

Spring 2025
Stanford CS231n 10th Anniversary

Lecture 15: 3D Vision

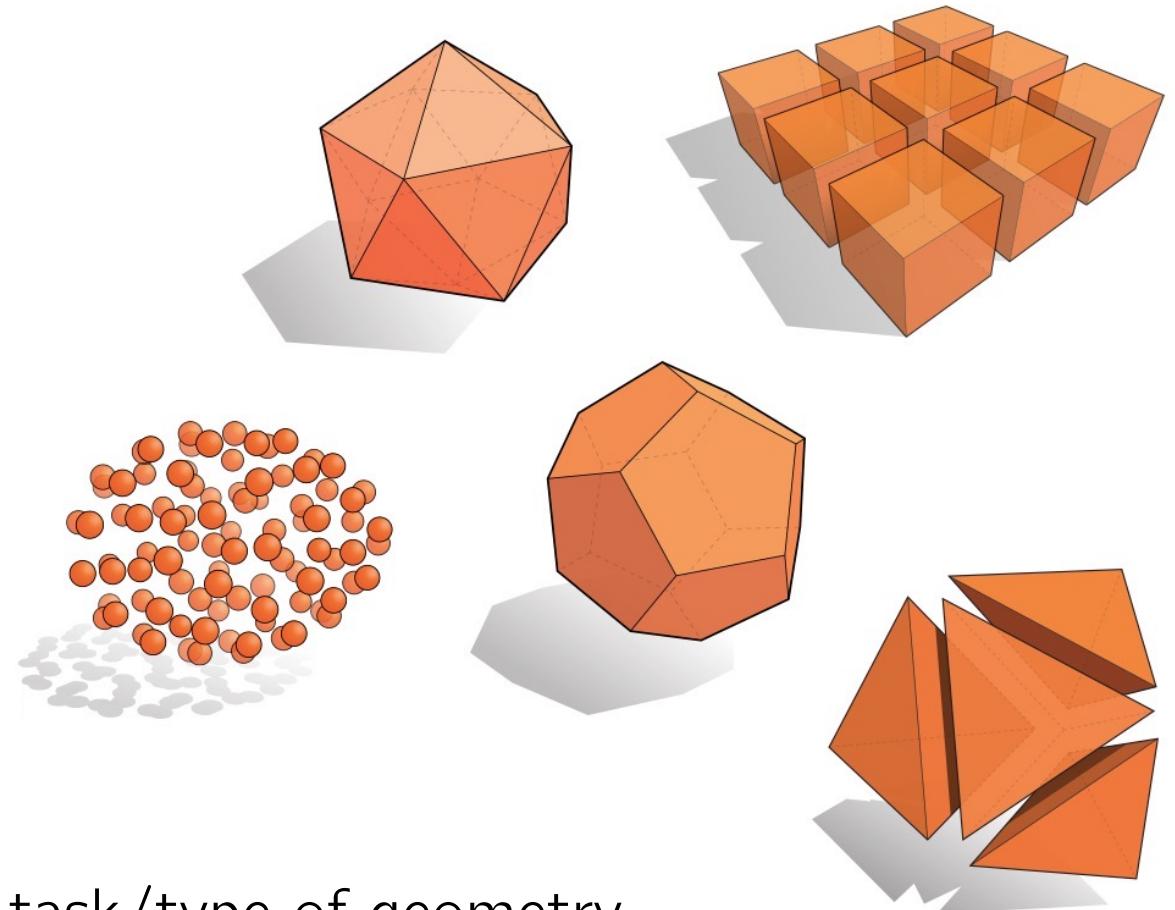
Jiajun Wu
May 22, 2025

Photograph by Adriana Franco, Your Shot

© COPYRIGHT ADRIANA FRANCO. ALL RIGHTS RESERVED.

Many Ways to Represent Geometry

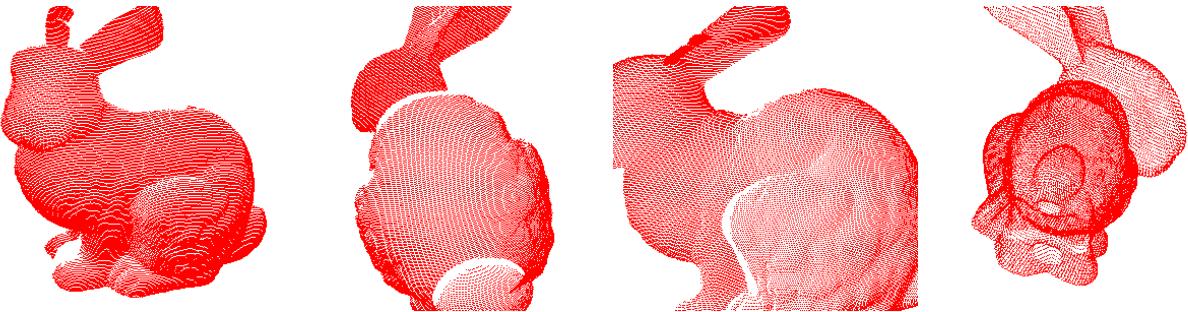
- Explicit
 - Point cloud
 - Polygon mesh
 - Subdivision, NURBS
 - ...
- Implicit
 - Lever sets
 - Algebraic surface
 - Distance functions
 - ...
- Each choice best suited to a different task/type of geometry



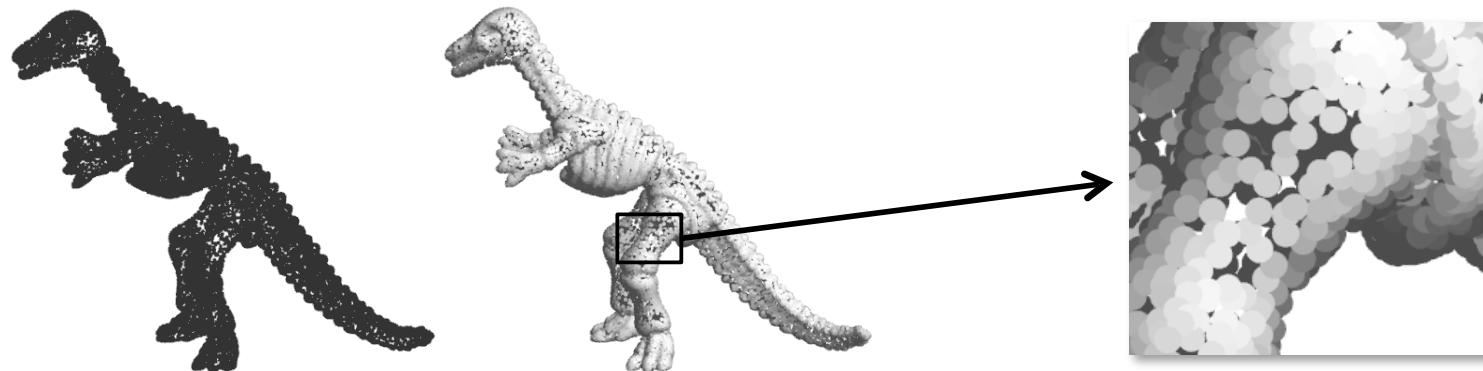
Representation Considerations

- Needs to be stored in the computer
- Creation of new shapes
 - Input metaphors, interfaces...
- Operations
 - Editing, simplification, smoothing, filtering, repairing...
- Rendering
 - Rasterization, ray tracing, neural rendering...
- Animation

Point Clouds

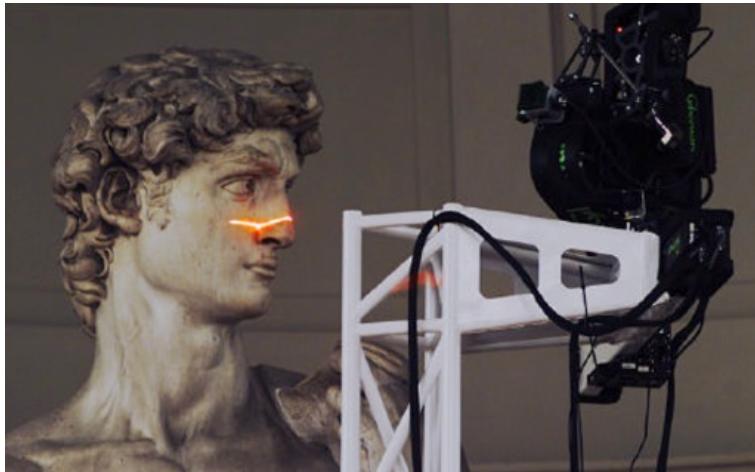
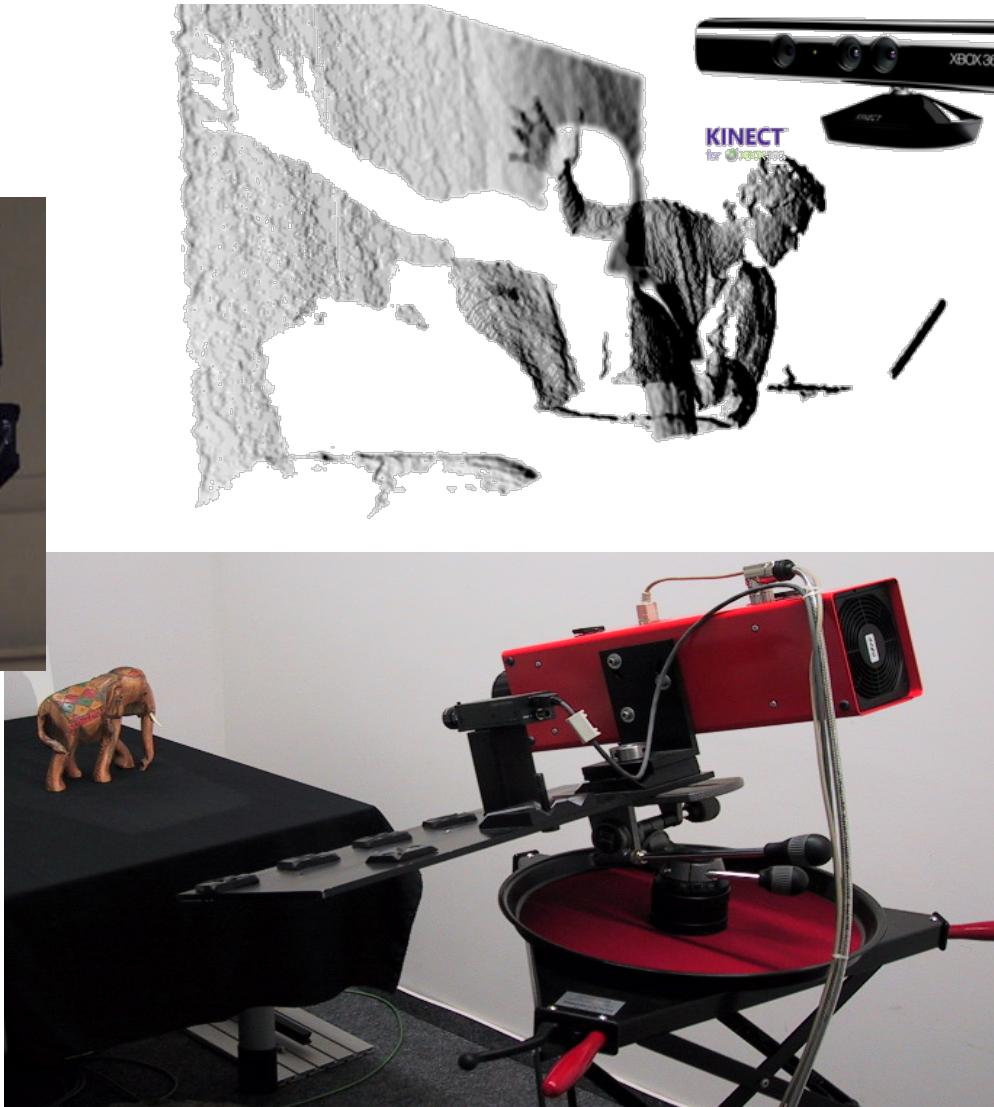
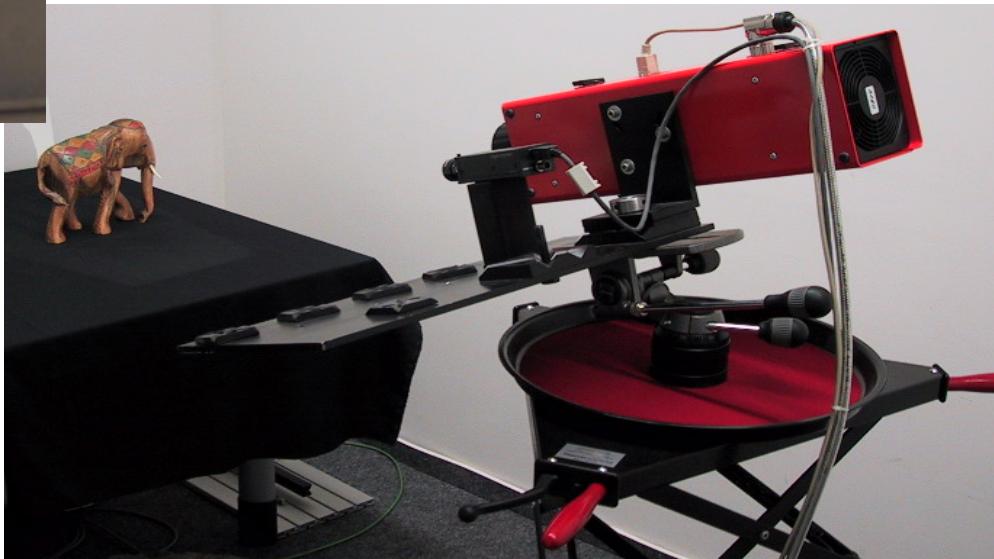


- Simplest representation: **only points**, no connectivity
- Collection of (x, y, z) coordinates, possibly with normal
- Points with orientation are called **surfels**



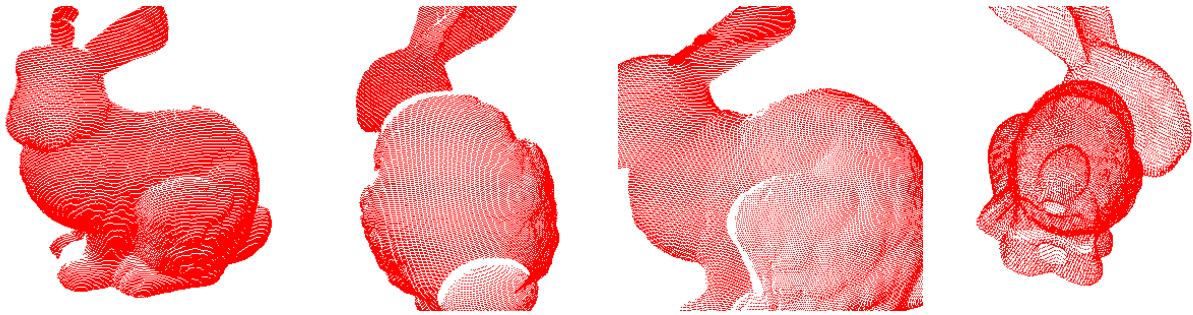
Shading needs normals!

Output of Acquisition



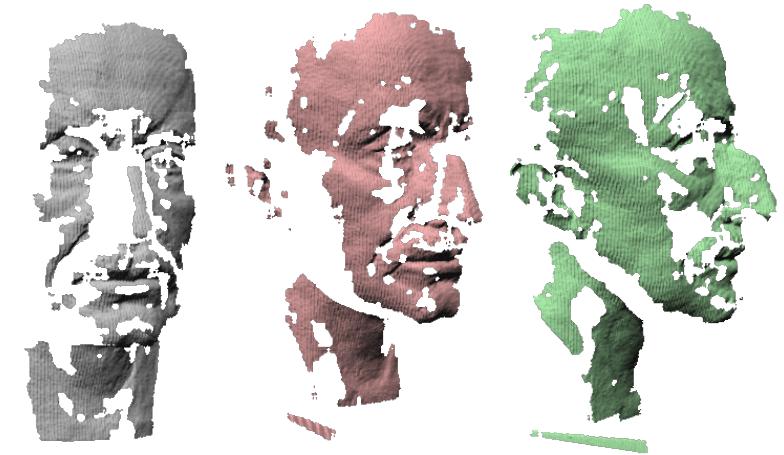
Slide credit: Hao Su

Point Clouds



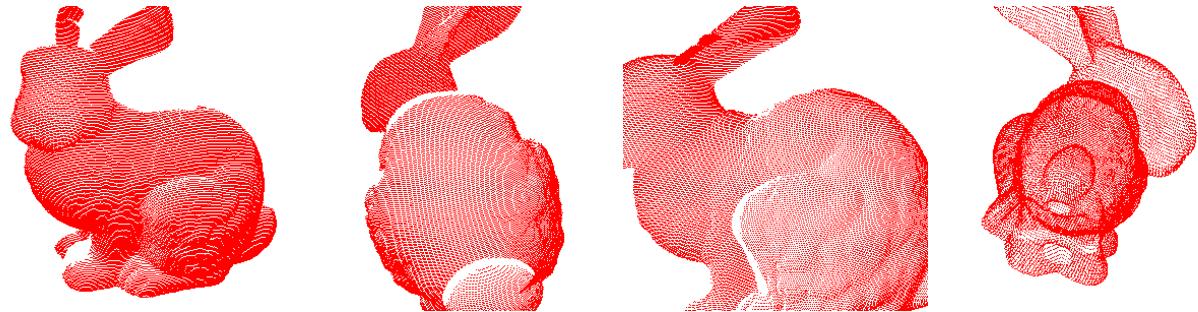
- Simplest representation: **only points**, no connectivity
- Collection of (x, y, z) coordinates, possibly with normal
- Points with orientation are called **surfels**

- Often results from scanners
- Potentially noisy
- Registration of multiple images

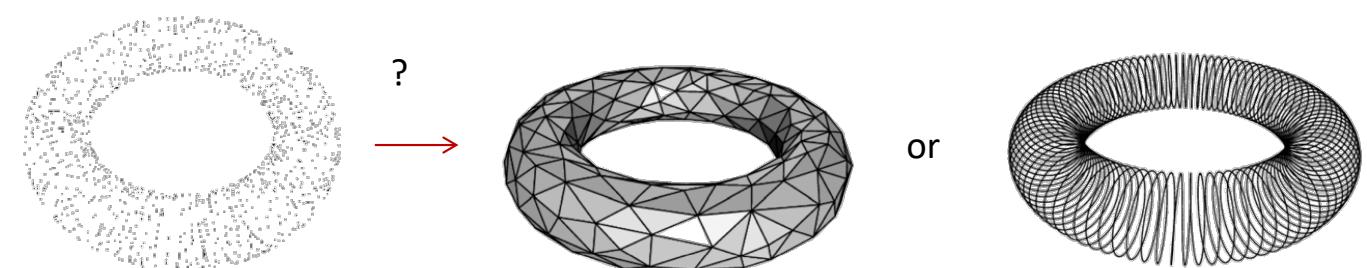


Set of raw scans

Point Clouds

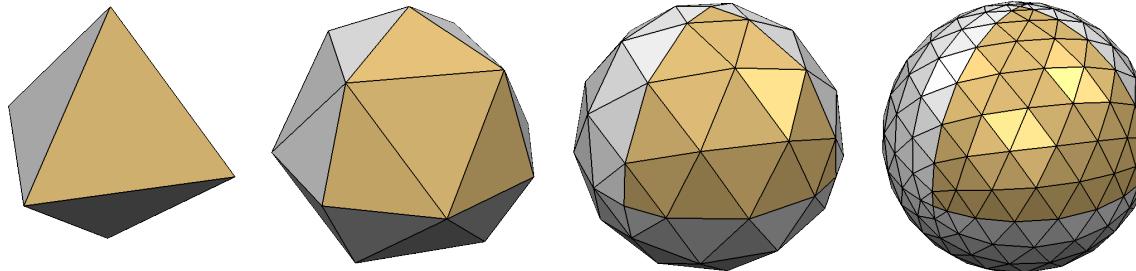
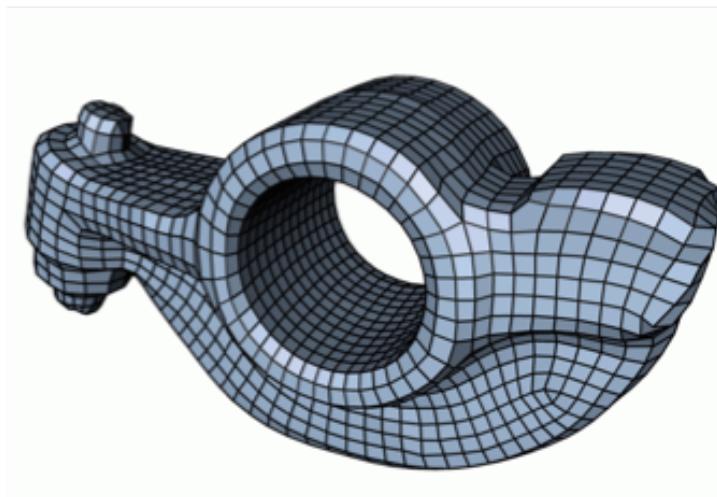


- Easily represent any kind of geometry
- Useful for large datasets
- Difficult to draw in undersampled regions
- Other limitations:
 - No simplification or subdivision
 - No direction smooth rendering
 - No topological information



Polygonal Meshes

- Boundary representations of objects



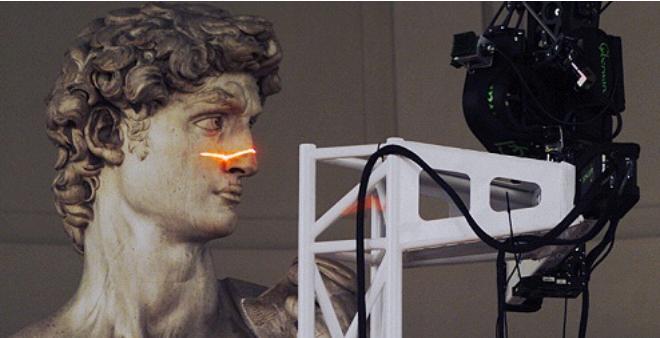
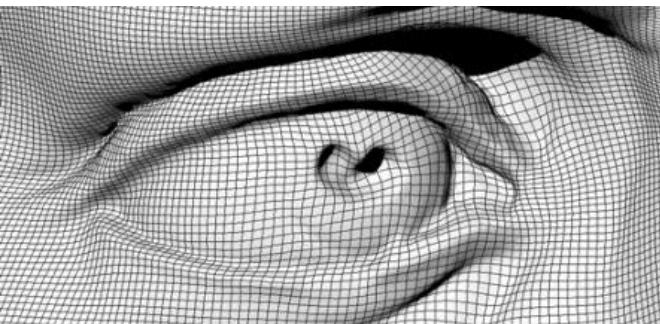
A Large Triangle Mesh

