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So far: Supervised Learning

Supervised Learning

Classification

Data: (x, y)
X Is data, y is label

Goal: Learn a function to map x -> vy

Examples: Classification, regression, S
. . . Cat
object detection, semantic

segmentation, image captioning, etc.
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

So far: Self-Supervised Learning

Self-Supervised Learning Feature Learning
(e.g., autoencoders)
Data: X Rgcfonstmcted data
' L2 Loss function: mi'.?'hmu
Just data, no labels! (o 8] BN L&l
T o el 8 2 A
Reconstructed | 2 -EH*" .E
Goal: Learn some underlying hidden inputdata - A cotiens it lnveron
structure of the data | e e
Features 2 __ Input data
A Encoder i?'h
Examples: Clustering, dimensionality -f?ﬂiﬁ@
duction, feature learning, densi nputdata [ RIS
reduction, feature learning, densi Y
’ g, density sl < WS

estimation, etc.
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Today: Robot Learning

m

Problems where an agent Agent Environment
performs actions in the

environment, and receives

rewards E‘ @R@ i
-

Goal: Learn how to take
actions that maximize reward e

Earth photo is in the public domain
Robotimage is in the public domain

Yunzhu Li Lecture 17 - 4 May 29, 2025


https://commons.wikimedia.org/wiki/File:The_Earth_seen_from_Apollo_17.jpg
https://en.wikipedia.org/wiki/File:Cartoon_Robot.svg
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A Fast-Growing Field

..' Reuters World v Business v Markets v Sustainability v More v

Skild Al grabs $300M to build foundation
model for robotics

Robot Al startup Physical Intelligence
raises $400 mln from Bezos, OpenAl

By Reuters
Aa | | <
November 4, 2024 12:38 PM EST - Updated 3 months ago

By Mike Oitzman | July 10, 2024

From self-driving cars to chore-battling
bots: Robot Guru Kyle Vogt raises $150M

Series B: 1X Secures $100M e
Funding

SO
SR r World v Business v Markets v Sustainability v More Vv
Januar y 11,2024 Author: 1X Souer euters

Robotics startup Figure raises $675 mln
from Microsoft, Nvidia, OpenAl

By Harshita Mary Varghese and Krystal Hu
February 29, 2024 11:20 AM EST - Updated a year ago @
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A Fast-Growing Field
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Overview

Problem formulation

- Robot perception

Reinforcement learning
- Model learning & model-based planning
- Imitation learning

- Robotic foundation models

- Remaining challenges
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Problem Formulation

Goal g

Action q;

(e @Physical World

State S, Reward 7 Reward 7+ ; State Sy+;
I
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Example: Cart-Pole Problem

Goal: Balance a pole on top
of a movable cart

State: angle, angular speed,
position, horizontal velocity

Action: horizontal force
applied to the cart

.
M _F

Reward: 1 at each time step
if the pole is upright

LTI rrrirrrrrrrrrrrrrsy/

This i o . .
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https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Example: Robot Locomotion

Goal: Make the robot
move forward

State: Angle, position,
velocity of all joints

Action: Torques applied
to joints

Reward: 1 at each time
step upright + forward
movement

Figure from: Schulman et al, “High-Dimensional Continuous
Control Using Generalized Advantage Estimation”, ICLR 2016
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Example: Atari Games

L T T — T ———

Goal: Complete the game with the highest score
State: Raw pixel inputs of the game screen

Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurlPS Deep Learning Workshop, 2013
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Example: Go

A BCDETFOGH ] KLMMNOPIOGQRST

19 19
® .
17 LS % e - Goal: Win the game!
15 -@TOTO 3%@# 16
15 ©) 15
14 14
13 13
12 12
11 o 11
10 10
9 9
8 8
7 Y & -
6 6
oy
; TS ®:
: O e :
2 2
1 1

A BCDETFOGH ] KLMMNOPIOGQRST
This 5C0 publi .
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https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Example: Go

A BCDETFOGH ] KLMMNOPIOGQRST
19

ki
=]

17 LS % o Goal: Win the game!

16 @+O+0 16

14 14 State: Position of all pieces

1 —@ 1 Action: Where to put the next
o o piece down

; @ ; Reward: On last turn: 1 if you
; % ; won, 0 if you lost

A BCDETFOGH ] KLMMNOPIOGQRST

This i o . .
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https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Example: Text Generation

Goal: Predict the next word!

