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So far: Supervised Learning

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Cat

Classification

This image is CC0 public domain
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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So far: Self-Supervised Learning

Feature Learning

(e.g., autoencoders)

Self-Supervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying hidden 
structure of the data

Examples: Clustering, dimensionality 
reduction, feature learning, density 
estimation, etc.
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Today: Robot Learning

Earth photo is in the public domain
Robot image is in the public domain

Action

Reward

Agent EnvironmentProblems where an agent 

performs actions in the 

environment, and receives 

rewards

Goal: Learn how to take 

actions that maximize reward

4

https://commons.wikimedia.org/wiki/File:The_Earth_seen_from_Apollo_17.jpg
https://en.wikipedia.org/wiki/File:Cartoon_Robot.svg
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A Fast-Growing Field
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A Fast-Growing Field

Toyota Research Institute Meta AI Research Google Robotics Nvidia Research
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Overview

- Problem formulation

- Robot perception

- Reinforcement learning

- Model learning & model-based planning

- Imitation learning

- Robotic foundation models

- Remaining challenges
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Problem Formulation
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Example: Cart-Pole Problem

Goal: Balance a pole on top 

of a movable cart

State: angle, angular speed, 

position, horizontal velocity

Action: horizontal force 

applied to the cart

Reward: 1 at each time step 

if the pole is upright

This image is CC0 public domain
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https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Example: Robot Locomotion

Goal: Make the robot 

move forward

State: Angle, position, 

velocity of all joints

Action: Torques applied 

to joints

Reward: 1 at each time 

step upright + forward 

movement

Figure from: Schulman et al, “High-Dimensional Continuous 

Control Using Generalized Advantage Estimation”, ICLR 2016
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Example: Atari Games

Goal: Complete the game with the highest score

State: Raw pixel inputs of the game screen

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurIPS Deep Learning Workshop, 2013
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Example: Go

Goal: Win the game!

This image is CC0 public domain
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https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Example: Go

Goal: Win the game!

State: Position of all pieces

Action: Where to put the next 

piece down

Reward: On last turn: 1 if you 

won, 0 if you lost

This image is CC0 public domain

14

https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Yunzhu Li Lecture 17 - May 29, 2025

Example: Text Generation

<s> CS231n 
midterm 
was ___

Goal: Predict the next word!
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Example: Text Generation

Goal: Predict the next word!

State: Current words in the 

sentence

Action: Next word

Reward: 1 if correct, 0 otherwise

<s> CS231n 
midterm 
was ___
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Example: Chatbot

Goal: Be a good companion!
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Example: Chatbot

Goal: Be a good companion!

State: Current conversation

Action: Next sentence

Reward: Human evaluation, 1 if 

satisfied, -1 if unsatisfied, 0 neutral
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Example: Cloth folding robot

Goal: Fold the cloth

19
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Example: Cloth folding robot

Goal: Fold the cloth

State: Current conversation

Action: Robot end-effector motions

Reward: Human evaluation, 1 if 

cloth is folded, 0 otherwise

20
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Overview

- Problem formulation

- Robot perception

- Reinforcement learning

- Model learning & model-based planning

- Imitation learning

- Robotic foundation models

- Remaining challenges
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What is Robot Perception?

22
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What is Robot Perception?

Making sense of the unstructured real world …

• Incomplete knowledge of 

objects and scenes

• Imperfect actions may lead 

to failure

• Environment dynamics and 

other agents

23
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Sensors for Robotics

Understanding the interactions with the world through multimodal senses
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Sensors for Robotics

[Source: HKU Advanced Robotics Laboratory]

Understanding the interactions with the world through multimodal senses
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Robot Vision vs. Computer Vision

Robot vision is embodied, active, and environmentally situated.

[Detectron - Facebook AI Research] [Zeng et al., IROS 2018]

26



Yunzhu Li Lecture 17 - May 29, 2025

Robot Vision vs. Computer Vision

• Embodied: Robots have physical bodies and experience the world directly. 

Their actions are part of a dynamic with the world and have immediate 

feedback on their own sensation.

• Active: Robots are active perceivers. It knows why it wishes to sense, and 

chooses what to perceive, and determines how, when and where to achieve 

that perception.

• Situated: Robots are situated in the world. They do not deal with abstract 

descriptions, but with the “here” and “now” of the world directly influencing the 

behavior of the system.

