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Many Ways to Represent Geometry

* Explicit
* Point cloud

* Polygon mesh
* Subdivision, NURBS

* Implicit
* Lever sets
» Algebraic surface
« Distance functions

* Each choice best suited to a different task/type of geometry -

Slide credit: Ren Ng



Representation Considerations

* Needs to be stored In the computer

e Creation of new shapes
* Input metaphors, interfaces...

e Operations
* Editing, simplification, smoothing, filtering, repairing...

* Rendering

» Rasterization, ray tracing, neural rendering...

* Animation



Point Clouds

* Simplest representation: only points, no connectivity
* Collection of (x,y,z) coordinates, possibly with normal

 Points with orientation are called surfels

Shading needs normals!
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Slide credit: Hao Su



Point Clouds

Simplest representation: only points, no connectivity

Collection of (x,y, z) coordinates, possibly with normal

Points with orientation are called surfels

Often results from scanners

Potentially noisy

Registration of multiple images

Set of raw scans




Point Clouds

e Easily represent any kind of geometry

Useful for large datasets

Difficult to draw In undersampled regions

Other limitations:
* No simplification or subdivision
* No direction smooth rendering
* No topological information




Polygonal Meshes

 Boundary representations of objects

Slide credit: Hao Su



A Large Triangle Mesh

David

Digital Michelangelo Project
28,184,526 vertices
56,230,343 triangles

Slide credit: Ren Ng



A Very Large Triangle Mesh

Google Earth

Dat_a SI0, NOAA, U.S. Navy, NGA, GEBCO
Data LDEO-Columbia, NSF, NOAA
Data CSUMB SFML, CA OPC

Data MBARI GOOSIC earth

Slide credit: Ren Ng



Mesh Upsampling - Subdivision
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Increase resolution via interpolation

Slide credit: Ren Ng



Mesh Downsampling - Simplification

Decrease resolution; try to preserve shape/appearance

Slide credit: Ren Ng



Mesh Regularization

Modify sample distribution to improve quality

Slide credit: Ren Ng



Shape Representations

Non-parametric

Points



Parametric Representation

Range of a function f: X —Y X CR™ Y CR"

Surface in3D: m=2,n=3

Slide credit: Hao Su



Parametric Curves

Explicit curve/circle in 2D

p: R — R?

t = p(t) = (z(1),y(t)) /\
p(t) = r(cos(t),sin(t)) \J >

t € |0,2m)

Slide credit: Hao Su



Parametric Surfaces

Sphere in 3D

s:R* — R’

s(u,v) = r(cos(u) cos(v), sin(u) cos(v), sin(v))

(u,v) € |0,2m) X |[—7/2,7/2]

Slide credit: Hao Su



Bézier Curves

P1

Bézier curves
Po

P2

P3

Plecewise Bézier

Slide credit: Ren Ng



Bézier Surfaces

Use tensor product of Bézier curves to get a patch:

Multiple Bézier patches form a surface.

Slide credit: Ren Ng



Subdivision Curves/Surfaces
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Shape Representations

Explicit

Non-parametric

Parametric

Splines Subdivision
Surfaces



“Explicit” Representations of Geometry

All points are given directly.

Generally: f:R? = R% (u,v) = (2,y, 2)
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Slide credit: Ren Ng



Explicit Surface — Sampling |Is Easy

f(u,v) = ((2 4+ cosu) cosv, (2 + cosu) sin v, sin u)

y

What points lie on this surface?

Just plug in (u, v) values!

Z

Explicit representations make some tasks easy. | |
Slide credit: Ren Ng



Explicit Surface — Inside/Outside Test Hard

f(u,v) = (cosu sinv, sinu sinv, cosv)

s (3/4,1/2,1/4) inside? g

Some tasks are hard with explicit representations.
Slide credit: Ren Ng



“Implicit’” Representations of Geometry

Based on classifying points
e Points satisfy some specified relationship.

