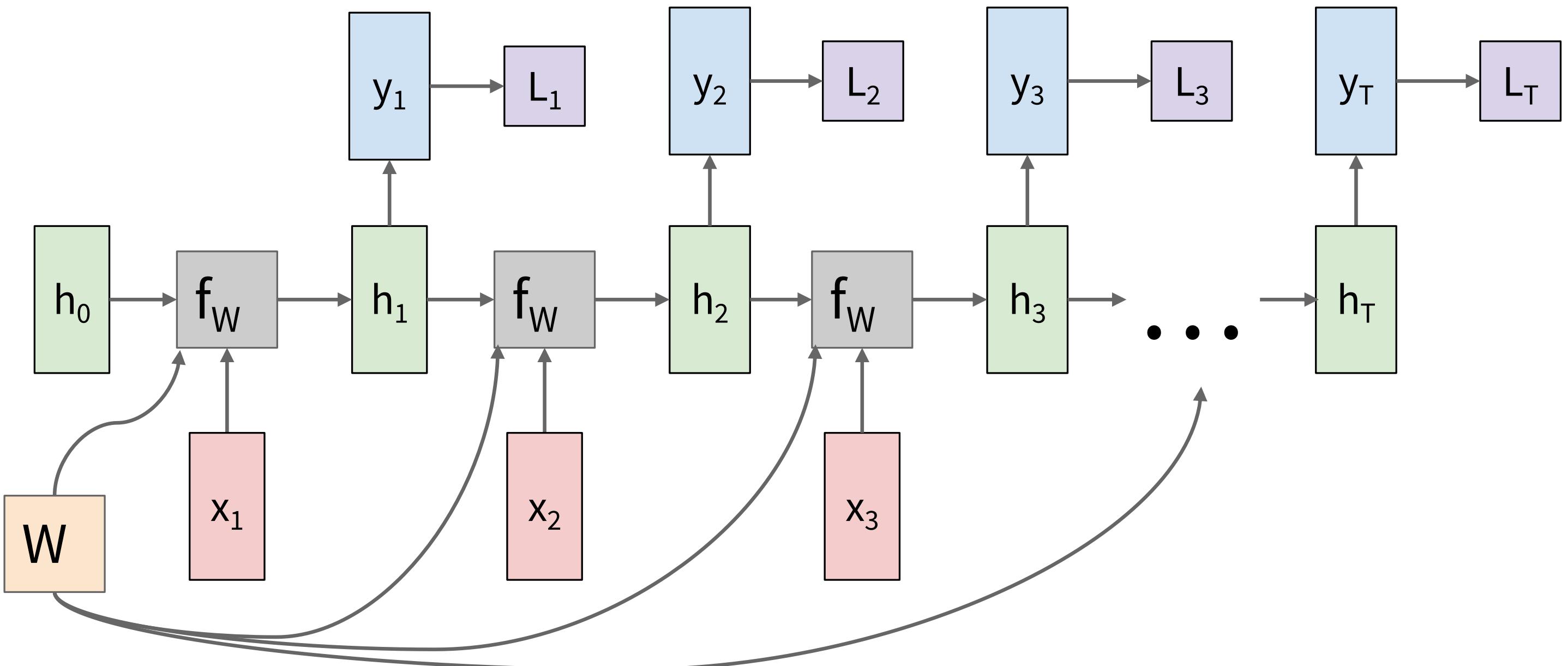
Re-use the same weight matrix at every time-step



