

Lecture 14: Generative Models (part 2)

Administrative

- Assignment 3 due on 5/30
- Project Report due on 6/4

Last Time: Generative vs Discriminative Models

Discriminative Model:

Learn a probability distribution $p(y|x)$

Generative Model:

Learn a probability distribution $p(x)$

Conditional Generative Model:

Learn $p(x|y)$

Data: x

Label: y

Cat

Density Function

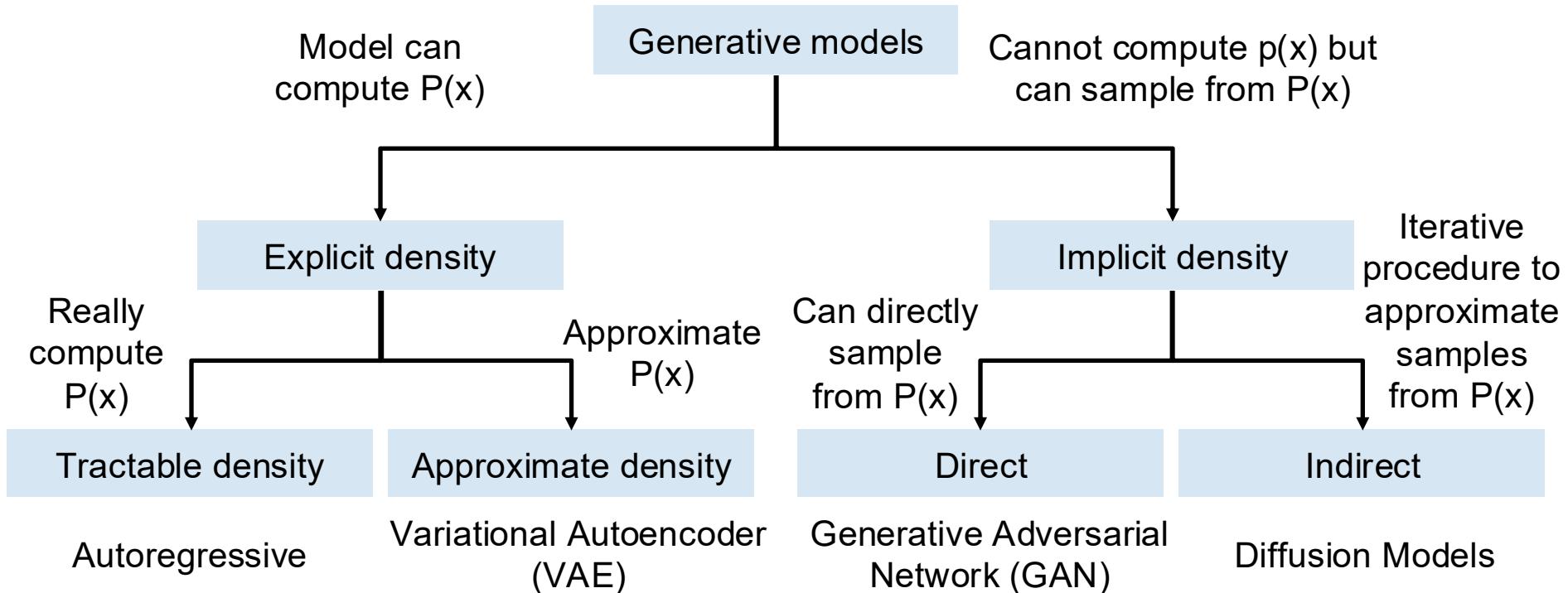
$p(x)$ assigns a positive number to each possible x ; higher numbers mean x is more likely.

Density functions are **normalized**:

$$\int_X p(x)dx = 1$$

Different values of x **compete** for density

Last Time: Generative Models

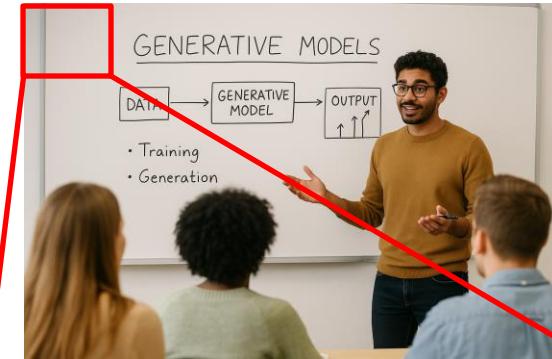
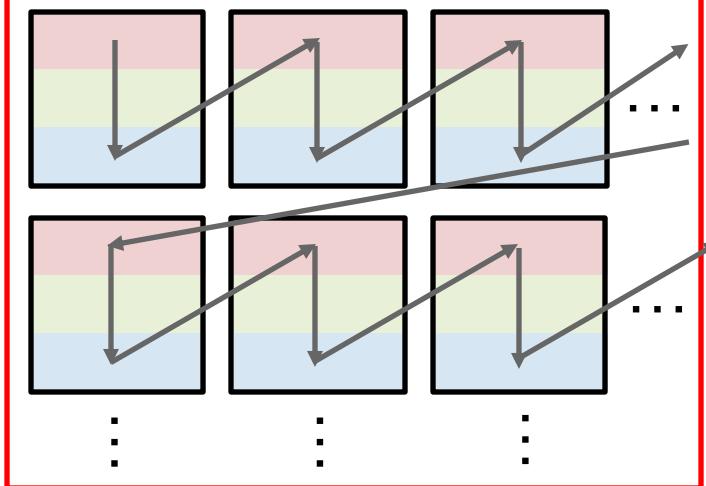


Last Time: Autoregressive Models

Treat data as a sequence
(e.g. image as sequence of pixels)

$$\begin{aligned} p(x) &= p(x_1, x_2, \dots, x_N) \\ &= p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2) \dots \\ &= \prod_{t=1}^T p(x_t \mid x_1, \dots, x_{t-1}) \end{aligned}$$

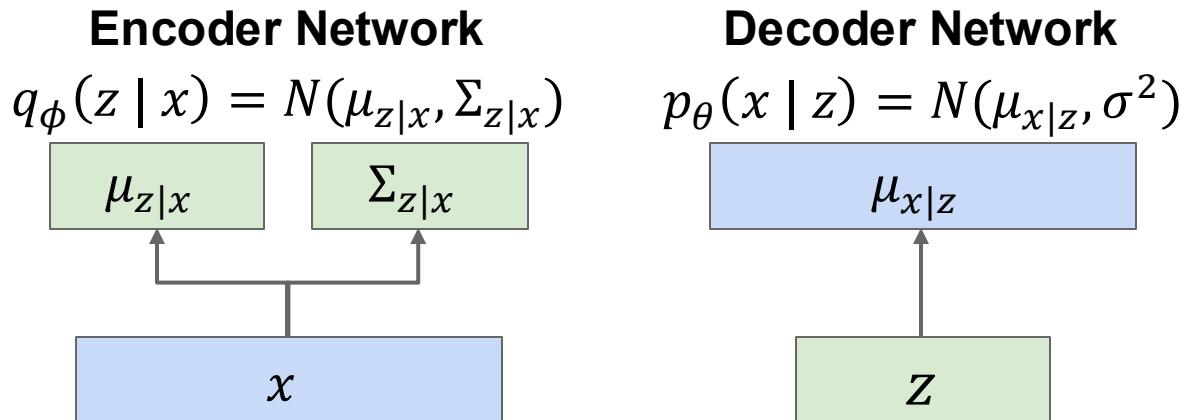
Model with an RNN or Transformer



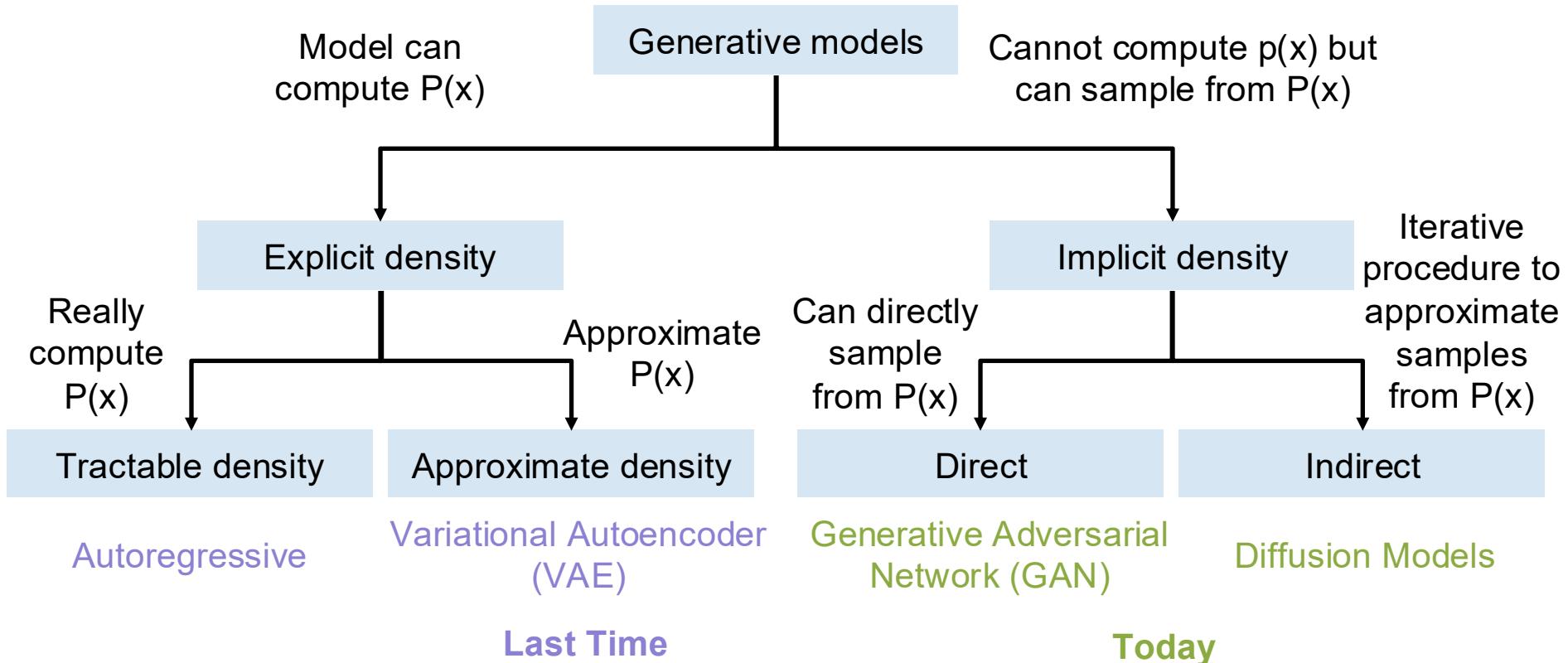
Last Time: Variational Autoencoders

Jointly train **encoder** q and **decoder** p to maximize the **variational lower bound** on the data likelihood
Also called **Evidence Lower Bound (ELBo)**

$$\log p_\theta(x) \geq E_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))$$



Today: More Generative Models



Generative Adversarial Networks (GANs)

Generative Models So Far

Autoregressive Models directly maximize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^N p_{\theta}(x_i|x_1, \dots, x_{i-1})$$

Variational Autoencoders introduce a latent z , and maximize a lower bound:

$$p_{\theta}(x) = \int_Z p_{\theta}(x|z)p(z)dz \geq E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

Generative Models So Far

Autoregressive Models directly maximize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^N p_{\theta}(x_i|x_1, \dots, x_{i-1})$$

Variational Autoencoders introduce a latent z , and maximize a lower bound:

$$p_{\theta}(x) = \int_Z p_{\theta}(x|z)p(z)dz \geq E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

Generative Adversarial Networks give up on modeling $p(x)$, but allow us to draw samples from $p(x)$

Generative Adversarial Networks

Setup: Have data x_i drawn from distribution $p_{\text{data}}(x)$. Want to sample from p_{data}

Generative Adversarial Networks

Setup: Have data x_i drawn from distribution $p_{\text{data}}(x)$. Want to sample from p_{data}

Idea: Introduce a latent variable z with simple prior $p(z)$ (e.g. unit Gaussian)

Sample $z \sim p(z)$ and pass to a **Generator Network** $x = G(z)$

Then x is a sample from the **Generator distribution** p_G . Want $p_G = p_{\text{data}}$!

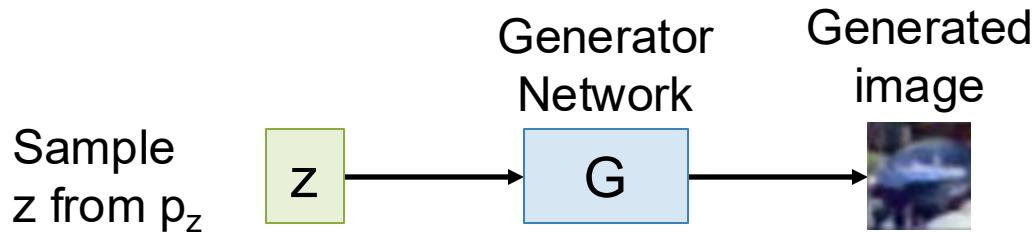
Generative Adversarial Networks

Setup: Have data x_i drawn from distribution $p_{\text{data}}(x)$. Want to sample from p_{data}

Idea: Introduce a latent variable z with simple prior $p(z)$ (e.g. unit Gaussian)

Sample $z \sim p(z)$ and pass to a **Generator Network** $x = G(z)$

Then x is a sample from the **Generator distribution** p_G . Want $p_G = p_{\text{data}}$!



Train **Generator Network** G to convert
 z into fake data x sampled from p_G

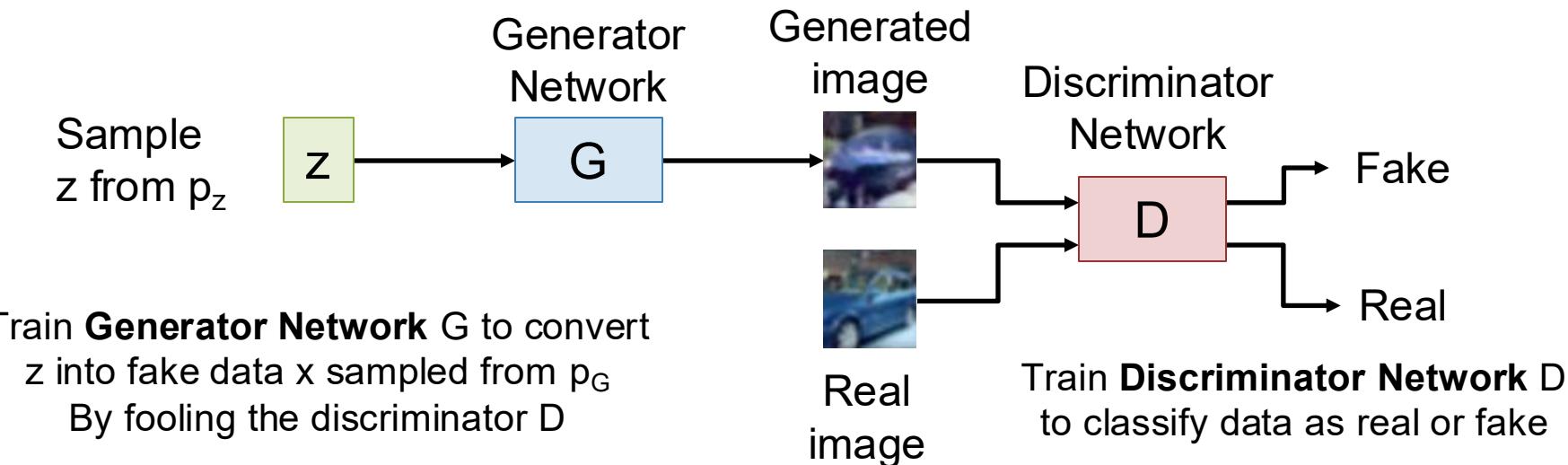
Generative Adversarial Networks

Setup: Have data x_i drawn from distribution $p_{\text{data}}(x)$. Want to sample from p_{data}

Idea: Introduce a latent variable z with simple prior $p(z)$ (e.g. unit Gaussian)

Sample $z \sim p(z)$ and pass to a **Generator Network** $x = G(z)$

Then x is a sample from the **Generator distribution** p_G . Want $p_G = p_{\text{data}}$!



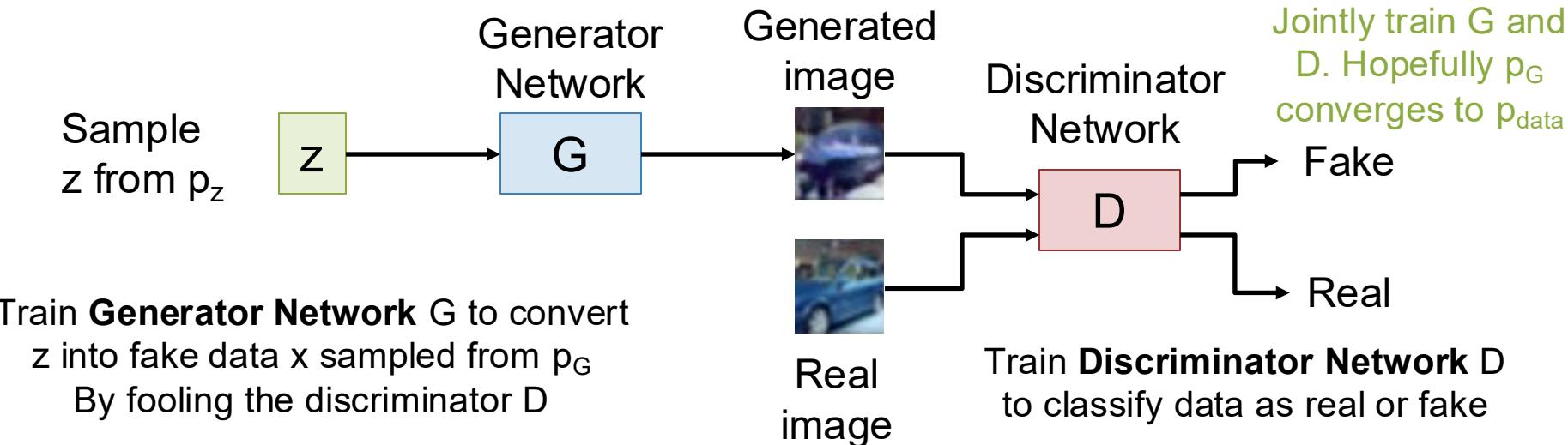
Generative Adversarial Networks

Setup: Have data x_i drawn from distribution $p_{\text{data}}(x)$. Want to sample from p_{data}

Idea: Introduce a latent variable z with simple prior $p(z)$ (e.g. unit Gaussian)

Sample $z \sim p(z)$ and pass to a **Generator Network** $x = G(z)$

Then x is a sample from the **Generator distribution** p_G . Want $p_G = p_{\text{data}}$!



Generative Adversarial Networks: Training Objective

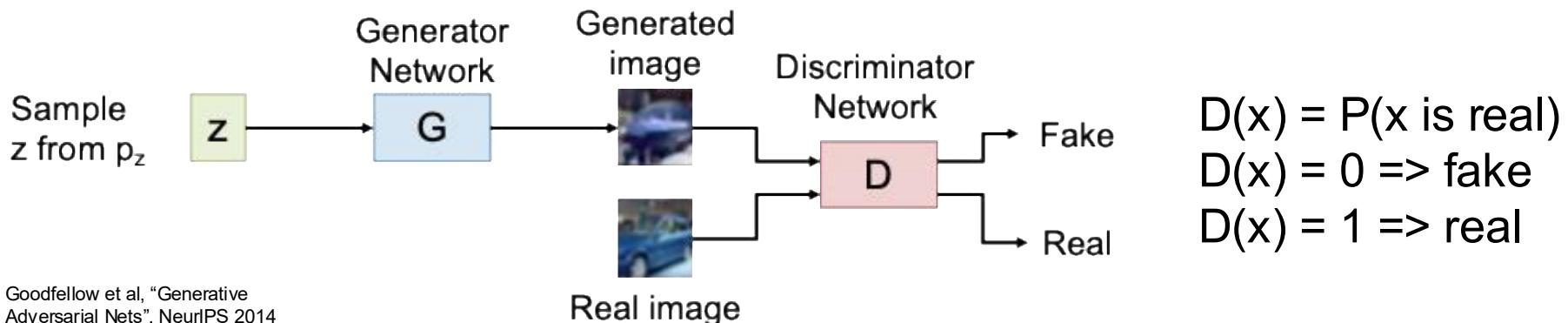
Jointly train generator G and discriminator D with a **minimax game**

$$\min_G \max_D \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))] \right)$$

Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a **minimax game**

$$\min_G \max_D \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))] \right)$$



Goodfellow et al, "Generative Adversarial Nets", NeurIPS 2014

Generative Adversarial Networks: Training Objective

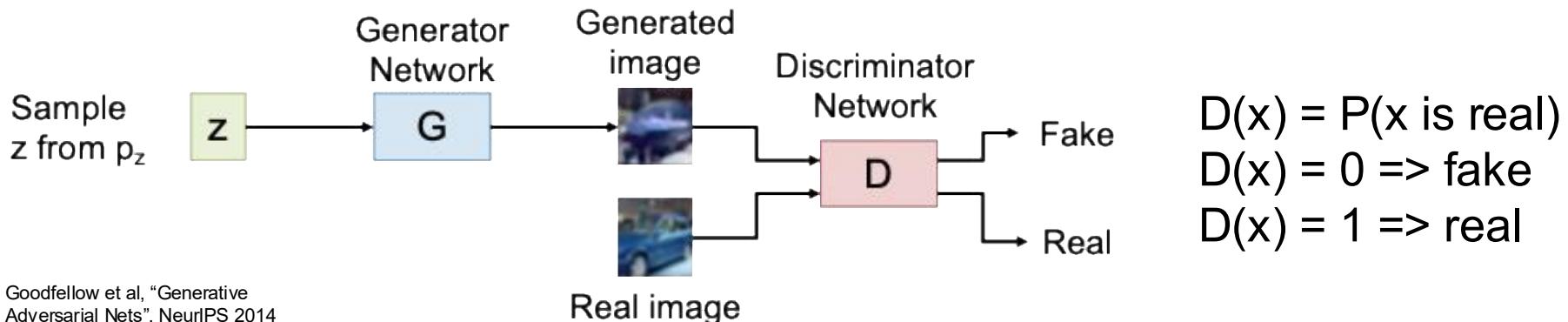
Jointly train generator G and discriminator D with a **minimax game**