E.g., sphere: all points in 3D, where x2 +y? +z%2 =1

f(x,y)

More generally, f(x,y,z) =0 +1

-1

Slide credit: Ren Ng



Implicit Surface — Sampling Can Be Hard

flw,y.2) = (2= Va2 +y?)° +2° -1

What points lie on f(x,y,z) = 07 y

Some tasks are hard with implicit representations.
Slide credit: Ren Ng



Implicit Surface — Inside/Outside Tests Easy

flz,y,2) =2 +9y* +2° — 1

s (3/4,1/2,1/4) inside?

Just plug it in:
f(x,y,z) =—1/8<0
Yes, Inside.

Implicit representations make some tasks easy. | |
Slide credit: Ren Ng



Algebraic Surfaces (Implicit)

Surface Is zero set of a polynomial in x,y, z.

9
(x2+%+ 2_1)3 =
9y? 23
2_3
Tr -z + 20

More complex shapes?

Slide credit: Ren Ng



Constructive Solid Geometry (Implicit)

Combine implicit geometry via Boolean operations

Union

Difference

Intersection

@

ANB A\ B
@(me \(UUVUW)
Boolean expressions: / ~
/ \ / v\
9 ov
X Y U

/ v\
< 0
v Slide credit: Ren Ng



Distance Functions (Implicit)

Instead of Boolean, gradually blend surfaces together using

Distance functions:
Giving minimum distance (could be signed distance) from anywhere to object

388&00099»

Slide credit: Ren Ng



Distance Functions (Implicit)

Example: Blending (linear interp.) a moving boundary
B

A

A4

SDF(A)

\4

lerp(A, B)

<0 >0 <0 >0 *[

SDF(B)

lerp( SDF (A),
SDF(B))

SDF-1(lerp(
SDF(A), SDF(B)))



Scene of Pure Distance Functions (Not Easy!)

See http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm



Shape Representations

Non-parametric

Parametric

Explicit

Splines

Subdivision
Surfaces

Implicit
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Level Set Methods (Implicit)

Implicit surfaces have some nice features (e.g., merging/splitting).

But hard to describe complex shapes in closed form

Alternative: store a grid of values approximating function
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Surface i1s found where interpolated values equal zero.

Provides much more explicit control over shape (like a texture)

Slide credit: Ren Ng



Level Sets from Medical Data (CT, MRI, etc.)

% |
Level sets encode, e.g., constant tissue density
Slide credit: Ren Ng



Related Representation: Voxels

e Binary thresholding the volumetric grid




Shape Representations

Explicit Implicit

Non-parametric
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Al + Geometry: Datasets



Princeton Shape Benchmark

« 1814 Models
« 182 Categories

Shilane et al, 2004



Datasets Prior to 2014

Benchmarks Types # models # classes Avg # models per class
SHRECI14LSGTB Generic 8,987 171 53

PSB Generic 9074907 (train+test) 90+92 (train+test) 10+10 (train+test)
SHREC12GTB Generic 1200 60 20

TSB Generic 10,000 352 28

CCCC Generic 473 55 9

WMB Watertight (articulated) 400 20 20

MSB Articulated 457 19 24

BAB Architecture 2257 183+180 (function+form)  12+13 (function+form)
ESB CAD 867 45 19

Table 1. Source datasets from SHREC 2014: Princeton Shape Benchmark (PSB) [27], SHREC 2012 generic Shape Benchmark
(SHRECI2GTB) [16], Toyohashi Shape Benchmark (TSB) [29], Konstanz 3D Model Benchmark (CCCC) [32], Watertight Model Bench-
mark (WMB) [31], McGill 3D Shape Benchmark (MSB) [37], Bonn Architecture Benchmark (BAB) [33], Purdue Engineering Shape

Benchmark (ESB) [©].