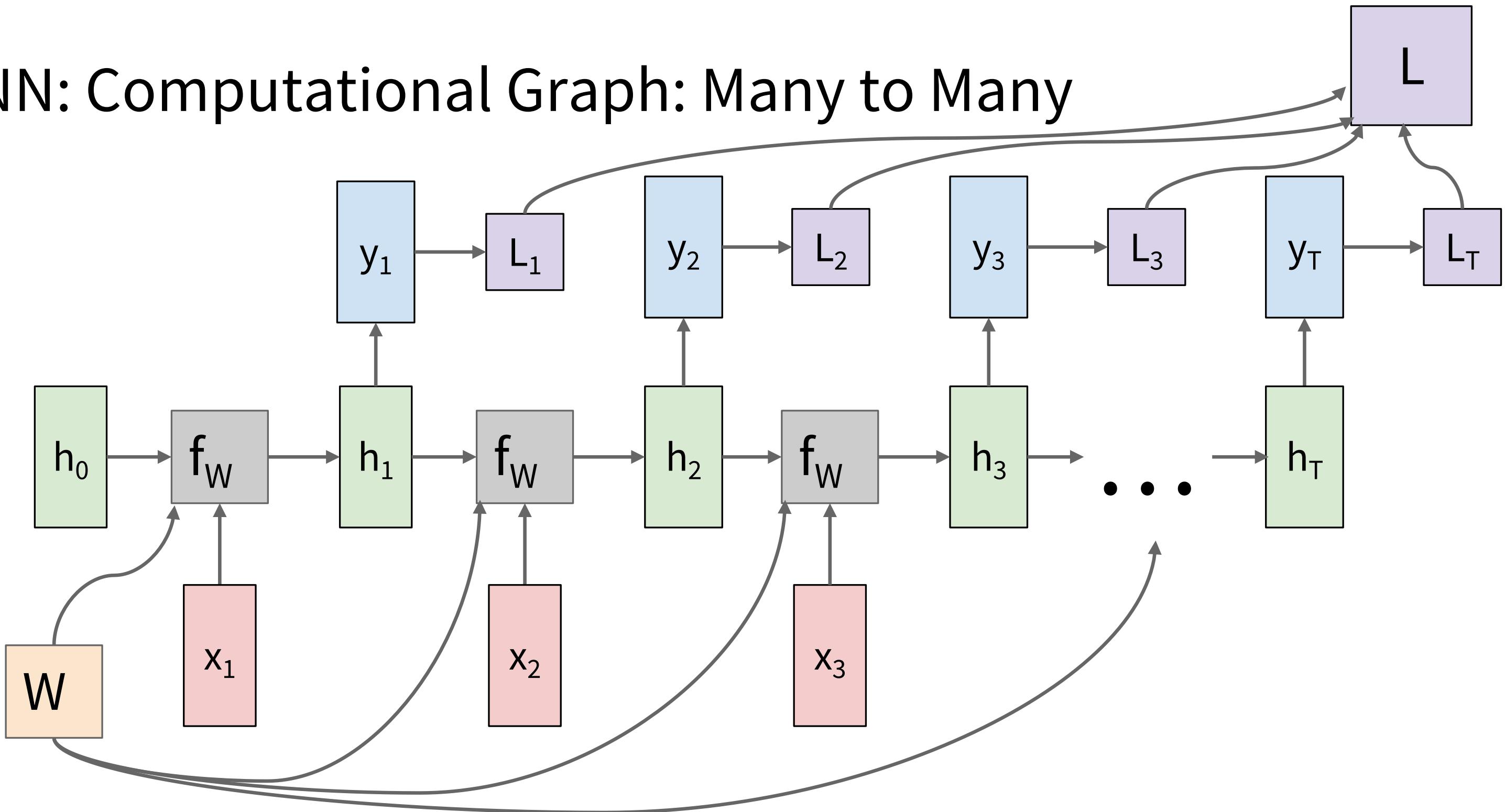
RNN: Computational Graph: Many to Many



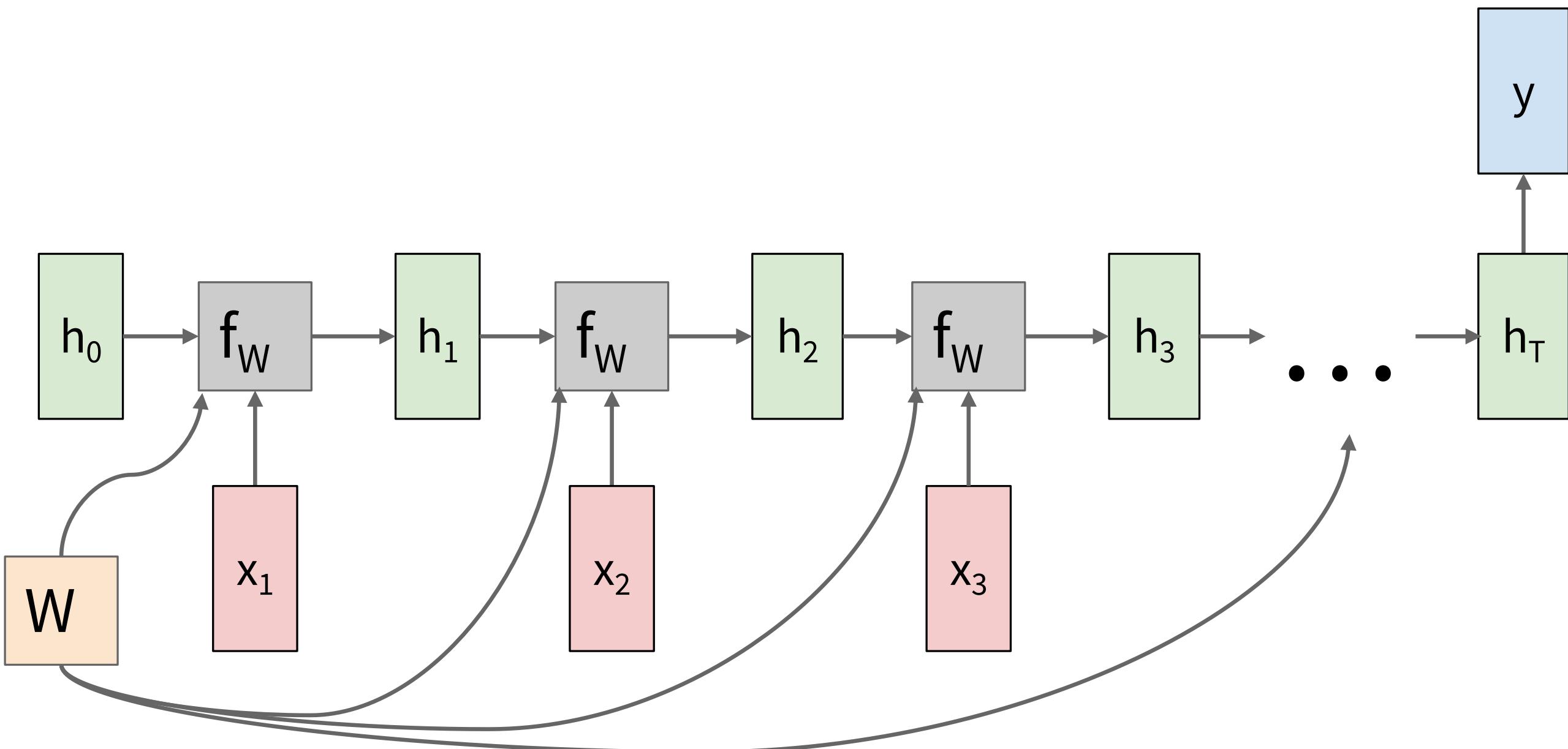
RNN: Computational Graph: Many to Many



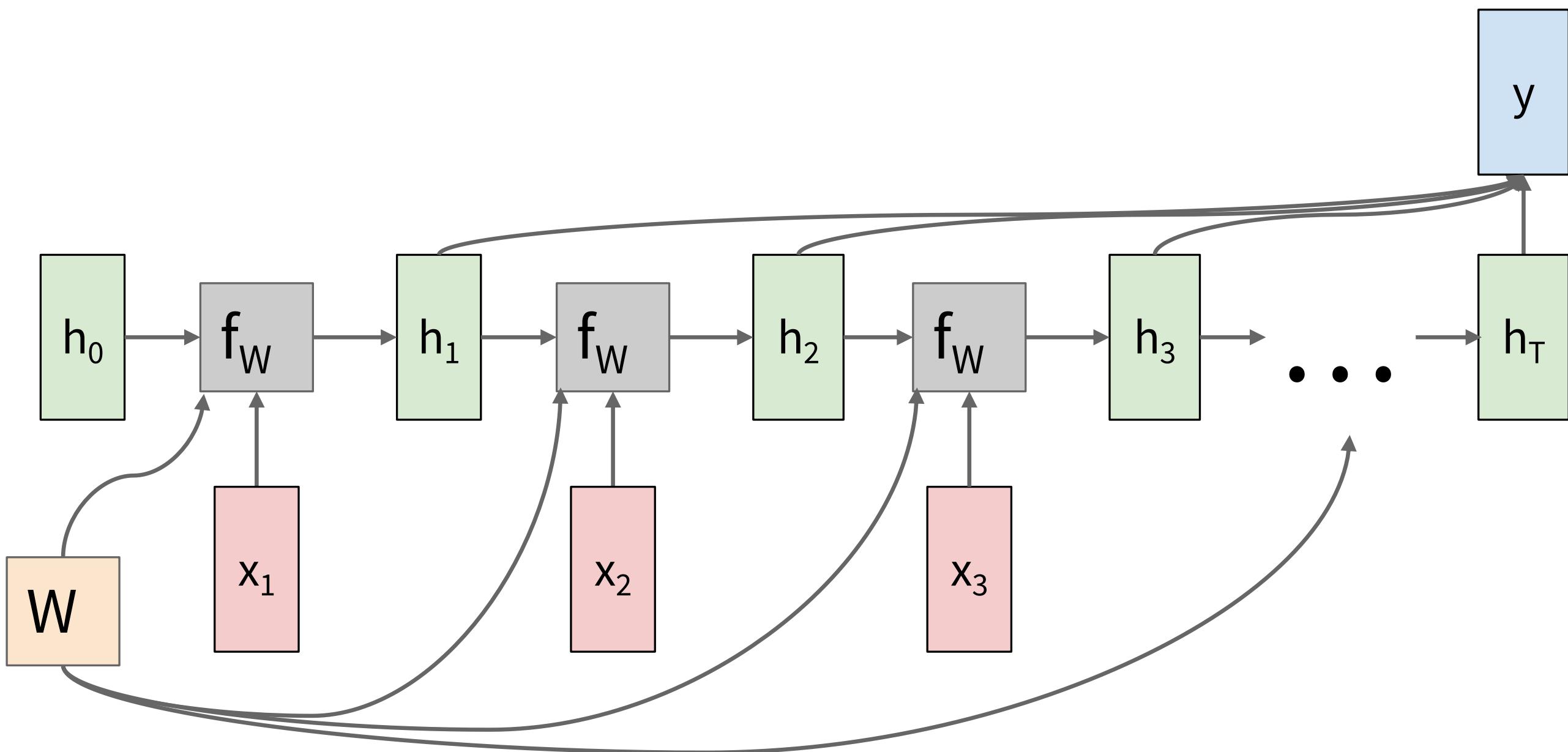
RNN: Computational Graph: Many to Many



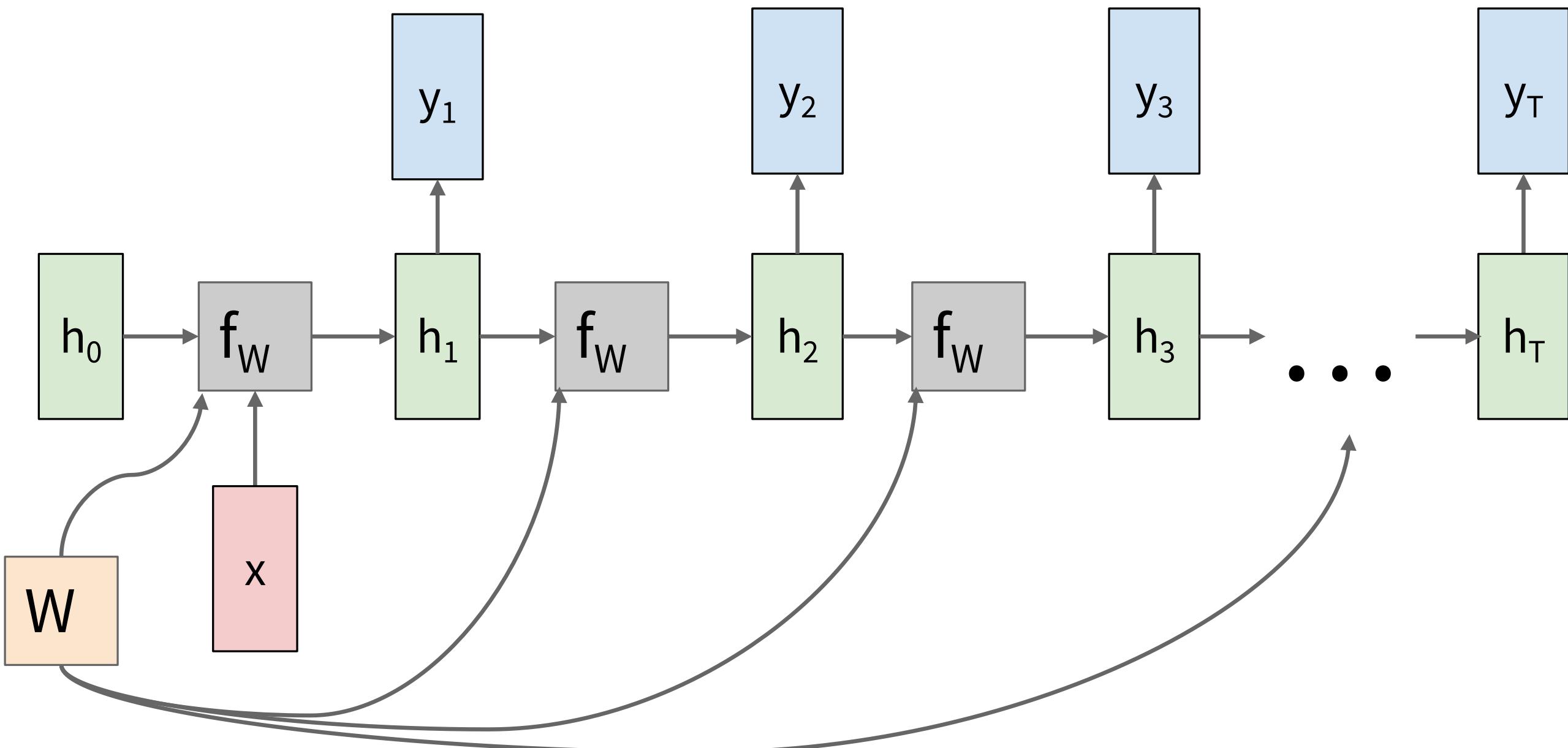
RNN: Computational Graph: Many to One



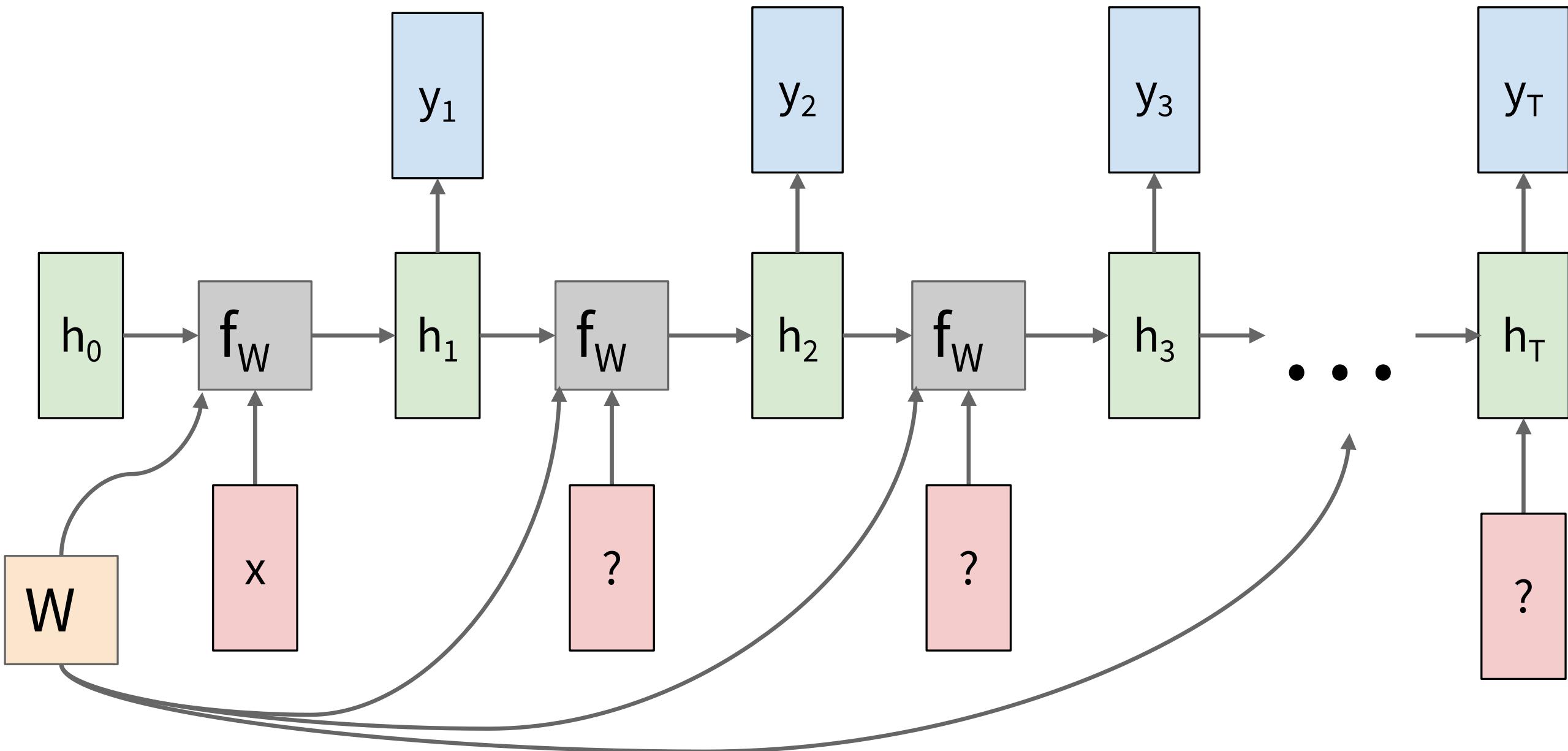
RNN: Computational Graph: Many to One



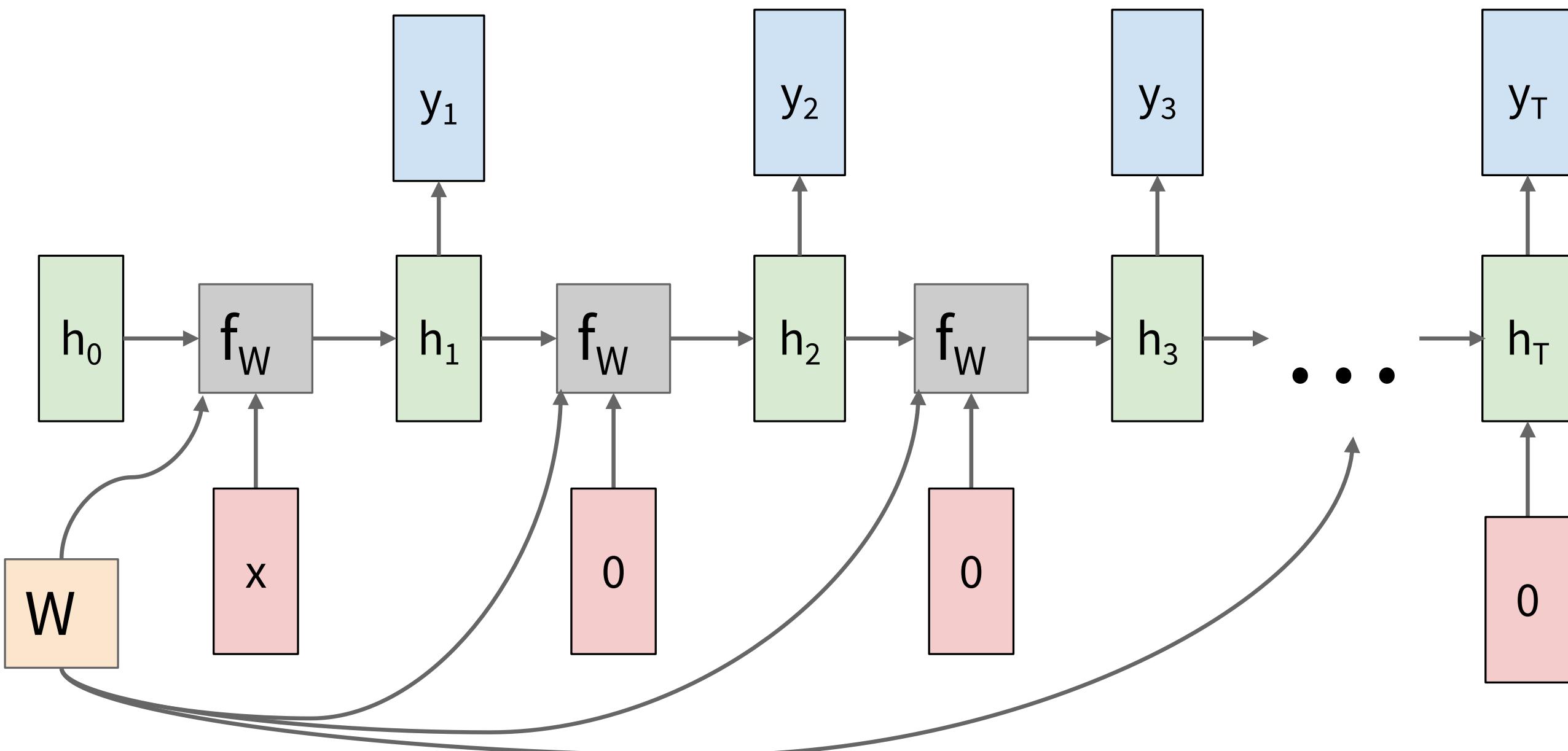
RNN: Computational Graph: One to Many



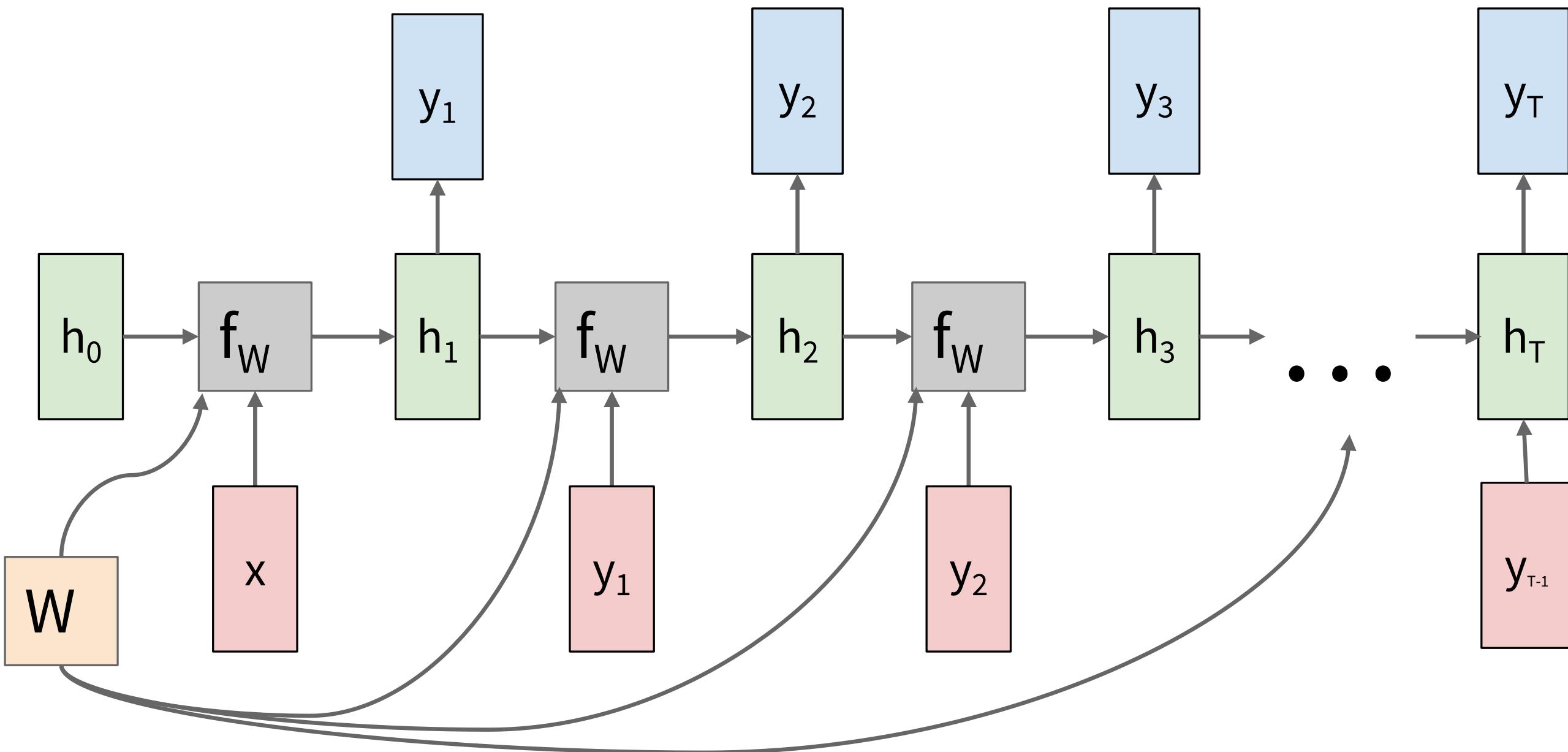
RNN: Computational Graph: One to Many



RNN: Computational Graph: One to Many

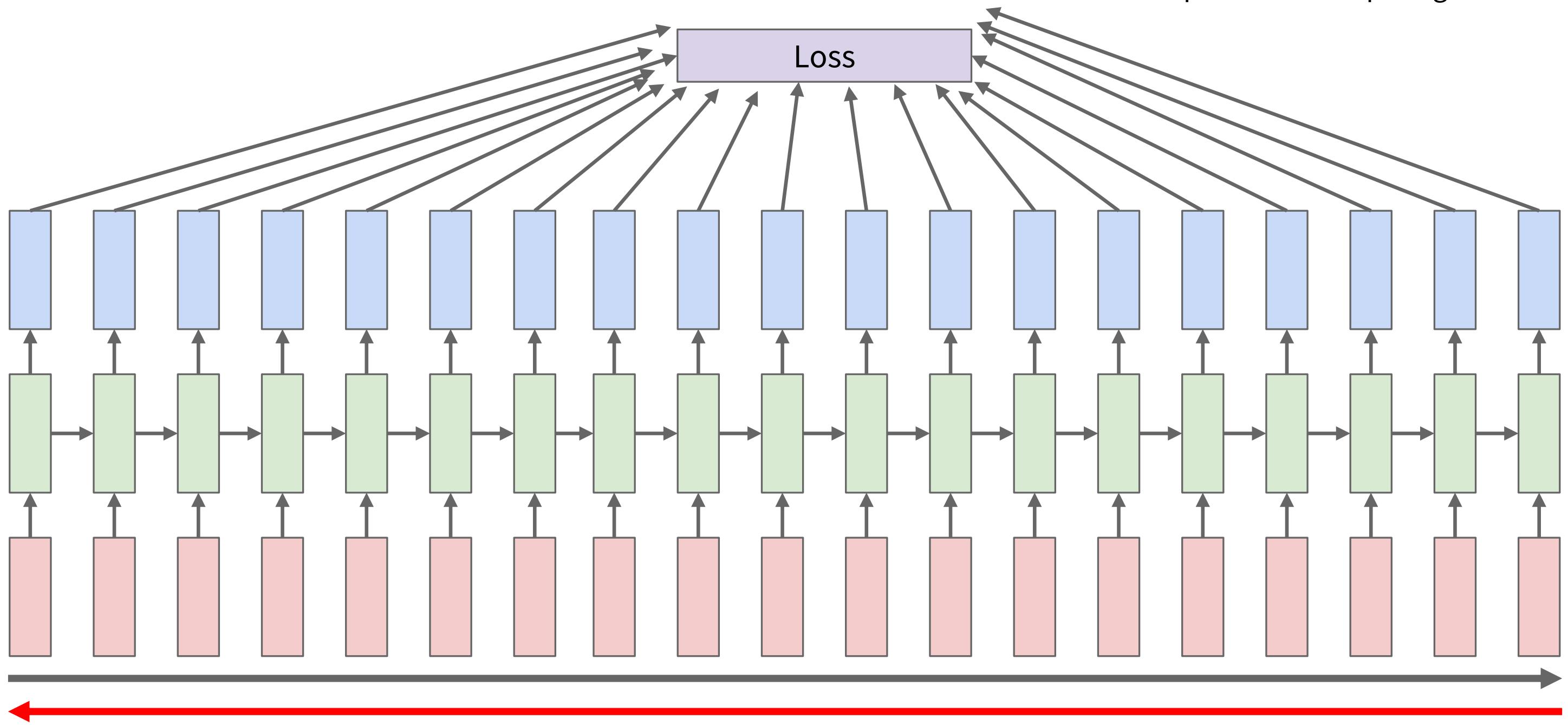


RNN: Computational Graph: One to Many

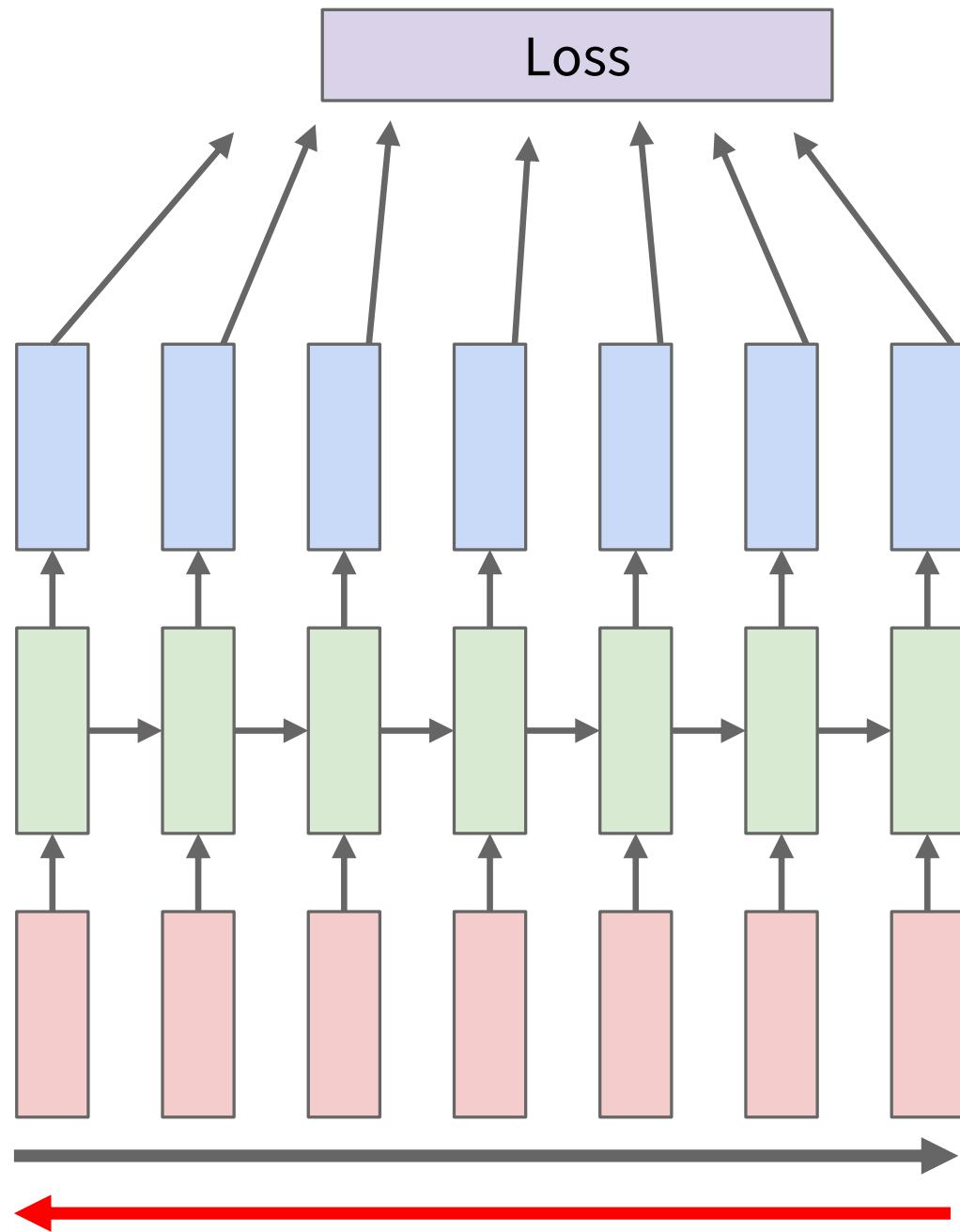


Backpropagation through time

Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient

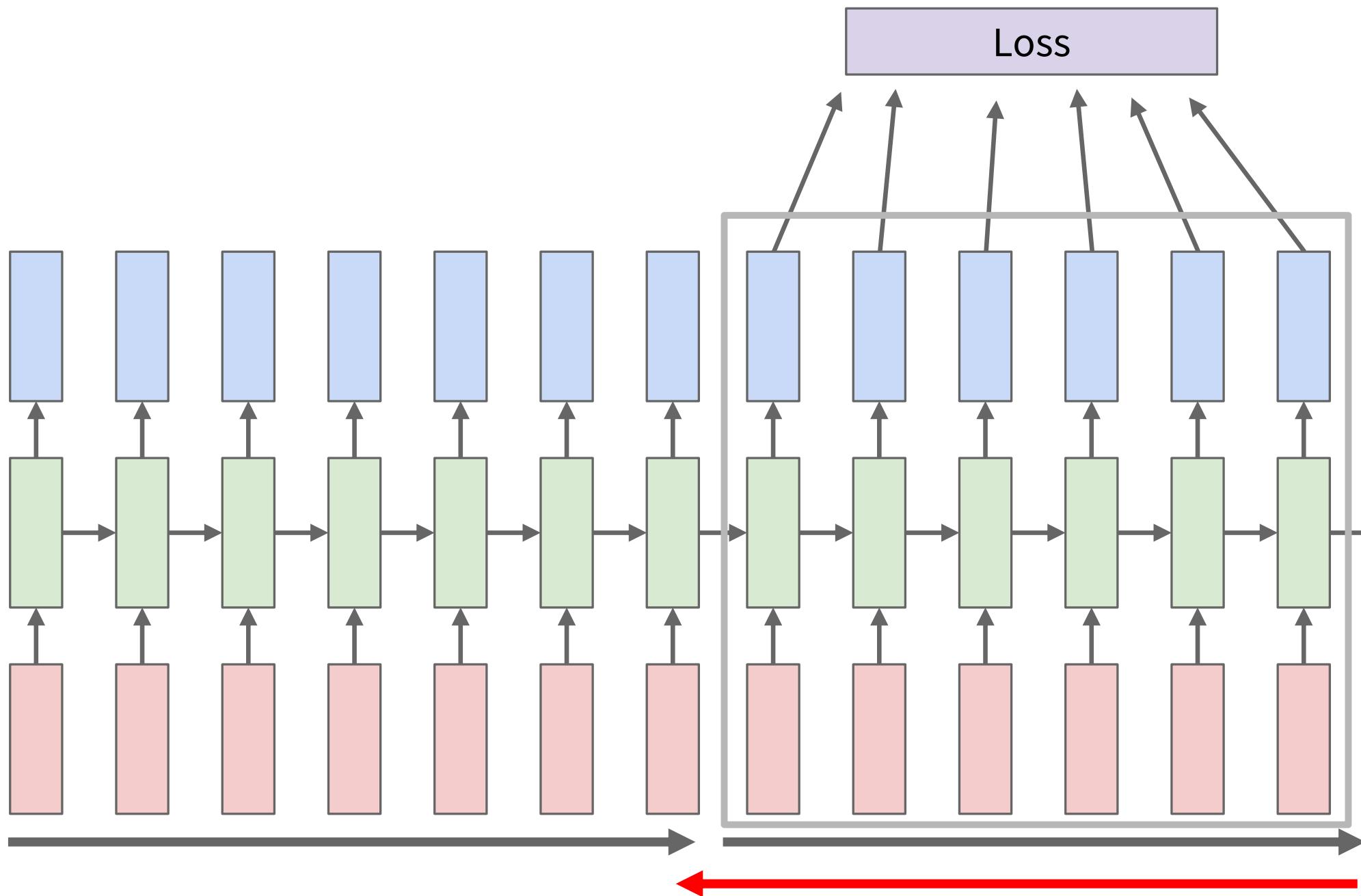


Truncated Backpropagation through time



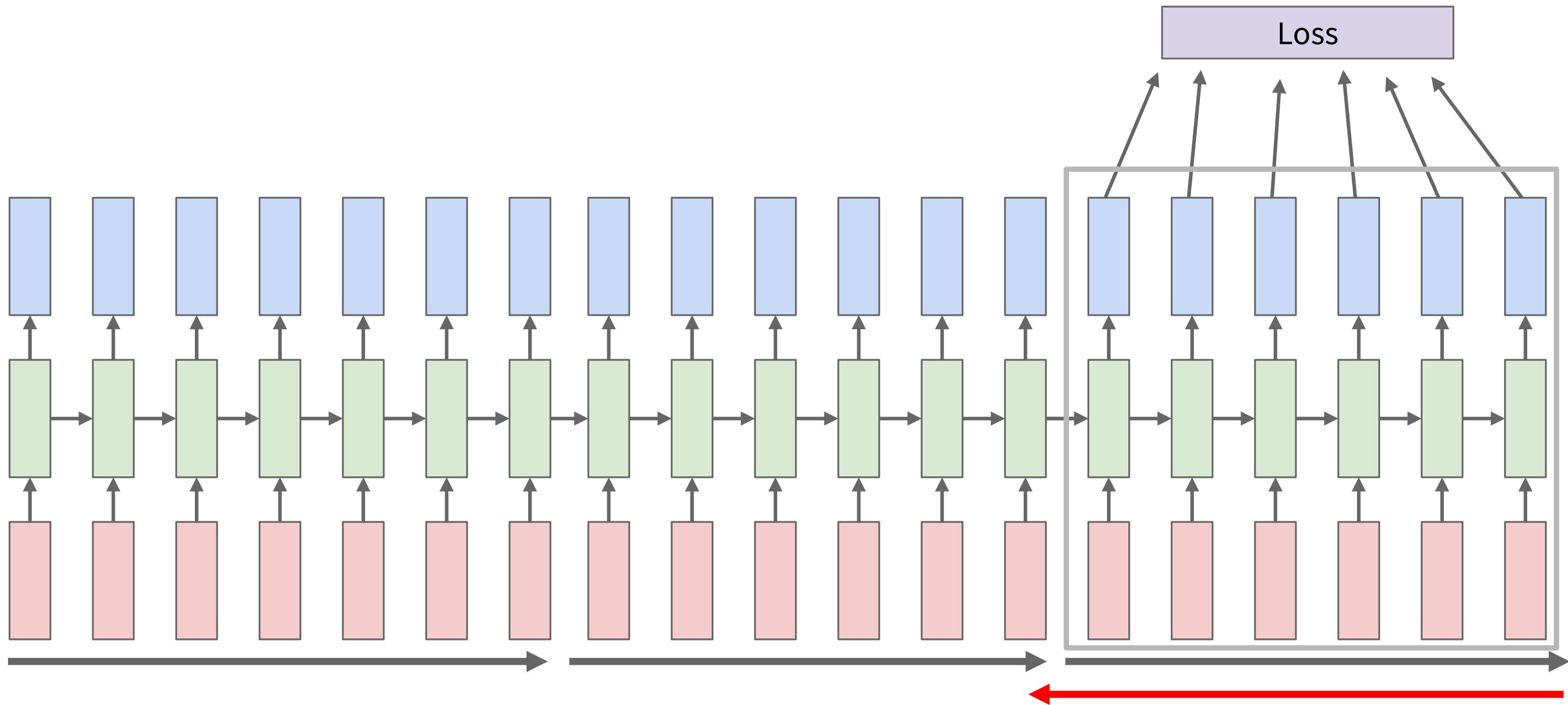
Run forward and backward
through chunks of the
sequence instead of whole
sequence

Truncated Backpropagation through time



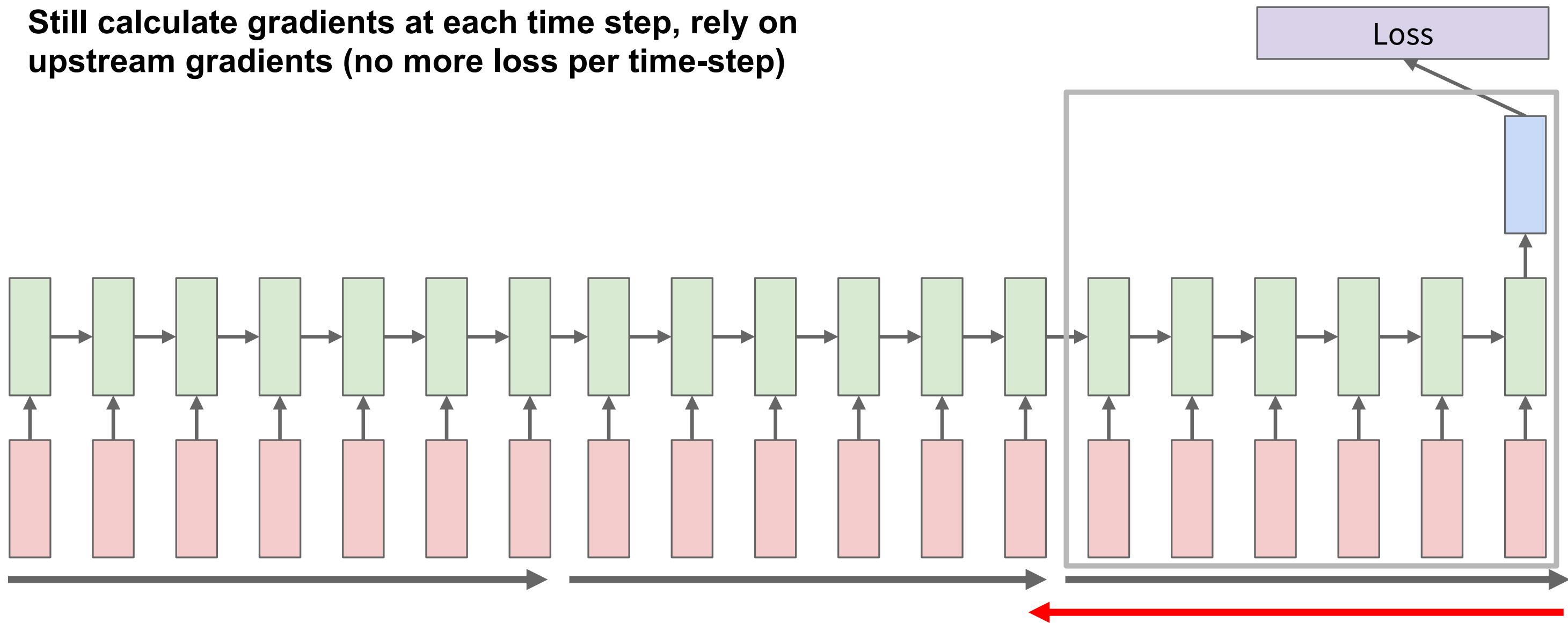
Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation through time



Truncated BPTT: Single Output

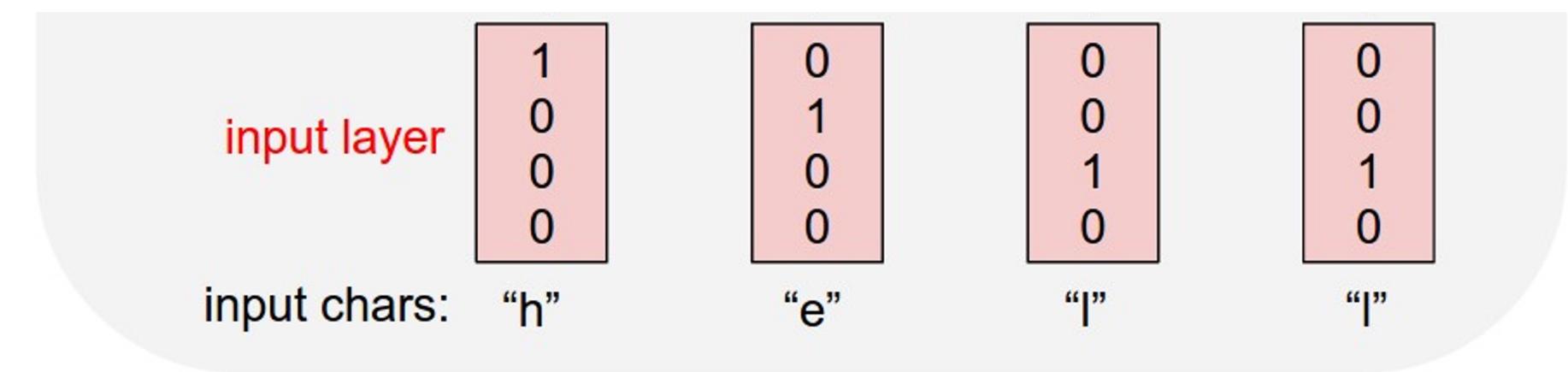
Still calculate gradients at each time step, rely on upstream gradients (no more loss per time-step)