Imagine fixing G

Discriminator wants $D(x) = 1$ for real data

Discriminator wants $D(x) = 0$ for fake data

$$\min_G \max_D \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))] \right)$$



Goodfellow et al, "Generative Adversarial Nets", NeurIPS 2014

Generative Adversarial Networks: Training Objective

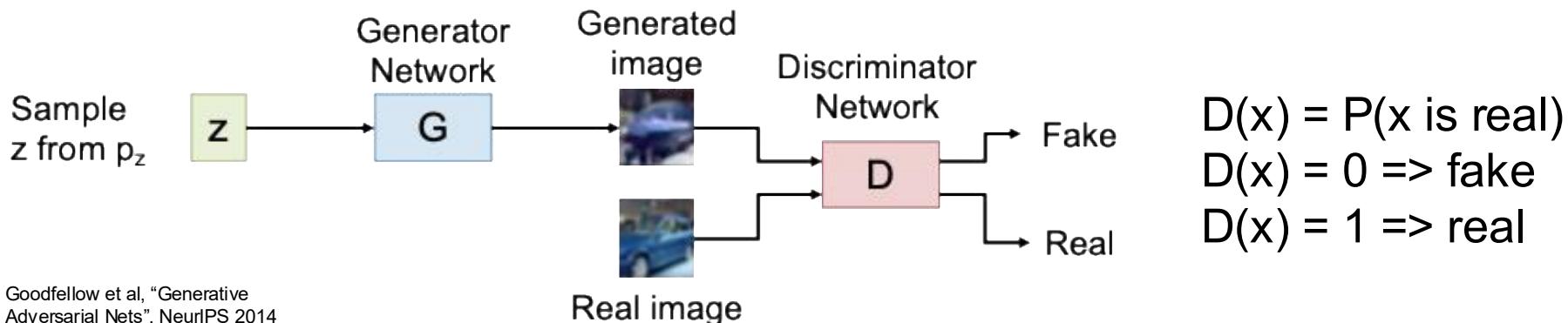
Jointly train generator G and discriminator D with a **minimax game**

Imagine fixing D

This term does not depend on G

Generator wants $D(x) = 1$ for fake data

$$\min_G \max_D \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \right)$$



Goodfellow et al, "Generative Adversarial Nets", NeurIPS 2014

Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a **minimax game**

Train $\textcolor{blue}{G}$ and $\textcolor{red}{D}$ using alternating gradient updates

$$\min_{\textcolor{blue}{G}} \max_{\textcolor{red}{D}} \left(E_{x \sim p_{data}} [\log \textcolor{red}{D}(x)] + E_{z \sim p(z)} [\log (1 - \textcolor{red}{D}(\textcolor{blue}{G}(z)))] \right)$$

$$= \min_{\textcolor{blue}{G}} \max_{\textcolor{red}{D}} V(\textcolor{blue}{G}, \textcolor{red}{D})$$

Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a **minimax game**

Train $\textcolor{blue}{G}$ and $\textcolor{red}{D}$ using alternating gradient updates

$$\min_{\textcolor{blue}{G}} \max_{\textcolor{red}{D}} \left(E_{x \sim p_{data}} [\log \textcolor{red}{D}(x)] + E_{z \sim p(z)} [\log (1 - \textcolor{red}{D}(\textcolor{blue}{G}(z)))] \right)$$

$$= \min_{\textcolor{blue}{G}} \max_{\textcolor{red}{D}} V(\textcolor{blue}{G}, \textcolor{red}{D})$$

While True:

$$D = D + \alpha_{\textcolor{red}{D}} \frac{dV}{dD}$$

$$G = G - \alpha_{\textcolor{blue}{G}} \frac{dV}{dG}$$

Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a **minimax game**

Train $\textcolor{blue}{G}$ and $\textcolor{red}{D}$ using alternating gradient updates

$$\min_{\textcolor{blue}{G}} \max_{\textcolor{red}{D}} \left(E_{x \sim p_{data}} [\log \textcolor{red}{D}(x)] + E_{z \sim p(z)} [\log (1 - \textcolor{red}{D}(\textcolor{blue}{G}(z)))] \right)$$

$$= \min_{\textcolor{blue}{G}} \max_{\textcolor{red}{D}} V(\textcolor{blue}{G}, \textcolor{red}{D})$$

We are not minimizing any overall loss! No training curves to look at!

While True:

$$D = D + \alpha_{\textcolor{red}{D}} \frac{dV}{dD}$$

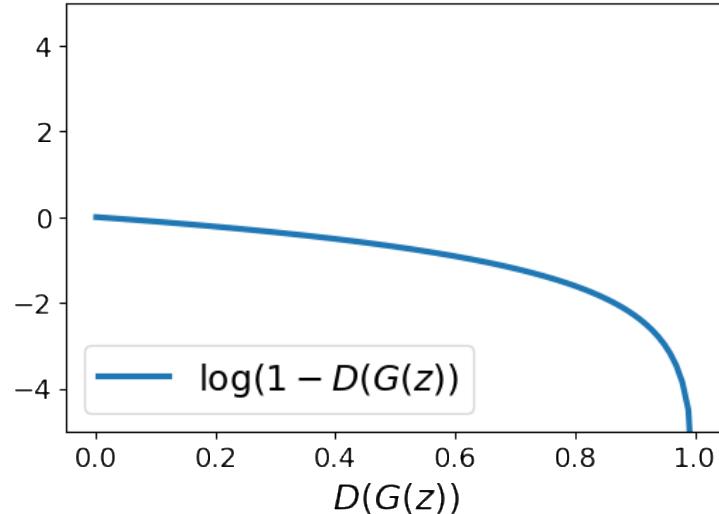
$$G = G - \alpha_{\textcolor{blue}{G}} \frac{dV}{dG}$$

Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a **minimax game**

$$\min_G \max_D \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))] \right)$$

At start of training, generator is very bad and discriminator can easily tell apart real/fake, so $D(G(z))$ close to 0



Goodfellow et al, "Generative Adversarial Nets", NeurIPS 2014

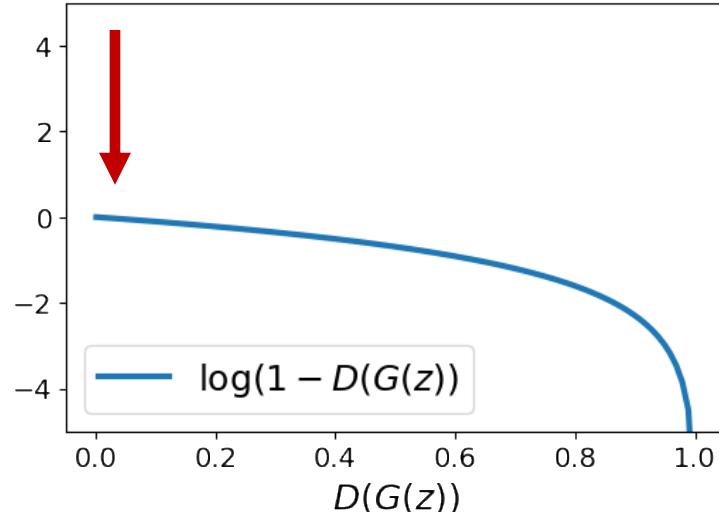
Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a **minimax game**

$$\min_G \max_D \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))] \right)$$

At start of training, generator is very bad and discriminator can easily tell apart real/fake, so $D(G(z))$ close to 0

Problem: Gradients for G are close to 0



Generative Adversarial Networks: Training Objective

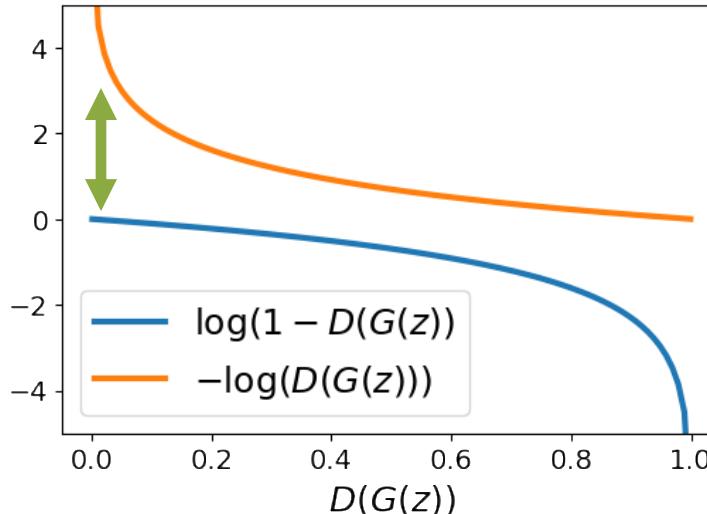
Jointly train generator G and discriminator D with a **minimax game**

$$\min_G \max_D \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))] \right)$$

At start of training, generator is very bad and discriminator can easily tell apart real/fake, so $D(G(z))$ close to 0

Problem: Gradients for G are close to 0

Solution: Generator wants $D(G(z)) = 1$. Train generator to minimize $-\log(D(G(z))$ and discriminator to maximize $\log(1-D(G(z))$ so generator gets strong gradients at start



Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a **minimax game**

$$\min_G \max_D \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))] \right)$$

Why is this a good objective?

Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a **minimax game**

$$\min_G \max_D \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))] \right)$$

Why is this a good objective?

Inner objective is maximized by

$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$

(for any p_G)

(Proof omitted)

Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a **minimax game**

$$\min_G \max_D \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))] \right)$$

Why is this a good objective?

Inner objective is maximized by

$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$

(for any p_G)

Outer objective is then minimized by
 $p_G(x) = p_{data}(x)$

(Proof omitted)

Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a **minimax game**

$$\min_G \max_D \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))] \right)$$

Why is this a good objective?

Inner objective is maximized by

$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$

(for any p_G)

(Proof omitted)

Outer objective is then minimized by
 $p_G(x) = p_{data}(x)$

Caveats:

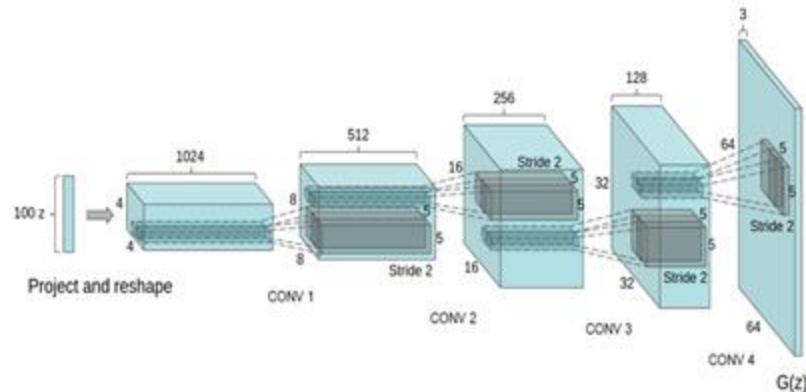
1. Neural nets with fixed capacity may not be able to represent optimal D and G
2. This tells us nothing about convergence to the solution with finite data

GAN Architectures: DC-GAN

Generator G and discriminator D are both neural networks

Usually CNNs ... GANs fell out of favor before ViT became popular

DC-GAN was the first GAN architecture that worked on non-toy data



Radford et al, ICLR 2016

GAN Architectures: DC-GAN

GPT-1 Paper (2018)

Improving Language Understanding by Generative Pre-Training

Alec Radford
OpenAI
alec@openai.com

Karthik Narasimhan
OpenAI
karthikn@openai.com

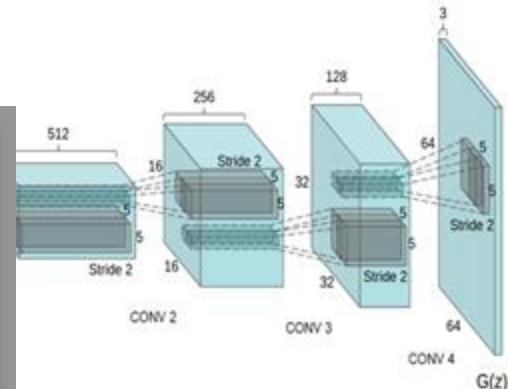
Tim Salimans
OpenAI
tim@openai.com

Ilya Sutskever
OpenAI
ilyasu@openai.com

GPT-2 Paper (2019)

Language Models are Unsupervised Multitask Learners

Alec Radford ^{*1} Jeffrey Wu ^{*1} Rewon Child ¹ David Luan ¹ Dario Amodei ^{**1} Ilya Sutskever ^{**1}



[Radford](#) et al, ICLR 2016

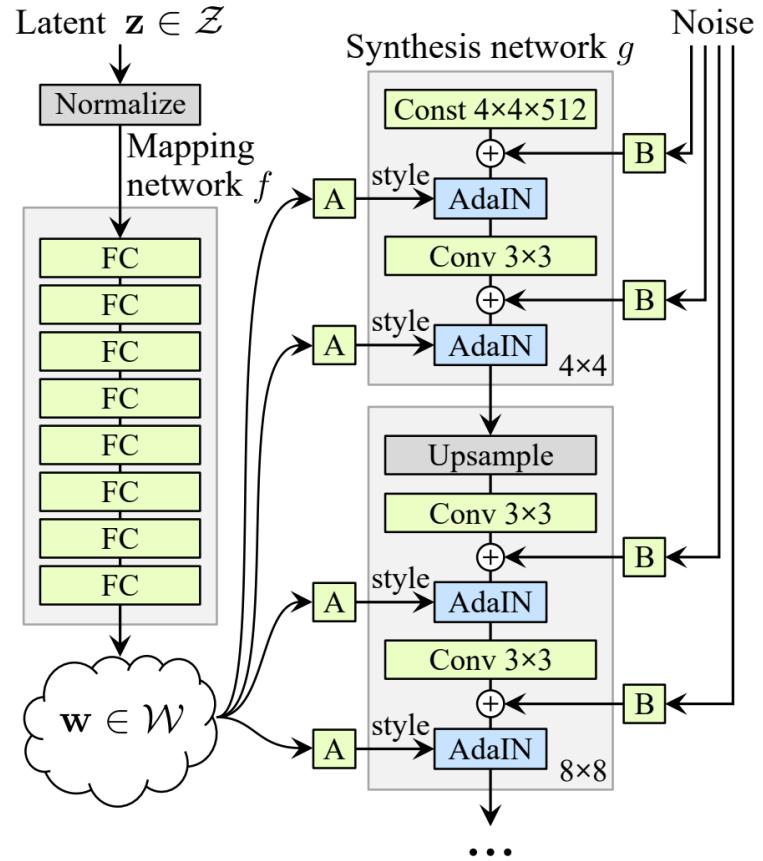
GAN Architectures: StyleGAN

Generator G and discriminator D are both neural networks

StyleGAN uses a more complex architecture that injects noise via **adaptive normalization**.

At each layer predict a scale w and shift b the same shape as x :

$$AdaIN(x, w, b)_i = w_i \frac{x_i - \mu(x)}{\sigma(x)} + b_i$$



Karras et al, "A Style-Based Generator Architecture for Generative Adversarial Networks", CVPR 2019

GANs: Latent Space Interpolation

Latent space is **smooth**.

Given latent vectors z_0 and z_1 , we can **interpolate** between them:

$$\begin{aligned} z_t &= tz_0 + (1 - t)z_1 \\ x_t &= G(z_t) \end{aligned}$$

The resulting image x_t smoothly interpolate between samples!

GANs: Latent Space Interpolation

Latent space is **smooth**.

Given latent vectors z_0 and z_1 , we can **interpolate** between them:

$$z_t = tz_0 + (1 - t)z_1$$
$$x_t = G(z_t)$$

The resulting image x_t smoothly interpolate between samples!

Karras et al, "Alias-Free Generative Adversarial Networks", NeurIPS 2021

Generative Adversarial Networks: Summary

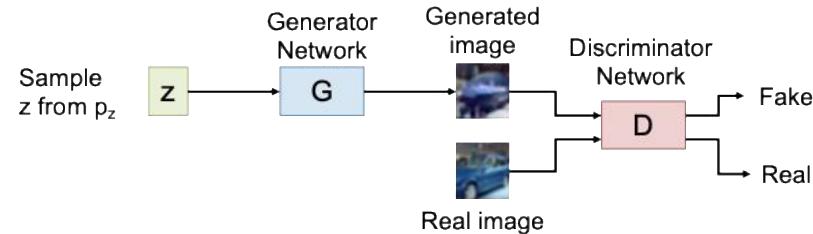
Jointly train Generator and Discriminator with a minimax game

Pros:

- Simple formulation
- Very good image quality

Cons:

- No loss curve to look at
- Unstable training
- Hard to scale to big models + data



These were the go-to generative models from ~2016 – 2021

Diffusion Models

Sohl-Dickstein et al, "Deep Unsupervised Learning using nonequilibrium thermodynamics", ICML 2015
Song and Ermon, "Generative modeling by estimating gradients of the data distribution", NeurIPS 2019
Ho et al, "Denoising Diffusion Probabalistic Models", NeurIPS 2020
Song et al, "Score-Based Generative Modeling through Stochastic Differential Equations", ICLR 2021
Song et al, "Denoising Diffusion Implicit Models", ICLR 2021

Diffusion Models

Warning: Terminology and notation in this area is a mess!

There are many different mathematical formalisms; tons of variance in terminology and notation between papers.

We'll just cover the basics of a modern "clean" implementation (Rectified Flow)

Diffusion Models: Intuition

Pick a **noise distribution** $z \sim p_{noise}$
(Usually unit Gaussian)

Diffusion Models: Intuition

Pick a **noise distribution** $z \sim p_{noise}$
(Usually unit Gaussian)

Consider data x corrupted under varying
noise levels t to give noisy data x_t

$t = 0$
No noise

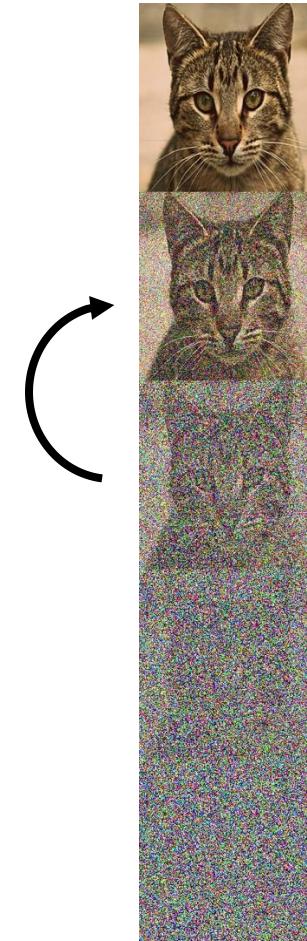
$t = 1$
Full noise

Diffusion Models: Intuition

Pick a **noise distribution** $z \sim p_{noise}$
(Usually unit Gaussian)

Consider data x corrupted under varying
noise levels t to give noisy data x_t

Train a neural network to **remove a little
bit of noise**: $f_\theta(x_t, t)$



$t = 0$
No noise

$t = 1$
Full noise

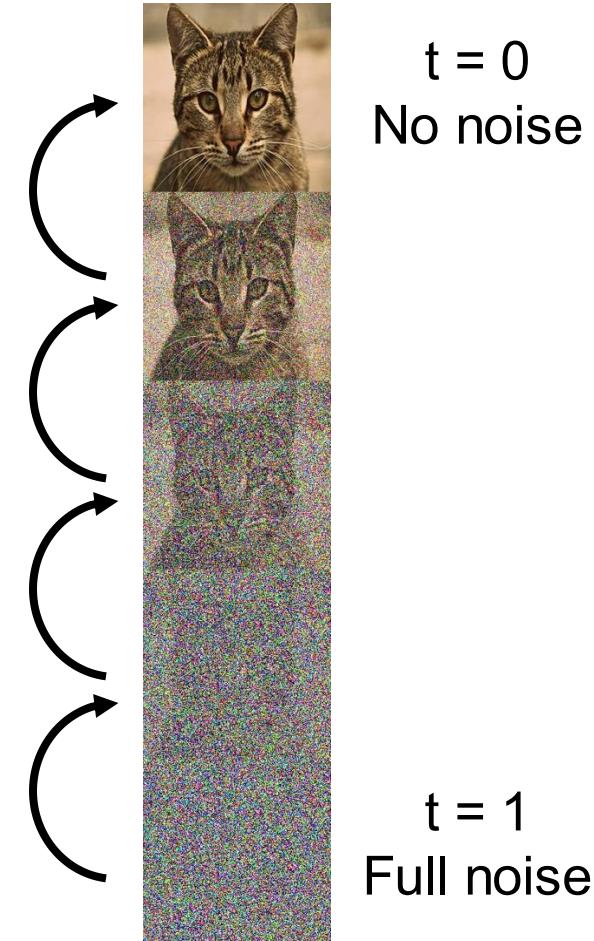
Diffusion Models: Intuition

Pick a **noise distribution** $z \sim p_{noise}$
(Usually unit Gaussian)

Consider data x corrupted under varying
noise levels t to give noisy data x_t

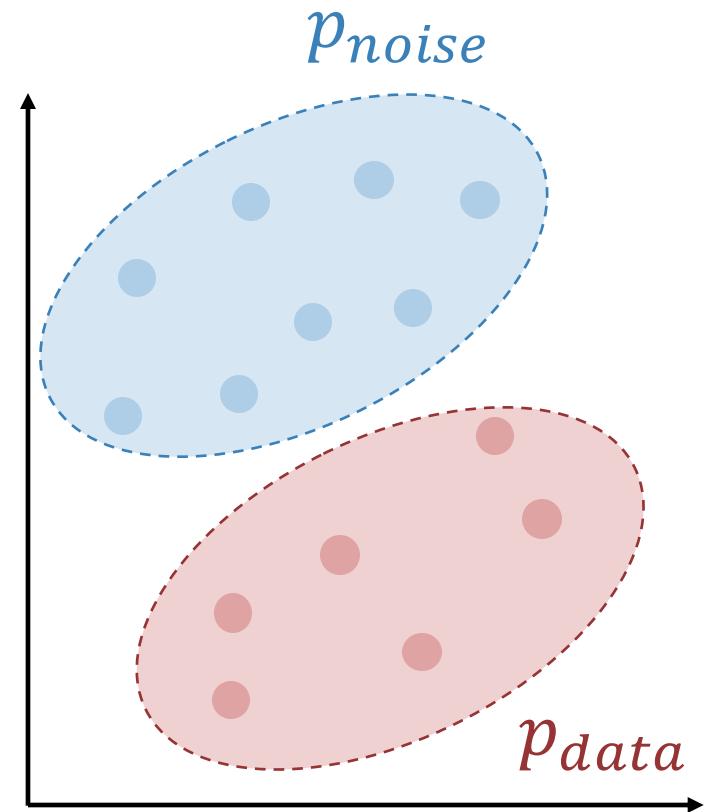
Train a neural network to **remove a little
bit of noise**: $f_\theta(x_t, t)$