Datasets for 3D Objects

e Large-scale Synthetic Objects: ShapeNet, 3M models
 ModelNet: absorbed by ShapeNet

e ShapeNetCore: 51.3K models in 55 categories
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Chang et al. ShapeNet. arXiv 2015
Wu et al. 3D ShapeNets. CVPR 2015



Objverse (800K) and Objverse-XL (10M)

Deitke et al. 2022, 2023
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10,933 RGBD scans

441 models
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Choi et al, arXiv 2016



CO3D

e 19,000 videos
e 50 categories

’ B

Reizenstein et al. ICCV 2021



From Objects to Parts

Link to WordNet Taxonomy AIignment+Symmetry Part Hierarchy Part Correspondences

ImageNet L Swivel chair Backrest

I Dim: 50 x 45 x5 cm
Material: foam, fabric
Mass: 5 Kg
Function: support .
1
Sea’/

J

*"cccccscscse”

I 1 L,

WordNet synset

Base

W P

Figure from the ShapeNet paper, Chang et al. arXiv 2015

ceoecscococvooes
o> - g
-.~
- g
-q

Swivel chair: a chair that swivels

on its base

Hypernyms: chair > seat > furniture > ...

Part meronyms: backrest, seat, base
LSisterterms:ar‘mchair‘, barber chair, J |]= J




Datasets for 3D Object Parts

Fine-grained Parts: PartNet
* Fine-grained (+mobility)
* |nstance-level

* Hierarchical

IFelyim

Bowl Clock  Dishwasher  Display Door

Q Ty ' ' ’ ‘ .::/0 S

Keyboard Knife Laptop Lamp Microwave Mug Refrigerator Chau Scissors

;/P
Earphone \

Faucet Hat Stor: age Furniture

Trash Can Vase Bottle

Mo et al. CVPR 2019. Slide credit: Hao Su



Datasets for Indoor 3D Scenes

Scanned Real Scenes: ScanNet Most recently:
« 2.5M Views in 1,500 RGBD scans * ARKIitScenes,
« 3D camera poses e ScanNet++ (with DSLR images)

« Surface reconstructions
e [nstance-level semantic segmentations

. Bedroom / Hot e | |
Living room /Lounge
Bathroom
Office
Misc. I
Conference Room
Kitchen M —
Bookstore / Library
Lobby nu—
Classroom
Apartment I
Hallwa
Basement Il
_ . Stairs
Dining Room .
Laundry Room
Laundromat ®
Closet
Gvml

0 50 100 150 200 250

Dai et al. CVPR 2017



Al + Geometry: Tasks

* P(S) or P(S|c) -—- Generative models

 Learning (conditional) shape priors

* Shape generation, completion, & geometry data processing

* P(c|S) --—- Discriminative models

e Learning shape descriptors

* Shape classification, segmentation, view estimation, etc.

« Joint modeling of 3D and 2D data
* Large-scale 2D datasets & very good pretrained models

 Differentiable projection/back-projection & differentiable/neural rendering

* Joint modeling of multi-modal data beyond visual (e.g., text)



Al + Geometry: Which Representation?

Explicit Implicit (Eulerian)

Non-parametric

Level Sets

/_\

O

/ "\ / v\
2,.2, .2 . O ' /g\
oty +z7=1 Q '

Splines Subdivision Algebraic Constructive

Surfaces Surfaces Solid Geometry

Parametric




Multi-View CNN

Su et al. ICCV 2015



Multi-View CNN

| View 1

£ View 2

0 View 3
/

View N

Su et al. ICCV 2015



Multi-View CNN

& T o,
’ 4 L %% CNN;
o [ | B0 aw,

b | T o,

CNNj;: a ConvNet extracting image features

Su et al. ICCV 2015



Multi-View CNN

g
Mg _
I ooing S

.