A more practical
example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

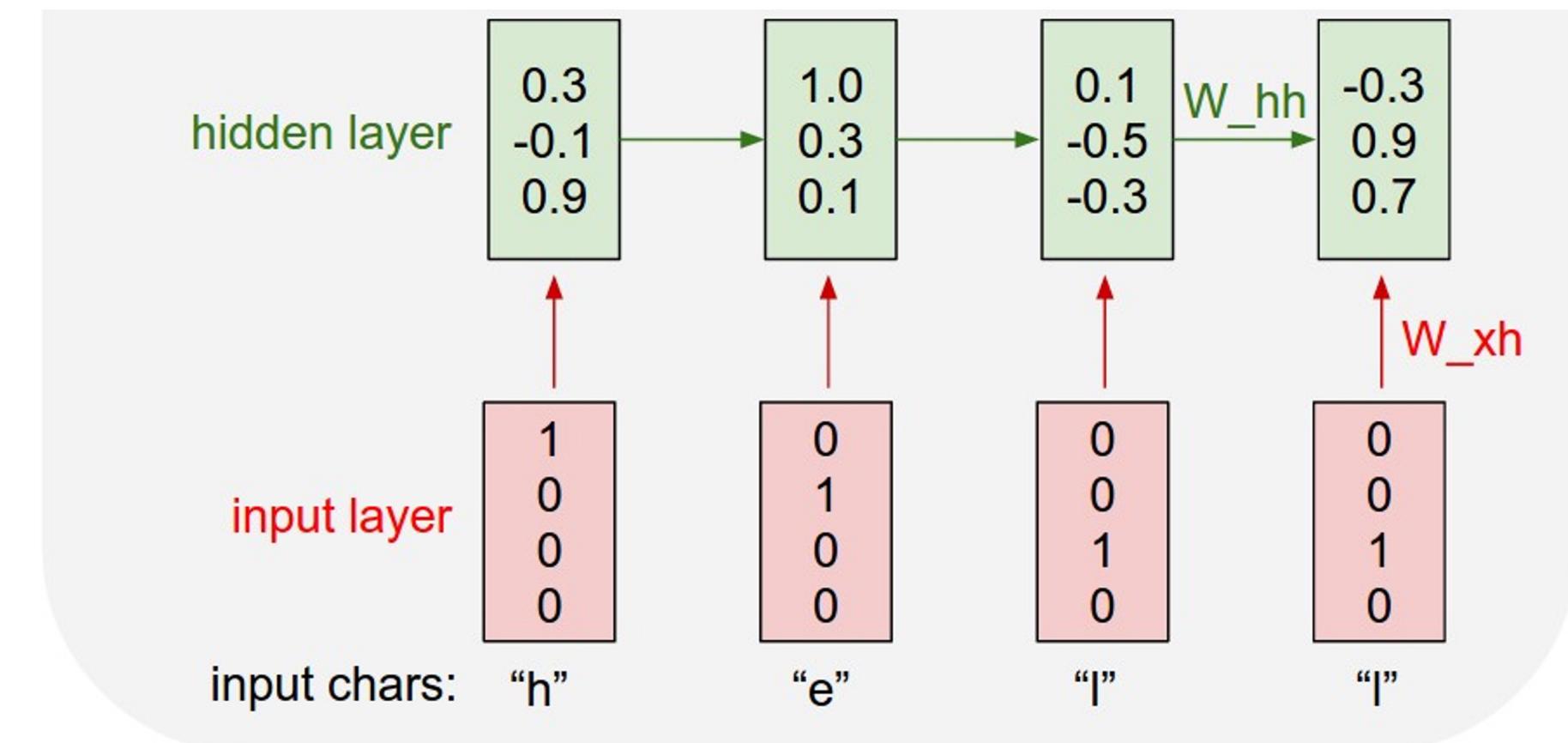


A more practical example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training sequence:
“hello”

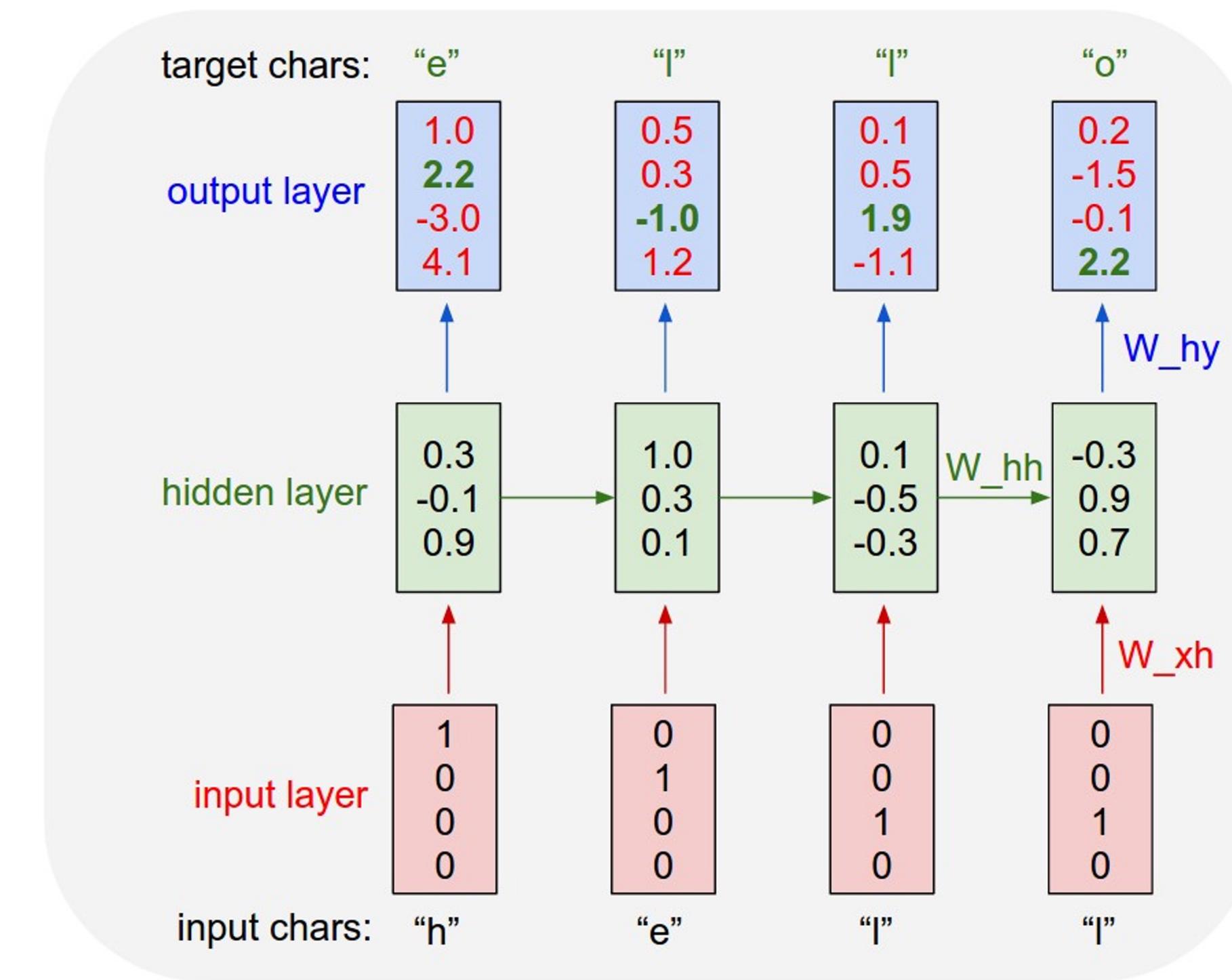
$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$



A more practical example: Character-level Language Model

Vocabulary:
[h,e,l,o]

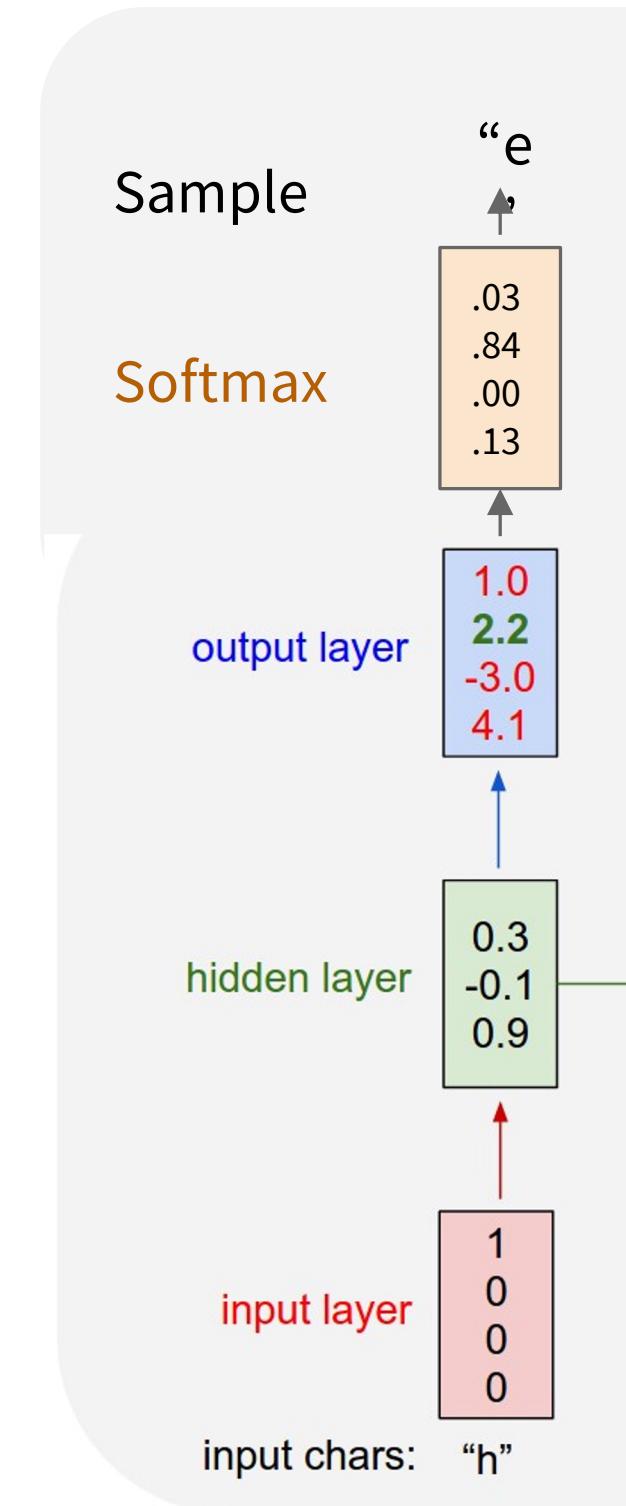
Example training
sequence:
“hello”



Example: Character-level Language Model **Sampling**

Vocabulary:
[h,e,l,o]

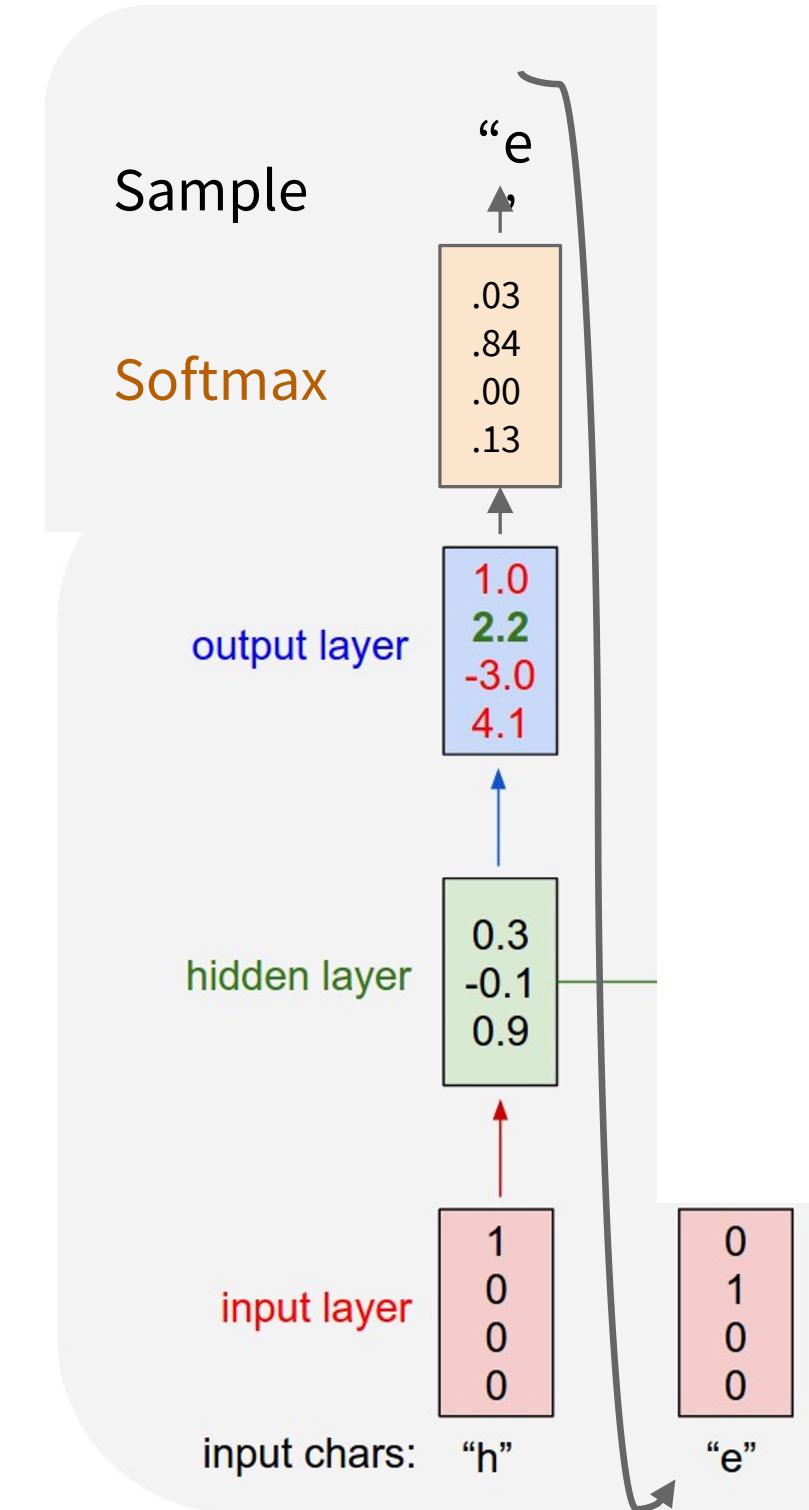
At test-time sample characters
one at a time, feed back to
model



Example: Character-level Language Model Sampling

Vocabulary:
[h,e,l,o]

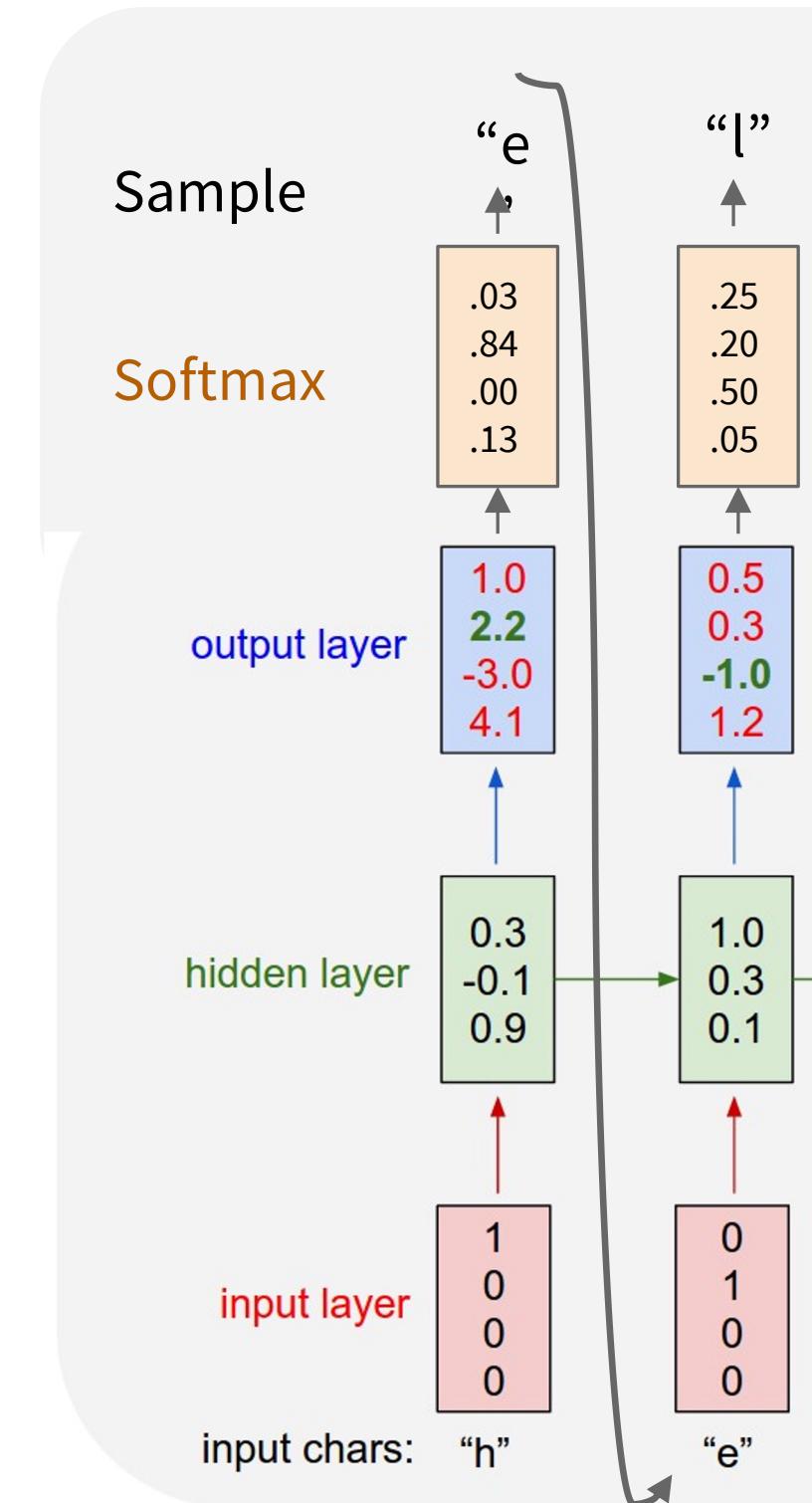
At test-time sample characters one at a time, feed back to model



Example: Character-level Language Model Sampling

Vocabulary:
[h,e,l,o]

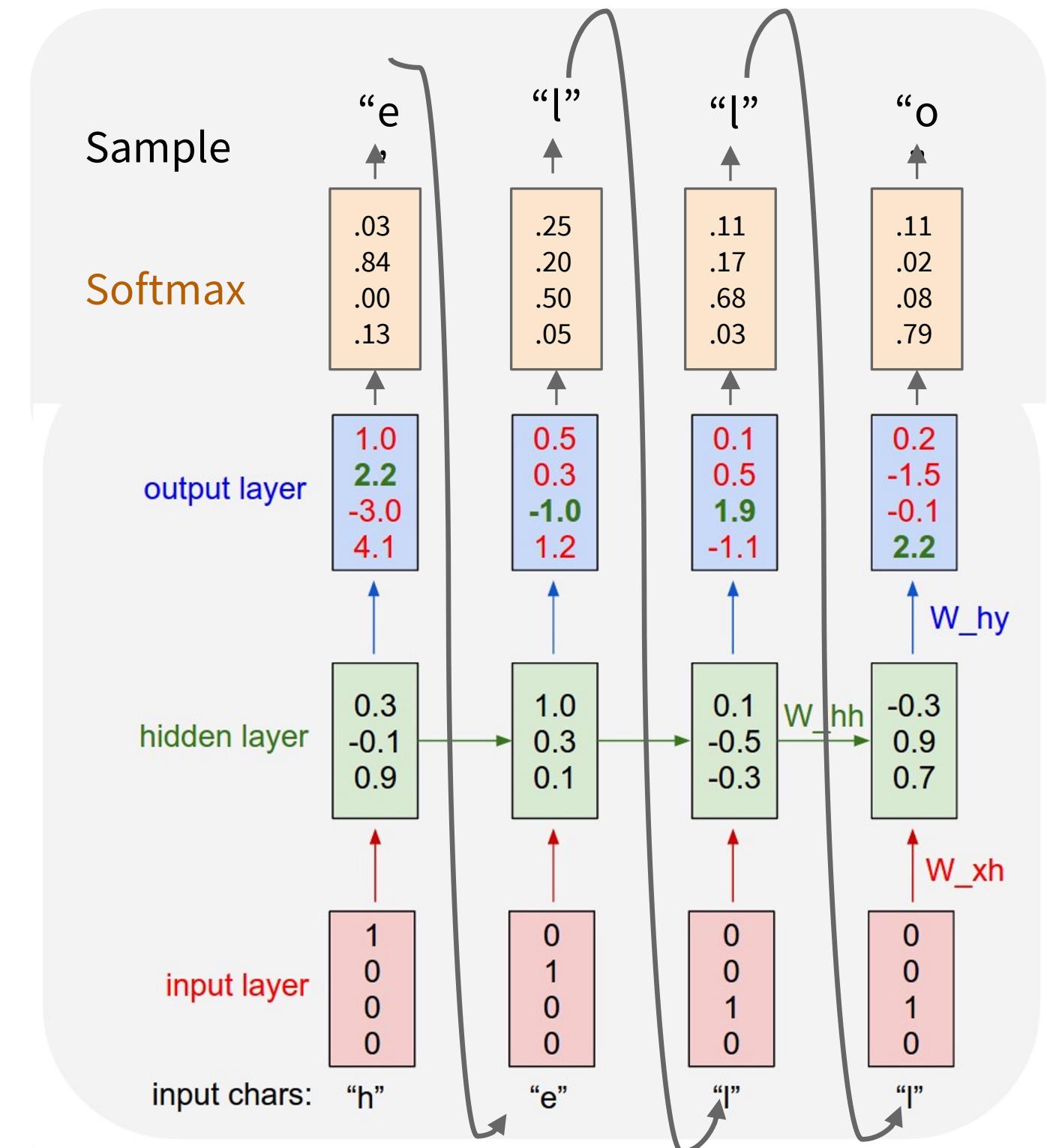
At test-time sample characters one at a time, feed back to model



Example: Character-level Language Model Sampling

Vocabulary:
[h,e,l,o]

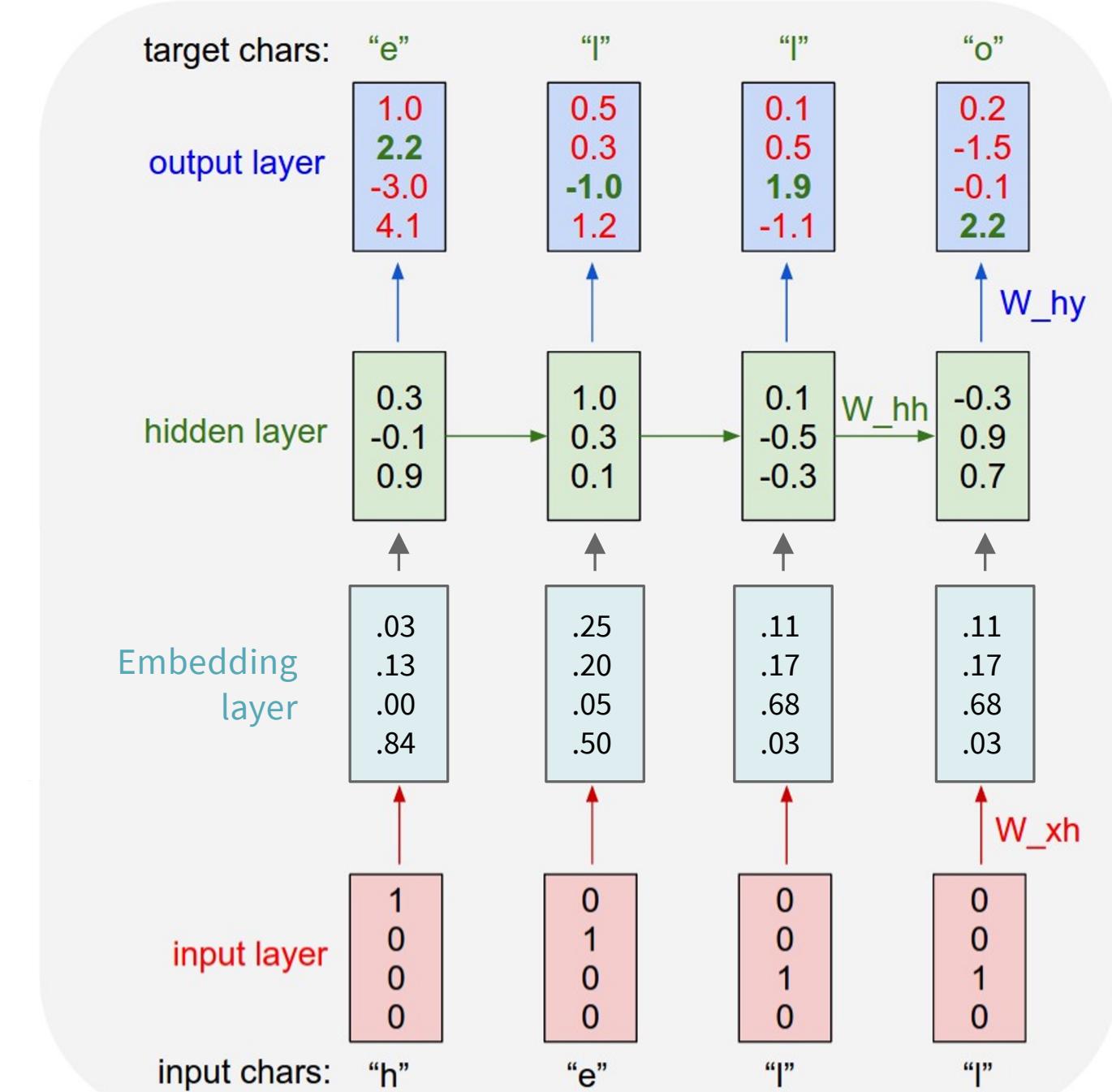
At test-time sample characters one at a time, feed back to model