<s>(CS231n
midterm
was
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Example: Text Generation

Goal: Predict the next word!

<s> (CS231n State: Current words in the
] sentence

midterm

Was

Action: Next word

Reward: 1 if correct, 0O otherwise
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Example: Chatbot

Goal: Be a good companion!

Hey GPT, how are you today?
© I'm doing well, thank you! How can | assist you today?

| can't fall asleep, any advice?

&) I'm sorry to hear that you're having trouble sleeping. Here are a few tips that might help:

Would you like more details on any of these tips or help with something else?

d O O

Is this conversation helpful so far? % &P X
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Yunzhu LI

Example: Chatbot

Hey GPT, how are you today?

© I'm doing well, thank you! How can | assist you today?

| can't fall asleep, any advice?

&) I'm sorry to hear that you're having trouble sleeping. Here are a few tips that might help:

Would you like more details on any of these tips or help with something else?

P QPSP

Is this conversation helpful so far? % &P X

Lecture 17 - 18

Goal: Be a good companion!
State: Current conversation
Action: Next sentence

Reward: Human evaluation, 1 if
satisfied, -1 if unsatisfied, O neutral
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Example: Cloth folding robot

- 4

/ -
| | ey

Goal: Fold the cloth
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Example: Cloth folding robot

Goal: Fold the cloth
State: Current conversation
Action: Robot end-effector motions

Reward: Human evaluation, 1 if
cloth is folded, 0 otherwise
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Overview

Problem formulation

- Robot perception

Reinforcement learning
- Model learning & model-based planning
- Imitation learning

- Robotic foundation models

- Remaining challenges
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What is Robot Perception?

Goal g

Action q;

@) [@Physical World

State 5; Reward 7; Reward 7+ State S+ ;
I
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What is Robot Perception?

Making sense of the unstructured real world ...

* Incomplete knowledge of
objects and scenes

 Imperfect actions may lead
to failure

* Environment dynamics and
other agents
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Sensors for Robotics

Understanding the interactions with the world through multimodal senses
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Sensors for Robotics

Understanding the interactions with the world through multimodal senses

‘ 2 Fisheye Cameras ‘ Multisense Head (3D Laser
Scanner & Stereo Camera)

Secure Wireless
‘ Network Router

Perception Computer (3

\ g \ Intel Core i7 Processor)

3.7-kilowatt-hour
lithium-ion battery
pack

: W e ® ' Robotiq 3-Finger Adaptive
‘ ” ' Robot Gripper

30 degrees of

freedom(DOF) — 24 i

hydraulic actuators | Software — Linux Operating ‘

& 6 electric motors | . Systemwith ROS (Robot
Operating System)

Six-Axis Force/
Torque Sensor ‘

Y Inertial Measurement Unit
& (IMU)

b ¢ L,

|
Strain Gauge Pressure Sensor

[Source: HKU Advanced Robotics Laboratory]

Yunzhu Li Lecture 17 - 25 May 29, 2025



Robot Vision vs. Computer Vision

Robot vision is embodied, active, and environmentally situated.

m Py

[Detectron - Facebook Al Research] [Zeng\et al., IROS 2018]
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Robot Vision vs. Computer Vision

Robot vision is embodied, active, and environmentally situated.

- Embodied: Robots have physical bodies and experience the world directly.
Their actions are part of a dynamic with the world and have immediate
feedback on their own sensation.