CNN;

View pooling: element-wise
max-pooling across all views

Su et al. ICCV 2015



Multi-View CNN

%% bathtub

. 5 e

}) ) % % pg(l)ehvr:g %%E%N NjﬁﬁaEEEE softmax dres:S T
%% toilet—
CNN, CNN,: a second ConvNet

producing shape descriptors

Su et al. ICCV 2015



Experiments — Classification & Retrieval

Non-deep {

Classification Retrieval

Method (Accuracy) (mAP)
SPH 68.2% 33.3%
LFD 75.5% 40.9%
3D ShapeNets 77.3% 49.2%
FV, 12 views 84.8% 43.9%
CNN, 12 views 88.6% 62.8%
MVCNN, 12 views 89.9% 70.1%
MVCNN+metric, 12 views 89.5% 80.2%
MVCNN, 80 views 90.1% 70.4%
MVCNN+metric, 80 views 90.1% 79.5%

On ModelNet 40

Su et al. ICCV 2015



Multi-View Representations

* Indeed gives good performance
« Can leverage vast literature of image classification

e Can use pretrained features

* Need projection

* What if the input is noisy and/or incomplete? e.g., point cloud

Slide Credit: Hao Su



Pixels -> Voxels

« 3D Conv Deep Belief Networks (CDBN)

| 4000 l ' .'.“2“"““"'5
A A
S, WO IPECeRNHBEZwWE S S,
object label 10 1200 ; .

7 90N 0NSuNSNEYINE,.
512 filters of
stride 1 4T s "“"”‘."“““
160 filters of % ns. r. “ ‘ &' "’t.‘ tLZ
stride 2 _1/,

48 filters of
stride 2

= |30

ey

S

ot Bt L4 F
PIR ST 2y,

Wu et al. CVPR 2015

|

3D voxel input



Generative Modeling

10 classes SPH [18] | LFD [¥] Ours
classification | 79.79 % | 79.87 % | 83.54%
retrieval AUC | 45.97% 51.70% | 69.28%
retrieval MAP | 44.05% 49.82% | 68.26%

40 classes SPH [18] | LFD [¥] Ours
classification 68.23% 75.47% | 77.32%
retrieval AUC | 34.47% 42.04% | 49.94%
retrieval MAP | 33.26% 40.91% | 49.23%

Table 1: Shape Classification and Retrieval Results.

toilet bathtub sofa

chair

nightstand table desk

Wu et al. CVPR 2015



3D-GANSs

shape network

shape 3D shape
code

Wu et al. NeurlPS 2016



Visual Object Networks (Geometry + Rendering)

differentiable projection

shape network 2 texture network
| Z
g D / depth
= @ o ) depth = =
shape 3D shape . > p - I 2D image
code ﬂ _ ﬂ
— silhouette  —
viewpoint texture code

TS

Wu et al. NeurlPS 2016 Zhu et al. NeurlPS 2018




Editing viewpoint, shape, and texture Interpolation in the latent space

viewpoint % % 5 shape .
Transferring shape and texture

shape texture
S . «r\m_ P - [ w
viewpoint ‘\‘;: 'S Y *‘-g =< 8 , Shape g
|mage S fa]

shape ‘@‘“

texture %-‘ -

texture both

Zhu et al. NeurlPS 2018
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Octave Tree Representat

e Constrain the computation near the surface

e Store the sparse surface signals
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Slide Credit: Hao Su



Dense 3D ConvNet

OctNet

Octree: Recursively Partition the Space

Dense 3D ConvNet

NN

(a) Layer 1: 32  (b) Layer 2: 16 (c) Layer 3: 8°

Riegler et al. OctNet. CVPR 2017

+

convolution pooling ~ eee ... convolution pooling

normal field

—

Wang et al. O-CNN. SIGGRAPH 2017



Memory Efficiency

Memory (GB) GPU Memory

Voxel CNN

64”3 12873 25673

O-CNN Resolution
—Voxel CNN

Slide Credit: Hao Su



Octree Generating Networks

Avoid O (n>) reconstruction

e Octree representation of shapes

* GGenerate the octree layer by layer

EF_

F

OGNProp

—_—

F
Octree Octree Octree
— level 1 level 2 level 3
85at | l ¢
[ propagated features b
] empty '
I filled
[ mixed : - ’
322 643 1283

