
Stanford CS231n 10th Anniversary Lecture 7 - April 22, 20251

Lecture 7:
Recurrent Neural Networks



Stanford CS231n 10th Anniversary Lecture 7 - April 22, 2025

Course Logistics

● Assignment 1 is due tomorrow (4/23) at 11:59PM!

● Project proposal deadline is due this Friday (4/25)
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Clarifications from Last Time

3

● Dropout, how to scale probabilities at test-time

● Question in class about normalization vs weight initialization
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Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Dropout: Test time

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time
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Dropout Summary

drop in train time

scale at test time
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Question in class: can normalization resolve the issues that 
arise with having weights initialized incorrectly?

7
Link to Ed Post

Toy setting, 2d input and 2-layer NN w/ ReLU

12

3 4
Link to code (colab)

https://edstem.org/us/courses/77520/discussion/6558110
https://colab.research.google.com/drive/1xgXDV1EEktbAvGG0yAbSoM8F2btqDWqT?usp=sharing
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Question in class: can normalization resolve the issues that 
arise with having weights initialized incorrectly?

8
Link to Ed Post

Toy setting, 2d input and 2-layer NN w/ ReLU

12

3 4

Significant reduction in error!

Link to code (colab)

https://edstem.org/us/courses/77520/discussion/6558110
https://colab.research.google.com/drive/1xgXDV1EEktbAvGG0yAbSoM8F2btqDWqT?usp=sharing
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Question in class: can normalization resolve the issues that 
arise with having weights initialized incorrectly?

9
Link to Ed Post

Toy setting, 2d input and 2-layer NN w/ ReLU

12

3 4

Performance gap still exists, does not 
resolve issues entirely, still optimization 
issues

Link to code (colab)

https://edstem.org/us/courses/77520/discussion/6558110
https://colab.research.google.com/drive/1xgXDV1EEktbAvGG0yAbSoM8F2btqDWqT?usp=sharing
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Question in class: can normalization resolve the issues that 
arise with having weights initialized incorrectly?

10
Link to Ed Post

Toy setting, 2d input and 2-layer NN w/ ReLU

12

3 4

Normalization may not always make sense! In 
this case, easy to see why it’s helpful (LayerNorm
does not change quadrant of inputs)

Link to code (colab)

https://edstem.org/us/courses/77520/discussion/6558110
https://colab.research.google.com/drive/1xgXDV1EEktbAvGG0yAbSoM8F2btqDWqT?usp=sharing
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1. One time setup: activation functions, preprocessing, 
weight initialization, normalization, transfer learning

2. Training dynamics: babysitting the learning process, 
parameter updates, hyperparameter optimization 

3. Evaluation: validation performance, test-time 
augmentation

Training Non-Recurrent Neural Networks

11
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Evaluate models and tune hyperparameters 

12
https://docs.wandb.ai/guides/track/app
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Rest of Today’s Lecture

● Discuss sequence modeling (assumed fixed-length inputs so far)
● Simple models commonly used before the era of 

transformers
○ RNNs and some variants

● Relation to modern state-space models (e.g. Mamba)

13



Stanford CS231n 10th Anniversary Lecture 7 - April 22, 202514

Vanilla Neural Networks

“Vanilla” Neural Network
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Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words
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Recurrent Neural Networks: Process Sequences

e.g. action prediction
sequence of video frames -> action class
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Recurrent Neural Networks: Process Sequences

E.g. Video Captioning
Sequence of video frames -> caption
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Recurrent Neural Networks: Process Sequences

e.g. Video classification on frame level
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Recurrent Neural Network

x

RNN

y
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Recurrent Neural Network

x

RNN

y

Key idea: RNNs have an 
“internal state” that is 
updated as a sequence is 
processed
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Unrolled RNN

x1

RNN

y1

x2

RNN

y2

x3

RNN

y3

...

xt

RNN

yt
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RNN hidden state update

x

RNN

y
We can process a sequence of vectors x by applying a 
recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W
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RNN output generation

x

RNN

y
We can process a sequence of vectors x by applying a 
recurrence formula at every time step:

new state

another function
with parameters Why

output



Stanford CS231n 10th Anniversary Lecture 7 - April 22, 202526

Recurrent Neural Network

x1

RNN

y1

x2

RNN

y2

x3

RNN

y3

...

xt

RNN

yt

h1 h2 h3h0
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by applying a 
recurrence formula at every time step:

Notice: the same function and the same set of 
parameters are used at every time step.
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Often, we also have an output 
function: 

28

(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Sometimes called a “Vanilla RNN” or an 
“Elman RNN” after Prof. Jeffrey Elman
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Vanilla(-ish) RNN: Concrete Example

x

RNN

y

Manually creating a recurrent network for detecting repeated 1s

0
1
0
1
1
1
0
1
1

0
0
0
0
1
1
0
0
1

X YRNN “Many to many” sequence modeling task 

How could we create an RNN to 
do this? 