David

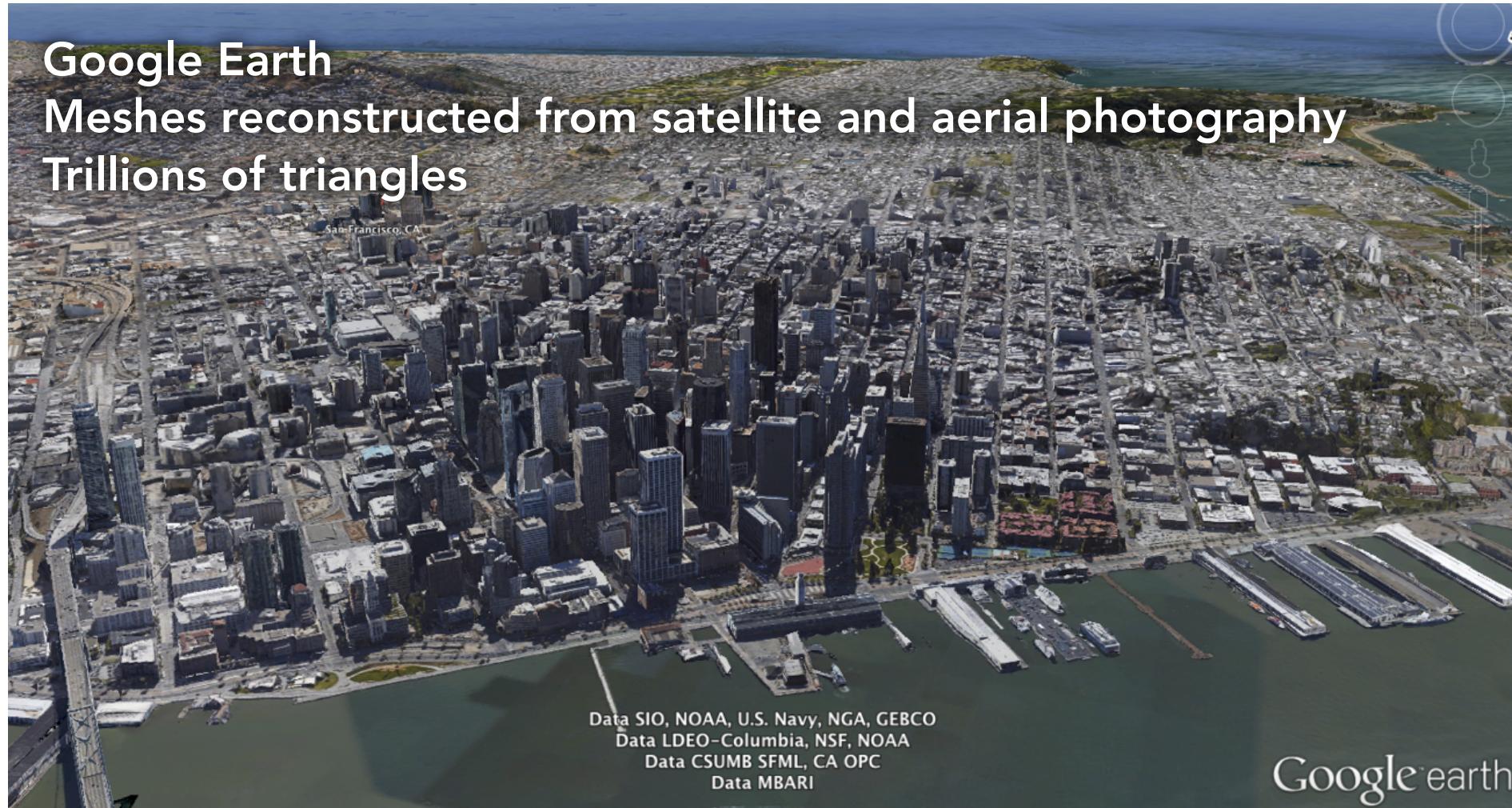
Digital Michelangelo Project

28,184,526 vertices

56,230,343 triangles

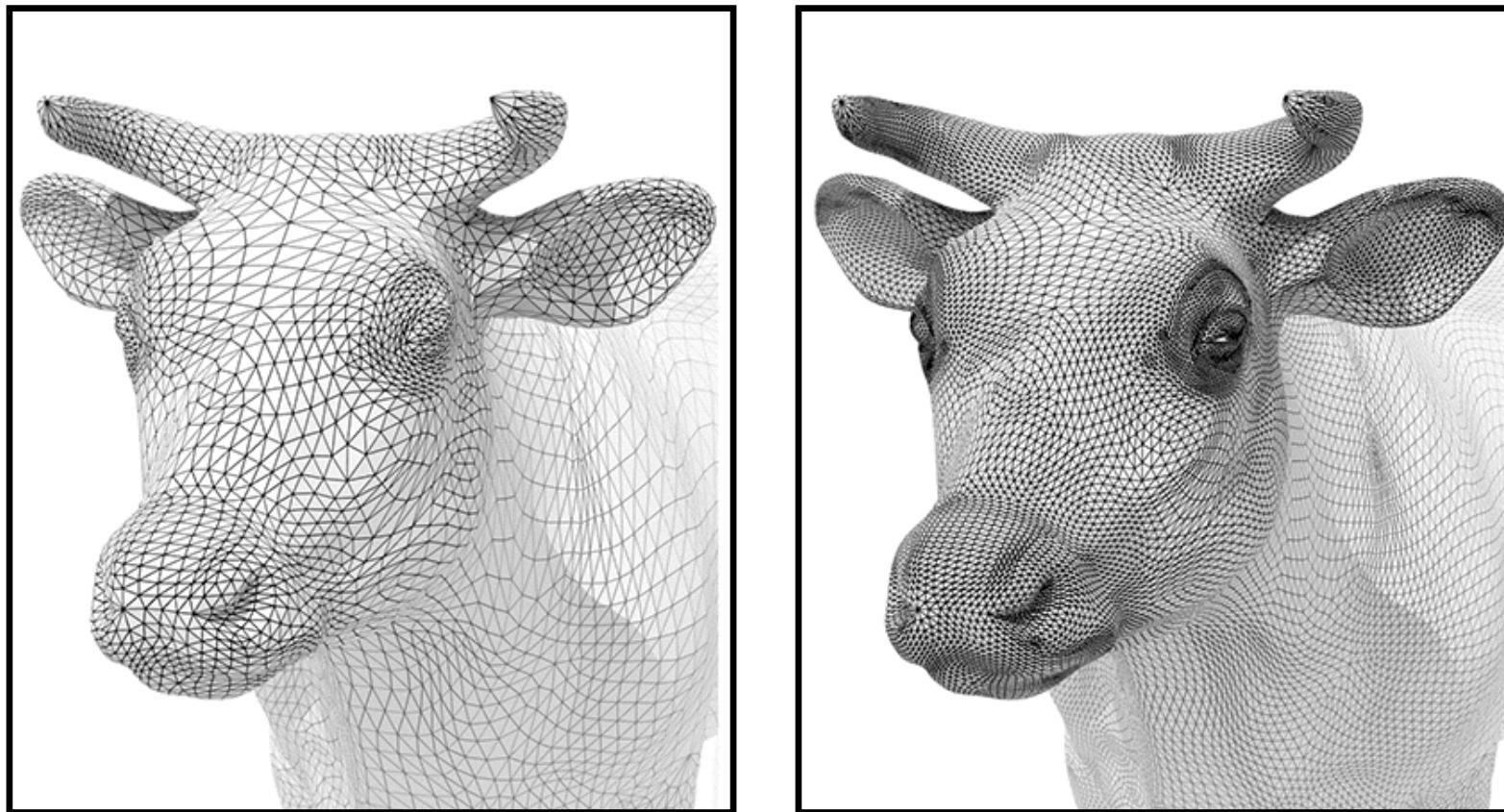


A Very Large Triangle Mesh



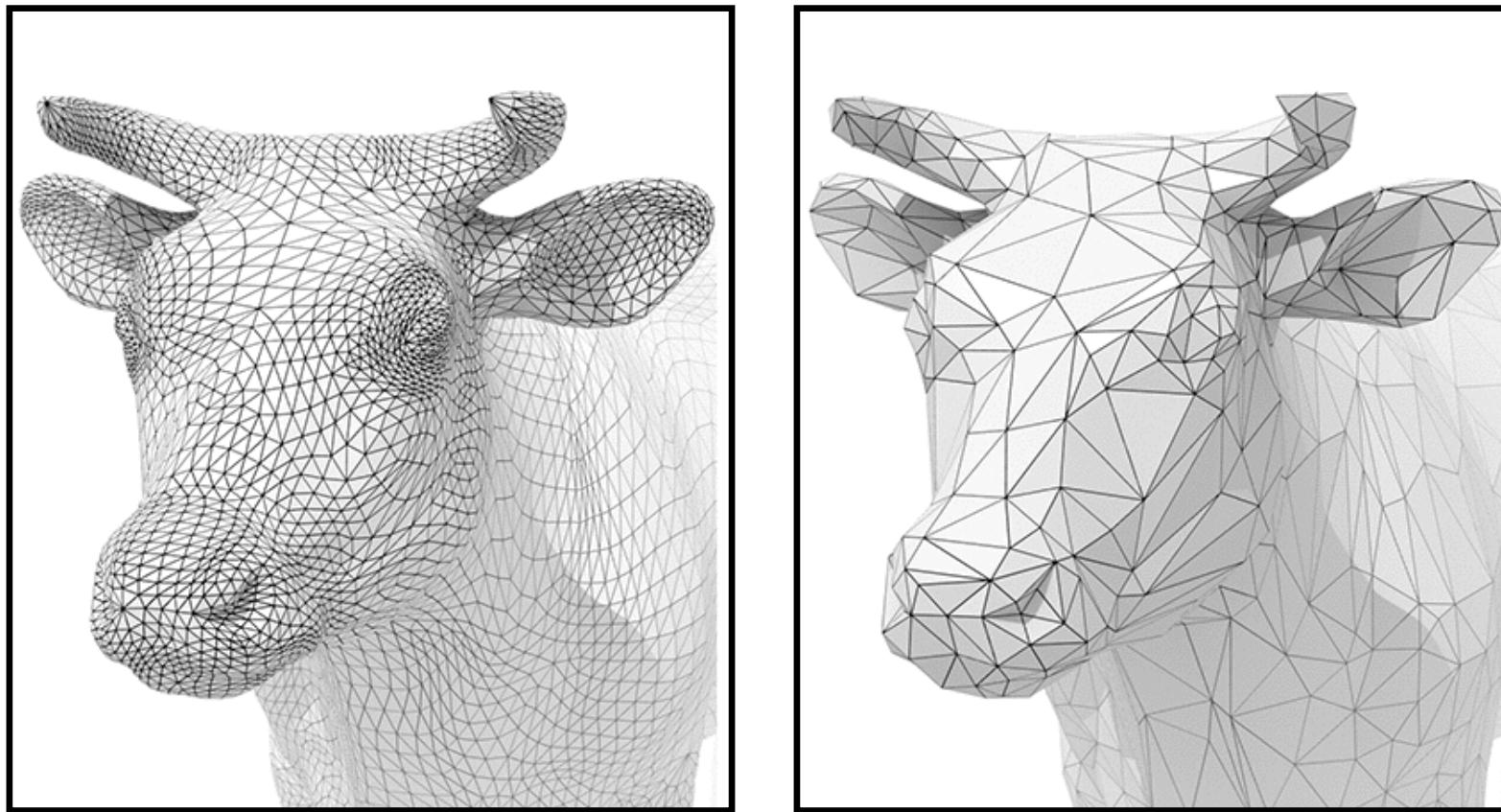
Slide credit: Ren Ng

Mesh Upsampling - Subdivision



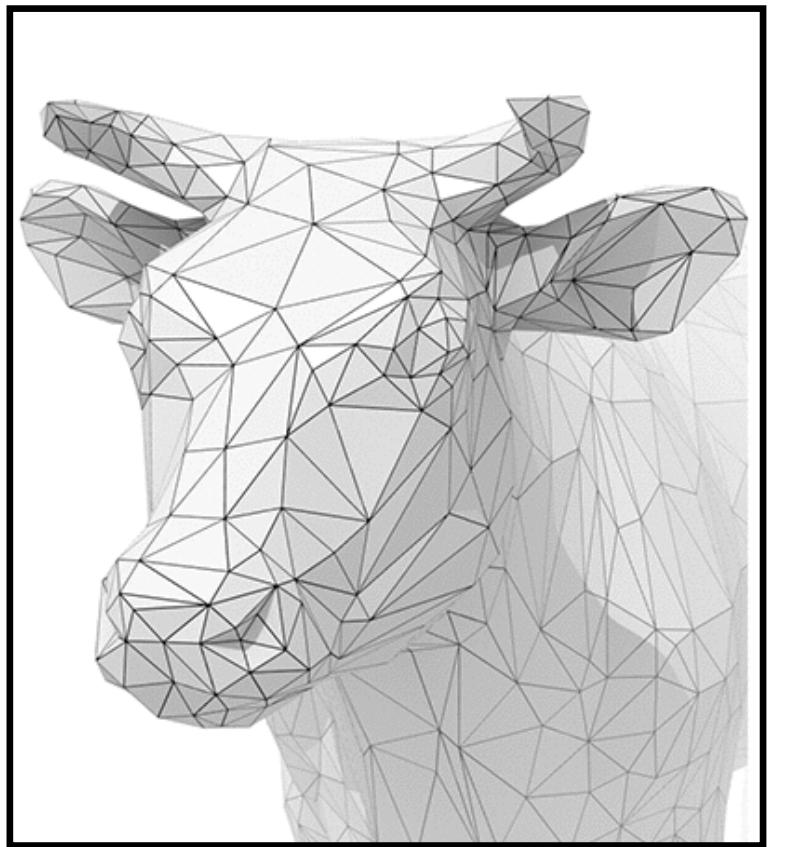
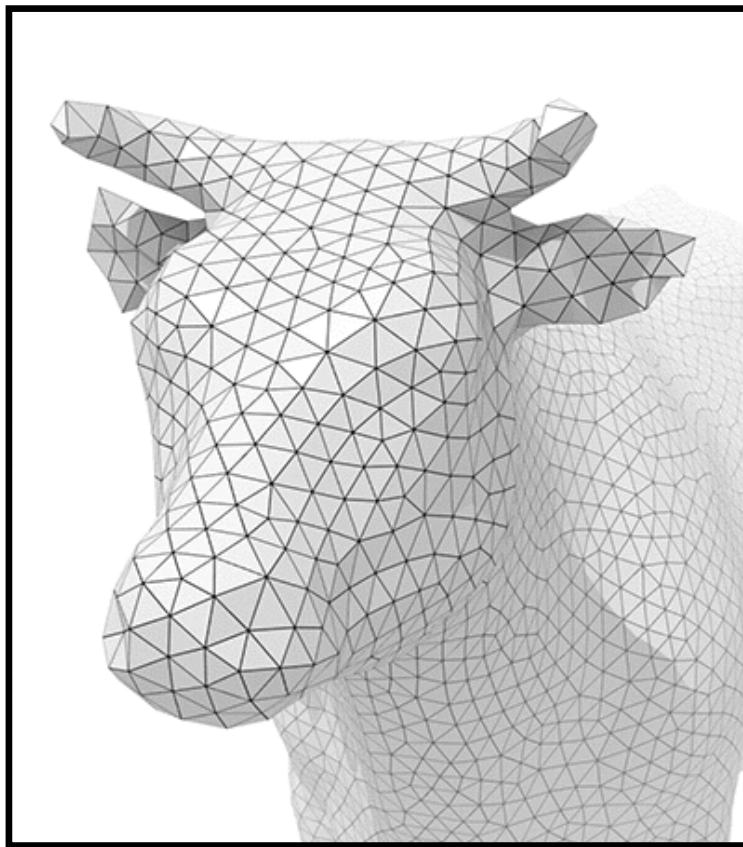
Increase resolution via interpolation

Mesh Downsampling - Simplification



Decrease resolution; try to preserve shape/appearance

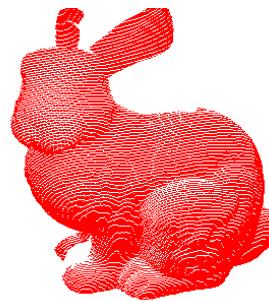
Mesh Regularization



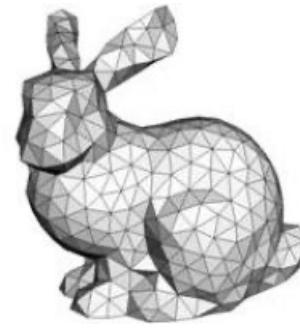
Modify sample distribution to improve quality

Shape Representations

Non-parametric



Points

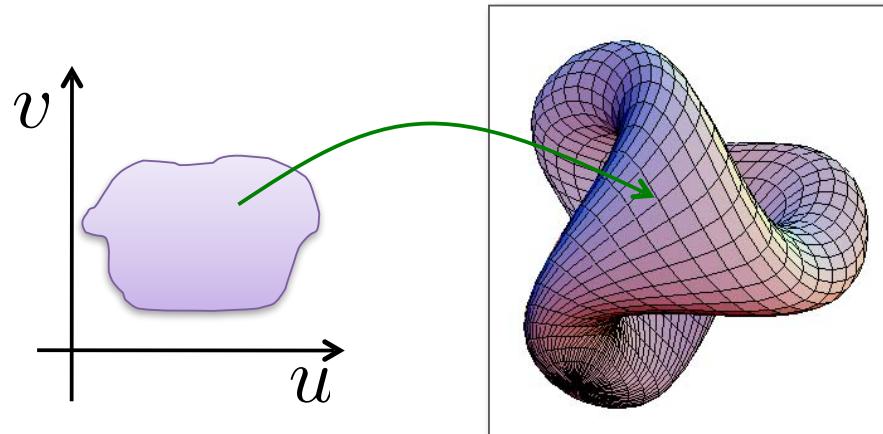


Meshes

Parametric Representation

Range of a function $f : X \rightarrow Y, X \subseteq \mathbb{R}^m, Y \subseteq \mathbb{R}^n$

Surface in 3D: $m = 2, n = 3$



$$s(u, v) = (x(u, v), y(u, v), z(u, v))$$

Parametric Curves

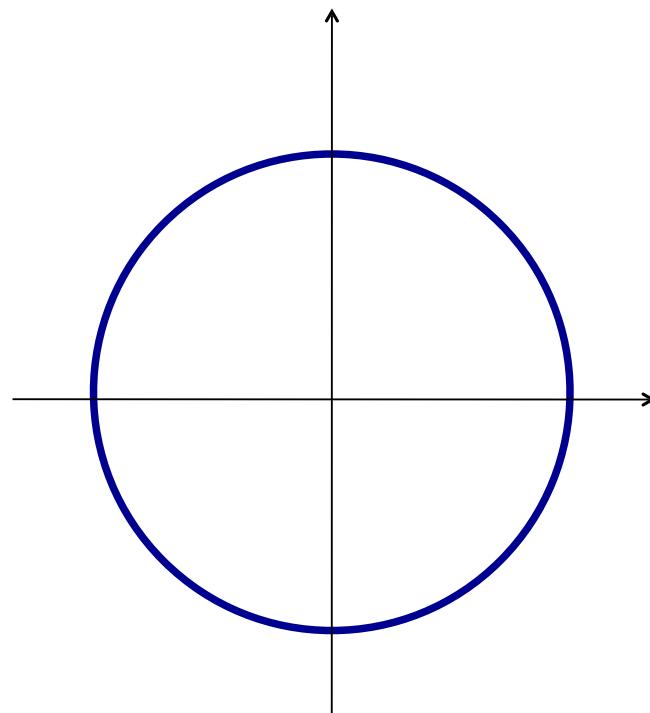
Explicit curve/circle in 2D

$$\mathbf{p} : \mathbb{R} \rightarrow \mathbb{R}^2$$

$$t \mapsto \mathbf{p}(t) = (x(t), y(t))$$

$$\mathbf{p}(t) = r (\cos(t), \sin(t))$$

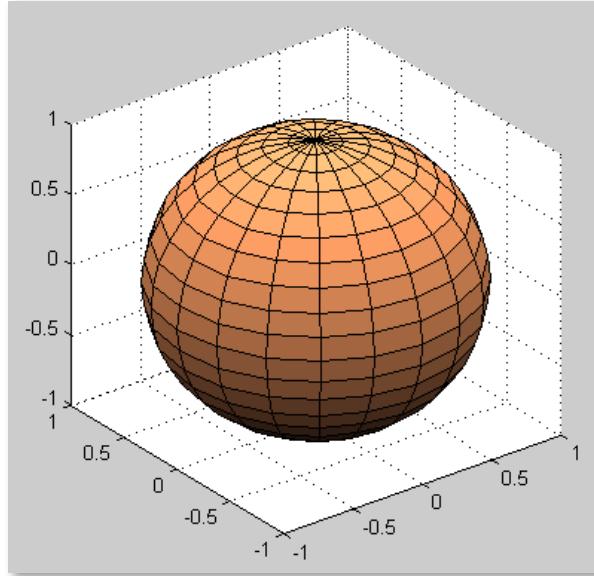
$$t \in [0, 2\pi)$$



Parametric Surfaces

Sphere in 3D

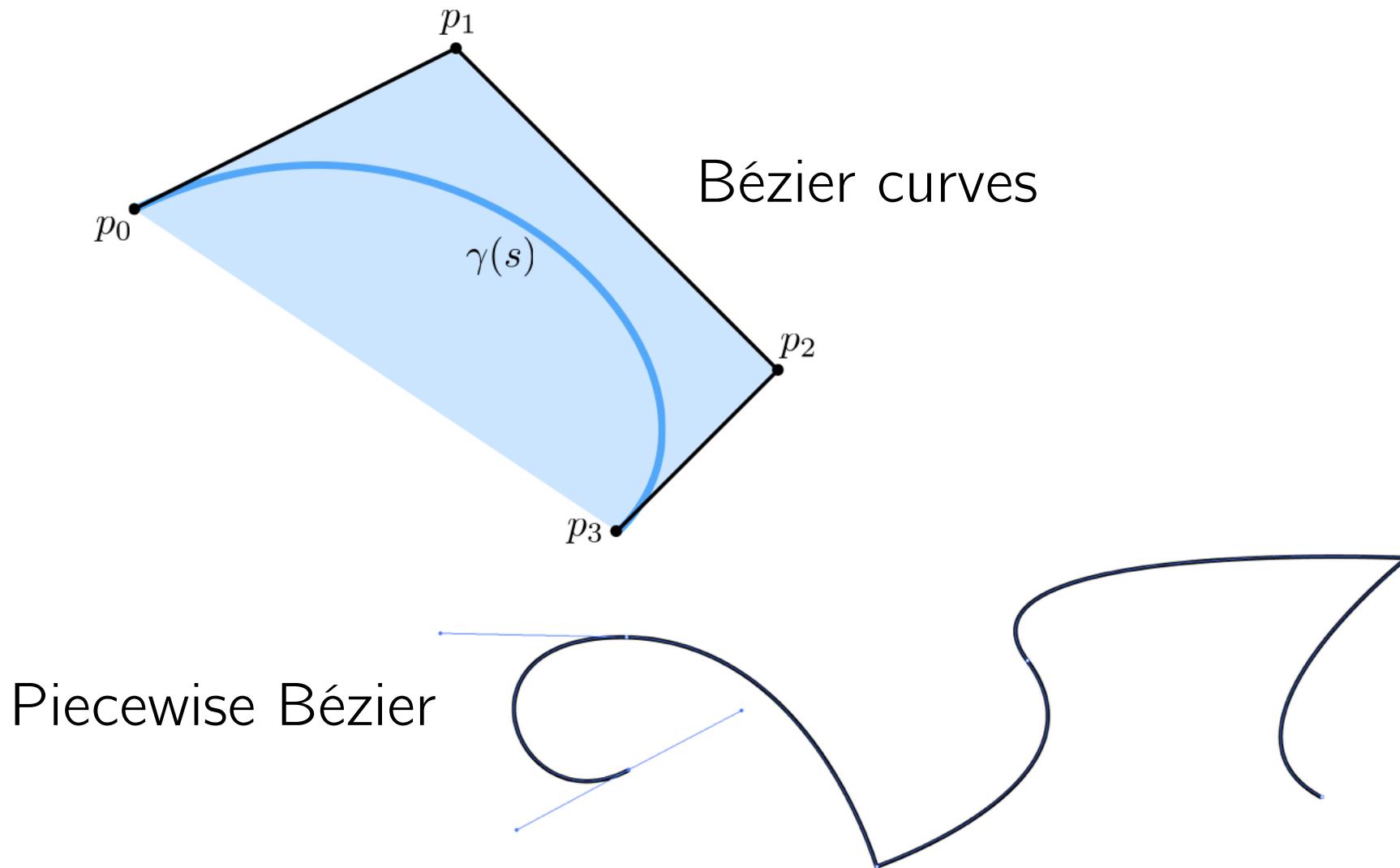
$$s : \mathbb{R}^2 \rightarrow \mathbb{R}^3$$



$$s(u, v) = r (\cos(u) \cos(v), \sin(u) \cos(v), \sin(v))$$

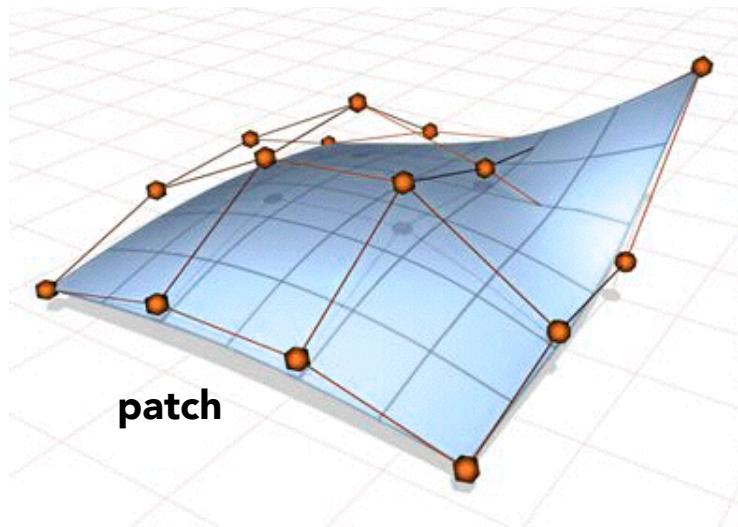
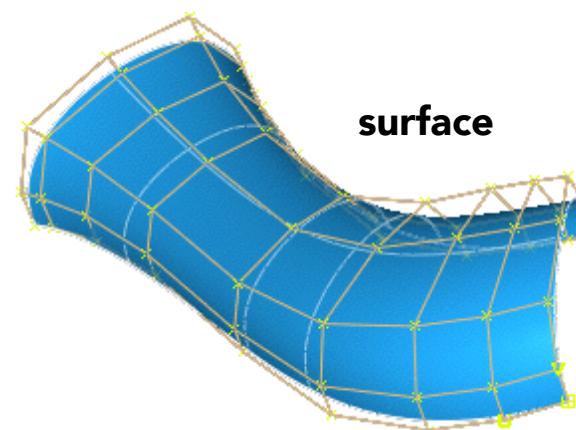
$$(u, v) \in [0, 2\pi) \times [-\pi/2, \pi/2]$$

Bézier Curves



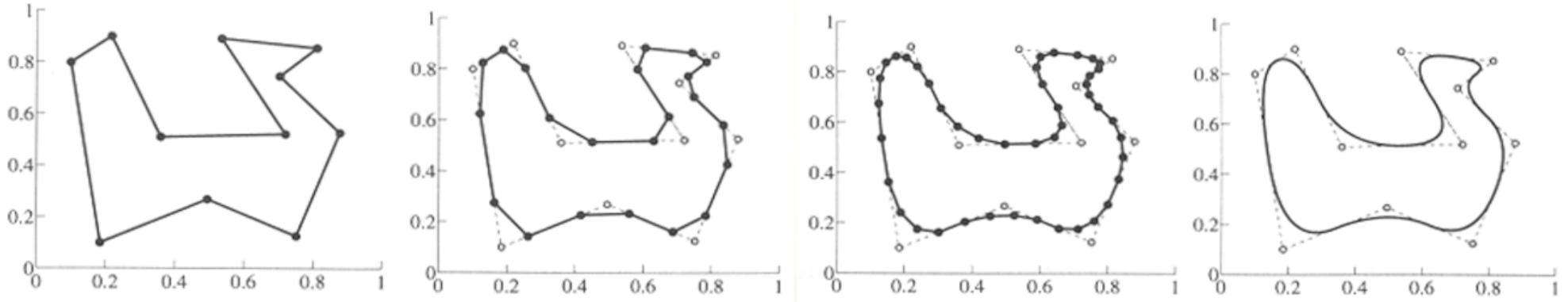
Bézier Surfaces

Use tensor product of Bézier curves to get a patch:

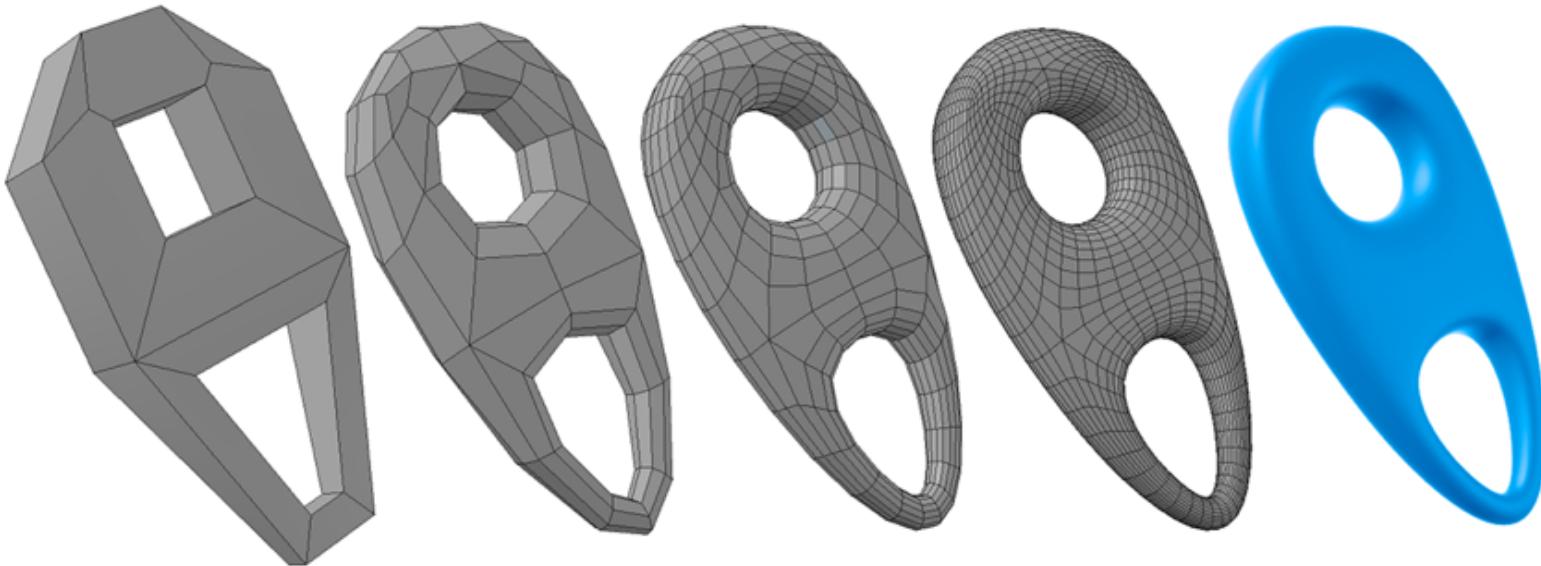


Multiple Bézier patches form a surface.

Subdivision Curves/Surfaces



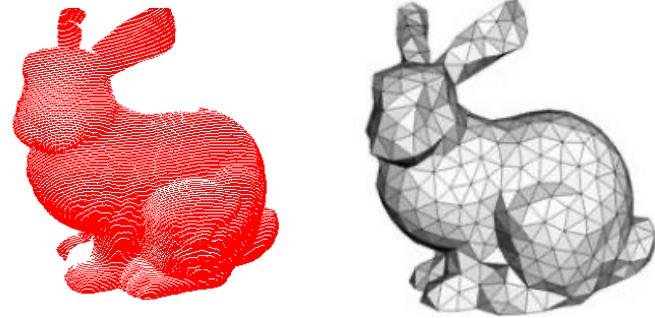
Slide cribbed from Keenan Crane, cribbed from Don Fussell.



Shape Representations

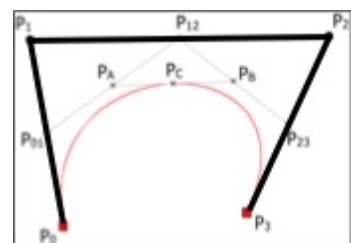
Non-parametric

Explicit

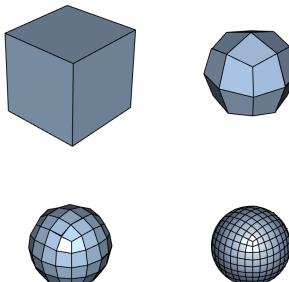


Parametric

Splines



Subdivision
Surfaces

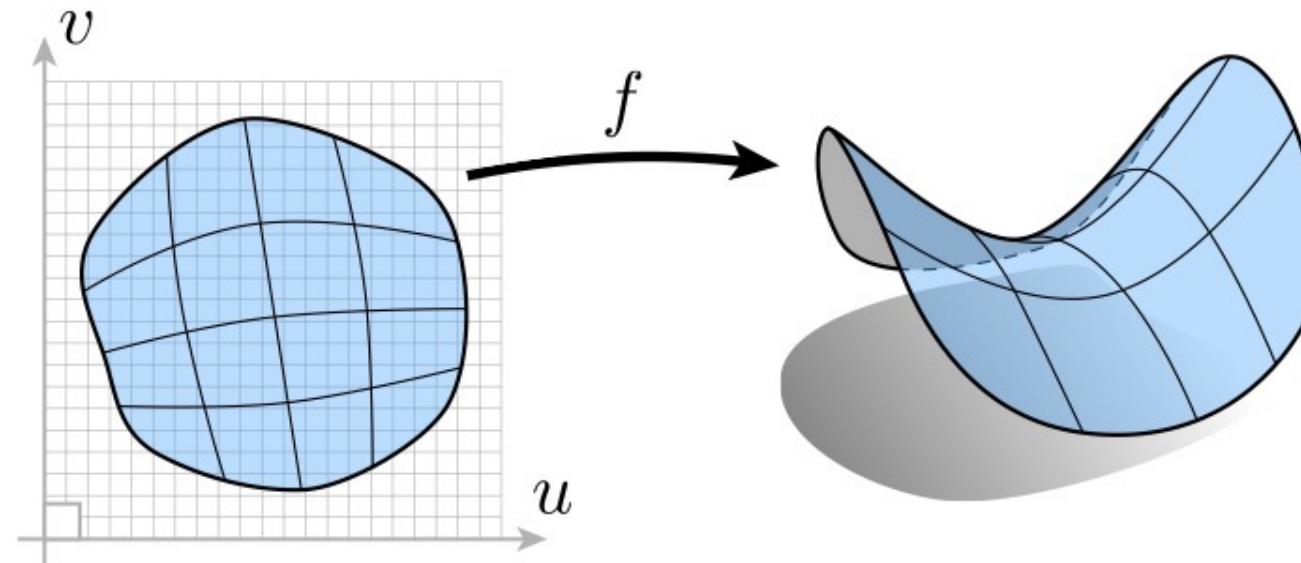


“Explicit” Representations of Geometry

All points are given directly.