Tatarchenko et al. ICCV 2017. Slide Credit: Hao Su



Eulerian -> Lagrangian

Explicit Implicit

Non-parametric

Voxels Level Sets

Parametric o 'b
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PointNet: Learning on Point Clouds

Object Classification
PointNet Object Part Segmentation

Semantic Scene Parsing

End-to-end learning for irregular point data l
Unified framework for various tasks ' j’ mug?
“ table?
car?

Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas.
PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation. (CVPR’17)

Classification

PointNet
R
By

’ _ﬁ"

i

Part Segmentation

Semantic Segmentation

Slide credit: He Wang



Invariances

The model has to respect key desiderata for point clouds:
Point Permutation Invariance

Point cloud is a set of unordered points

Sampling Invariance

Output a function of the underlying geometry and not the sampling

Slide credit: He Wang



Permutation Invariance: Symmetric Functions

JXX e %,) = f (X, 53X, 5 X, ), X, eR”

Examples:

f(x,%,,...,x, ) =max{x,,X,,...,xX }

f(x,%,....x,)=x,+x,+...+x,

How can we construct a universal family of

symmetric functions by neural networks?
Slide credit: He Wang



Construct Symmetric Functions by NNs

Simplest form: directly aggregate all points with a symmetric operator g
Just discovers simple extreme/aggregate properties of the geometry.

(1,2,3)

(1,1,1) g =max

(2,3,2) — 30— (234)

(2,3.,4)

Slide credit: He Wang



Construct Symmetric Functions by NNs

f(x,,%,,...,x )=y og(h(x,),...,h(x,)) is symmetricif gissymmetric

e’ h .
: .
' (1,23)— ,
I I
: (2,3,2) — _’I E PointNet (vanilla)
: : 0
" I
“~ (213;4) — "'

Slide credit: He Wang



Graph NNs on Point Clouds

* Points -> Nodes
 Neighborhood -> Edges
 Graph NNs for point cloud processing

¢ 0000 0®®
0 QC.QQ Edtony

/\. ,//\.

\

HEEEENEN X,
li4

X. X.
I J

Wang et al. TOG 2019



Distance Metrics for Point Clouds

Chamfer distance We define the Chamfer distance be-
tween S1, S C R? as:

don(51.59 3 il —
cp(S1,52) = HEHSI; |z —ylly + Hellsri |z — vyl
reST yESo

Earth Mover’s distance Consider S;, .55 C R? of equal
size s = |S1| = |S2|. The EMD between A and B is defined
as:

dpmp(S1,52) =  min > e = o)

where ¢ : S1 — S5 is a bijection.

A Point Set Generation Network for 3D Object
Reconstruction from a Single Image, CVPR 2016

~
P

—

]
-

Slide credit: He Wang



Non-Parametric -> Parametric

Explicit Implicit

Non-parametric

Level Sets
Parametric Pt 'b
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Parametric Decoder: AtlasNet

Generated
Latent shape Generated Latent shape 3D point
representation 3D points representation
o % — MLP — L
’ MLP e .‘..’.:..', Sampled E
o ° 2D point
[ ]
K generated
3D points
Latent shape — MLP 1 —
Given the output points form a smooth surface, representation .

enforce such a parametrization as input.
MLP(z,u,v) -> point

2D point L MLP K —

Groueix et al. CVPR 2018



Results

Input image Voxel Point cloud AtlasNet

Groueix et al. CVPR 2018



Explicit -> Implicit

Explicit Implicit

Non-parametric

Level Sets
Parametric /?\ 'b
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Deep Implicit Functions