Robot vision is embodied, active, and environmentally situated.
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The Perception-Action Loop

28
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The Perception-Action Loop

29



Yunzhu Li Lecture 17 - May 29, 2025

The Perception-Action Loop

A key challenge in Robot Learning is to close the perception-action loop.
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Overview

- Problem formulation

- Robot perception

- Reinforcement learning

- Model learning & model-based planning

- Imitation learning

- Robotic foundation models

- Remaining challenges
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Reinforcement Learning

32

RL trains agents that interact 

with an environment and 

learn to maximize reward

(trial and error)
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Reinforcement Learning vs Supervised Learning

Environment

State 

st

Action 

at

Agent

Reward 

rt

Environment

State 

st+1

Action 

at+1

Agent

Reward 

rt+1
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Reinforcement Learning vs Supervised Learning

Dataset

Input 

xt

Prediction 

yt

Model

Loss 

Lt

Dataset

Model

Loss

 Lt+1

Input 

xt+t

Prediction 

yt+1

Why is RL different from normal supervised learning?
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Reinforcement Learning vs Supervised Learning

Environment

State 

st

Action 

at

Agent

Reward 

rt

Environment

State 

st+1

Action 

at+1

Agent

Reward 

rt+1

Stochasticity: Rewards and state transitions may be random
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Reinforcement Learning vs Supervised Learning

Environment

State 

st

Action 

at

Agent

Reward 

rt

Environment

State 

st+1

Action 

at+1

Agent

Reward 

rt+1

Credit assignment: Reward rt may not directly depend on action at
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Reinforcement Learning vs Supervised Learning

Environment

State 

st

Action 

at

Agent

Reward 

rt

Environment

State 

st+1

Action 

at+1

Agent

Reward 

rt+1

Nondifferentiable: Can’t backprop through world; can’t compute drt/dat
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Reinforcement Learning vs Supervised Learning

Environment

State 

st

Action 

at

Agent

Reward 

rt

Environment

State 

st+1

Action 

at+1

Agent

Reward 

rt+1

Nonstationary: What the agent experiences depends on how it acts
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Case Study: Playing Atari Games

Goal: Complete the game with the highest score

State: Raw pixel inputs of the game screen

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurIPS Deep Learning Workshop, 2013
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Case Study: Playing Atari Games

Network input: state st: 4x84x84 stack of last 4 frames 

(after RGB->grayscale conversion, downsampling, and cropping)

FC-256

FC-A (Q-values)

Conv(4->16, 8x8, stride 4)

Conv(16->32, 4x4, stride 2)

𝑄 𝑠, 𝑎; 𝜃
Neural network with 

weights θ

Network output: 

Q-values for all actions With 4 actions: last layer 

gives values Q(st, a1), 

Q(st, a2), Q(st, a3), Q(st,a4)

Mnih et al, “Playing Atari with Deep 

Reinforcement Learning”, NeurIPS 
Deep Learning Workshop, 2013
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https://www.youtube.com/watch?v=V1eYniJ0Rnk
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https://www.youtube.com/watch?v=V1eYniJ0Rnk
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Case Study: Playing Games

This image is CC0 public domain

AlphaGo: (January 2016)

- Used imitation learning + tree search + RL

- Beat 18-time world champion Lee Sedol

AlphaGo Zero (October 2017)

- Simplified version of AlphaGo

- No longer using imitation learning

- Beat (at the time) #1 ranked Ke Jie

Alpha Zero (December 2018)

- Generalized to other games: Chess and Shogi

MuZero (November 2019)

- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017

Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self -play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

42

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Case Study: Playing Games

AlphaGo: (January 2016)

- Used imitation learning + tree search + RL

- Beat 18-time world champion Lee Sedol

AlphaGo Zero (October 2017)

- Simplified version of AlphaGo

- No longer using imitation learning

- Beat (at the time) #1 ranked Ke Jie

Alpha Zero (December 2018)

- Generalized to other games: Chess and Shogi

MuZero (November 2019)

- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017

Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self -play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019 This image is CC0 public domain
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https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Case Study: Playing Games

AlphaGo: (January 2016)

- Used imitation learning + tree search + RL

- Beat 18-time world champion Lee Sedol

AlphaGo Zero (October 2017)

- Simplified version of AlphaGo

- No longer using imitation learning

- Beat (at the time) #1 ranked Ke Jie

Alpha Zero (December 2018)

- Generalized to other games: Chess and Shogi

MuZero (November 2019)

- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017

Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self -play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019
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This image is CC0 public domain

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Case Study: Playing Games

AlphaGo: (January 2016)

- Used imitation learning + tree search + RL

- Beat 18-time world champion Lee Sedol

AlphaGo Zero (October 2017)

- Simplified version of AlphaGo

- No longer using imitation learning

- Beat (at the time) #1 ranked Ke Jie

Alpha Zero (December 2018)

- Generalized to other games: Chess and Shogi

MuZero (November 2019)

- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017

Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self -play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019
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AlphaGo: (January 2016)

- Used imitation learning + tree search + RL

- Beat 18-time world champion Lee Sedol

AlphaGo Zero (October 2017)

- Simplified version of AlphaGo

- No longer using imitation learning

- Beat (at the time) #1 ranked Ke Jie

Alpha Zero (December 2018)