Example: Character-level Language Model Sampling

$$\begin{aligned}
 [w_{11} \ w_{12} \ w_{13} \ w_{14}] [1] &= [w_{11}] \\
 [w_{21} \ w_{22} \ w_{23} \ w_{14}] [0] &= [w_{21}] \\
 [w_{31} \ w_{32} \ w_{33} \ w_{14}] [0] &= [w_{31}] \\
 [w_{41} \ w_{42} \ w_{43} \ w_{44}] [0] &= [w_{41}]
 \end{aligned}$$

Matrix multiplication with a one-hot vector just extracts a column from the weight matrix. We often put a separate embedding layer between the input and hidden layers.



min-char-rnn.py gist: 112 lines of Python

```
1  """
2  Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
3  BSD License
4  """
5  import numpy as np
6
7  # data I/O
8  data = open('input.txt', 'r').read() # should be simple plain text file
9  chars = list(set(data))
10 data_size, vocab_size = len(data), len(chars)
11 print 'data has %d characters, %d unique.' % (data_size, vocab_size)
12 char_to_ix = { ch:i for i,ch in enumerate(chars) }
13 ix_to_char = { i:ch for i,ch in enumerate(chars) }
14
15 # hyperparameters
16 hidden_size = 100 # size of hidden layer of neurons
17 seq_length = 25 # number of steps to unroll the RNN for
18 learning_rate = 1e-1
19
20 # model parameters
21 Wxh = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden
22 Whh = np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden
23 Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output
24 bh = np.zeros((hidden_size, 1)) # hidden bias
25 by = np.zeros((vocab_size, 1)) # output bias
26
27 def lossFun(inputs, targets, hprev):
28     """
29     inputs,targets are both list of integers.
30     hprev is Hx1 array of initial hidden state
31     returns the loss, gradients on model parameters, and last hidden state
32     """
33     xs, hs, ys, ps = {}, {}, {}, {}
34     hs[-1] = np.copy(hprev)
35     loss = 0
36     # forward pass
37     for t in xrange(len(inputs)):
38         xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation
39         xs[t][inputs[t]] = 1
40         hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state
41         ys[t] = np.dot(Why, hs[t]) + by # unnormalized log probabilities for next chars
42         ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars
43         loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss)
44         # backward pass: compute gradients going backwards
45         dWxh, dWhh, dWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
46         dbh, dby = np.zeros_like(bh), np.zeros_like(by)
47         dhnext = np.zeros_like(hs[0])
48         for t in reversed(xrange(len(inputs))):
49             dy = np.copy(ps[t])
50             dy[targets[t]] -= 1 # backprop into y
51             dWhh += np.dot(dy, hs[t].T)
52             dby += dy
53             dh = np.dot(Why.T, dy) + dhnext # backprop into h
54             dHraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh nonlinearity
55             dbh += dHraw
56             dWxh += np.dot(dHraw, xs[t].T)
57             dWhh += np.dot(dHraw, hs[t-1].T)
58             dhnext = np.dot(Whh.T, dHraw)
59             for dparam in [dWxh, dWhh, dWhy, dbh, dby]:
60                 np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
61             return loss, dWxh, dWhh, dWhy, dbh, dby, hs[len(inputs)-1]
62
63 def sample(h, seed_ix, n):
64     """
65     sample a sequence of integers from the model
66     h is memory state, seed_ix is seed letter for first time step
67     """
68     x = np.zeros((vocab_size, 1))
69     x[seed_ix] = 1
70     ixes = []
71     for t in xrange(n):
72         h = np.tanh(np.dot(Wxh, x) + np.dot(Whh, h) + bh)
73         y = np.dot(Why, h) + by
74         p = np.exp(y) / np.sum(np.exp(y))
75         ix = np.random.choice(range(vocab_size), p=p.ravel())
76         x = np.zeros((vocab_size, 1))
77         x[ix] = 1
78         ixes.append(ix)
79     return ixes
80
81 n, p = 0, 0
82 mWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
83 mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad
84 smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0
85 while True:
86     # prepare inputs (we're sweeping from left to right in steps seq_length long)
87     if p+seq_length+1 >= len(data) or n == 0:
88         hprev = np.zeros((hidden_size,1)) # reset RNN memory
89         p = 0 # go from start of data
90     inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
91     targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]
92
93     # sample from the model now and then
94     if n % 100 == 0:
95         sample_ix = sample(hprev, inputs[0], 200)
96         txt = ''.join(ix_to_char[ix] for ix in sample_ix)
97         print '----\n%s\n----' % (txt, )
98
99     # forward seq_length characters through the net and fetch gradient
100    loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
101    smooth_loss = smooth_loss * 0.999 + loss * 0.001
102    if n % 100 == 0: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress
103
104    # perform parameter update with Adagrad
105    for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
106                                 [dWxh, dWhh, dWhy, dbh, dby],
107                                 [mWxh, mWhh, mWhy, mbh, mby]):
108        mem += dparam * dparam
109        param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update
110
111    p += seq_length # move data pointer
112    n += 1 # iteration counter
```

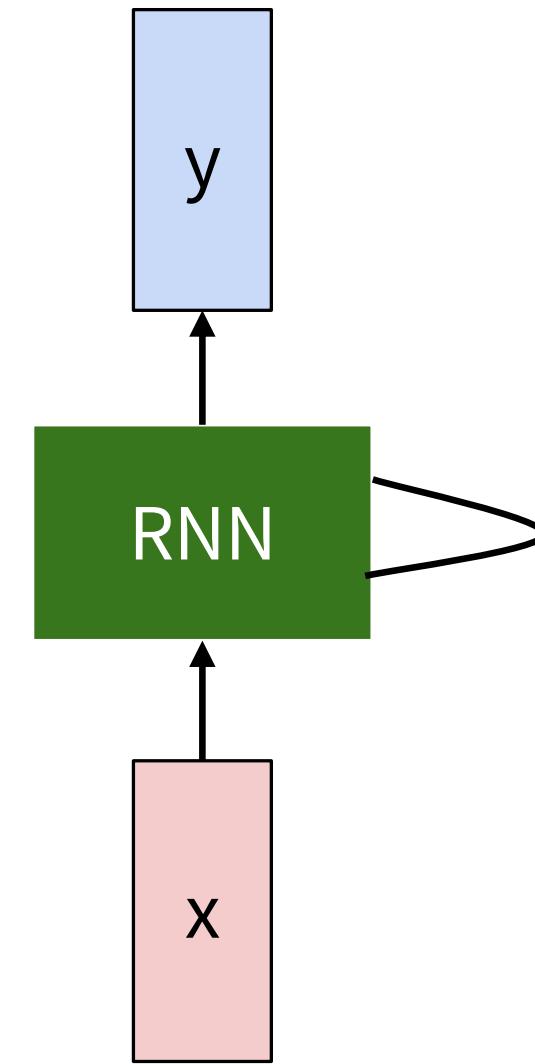
(<https://gist.github.com/karpathy/d4dee566867f8291f086>)

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.



[Blogpost from Andrej Karpathy back in 2015!](#)

at first:

tyntd-iafhatawiaoahrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

train more

"Tmont thithey" fomesscerliund
Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

PANDARUS:

Alas, I think he shall be come approached and the day
When little strain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

VIOLA:

Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.

KING LEAR:

O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

This screenshot shows the GitHub repository page for 'torvalds / linux'. The repository is described as the 'Linux kernel source tree'. Key statistics displayed are 520,037 commits, 1 branch, 420 releases, and 5,039 contributors. The 'Code' tab is selected, showing the commit history for the 'master' branch. The latest commit is by 'torvalds' and is 9 hours old. The commit list includes merges from 'drm-fixes' and 'perf-urgent-for-linus' branches, as well as various fixes and updates across kernel subsystems like Documentation, arch, block, crypto, drivers, firmware, fs, include, init, and ipc. The right sidebar provides options for cloning the repository via HTTPS, SSH, or Subversion, and for downloading it as a ZIP file.

Linux kernel source tree

520,037 commits 1 branch 420 releases 5,039 contributors

branch: master / +

Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux ...

torvalds authored 9 hours ago latest commit 4b1706927d

Documentation	Merge git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending	6 days ago
arch	Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/l...	a day ago
block	block: discard bdi_unregister() in favour of bdi_destroy()	9 days ago
crypto	Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6	10 days ago
drivers	Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux	9 hours ago
firmware	firmware/ihex2fw.c: restore missing default in switch statement	2 months ago
fs	vfs: read file_handle only once in handle_to_path	4 days ago
include	Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/...	a day ago
init	init: fix regression by supporting devices with major:minor:offset fo...	a month ago
ipc	Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/lin...	a month ago

Code

74 Pull requests

Pulse

Graphs

HTTPS clone URL

<https://github.com/torvalds/linux>

You can clone with [HTTPS](#), [SSH](#), or [Subversion](#).

Clone in Desktop

Download ZIP

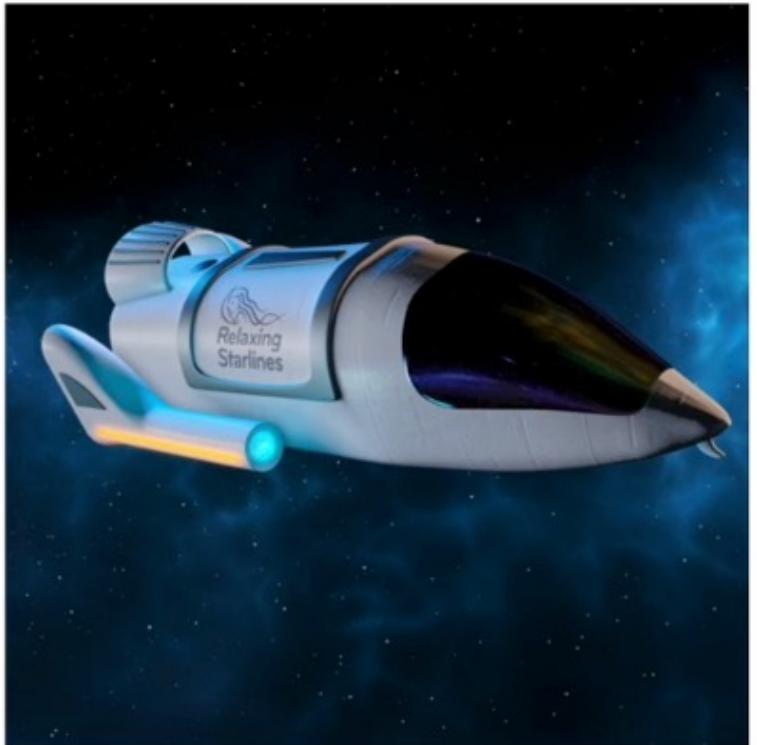
```

static void do_command(struct seq_file *m, void *v)
{
    int column = 32 << (cmd[2] & 0x80);
    if (state)
        cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
    else
        seq = 1;
    for (i = 0; i < 16; i++) {
        if (k & (1 << i))
            pipe = (in_use & UMXTHREAD_UNCCA) +
                ((count & 0x00000000fffffff8) & 0x000000f) << 8;
        if (count == 0)
            sub(pid, ppc_md.kexec_handle, 0x20000000);
        pipe_set_bytes(i, 0);
    }
    /* Free our user pages pointer to place camera if all dash */
    subsystem_info = &of_changes[PAGE_SIZE];
    rek_controls(offset, idx, &soffset);
    /* Now we want to deliberately put it to device */
    control_check_polarity(&context, val, 0);
    for (i = 0; i < COUNTER; i++)
        seq_puts(s, "policy ");
}

```

Generated C code

OpenAI Codex, GitHub Copilot, Cursor IDE



Add this image of a rocketship:

<https://i1.sndcdn.com/artworks-j8xjG7zc1wmTe07b-06l83w-t500x500.jpg>

<https://openai.com/blog/openai-codex/>

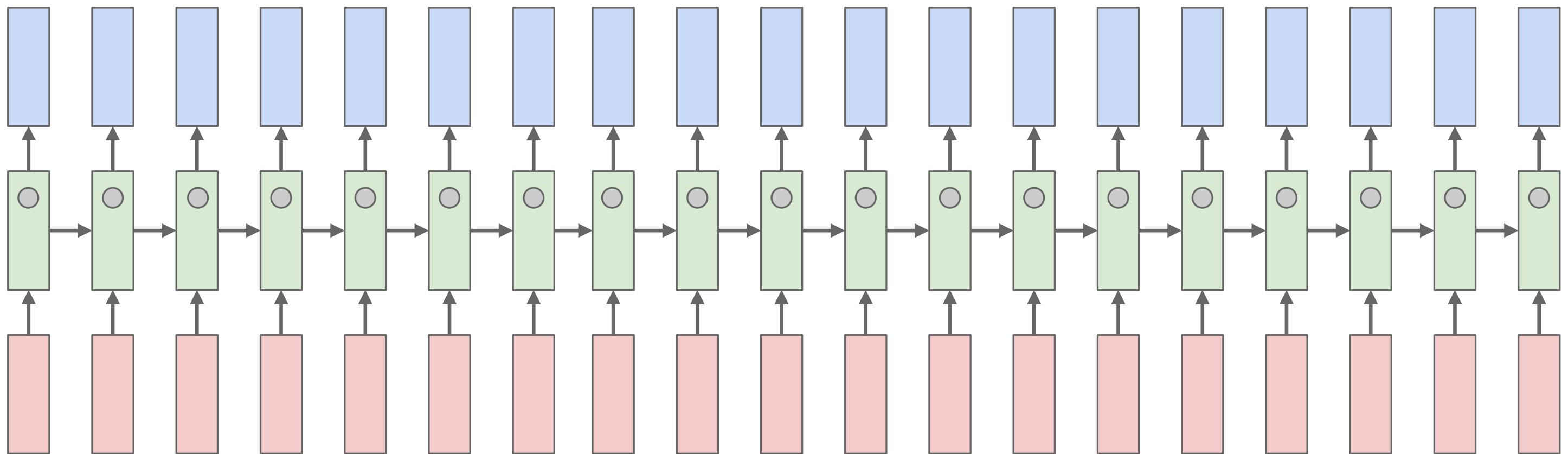
Stanford CS231n 10th Anniversary

Lecture 7 - 76

April 22, 2025

```
/* Add this image of a
rocketship:
https://i1.sndcdn.com/artworks
-j8xjG7zc1wmTe07b-06l83w-
t500x500.jpg */
var rocketship =
document.createElement('img');
rocketship.src =
'https://i1.sndcdn.com/artwork
s-j8xjG7zc1wmTe07b-06l83w-
t500x500.jpg';
document.body.appendChild(rock
etship);
```


Searching for interpretable cells



Searching for interpretable cells

```
/* Unpack a filter field's string representation from user-space
 * buffer. */
char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
{
    char *str;
    if (!*bufp || (len == 0) || (len > *remain))
        return ERR_PTR(-EINVAL);
    /* of the currently implemented string fields, PATH_MAX
     * defines the longest valid length.
    */
}
```

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Searching for interpretable cells

"You mean to imply that I have nothing to eat out of.... On the contrary, I can supply you with everything even if you want to give dinner parties," warmly replied Chichagov, who tried by every word he spoke to prove his own rectitude and therefore imagined Kutuzov to be animated by the same desire.

Kutuzov, shrugging his shoulders, replied with his subtle penetrating smile: "I meant merely to say what I said."

quote detection cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Searching for interpretable cells

Cell sensitive to position in line:

The sole importance of the crossing of the Berezina lies in the fact that it plainly and indubitably proved the fallacy of all the plans for cutting off the enemy's retreat and the soundness of the only possible line of action--the one Kutuzov and the general mass of the army demanded--namely, simply to follow the enemy up. The French crowd fled at a continually increasing speed and all its energy was directed to reaching its goal. It fled like a wounded animal and it was impossible to block its path. This was shown not so much by the arrangements it made for crossing as by what took place at the bridges. When the bridges broke down, unarmed soldiers, people from Moscow and women with children who were with the French transport, all--carried on by vis inertiae--pressed forward into boats and into the ice-covered water and did not, surrender.

line length tracking cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Searching for interpretable cells

```
static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
    siginfo_t *info)
{
    int sig = next_signal(pending, mask);
    if (sig) {
        if (current->notifier) {
            if (sigismember(current->notifier_mask, sig)) {
                if (!!(current->notifier)(current->notifier_data)) {
                    clear_thread_flag(TIF_SIGPENDING);
                    return 0;
                }
            }
        }
        collect_signal(sig, pending, info);
    }
    return sig;
}
```

if statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Searching for interpretable cells

Cell that turns on inside comments and quotes:

```
/* Duplicate LSM field information. The lsm_rule is opaque, so
 * re-initialized. */
static inline int audit_dupe_lsm_field(struct audit_field *df,
    struct audit_field *sf)
{
    int ret = 0;
    char *lsm_str;
    /* our own copy of lsm_str */
    lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
    if (unlikely(!lsm_str))
        return -ENOMEM;
    df->lsm_str = lsm_str;
    /* our own (refreshed) copy of lsm_rule */
    ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
        (void **)&df->lsm_rule);
    /* Keep currently invalid fields around in case they
     * become valid after a policy reload. */
    if (ret == -EINVAL) {
        pr_warn("audit rule for LSM \\'%s\\' is invalid\\n",
            df->lsm_str);
        ret = 0;
    }
    return ret;
}
```

quote/comment cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Searching for interpretable cells

```
#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 *mask)
{
    int i;
    if (classes[class]) {
        for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
            if (mask[i] & classes[class][i])
                return 0;
    }
    return 1;
}
```

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

RNN tradeoffs

RNN Advantages:

- Can process any length of the input (no context length)
- Computation for step t can (in theory) use information from many steps back
- Model size does not increase for longer input
- The same weights are applied on every timestep, so there is symmetry in how inputs are processed.

RNN Disadvantages:

- Recurrent computation is slow
- In practice, difficult to access information from many steps back

Image Captioning

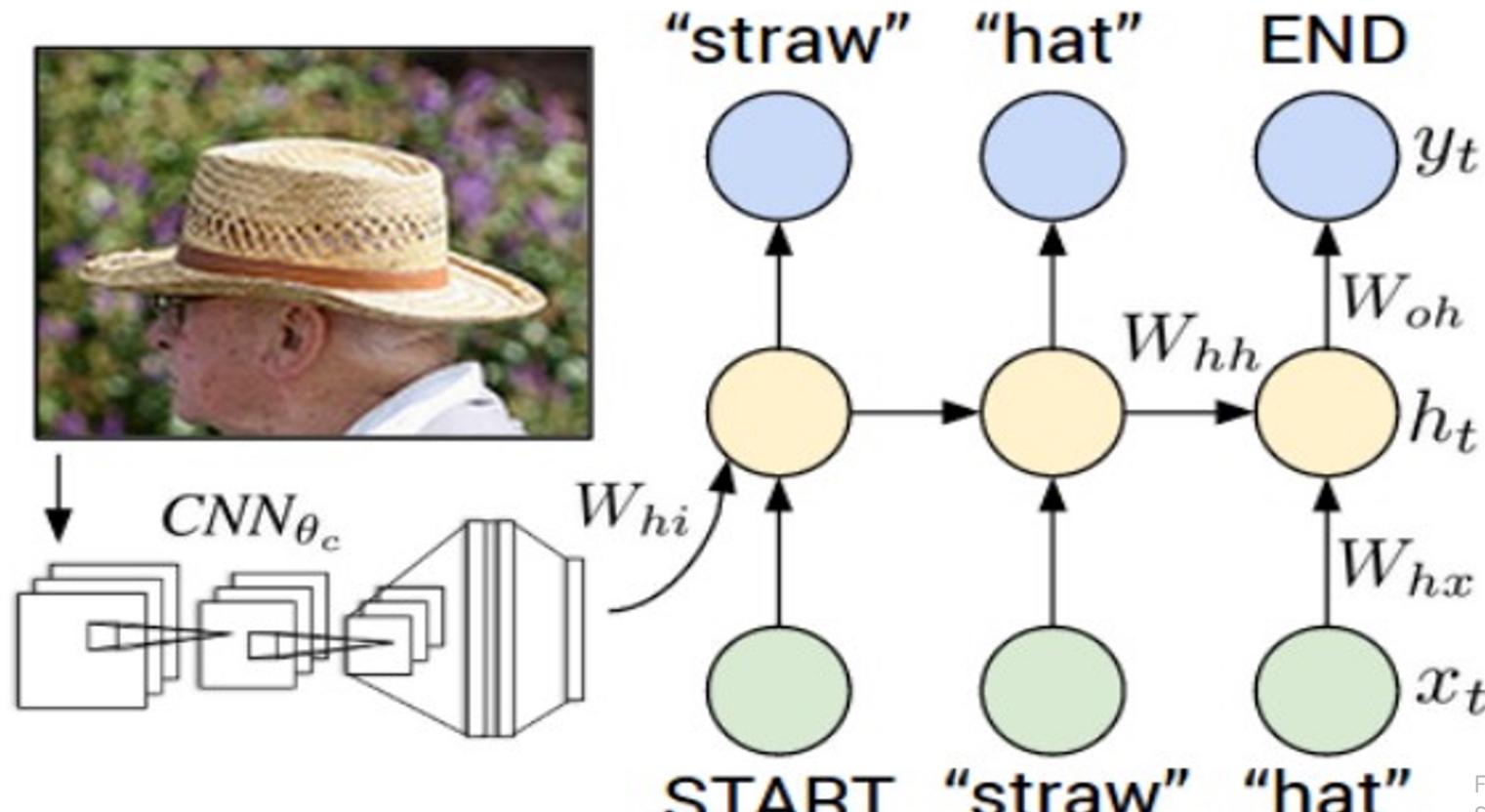


Figure from Karpathy et al, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015; figure copyright IEEE, 2015.
Reproduced for educational purposes.

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

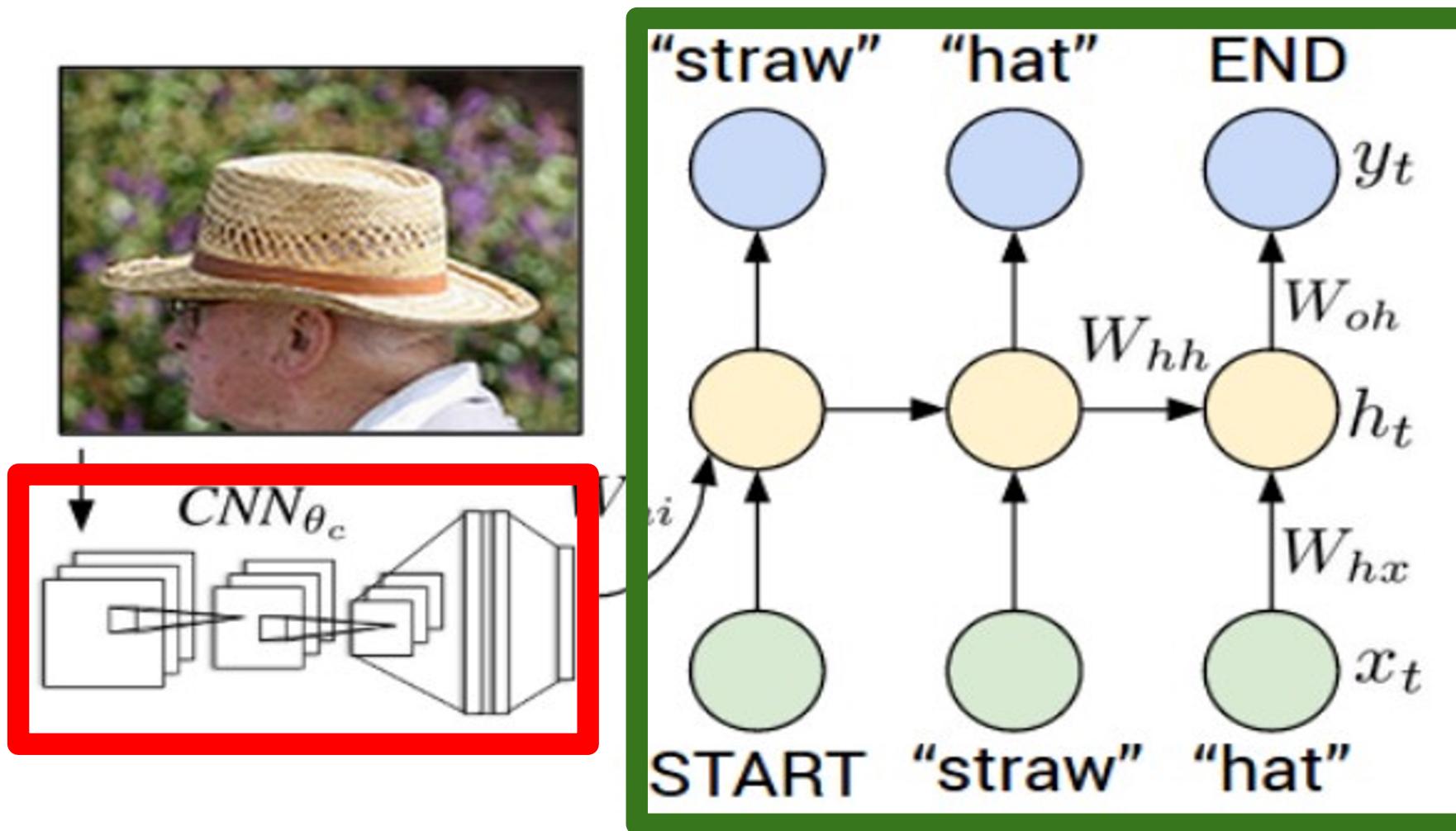
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.

Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Recurrent Neural Network



Convolutional Neural Network

test image

[This image is CC0 public domain](#)

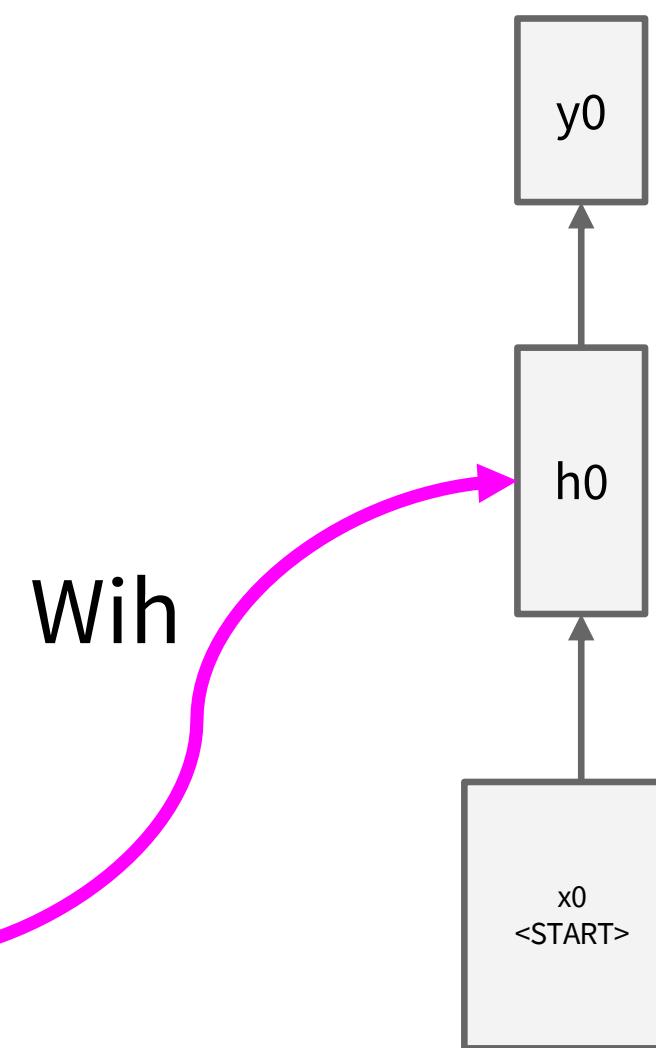
test image

test image

test image

x_0
<START>

test image

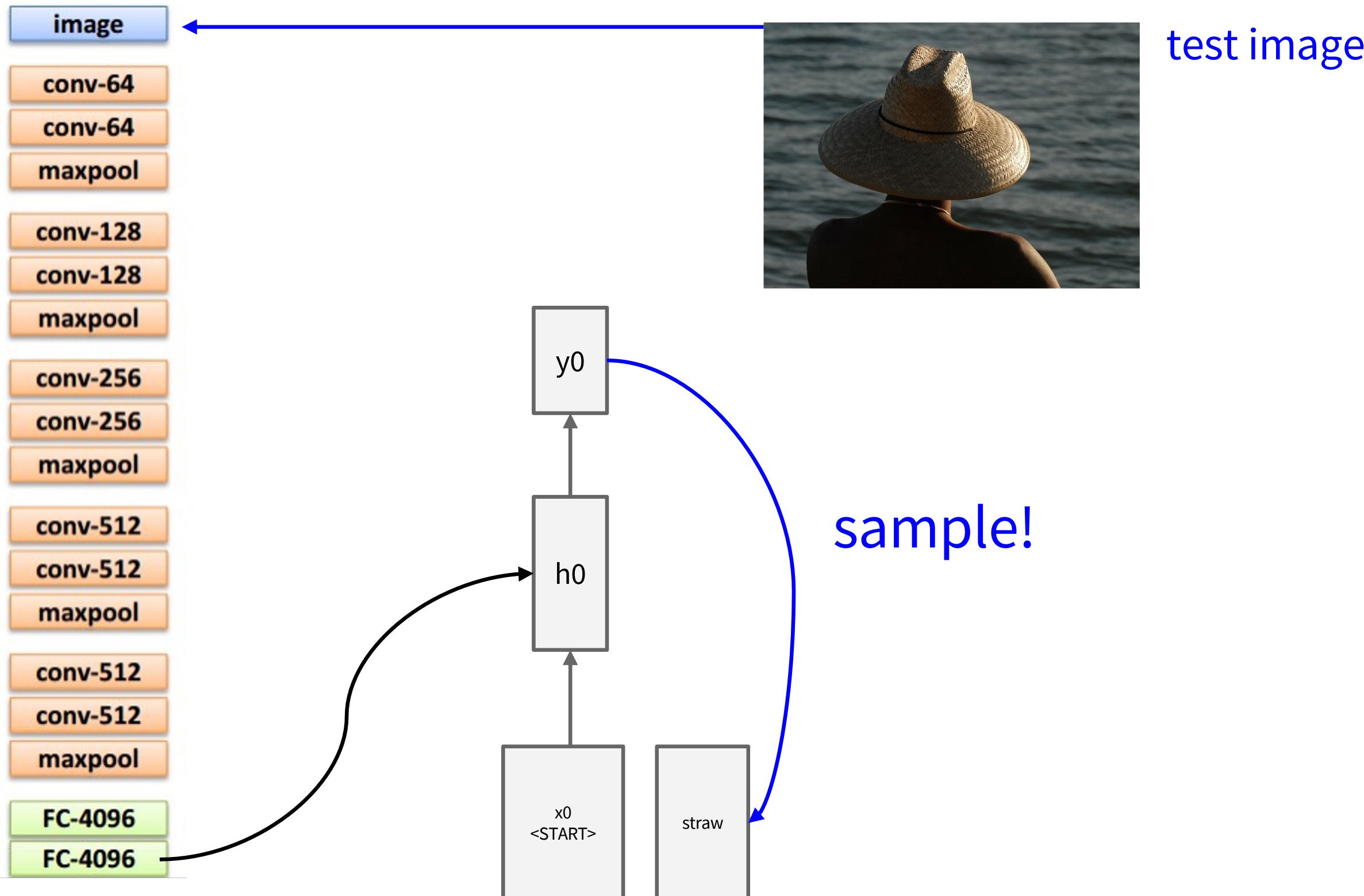


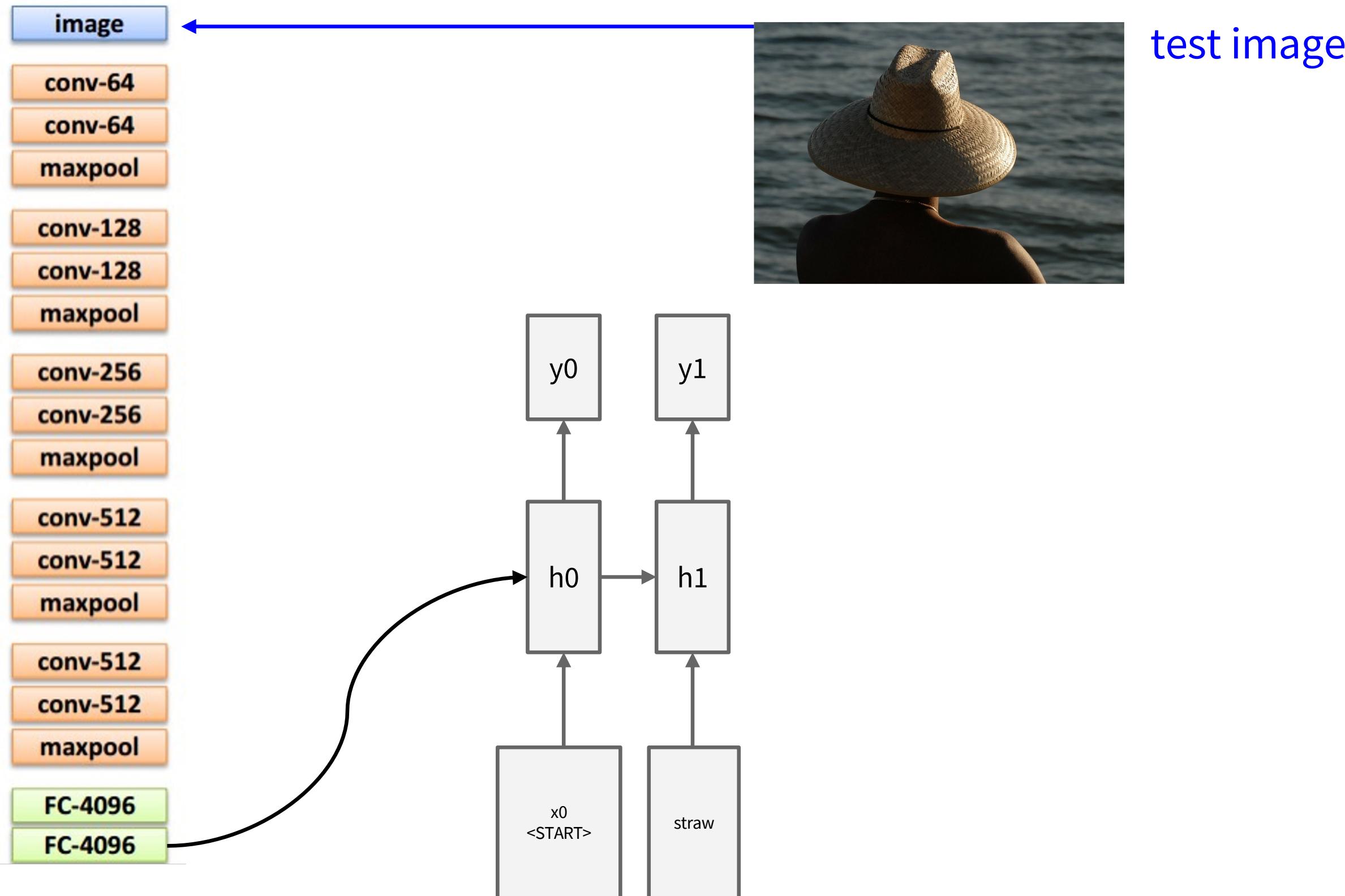
before:

$$h = \tanh(W_{xh} * x + W_{hh} * h)$$

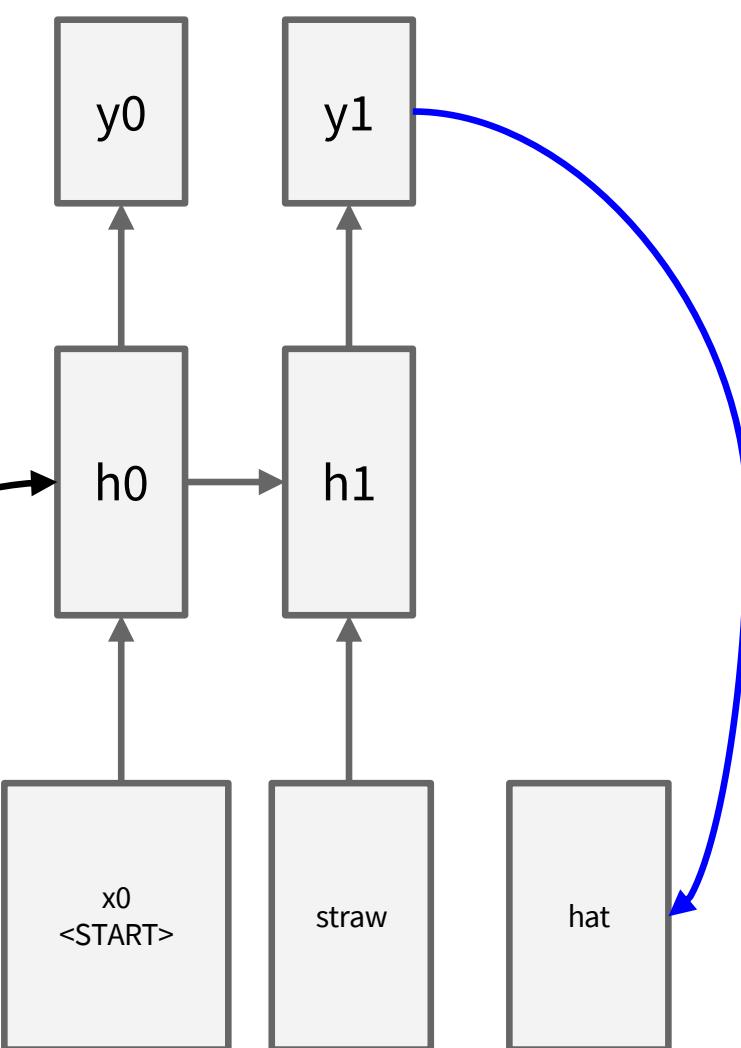
now:

$$h = \tanh(W_{xh} * x + W_{hh} * h + W_{ih} * v)$$

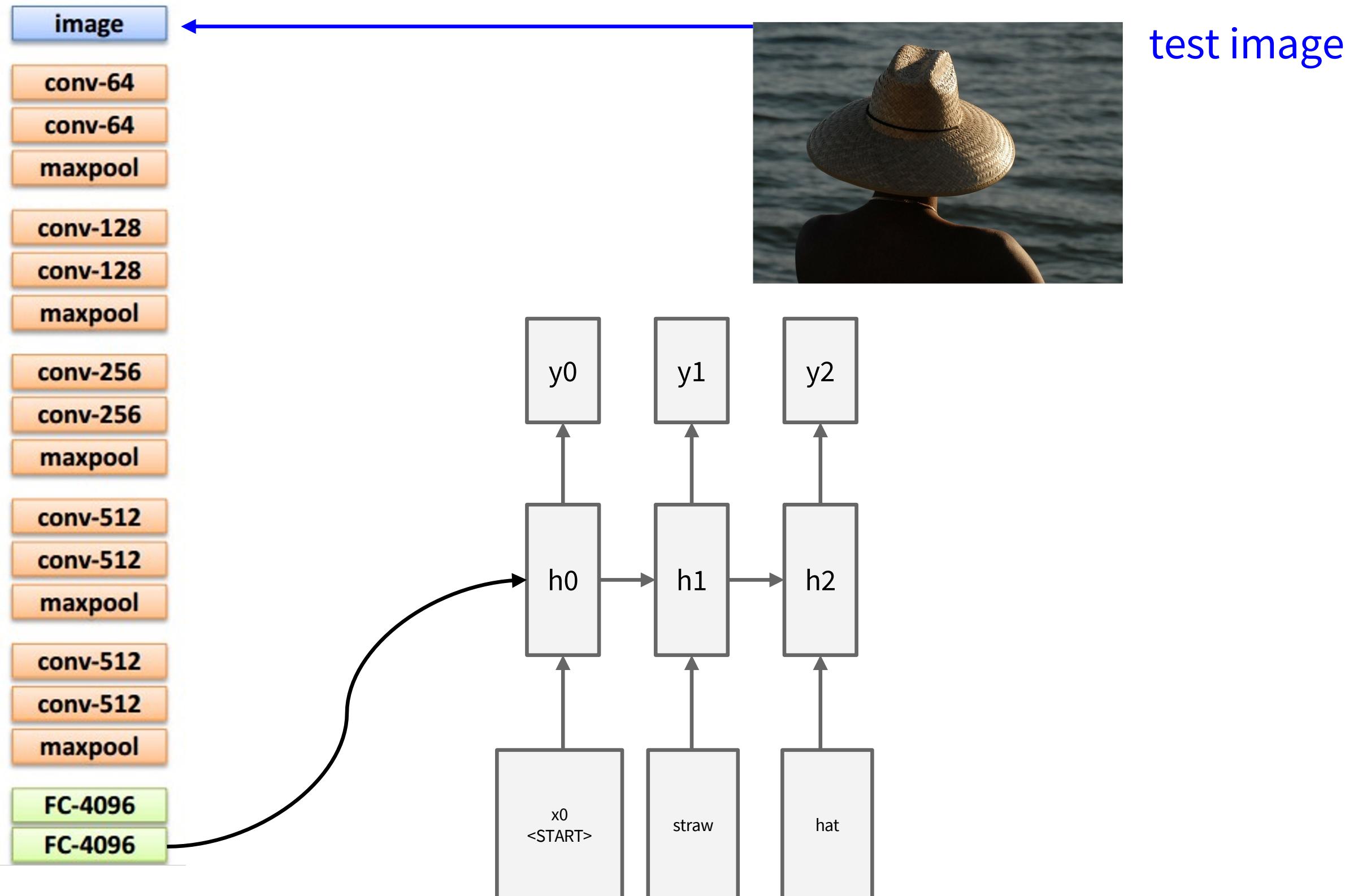


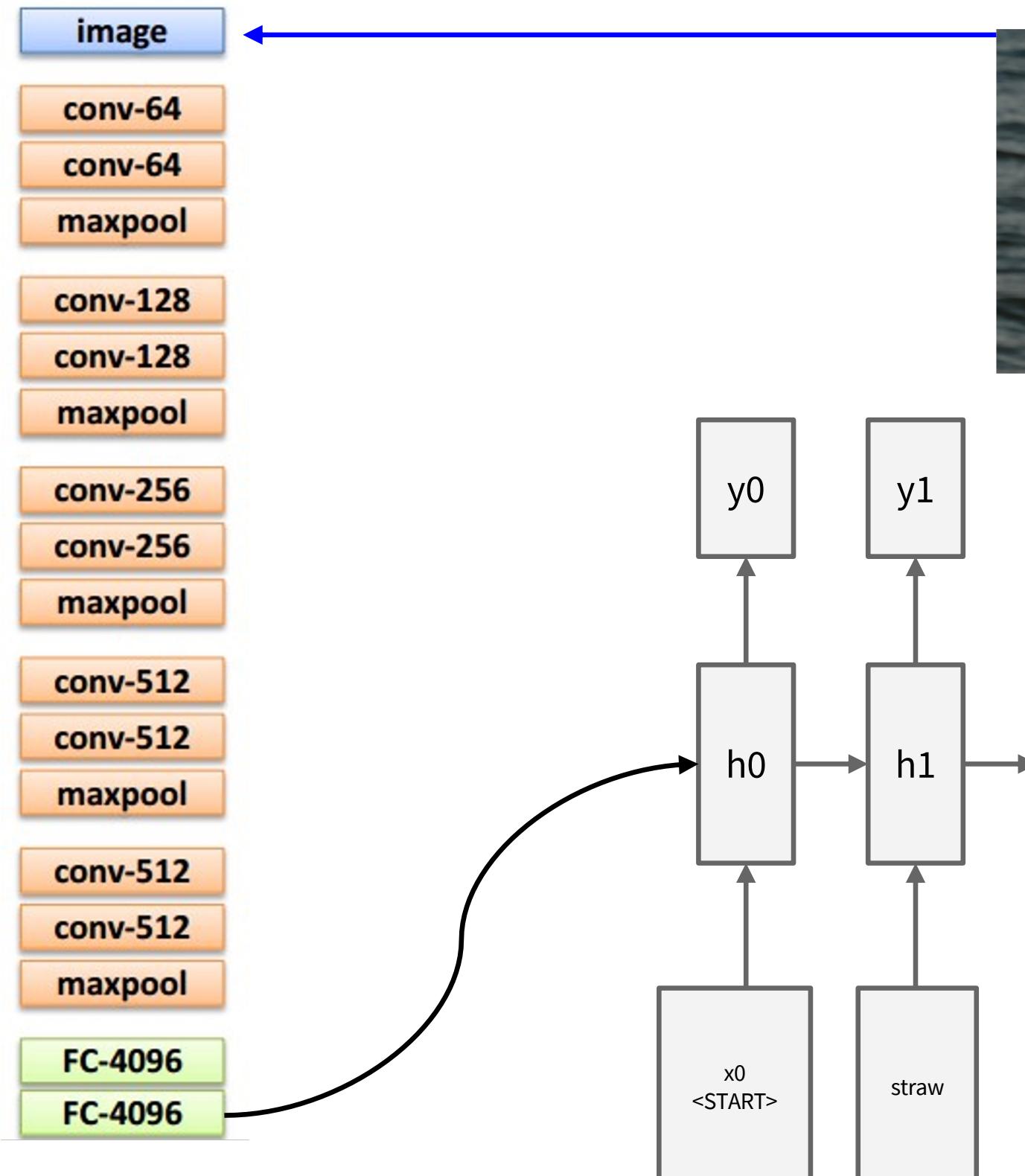


test image



sample!





test image

sample
<END> token
=> finish.

Image Captioning: Example Results

Captions generated using [neuraltalk2](#)
All images are [CC0 Public domain](#): [cat](#), [suitcase](#), [cat tree](#), [dog](#), [bear](#), [surfers](#), [tennis](#), [giraffe](#), [motorcycle](#)

A cat sitting on a suitcase on the floor

A cat is sitting on a tree branch

A dog is running in the grass with a frisbee

A white teddy bear sitting in the grass

Two people walking on the beach with surfboards

A tennis player in action on the court

Two giraffes standing in a grassy field

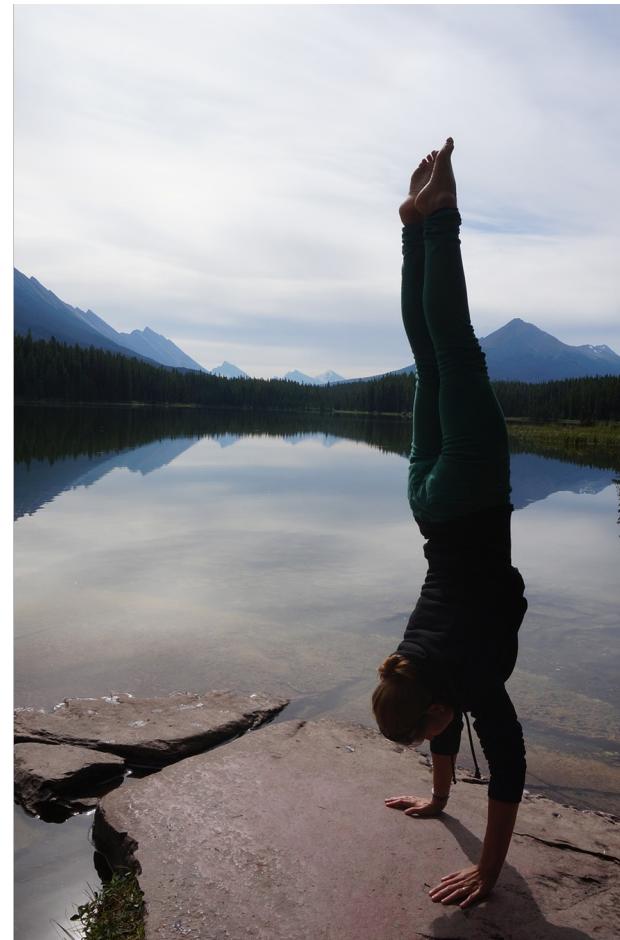
A man riding a dirt bike on a dirt track

Image Captioning: Failure Cases

Captions generated using [neuraltalk2](#)
All images are [CC0 Public domain](#): [fur coat](#),
[handstand](#), [spider web](#), [baseball](#)

A woman is holding a cat in her hand

A person holding a computer mouse on a desk



A woman standing on a beach holding a surfboard

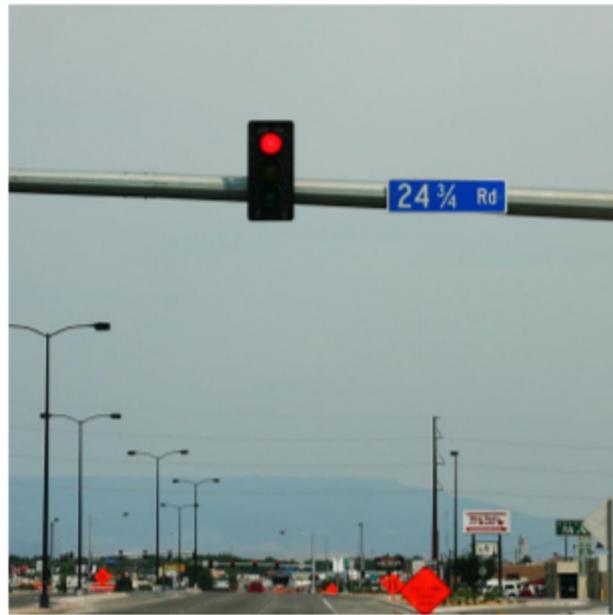
A bird is perched on a tree branch

A man in a baseball uniform throwing a ball

Visual Question Answering (VQA)

Q: What endangered animal is featured on the truck?