» Active: Robots are active perceivers. It knows why it wishes to sense, and
chooses what to perceive, and determines how, when and where to achieve
that perception.

 Situated: Robots are situated in the world. They do not deal with abstract
descriptions, but with the “here” and “now” of the world directly influencing the
behavior of the system.
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The Perception-Action Loop

 [Levine et al. JMLR 2016]
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The Perception-Action Loop

Perceive Perceive
Act
Act
% Act
Perceive
[Sa et al. IROS 2014] [Levine et al. JIMLR 2016] [Bohg et al. ICRA 2018]
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The Perception-Action Loop

A key challenge in Robot Learning is to close the perception-action loop.

Perceive Perceive
Act

é Act

Perceive

Act

[Sa et al. IROS 2014] [Levine et al. JIMLR 2016] [Bohg et al. ICRA 2018]
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Overview

Problem formulation

- Robot perception

Reinforcement learning

- Model learning & model-based planning
- Imitation learning

- Robotic foundation models

- Remaining challenges
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Reinforcement Learning

Action q;

@Physical World

Reward 7+ State S+
I

Goal g

RL trains agents that interact
with an environment and I
learn to maximize reward

(trial and error)

State §; l Reward 7
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Reinforcement Learning vs Supervised Learning

Environment — Environment —
State Action Reward State Action Reward
St Ay It St+1 At+1 M1
v v
Agent — Agent —
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Reinforcement Learning vs Supervised Learning

Dataset — Dataset —
nput Prediction Loss Input Prediction Loss
Xt Yi L, | Xt+t Yi+1 L |

Why is RL different from normal supervised learning?
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Reinforcement Learning vs Supervised Learning

Environment — Environment —
State Action Reward State Action Reward
St Ay It | St+1 At+1 41 |
Agent — Agent —

Stochasticity: Rewards and state transitions may be random
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Reinforcement Learning vs Supervised Learning

Environment — Environment —
State Action Reward State Action Reward
St dy [t | St+1 At+1 lt+1 |
Agent — Agent —

Credit assignment: Reward r, may not directly depend on action a;
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Reinforcement Learning vs Supervised Learning

Environment — Environment —
State Action Reward State Action Reward
St Ay It | St+1 At+1 M1 |

Nondifferentiable: Can't backprop through world; can't compute dr,/da;
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Reinforcement Learning vs Supervised Learning

Environment — Environment —
State Action Reward State Action Reward
St Ay It | St+1 At+1 M1 |
Agent — Agent —

Nonstationary: WWhat the agent experiences depends on how it acts
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Case Study: Playing Atari Games

Goal: Complete the game with the highest score

State: Raw pixel inputs of the game screen
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurlPS Deep Learning Workshop, 2013
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Mnih et al, “Playing Atari with Deep
Reinforcement Learning”, NeurlPS

Case StUdy: Playing Atari Games Deep Learning Workshop, 2013

Network output:

Q(s,a;0) Q-values for all actions With 4 actions: last layer
Neural network with gives values Q(s;, a4),
weights 6 FC-A (Q-values) Q(sy, a,), Q(s;, a3), Q(s,a,)

| s s =8 - s N moxscs == s N Dyscss = 8 N oxsss = s |
Network input: state s,: 4x84x84 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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https://www.youtube.com/watch?v=V1eYniJORnk

Yunzhu Li Lecture 17 - 41 May 29, 2025


https://www.youtube.com/watch?v=V1eYniJ0Rnk

Case Study: Playing Games

AlphaGo:(JanuaryZO']G) A BCDETFGH ] KLMNGOTPGU ORST

19 19
- Used imitation learning + tree search + RL 18 2 18
- Beat 18-time world champion Lee Sedol . SIS . .
15 15
14 14
13 13
12 12
11 11
10 10
9 9
B 8
7 7
6 6
= )
4 J—( 4
3 3
2 2
1 1