Q: What information should be 
captured in the “hidden” state?
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Vanilla(-ish) RNN: Concrete Example

x

RNN

y

Manually creating a recurrent network for detecting repeated 1s

0
1
0
1
1
1
0
1
1

0
0
0
0
1
1
0
0
1

X YRNN “Many to many” sequence modeling task 

How could we create an RNN to 
do this? 

A: Previous input and current 
value for x
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Vanilla(-ish) RNN: Concrete Example

x

RNN

y

Manually creating a recurrent network for detecting repeated 1s

0
1
0
1
1
1
0
1
1

0
0
0
0
1
1
0
0
1

X YRNN “Many to many” sequence modeling task 

Set     and     to 
both be ReLU for 
simplicity

Initialize 
h_0 to 
(0, 0, 1)
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Vanilla(-ish) RNN: Concrete Example
Manually creating a recurrent network for detecting repeated 1s

0
1
0
1
1
1
0
1
1

0
0
0
0
1
1
0
0
1

X Y
RNN

* Code is missing parts, for full code see here

https://colab.research.google.com/drive/15YMP5dVcfUz2M36a_wmL4mEqKUlgJrdE?usp=sharing
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Vanilla(-ish) RNN: Concrete Example
Manually creating a recurrent network for detecting repeated 1s

0
1
0
1
1
1
0
1
1

0
0
0
0
1
1
0
0
1

X Y
RNN

* Code is missing parts, for full code see here

Right hand term 
x=0 à [0, 0, 0] 
X=1 à [1, 0, 0]

https://colab.research.google.com/drive/15YMP5dVcfUz2M36a_wmL4mEqKUlgJrdE?usp=sharing
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Vanilla(-ish) RNN: Concrete Example
Manually creating a recurrent network for detecting repeated 1s

0
1
0
1
1
1
0
1
1

0
0
0
0
1
1
0
0
1

X Y
RNN

* Code is missing parts, for full code see here

0 for top row of left 
term (only use value 
from right term)

https://colab.research.google.com/drive/15YMP5dVcfUz2M36a_wmL4mEqKUlgJrdE?usp=sharing
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Vanilla(-ish) RNN: Concrete Example
Manually creating a recurrent network for detecting repeated 1s

0
1
0
1
1
1
0
1
1

0
0
0
0
1
1
0
0
1

X Y
RNN

* Code is missing parts, for full code see here

Copy over “current” 
value from previous 
hidden state to be 
“previous”

https://colab.research.google.com/drive/15YMP5dVcfUz2M36a_wmL4mEqKUlgJrdE?usp=sharing
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Vanilla(-ish) RNN: Concrete Example
Manually creating a recurrent network for detecting repeated 1s

0
1
0
1
1
1
0
1
1

0
0
0
0
1
1
0
0
1

X Y
RNN

* Code is missing parts, for full code see here

Keep 1 on the bottom 
(helpful for output)

https://colab.research.google.com/drive/15YMP5dVcfUz2M36a_wmL4mEqKUlgJrdE?usp=sharing
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Vanilla(-ish) RNN: Concrete Example
Manually creating a recurrent network for detecting repeated 1s

0
1
0
1
1
1
0
1
1

0
0
0
0
1
1
0
0
1

X Y
RNN

* Code is missing parts, for full code see here

Max(Current + Previous – 1, 0)

https://colab.research.google.com/drive/15YMP5dVcfUz2M36a_wmL4mEqKUlgJrdE?usp=sharing
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Vanilla(-ish) RNN: Concrete Example
Manually creating a recurrent network for detecting repeated 1s

0
1
0
1
1
1
0
1
1

0
0
0
0
1
1
0
0
1

X Y
RNN

* Code is missing parts, for full code see here

And it just works! But 
how do we find the Ws
in practice?