At inference time, sample $x_1 \sim p_{noise}$ and
apply f_θ many times in sequence to
generate a noiseless sample x_0



Diffusion Models: Rectified Flow

Suppose we have a simple p_{noise}
(e.g. Gaussian) and samples from p_{data}



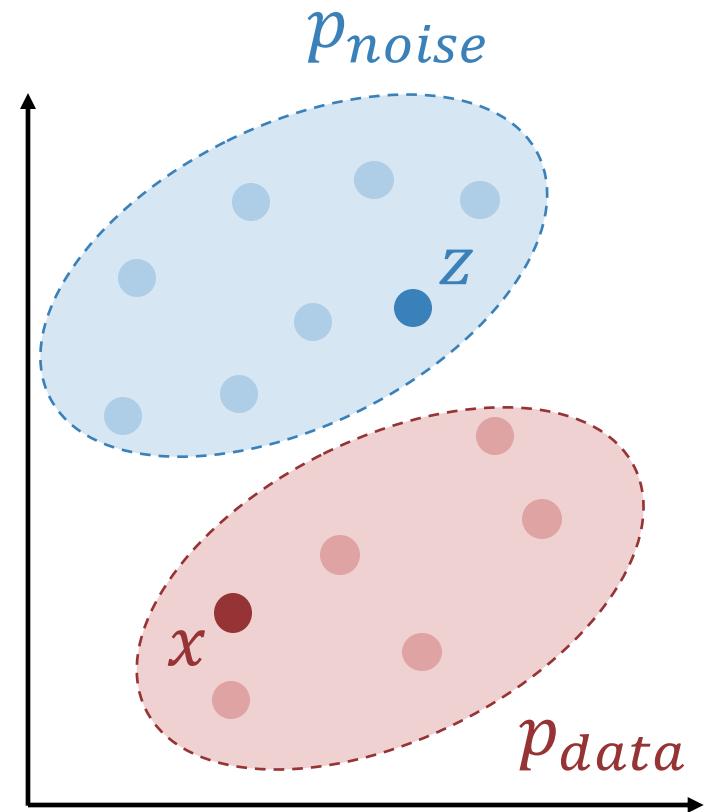
Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

Diffusion Models: Rectified Flow

Suppose we have a simple p_{noise}
(e.g. Gaussian) and samples from p_{data}

On each training iteration, sample:

$z \sim p_{noise}$ $x \sim p_{data}$ $t \sim Uniform[0, 1]$



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

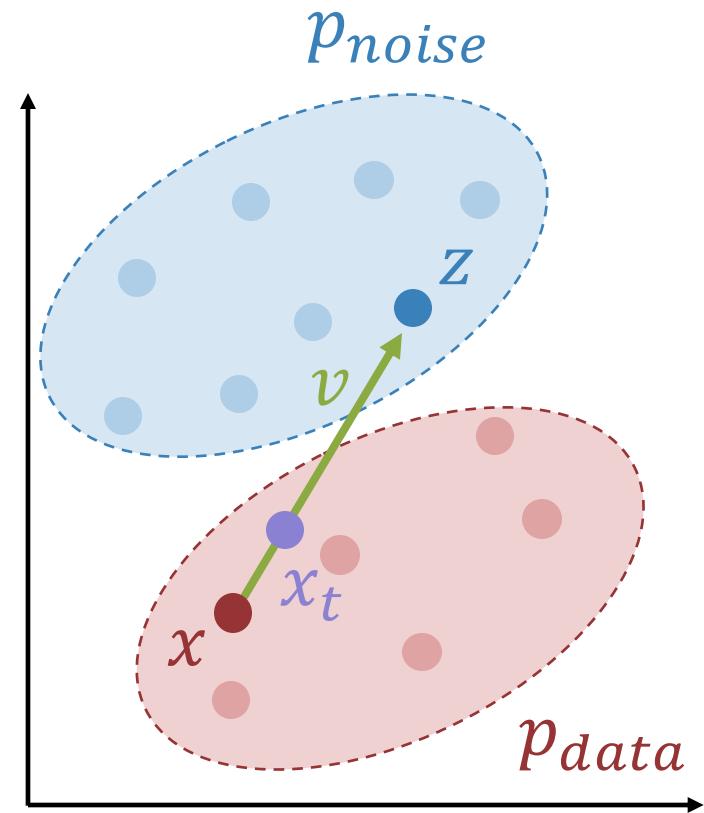
Diffusion Models: Rectified Flow

Suppose we have a simple p_{noise}
(e.g. Gaussian) and samples from p_{data}

On each training iteration, sample:

$z \sim p_{noise}$ $x \sim p_{data}$ $t \sim Uniform[0, 1]$

Set $x_t = (1 - t)x + tz$, $v = z - x$



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

Diffusion Models: Rectified Flow

Suppose we have a simple p_{noise} (e.g. Gaussian) and samples from p_{data}

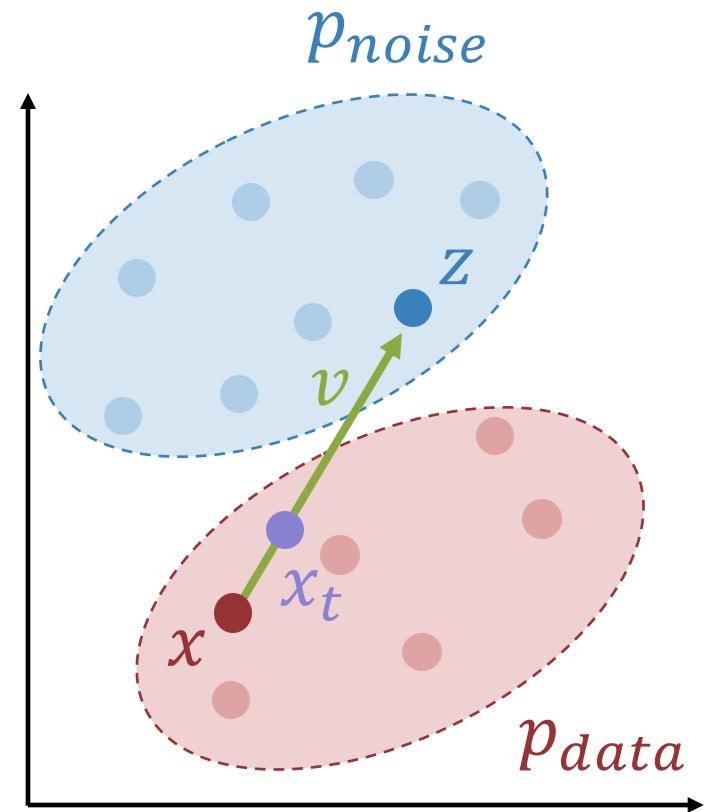
On each training iteration, sample:

$$z \sim p_{noise} \quad x \sim p_{data} \quad t \sim Uniform[0, 1]$$

Set $x_t = (1 - t)x + tz$, $v = z - x$

Train a neural network to predict v :

$$L = \|f_\theta(x_t, t) - v\|_2^2$$

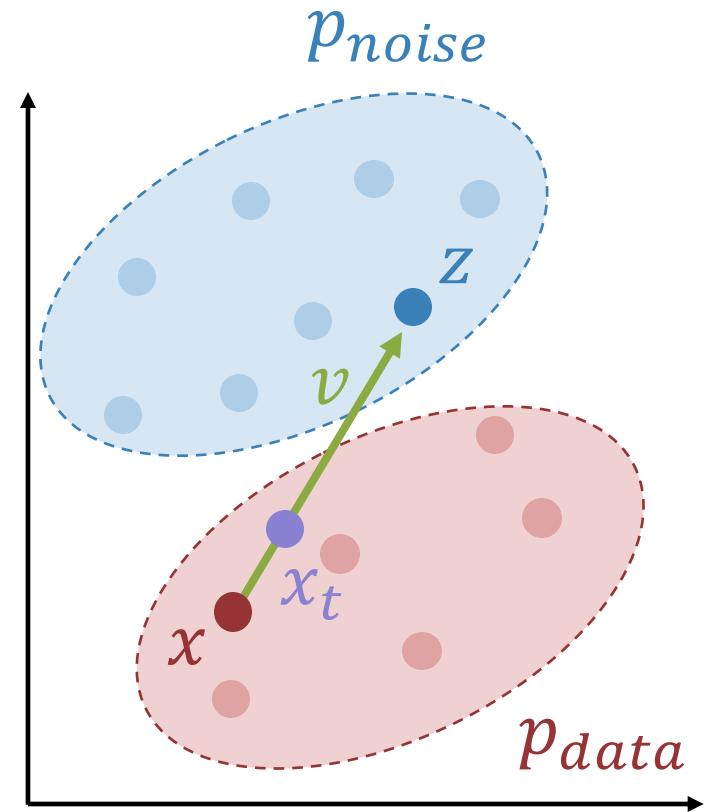


Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

Diffusion Models: Rectified Flow

Core training loop is just
a few lines of code!

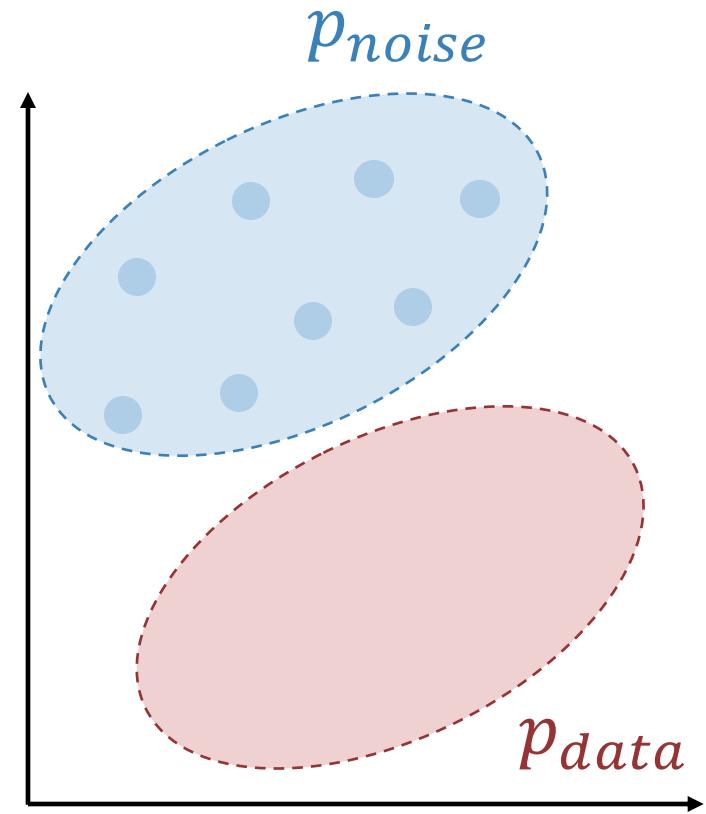
```
for x in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    v = model(xt, t)  
    loss = (z - x - v).square().sum()
```



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

Rectified Flow: Sampling

Choose number of steps T (often $T=50$)

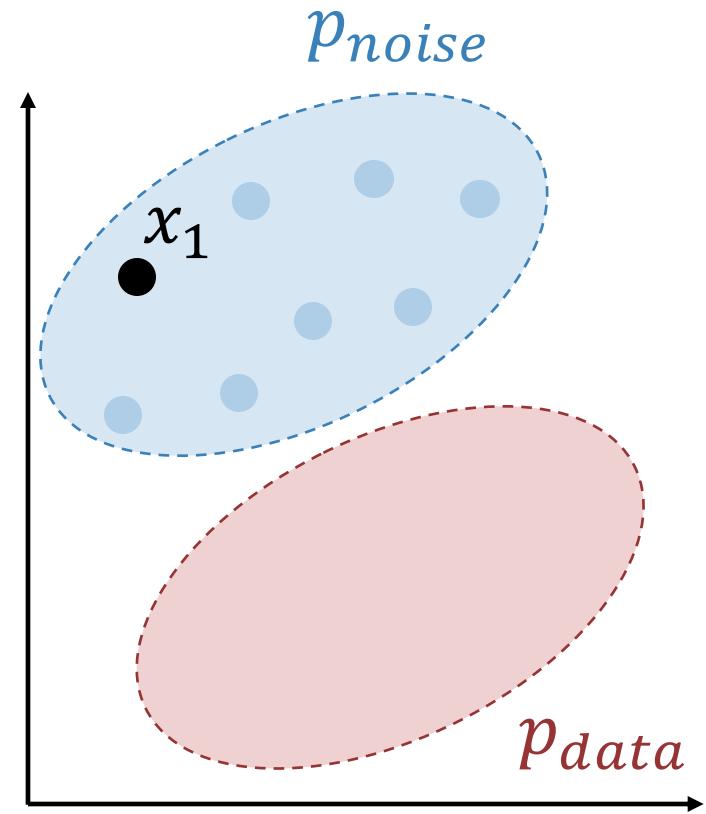


Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

Rectified Flow: Sampling

Choose number of steps T (often $T=50$)

Sample $x \sim p_{noise}$



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

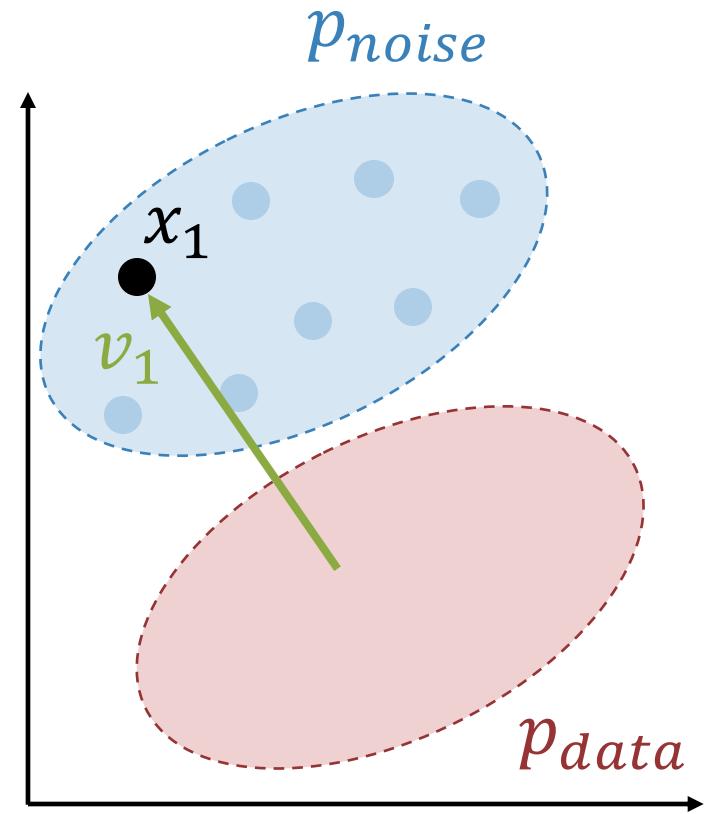
Rectified Flow: Sampling

Choose number of steps T (often $T=50$)

Sample $x \sim p_{noise}$

For t in $[1, 1 - \frac{1}{T}, 1 - \frac{2}{T}, \dots, 0]$:

Evaluate $v_t = f_\theta(x_t, t)$



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

Rectified Flow: Sampling

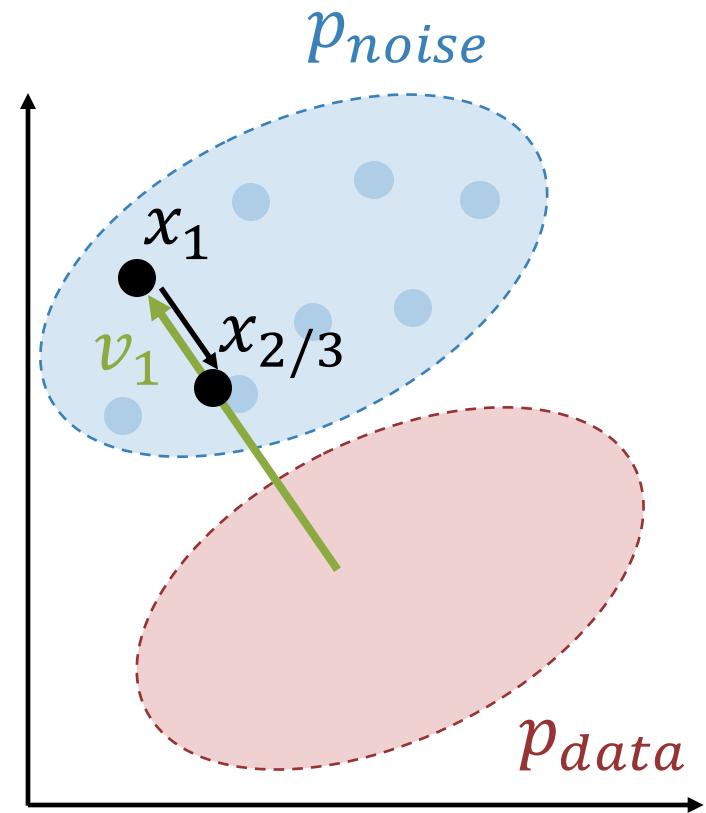
Choose number of steps T (often $T=50$)

Sample $x \sim p_{noise}$

For t in $[1, 1 - \frac{1}{T}, 1 - \frac{2}{T}, \dots, 0]$:

Evaluate $v_t = f_\theta(x_t, t)$

Step $x = x - v_t/T$



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

Rectified Flow: Sampling

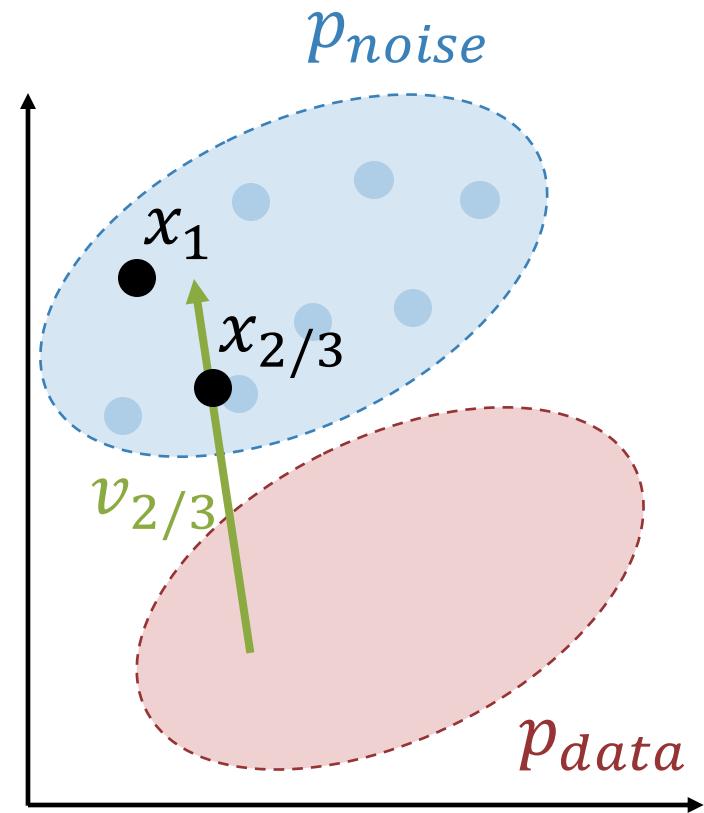
Choose number of steps T (often $T=50$)

Sample $x \sim p_{noise}$

For t in $[1, 1 - \frac{1}{T}, 1 - \frac{2}{T}, \dots, 0]$:

Evaluate $v_t = f_\theta(x_t, t)$

Step $x = x - v_t/T$



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

Rectified Flow: Sampling

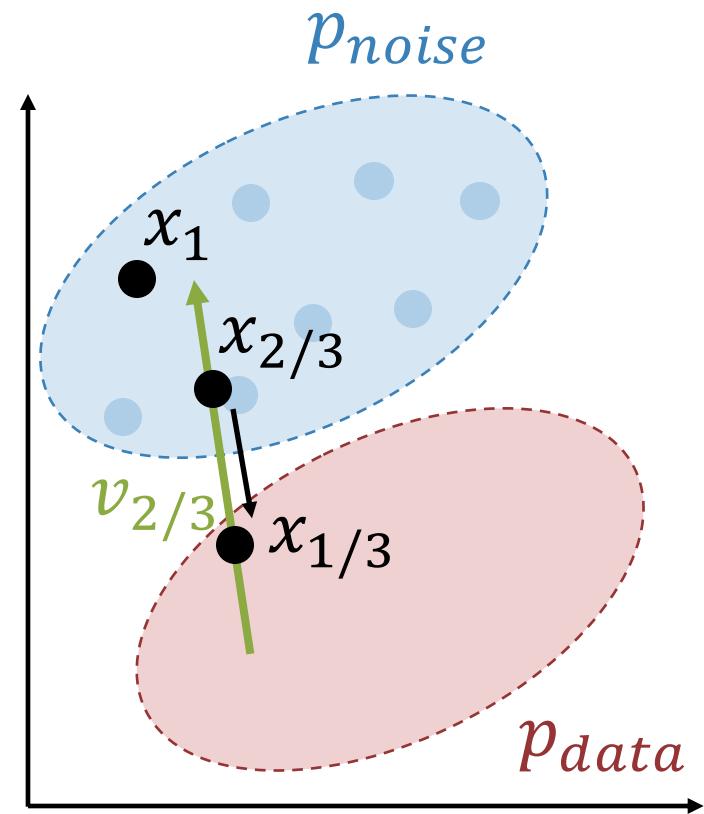
Choose number of steps T (often $T=50$)

Sample $x \sim p_{noise}$

For t in $[1, 1 - \frac{1}{T}, 1 - \frac{2}{T}, \dots, 0]$:

Evaluate $v_t = f_\theta(x_t, t)$

Step $x = x - v_t/T$



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

Rectified Flow: Sampling

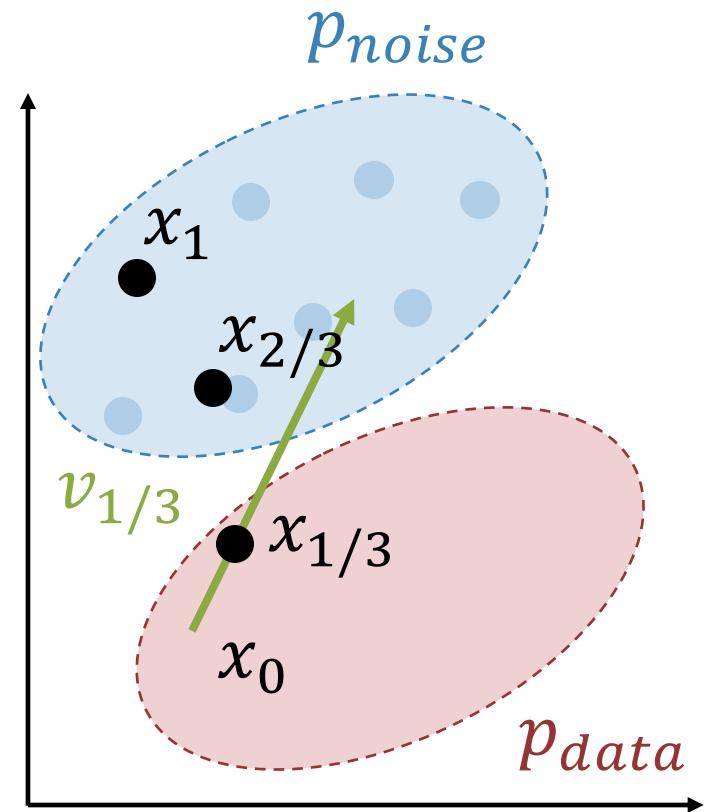
Choose number of steps T (often $T=50$)

Sample $x \sim p_{noise}$

For t in $[1, 1 - \frac{1}{T}, 1 - \frac{2}{T}, \dots, 0]$:

Evaluate $v_t = f_\theta(x_t, t)$

Step $x = x - v_t/T$



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

Rectified Flow: Sampling

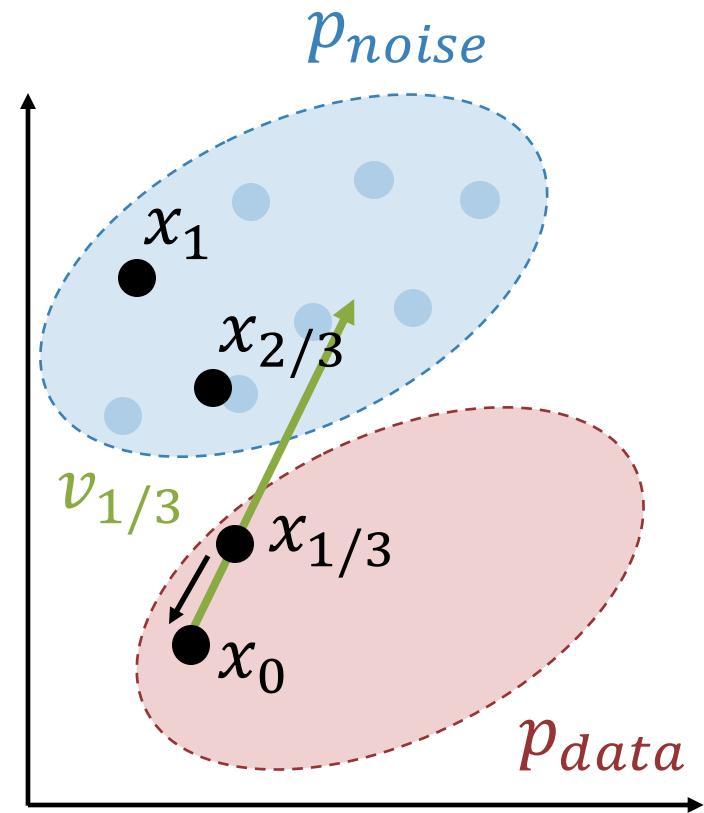
Choose number of steps T (often $T=50$)

Sample $x \sim p_{noise}$

For t in $[1, 1 - \frac{1}{T}, 1 - \frac{2}{T}, \dots, 0]$:

Evaluate $v_t = f_\theta(x_t, t)$

Step $x = x - v_t/T$



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

Rectified Flow: Sampling

Choose number of steps T (often $T=50$)

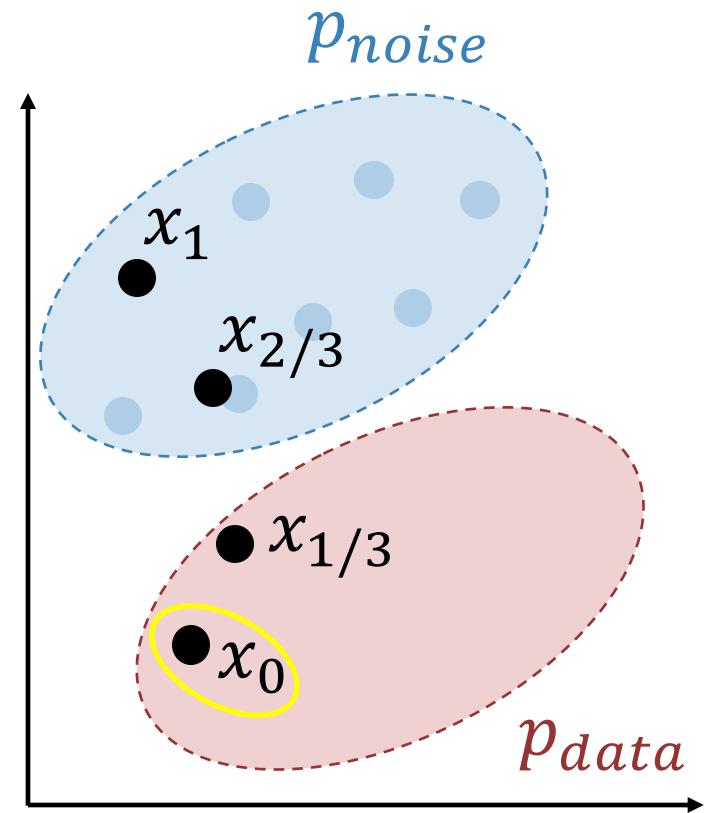
Sample $x \sim p_{noise}$

For t in $[1, 1 - \frac{1}{T}, 1 - \frac{2}{T}, \dots, 0]$:

Evaluate $v_t = f_\theta(x_t, t)$

Step $x = x - v_t/T$

Return x



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

Rectified Flow: Sampling

Choose number of steps T (often $T=50$)

Sample $x \sim p_{noise}$

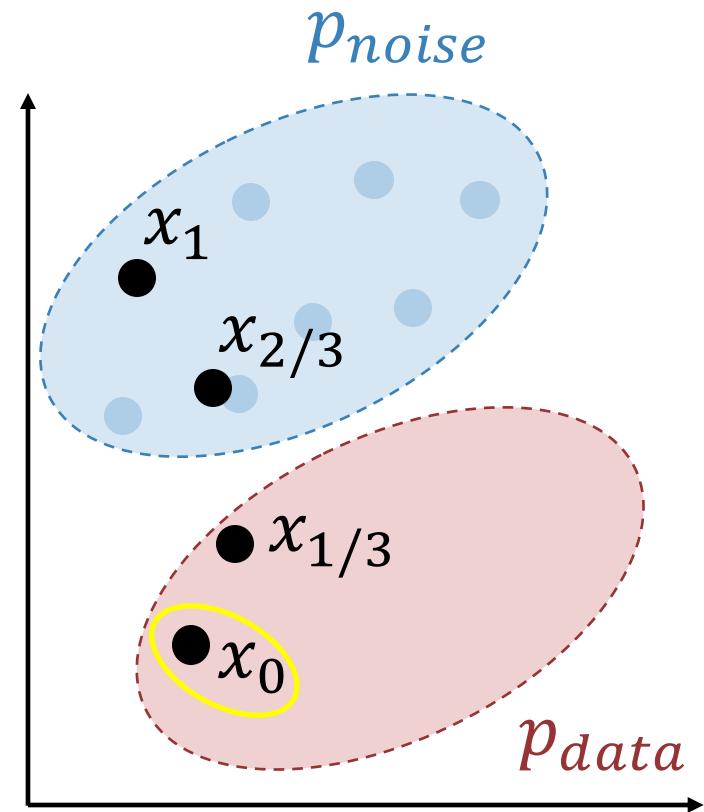
For t in $[1, 1 - \frac{1}{T}, 1 - \frac{2}{T}, \dots, 0]$:

Evaluate $v_t = f_\theta(x_t, t)$

Step $x = x - v_t/T$

Return x

```
sample = torch.randn(x_shape)
for t in torch.linspace(1, 0, num_steps):
    v = model(sample, t)
    sample = sample - v / num_steps
```



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

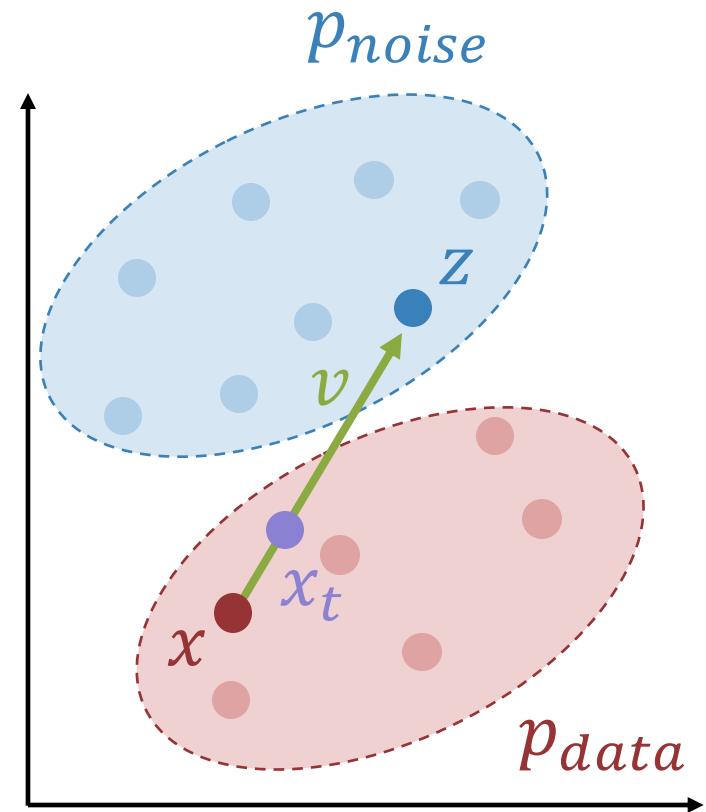
Rectified Flow: Summary

Training

```
for x in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    v = model(xt, t)  
    loss = (z - x - v).square().sum()
```

Sampling

```
sample = torch.randn(x_shape)  
for t in torch.linspace(1, 0, num_steps):  
    v = model(sample, t)  
    sample = sample - v / num_steps
```



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

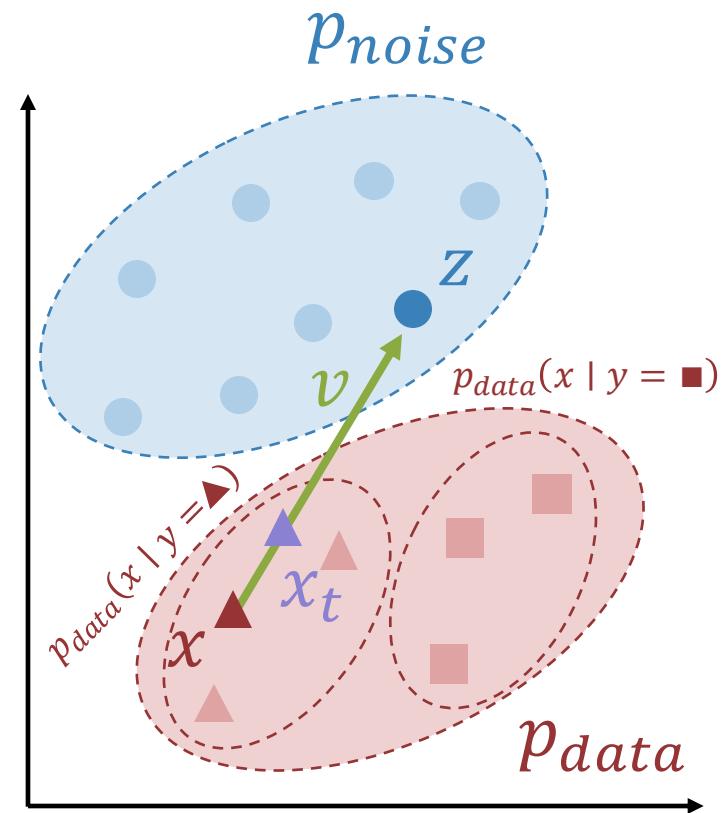
Conditional Rectified Flow

Training

```
for x in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    v = model(xt, t)  
    loss = (z - x - v).square().sum()
```

Sampling

```
sample = torch.randn(x_shape)  
for t in torch.linspace(1, 0, num_steps):  
    v = model(sample, t)  
    sample = sample - v / num_steps
```



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

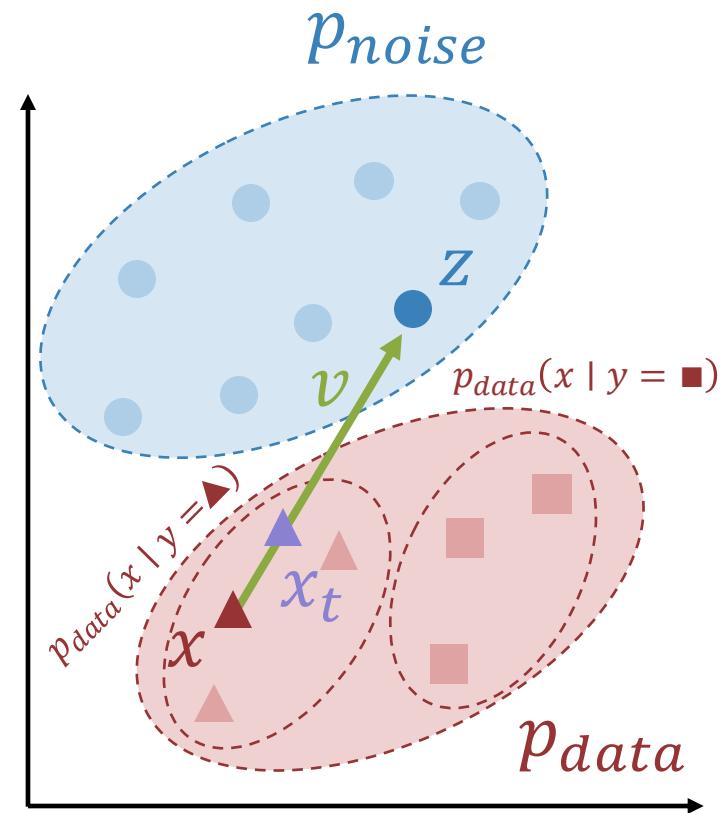
Conditional Rectified Flow

Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Sampling

```
sample = torch.randn(x_shape)  
for t in torch.linspace(1, 0, num_steps):  
    v = model(sample, t)  
    sample = sample - v / num_steps
```



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

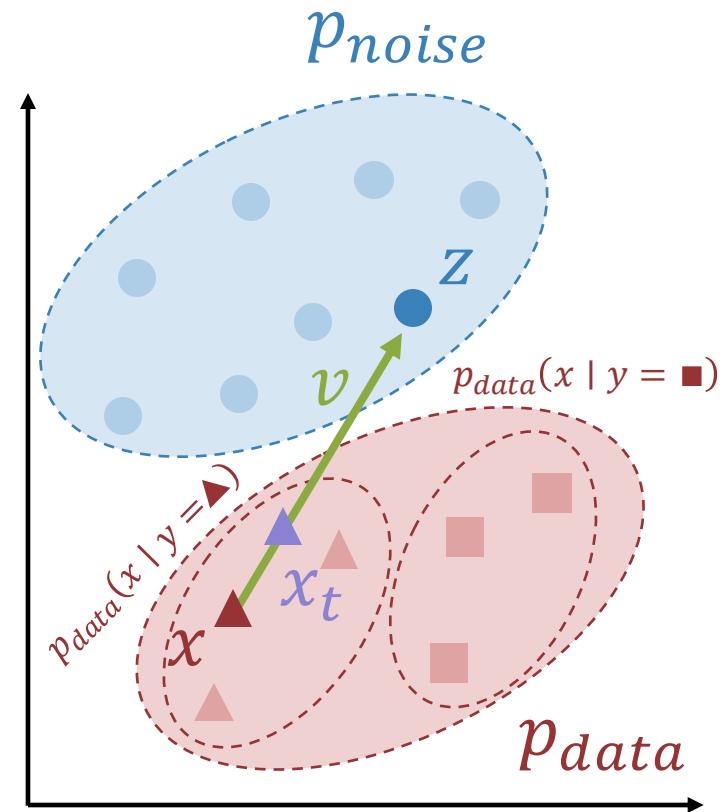
Conditional Rectified Flow

Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Sampling

```
y = user_input()  
sample = torch.randn(x_shape)  
for t in torch.linspace(1, 0, num_steps):  
    v = model(sample, y, t)  
    sample = sample - v / num_steps
```



Liu et al, "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow", 2022
Lipman et al, "Flow Matching for Generative Modeling", 2022

Conditional Rectified Flow

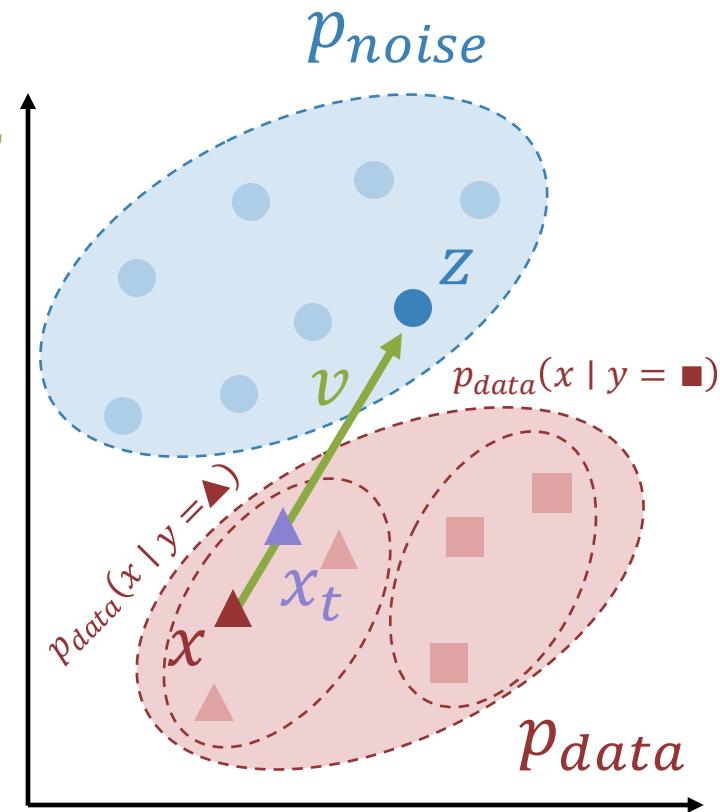
Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Can we control how much we “emphasize” the conditioning y ?

Sampling

```
y = user_input()  
sample = torch.randn(x_shape)  
for t in torch.linspace(1, 0, num_steps):  
    v = model(sample, y, t)  
    sample = sample - v / num_steps
```



Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022

Classifier-Free Guidance (CFG)

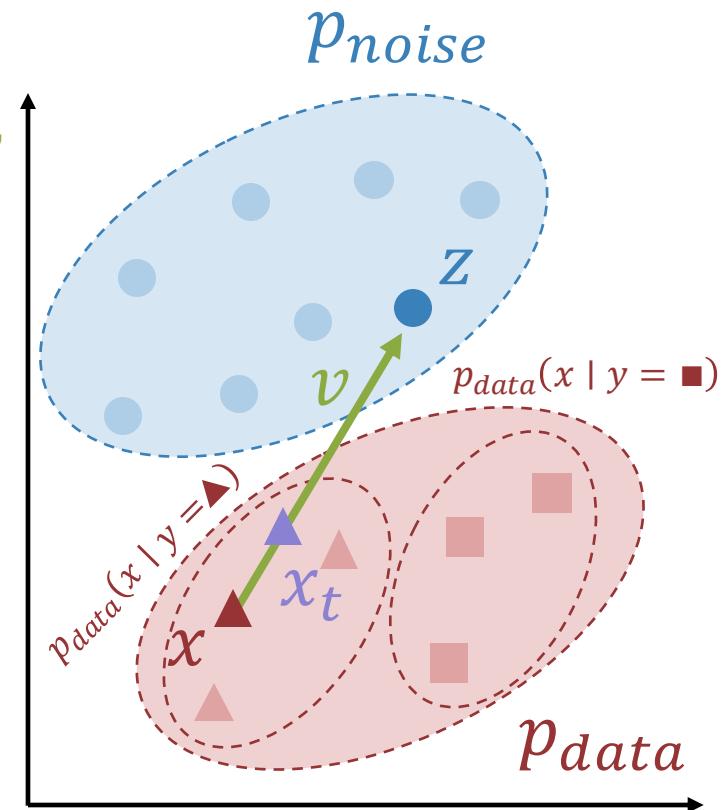
Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Can we control how
much we “emphasize”
the conditioning y ?

Randomly drop y during training.

Now the same model is conditional and unconditional!



Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Classifier-Free Guidance (CFG)

Training

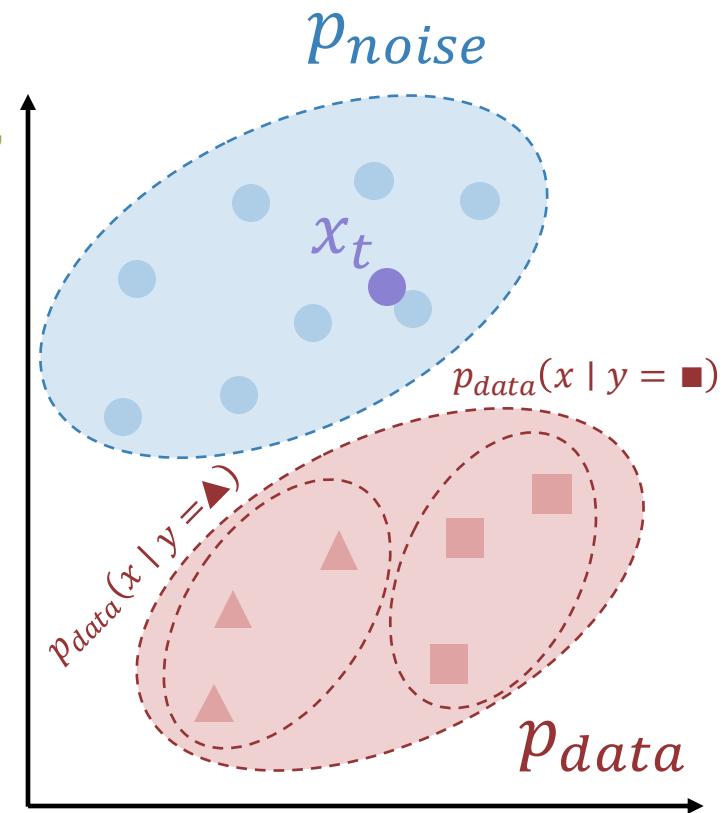
```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Can we control how much we “emphasize” the conditioning y ?

Randomly drop y during training.

Now the same model is conditional and unconditional!

Consider a noisy x_t :



Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Classifier-Free Guidance (CFG)

Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

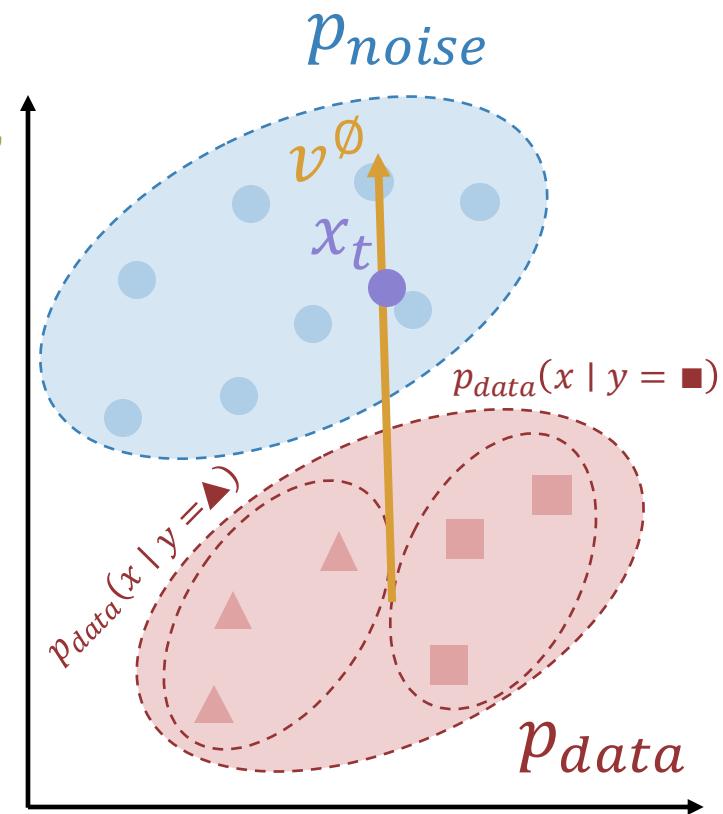
Can we control how much we “emphasize” the conditioning y ?

Randomly drop y during training.

Now the same model is conditional and unconditional!

Consider a noisy x_t :

$v^\emptyset = f_\theta(x_t, y_\emptyset, t)$ points toward $p(x)$



Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

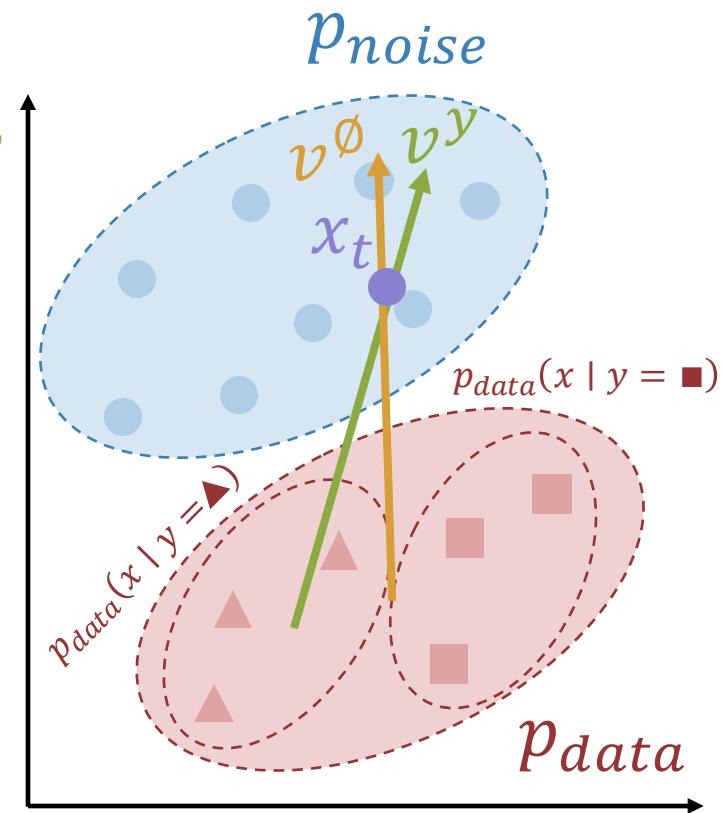
Classifier-Free Guidance (CFG)

Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Randomly drop y during training.

Can we control how much we “emphasize” the conditioning y ?



Now the same model is conditional and unconditional!

Consider a noisy x_t :

$v^\emptyset = f_\theta(x_t, y_\emptyset, t)$ points toward $p(x)$

$v^y = f_\theta(x_t, y, t)$ points toward $p(x | y)$

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Classifier-Free Guidance (CFG)

Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Can we control how much we “emphasize” the conditioning y ?

Randomly drop y during training.

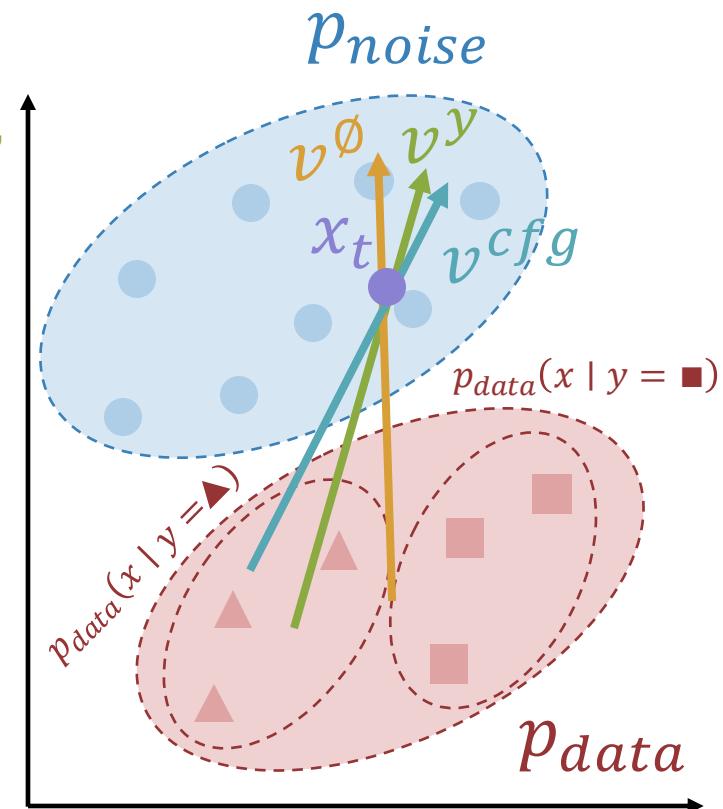
Now the same model is conditional and unconditional!

Consider a noisy x_t :

$v^\emptyset = f_\theta(x_t, y_\emptyset, t)$ points toward $p(x)$

$v^y = f_\theta(x_t, y, t)$ points toward $p(x | y)$

$v^{cfg} = (1 + w)v^y - wv^\emptyset$ points more toward $p(x | y)$



Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Classifier-Free Guidance (CFG)

Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Can we control how much we “emphasize” the conditioning y ?

Randomly drop y during training.

Now the same model is conditional and unconditional!

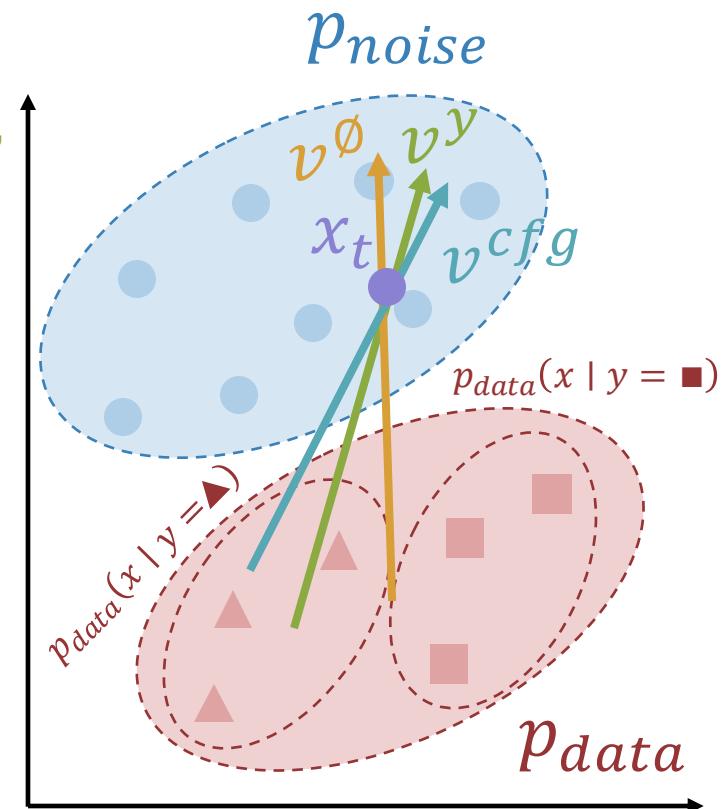
Consider a noisy x_t :

$v^\emptyset = f_\theta(x_t, y_\emptyset, t)$ points toward $p(x)$

$v^y = f_\theta(x_t, y, t)$ points toward $p(x | y)$

$v^{cfg} = (1 + w)v^y - wv^\emptyset$ points more toward $p(x | y)$

During sampling, step according to v^{cfg}



Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Classifier-Free Guidance (CFG)

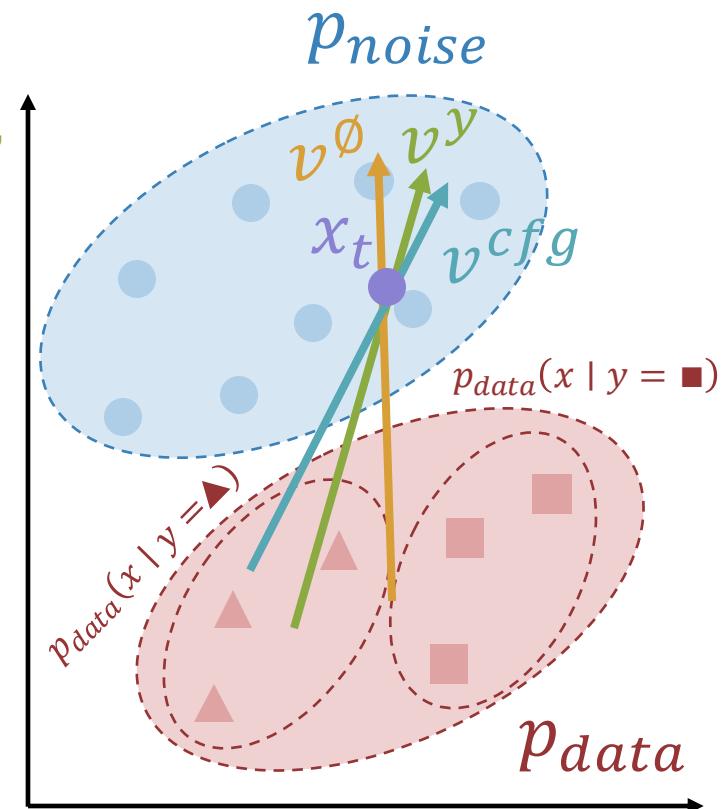
Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Can we control how
much we “emphasize”
the conditioning y ?

Sampling

```
y = user_input()  
sample = torch.randn(x_shape)  
for t in torch.linspace(1, 0, num_steps):  
    vy = model(sample, y, t)  
    v0 = model(sample, y_null, t)  
    v = (1 + w) * vy - w * v0  
    sample = sample - v / num_steps
```



Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Classifier-Free Guidance (CFG)

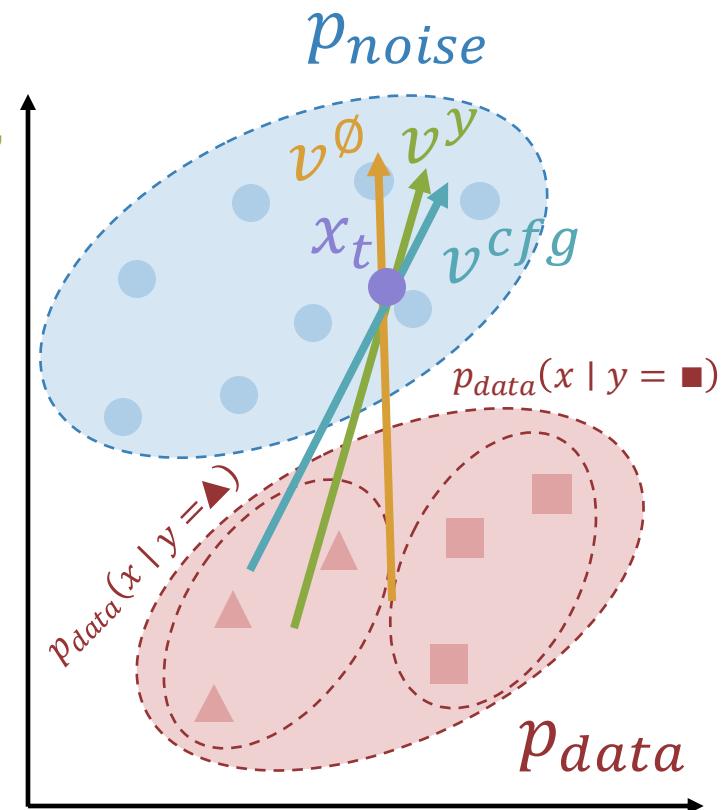
Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Can we control how
much we “emphasize”
the conditioning y ?

Sampling

```
y = user_input()  
sample = torch.randn(x_shape)  
for t in torch.linspace(1, 0, num_steps):  
    vy = model(sample, y, t)  
    v0 = model(sample, y_null, t)  
    v = (1 + w) * vy - w * v0  
    sample = sample - v / num_steps
```



Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Classifier-Free Guidance (CFG)

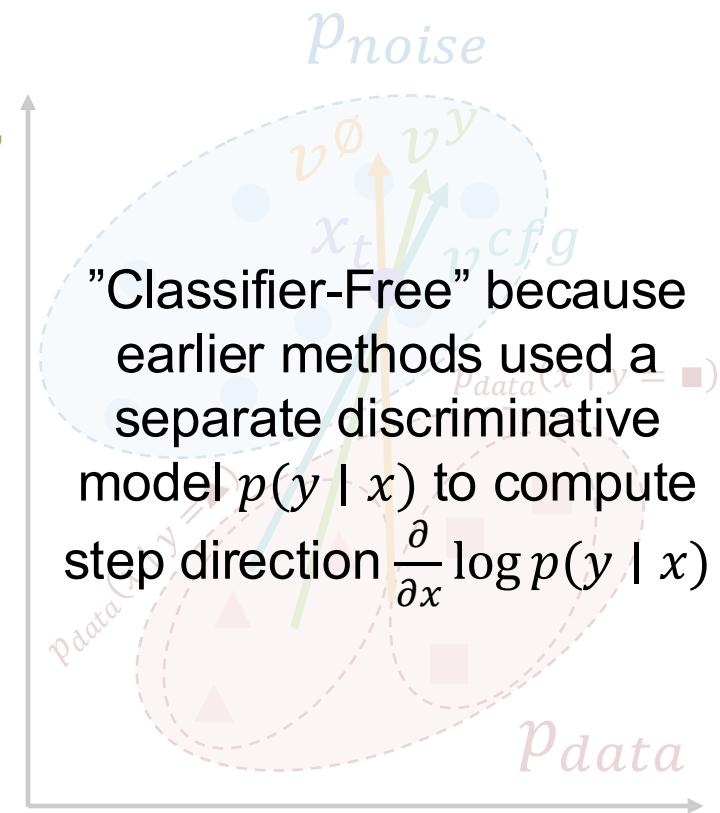
Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Can we control how
much we “emphasize”
the conditioning y ?

Sampling

```
y = user_input()  
sample = torch.randn(x_shape)  
for t in torch.linspace(1, 0, num_steps):  
    vy = model(sample, y, t)  
    v0 = model(sample, y_null, t)  
    v = (1 + w) * vy - w * v0  
    sample = sample - v / num_steps
```



Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021
Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Classifier-Free Guidance (CFG)

Training

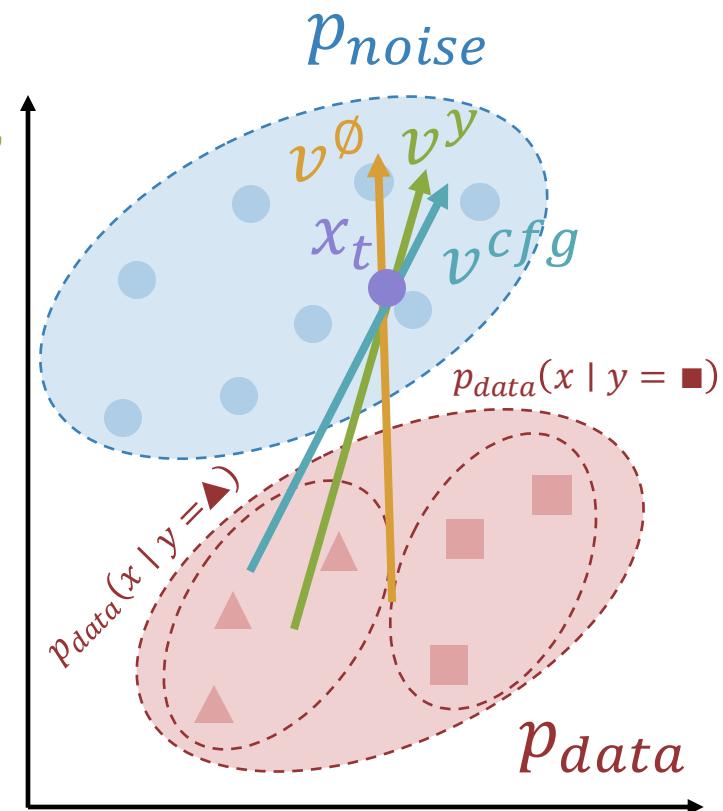
```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Can we control how much we “emphasize” the conditioning y ?

Sampling

```
y = user_input()  
sample = torch.randn(x_shape)  
for t in torch.linspace(1, 0, num_steps):  
    vy = model(sample, y, t)  
    v0 = model(sample, y_null, t)  
    v = (1 + w) * vy - w * v0  
    sample = sample - v / num_steps
```

Used everywhere in practice! Very important for high-quality outputs



Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021
Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Classifier-Free Guidance (CFG)

Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

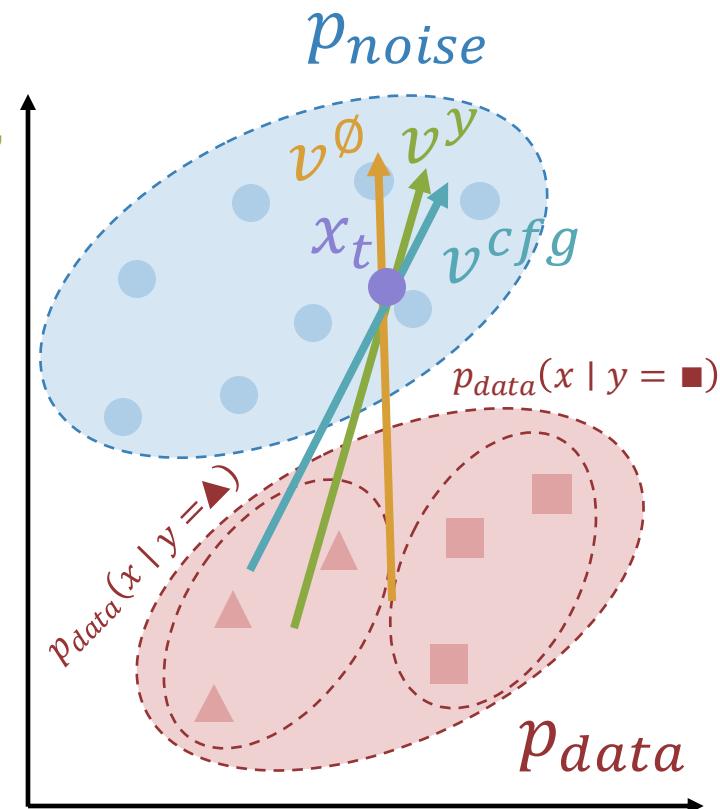
Can we control how much we “emphasize” the conditioning y ?

Sampling

```
y = user_input()  
sample = torch.randn(x_shape)  
for t in torch.linspace(1, 0, num_steps):  
    vy = model(sample, y, t)  
    v0 = model(sample, y_null, t)  
    v = (1 + w) * vy - w * v0  
    sample = sample - v / num_steps
```

Used everywhere in practice! Very important for high-quality outputs

Doubles the cost of sampling...