A B CDEVFOGH )] KLMMWNOPOGRST

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016

Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017

Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019 This image lic domain
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https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Case Study: Playing Games

AlphaGo:(JanuaryZO']G) A BCDETFGH ] KLMNGOTPGU ORST

- Used imitation learning + tree search + RL - . %
- Beat 18-time world champion Lee Sedol . SES N .
AlphaGo Zero (October 2017) 15 15
- Simplified version of AlphaGo s i
- No longer using imitation learning 12 12
- Beat (at the time) #1 ranked Ke Jie 1o >
9 9
8 8
: 2 anl
: IrLdly
: 58‘ :

A B CDEVFOGH )] KLMMWNOPOGRST

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016

Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017

Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019 This image lic domain
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https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Case Study: Playing Games

AlphaGo (January 2016) 1o A B CDEVFGH )] KLMMNOWPOGORST 1o
- Used imitation learning + tree search + RL 18 . 18
- Beat 18-time world champion Lee Sedol PN SES N .
AlphaGo Zero (October 2017) 15 15
- Simplified version of AlphaGo s i
- No longer using imitation learning 12 12
- Beat (at the time) #1 ranked Ke Jie 1o >
Alpha Zero (December 2018) 9 9
- Generalized to other games: Chess and Shoqi ; ® ,

6 @ 6

: IrLdly

: 68‘ :

A B CDEVFOGH )] KLMMWNOPOGRST

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016

Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017

Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019 This image lic domain
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https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Case Study: Playing Games

AlphaGo (January 2016) 1o A B CDEVFGH )] KLMMNOWPOGORST 1o
- Used imitation learning + tree search + RL 18 PN "F)g 18
- Beat 18-time world champion Lee Sedol . - = \ .
AlphaGo Zero (October 2017) 15 OTOTY 15
- Simplified version of AlphaGo . 4 i
- No longer using imitation learning 12 12
- Beat (at the time) #1 ranked Ke Jie n 1@ >
Alpha Zero (December 2018) 9 9
- Generalized to other games: Chess and Shogi ; ;
MuZero (November 2019) 6 pad @ 0
- Plans through a learned model of the game . ol *"'{} )

: O dmiCel I

A B CDEVFOGH )] KLMMWNOPOGRST

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016

Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017

Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019
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Case Study: Playing Games november 2019: Lee Sedol

announces retirement
AlphaGo: (January 2016)

- Used imitation learning + tree search + RL

- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)

- Simplified version of AlphaGo

- No longer using imitation learning

- Beat (at the time) #1 ranked Ke Jie

Alpha Zero (December 2018)

- Generalized to other games: Chess and Shogi
MuZero (November 2019)

- Plans through a learned model of the game

“With the debut of Al in
4 Go games, l've
realized that I'm not at
the top even if |
become the number
one through frantic
efforts”

“Even if | become the
number one, there is
an entity that cannot
be defeated”

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016

Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017

Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

Quotes from: https://en.yna.co.kr/view/AEN20191127004800315
Image of Lee Sedol is licensed under CC BY 2.0
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https://commons.wikimedia.org/wiki/File:Lee_Se-Dol_-_2016_(cropped).jpg
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More Complex Games

StarCraft ll: AlphaStar
(October 2019) Dota 2. OpenAl Five (April 2019)

Vinyals et al, “Grandmaster No paper, only a blog post:
level in StarCraft |l using multi-  https://openai.com/five/#how-

agent reinforcement learning”,  openai-five-works
Science 2018
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In Robotics: Locomotion

Science Robotics 2020
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In Robotics: Dexterous Manipulation

-y

Solving Rubik's Cube with a Robot Hand Visual Dexterity: In-Hand Reorientation of Novel and Complex Object
OpenAl 2019 Shapes, Science Robotics 2023

Yunzhu Li Lecture 17 - 49 May 29, 2025



Problems of Model-Free RL

 Learns from trial and error
* Require extensive interactions

AlphaGo Zero: Google DeepMind

supercomputer learns 3,000 years of human

knowledge in 40 days

Yunzhu LI
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Problems of Model-Free RL

Learns from trial and error
Require extensive interactions

Safety concerns
Limited interpretability
* What if things go wrong?
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Problems of (Model-Free) RL

« Learns from trial and error
* Require extensive interactions

« Safety concerns
* Limited interpretability
* What if things go wrong?