https://colab.research.google.com/drive/15YMP5dVcfUz2M36a_wmL4mEqKUlgJrdE?usp=sharing
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h0 fW h1

x1

RNN: Computational Graph
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h0 fW h1 fW h2

x2x1

RNN: Computational Graph
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h0 fW h1 fW h2 fW h3

x3

…

x2x1

RNN: Computational Graph

hT
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h0 fW h1 fW h2 fW h3

x3

…

x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT
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h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1
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h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT
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h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

L
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h0 fW h1 fW h2 fW h3

x3

y

…

x2x1W

RNN: Computational Graph: Many to One

hT
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h0 fW h1 fW h2 fW h3

x3

y

…

x2x1W

RNN: Computational Graph: Many to One

hT



Stanford CS231n 10th Anniversary Lecture 7 - April 22, 202548

h0 fW h1 fW h2 fW h3

yT

…

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1
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h0 fW h1 fW h2 fW h3

yT

…

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

? ? ?
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h0 fW h1 fW h2 fW h3

yT

…

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

0 0 0
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yT-1

51

h0 fW h1 fW h2 fW h3

yT

…

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

y1 y2
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Backpropagation through time
Loss

Forward through entire sequence to 
compute loss, then backward through 
entire sequence to compute gradient
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Truncated Backpropagation through time
Loss

Run forward and backward 
through chunks of the 
sequence instead of whole 
sequence



Stanford CS231n 10th Anniversary Lecture 7 - April 22, 202556

Truncated Backpropagation through time
Loss

Carry hidden states 
forward in time forever, 
but only backpropagate 
for some smaller number 
of steps
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Truncated Backpropagation through time
Loss
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Truncated BPTT: Single Output

LossStill calculate gradients at each time step, rely on 
upstream gradients (no more loss per time-step)
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A more practical 
example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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A more practical 
example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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A more practical 
example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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Example: Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample characters 
one at a time, feed back to 
model

.03

.84

.00

.13

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e
”

“l” “l” “o
”Sample
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.03

.84

.00

.13

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e
”

“l” “l” “o
”SampleExample: Character-level

Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample characters 
one at a time, feed back to 
model
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.03

.84

.00

.13

.25

.20

.50

.05

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e
”

“l” “l” “o
”SampleExample: Character-level

Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample characters 
one at a time, feed back to 
model
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.03

.84

.00

.13

.25

.20

.50

.05

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e
”

“l” “l” “o
”SampleExample: Character-level

Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample characters 
one at a time, feed back to 
model
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[w11 w12 w13 w14] [1]      [w11]
[w21 w22 w23 w14] [0]  =  [w21]
[w31 w32 w33 w14] [0]      [w31]
[w41 w42 w43 w44][0]      [w41]

Matrix multiplication with a one-hot vector 
just extracts a column from the weight matrix.
We often put a separate embedding layer
between the input and hidden layers.

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.17

.68

.03

Embedding 
layer

Example: Character-level
Language Model
Sampling

66
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min-char-rnn.py gist: 112 lines of Python

(https://gist.github.com/karpathy/d4dee5
66867f8291f086)

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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x

RNN

y

Blogpost from Andrej Karpathy back in 2015!

https://karpathy.github.io/2015/05/21/rnn-effectiveness/
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train more

train more

train more

at first:
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Generated 
C code
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https://openai.com/blog/openai-codex/

OpenAI Codex, GitHub Copilot, Cursor IDE

https://openai.com/blog/openai-codex/
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Searching for interpretable cells
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Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote detection cell
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Searching for interpretable cells

line length tracking cell
Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for  interpretable cells

if statement cell
Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission



Stanford CS231n 10th Anniversary Lecture 7 - April 22, 202582

Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote/comment cell



Stanford CS231n 10th Anniversary Lecture 7 - April 22, 202583

Searching for  interpretable cells

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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RNN tradeoffs

RNN Advantages:
- Can process any length of the input (no context length)
- Computation for step t can (in theory) use information from many steps back 
- Model size does not increase for longer input 
- The same weights are applied on every timestep, so there is symmetry in 

how inputs are processed. 
RNN Disadvantages: 
- Recurrent computation is slow 
- In practice, difficult to access information from many steps back 

84
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Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning

Figure from Karpathy et a, “Deep Visual-
Semantic Alignments for Generating Image 
Descriptions”, CVPR 2015; figure copyright 
IEEE, 2015.
Reproduced for educational purposes.
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Convolutional Neural Network