Generally:

$$f : \mathbb{R}^2 \rightarrow \mathbb{R}^3; (u, v) \mapsto (x, y, z)$$

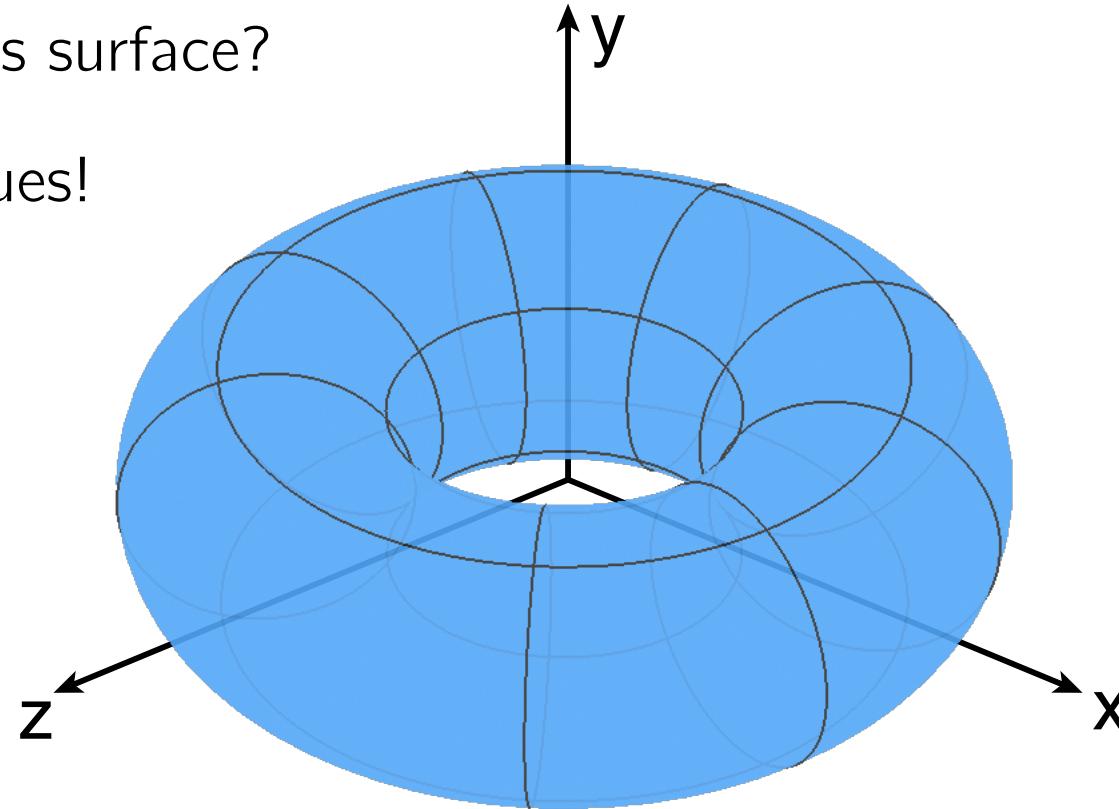


Explicit Surface – Sampling Is Easy

$$f(u, v) = ((2 + \cos u) \cos v, (2 + \cos u) \sin v, \sin u)$$

What points lie on this surface?

Just plug in (u, v) values!



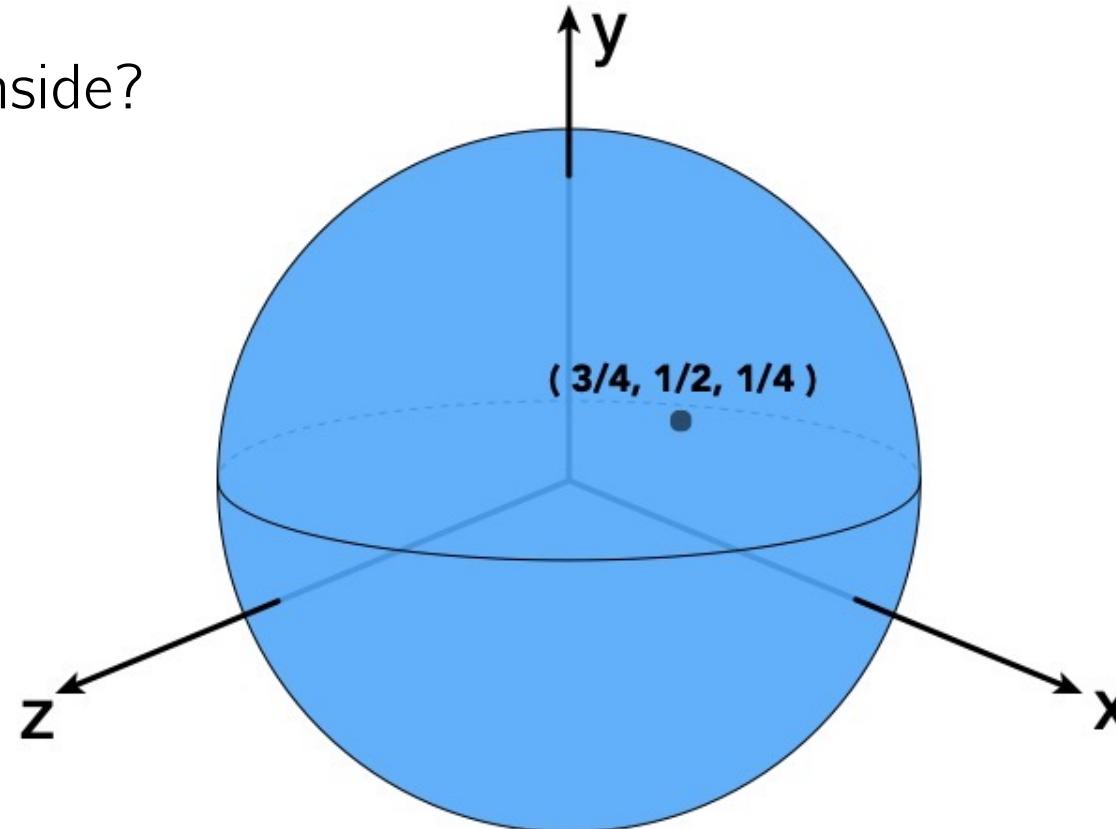
Explicit representations make some tasks easy.

Slide credit: Ren Ng

Explicit Surface – Inside/Outside Test Hard

$$f(u, v) = (\cos u \sin v, \sin u \sin v, \cos v)$$

Is $(3/4, 1/2, 1/4)$ inside?



Some tasks are hard with explicit representations.

Slide credit: Ren Ng

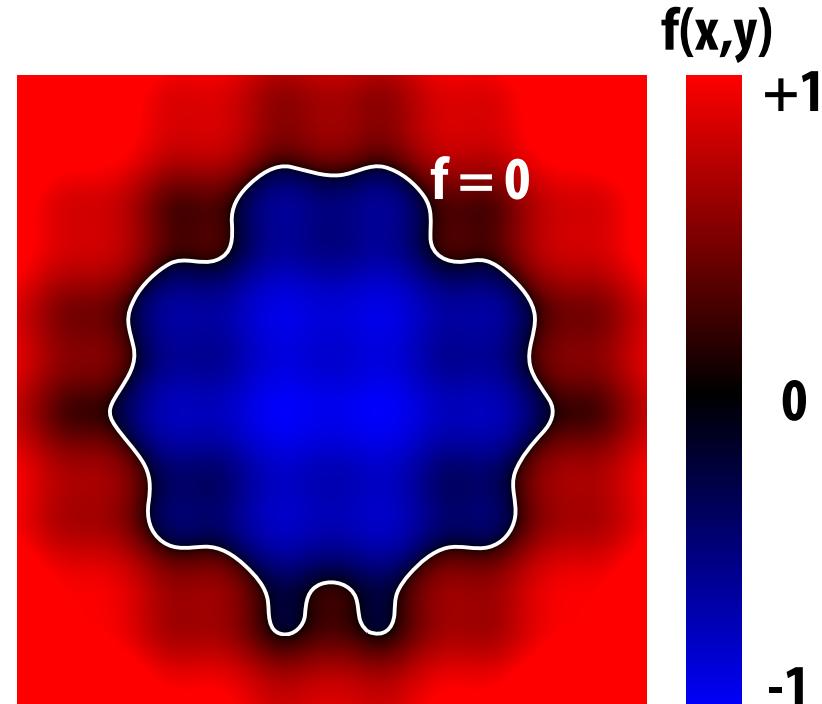
“Implicit” Representations of Geometry

Based on classifying points

- Points satisfy some specified relationship.

E.g., sphere: all points in 3D, where $x^2 + y^2 + z^2 = 1$

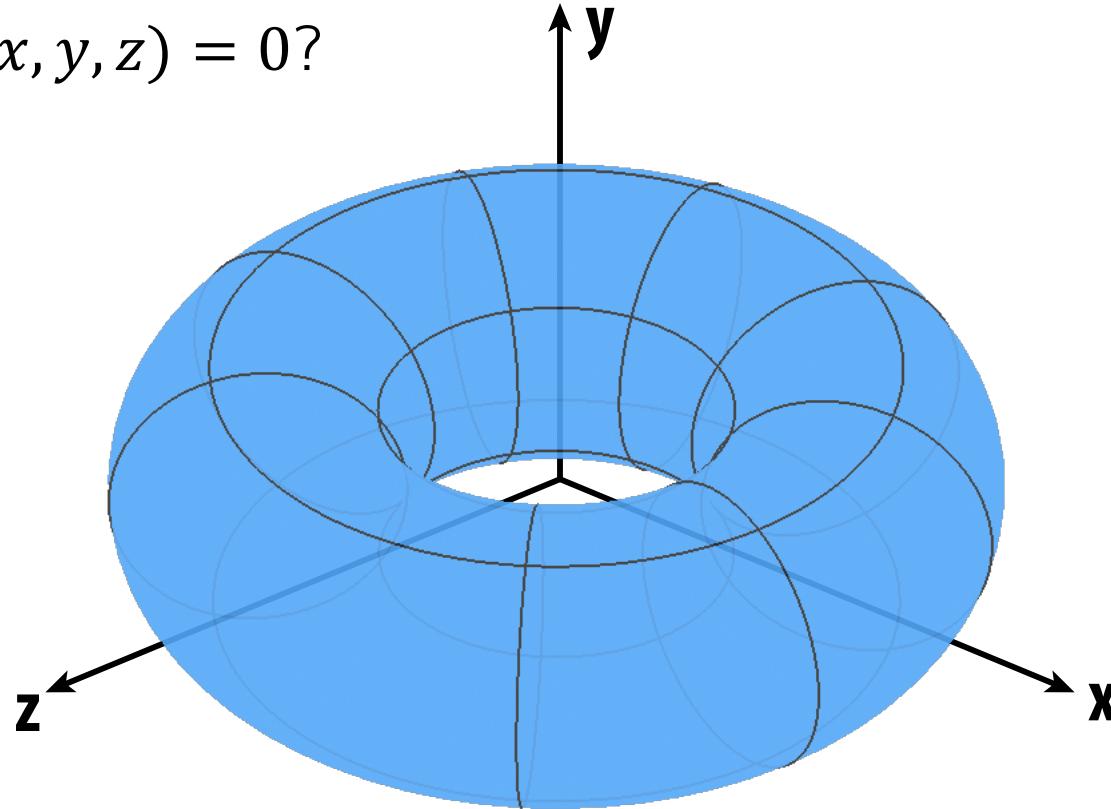
More generally, $f(x, y, z) = 0$



Implicit Surface – Sampling Can Be Hard

$$f(x, y, z) = (2 - \sqrt{x^2 + y^2})^2 + z^2 - 1$$

What points lie on $f(x, y, z) = 0$?



Some tasks are hard with implicit representations.

Implicit Surface – Inside/Outside Tests Easy

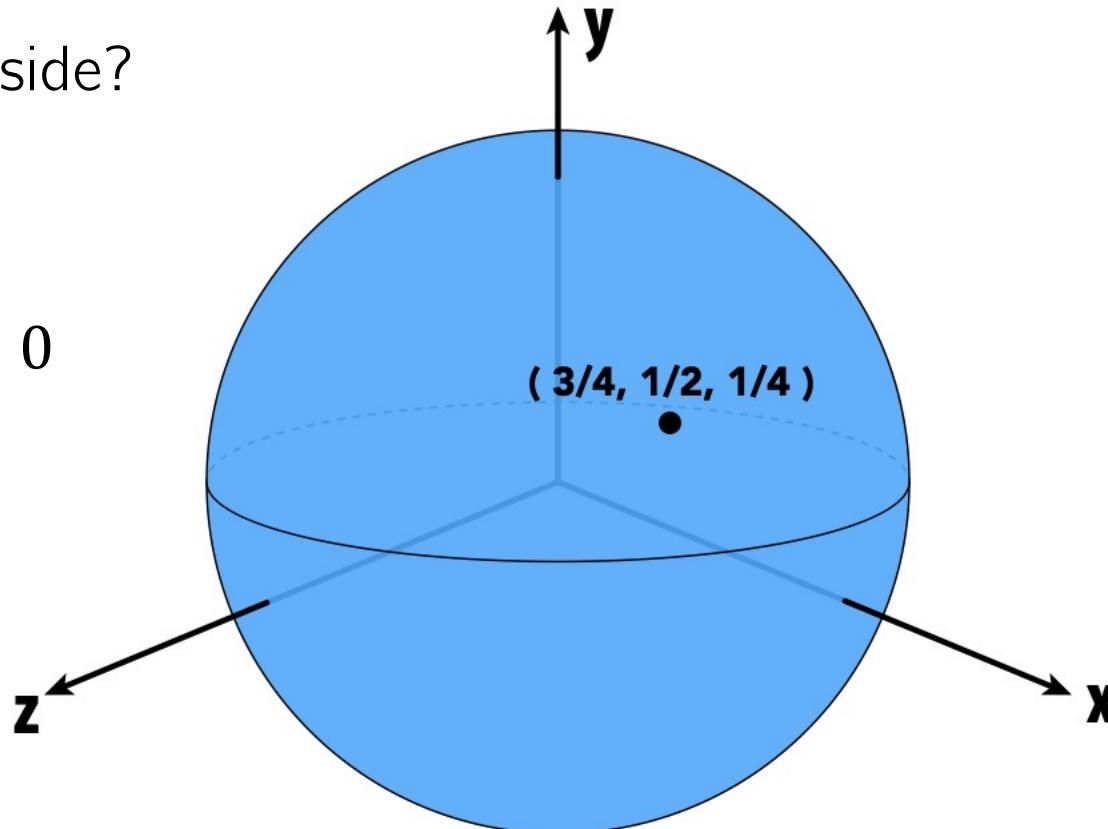
$$f(x, y, z) = x^2 + y^2 + z^2 - 1$$

Is $(3/4, 1/2, 1/4)$ inside?

Just plug it in:

$$f(x, y, z) = -1/8 < 0$$

Yes, inside.



Implicit representations make some tasks easy.

Algebraic Surfaces (Implicit)

Surface is zero set of a polynomial in x, y, z .

$$x^2 + y^2 + z^2 = 1$$

$$(R - \sqrt{x^2 + y^2})^2 + z^2 = r^2$$

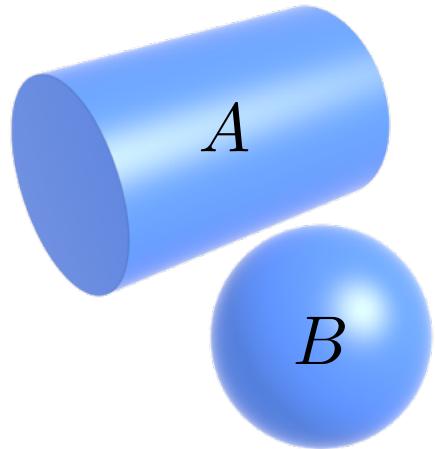
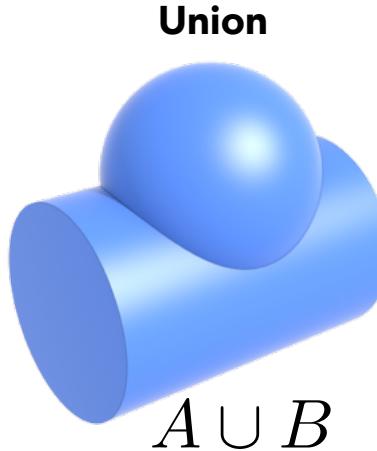
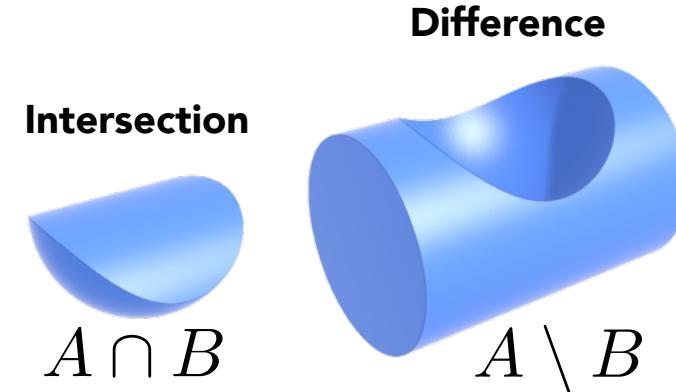
$$(x^2 + \frac{9y^2}{4} + z^2 - 1)^3 =$$

$$x^2 z^3 + \frac{9y^2 z^3}{80}$$

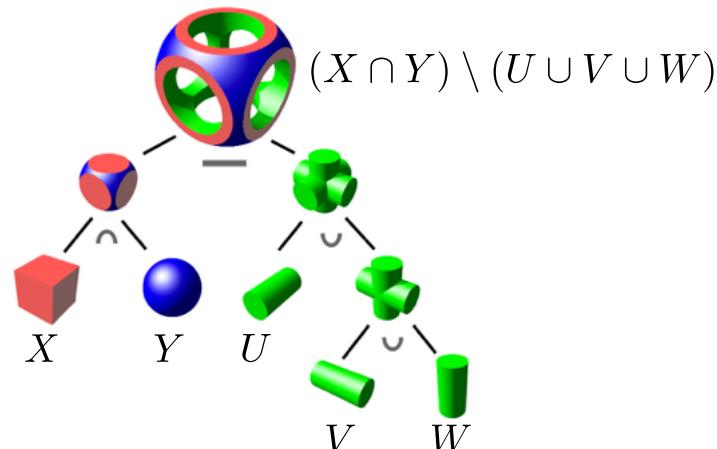
More complex shapes?

Constructive Solid Geometry (Implicit)

Combine implicit geometry via Boolean operations



Boolean expressions:



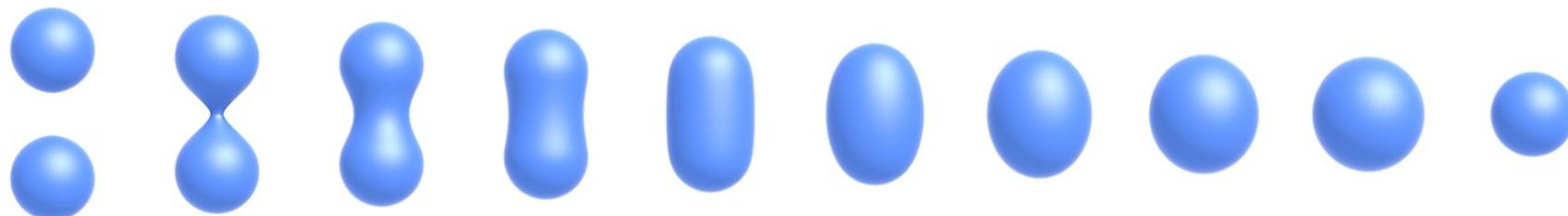
Slide credit: Ren Ng

Distance Functions (Implicit)

Instead of Boolean, gradually blend surfaces together using

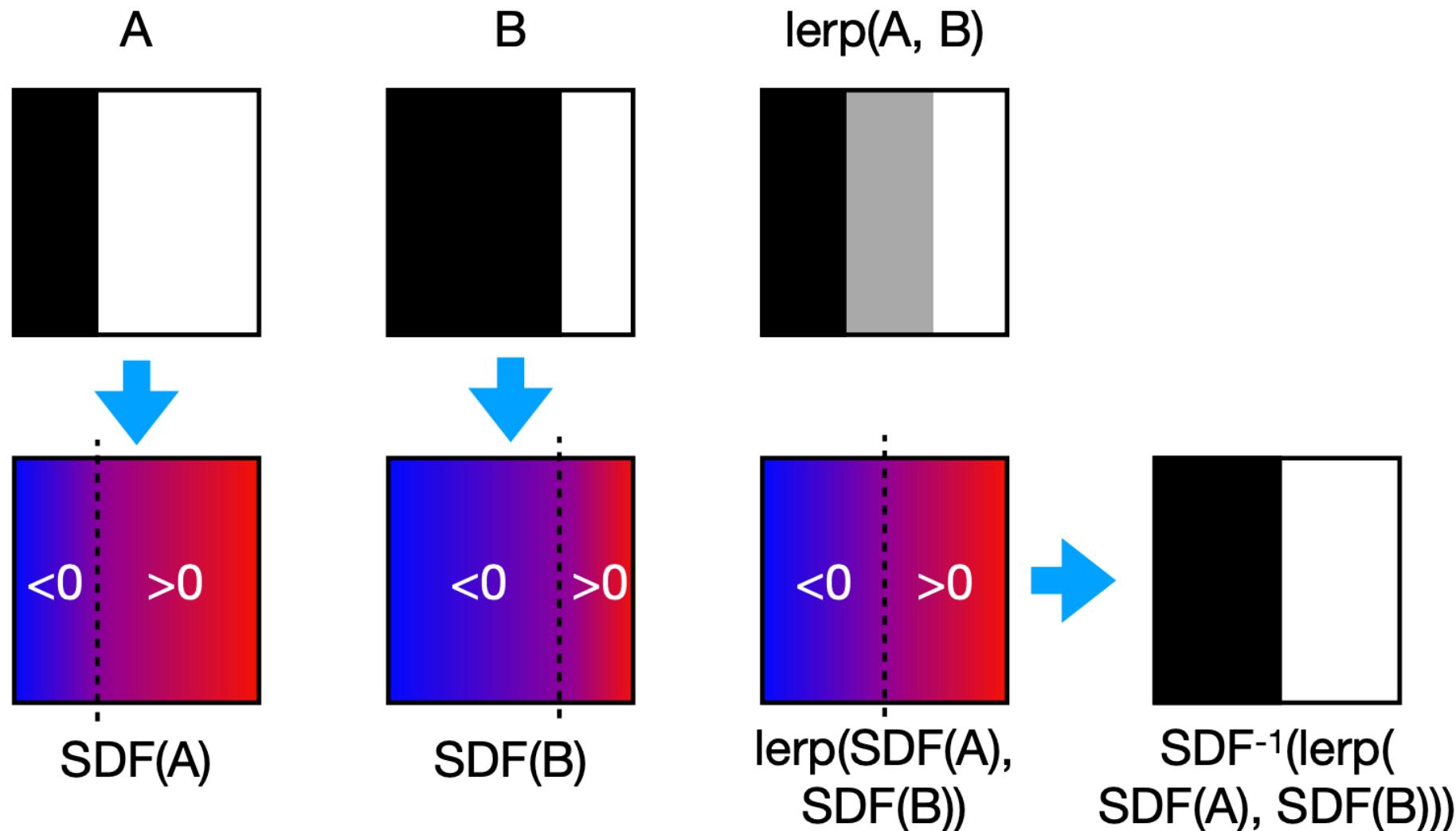
Distance functions:

Giving minimum distance (could be **signed** distance) from anywhere to object



Distance Functions (Implicit)

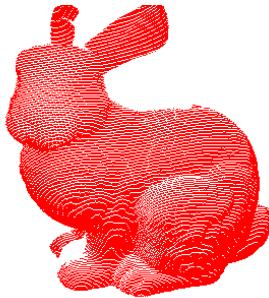
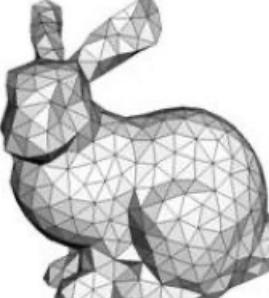
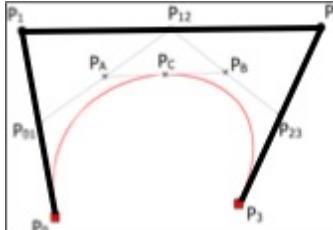
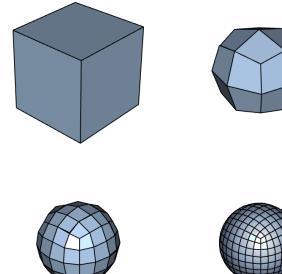
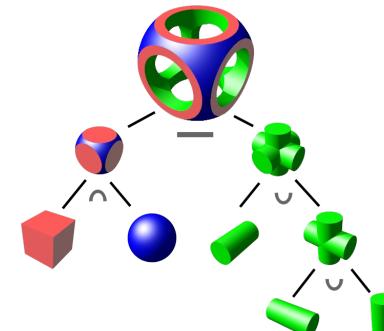
Example: Blending (linear interp.) a moving boundary



Scene of Pure Distance Functions (Not Easy!)

See <http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm>

Shape Representations

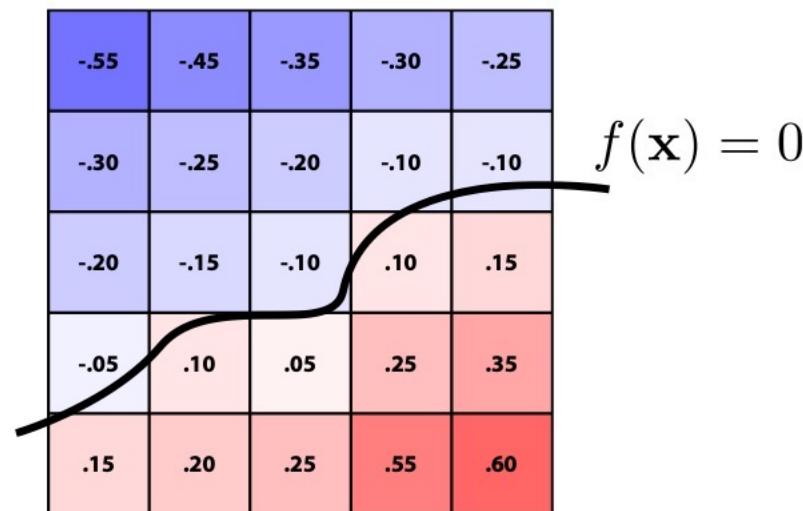
	Explicit	Implicit
Non-parametric	 Points	 Meshes
Parametric	 Splines	 $x^2 + y^2 + z^2 = 1$ Algebraic Surfaces
	 Subdivision Surfaces	 Constructive Solid Geometry

Level Set Methods (Implicit)

Implicit surfaces have some nice features (e.g., merging/splitting).

But hard to describe complex shapes in closed form

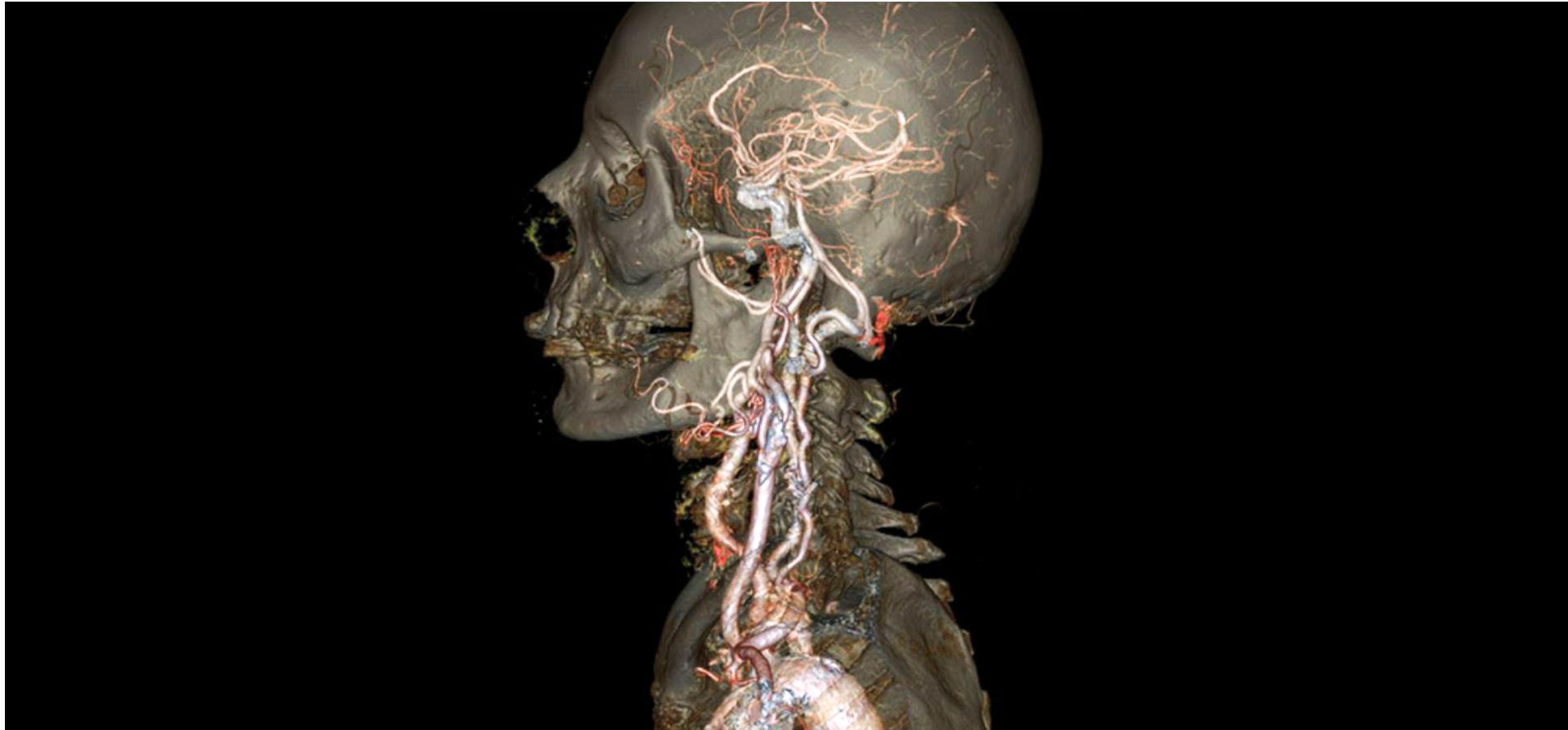
Alternative: store a grid of values approximating function



Surface is found where interpolated values equal zero.

Provides much more explicit control over shape (like a texture)

Level Sets from Medical Data (CT, MRI, etc.)