- Generalized to other games: Chess and Shogi

MuZero (November 2019)

- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017

Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self -play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

November 2019: Lee Sedol 

announces retirement

“With the debut of AI in 

Go games, I've 

realized that I'm not at 

the top even if I 

become the number 

one through frantic 

efforts”

“Even if I become the 

number one, there is 

an entity that cannot 

be defeated”

Quotes from: https://en.yna.co.kr/view/AEN20191127004800315

Image of Lee Sedol is licensed under CC BY 2.0
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Case Study: Playing Games

https://en.yna.co.kr/view/AEN20191127004800315
https://commons.wikimedia.org/wiki/File:Lee_Se-Dol_-_2016_(cropped).jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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More Complex Games

StarCraft II: AlphaStar 

(October 2019)

Vinyals et al, “Grandmaster 

level in StarCraft II using multi-

agent reinforcement learning”, 

Science 2018

Dota 2: OpenAI Five (April 2019)

No paper, only a blog post: 

https://openai.com/five/#how-

openai-five-works

47

https://openai.com/five/#how-openai-five-works
https://openai.com/five/#how-openai-five-works
https://openai.com/five/#how-openai-five-works
https://openai.com/five/#how-openai-five-works
https://openai.com/five/#how-openai-five-works
https://openai.com/five/#how-openai-five-works
https://openai.com/five/#how-openai-five-works
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In Robotics: Locomotion

48

Learning Quadrupedal Locomotion over Challenging Terrain

Science Robotics 2020

Unitree, Dec. 2024
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In Robotics: Dexterous Manipulation

49

Solving Rubik's Cube with a Robot Hand

OpenAI 2019

Visual Dexterity: In-Hand Reorientation of Novel and Complex Object 

Shapes, Science Robotics 2023
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Problems of Model-Free RL

• Learns from trial and error

• Require extensive interactions

50
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Problems of Model-Free RL

• Learns from trial and error

• Require extensive interactions

• Safety concerns

• Limited interpretability

• What if things go wrong?
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Problems of (Model-Free) RL

• Learns from trial and error

• Require extensive interactions

• Safety concerns

• Limited interpretability

• What if things go wrong?

• Humans maintain an intuitive 

model of the world

• Widely applicable

• Sample efficient
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Overview

- Problem formulation

- Robot perception

- Reinforcement learning

- Model learning & model-based planning

- Imitation learning

- Robotic foundation models

- Remaining challenges
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Model Learning & Model-Based Planning

54
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Model Learning & Model-Based Planning

Learn a model of the world’s state transition function 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) and then use 

planning through the model to make decisions

Model might not be accurate enough.

1. Execute the first action      

2. Obtain new state

3. Re-optimize the action sequence using gradient 

descent 

Key: GPU for parallel sampling / gradient descent

Key question: what should be the form of 𝑠𝑡?
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Pixel Dynamics - Deep Visual Foresight

Finn and Levine, “Deep Visual Foresight for Planning Robot Motion”, ICRA 2017
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Pixel Dynamics - Deep Visual Foresight

57

Finn and Levine, “Deep Visual Foresight for Planning Robot Motion”, ICRA 2017
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Keypoint Dynamics

Manuelli, Li, Florence, Tedrake, “Keypoints into the Future: Self-Supervised Correspondence in Model-Based Reinforcement Learning”, CoRL 2020
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Particle Dynamics

Wang, Li, Driggs-Campbell, Fei-Fei, Wu, “Dynamic-Resolution Model Learning for Object Pile Manipulation”, RSS 2023
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Granola

Carrot

Rice

Candy
24x speed
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Push to all letters

24x speed
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1
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3

4
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1 6

2

3

5 8

4 9

11

14 15

13

12

10

7

z

x

y

Haochen Shi*, Huazhe Xu*, Samuel Clarke, Yunzhu Li, and Jiajun Wu

RoboCook: Long-Horizon Elasto-Plastic Object Manipulation with Diverse Tools
Conference on Robot Learning (CoRL) 2023 – Best Systems Paper Award
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Particle Dynamics
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Particle Dynamics – Future Prediction



Yunzhu Li Lecture 17 - May 29, 2025

P
re

d
ic

ti
o

n
G

ro
u

n
d

 

T
ru

th

P
re

ss
in

g

Top

Pers.

Side

65

Particle Dynamics – Future Prediction
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Particle Dynamics – Future Prediction
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Overview

- Problem formulation

- Robot perception

- Reinforcement learning

- Model learning & model-based planning

- Imitation learning

- Robotic foundation models

- Remaining challenges
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Imitation Learning

69

Supervised learning from a 

demonstration dataset
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Learning from Demonstrations

70
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Behavior Cloning (BC)

71
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Iterative Collection of Expert Demonstrations
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Inverse Reinforcement Learning (IRL)

73
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Inverse Reinforcement Learning (IRL)
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Implicit Behavior Cloning (IBC)

75
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Implicit Behavior Cloning (IBC)
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Diffusion Policies

77
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Overview

- Problem formulation

- Robot perception

- Reinforcement learning

- Model learning & model-based planning

- Imitation learning

- Robotic foundation models

- Remaining challenges
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Robotic Foundation Models

❑ What is a Robotic Foundation Model?