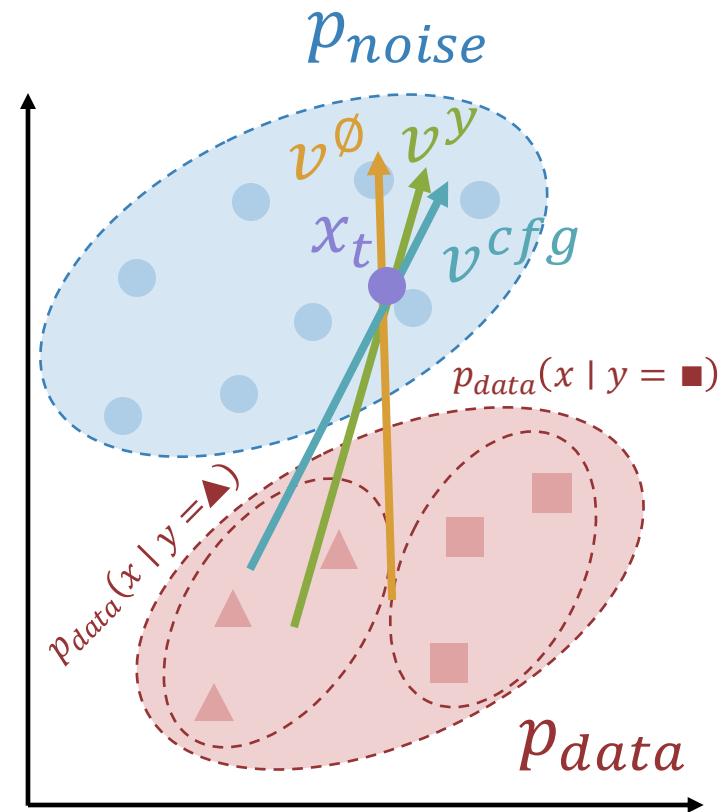
Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021
Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Optimal Prediction

Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Q: What is the optimal prediction for the network?



Dhariwal and Nichol, "Diffusion Models beat GANs on Image Synthesis", arXiv 2021
Ho and Salimans, "Classifier-Free Diffusion Guidance", arXiv 2022

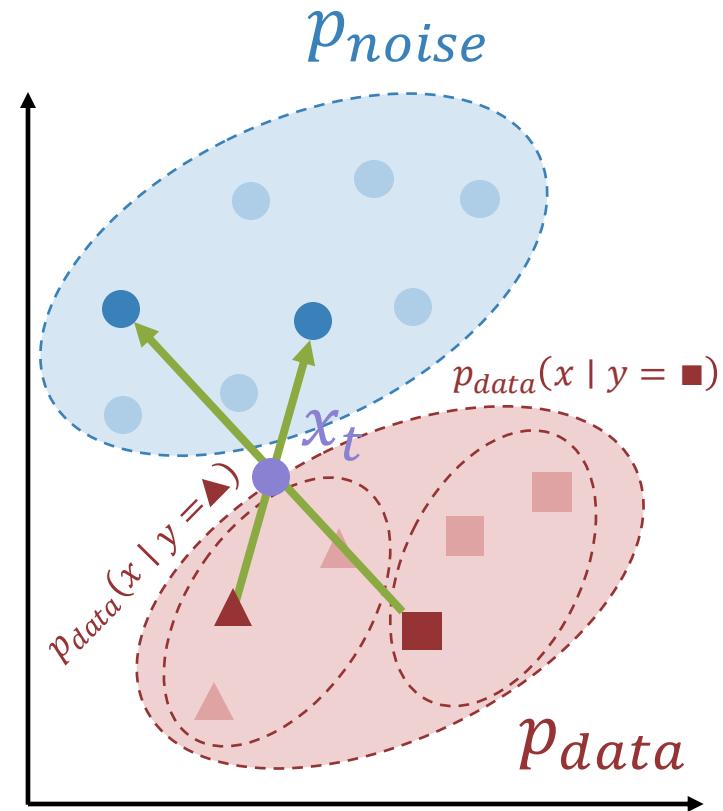
Optimal Prediction

Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Q: What is the optimal prediction for the network?

There may be many pairs (x, z) that give the same x_t ; network must average over them



Dhariwal and Nichol, "Diffusion Models beat GANs on Image Synthesis", arXiv 2021
Ho and Salimans, "Classifier-Free Diffusion Guidance", arXiv 2022

Optimal Prediction

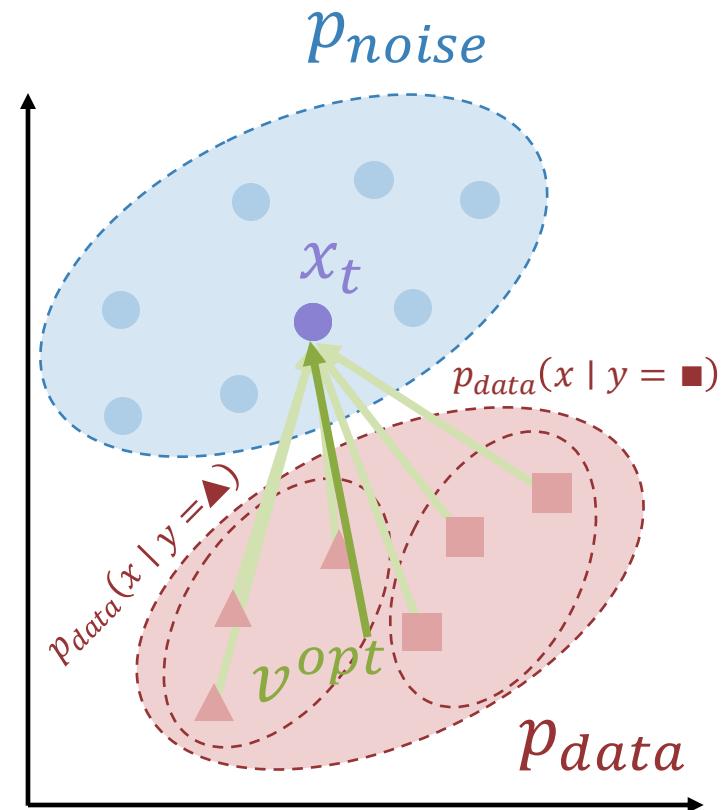
Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Q: What is the optimal prediction for the network?

There may be many pairs (x, z) that give the same x_t ; network must average over them

Full noise ($t=1$) is easy: optimal v is mean of p_{data}



Dhariwal and Nichol, "Diffusion Models beat GANs on Image Synthesis", arXiv 2021
Ho and Salimans, "Classifier-Free Diffusion Guidance", arXiv 2022

Optimal Prediction

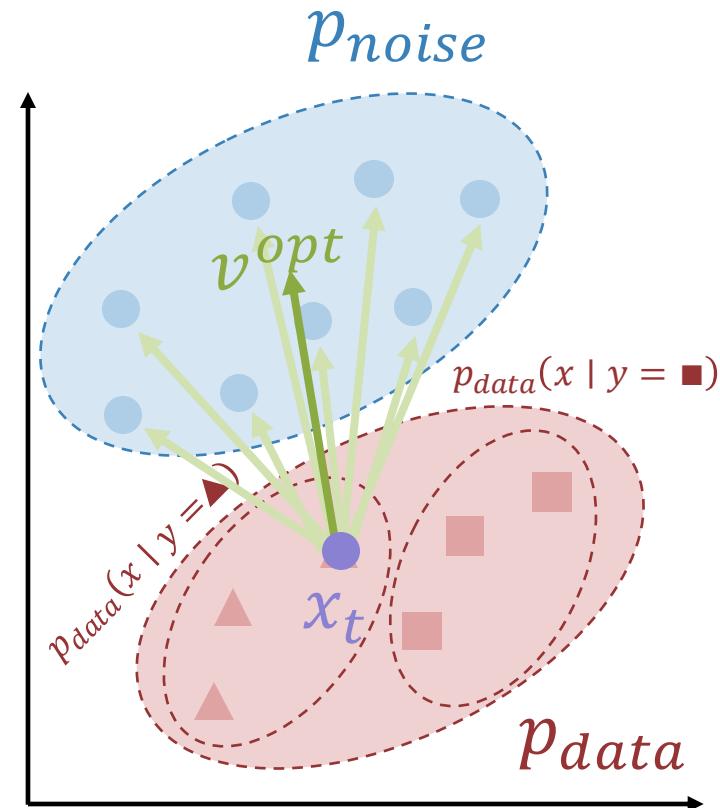
Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Q: What is the optimal prediction for the network?

There may be many pairs (x, z) that give the same x_t ; network must average over them

Full noise ($t=1$) is easy: optimal v is mean of p_{data}
No noise ($t=0$) is easy: optimal v is mean of p_{noise}



Dhariwal and Nichol, "Diffusion Models beat GANs on Image Synthesis", arXiv 2021
Ho and Salimans, "Classifier-Free Diffusion Guidance", arXiv 2022

Optimal Prediction

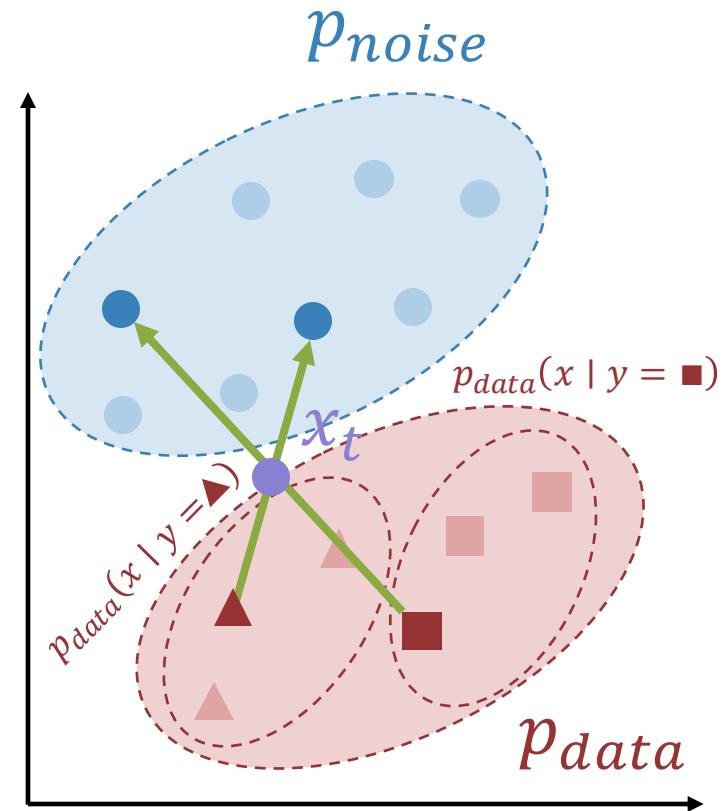
Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Q: What is the optimal prediction for the network?

There may be many pairs (x, z) that give the same x_t ; network must average over them

Full noise ($t=1$) is easy: optimal v is mean of p_{data}
No noise ($t=0$) is easy: optimal v is mean of p_{noise}
Middle noise is hardest, most ambiguous



Dhariwal and Nichol, "Diffusion Models beat GANs on Image Synthesis", arXiv 2021
Ho and Salimans, "Classifier-Free Diffusion Guidance", arXiv 2022

Optimal Prediction

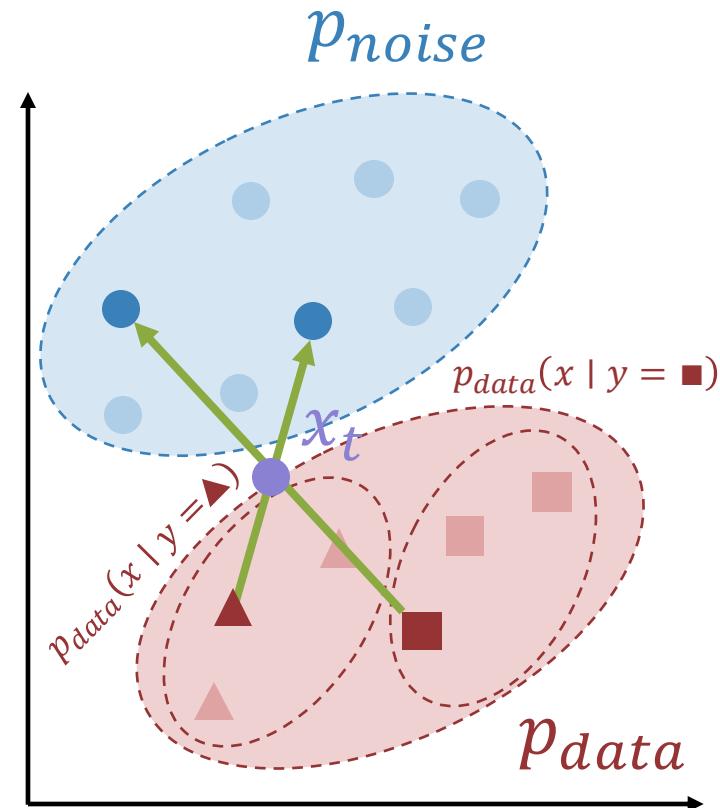
Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Q: What is the optimal prediction for the network?

There may be many pairs (x, z) that give the same x_t ; network must average over them

Full noise ($t=1$) is easy: optimal v is mean of p_{data}
No noise ($t=0$) is easy: optimal v is mean of p_{noise}
Middle noise is hardest, most ambiguous
But we give equal weight to all noise levels!



Dhariwal and Nichol, "Diffusion Models beat GANs on Image Synthesis", arXiv 2021
Ho and Salimans, "Classifier-Free Diffusion Guidance", arXiv 2022

Optimal Prediction

Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Q: What is the optimal prediction for the network?

There may be many pairs (x, z) that give the same x_t ; network must average over them

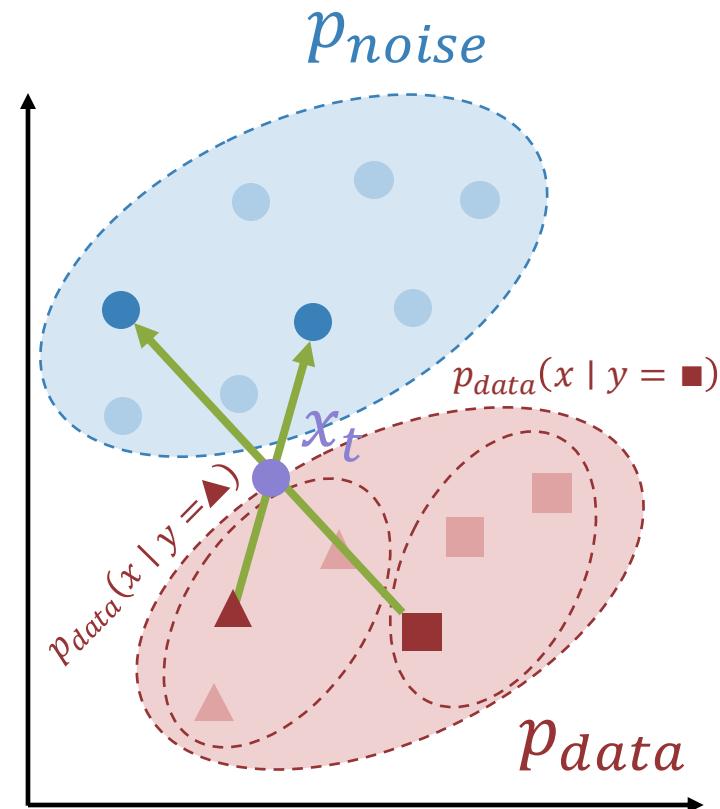
Full noise ($t=1$) is easy: optimal v is mean of p_{data}

No noise ($t=0$) is easy: optimal v is mean of p_{noise}

Middle noise is hardest, most ambiguous

But we give equal weight to all noise levels!

Solution: Use a non-uniform noise schedule



Dhariwal and Nichol, "Diffusion Models beat GANs on Image Synthesis", arXiv 2021
Ho and Salimans, "Classifier-Free Diffusion Guidance", arXiv 2022

Noise Schedules

Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = random.uniform(0, 1)  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

There may be many pairs (x, z) that give the same x_t ; network must average over them

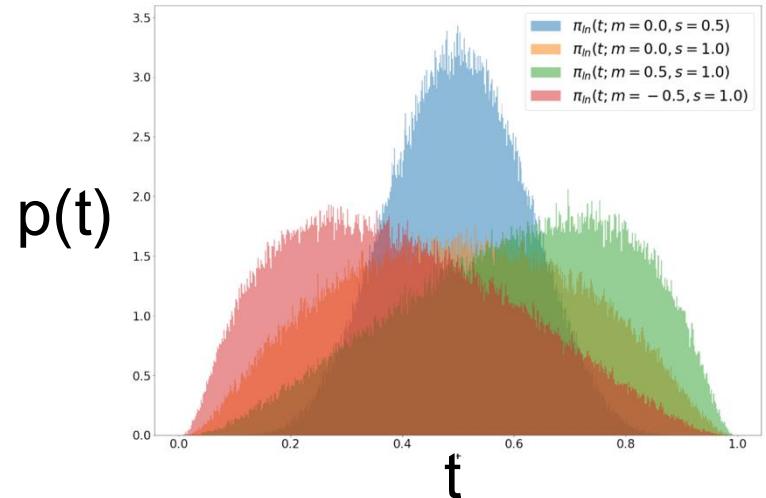
Full noise ($t=1$) is easy: optimal v is mean of p_{data}

No noise ($t=0$) is easy: optimal v is mean of p_{noise}

Middle noise is hardest, most ambiguous

But we give equal weight to all noise levels!

Solution: Use a non-uniform noise schedule



Put more emphasis on middle noise

Noise Schedules

Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = torch.randn(()).sigmoid()  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

There may be many pairs (x, z) that give the same x_t ; network must average over them

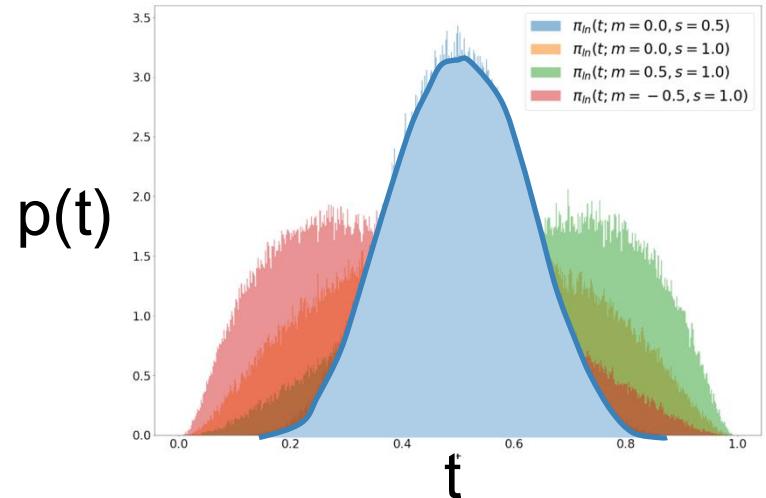
Full noise ($t=1$) is easy: optimal v is mean of p_{data}

No noise ($t=0$) is easy: optimal v is mean of p_{noise}

Middle noise is hardest, most ambiguous

But we give equal weight to all noise levels!

Solution: Use a non-uniform noise schedule



Put more emphasis on middle noise

Common choice: **logit-normal sampling**

Noise Schedules

Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = torch.randn(()).sigmoid()  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

There may be many pairs (x, z) that give the same x_t ; network must average over them

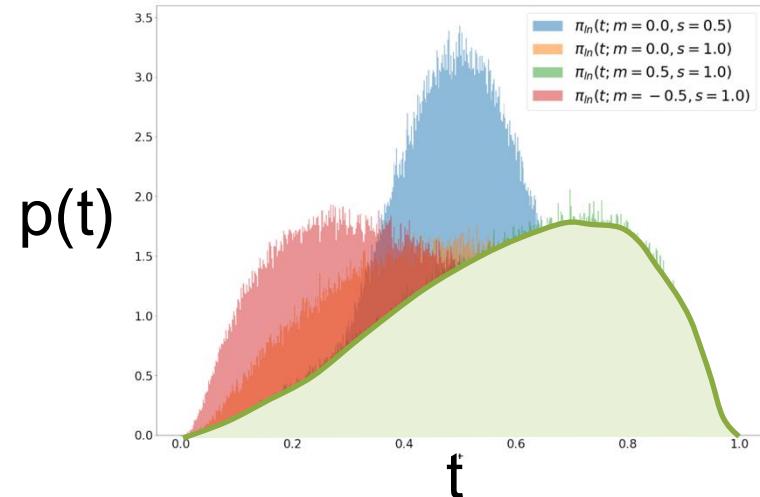
Full noise ($t=1$) is easy: optimal v is mean of p_{data}

No noise ($t=0$) is easy: optimal v is mean of p_{noise}

Middle noise is hardest, most ambiguous

But we give equal weight to all noise levels!