- A: **A bald eagle.**
- A: A sparrow.
- A: A humming bird.
- A: A raven.



Q: Where will the driver go if turning right?

- A: **Onto 24 3/4 Rd.**
- A: Onto 25 3/4 Rd.
- A: Onto 23 3/4 Rd.
- A: Onto Main Street.

Q: When was the picture taken?

- A: **During a wedding.**
- A: During a bar mitzvah.
- A: During a funeral.
- A: During a Sunday church service

Q: Who is under the umbrella?

- A: **Two women.**
- A: A child.
- A: An old man.
- A: A husband and a wife.

Agrawal et al, "VQA: Visual Question Answering", ICCV 2015

Zhu et al, "Visual 7W: Grounded Question Answering in Images", CVPR 2016

Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

Visual Dialog: Conversations about images

Das et al, "Visual Dialog", CVPR 2017

Figures from Das et al, copyright IEEE 2017. Reproduced with permission.

Visual Language Navigation: Go to the living room

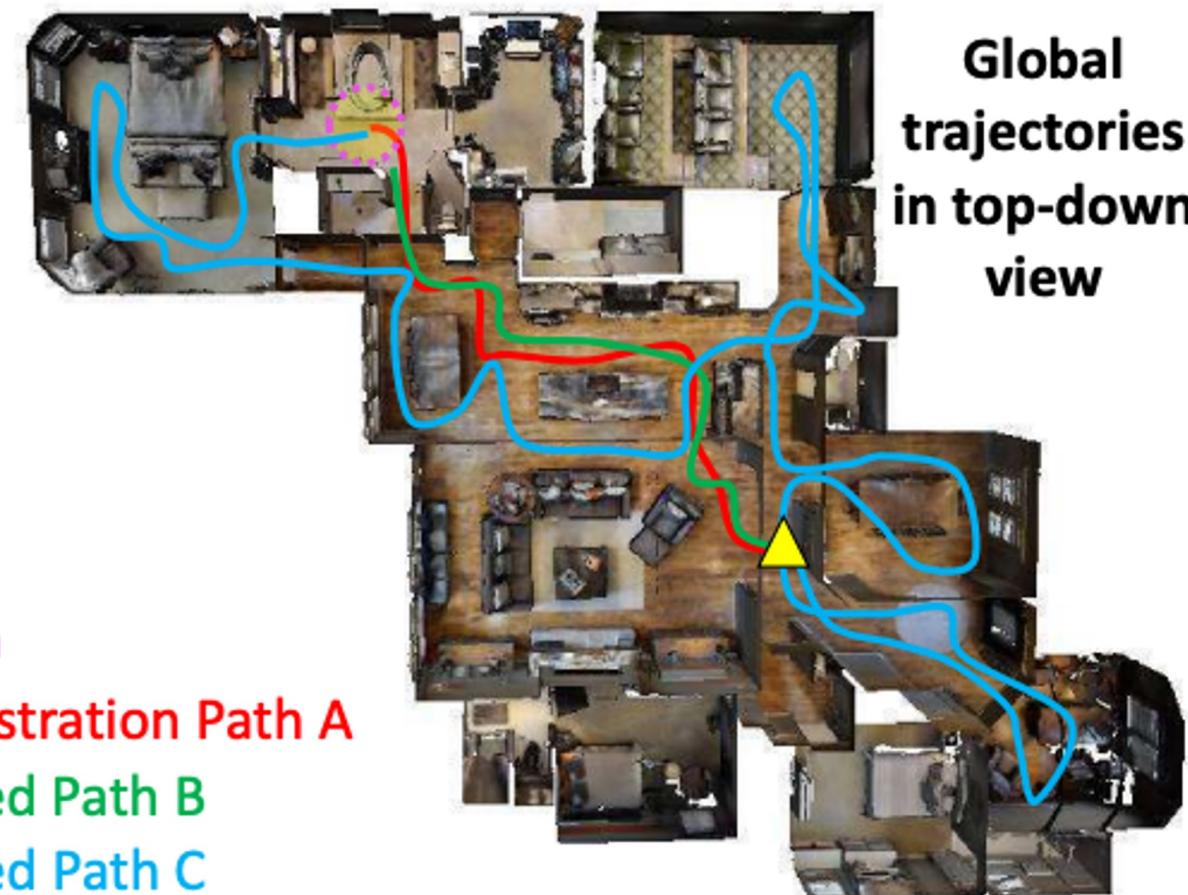
Agent encodes instructions in language and uses an RNN to generate a series of movements as the visual input changes after each move.

Instruction

Turn right and head towards the *kitchen*. Then turn left, pass a *table* and enter the *hallway*. Walk down the hallway and turn into the *entry way* to your right *without doors*. Stop in front of the *toilet*.

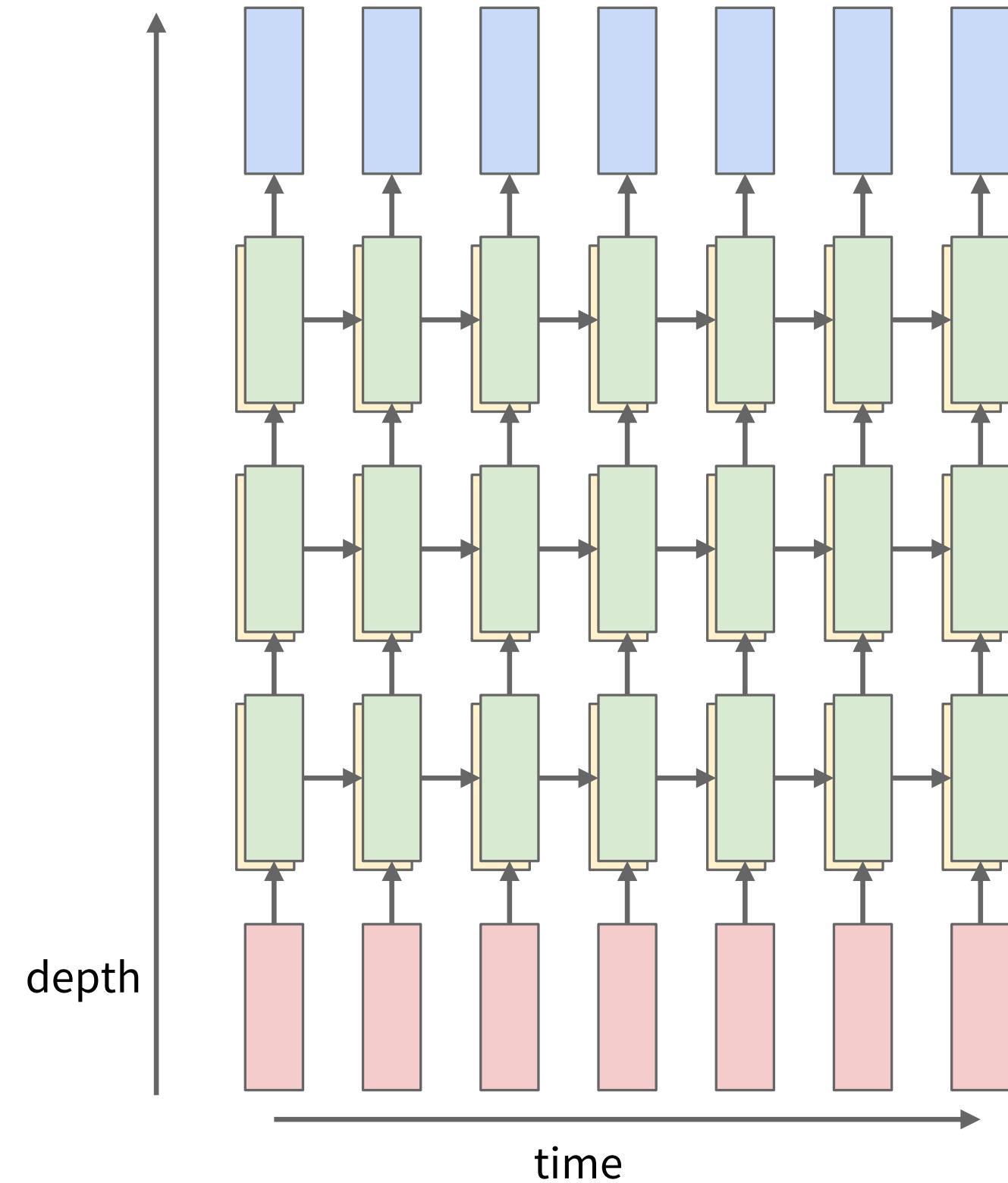
- ▲ Initial Position
- Target Position
- Demonstration Path A
- Executed Path B
- Executed Path C

Wang et al, "Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vision-Language Navigation", CVPR 2018
Figures from Wang et al, copyright IEEE 2017. Reproduced with permission.



Global
trajectories
in top-down
view

Multilayer RNNs



RNN Variants: Long Short Term Memory (LSTM)

Vanilla RNN

$$h_t = \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right)$$

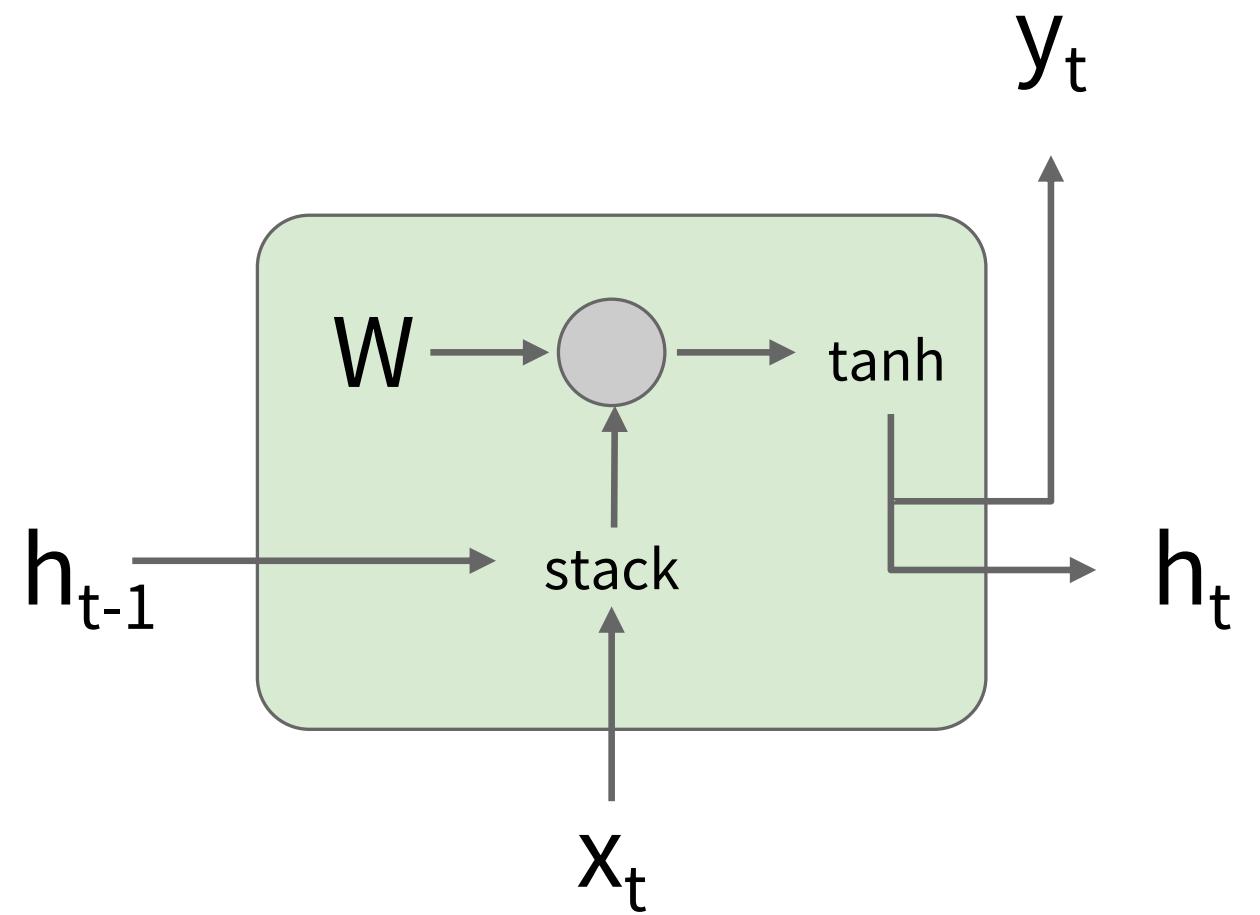
LSTM

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

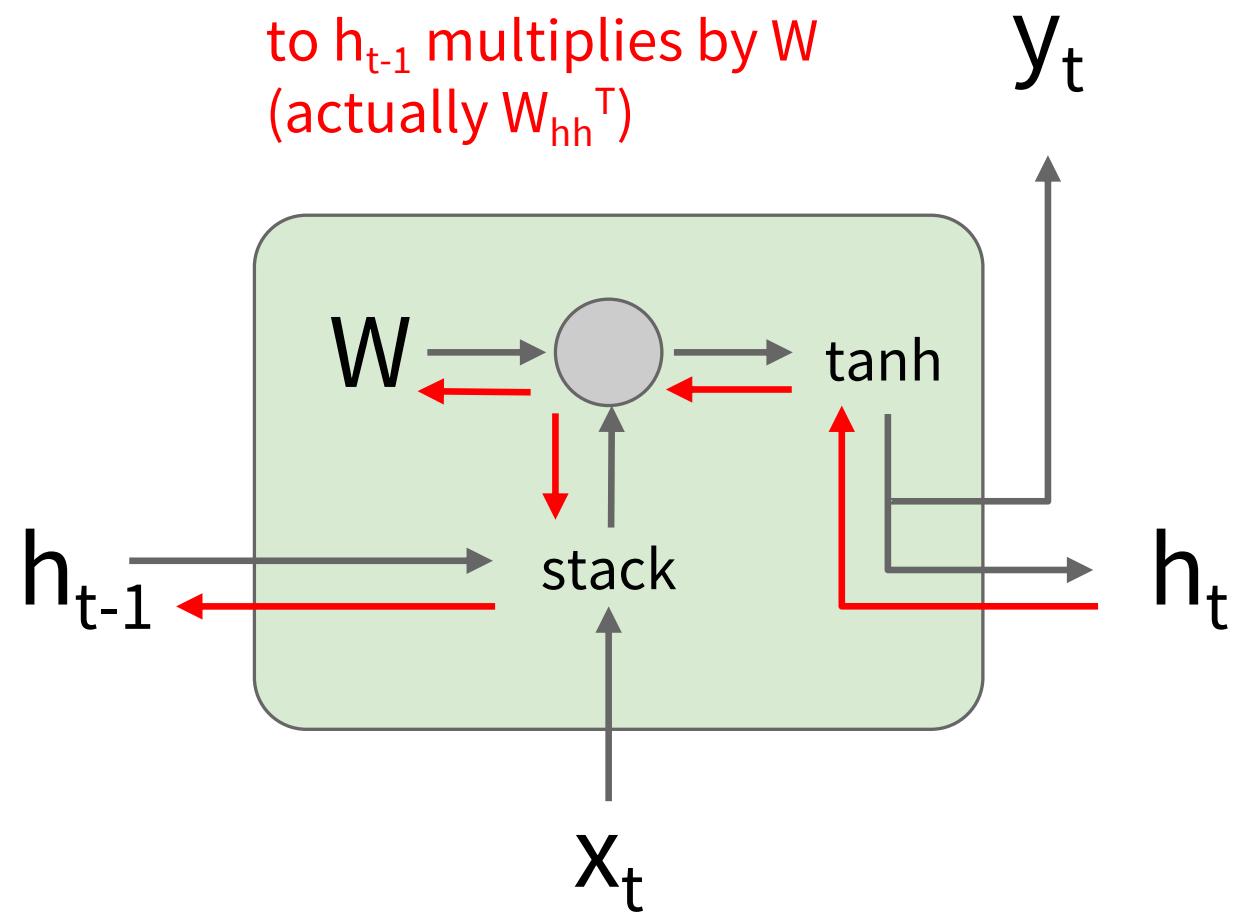


$$\begin{aligned} h_t &= \tanh(W_{hh}h_{t-1} + W_{xh}x_t) \\ &= \tanh \left(\begin{pmatrix} W_{hh} & W_{hx} \end{pmatrix} \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right) \\ &= \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right) \end{aligned}$$

Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

Backpropagation from h_t
to h_{t-1} multiplies by W
(actually W_{hh}^T)

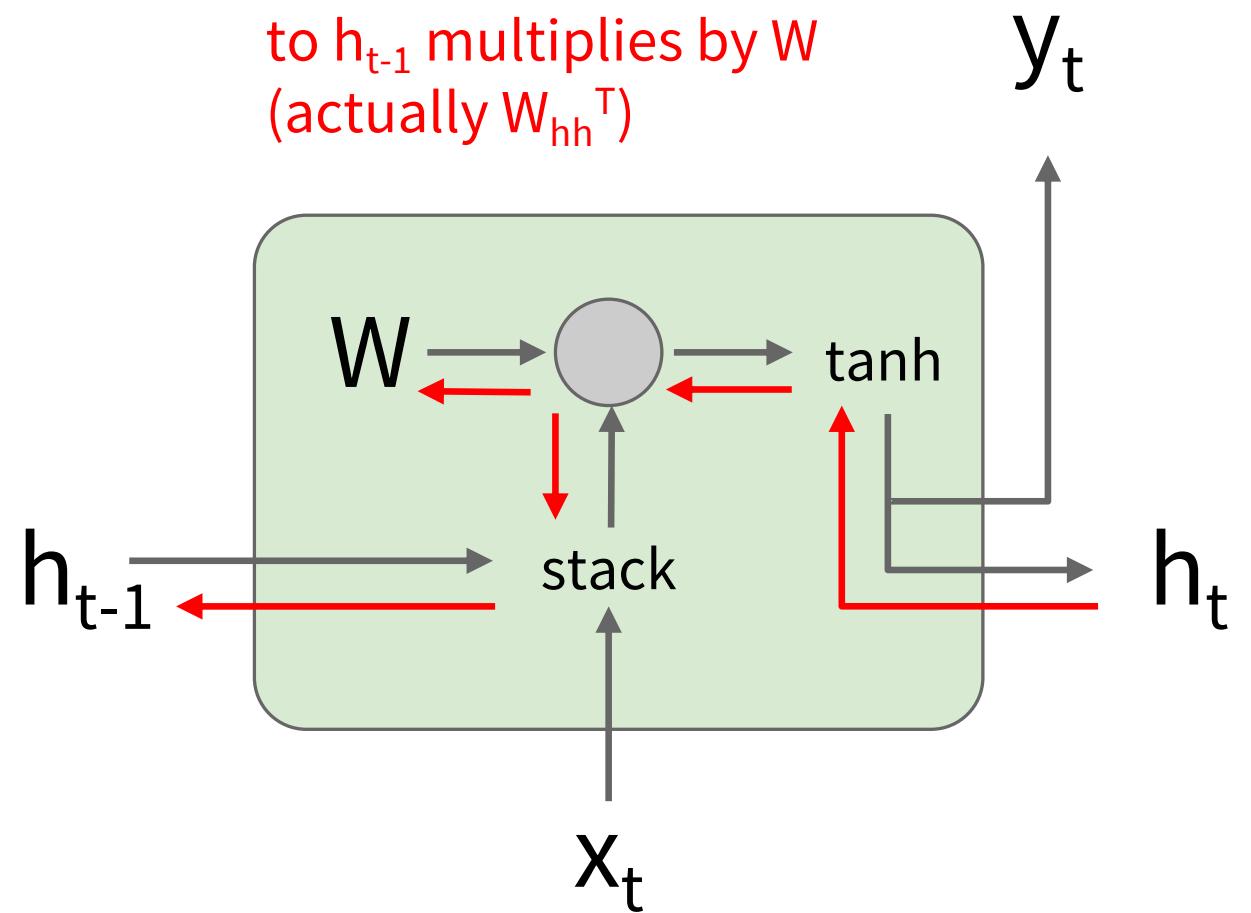


$$\begin{aligned}
h_t &= \tanh(W_{hh}h_{t-1} + W_{xh}x_t) \\
&= \tanh\left(\begin{pmatrix} W_{hh} & W_{hx} \end{pmatrix} \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right) \\
&= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right)
\end{aligned}$$

Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

Backpropagation from h_t
to h_{t-1} multiplies by W
(actually W_{hh}^T)

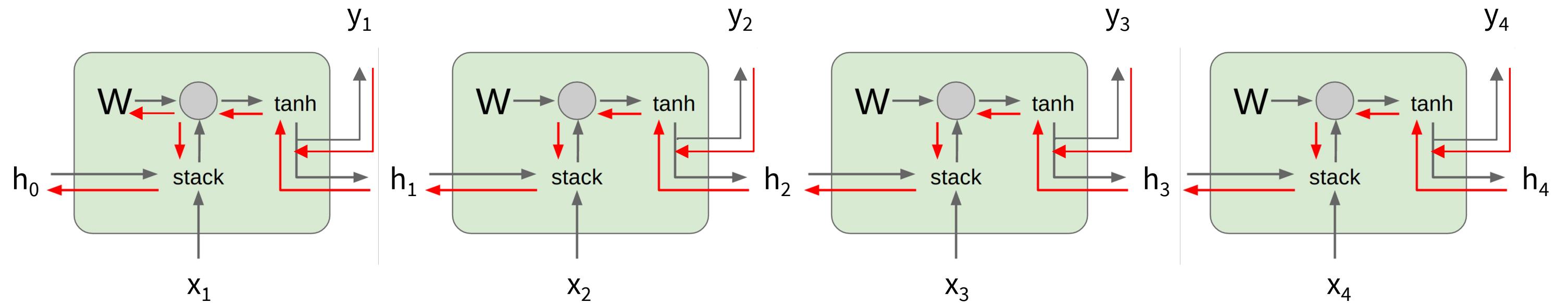


$$\begin{aligned} h_t &= \tanh(W_{hh}h_{t-1} + W_{xh}x_t) \\ &= \tanh \left(\begin{pmatrix} W_{hh} & W_{hx} \end{pmatrix} \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right) \\ &= \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right) \end{aligned}$$

$$\frac{\partial h_t}{\partial h_{t-1}} = \tanh'(W_{hh}h_{t-1} + W_{xh}x_t)W_{hh}$$

Vanilla RNN Gradient Flow

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

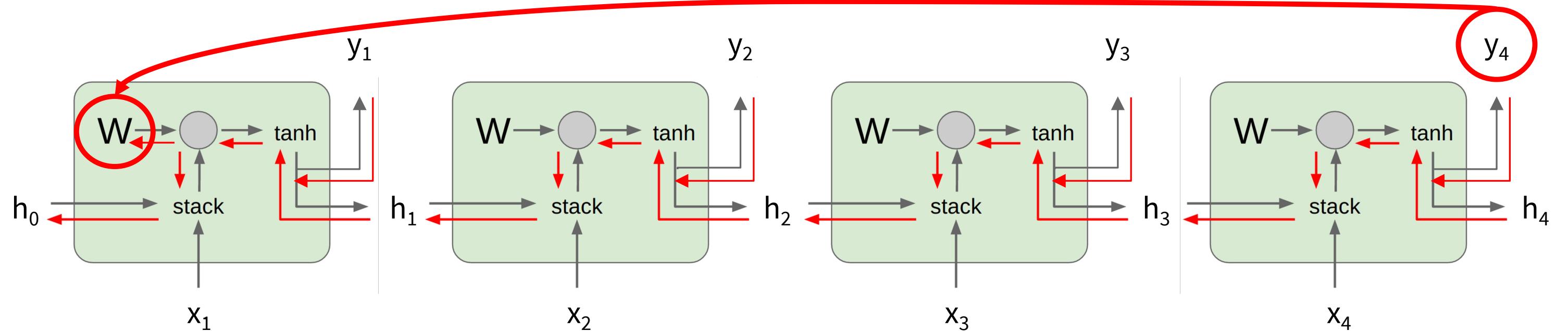


$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



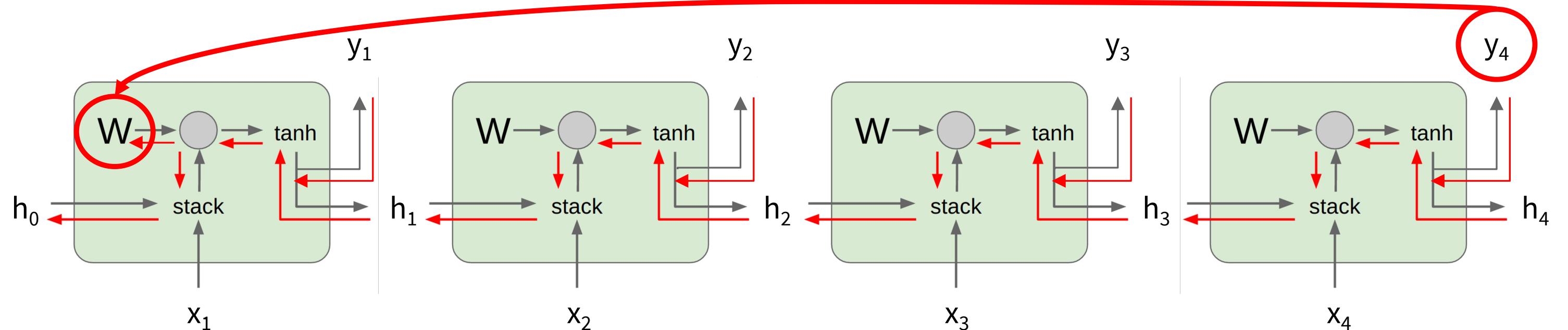
$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \cdots \frac{\partial h_1}{\partial W}$$