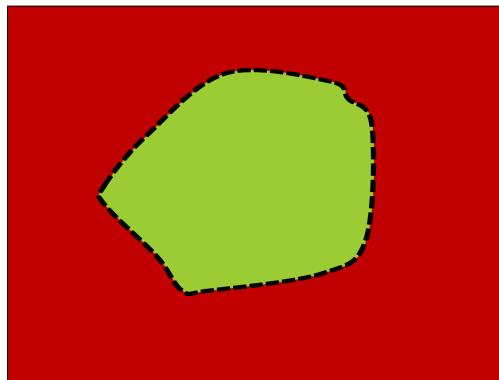
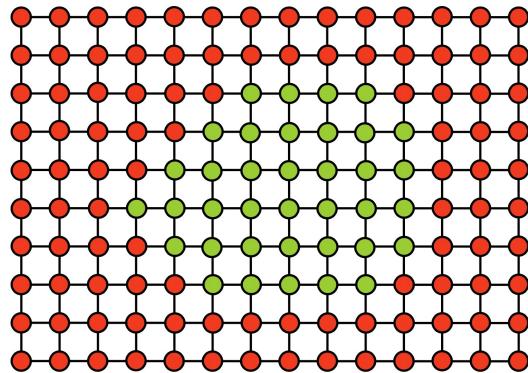
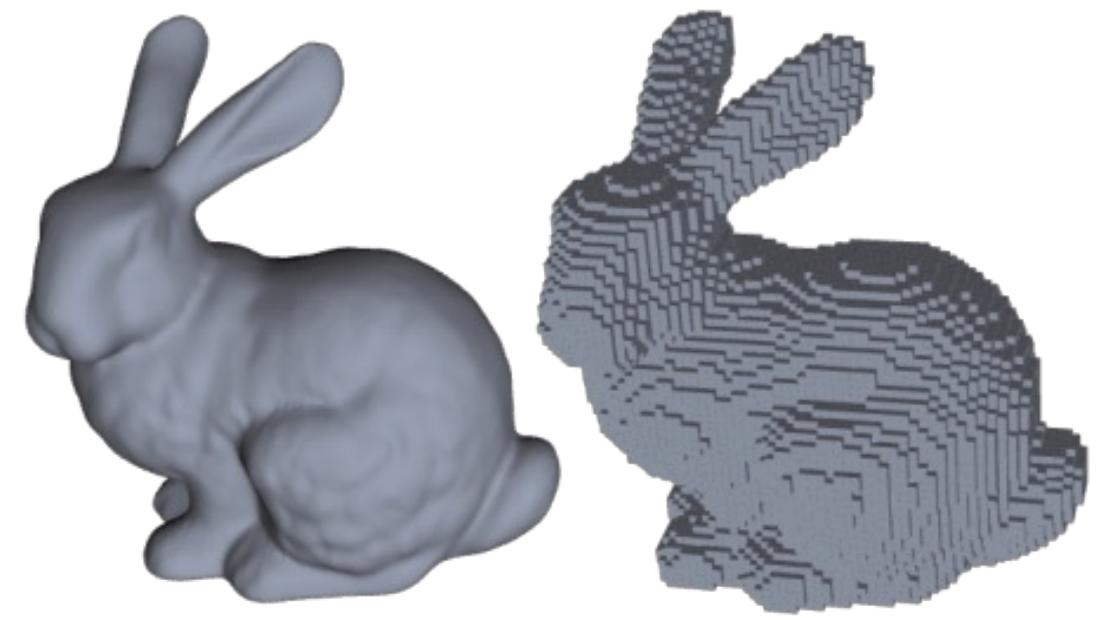


Level sets encode, e.g., constant tissue density

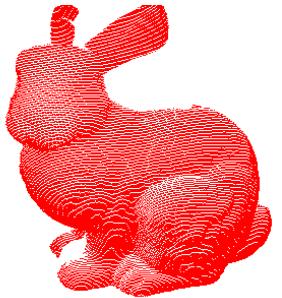
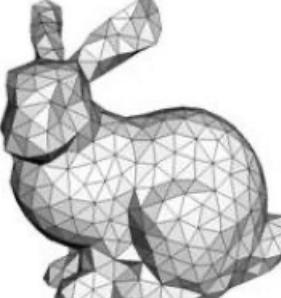
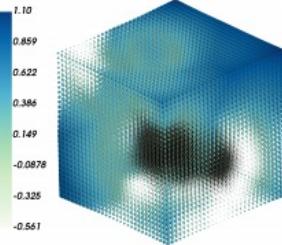
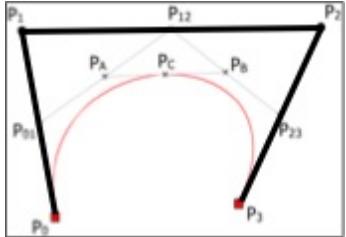
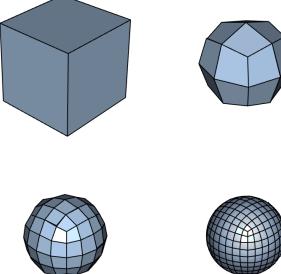
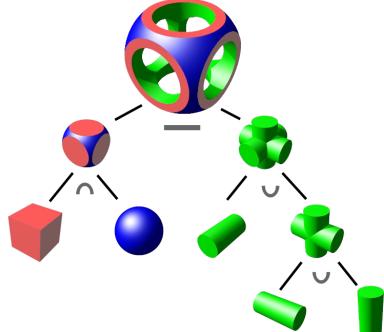
Slide credit: Ren Ng

Related Representation: Voxels

- Binary thresholding the volumetric grid



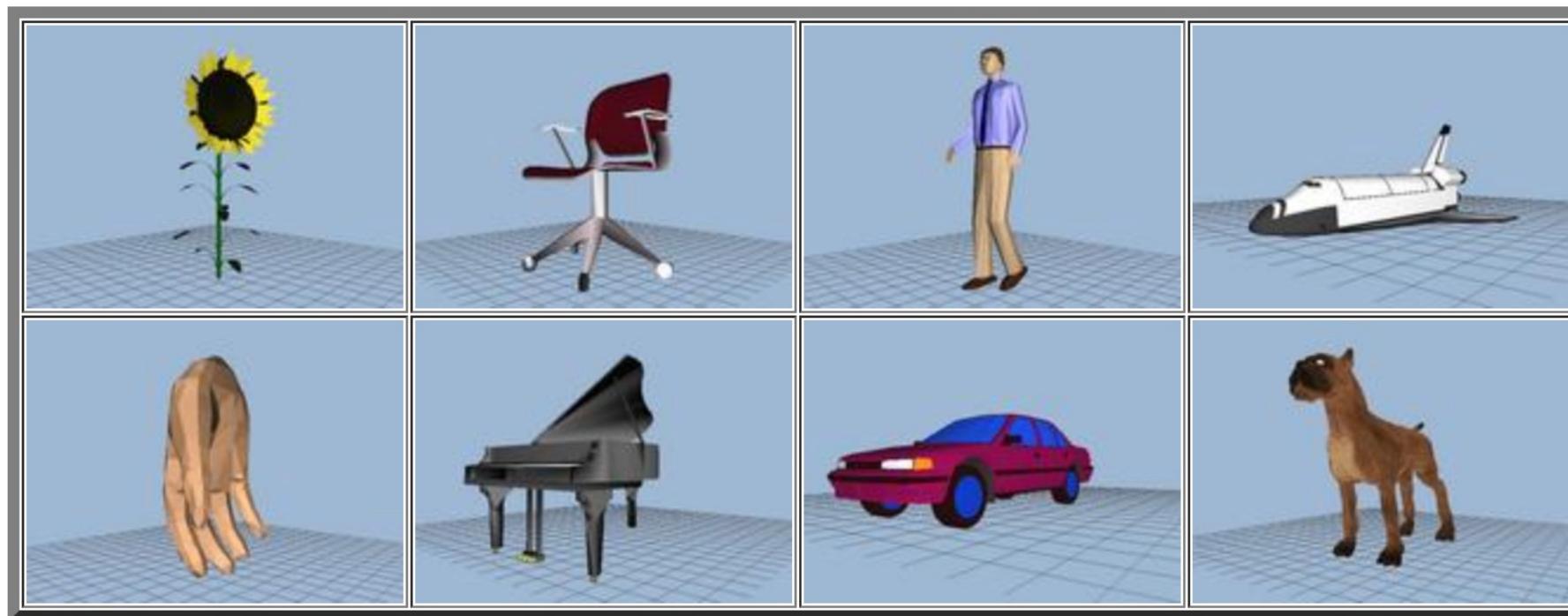
Shape Representations

	Explicit		Implicit	
Non-parametric				
Parametric				
	Points	Meshes	Voxels	Level Sets
	Splines	Subdivision Surfaces	$x^2+y^2+z^2=1$	Algebraic Surfaces
				Constructive Solid Geometry

AI + Geometry: Datasets

Princeton Shape Benchmark

- 1814 Models
- 182 Categories



Datasets Prior to 2014

Benchmarks	Types	# models	# classes	Avg # models per class
SHREC14LSGTB	Generic	8,987	171	53
PSB	Generic	907+907 (train+test)	90+92 (train+test)	10+10 (train+test)
SHREC12GTB	Generic	1200	60	20
TSB	Generic	10,000	352	28
CCCC	Generic	473	55	9
WMB	Watertight (articulated)	400	20	20
MSB	Articulated	457	19	24
BAB	Architecture	2257	183+180 (function+form)	12+13 (function+form)
ESB	CAD	867	45	19

Table 1. Source datasets from SHREC 2014: *Princeton Shape Benchmark (PSB)* [27], *SHREC 2012 generic Shape Benchmark (SHREC12GTB)* [16], *Toyohashi Shape Benchmark (TSB)* [29], *Konstan3D Model Benchmark (CCCC)* [32], *Watertight Model Benchmark (WMB)* [31], *McGill 3D Shape Benchmark (MSB)* [37], *Bonn Architecture Benchmark (BAB)* [33], *Purdue Engineering Shape Benchmark (ESB)* [9].

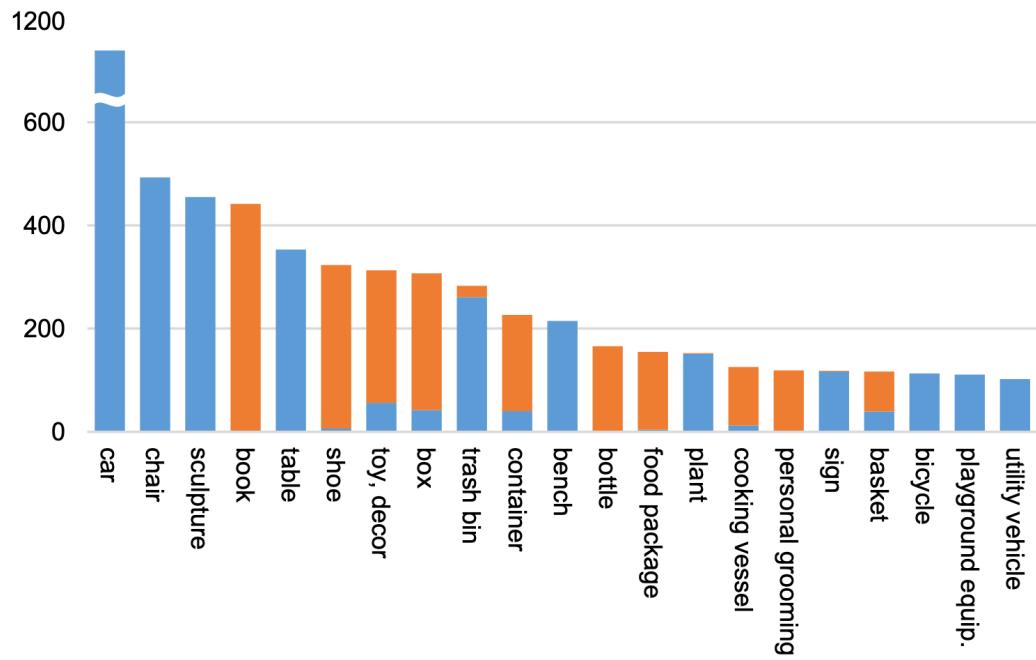
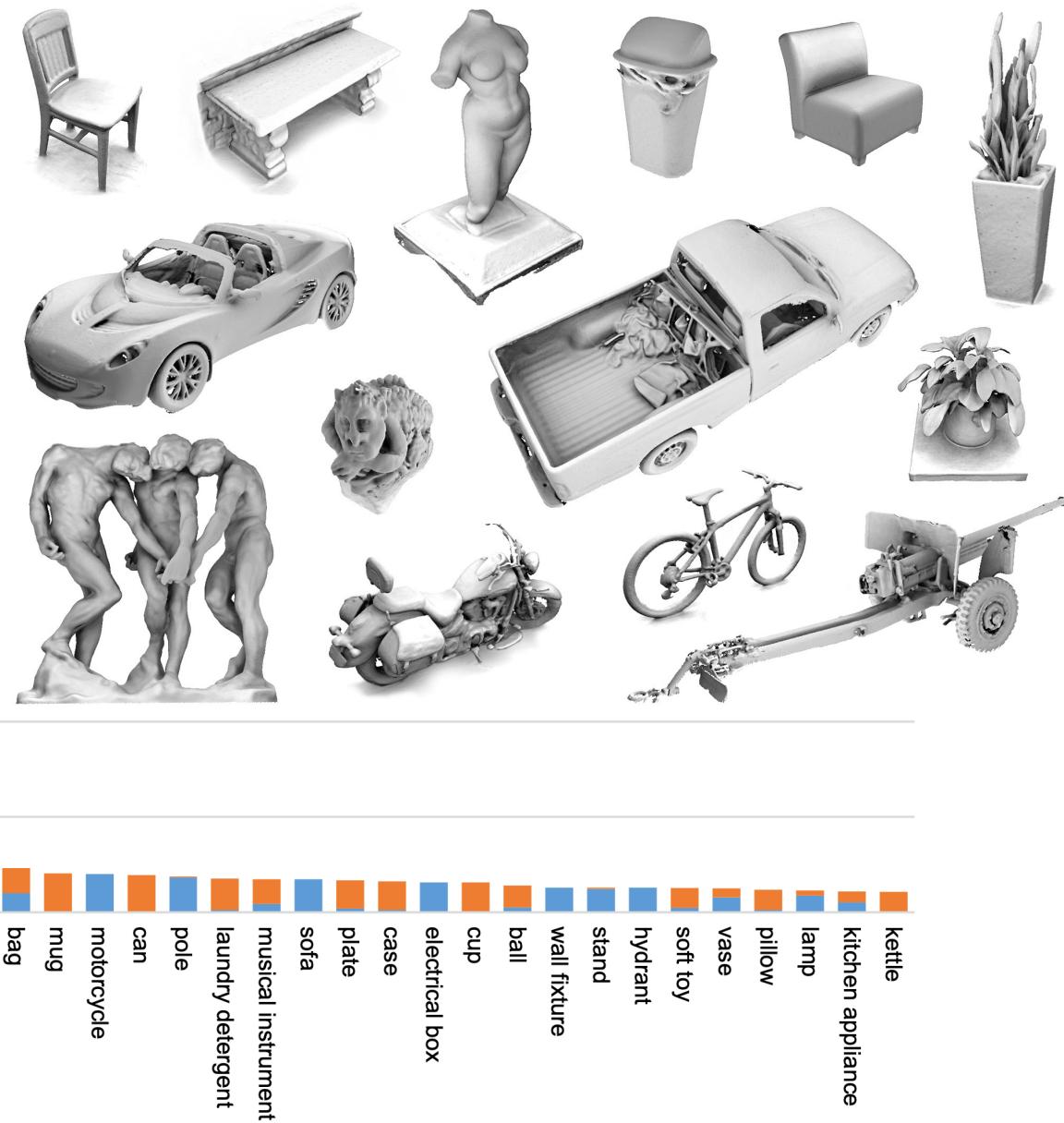
Datasets for 3D Objects

- Large-scale Synthetic Objects: ShapeNet, 3M models
- ModelNet: absorbed by ShapeNet
- ShapeNetCore: 51.3K models in 55 categories

Objverse (800K) and Objverse-XL (10M)

Object Scan

- 10,933 RGBD scans
- 441 models



CO3D

- 19,000 videos
- 50 categories

From Objects to Parts

Link to WordNet Taxonomy Alignment+Symmetry

WordNet synset

Swivel chair: a chair that swivels on its base

Hypernyms: chair > seat > furniture > ...

Part meronyms: backrest, seat, base

Sister terms: armchair, barber chair, ...

ImageNet

Swivel chair

Part Hierarchy

Backrest

Seat

Base

Leg

Wheel

Dim: 50 x 45 x 5 cm
Material: foam, fabric
Mass: 5 Kg
Function: support

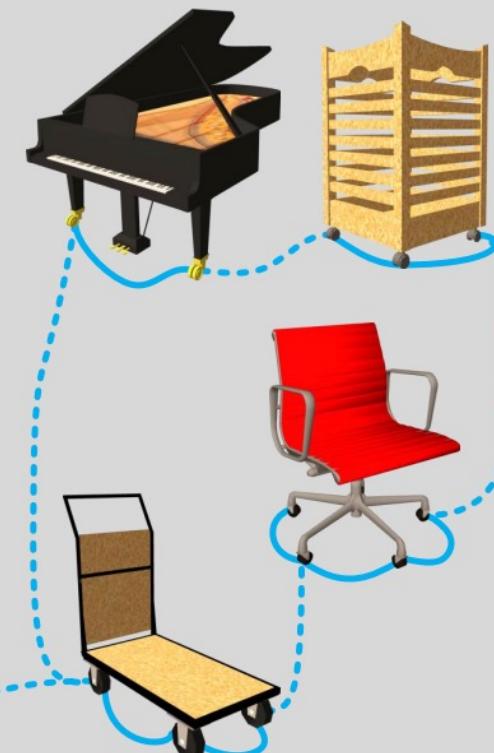
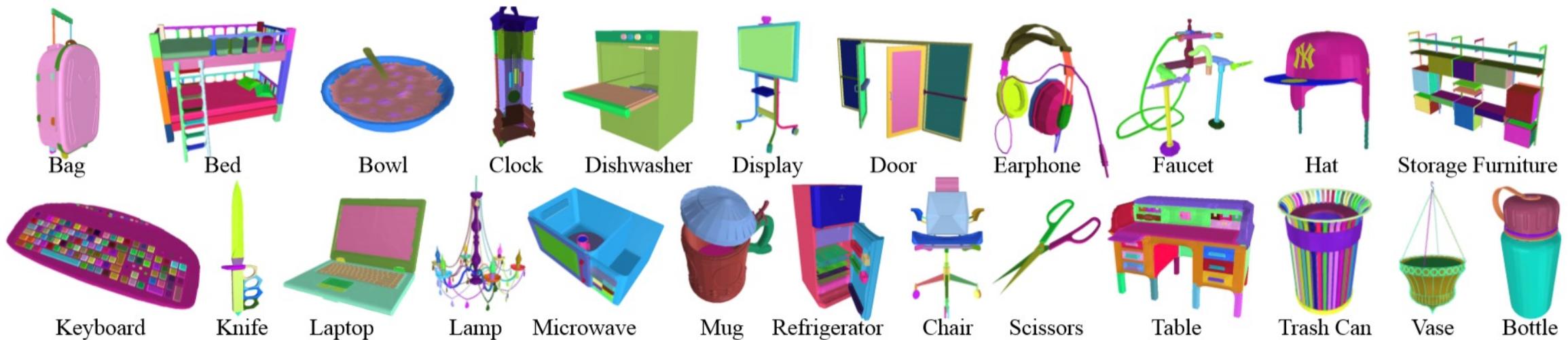


Figure from the ShapeNet paper, Chang et al. arXiv 2015

Datasets for 3D Object Parts

Fine-grained Parts: PartNet

- Fine-grained (+mobility)
- Instance-level
- Hierarchical



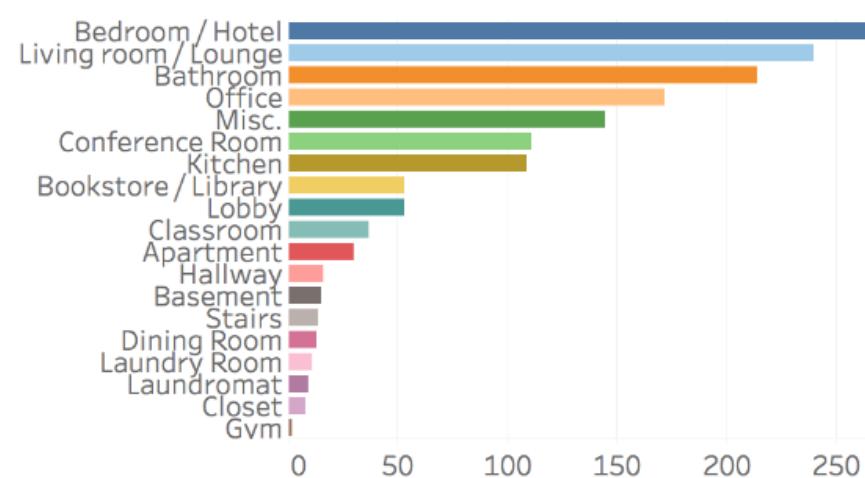
Datasets for Indoor 3D Scenes

Scanned Real Scenes: ScanNet

- 2.5M Views in 1,500 RGBD scans
- 3D camera poses
- Surface reconstructions
- Instance-level semantic segmentations

Most recently:

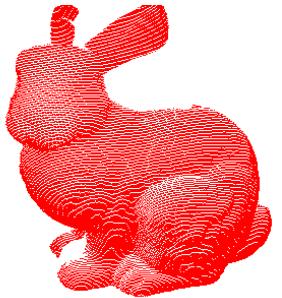
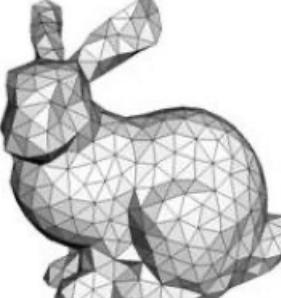
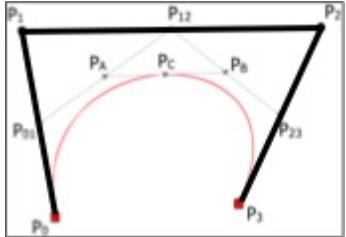
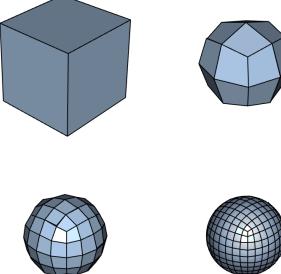
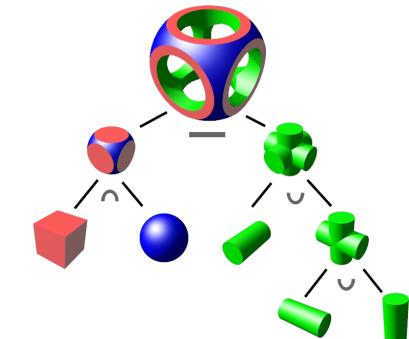
- ARKitScenes,
- ScanNet++ (with DSLR images)



AI + Geometry: Tasks

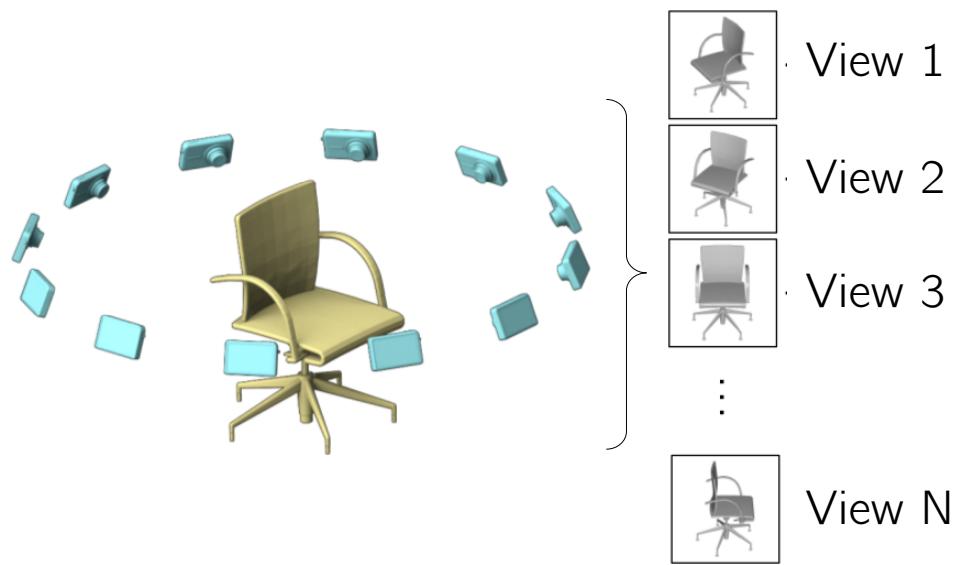
- $P(S)$ or $P(S|c)$ --- Generative models
 - Learning (conditional) shape priors
 - Shape generation, completion, & geometry data processing
- $P(c|S)$ --- Discriminative models
 - Learning shape descriptors
 - Shape classification, segmentation, view estimation, etc.
- Joint modeling of 3D and 2D data
 - Large-scale 2D datasets & very good pretrained models
 - Differentiable projection/back-projection & differentiable/neural rendering
- Joint modeling of multi-modal data beyond visual (e.g., text)

AI + Geometry: Which Representation?

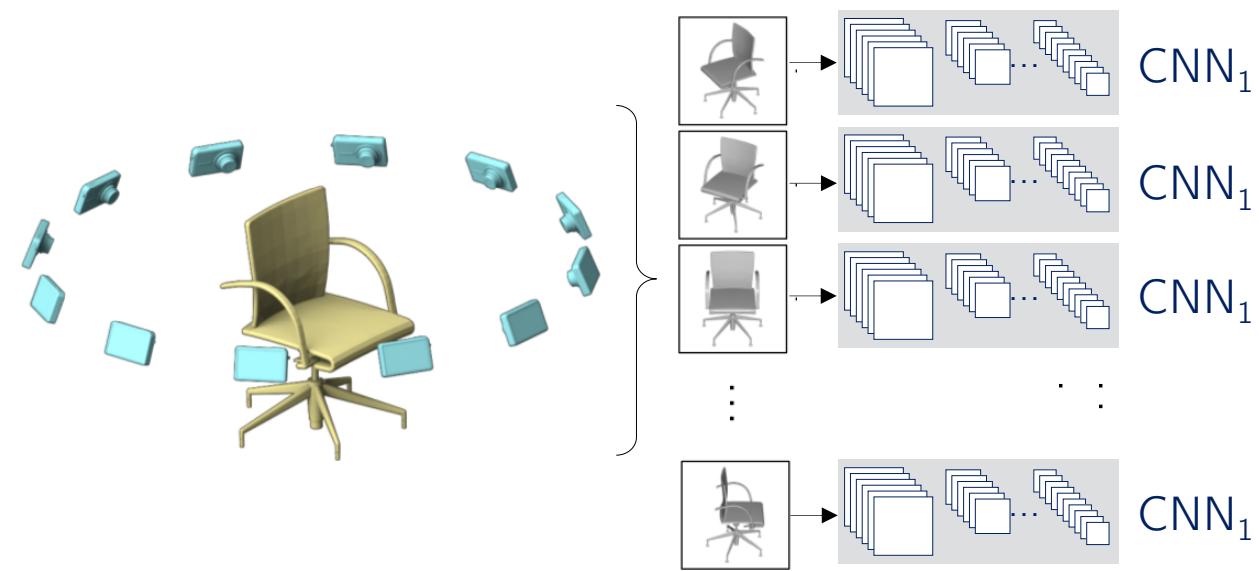
	Explicit	Implicit (Eulerian)
Non-parametric	 Points	 Meshes
Parametric	 Splines	$x^2 + y^2 + z^2 = 1$
	 Subdivision Surfaces	 Constructive Solid Geometry