[ I
: I |/ = g Projection
; I 1‘ : ° . (Rasterization)
: B &Y s - <
: by 0° Differentiable
: : \ rendering
: I - - - - - - -z zzzZzZzZzZZ=-Zz--
: ; I O-------- >
Voxel Point cloud Mesh i Occupancy field = .
P Pepdly e Nt m-_-__d
+Topology +Topology -Topology | +Topology : «— — é(p;)
. . : . : : | ; . Field b Pj
-Fidelity -Fidelity +Fidelity | ++Fidelity [ (11: tI;m ; m§ H-----N g >
o ; ' - I ay tracing)  —________
a) Explicit representation b) Implicit surface 1 S E UMy E' ______ S

Liu et al. Learning to Infer Implicit Surfaces without 3D Supervision. NeurlPS 2019

Lo
0622
+ Regular o
0.149

o2 Decision
_— boundary
*  of implicit

surface

§

- Irregular + Regular - Irregular ; SDI:‘".;O
+ Geometry - Geometry +Geometry + Geometry @ SDF<o’
- Learning + Learning - Learning + Learning o

(a) Explicit representations (b) Voxels (c) Point cloud (d) Level set

Figure 2. Four common representations of 3D shape along with their advantages and disadvantages. .

Deep Level Sets: Implicit Surface Representations for 3D Shape Inference. 2019 DeepSDF. CVPR 2019



(a) Voxel
¥ '
Voxel

+Topology
-Fidelity
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+ Geometry

- Learning

¥
(b) Point (c) Mesh
3 om "
! \ {4
Point cloud
+Topology
-Fidelity

a) Explicit representation

-Topology
+Fidelity

(d) Ours

Occupancy field

+Topology
++Fidelity

b) Implicit surface

Occupancy Networks
CVPR 2019

|
|
|
|
|
\

|:| = Chen and Zhang.

g U U Learning Implicit Fields
3 = e CVPR 2019

' . ------------ N
g Projection |
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rendering /l
______________________________ .
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Liu et al. Learning to Infer Implicit Surfaces without 3D Supervision. NeurlPS 2019

L

+ Regular
- Geometry

+ Learning

L=

(a) Explicit representations

Deep Level Sets: Implicit Surface Representations for 3D Shape Inference. 2019

Figure 2. Four common representations of 3D shape along with their advantages and disadvantages.
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+ Regular o
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DeepSDF. CVPR 2019




Collection of Implicit Functions

Figure 1. This paper introduces Local Deep Implicit Functions, a 3D shape representation that decomposes an input shape (mesh on left
in every triplet) into a structured set of shape elements (colored ellipses on right) whose contributions to an implicit surface reconstruction
(middle) are represented by latent vectors decoded by a deep network. Project video and website at I1dif.cs.princeton.edu.

Genova et al. CVPR 2020



Implicit Functions for Geometry + Rendering

4

Ray 1
a a,
- g.t.
. 2
Ray Distance

NeRF. Mildenhall*, Srinivasan™, et al. ECCV 2020



Volume rendering is trivially differentiable.

Renderin model r ray r(t) = o + td: Ray

welghts

How much light I1s blocked earlier along ray: 3D volume

1—1
T; = [[(1—a)
]=1 ‘:amera

How much light I1s contributed by ray segment i: «;

Slide credit: Ben Mildenhall



Reconstruction & Novel View Synthesis with NeRF

Mildenhall*, Srinivasan™, et al. ECCV 2020



Generative Modeling with Implicit Geometry + Rendering

differentiable projection

shape network p texture network

________ %
e G depth
ﬂm@s;ﬂ S G m) - , depth = ma
shape 3D shape I ) - I 2D image
code ﬂ ﬂ

— silhouette ———
viewpoint texture code

Wu et al. NeurlPS 2016 Zhu et al. NeurlPS 2018



Generative Modeling with Implicit Geometry + Rendering

shape network 3D density & radiance field



https://scholar.google.at/citations?user=jeasMB0AAAAJ&hl=en

Explicit <-> Implicit

Explicit Implicit

Non-parametric

Level Sets
Parametric /?\ 'b
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NeRF parameterizes scenes densely, at every point in space.