« Humans maintain an intuitive
model of the world
* Widely applicable
« Sample efficient
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Overview

Problem formulation

- Robot perception

Reinforcement learning

- Model learning & model-based planning

- Imitation learning

- Robotic foundation models

- Remaining challenges
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Model Learning & Model-Based Planning

Action q; /
@Physical World

Reward 74+ State S;+;
I

State §; Reward 7
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Model Learning & Model-Based Planning

Learn a model of the world’s state transition function P(s;;q|s¢, a;) and then use
planning through the model to make decisions

”
7
Lo T T =T g - Model might not be accurate enough.
02 -7 e o
RN 1. Execute the first action
NN 2. Obtain new state
NN - O 3. Re-optimize the action sequence using gradient
N -7 descent

Key: GPU for parallel sampling / gradient descent

Key question: what should be the form of s,?
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Pixel Dynamics - Deep Visual Foresight

5x5
RGB input convl
I
32c
stride
7 2
64x64x3 32x32

5x5 conv
LSTM 1

32c

32x32

5x5 conv
LSTM 2

32c

5x5 conv
LSTM 3

64 c

5x5 conv  5x5 conv
LSTM 4

64 c

8x8

5x5 conv 5x5 conv Ix1
LSTM 5 LSTM 6 LSTM 7 conv 2 compositing
masks
128 ¢ 64 c 32¢ 6c
channel
softmax —
-
stride deconv deconv deconv —
2 2 2 2
8 gyg 16x16 32x32 64x64 64x64
< masked
‘é compositing
5 convolve
8 - (i)
fully connected, I -,
reshape & 64x64 A
. 5 5x5 e
normalize I
CDNA kernels frasnt);gf:nsed aR<_5 B' t
AW"
images

Finn and Levine, “Deep Visual Foresight for Planning Robot Motion”, ICRA 2017

Yunzhu LI
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Keypoint Dynamics

Manuelli, Li, Florence, Tedrake, “Keypoints into the Future: Self-Supervised Correspondence in Model-Based Reinforcement Learning”, CoRL 2020
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Particle Dynamics

Real scene (w/ goal mask)

Particle repr.

Wang, Li, Driggs-Campbell, Fei-Fei, Wu, “Dynamic-Resolution Model Learning for Object Pile Manipulation”, RSS 2023
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o WL B d UL BT i

24x speed



Push to all letters
24x speed




Haochen Shi*, Huazhe Xu*, Samuel Clarke, Yunzhu Li, and Jiajun Wu

P a rti CI e D n a m iCS RoboCook: Long-Horizon Elasto-Plastic Object Manipulation with Diverse Tools
y Conference on Robot Learning (CoRL) 2023 — Best Systems Paper Award
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Particle Dynamics — Future Prediction

A, a;
Initial State ! l

—'*Sl—il GNN —n—Sz—-| GNN

. 418

e 0.900. .
o .."'.:. ...Q, 5

&%

R

Gripping

Yunzhu Li Lecture 17 - 64 May 29, 2025



Particle Dynamics — Future Prediction

Ay
Initial State 4

SU >| GNN —I-S3—i| GNN —I»S4—D| GNN —I-SS

>
as Ay

Prediction

Pressing
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Particle Dynamics — Future Prediction

» L
Qg a a, as Ay
Initial State l 4 i 4 ‘
SO GNN |— S1 GNN = Sz GNN |— 5‘3 GNN = 5‘4 GNN > SS

Prediction

Pressing

Pers.