Multi-View CNN

Multi-View CNN

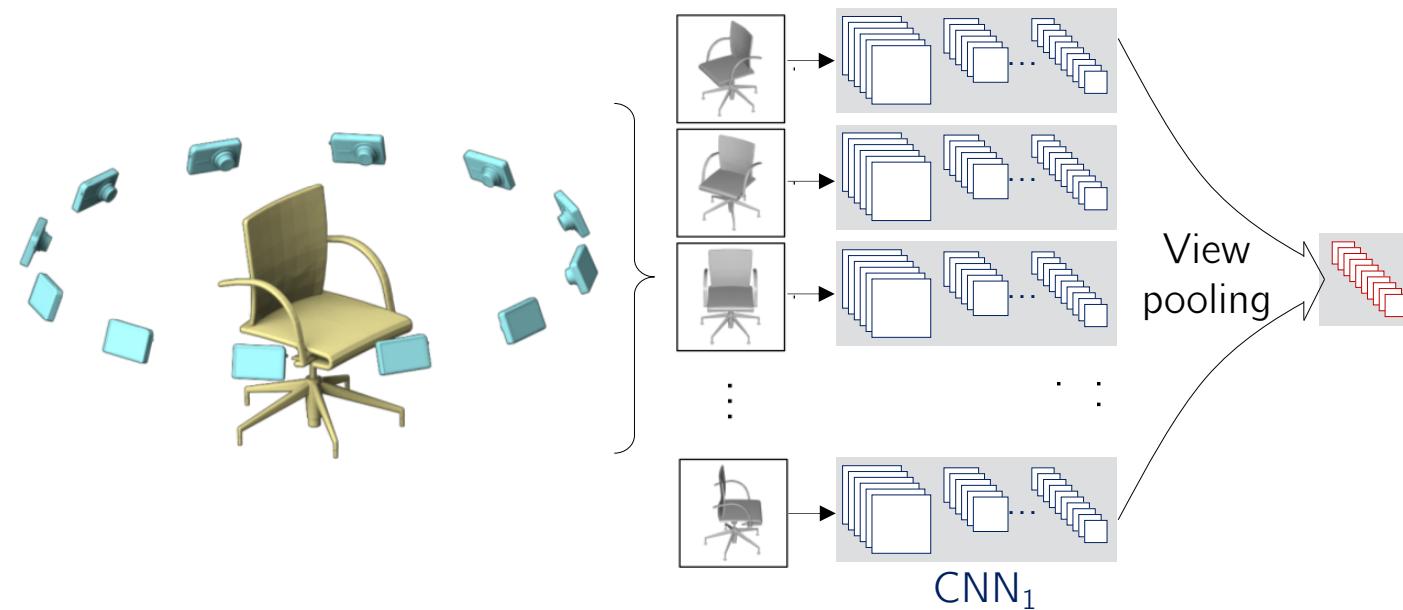


Multi-View CNN



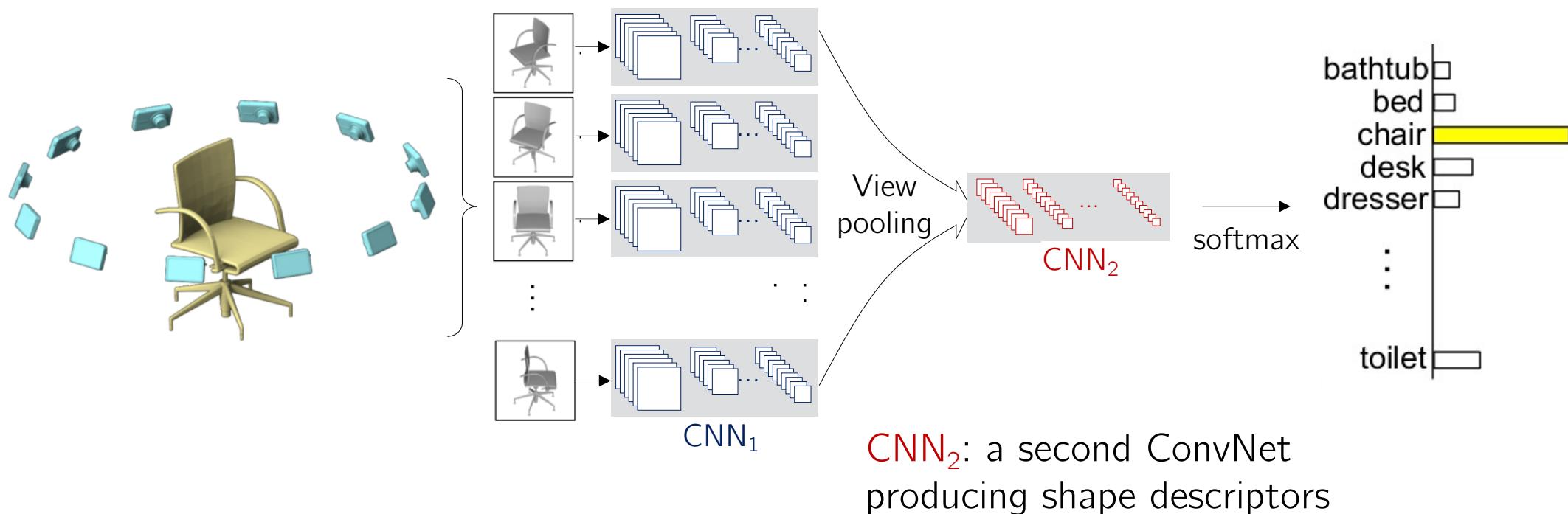
CNN_1 : a ConvNet extracting image features

Multi-View CNN



View pooling: element-wise
max-pooling across all views

Multi-View CNN



Experiments – Classification & Retrieval

	Method	Classification (Accuracy)	Retrieval (mAP)
Non-deep	SPH	68.2%	33.3%
	LFD	75.5%	40.9%
	3D ShapeNets	77.3%	49.2%
	FV, 12 views	84.8%	43.9%
	CNN, 12 views	88.6%	62.8%
	MVCNN, 12 views	89.9%	70.1%
	MVCNN+metric, 12 views	89.5%	80.2%
	MVCNN, 80 views	90.1%	70.4%
	MVCNN+metric, 80 views	90.1%	79.5%

On ModelNet 40

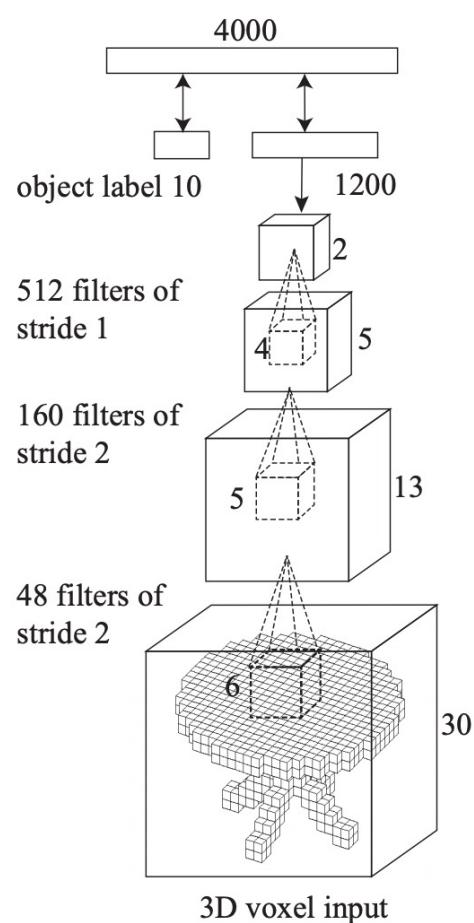
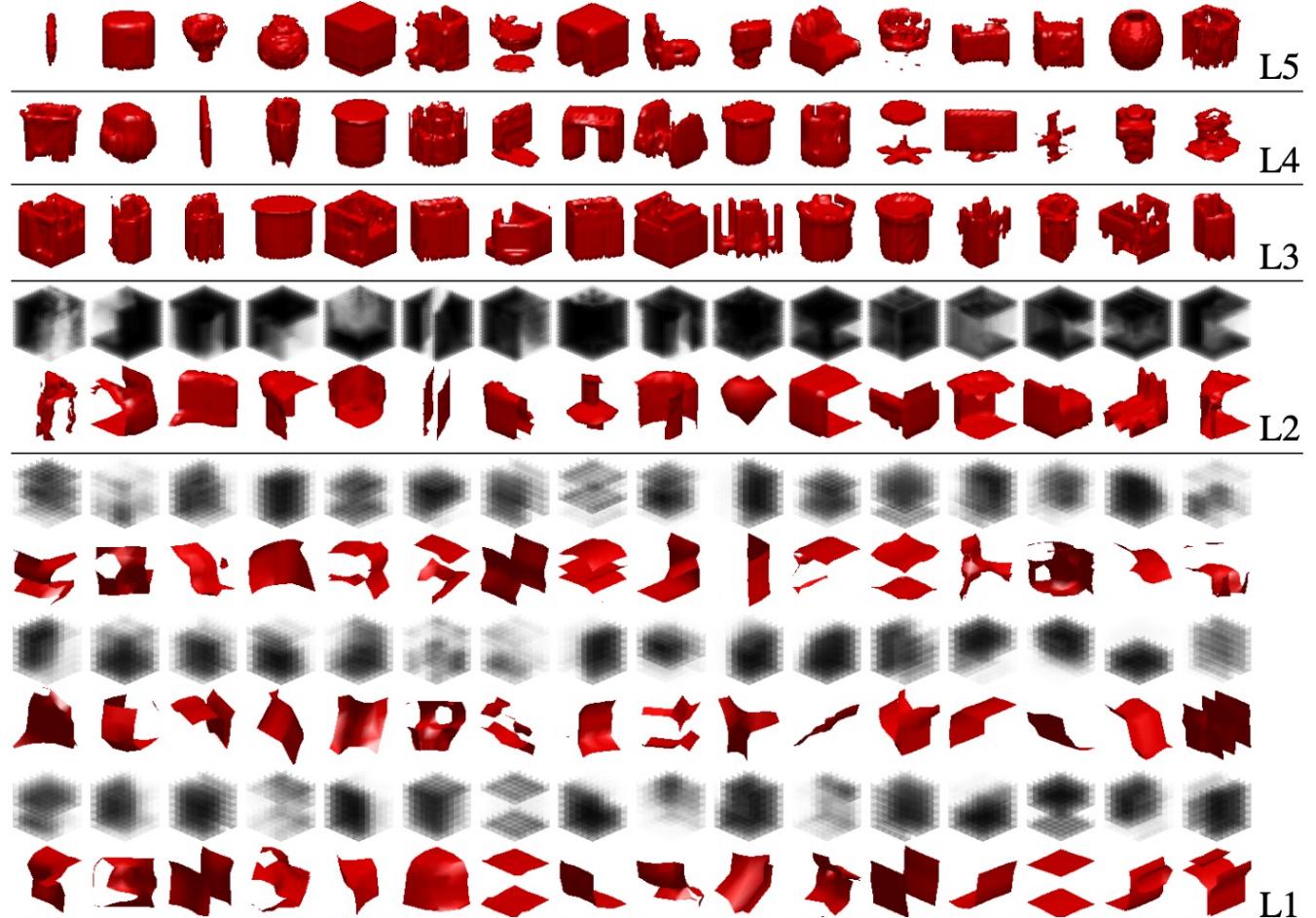
Multi-View Representations

- Indeed gives good performance
- Can leverage vast literature of image classification
- Can use pretrained features

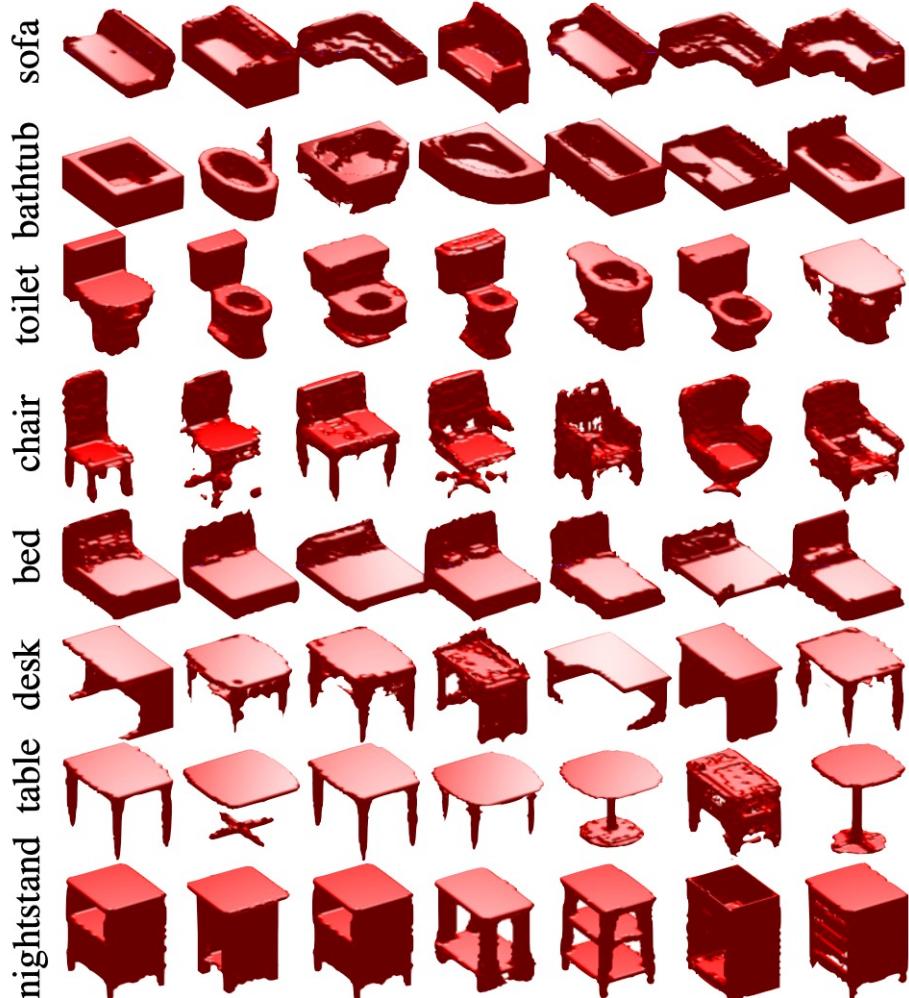
- Need projection
- What if the input is noisy and/or incomplete? e.g., point cloud

Pixels -> Voxels

- 3D Conv Deep Belief Networks (CDBN)



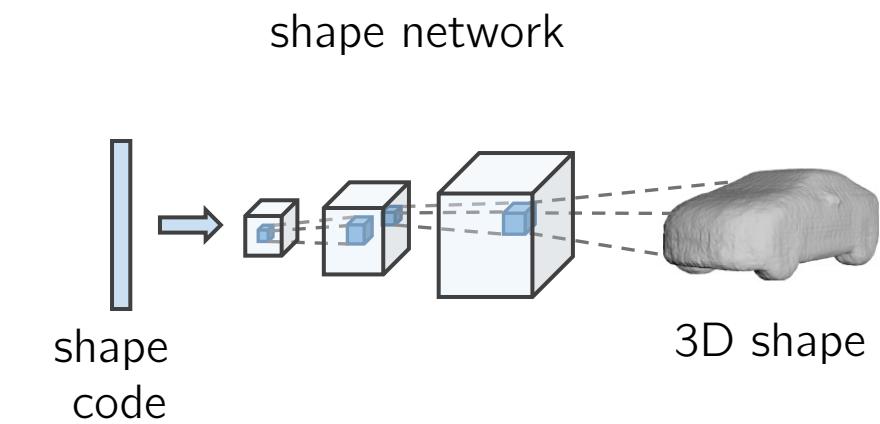
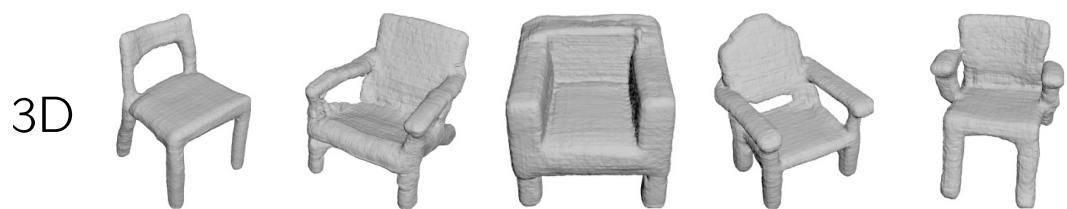
Generative Modeling



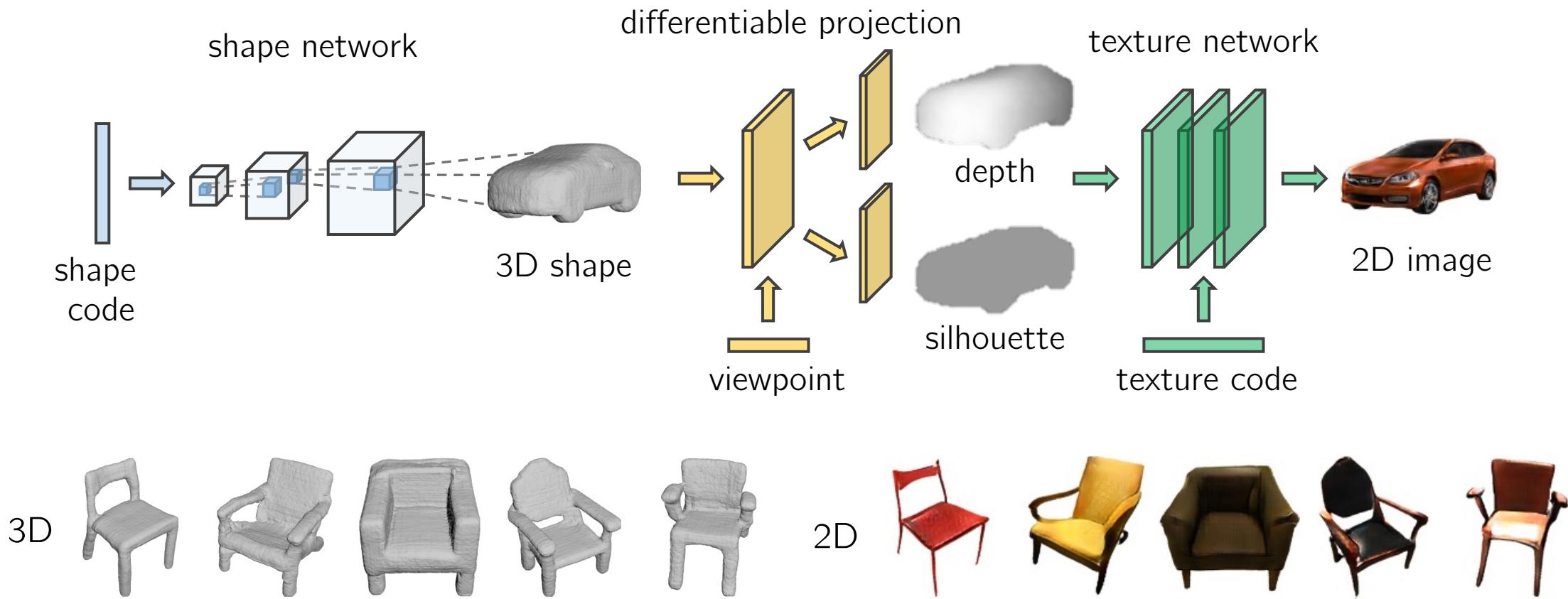
10 classes	SPH [18]	LFD [8]	Ours
classification	79.79 %	79.87 %	83.54%
retrieval AUC	45.97%	51.70%	69.28%
retrieval MAP	44.05%	49.82%	68.26%
40 classes	SPH [18]	LFD [8]	Ours
classification	68.23%	75.47%	77.32%
retrieval AUC	34.47%	42.04%	49.94%
retrieval MAP	33.26%	40.91%	49.23%

Table 1: Shape Classification and Retrieval Results.

3D-GANs



Visual Object Networks (Geometry + Rendering)



Editing viewpoint, shape, and texture

viewpoint

shape

texture

viewpoint

shape

texture

Interpolation in the latent space

shape

texture

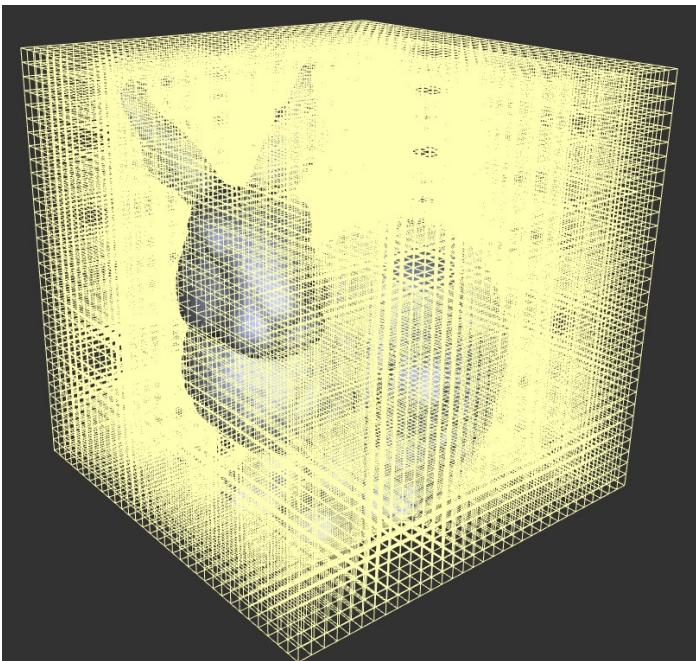
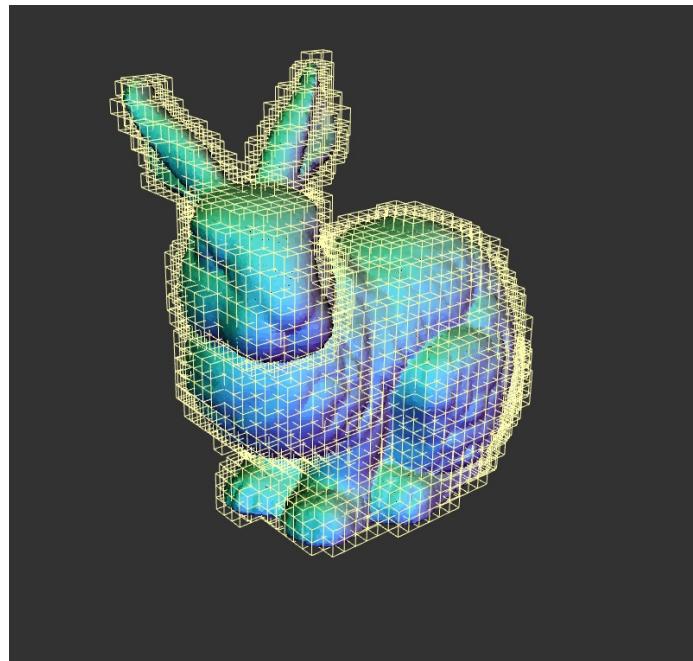
both

Transferring shape and texture

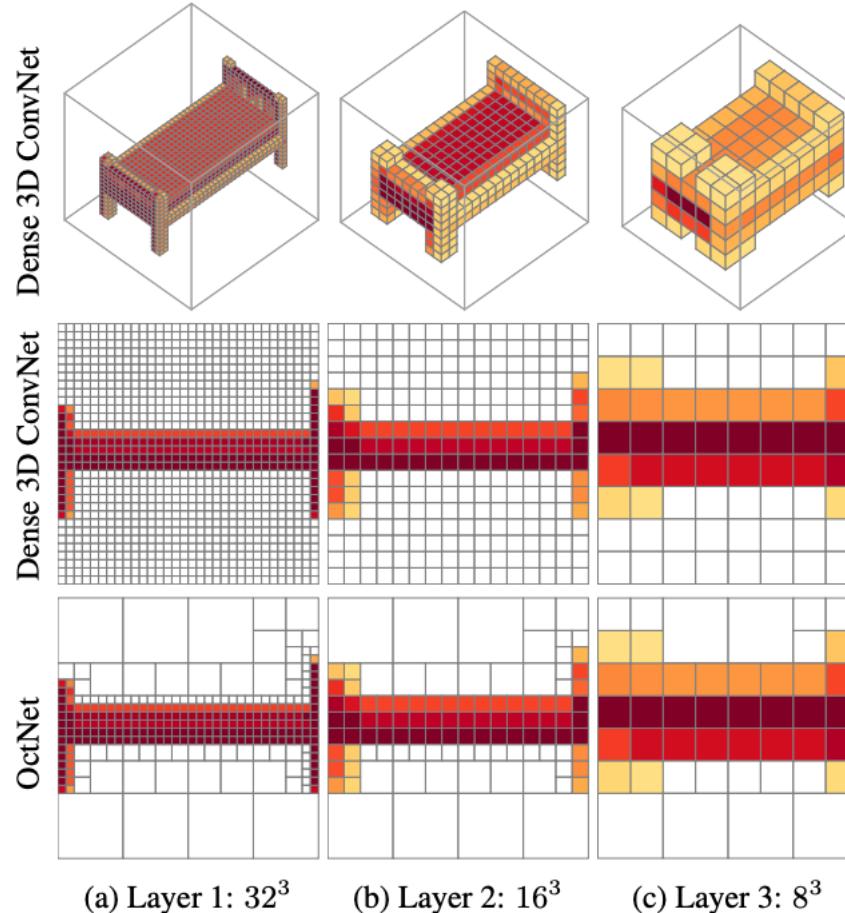
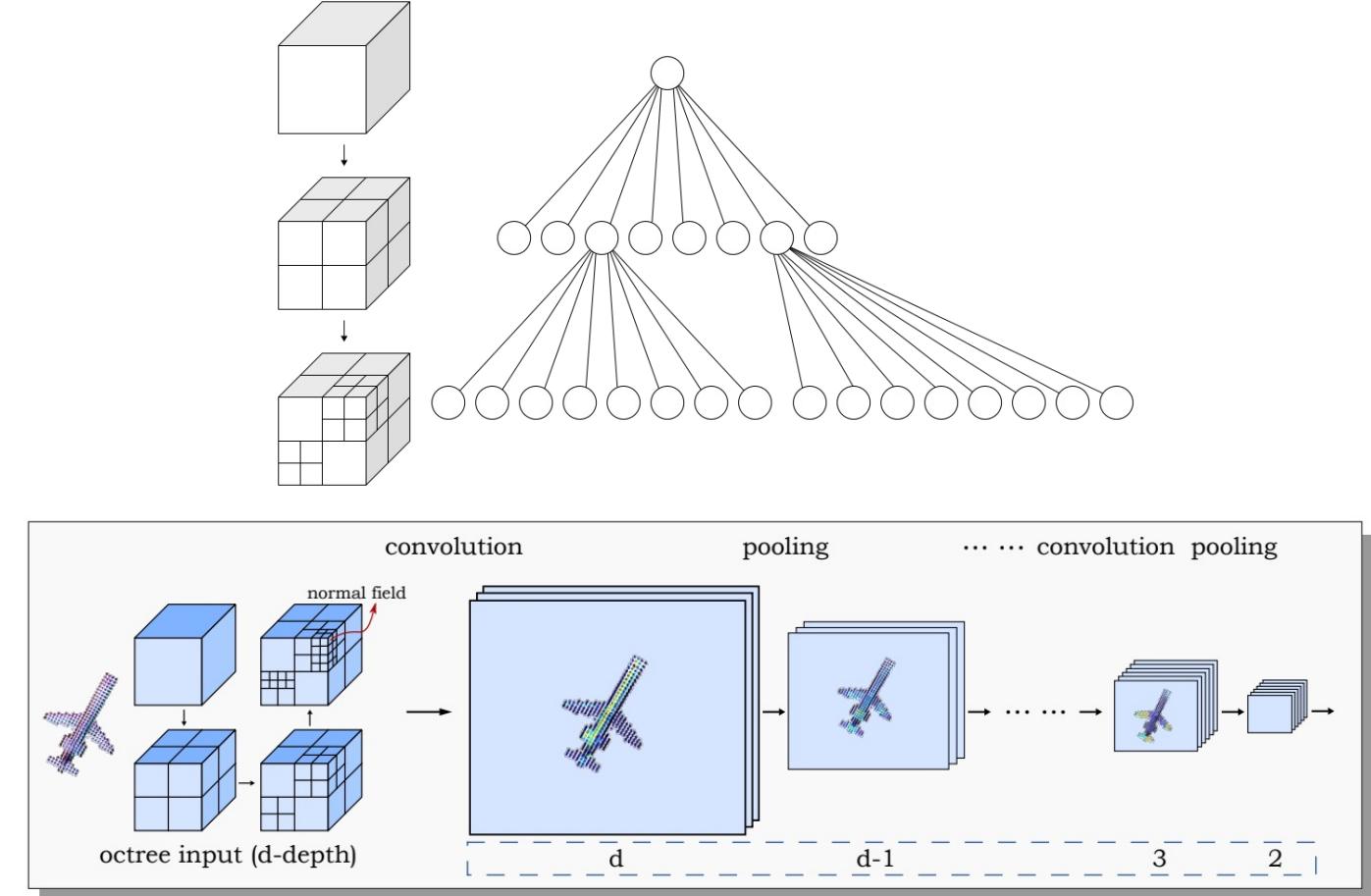
shape
image

Octave Tree Representations

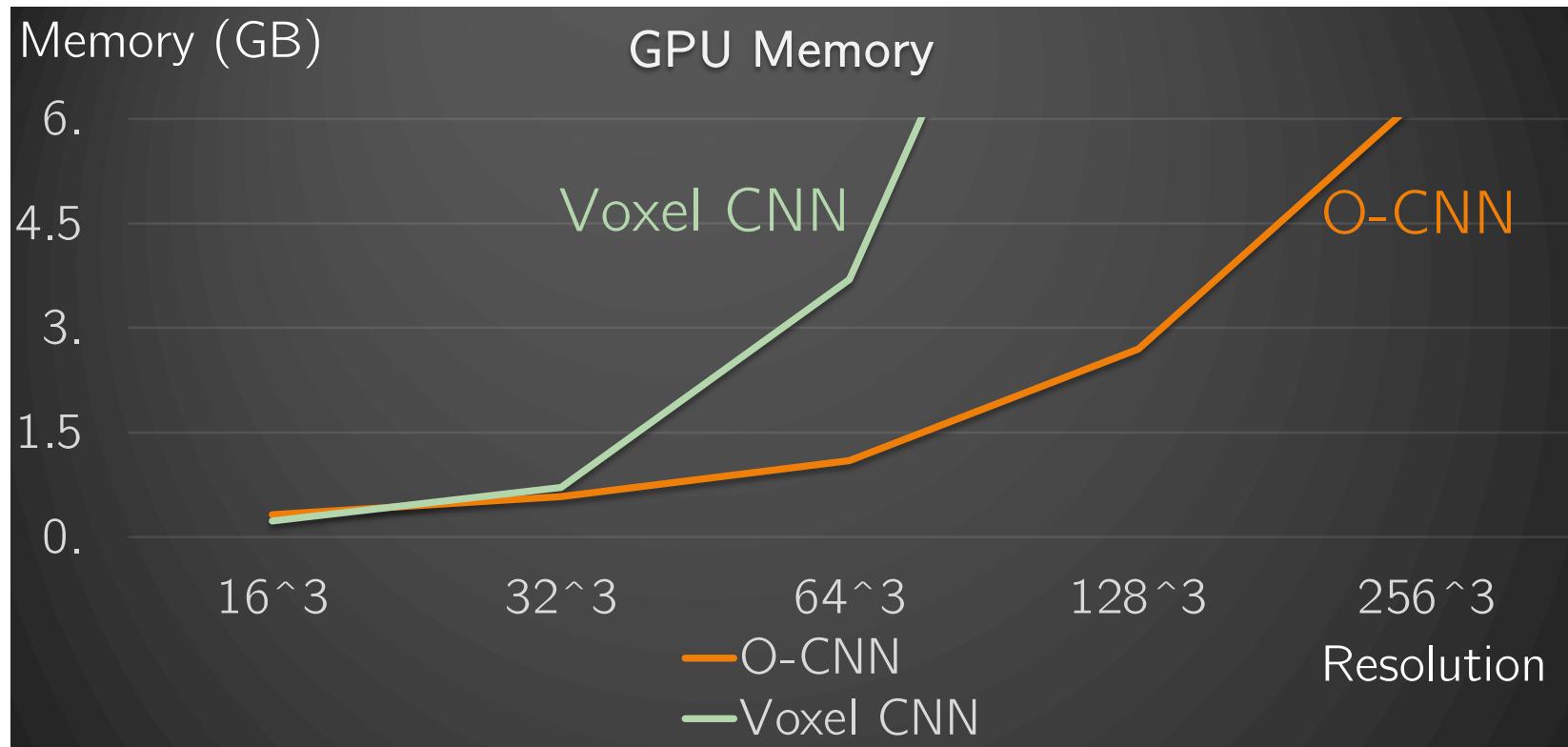
- Store the sparse surface signals
- Constrain the computation near the surface