Solution: Use a non-uniform noise schedule



Put more emphasis on middle noise

Common choice: **logit-normal sampling**

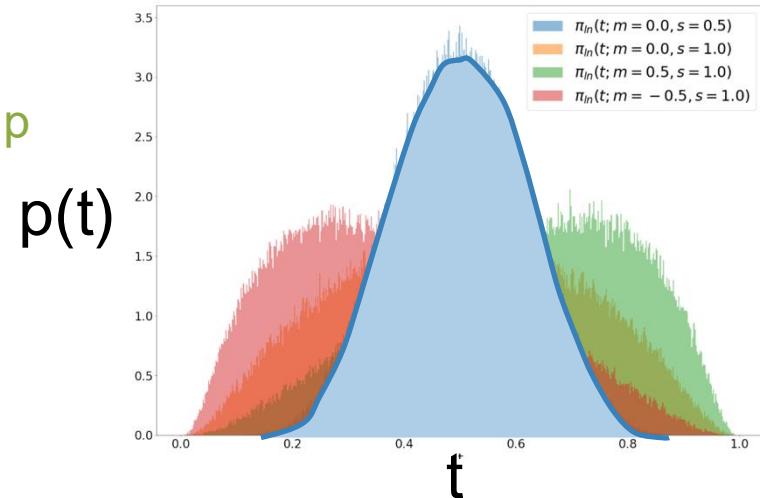
For high-res data, often **shift to higher noise** to account for pixel correlations

Diffusion: Rectified Flow

Training

```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = torch.randn(()).sigmoid()  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Simple and scalable setup
for many generative
modeling problems!



Sampling

```
y = user_input()  
sample = torch.randn(x_shape)  
for t in torch.linspace(1, 0, num_steps):  
    vy = model(sample, y, t)  
    v0 = model(sample, y_null, t)  
    v = (1 + w) * vy - w * v0  
    sample = sample - v / num_steps
```

Put more emphasis on middle noise

Common choice: **logit-normal sampling**

For high-res data, often **shift to higher noise** to account for pixel correlations

Esser et al, "Scaling Rectified Flow Transformers for High-Resolution Image Synthesis", arXiv 2024

Diffusion: Rectified Flow

Training

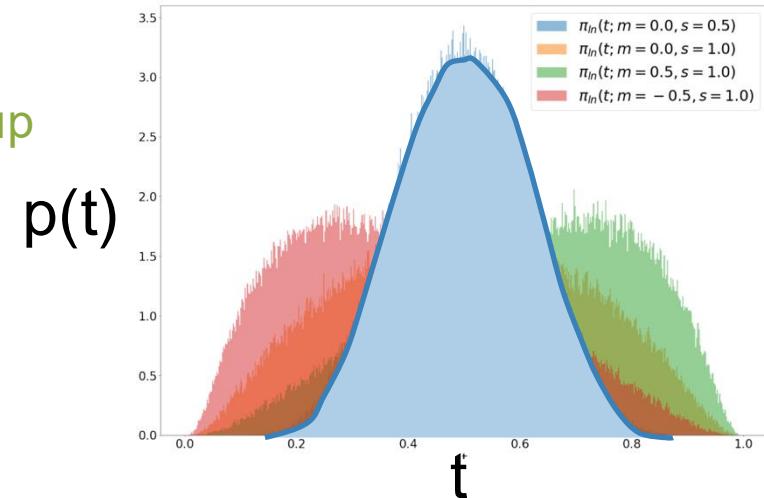
```
for (x, y) in dataset:  
    z = torch.randn_like(x)  
    t = torch.randn(()).sigmoid()  
    xt = (1 - t) * x + t * z  
    if random.random() < 0.5: y = y_null  
    v = model(xt, y, t)  
    loss = (z - x - v).square().sum()
```

Simple and scalable setup
for many generative
modeling problems!

Sampling