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



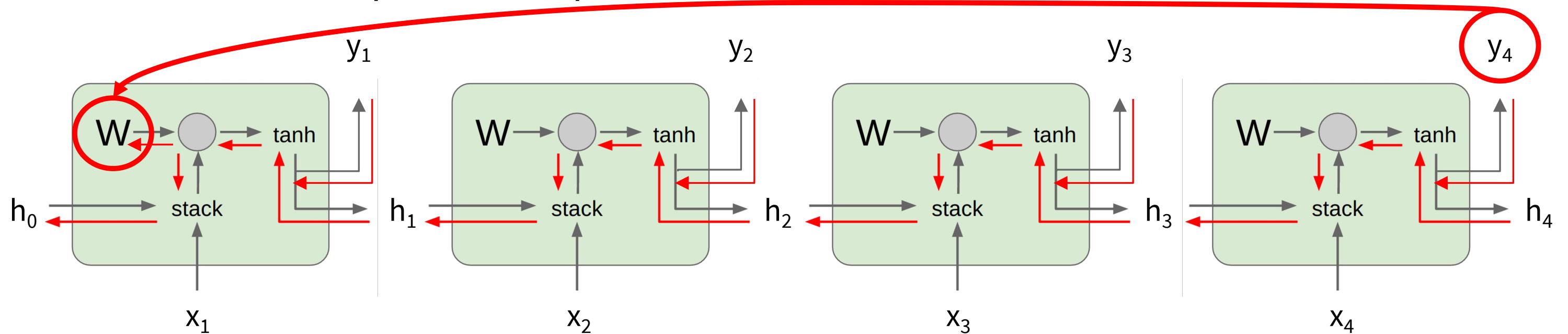
$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \cdots \frac{\partial h_1}{\partial W} = \frac{\partial L_T}{\partial h_T} \left(\prod_{t=2}^T \frac{\partial h_t}{\partial h_{t-1}} \right) \frac{\partial h_1}{\partial W}$$

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



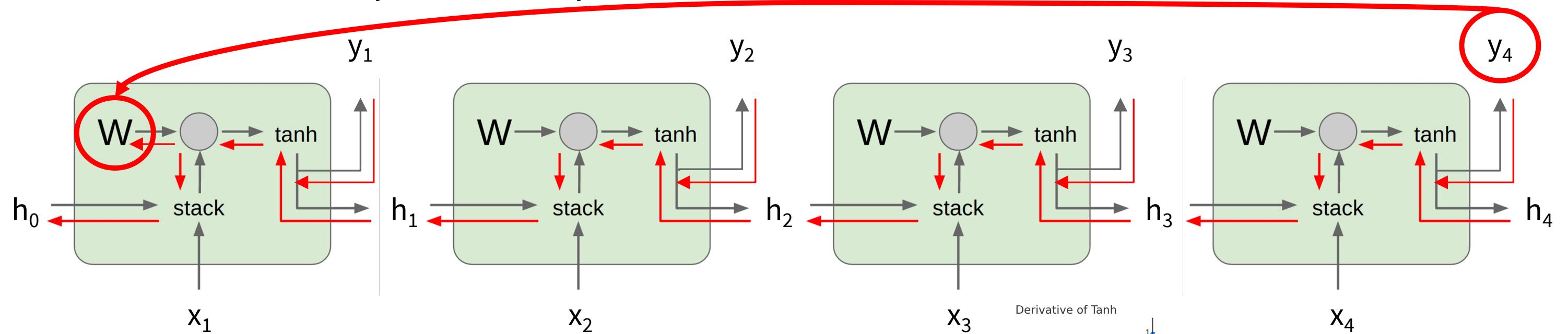
$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W} \quad \boxed{\frac{\partial h_t}{\partial h_{t-1}} = \tanh'(W_{hh}h_{t-1} + W_{xh}x_t)W_{hh}}$$

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \cdot \cdot \cdot \frac{\partial h_1}{\partial W} = \frac{\partial L_T}{\partial h_T} \left(\prod_{t=2}^T \boxed{\frac{\partial h_t}{\partial h_{t-1}}} \right) \frac{\partial h_1}{\partial W}$$

Vanilla RNN Gradient Flow

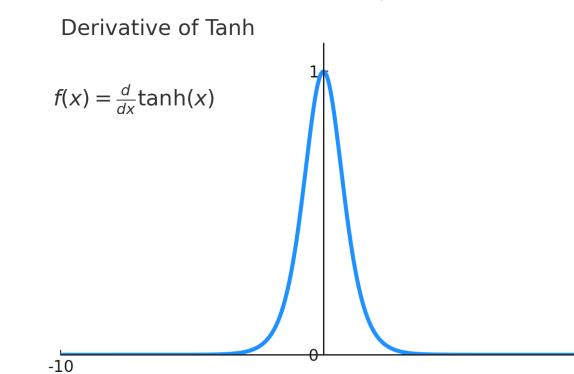
Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

Almost always < 1
Vanishing gradients

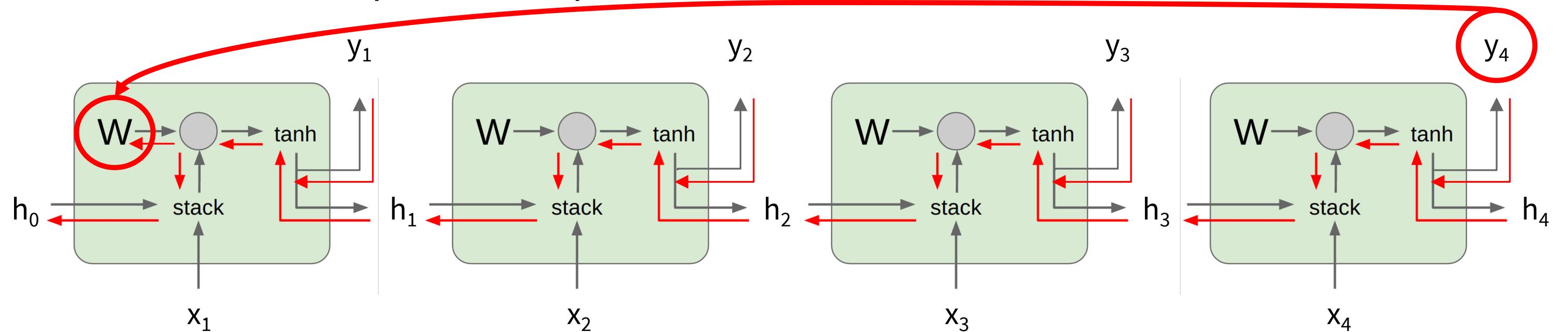


$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \left(\prod_{t=2}^T \boxed{\tanh'(W_{hh} h_{t-1} + W_{xh} x_t)} \right) W_{hh}^{T-1} \frac{\partial h_1}{\partial W}$$

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



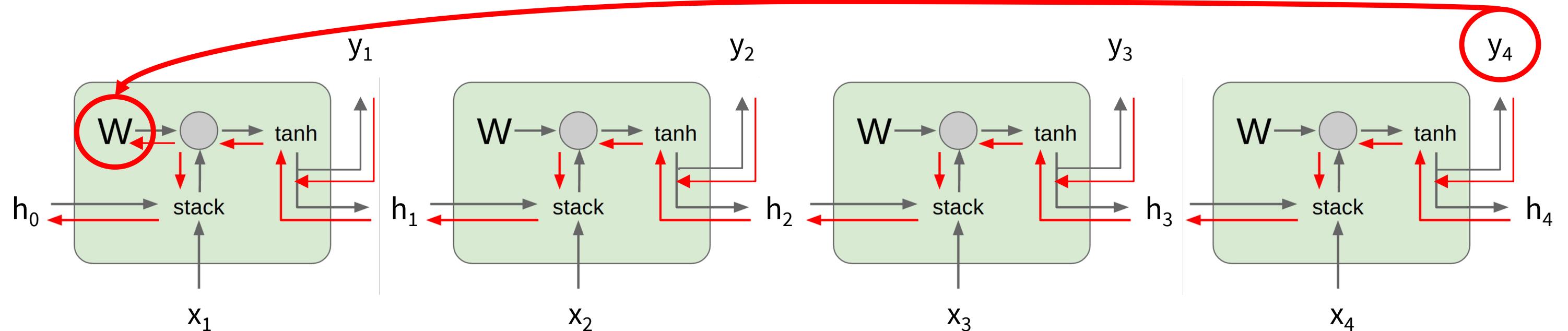
$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

What if we assumed no non-linearity?

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



What if we assumed no non-linearity?

$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

Largest singular value > 1 :
Exploding gradients

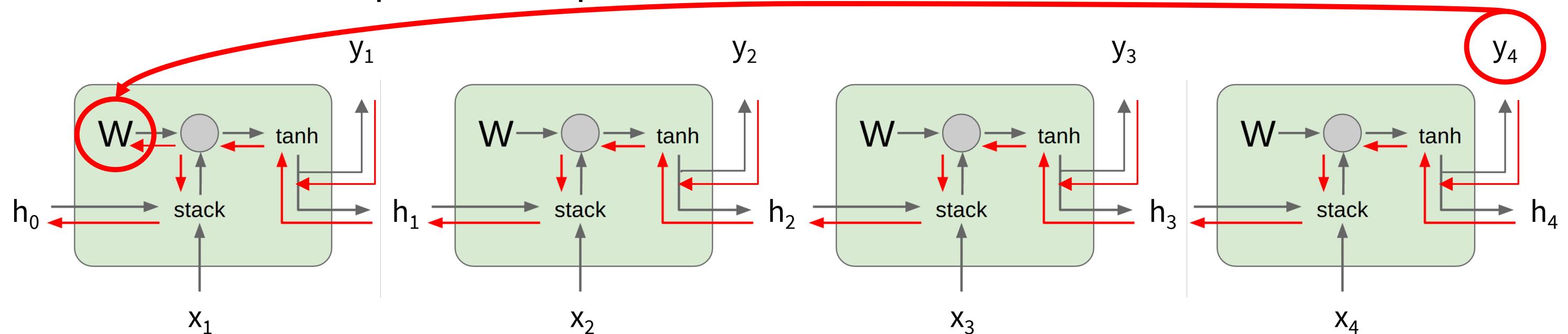
$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \boxed{W_{hh}^{T-1}} \frac{\partial h_1}{\partial W}$$

Largest singular value < 1 :
Vanishing gradients

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



What if we assumed no non-linearity?

$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \boxed{W_{hh}^{T-1}} \frac{\partial h_1}{\partial W}$$

Largest singular value > 1 :
Exploding gradients

Largest singular value < 1 :
Vanishing gradients

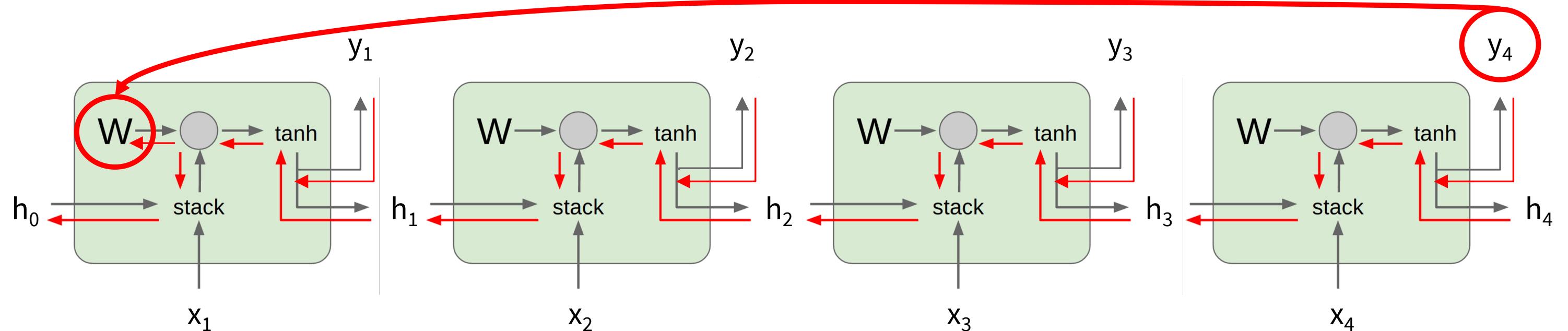
→ Gradient clipping: Scale gradient if its norm is too big

```
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
    grad *= (threshold / grad_norm)
```

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



What if we assumed no non-linearity?

$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

Largest singular value > 1 :
Exploding gradients

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \boxed{W_{hh}^{T-1}} \frac{\partial h_1}{\partial W}$$

Largest singular value < 1 :
Vanishing gradients

→ Change RNN
architecture

Long Short Term Memory (LSTM) – A Historical Note

Vanilla RNN

$$h_t = \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right)$$

LSTM

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Long Short Term Memory (LSTM)

Vanilla RNN

$$h_t = \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right)$$

Four gates

Cell state

Hidden state

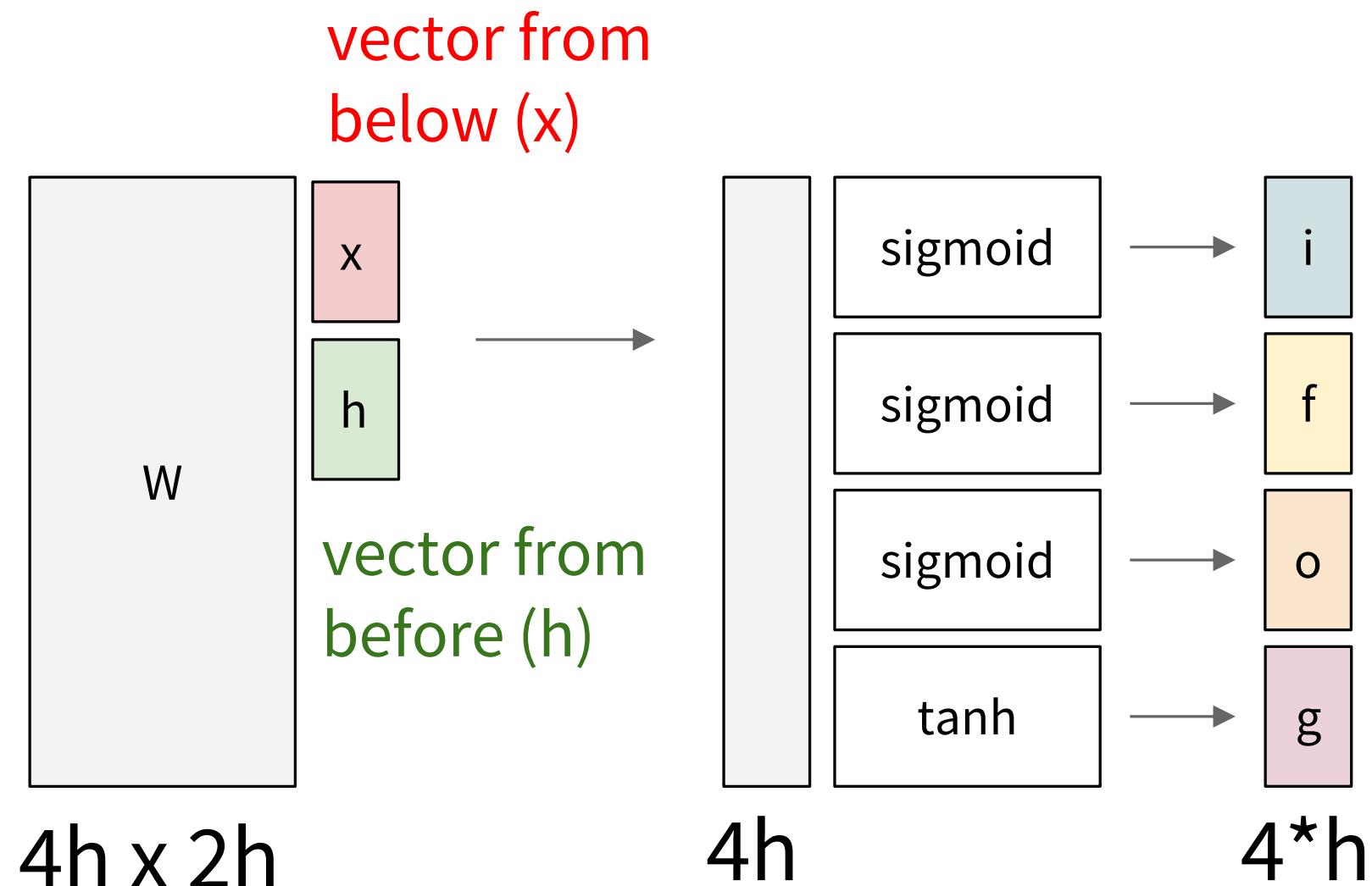
LSTM

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

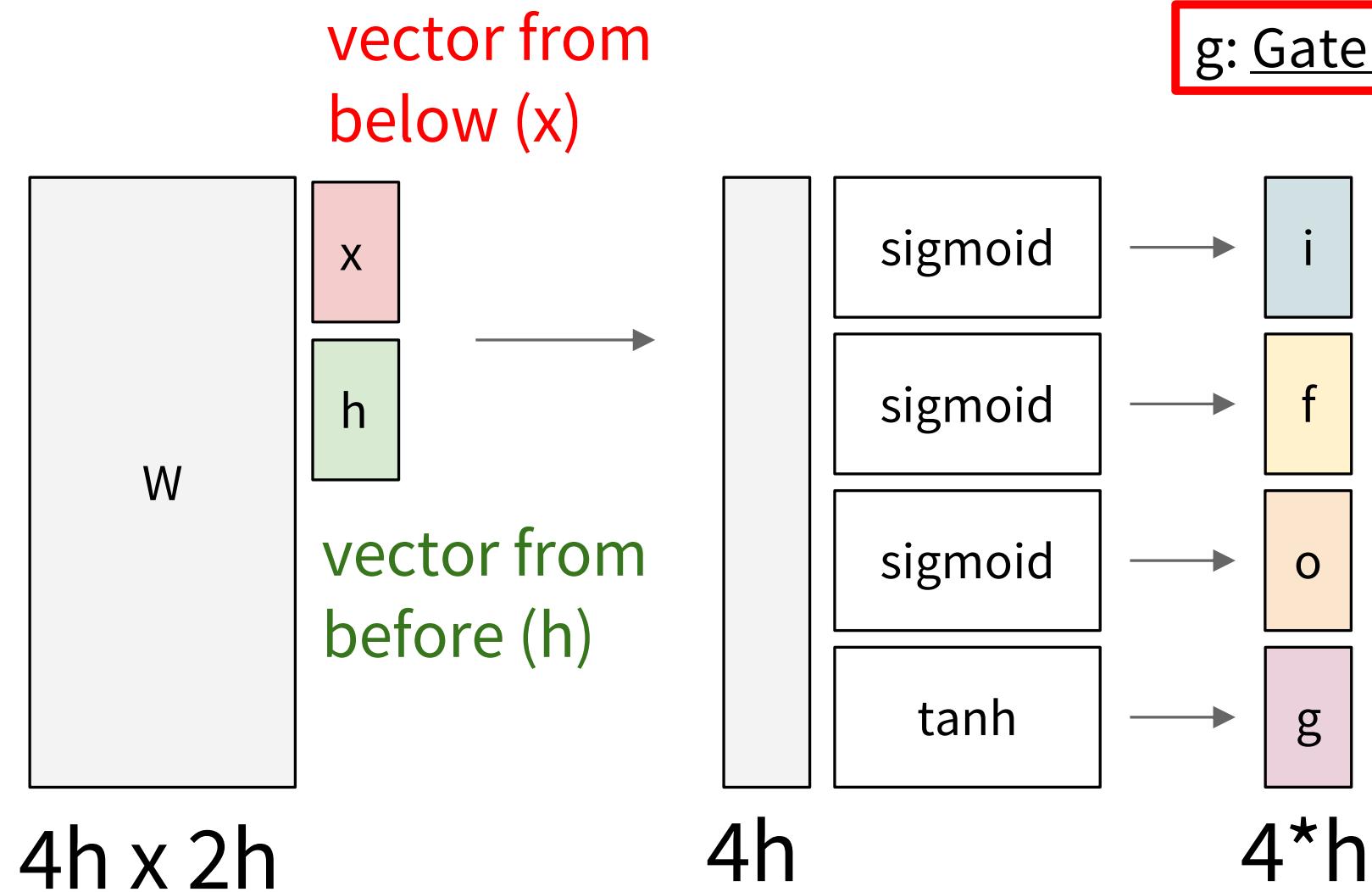
Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]



Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]



g : Gate (g), How much to write to cell

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

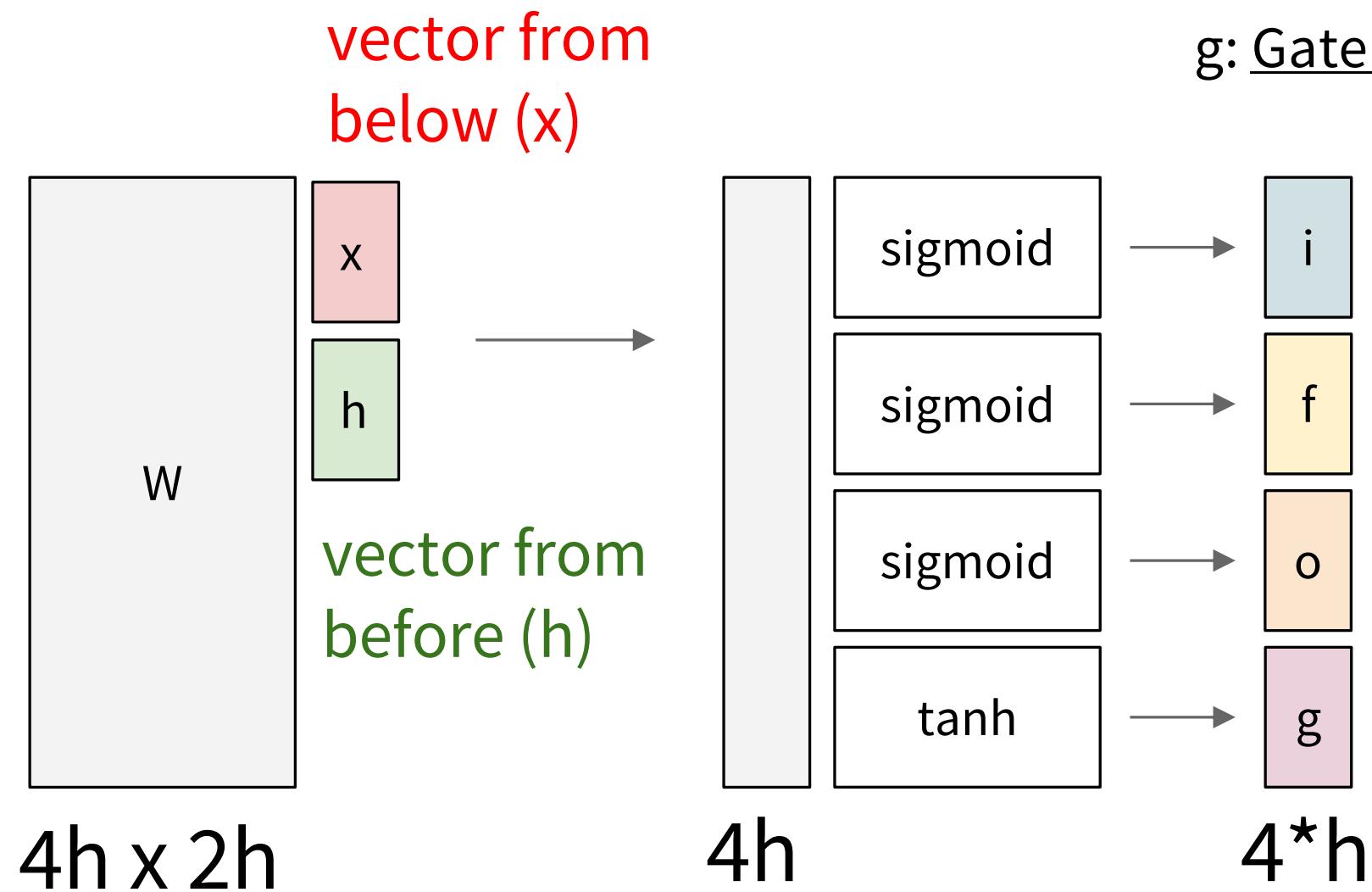
$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]