Recurrent Neural Network
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test image

This image is CC0 public domain

87

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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test image

88
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test image

X
89
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test image

x0
<START>

90
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h0

y0

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

Wih

x0
<START>

91
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h0

y0

test image

straw

sample!

x0
<START>

92
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h0

y0

test image

straw

h1

y1

x0
<START>
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h0

y0

test image

straw

h1

y1

hat

sample!

x0
<START>

94



Stanford CS231n 10th Anniversary Lecture 7 - April 22, 2025

h0

y0

test image

straw

h1

y1

hat

h2

y2

x0
<START>

95
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h0

y0

test image

straw

h1

y1

hat

h2

y2

sample
<END> token
=> finish.

x0
<START>

96
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A cat sitting on a suitcase 
on the floor

A cat is sitting on a tree 
branch

A dog is running in the grass 
with a frisbee

A white teddy bear sitting in 
the grass

Two people walking on the 
beach with surfboards

Two giraffes standing in a 
grassy field

A man riding a dirt bike on a 
dirt track

Image Captioning: Example Results

A tennis player in action 
on the court

Captions generated using neuraltalk2
All images are CC0 Public domain: cat 
suitcase, cat tree, dog, bear, surfers, 
tennis, giraffe, motorcycle

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/
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Image Captioning: Failure Cases

A woman is holding a cat 
in her hand

A woman standing on a beach 
holding a surfboard

A person holding a computer 
mouse on a desk

A bird is perched on a 
tree branch

A man in a 
baseball uniform 
throwing a ball

Captions generated using neuraltalk2
All images are CC0 Public domain: fur coat, 
handstand, spider web, baseball

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
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Visual Question Answering (VQA)

Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015
Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.
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Das et al, “Visual Dialog”, CVPR 2017
Figures from Das et al, copyright IEEE 2017. Reproduced with permission.

Visual Dialog: Conversations about images
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Agent encodes instructions in language 
and uses an RNN to generate a series of 
movements as the visual input changes 
after each move.

102

Wang et al, “Reinforced Cross-Modal Matching and Self-Supervised Imitation 
Learning for Vision-Language Navigation”, CVPR 2018
Figures from Wang et al, copyright IEEE 2017. Reproduced with permission.

Visual Language Navigation: Go to the living room
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time

depth

Multilayer RNNs
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RNN Variants: Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent is 
difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent is 
difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent is 
difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent is 
difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent is 
difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent is 
difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent is 
difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent is 
difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

Almost always < 1
Vanishing gradients
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent is 
difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent is 
difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent is 
difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale 
gradient if its norm is too 
big
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent is 
difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Change RNN 
architecture
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Long Short Term Memory (LSTM) – A Historical Note

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM
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Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM

Cell state

Hidden state

Four gates
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), How much to write to cell

4*h
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i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), How much to write to cell
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), How much to write to cell
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), How much to write to cell
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☉

125

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack
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☉
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ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

stack

Backpropagation from ct to 
ct-1 only elementwise 
multiplication by f, no matrix 
multiply by W
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127

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!
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Do LSTMs solve the vanishing gradient problem?

The LSTM architecture makes it easier for the RNN to preserve information 
over many timesteps
- e.g. if the f = 1 and the i = 0, then the information of that cell is preserved 

indefinitely.
- By contrast, it’s harder for vanilla RNN to learn a recurrent weight matrix 

Wh that preserves info in hidden state

LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it 
does provide an easier way for the model to learn long-distance dependencies

128
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

Similar to ResNet!
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

Similar to ResNet!

In between:
Highway Networks

Srivastava et al, “Highway Networks”, 
ICML DL Workshop 2015
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Modern RNNs

● Sometimes called “state space models”
○ Hidden state

● Main advantages:
○ Unlimited context length
○ Compute scales linearly with sequence length

131

RWKV Scaling (arXiv)

https://arxiv.org/pdf/2305.13048
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Summary

- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don’t work very well
- More complex variants (e.g. LSTMs, Mamba) can introduce ways to 

selectively pass information forward
- Backward flow of gradients in RNN can explode or vanish. Exploding 

is controlled with gradient clipping. Backpropagation through time 
is often needed.

- Better/simpler architectures are a hot topic of current research, as 
well as new paradigms for reasoning over sequences
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Next time: Attention and Transformers