Yunzhu LI
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T —
- ‘

sl2x speed

” . -~

L T

\ . , \.’. - - B
.__) -~ —= | e

Knife | Gripper | Press | Roller | Circle cutter | Pusher | Skin spatula | Filling spatula | Hook | Dumpling




Overview

- Problem formulation
- Robot perception

- Reinforcement learning

- Model learning & model-based planning

- Imitation learning \

- Robotic foundation models

- Remaining challenges
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Imitation Learning

Action q;

@Physical World

Reward 7+ State S+
I

Goal g

Supervised learning from a
demonstration dataset I

State $; l Reward 7
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Learning from Demonstrations
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Behavior Cloning (BC)

— training trajectory
= Ty expected trajectory Expert trajectory

P : E 1% Learned Policy
T e A, Te(as]og) >< ’-5/
' | ‘ No data on /

(0f)-
Pdata(0t) L how to recover ('-.,.l
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Iterative Collection of Expert Demonstrations

Expert provides
feedback/demonstrations

training
data

Supervised
learning

trajectory

Rollout in
environment
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Inverse Reinforcement Learning (IRL)

Reinforcement Learning Inverse Reinforcement Learning

Environment

U

Rewards « IRL « Behavior

Environment

U

Rewards [‘ RL » Behavior
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Inverse Reinforcement Learning (IRL)
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Implicit Behavior Cloning (IBC)

predicted predicted
actions actions
I T

Implicit Policy

Explicit Policy

Fg (0)

argmin Fjy(o,a)
acA

© @
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Implicit Behavior Cloning (IBC)
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Diffusion Policies

Visuomotor Policy Learning via Action Diffusion

pm g mm———— 0 Energy Gradient Field
‘T chr;(:scntalion : 1.0| — Q 1.0 ¥¥¥¥!¥¥¥
: ‘ ' l¥¥ vvvvv =¥
: Scaler (Regression) : Implicit Policy 0.5 ‘ ‘ Diffusion Policy 0.5 ': v ;
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Overview

Problem formulation

- Robot perception

Reinforcement learning

- Model learning & model-based planning

- Imitation learning

- Robotic foundation models

- Remaining challenges
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Robotic Foundation Models

a What is a Robotic Foundation Model?
o No explicit representation of states / transition functions

o A policy that maps (observation/state, goal) to action

Action a; l
Agent ] [[@ Physical WorIdJ

State §; A State §;4;
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Robotic Foundation Models

a What is a Robotic Foundation Model?
o No explicit representation of states / transition functions

o A policy that maps (observation/state, goal) to action

Imitation Learning Reinforcement Learning
(Chi et al., Diffusion Policy) (OpenAl, Solving Rubik’s Cube)

Diffusion Policy LSTM-GMM BET
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Robotic Foundation Models

a What is a Robotic Foundation Model?
o No explicit representation of states / transition functions

o A policy that maps (observation/state, goal) to action

a Current Foundational Vision-and-Language Models
o The output may not always be perfect.
o It will always generate something reasonable.

Q Robotic Foundation Models
o The synthesized action may not always be optimal.
o The generated trajectory will always be beautiful and reasonable.

Q Different names
o Vision-Language-Action Models (VLASs), Large behavior models (LBMs)
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Robotic Foundation Models
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Pi-Zero by Physical Intelligence

a First released in October 2024

[ oln e et

v |

=2y 1 pe
L7\ | 4

|

autono

T—

= N S X SD - —= - T3

Yunzhu Li Lecture 17 - 84 May 29, 2025

Py
=



Pi-Zero by Physical Intelligence
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Pi-Zero by Physical Intelligence
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Pi-Zero by Physical Intelligence
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Pi-Zero by Physical Intelligence
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Pi-Zero by Physical Intelligence

T cross-embodiment = Internet-scale
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Pi-Zero by Physical Intelligence
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Video | recorded yesterday at PI
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Pi-Zero by Physical Intelligence

[0 README &8 Apache-2.0 license Vi

openpi
Physical Intelligence () penp

openpi holds open-source models and packages for robotics, published by the Physical Intelligence team.