Octree: Recursively Partition the Space



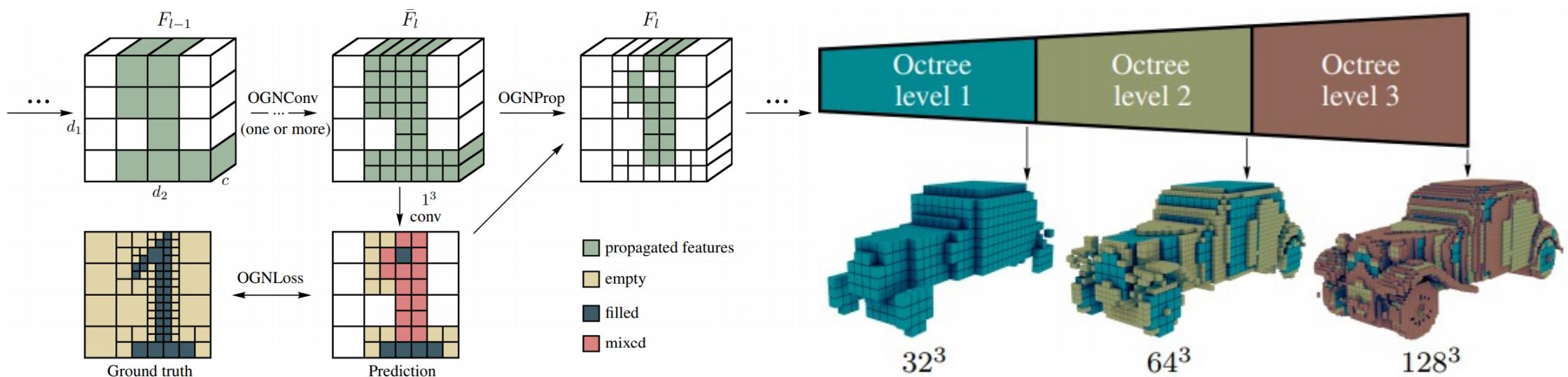
Memory Efficiency



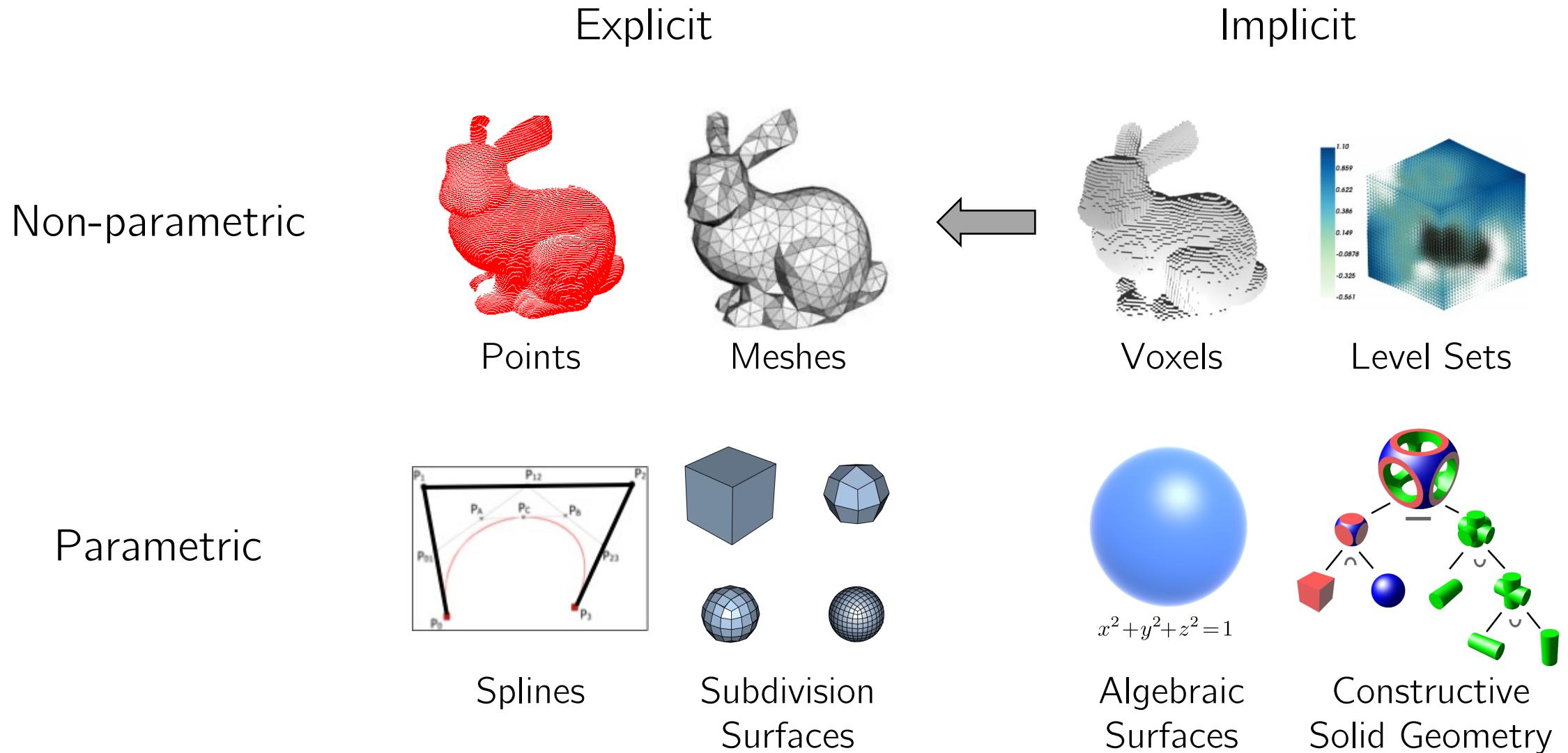
Octree Generating Networks

Avoid $\mathcal{O}(n^3)$ reconstruction

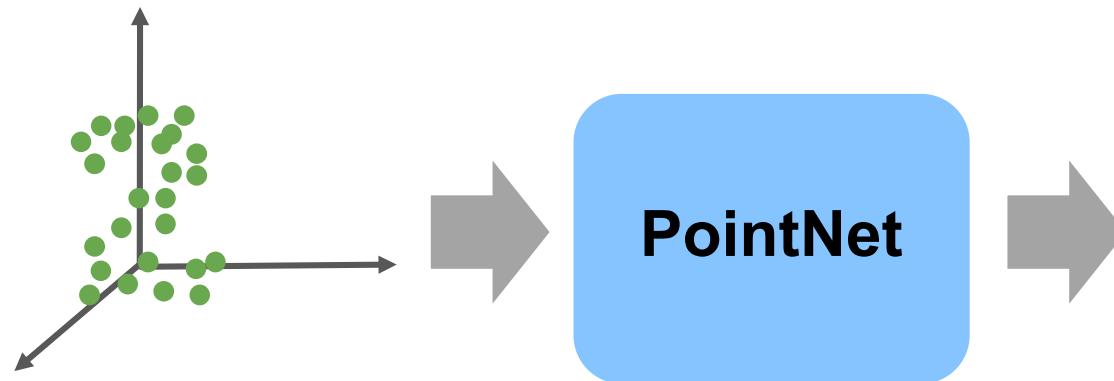
- Octree representation of shapes
- Generate the octree layer by layer



Eulerian -> Lagrangian



PointNet: Learning on Point Clouds



Object Classification

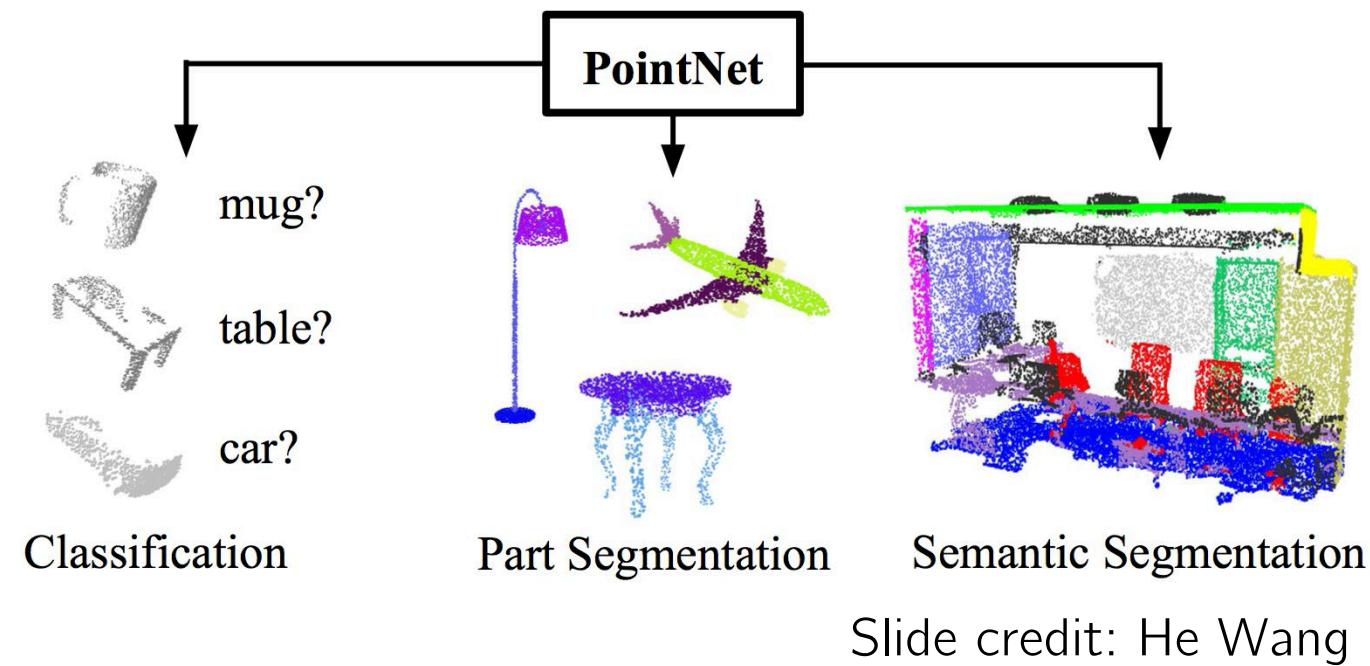
Object Part Segmentation

Semantic Scene Parsing

...

End-to-end learning for irregular point data

Unified framework for various tasks



Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas.
PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation. (CVPR'17)

Slide credit: He Wang

Invariances

The model has to respect key desiderata for point clouds:

Point Permutation Invariance

Point cloud is a set of **unordered** points

Sampling Invariance

Output a function of the underlying geometry and **not the sampling**

Permutation Invariance: Symmetric Functions

$$f(x_1, x_2, \dots, x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n}), \quad x_i \in \mathbb{R}^D$$

Examples:

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$

$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

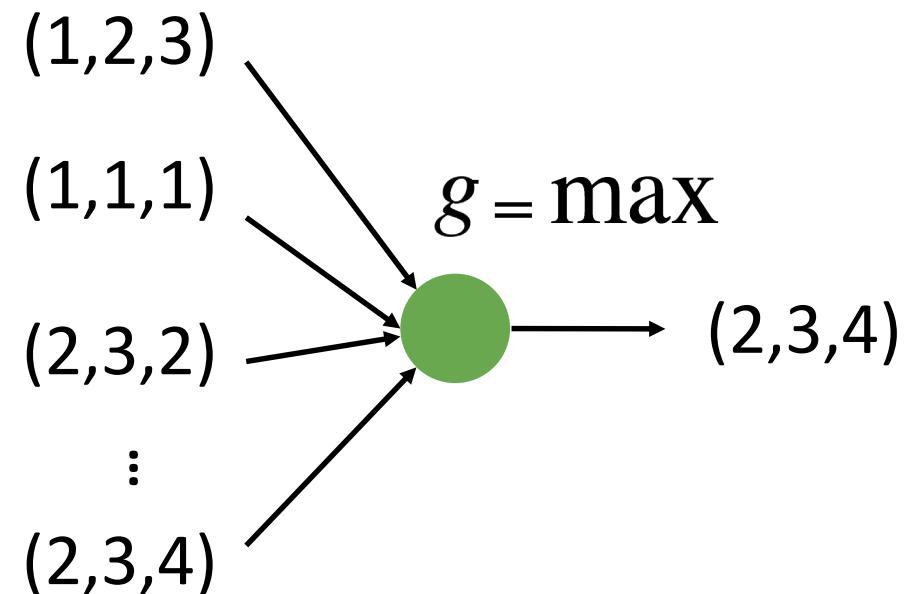
...

How can we construct a universal family of symmetric functions by neural networks?

Construct Symmetric Functions by NNs

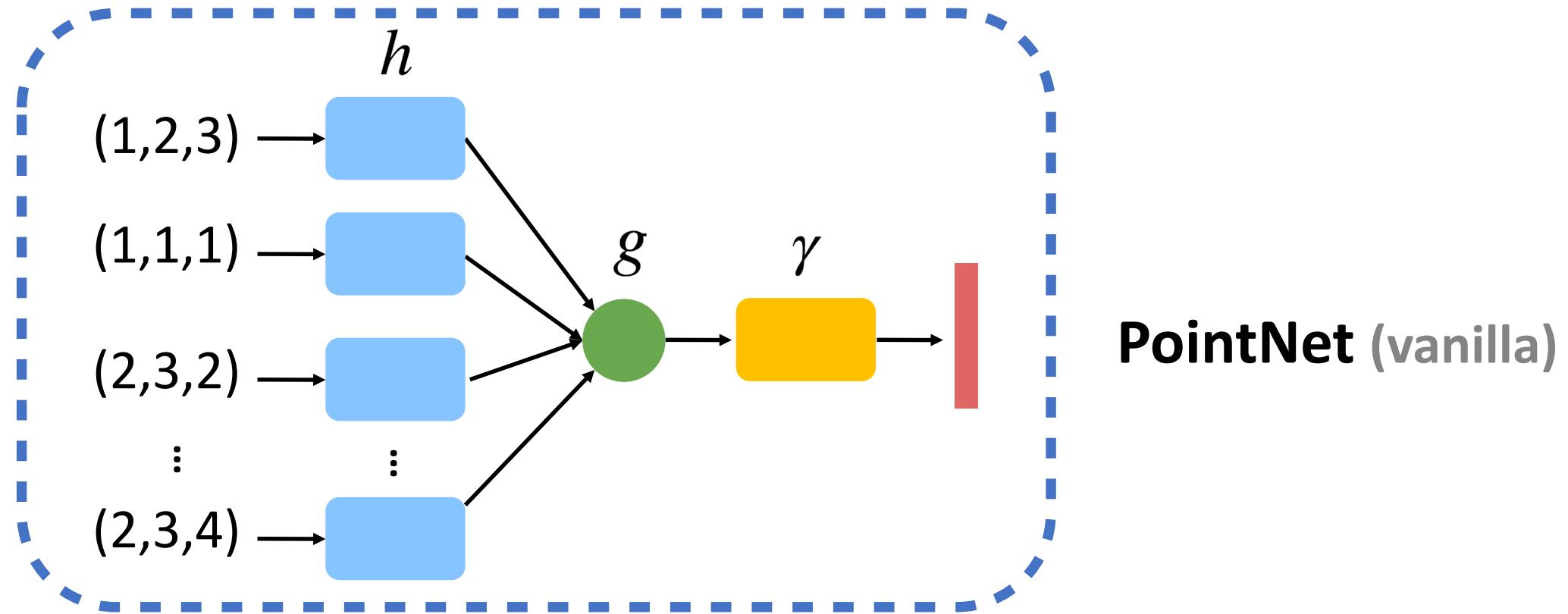
Simplest form: directly aggregate all points with a symmetric operator

Just discovers simple extreme/aggregate properties of the geometry.



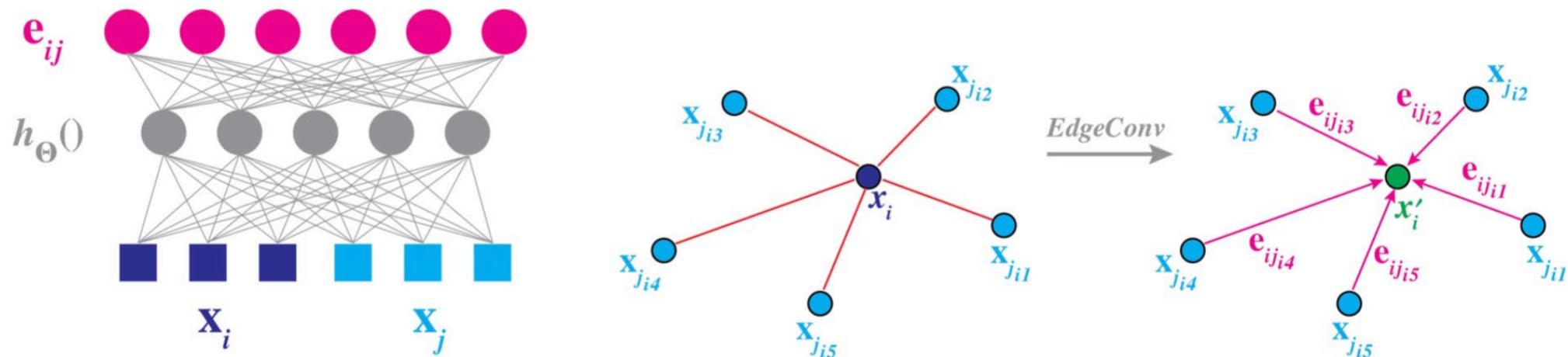
Construct Symmetric Functions by NNs

$f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$ is symmetric if g is symmetric



Graph NNs on Point Clouds

- Points -> Nodes
- Neighborhood -> Edges
- Graph NNs for point cloud processing



Distance Metrics for Point Clouds

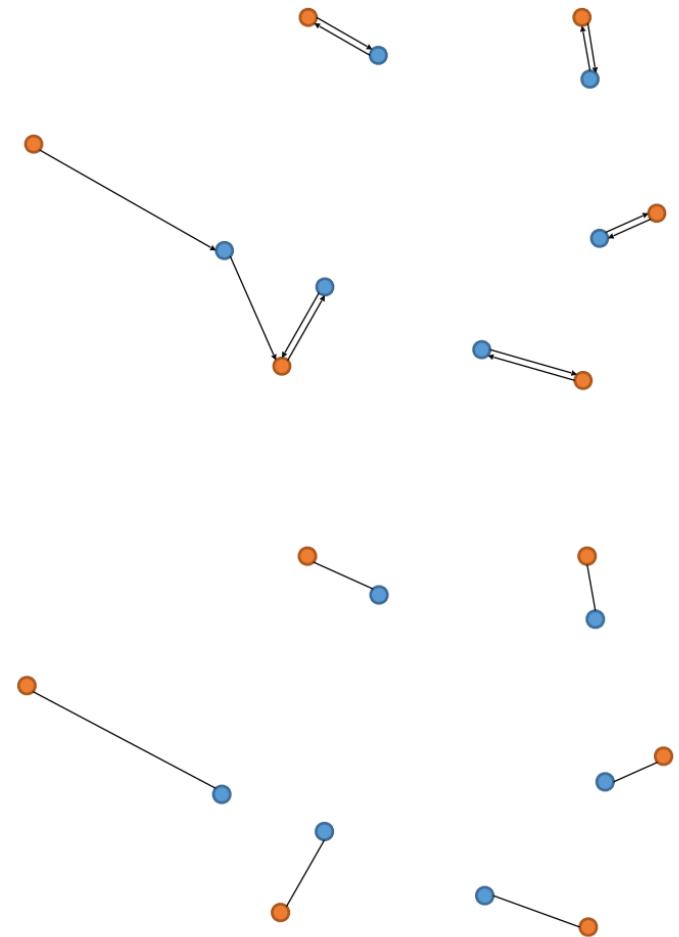
Chamfer distance We define the Chamfer distance between $S_1, S_2 \subseteq \mathbb{R}^3$ as:

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2$$

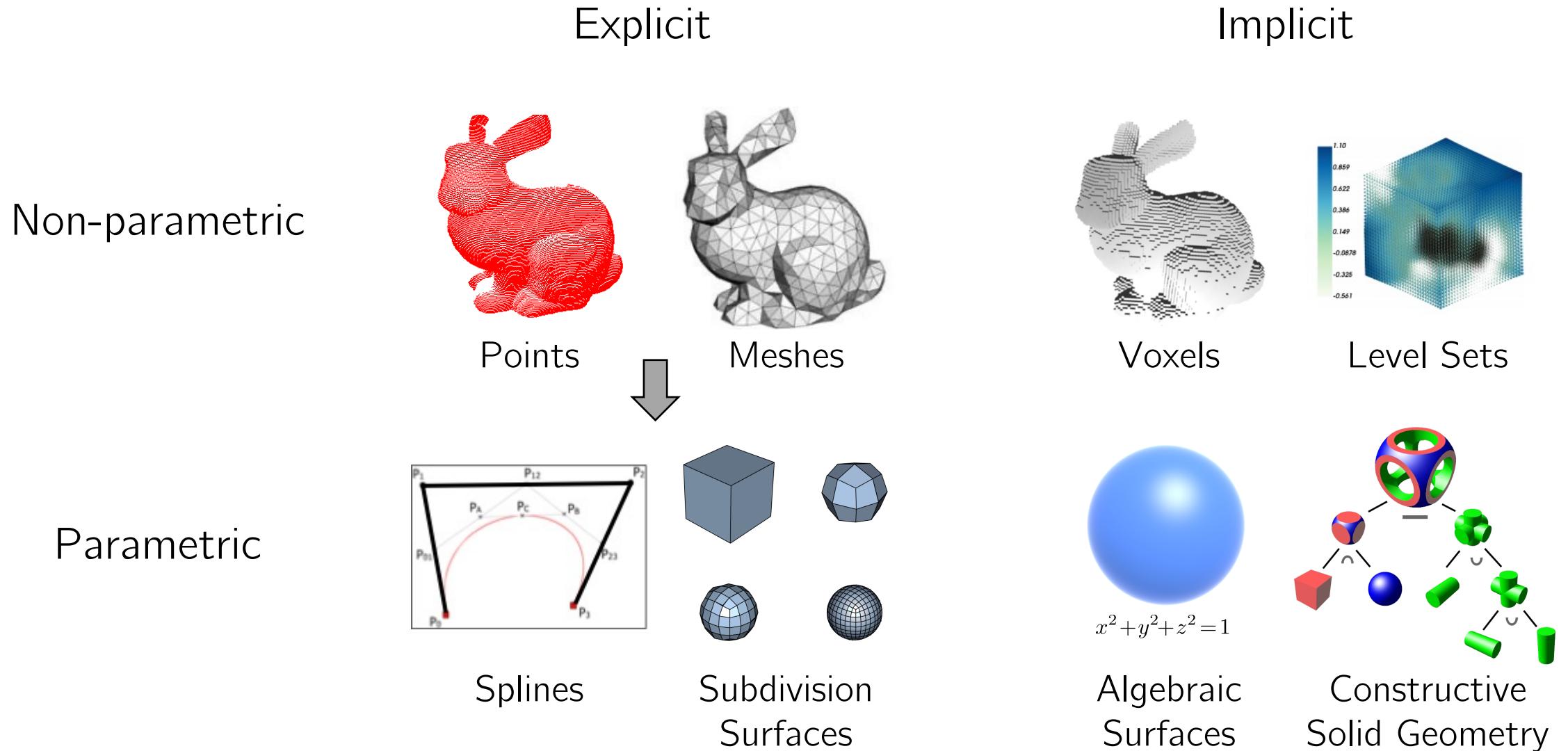
Earth Mover's distance Consider $S_1, S_2 \subseteq \mathbb{R}^3$ of equal size $s = |S_1| = |S_2|$. The EMD between A and B is defined as:

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \rightarrow S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$

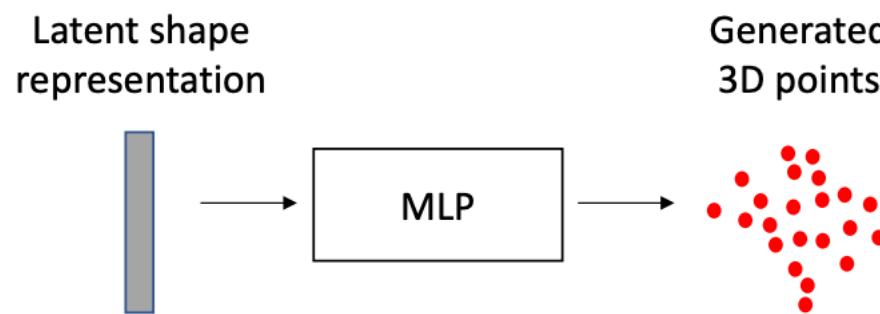
where $\phi : S_1 \rightarrow S_2$ is a bijection.



Non-Parametric \rightarrow Parametric

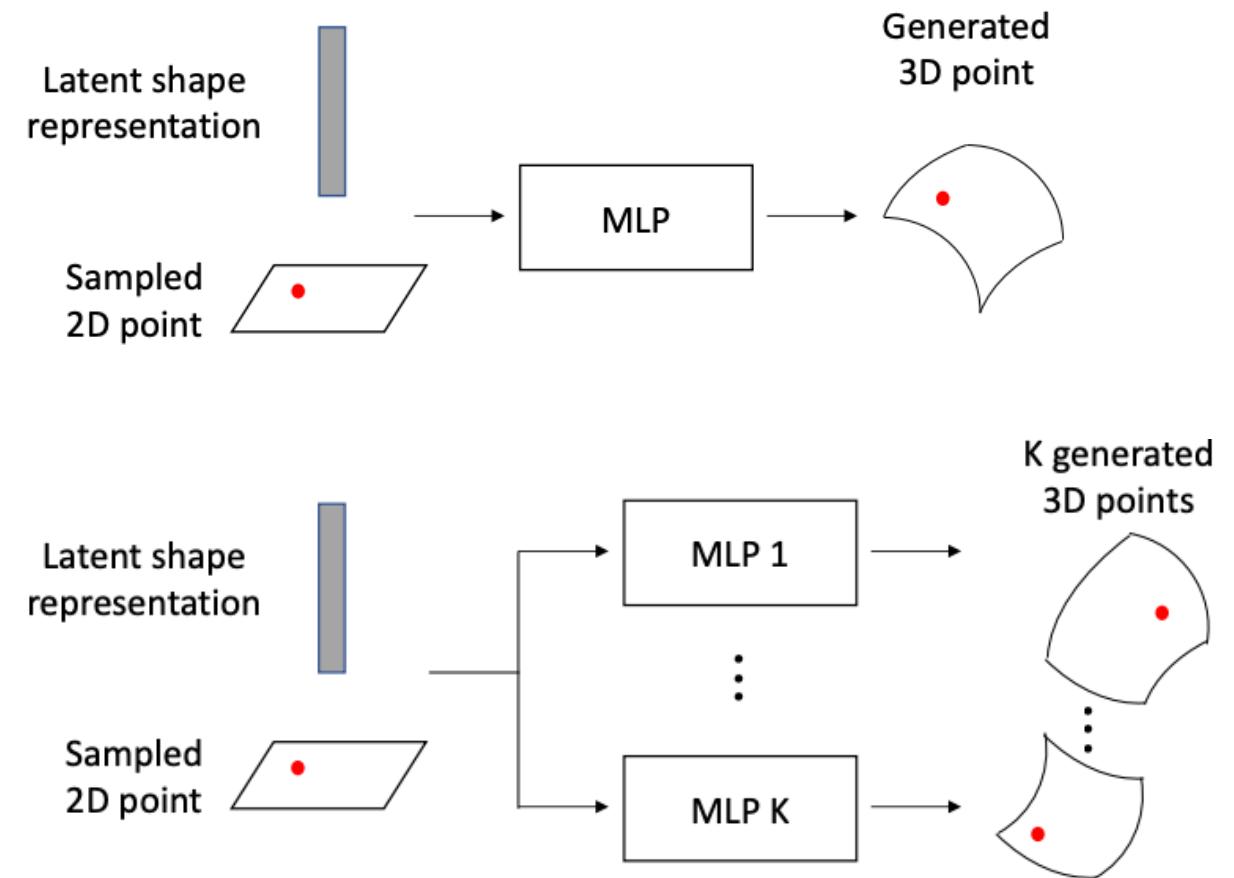


Parametric Decoder: AtlasNet



Given the output points form a smooth surface, enforce such a parametrization as input.