Ray 1 /\ 2
[ T “I—gt 2
—~> Ray 2 /_“\4 y 2
[ | gl
Ray Distance

Slide credit: Vincent Sitzmann



Gaussian splatting parameterizes the scene sparsely, only
where density is nonzero.

3D Gaussian blobs
(extended points)
floating in space

Slide credit: Vincent Sitzmann



Reconstruction Using 3DGS

Menu Views _Capture > 30 Gaussians » camera Point Vie ture - » Camera Paint view

v

Die Aufnahme wurde
begonnen

Kerbl et al. ACM TOG (SIGGRAPH) 2023



Quality & Efficiency
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Shape Representations

Explicit Implicit

Non-parametric

Level Sets
Parametric o 'b
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Anatomy of a Structure-Aware Representation

Slide credit: Daniel Ritchie
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Anatomy of a Structure-Aware Representation

Slide credit: Daniel Ritchie
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Representing Element Structure

 Segmented Geometry

Slide credit: Daniel Ritchie

Simple to construct
Re-use models for unstructured geometry
Integrity of atomic elements not guaranteed

by construction (generative model must learn
to output coherent segments)

[WSH=x18]
[WSCR18]



Representing Element Structure

 Segmented Geometry

 Part Sets ‘
\ 4

* Part integrity guaranteed

* No relationships between parts (e.g. nothing
to prevent parts from “floating”)

Slide credit: Daniel Ritchie [SSK*17]



Sets of Volumetric Primitives

Tulsiani et al. CVPR 2017



Sets of Implicit Functions

Figure 1. This paper introduces Local Deep Implicit Functions, a 3D shape representation that decomposes an input shape (mesh on left
in every triplet) into a structured set of shape elements (colored ellipses on right) whose contributions to an implicit surface reconstruction
(middle) are represented by latent vectors decoded by a deep network. Project video and website at I1dif.cs.princeton.edu.

Genova et al. CVPR 2020



Representing Element Structure

* Segmented Geometry

 Part Sets @0

* Relationship Graphs ?
© 9

« (Can enforce important relationships (e.g.
connectivity)

* |In general, machine learning models for graph
generation still an open problem

Slide credit: Daniel Ritchie [WLWx19]



Representing Element Structure

 Segmented Geometry
 Part Sets

* Relationship Graphs
 Hierarchies

Slide credit: Daniel Ritchie

Tree generative models better understood
than graph generative models

Not all structures of interest can be (naturally)
expressed as trees

[WXLx11]
[LPX*10]



Representing Element Structure

 Segmented Geometry
 Part Sets

* Relationship Graphs

 Hierarchies
* Hierarchical Graphs

Slide credit: Daniel Ritchie

.
base - seat back
regular surface -~ frame
PN
leg <= leg runner --- bar < bar
| d J
N

Models both naturally hierarchical structure as
well as naturally lateral relationships

Graphs per level are simpler = easier to
generate than large, general-purpose graphs
Difficult to obtain / expensive to annotate

data in this format
IMGY*19a]



Hierarchical Graph of Shape Primitives
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Representing Element Structure

Input Program Output

 Segmented Geometry N
for (i<3)
ircle(-3%i+7,5)
. D S c%rc (_ ! : )
art >ets SR e SO
line(4,9,-3%i+7,6,arrow)

* Relationship Graphs

draw('Top', 'Rect',P=(6,0,0) ,G=(2,7,12))
* Hierarchies D ~ AT R ?

o _|iera rChical Graphs draw('Layer', 'Rect',P=(-7,0,0),G=(1,5,9))

¢ Programs * Subsumes all other representations (programs
can generate any of them)
* Express natural degrees of freedom via free
parameters
* Even more difficult to get data in this format

[ERSLT18]

Slide credit: Daniel Ritchie [TLS*19]