Currently, this repo contains two types of models:

Open Sourcing m,

 the 1, model, a flow-based diffusion vision-language-action model (VLA)

» the ,-FAST model, an autoregressive VLA, based on the FAST action tokenizer.

Published February 4, 2025
Email research@physicalintelligence. company
Repo O Physical-Intelligence/openpi For both models, we provide base model checkpoints, pre-trained on 10k+ hours of robot data, and examples for

using them out of the box or fine-tuning them to your own datasets.

This is an experiment: 7z, was developed for our own robots, which differ from the widely used platforms such as
ALOHA and DROID, and though we are optimistic that researchers and practitioners will be able to run creative
new experiments adapting 7, to their own platforms, we do not expect every such attempt to be successful. All
this is to say: 7, may or may not work for you, but you are welcome to try it and see!

Yunzhu Li Lecture 17 - 92 May 29, 2025



Overview

- Problem formulation

- Robot perception

- Reinforcement learning

- Model learning & model-based planning

- Imitation learning

- Robotic foundation models

- Remaining challenges ‘

Yunzhu LI
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Evaluation of the Robot Learning Models

o Evaluation is primarily conducted in the real world

o Real-world evaluation is costly and noisy
« We have large enough budget such that we can still make progress.”

o Weak correlation between training loss and real-world success rate.
« Training objectives vs task-specific metrics, training vs testing horizons
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Evaluation of the Robot Learning Models

o What about evaluation in simulation?
o Sim-to-real gap: rigid / deformable / cloth ImageNet in
o Efficient asset generation Embodied Al?
o Digitalization of the real world
o Procedural generation of realistic and diverse scenes
o Correlation between sim and real

BEHAVIOR

Benchmark for Everyday Household Activities in Virtual, Interactive, and EcOlogical EnviRonmen ts
3 =g =3 : i

Habitat 3.0
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Foundation Policy = Foundation World Models

o My definition of world models: action-conditioned future prediction

Action-Conditioned
Robot Interaction Data

/N

Foundation > Foundation

Policy < World Models
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Foundation Policy = Foundation World Models

DayDreamer

Nvidi; Cosmos - World Foundation Model

1X World Models

3D7?

Structural Prior?
Learning + Physics?
Corr. w/ Real World

Yunzhu LI
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Foundation Models for Embodied Agents

o Current foundation models are not tailored for embodied agents
o LLM/VLM can fail in embodied-related tasks
o Limited understanding of geometric / embodied / physical interactions

o Reinforcement learning (RL) from human feedback - RL from
Embodied Feedback
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Adaptation / Life-Long Learning

o Adapt to new scenarios
o Adapt to human preferences
o Self improve / life-long learning

How much would you
beneﬁt if a robot did this
for you?

BEHAVIOR-1K

Preference score

1060 2090 ' |
- : Activity rank oy e
Adapt to new scenarios Adapt to human preferences Improve through experience
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Practical Considerations of Foundation Models

a Every robotics work is a system work

0 System-level considerations: delays / computing / modules talking
to each other

User Prompt / Interjection

High-Level Policy J:ﬁ;ﬂ
(VLM)

: Response

SYSTEM 1 '

Low-Level Language Command

Whole Upper Body Control % Low_Le(ve:l )POlicy .

oints ﬁ -

Figure Al: Helix ot
Physical Intelligence: Hi-Robot
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Overview

Problem formulation

- Robot perception

Reinforcement learning
- Model learning & model-based planning
- Imitation learning

- Robotic foundation models

- Remaining challenges
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Towards foundational robotic models

‘

Images generated sing Al
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Next time: Human-Centered Al
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