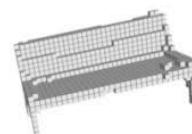
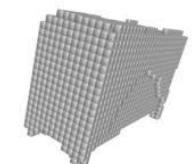
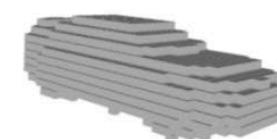
$$\text{MLP}(z, u, v) \rightarrow \text{point}$$



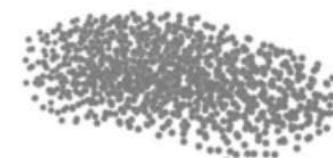
Results

Input image

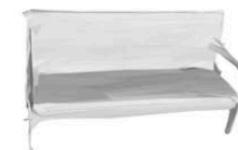
Voxel



Point cloud

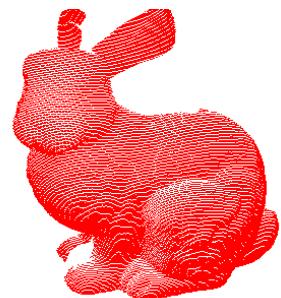


AtlasNet

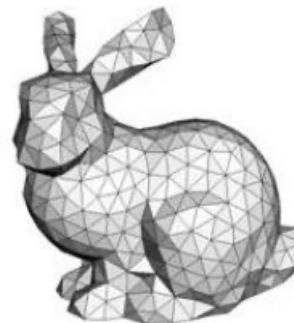


Explicit -> Implicit

Non-parametric

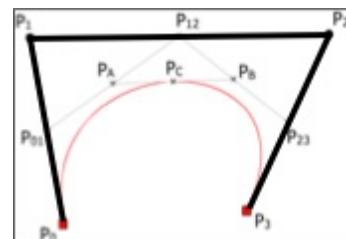


Points

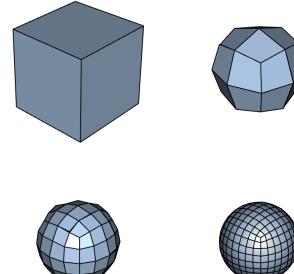


Meshes

Parametric



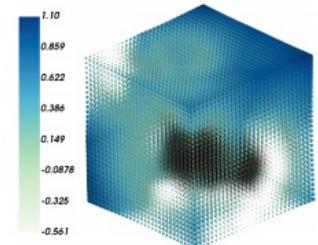
Splines



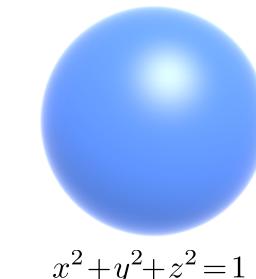
Subdivision Surfaces

Explicit

Implicit

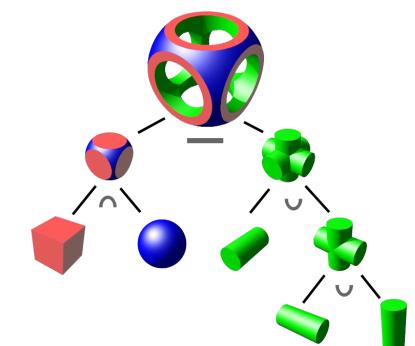


Voxels



$$x^2 + y^2 + z^2 =$$

Algebraic Surfaces

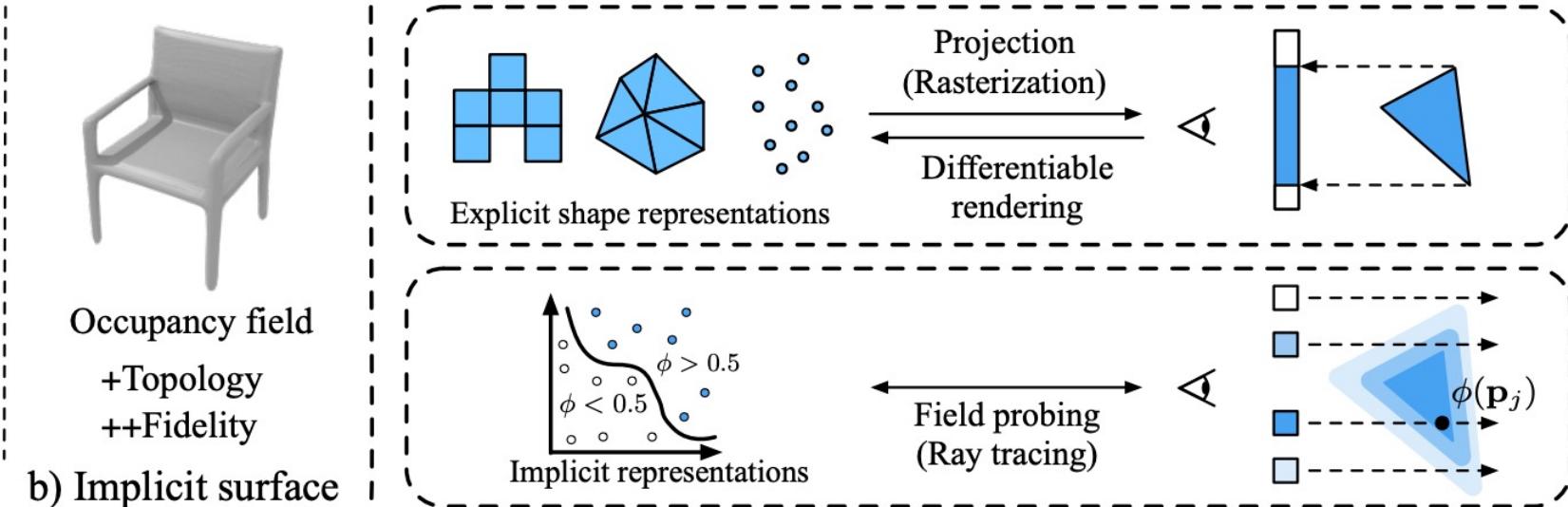


Constructive Solid Geometry

Deep Implicit Functions

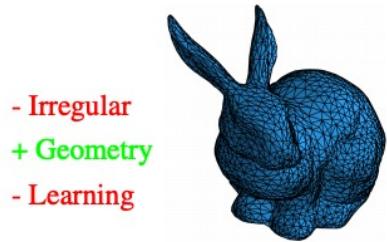
Voxel
 +Topology
 -Fidelity
 Point cloud
 +Topology
 -Fidelity
 Mesh
 -Topology
 +Fidelity

a) Explicit representation



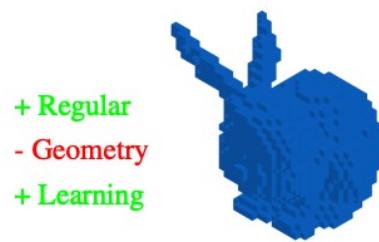
b) Implicit surface

Liu et al. Learning to Infer Implicit Surfaces without 3D Supervision. NeurIPS 2019



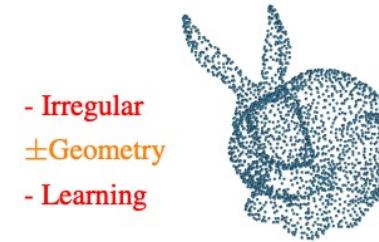
- Irregular
 + Geometry
 - Learning

(a) Explicit representations



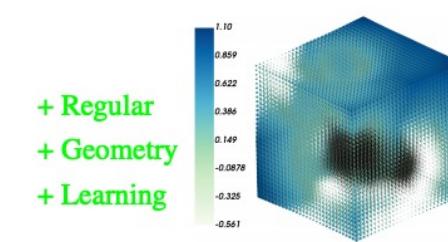
+ Regular
 - Geometry
 + Learning

(b) Voxels



- Irregular
 ± Geometry
 - Learning

(c) Point cloud



+ Regular
 + Geometry
 + Learning

(d) Level set

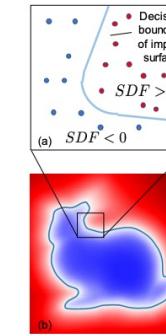
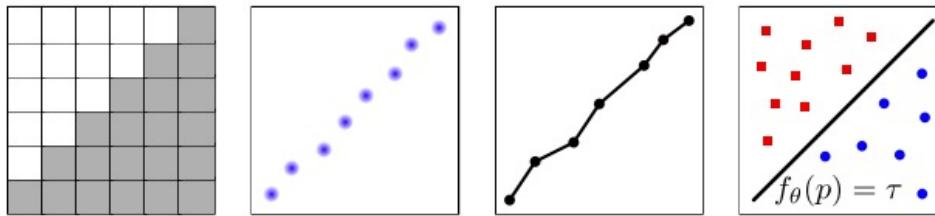


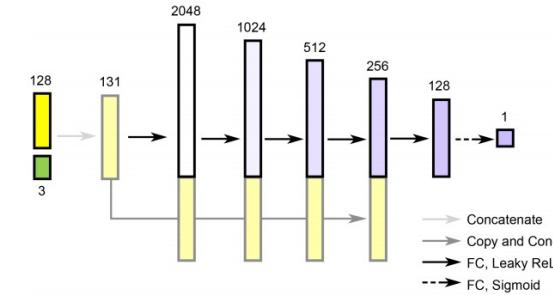
Figure 2. Four common representations of 3D shape along with their advantages and disadvantages.

Deep Level Sets: Implicit Surface Representations for 3D Shape Inference. 2019

DeepSDF. CVPR 2019



Occupancy Networks
CVPR 2019



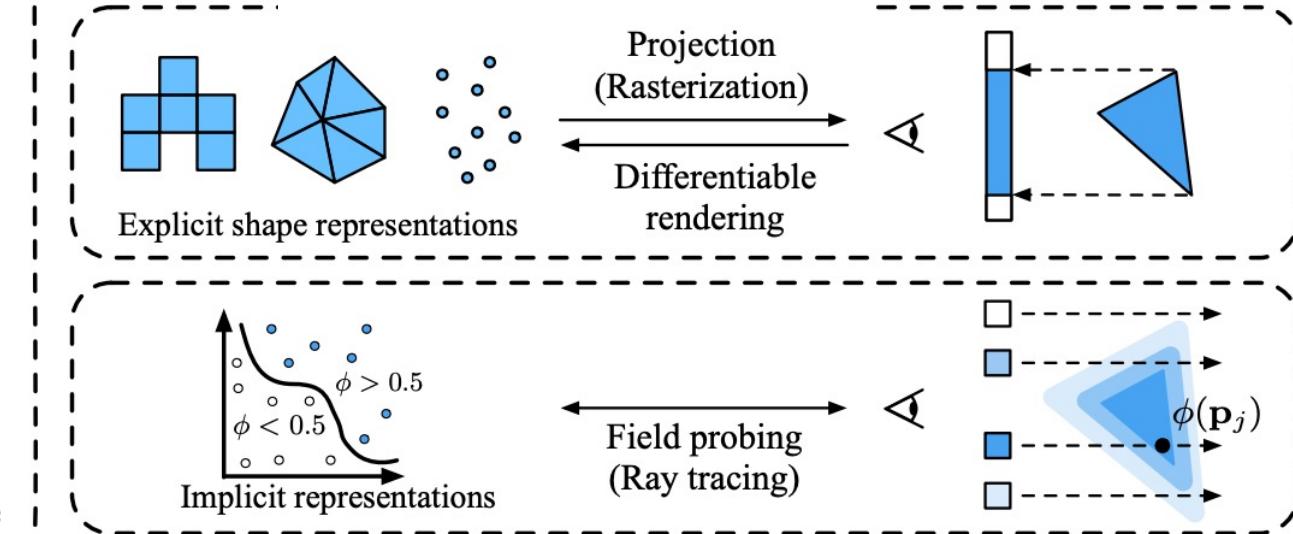
Chen and Zhang.
Learning Implicit Fields
CVPR 2019

(a) Voxel (b) Point (c) Mesh (d) Ours

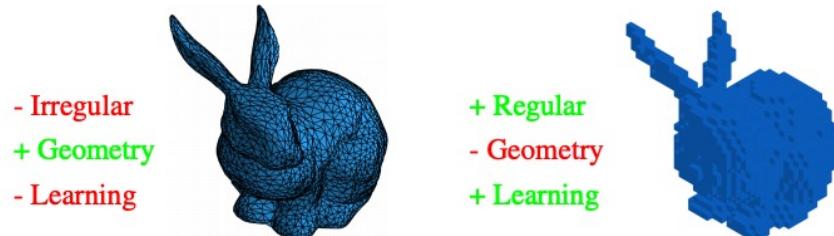
Voxel	Point cloud	Mesh
+Topology	+Topology	-Topology
-Fidelity	-Fidelity	+Fidelity

a) Explicit representation

b) Implicit surface



Liu et al. Learning to Infer Implicit Surfaces without 3D Supervision. NeurIPS 2019

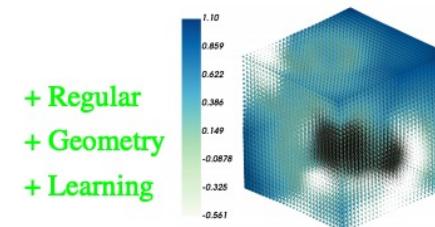


(a) Explicit representations

(b) Voxels

- Irregular
+ Regular
- Geometry
- Learning

(c) Point cloud



(d) Level set

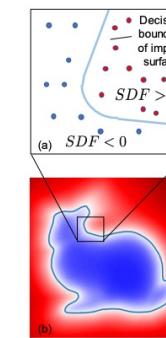


Figure 2. Four common representations of 3D shape along with their advantages and disadvantages.

Deep Level Sets: Implicit Surface Representations for 3D Shape Inference. 2019

DeepSDF. CVPR 2019

Collection of Implicit Functions

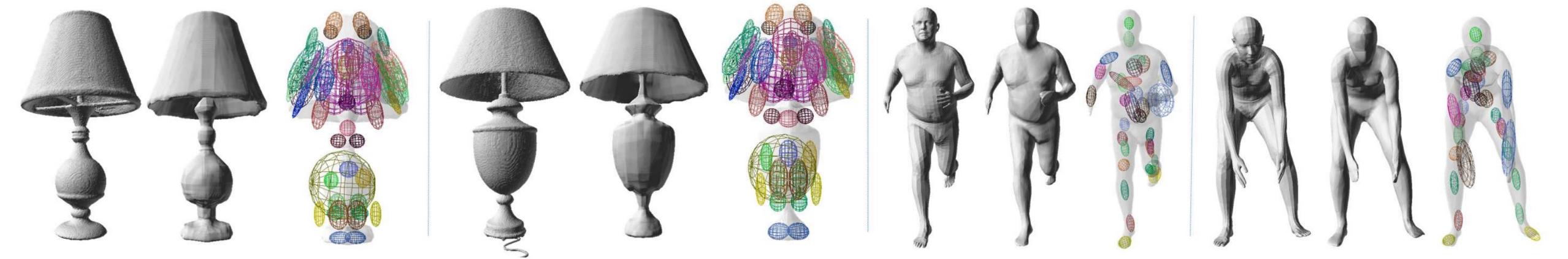
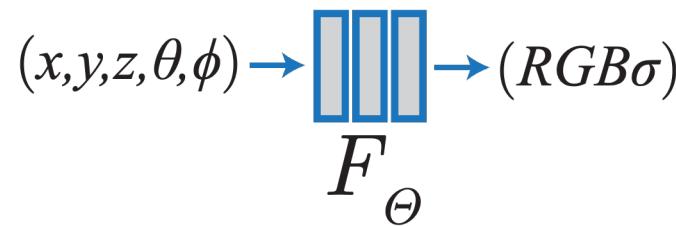
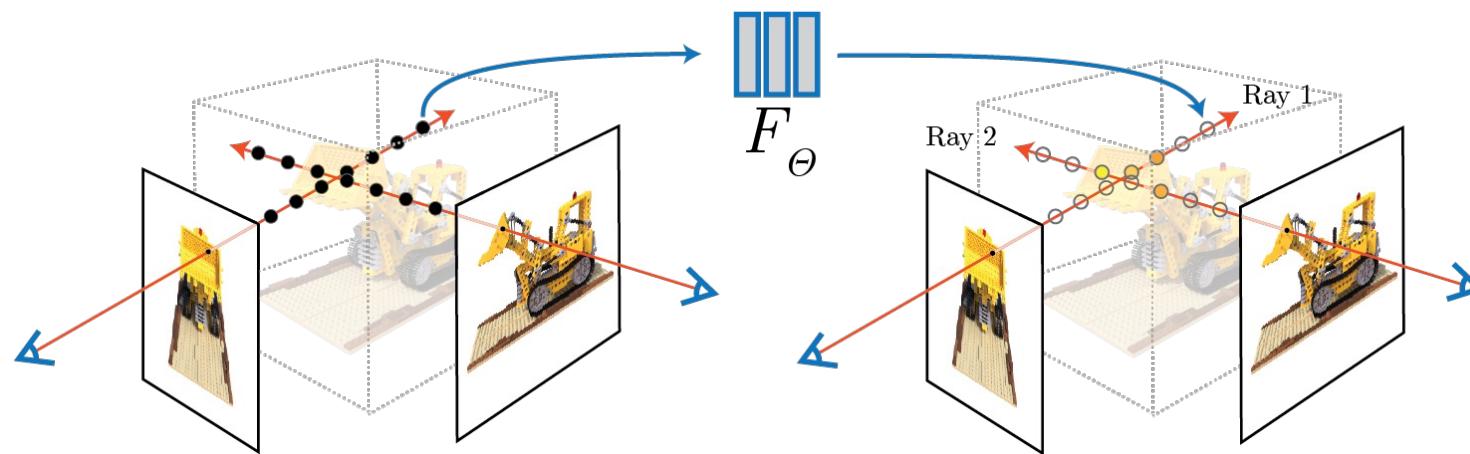
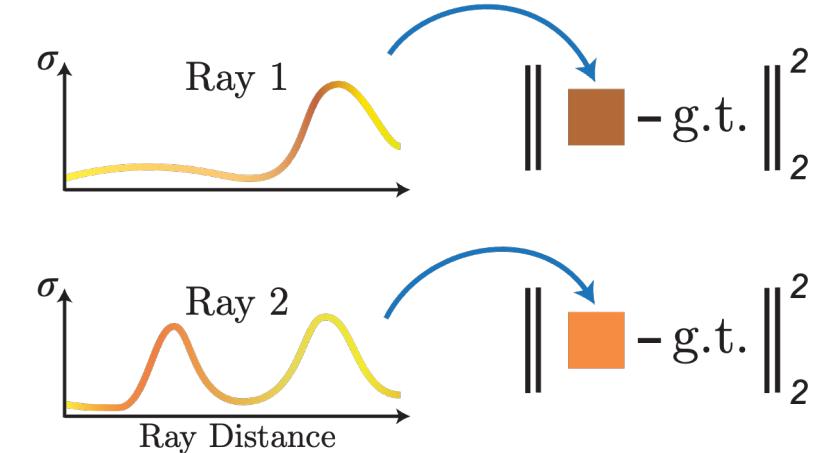


Figure 1. This paper introduces Local Deep Implicit Functions, a 3D shape representation that decomposes an input shape (mesh on left in every triplet) into a structured set of shape elements (colored ellipses on right) whose contributions to an implicit surface reconstruction (middle) are represented by latent vectors decoded by a deep network. Project video and website at ldif.cs.princeton.edu.

Implicit Functions for Geometry + Rendering



Volume rendering is trivially differentiable.

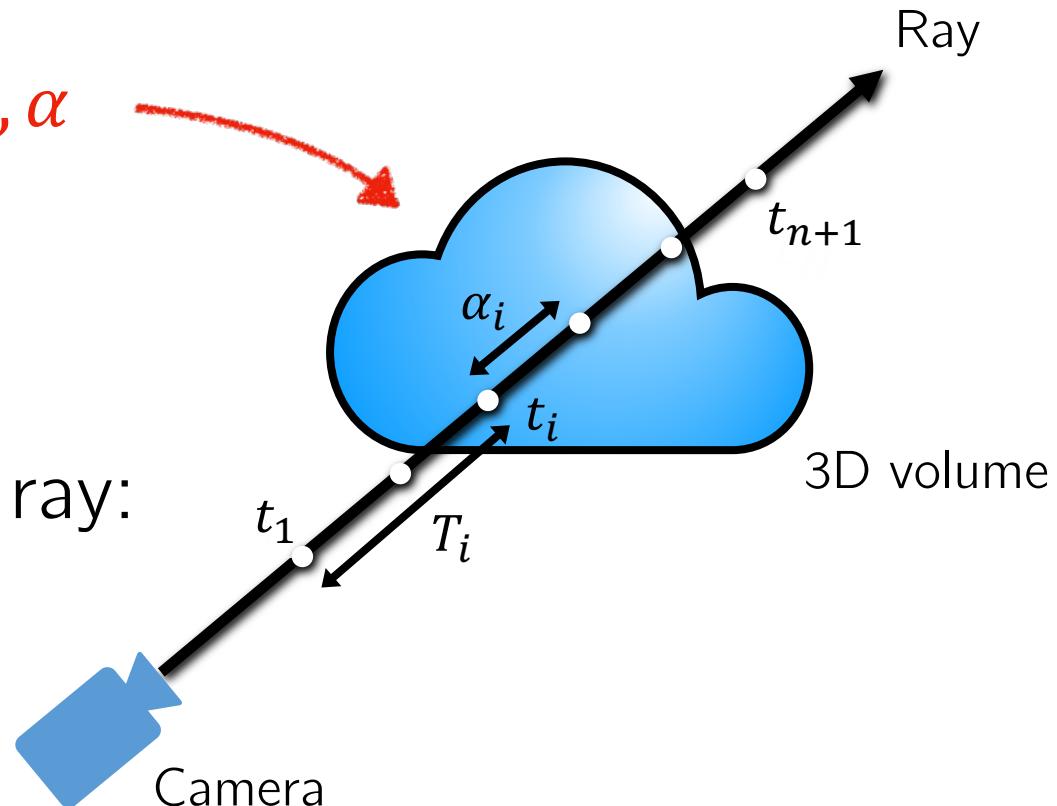
Rendering model for ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:

$$\mathbf{c} \approx \sum_{i=1}^n T_i \alpha_i \mathbf{c}_i$$

weights

colors

differentiable w.r.t. \mathbf{c}, α



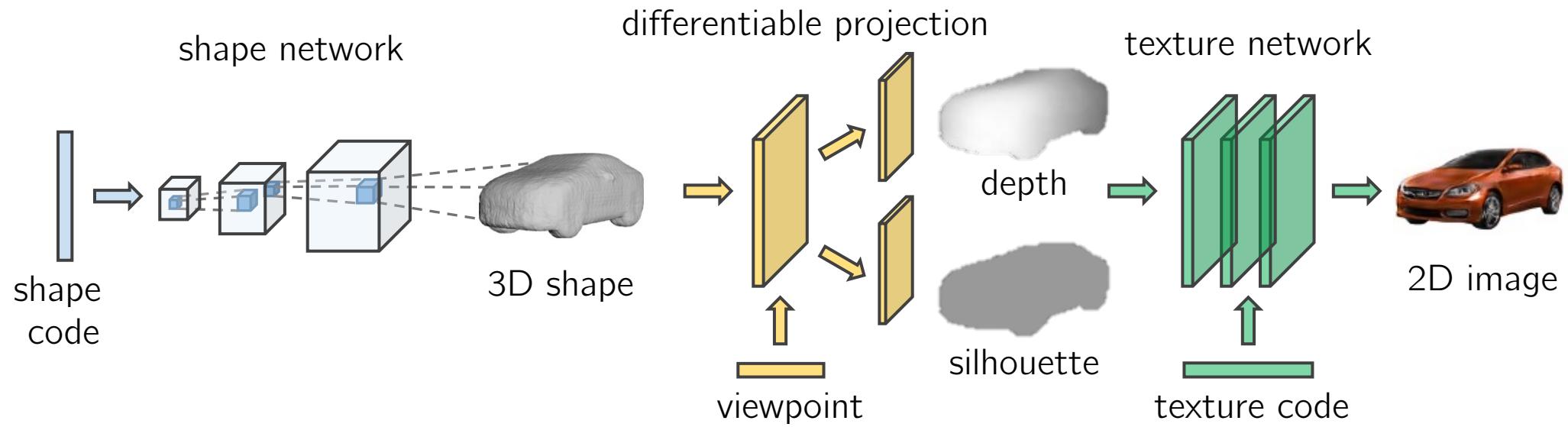
How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

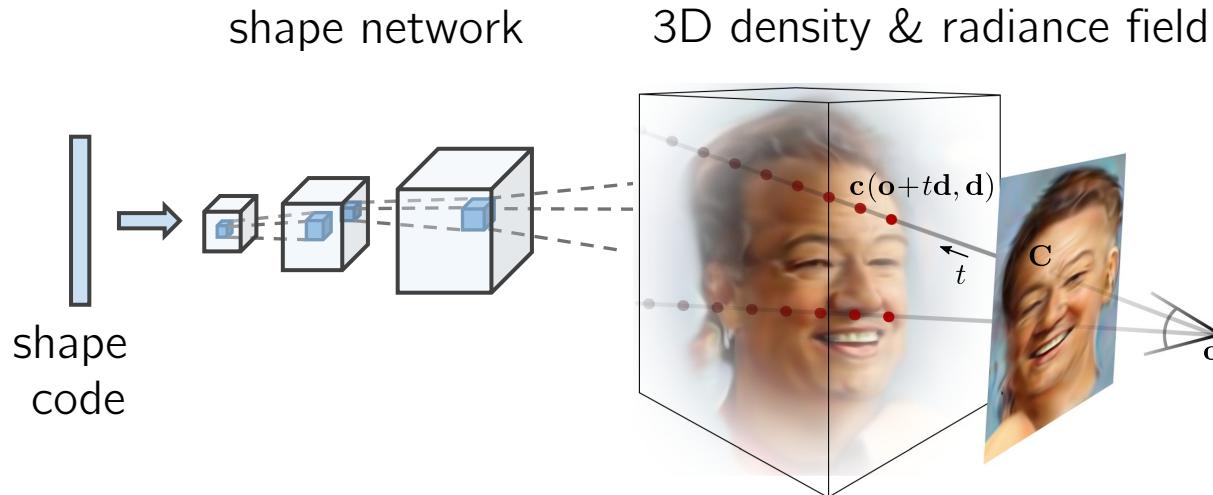
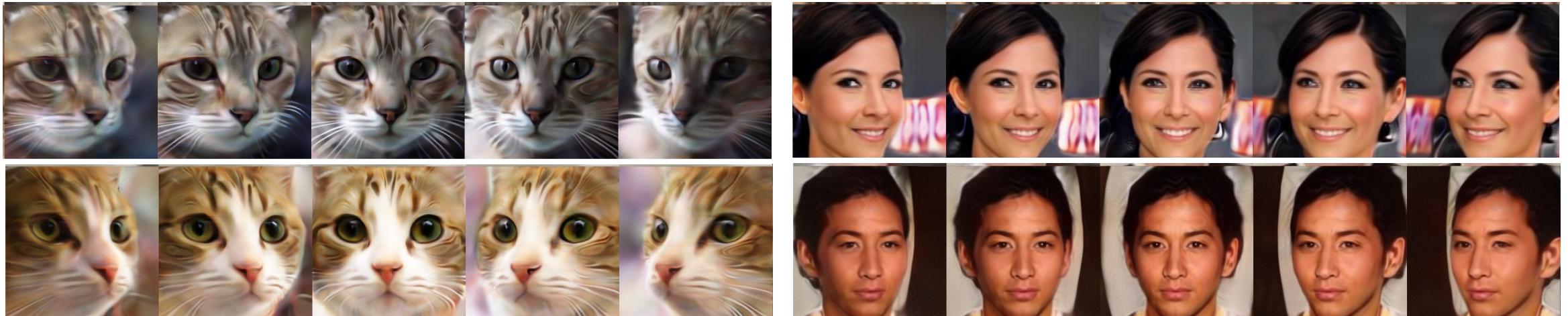
How much light is contributed by ray segment i : α_i

Reconstruction & Novel View Synthesis with NeRF

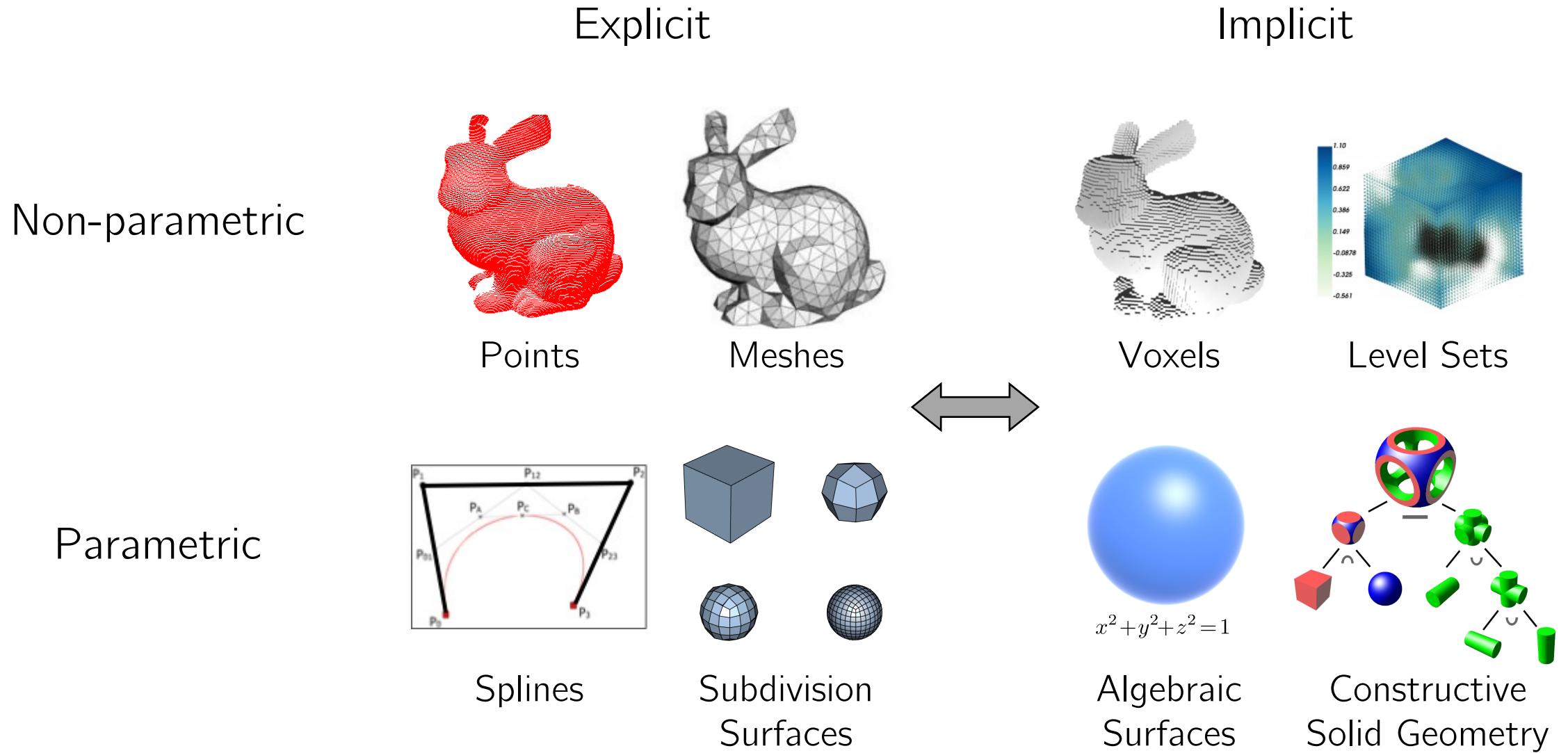
Generative Modeling with Implicit Geometry + Rendering