◻ No explicit representation of states / transition functions

◻ A policy that maps (observation/state, goal) to action

80
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Robotic Foundation Models

❑ What is a Robotic Foundation Model?

◻ No explicit representation of states / transition functions

◻ A policy that maps (observation/state, goal) to action

Imitation Learning

(Chi et al., Diffusion Policy)

Reinforcement Learning

(OpenAI, Solving Rubik’s Cube)
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Robotic Foundation Models

❑ What is a Robotic Foundation Model?

◻ No explicit representation of states / transition functions

◻ A policy that maps (observation/state, goal) to action

❑ Current Foundational Vision-and-Language Models

◻ The output may not always be perfect.

◻ It will always generate something reasonable.

❑ Robotic Foundation Models

◻ The synthesized action may not always be optimal.

◻ The generated trajectory will always be beautiful and reasonable.

❑ Different names

◻ Vision-Language-Action Models (VLAs), Large behavior models (LBMs)
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Robotic Foundation Models

RT-1 (Dec. 2022)

RT-2 (Jul. 2023)

RT-X (Oct. 2023)

OpenVLA (Jun. 2024)

Pi-Zero (Oct. 2024)

Helix (Figure)

Hi-Robot (PI)

Gemini Robotics

Pi-0.5 (PI)

GR00T (Nvidia)
DYNA-1

…
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Pi-Zero by Physical Intelligence

❑ First released in October 2024

84
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Pi-Zero by Physical Intelligence

Cross-Embodiment Dataset
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Pi-Zero by Physical Intelligence

Pre-Training
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Pi-Zero by Physical Intelligence

Post-Training
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Pi-Zero by Physical Intelligence
Simple in-distribution tasks
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Pi-Zero by Physical Intelligence
Complicated in-distribution tasks
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Pi-Zero by Physical Intelligence

Unseen tasks
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Video I recorded yesterday at PI
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Pi-Zero by Physical Intelligence
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Overview

- Problem formulation

- Robot perception

- Reinforcement learning

- Model learning & model-based planning

- Imitation learning

- Robotic foundation models

- Remaining challenges
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Evaluation of the Robot Learning Models

❑ Evaluation is primarily conducted in the real world

◻ Real-world evaluation is costly and noisy

■ “We have large enough budget such that we can still make progress.”

◻ Weak correlation between training loss and real-world success rate.

■ Training objectives vs task-specific metrics, training vs testing horizons

ALOHA 2
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Evaluation of the Robot Learning Models
❑ What about evaluation in simulation?

◻ Sim-to-real gap: rigid / deformable / cloth

◻ Efficient asset generation

◻ Digitalization of the real world

◻ Procedural generation of realistic and diverse scenes

◻ Correlation between sim and real

Habitat 3.0

ImageNet in 

Embodied AI?
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Foundation Policy → Foundation World Models

❑ My definition of world models: action-conditioned future prediction

Foundation

Policy

Foundation

World Models

Action-Conditioned 

Robot Interaction Data

96



Yunzhu Li Lecture 17 - May 29, 2025

Foundation Policy → Foundation World Models

World Models

Nvidia Cosmos - World Foundation ModelDayDreamer

1X World Models

❑ 3D?

❑ Structural Prior?

❑ Learning + Physics?

❑ Corr. w/ Real World

97
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Foundation Models for Embodied Agents

❑ Current foundation models are not tailored for embodied agents

◻ LLM/VLM can fail in embodied-related tasks

◻ Limited understanding of geometric / embodied / physical interactions

◻ Reinforcement learning (RL) from human feedback → RL from 

Embodied Feedback

GPT Segment Anything DINOv2

98



Yunzhu Li Lecture 17 - May 29, 2025

Adaptation / Life-Long Learning

❑ Adapt to new scenarios

❑ Adapt to human preferences

❑ Self improve / life-long learning

Adapt to new scenarios Improve through experienceAdapt to human preferences
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Practical Considerations of Foundation Models

❑ Every robotics work is a system work

❑ System-level considerations: delays / computing / modules talking 

to each other

Figure AI: Helix

Physical Intelligence: Hi-Robot
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Overview

- Problem formulation

- Robot perception

- Reinforcement learning

- Model learning & model-based planning

- Imitation learning

- Robotic foundation models

- Remaining challenges
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Images generated using AI

Towards foundational robotic models
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Next time:  Human-Centered AI
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