i: Input gate, whether to write to cell



g: Gate (?), How much to write to cell

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

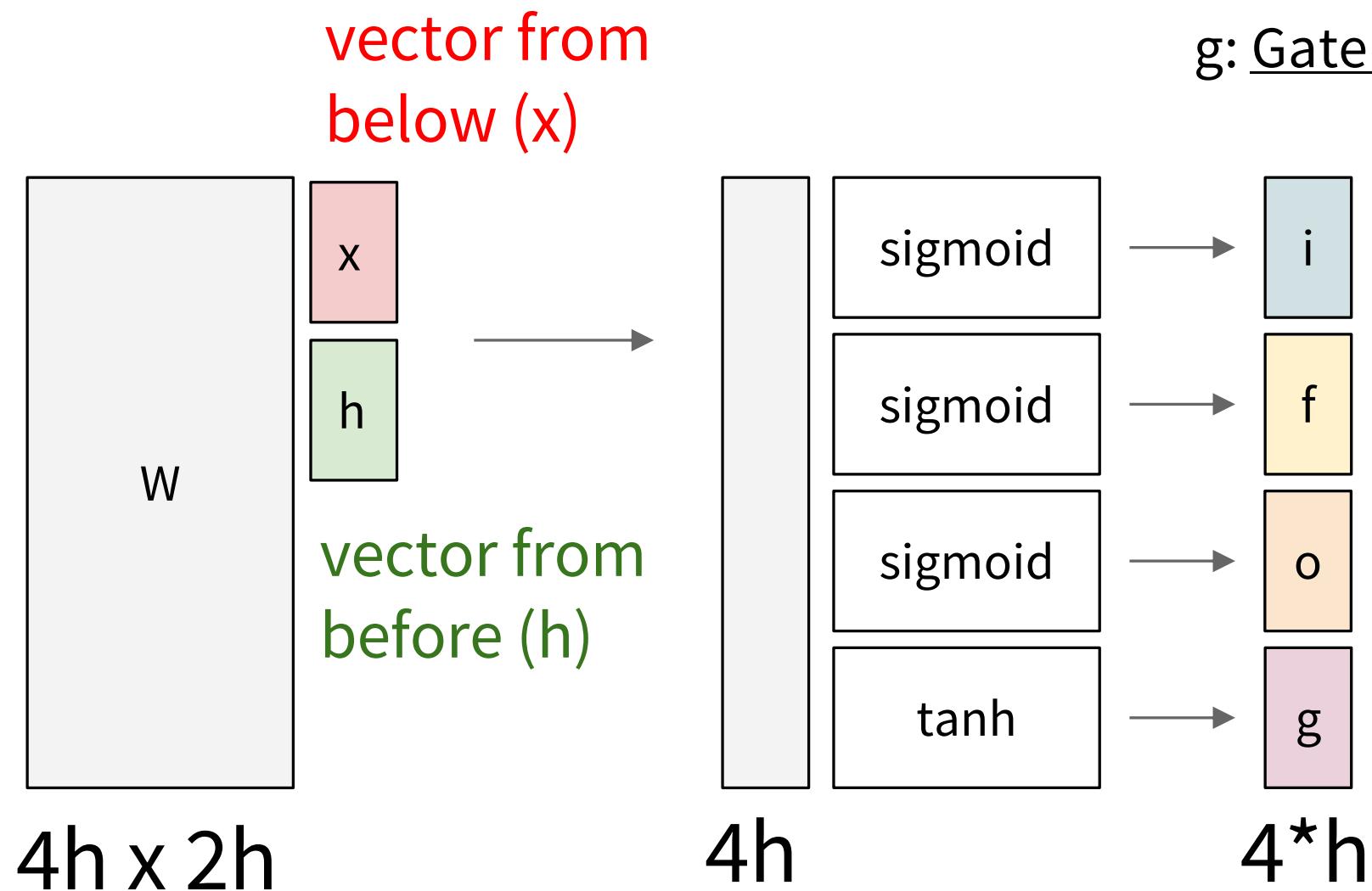
$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell



g: Gate gate (?), How much to write to cell

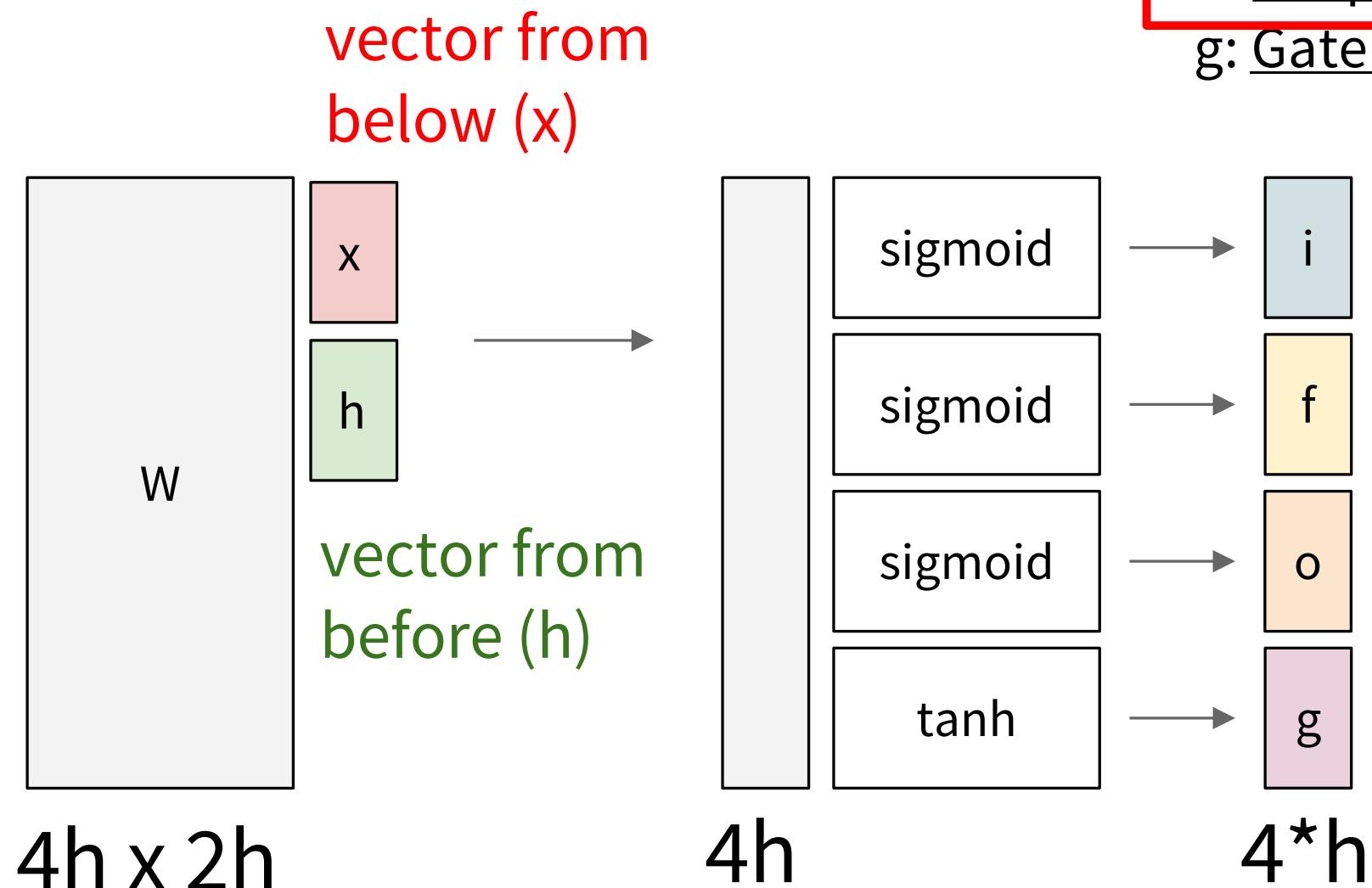
$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]



i: Input gate, whether to write to cell

f: Forget gate, Whether to erase cell

o: Output gate, How much to reveal cell

g: Gate gate (?), How much to write to cell

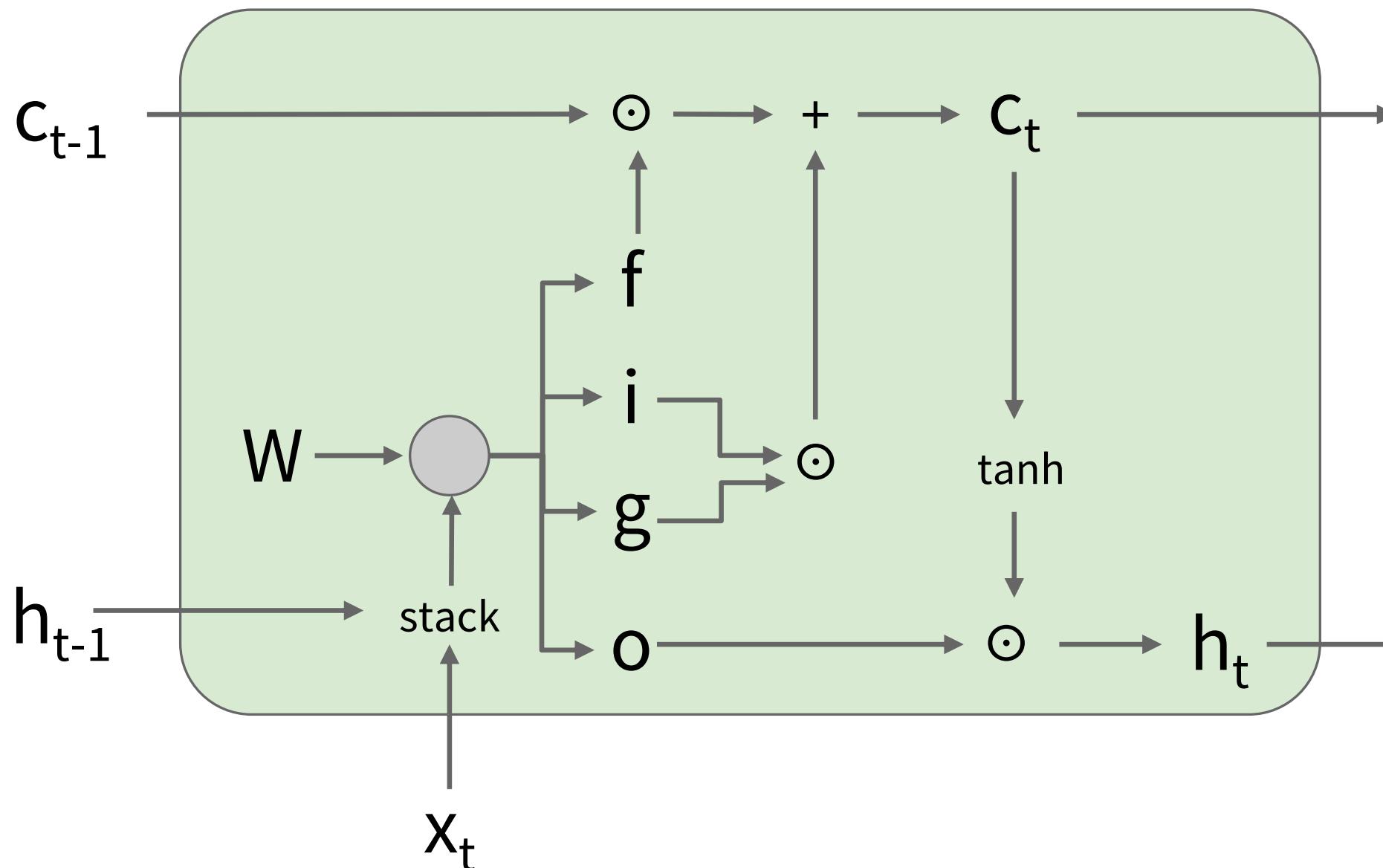
$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]



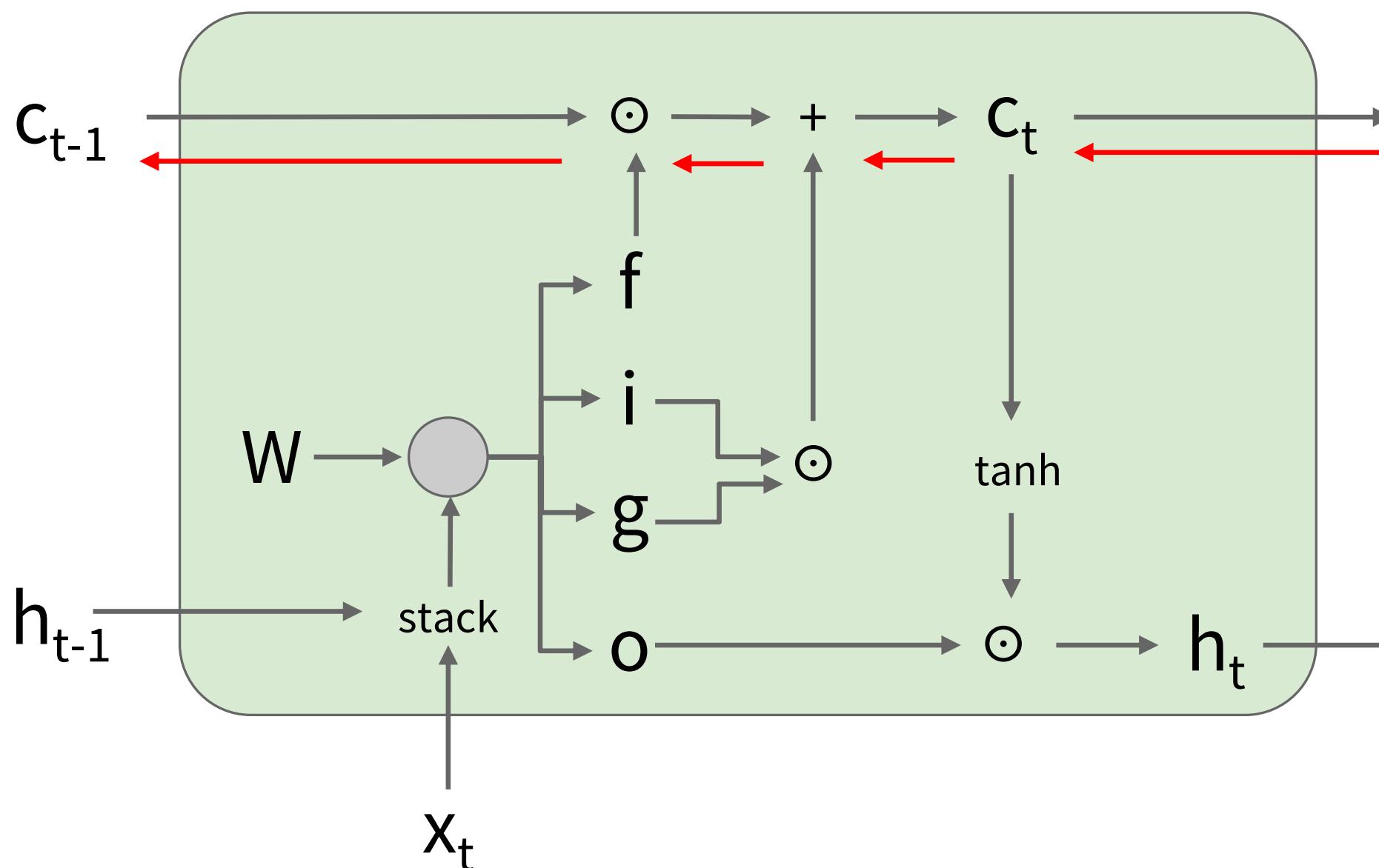
$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]



Backpropagation from c_t to c_{t-1} only elementwise multiplication by f , no matrix multiply by W

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

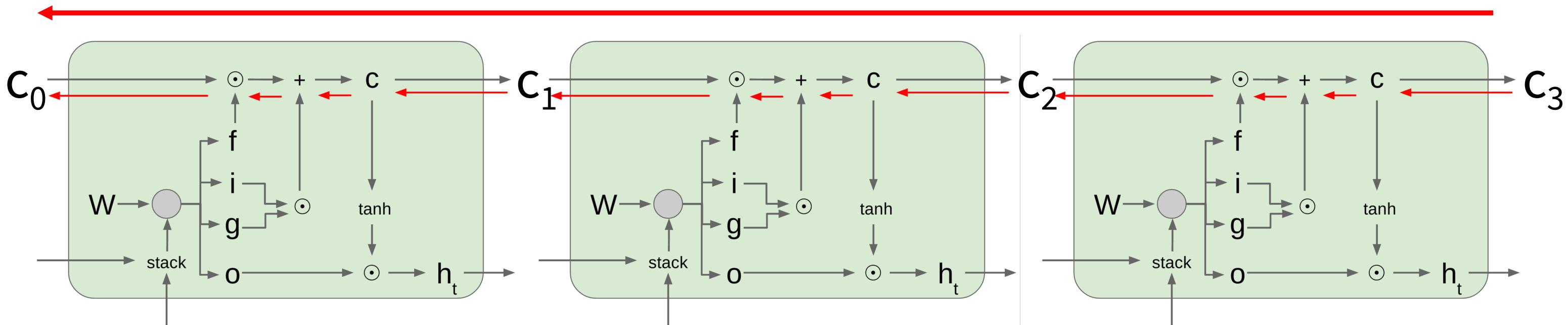
$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]

Uninterrupted gradient flow!



Do LSTMs solve the vanishing gradient problem?

The LSTM architecture makes it easier for the RNN to preserve information over many timesteps

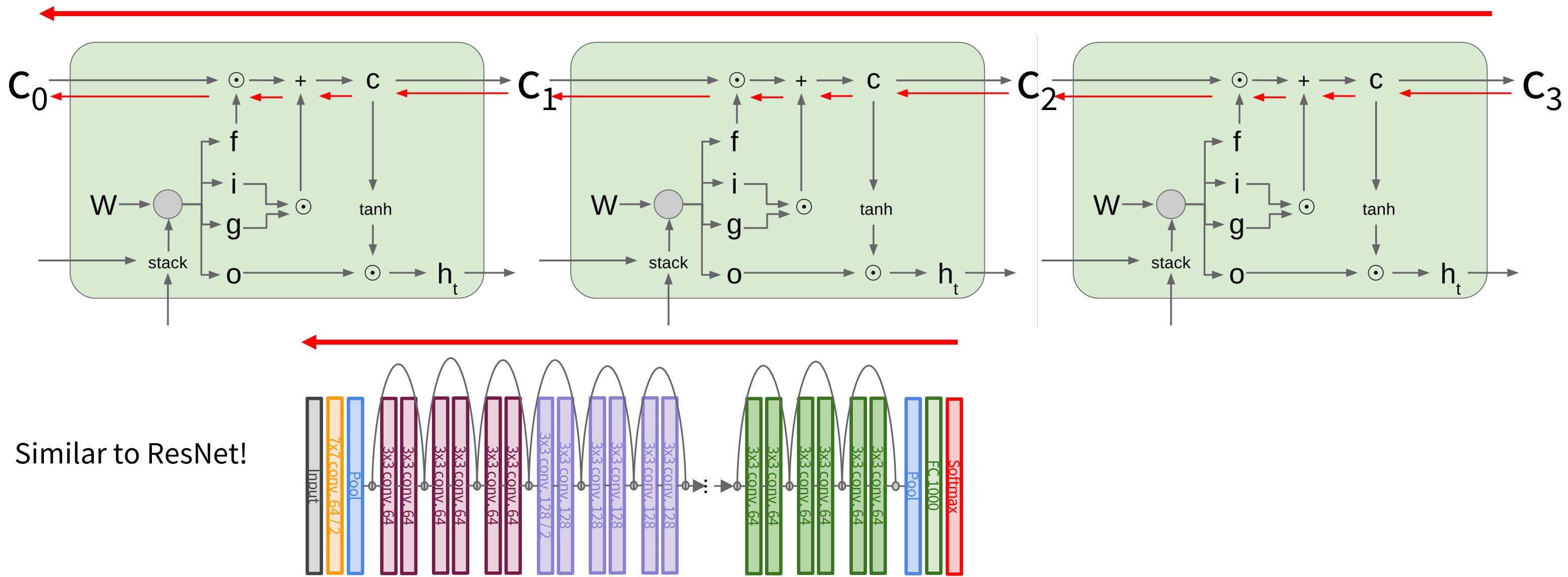
- e.g. if the $f = 1$ and the $i = 0$, then the information of that cell is preserved indefinitely.
- By contrast, it's harder for vanilla RNN to learn a recurrent weight matrix W_h that preserves info in hidden state

LSTM doesn't guarantee that there is no vanishing/exploding gradient, but it does provide an easier way for the model to learn long-distance dependencies

Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]

Uninterrupted gradient flow!



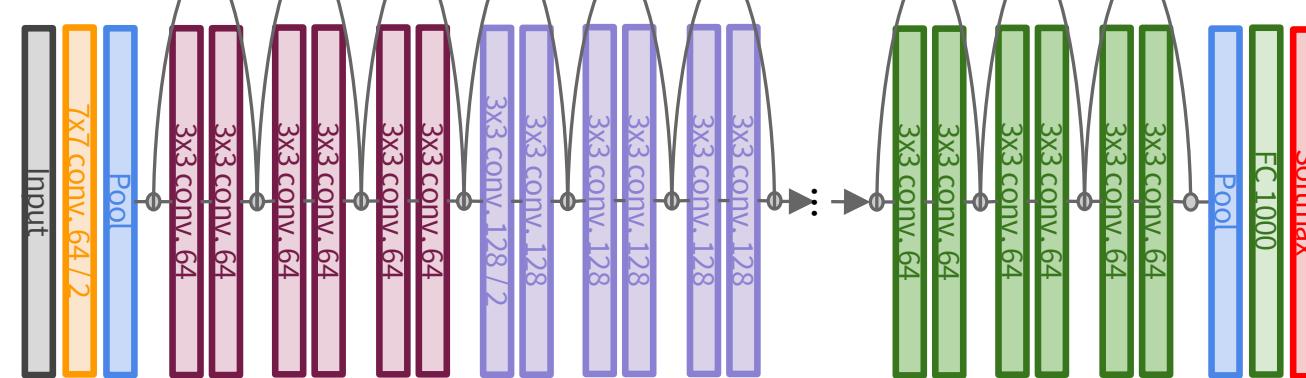
Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]

Uninterrupted gradient flow!



Similar to ResNet!



In between:
Highway Networks

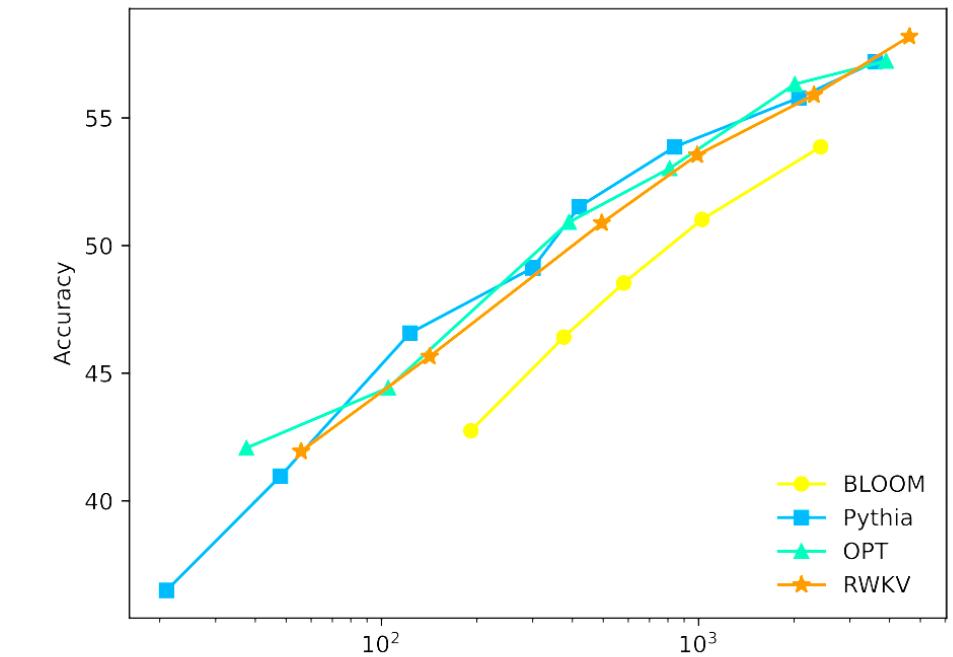
$$g = T(x, W_T)$$

$$y = g \odot H(x, W_H) + (1 - g) \odot x$$

Srivastava et al, "Highway Networks",
ICML DL Workshop 2015

Modern RNNs

- Sometimes called “state space models”
 - Hidden state
- Main advantages:
 - Unlimited context length
 - Compute scales linearly with sequence length



RWKV Scaling ([arXiv](#))

SIMPLIFIED STATE SPACE LAYERS FOR SEQUENCE MODELING

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Summary

- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don't work very well
- More complex variants (e.g. LSTMs, Mamba) can introduce ways to selectively pass information forward
- Backward flow of gradients in RNN can explode or vanish. Exploding is controlled with gradient clipping. Backpropagation through time is often needed.
- Better/simpler architectures are a hot topic of current research, as well as new paradigms for reasoning over sequences

Next time: Attention and Transformers