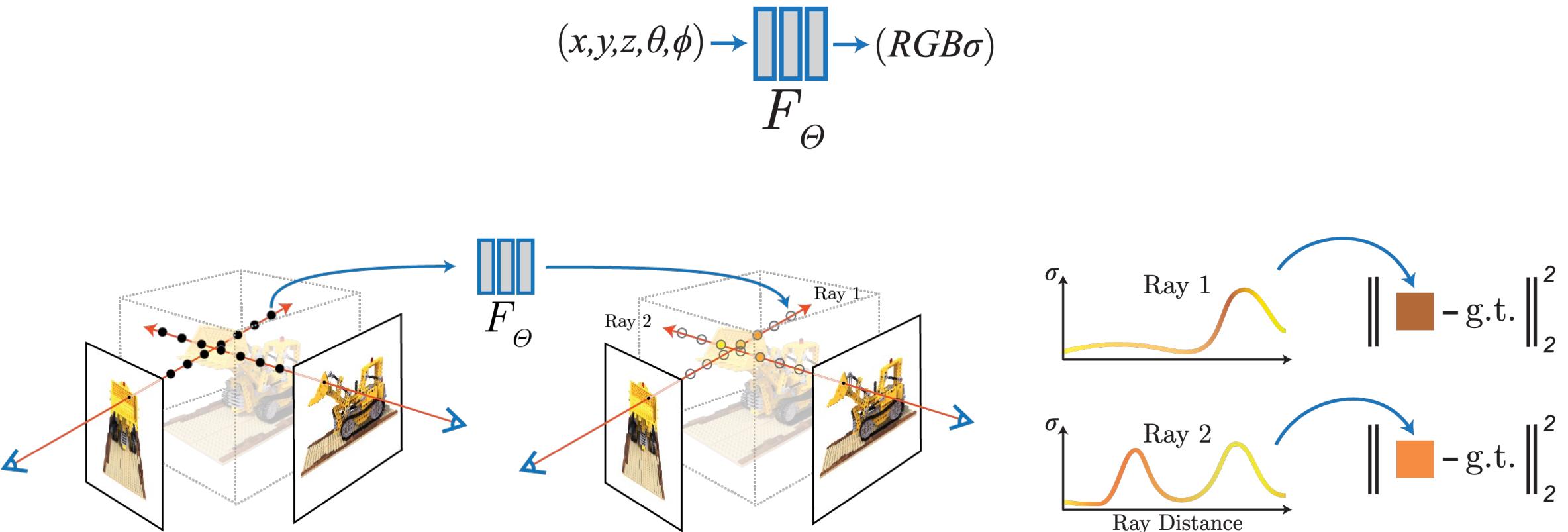
Generative Modeling with Implicit Geometry + Rendering



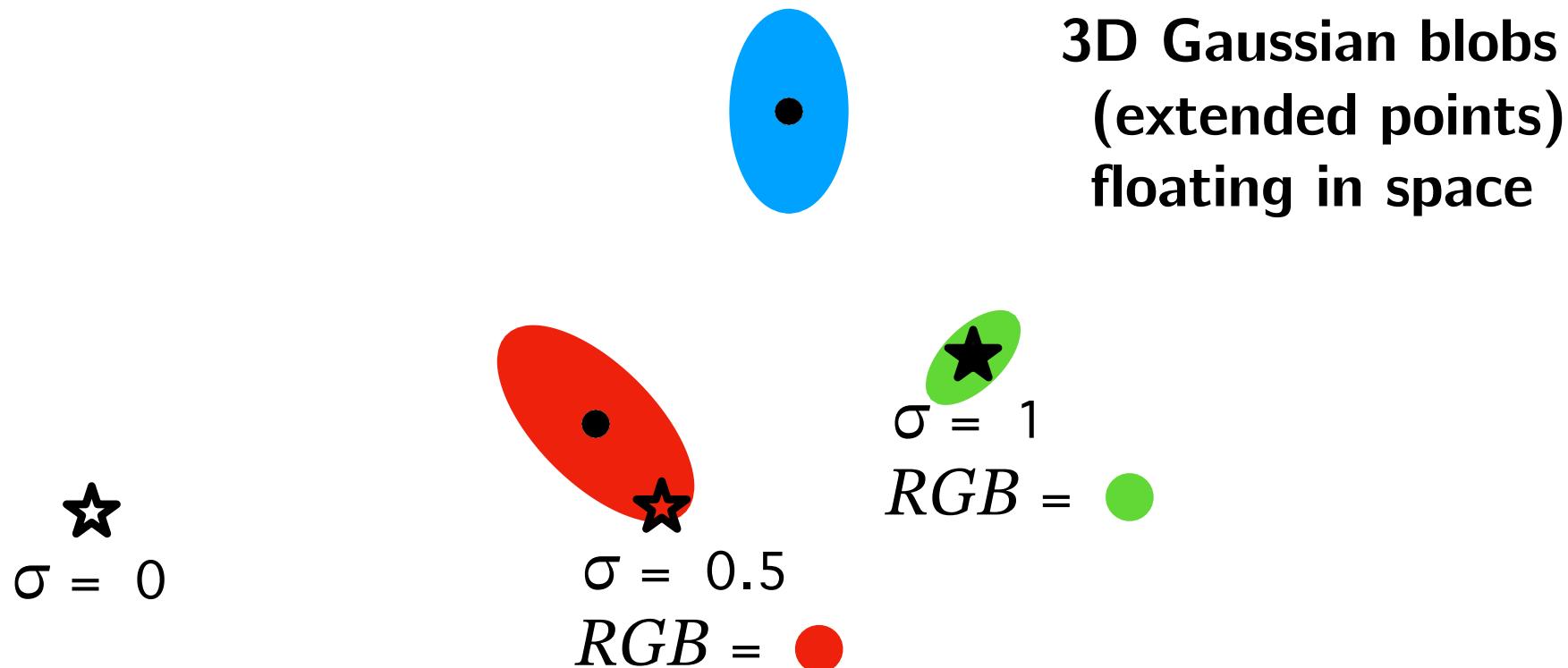
Explicit \leftrightarrow Implicit



NeRF parameterizes scenes densely, at every point in space.



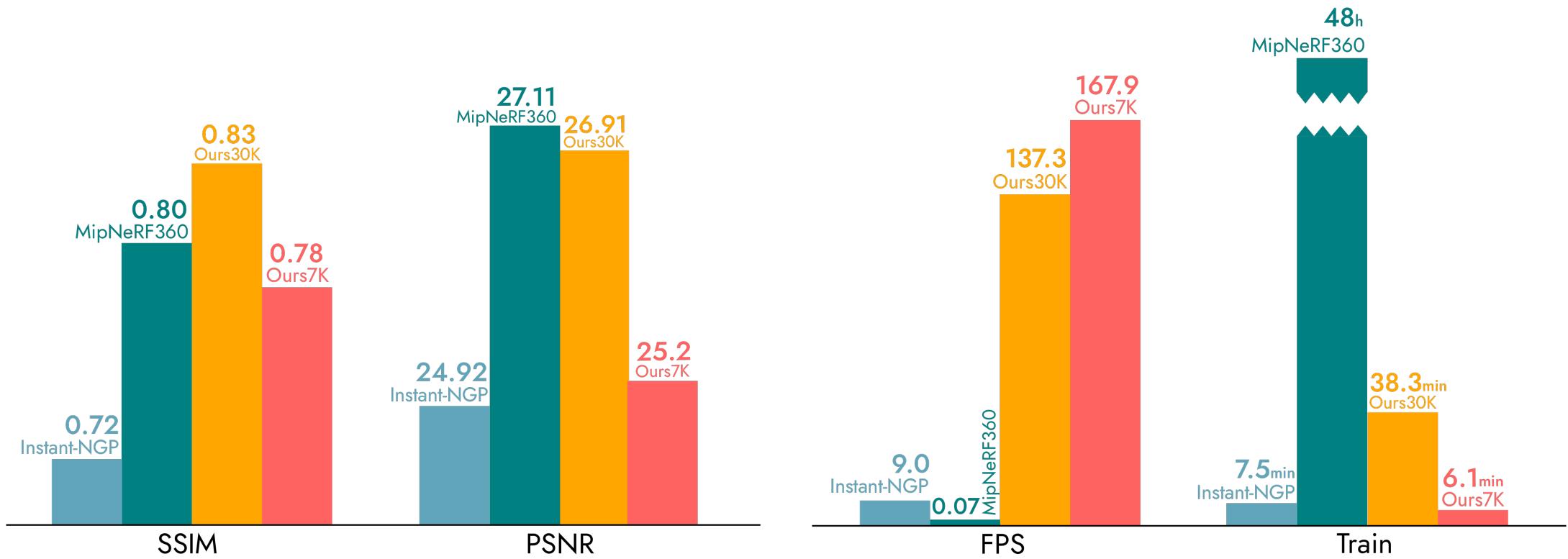
Gaussian splatting parameterizes the scene sparsely, only where density is nonzero.



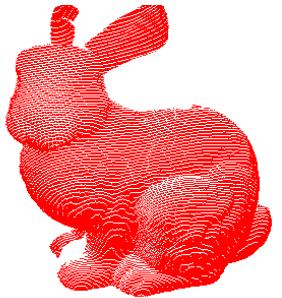
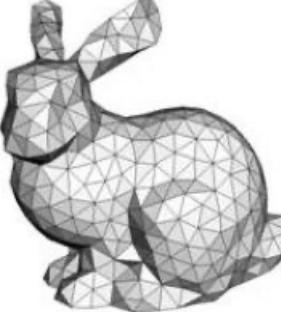
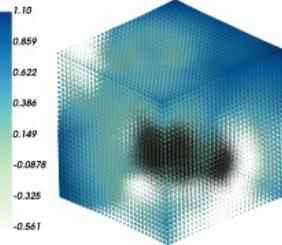
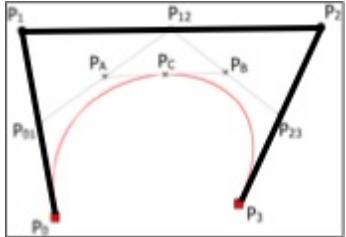
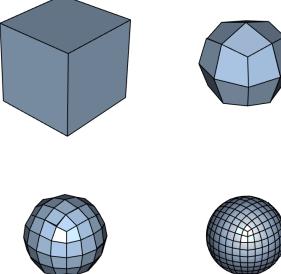
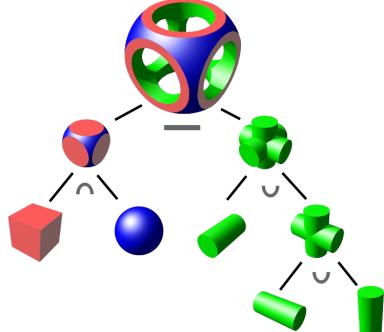
Reconstruction Using 3DGS



Quality & Efficiency



Shape Representations

	Explicit		Implicit	
Non-parametric				
Parametric			 $x^2 + y^2 + z^2 = 1$	
	Points	Meshes	Voxels	Level Sets
	Splines	Subdivision Surfaces	Algebraic Surfaces	Constructive Solid Geometry

Anatomy of a Structure-Aware Representation

=

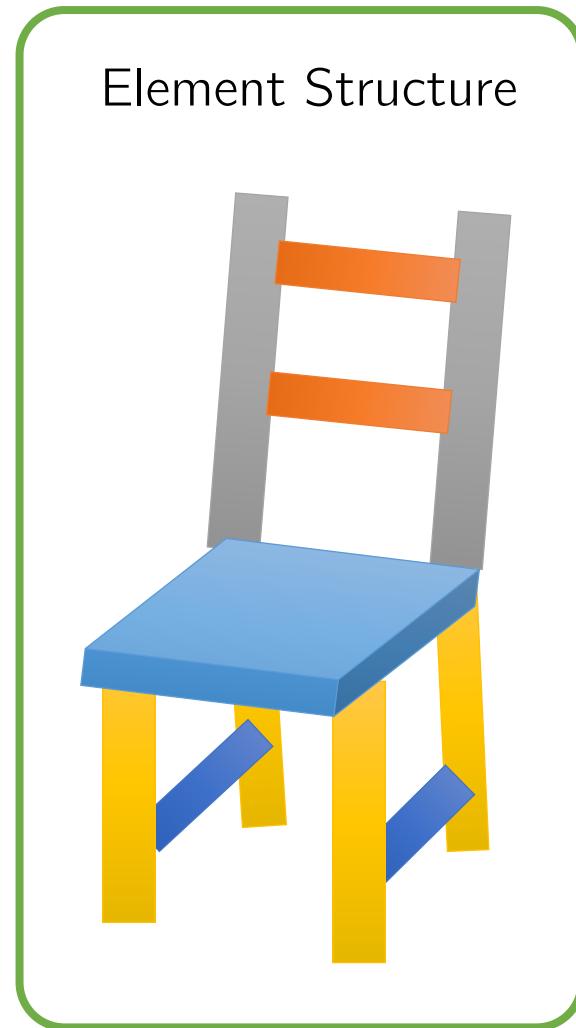
Element Structure

+

Element Geometry

Anatomy of a Structure-Aware Representation

=



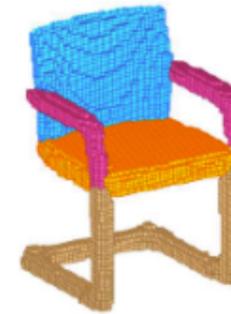
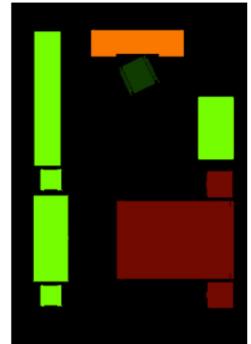
Element Structure

+

Element Geometry

Representing Element Structure

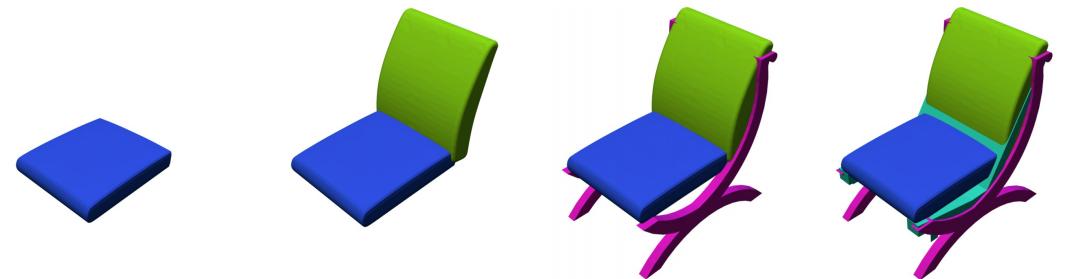
- **Segmented Geometry**



- Simple to construct
- Re-use models for unstructured geometry
- Integrity of atomic elements not guaranteed by construction (generative model must learn to output coherent segments)

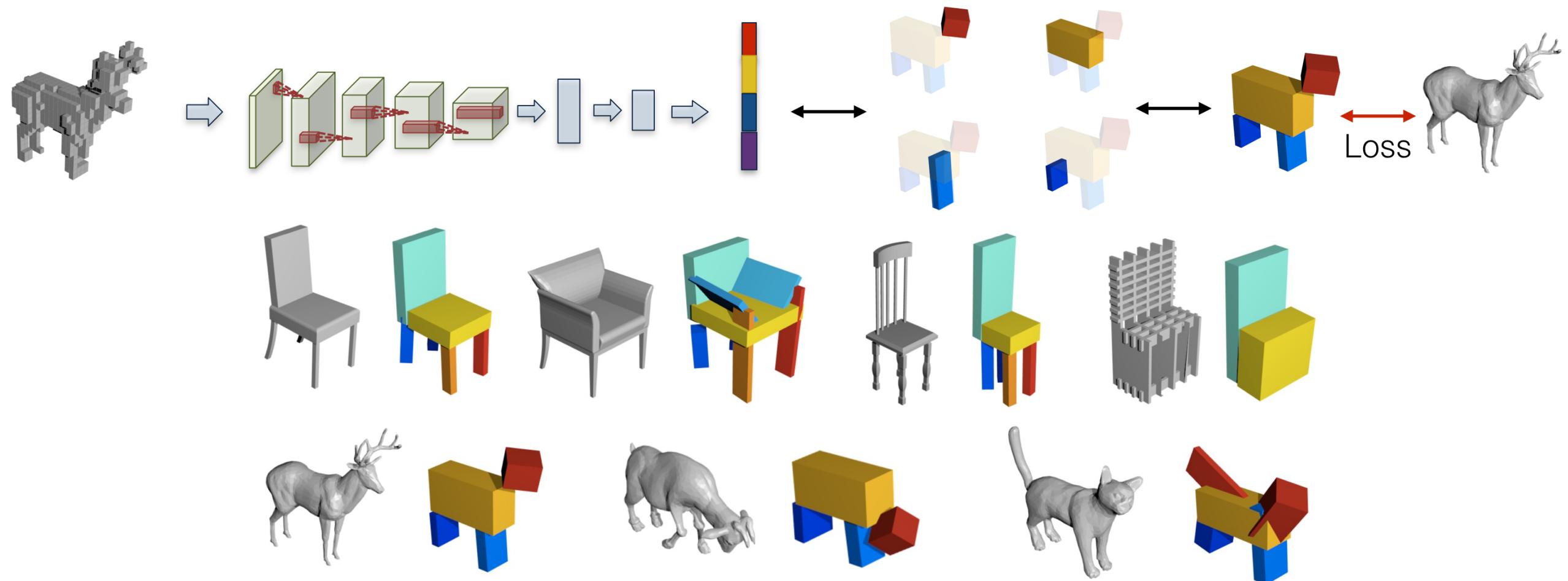
Representing Element Structure

- Segmented Geometry
- **Part Sets**



- Part integrity guaranteed
- No relationships between parts (e.g. nothing to prevent parts from “floating”)

Sets of Volumetric Primitives



Sets of Implicit Functions

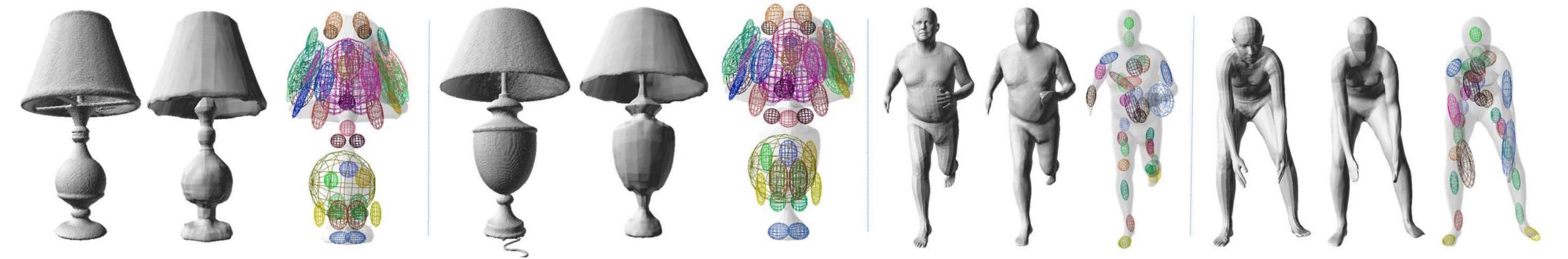
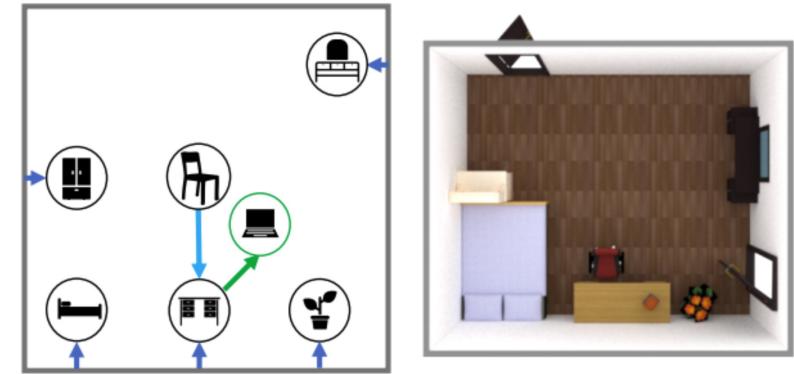


Figure 1. This paper introduces Local Deep Implicit Functions, a 3D shape representation that decomposes an input shape (mesh on left in every triplet) into a structured set of shape elements (colored ellipses on right) whose contributions to an implicit surface reconstruction (middle) are represented by latent vectors decoded by a deep network. Project video and website at ldif.cs.princeton.edu.

Representing Element Structure

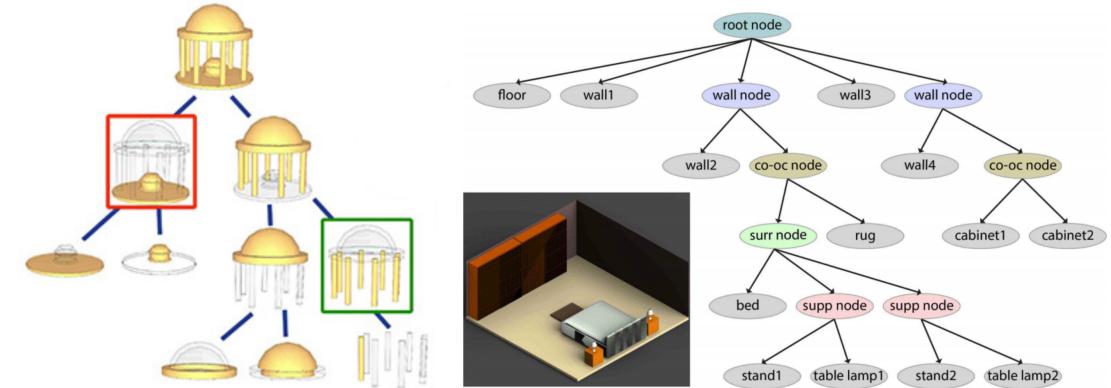
- Segmented Geometry
- Part Sets
- **Relationship Graphs**



- Can enforce important relationships (e.g. connectivity)
- In general, machine learning models for graph generation still an open problem

Representing Element Structure

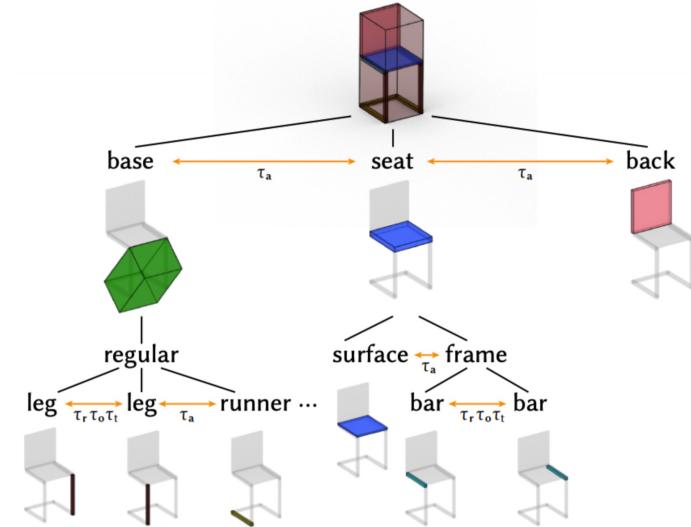
- Segmented Geometry
- Part Sets
- Relationship Graphs
- **Hierarchies**



- Tree generative models better understood than graph generative models
- Not all structures of interest can be (naturally) expressed as trees

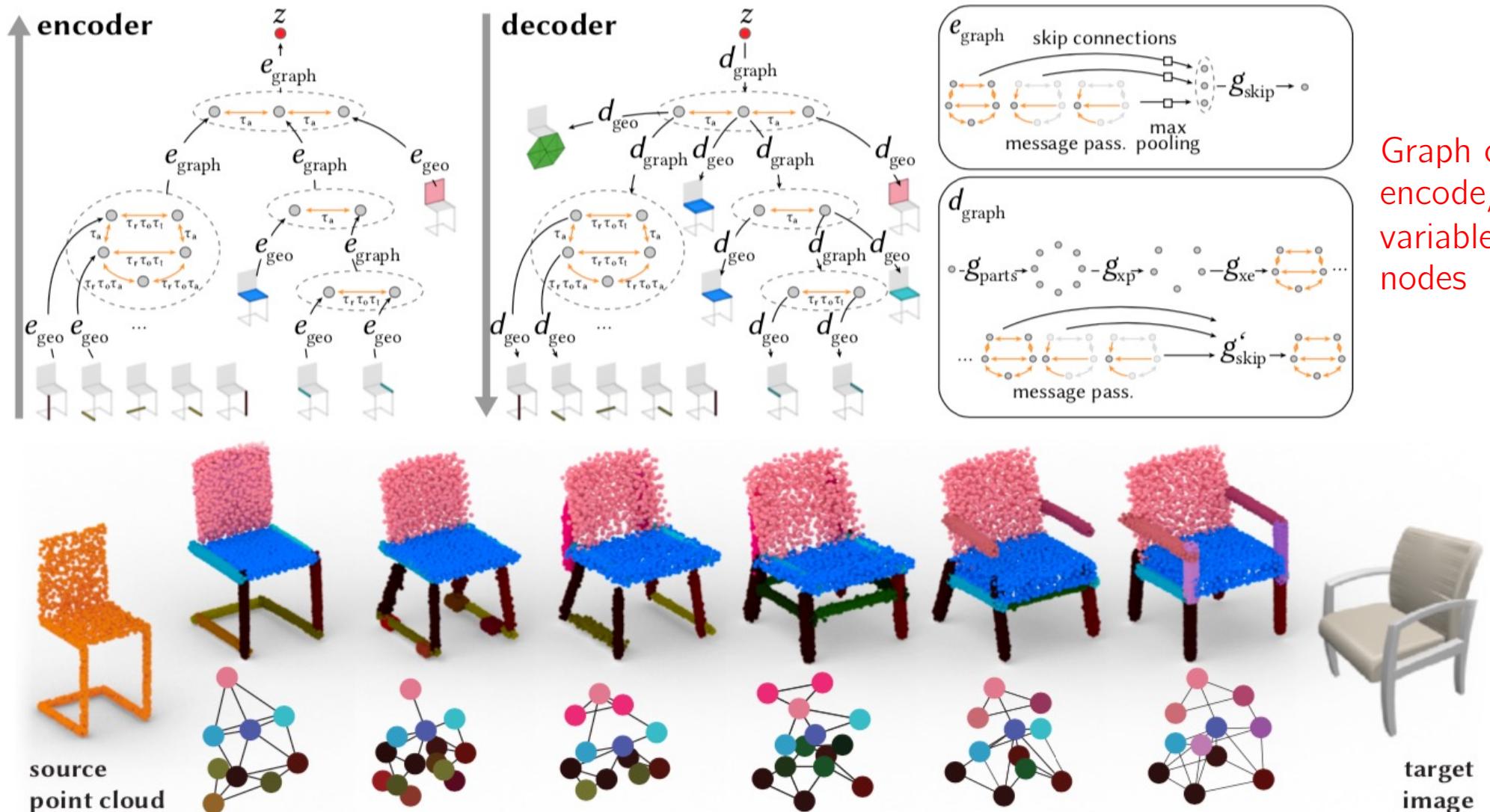
Representing Element Structure

- Segmented Geometry
- Part Sets
- Relationship Graphs
- Hierarchies
- **Hierarchical Graphs**



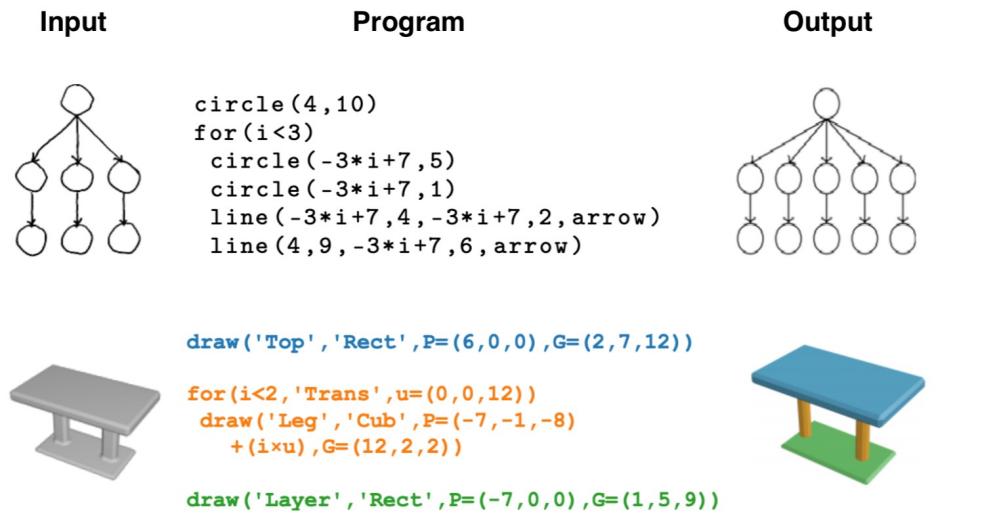
- Models both naturally hierarchical structure as well as naturally lateral relationships
- Graphs per level are simpler → easier to generate than large, general-purpose graphs
- Difficult to obtain / expensive to annotate data in this format

Hierarchical Graph of Shape Primitives



Representing Element Structure

- Segmented Geometry
- Part Sets
- Relationship Graphs
- Hierarchies
- Hierarchical Graphs
- **Programs**



- Subsumes all other representations (programs can generate any of them)
- Express natural degrees of freedom via free parameters
- Even more difficult to get data in this format