```
y = user_input()  
sample = torch.randn(x_shape)  
for t in torch.linspace(1, 0, num_steps):  
    vy = model(sample, y, t)  
    v0 = model(sample, y_null, t)  
    v = (1 + w) * vy - w * v0  
    sample = sample - v / num_steps
```

Problem: Does not
work naively on high-
resolution data



Put more emphasis on middle noise

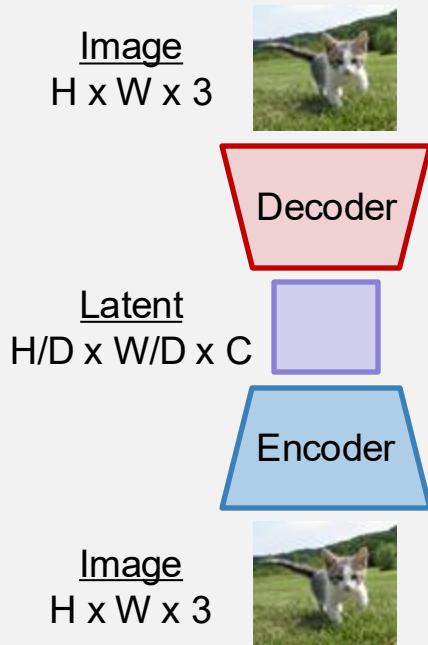
Common choice: **logit-normal sampling**

For high-res data, often **shift to higher
noise** to account for pixel correlations

Esser et al, "Scaling Rectified Flow Transformers for High-Resolution Image Synthesis", arXiv 2024

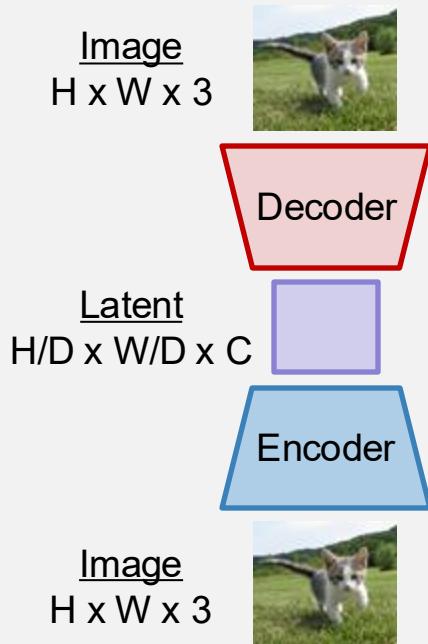
Latent Diffusion Models (LDMs)

Train **encoder** + **decoder** to
convert images to **latents**



Latent Diffusion Models (LDMs)

Train **encoder** + **decoder** to
convert images to **latents**



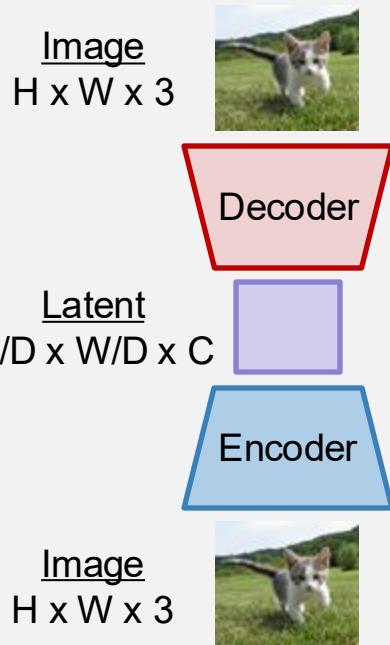
Common setting: $D=8, C=16$

Image: $256 \times 256 \times 3$
 \Rightarrow **Latent:** $32 \times 32 \times 16$

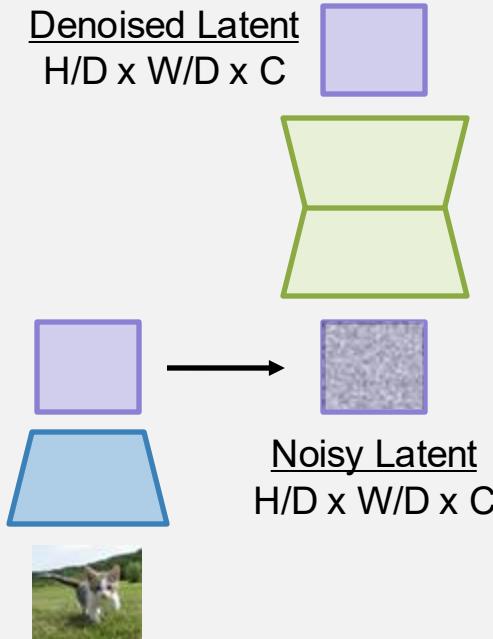
Encoder / Decoder are CNNs with attention

Latent Diffusion Models (LDMs)

Train **encoder** + **decoder** to convert images to **latents**

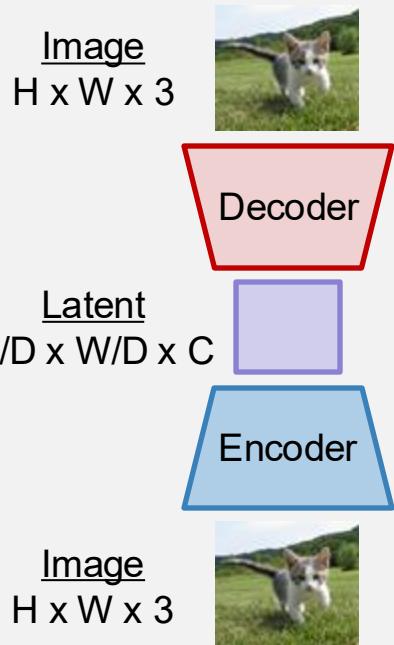


Train **diffusion model** to remove noise from **latents**
(**Encoder** is frozen)

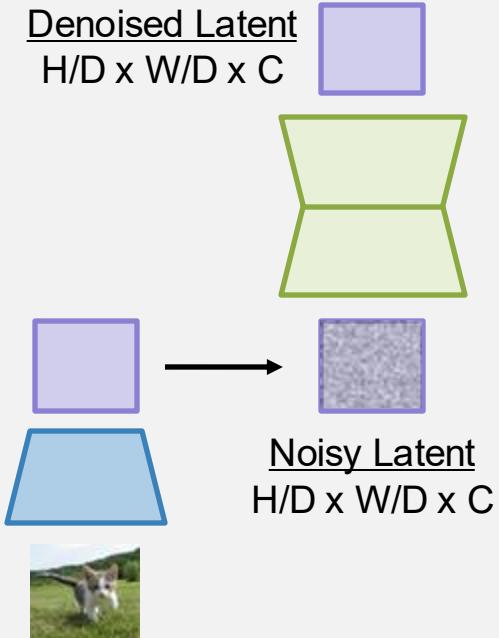


Latent Diffusion Models (LDMs)

Train **encoder** + **decoder** to convert images to **latents**



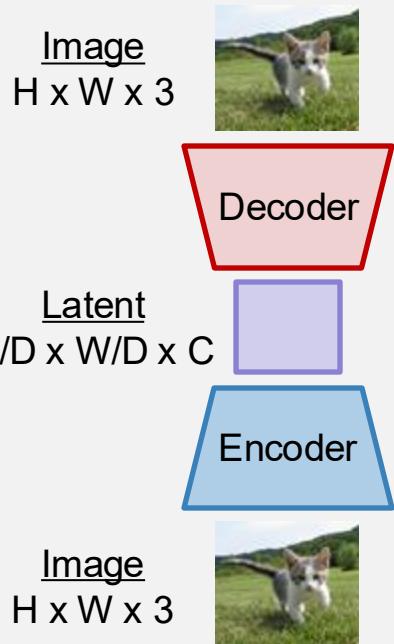
Train **diffusion model** to remove noise from **latents**
(**Encoder** is frozen)



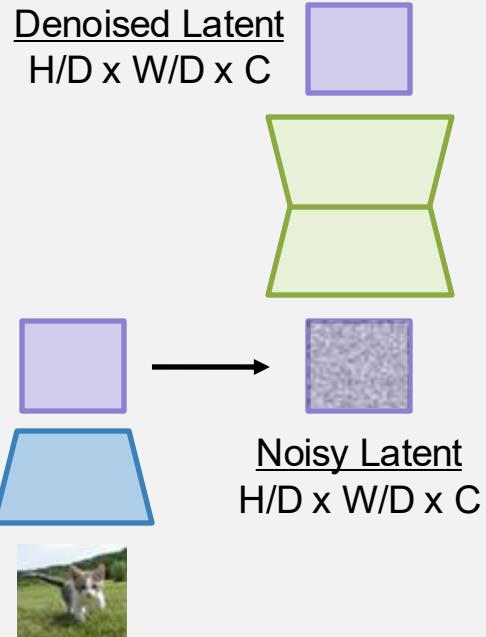
After training:

Latent Diffusion Models (LDMs)

Train **encoder** + **decoder** to convert images to **latents**



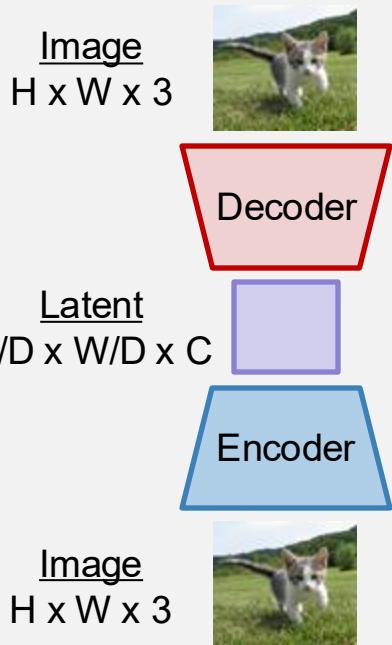
Train **diffusion model** to remove noise from **latents**
(**Encoder** is frozen)



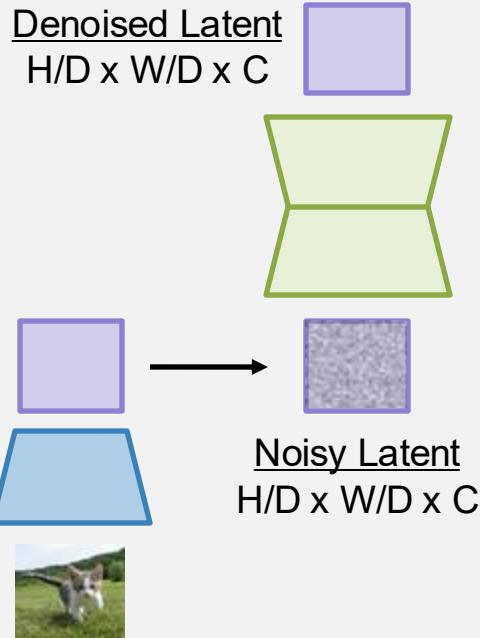
After training:
Sample random **latent**

Latent Diffusion Models (LDMs)

Train **encoder** + **decoder** to convert images to **latents**



Train **diffusion model** to remove noise from **latents**
(**Encoder** is frozen)



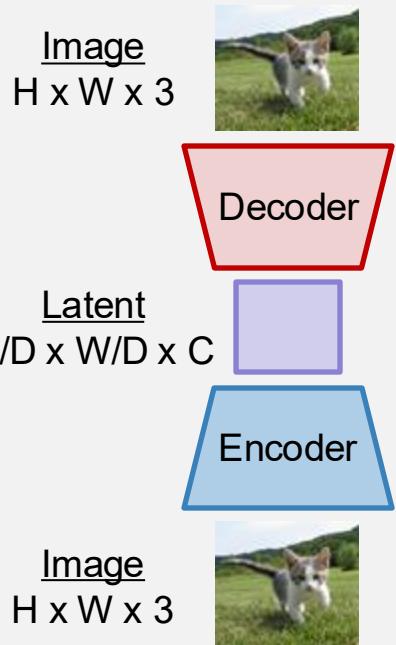
After training:

Sample random **latent**

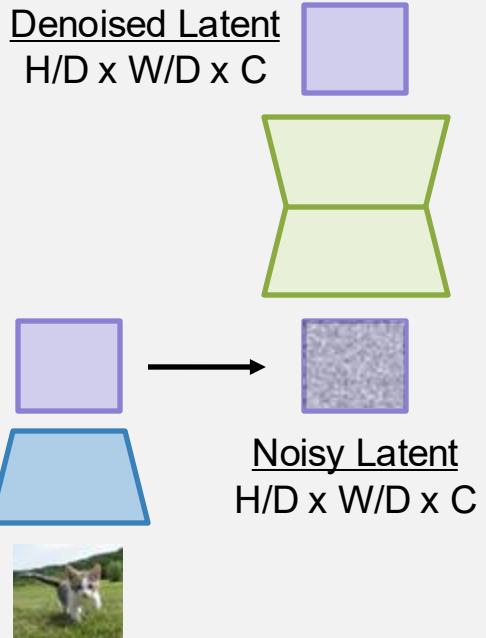
Iteratively apply **diffusion model** to remove noise

Latent Diffusion Models (LDMs)

Train **encoder** + **decoder** to convert images to **latents**



Train **diffusion model** to remove noise from **latents**
(**Encoder** is frozen)

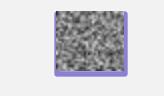


After training:

Sample random **latent**

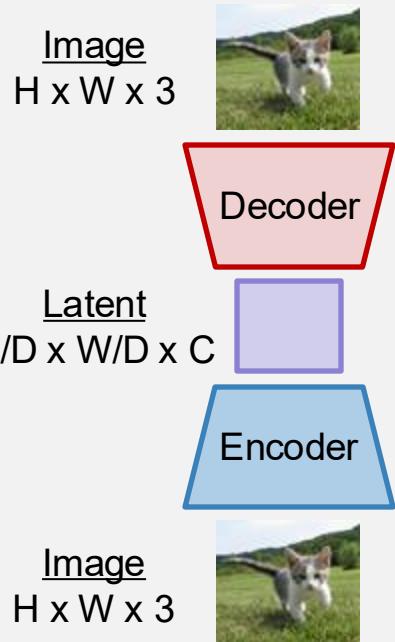
Iteratively apply **diffusion model** to remove noise

run **decoder** to get **image**

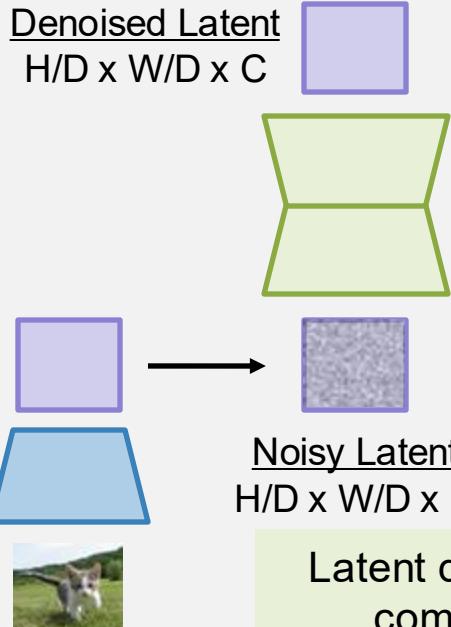


Latent Diffusion Models (LDMs)

Train **encoder** + **decoder** to convert images to **latents**



Train **diffusion model** to remove noise from **latents**
(**Encoder** is frozen)



Latent diffusion is the most common form today

After training:

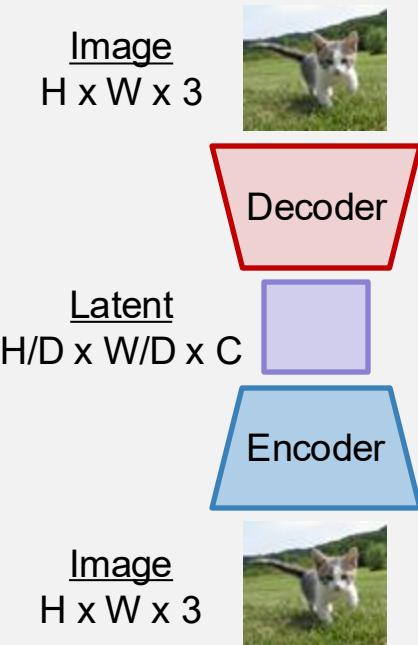
Sample random **latent**

Iteratively apply **diffusion model** to remove noise

run **decoder** to get **image**

Latent Diffusion Models (LDMs)

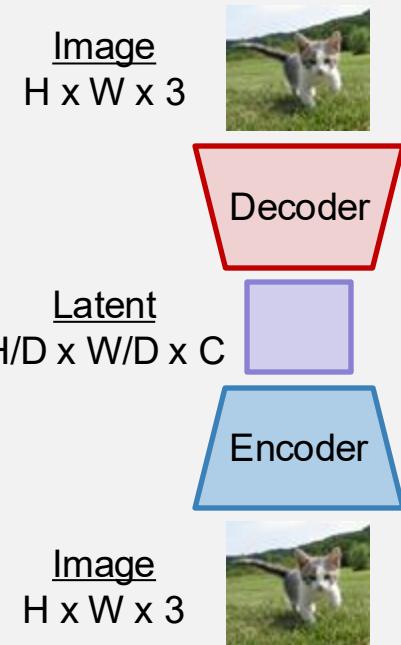
Train **encoder** + **decoder** to
convert images to **latents**



How do we train the
encoder+decoder?

Latent Diffusion Models (LDMs)

Train **encoder** + **decoder** to convert images to **latents**

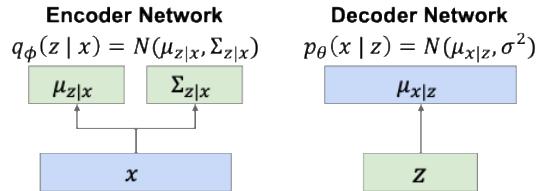


How do we train the encoder+decoder?

Solution: It's a VAE!
Typically with very small KL prior weight

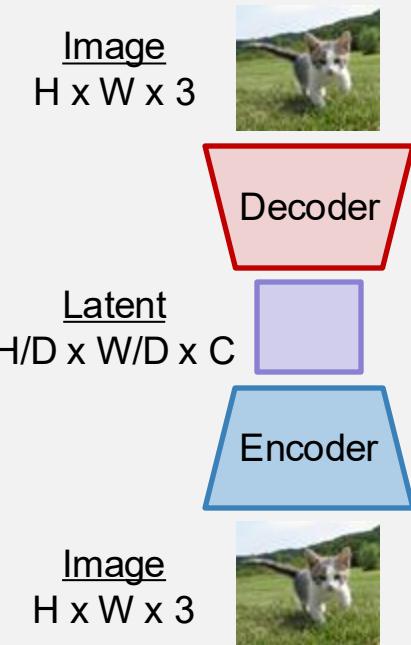
Recall: VAE

$$\log p_\theta(x) \geq E_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))$$



Latent Diffusion Models (LDMs)

Train **encoder** + **decoder** to convert images to **latents**



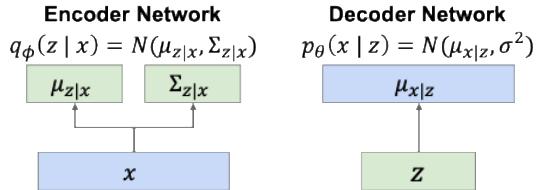
How do we train the encoder+decoder?

Solution: It's a VAE!
Typically with very small KL prior weight

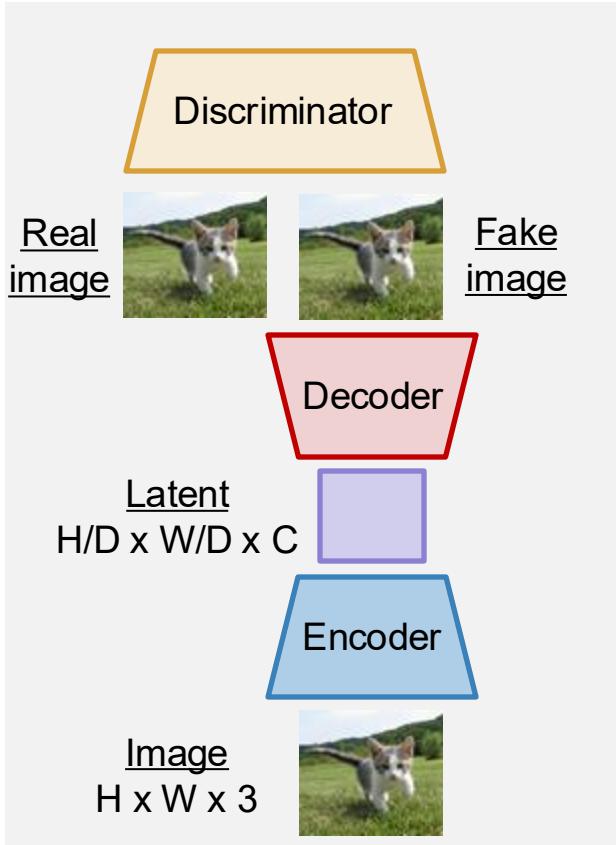
Problem: Decoder outputs often blurry

Recall: VAE

$$\log p_\theta(x) \geq E_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))$$



Latent Diffusion Models (LDMs)



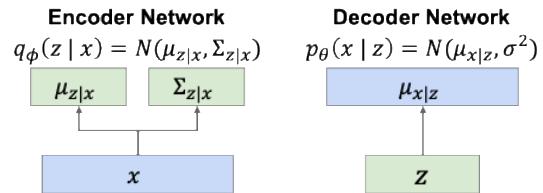
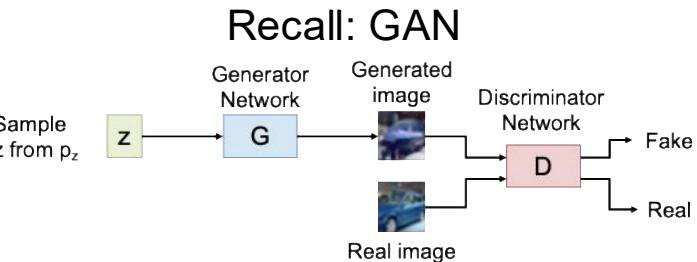
How do we train the encoder+decoder?

Solution: It's a VAE!
Typically with very small KL prior weight

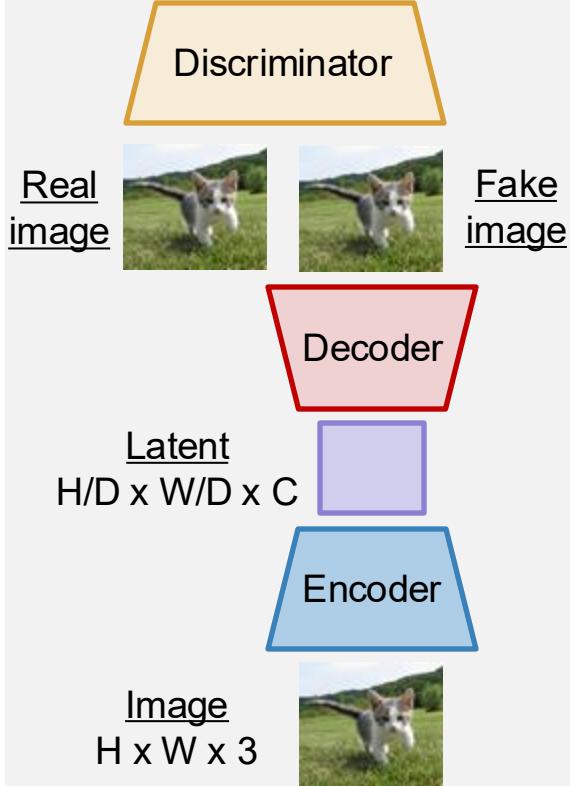
Problem: Decoder outputs often blurry

Solution: Add a discriminator!

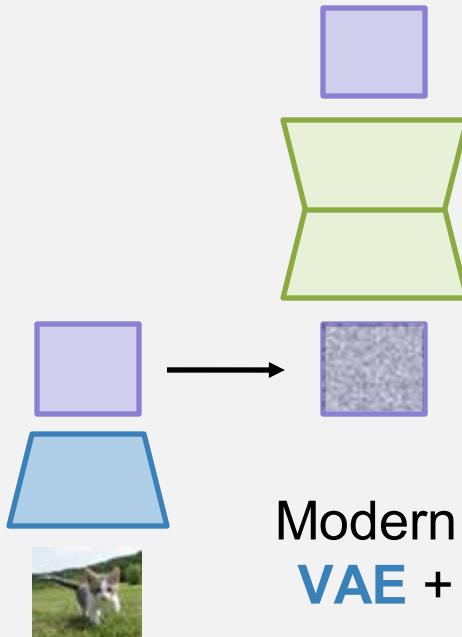
Recall: VAE

$$\log p_\theta(x) \geq E_{z \sim q_\phi(z|x)}[\log p_\theta(x|z)] - D_{KL}(q_\phi(z|x), p(z))$$


Latent Diffusion Models (LDMs)



Train **diffusion model** to remove noise from **latents** (**Encoder** is frozen)



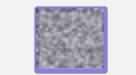
Modern LDM pipelines use **VAE** + **GAN** + **diffusion!**

After training:

Sample random **latent**

Iteratively apply **diffusion model** to remove noise

...

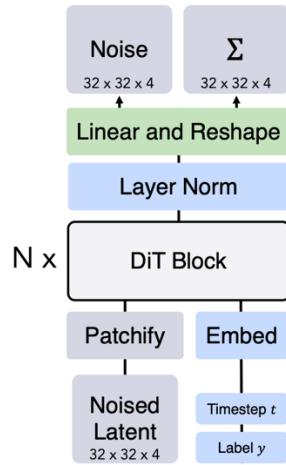


run **decoder** to get **image**

Diffusion Transformer (DiT)

Diffusion uses standard Transformer blocks!

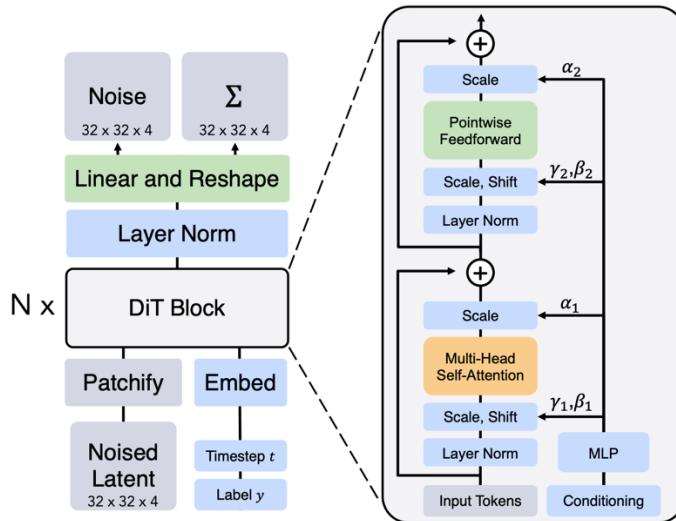
Main question: How to inject conditioning (timestep t , text, ...)



Diffusion Transformer (DiT)

Diffusion uses standard Transformer blocks!

Main question: How to inject conditioning (timestep t , text, ...)

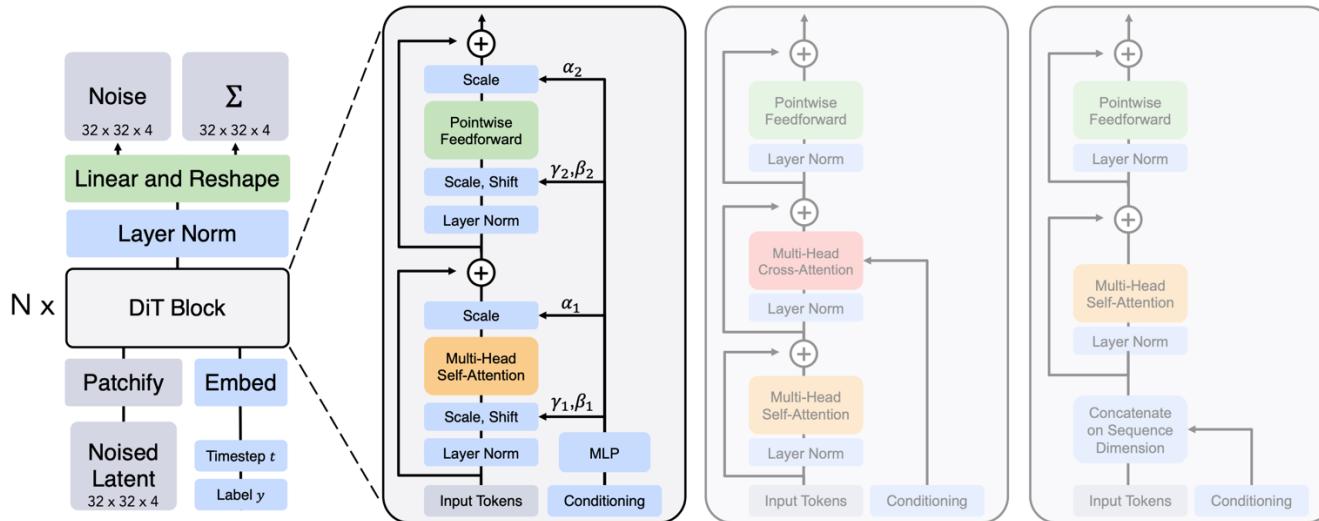


Predict scale/shift:
Most common for
diffusion timestep t

Diffusion Transformer (DiT)

Diffusion uses standard Transformer blocks!

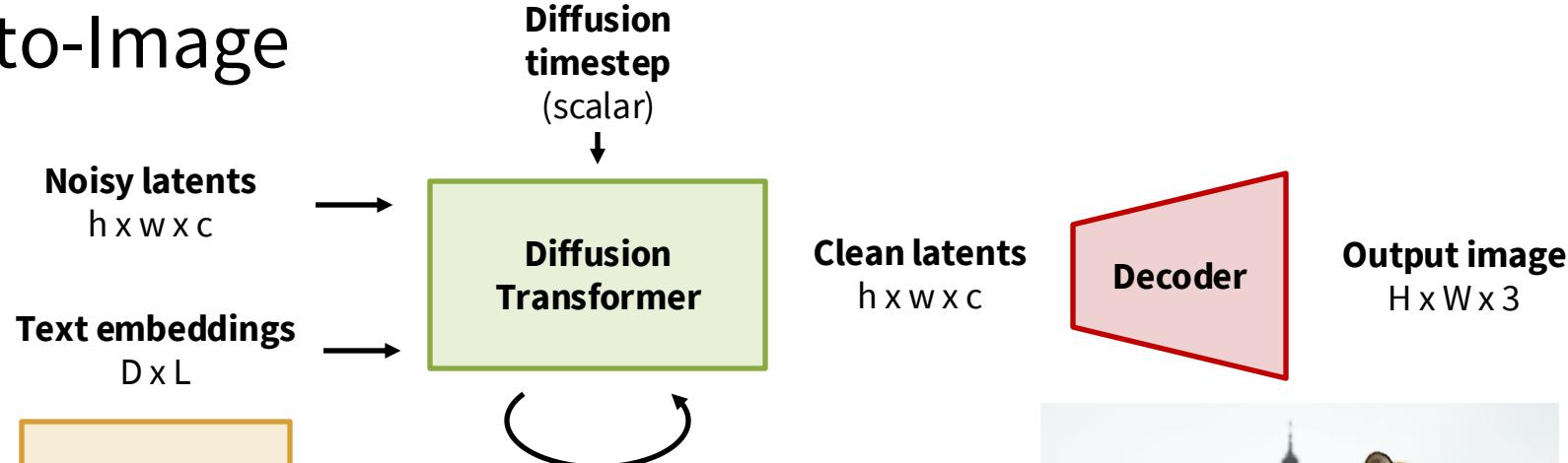
Main question: How to inject conditioning (timestep t , text, ...)



Predict scale/shift:
Most common for diffusion timestep t

Cross-Attention / Joint Attention:
Common for text, image, etc conditioning

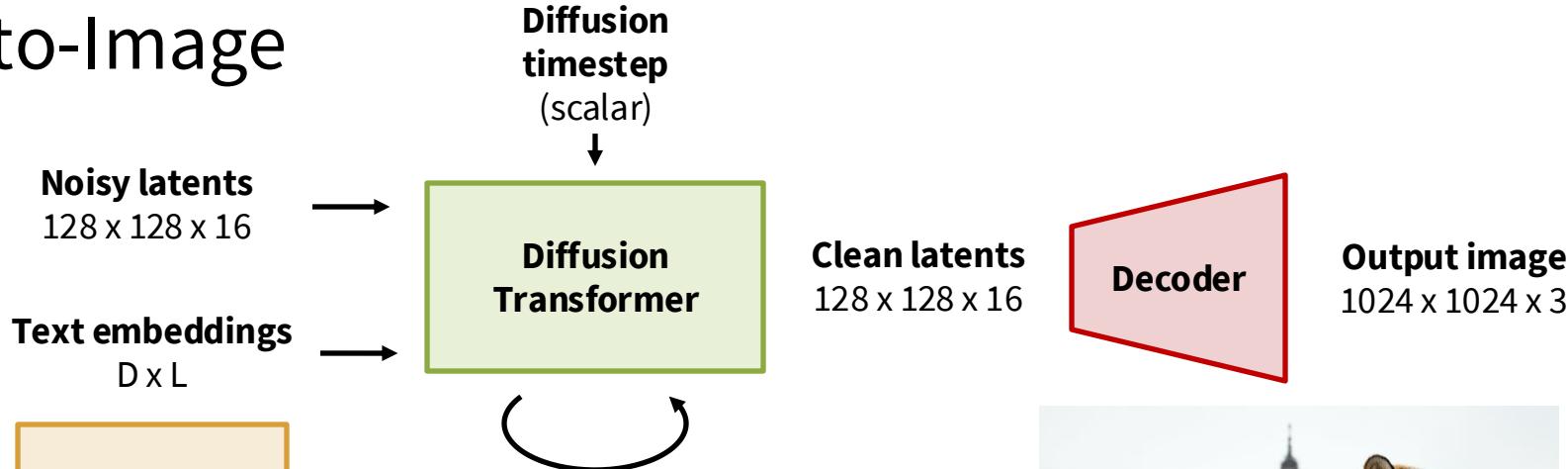
Text-to-Image



Text Prompt

A professional documentary photograph of a monkey shaking hands with a tiger in front of the Eiffel tower. The monkey is wearing a hat made out of bananas, and the tiger is standing on two legs and wearing a suit.

Text-to-Image



Example: FLUX.1 [dev]

Text Encoder: T5 + CLIP

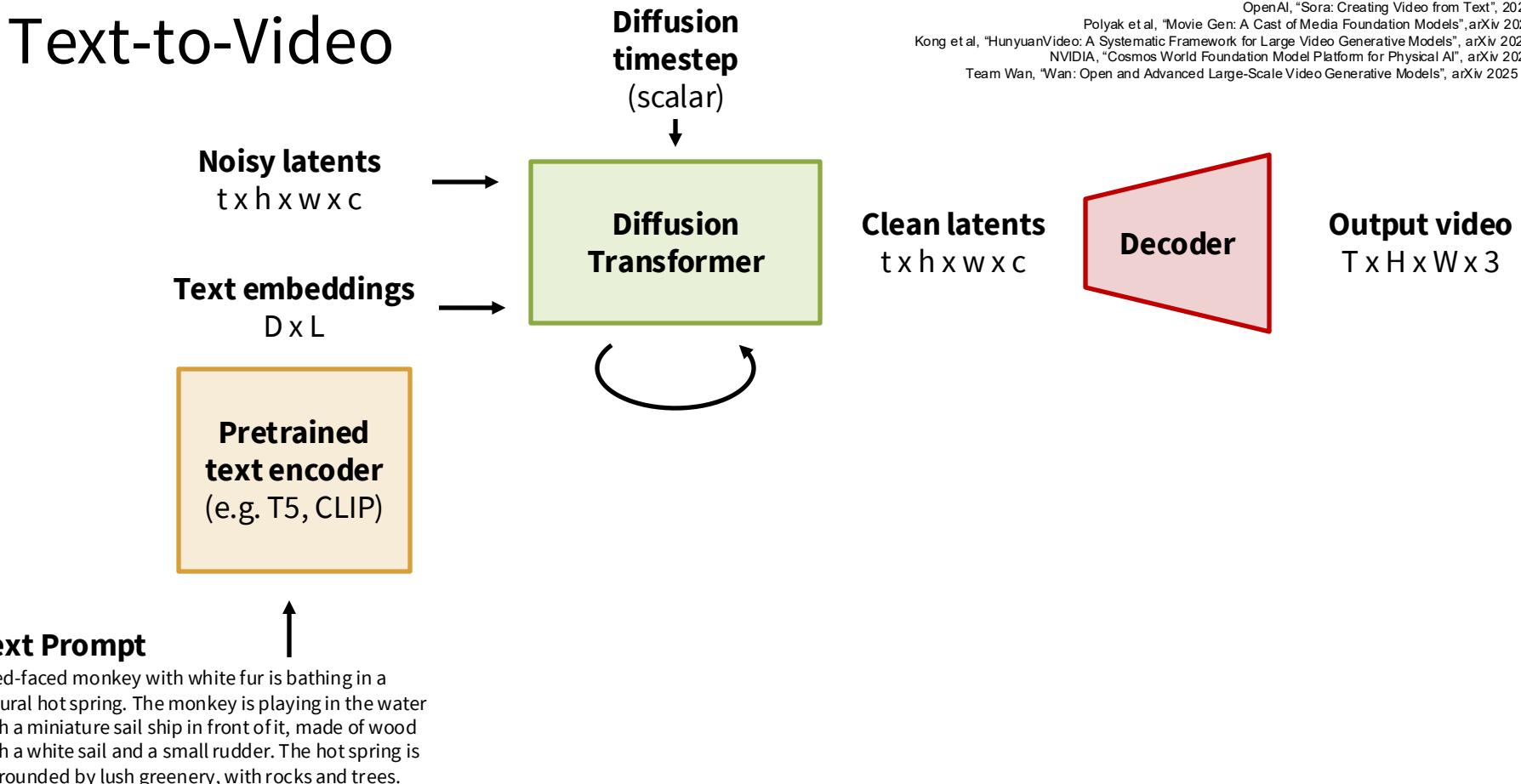
Encoder/Decoder: 8x8 downsampling

Diffusion model: 12B parameter model

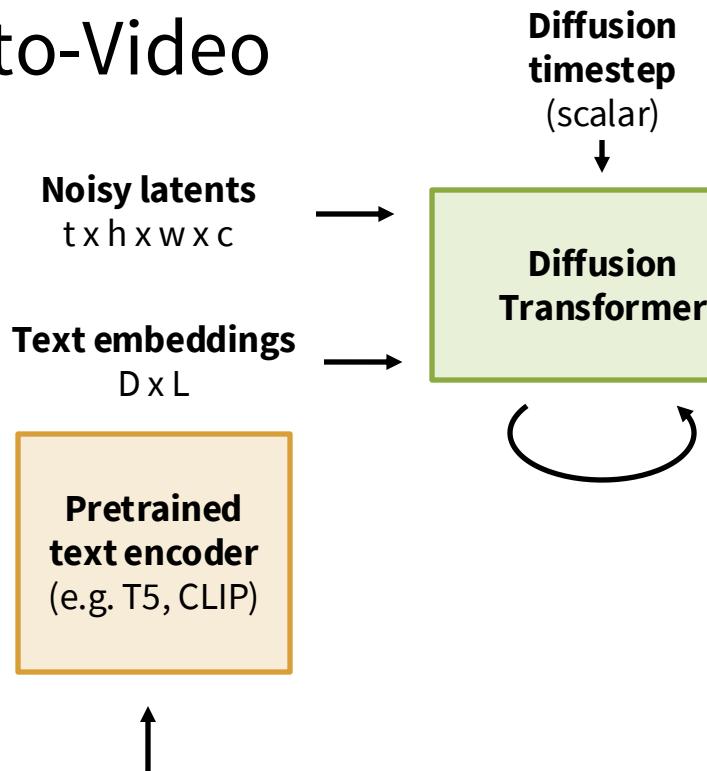
2x2 patchify => 64x64 = 1024 image tokens

<https://github.com/black-forest-labs/flux>

Text-to-Video



Text-to-Video



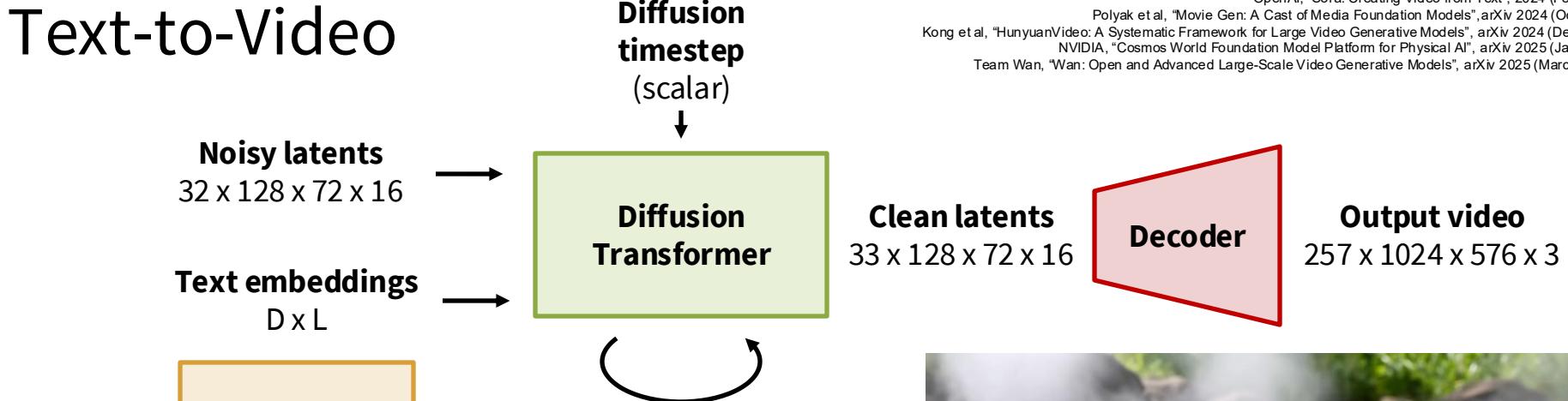
Text Prompt

A red-faced monkey with white fur is bathing in a natural hot spring. The monkey is playing in the water with a miniature sail ship in front of it, made of wood with a white sail and a small rudder. The hot spring is surrounded by lush greenery, with rocks and trees.

Gupta et al, "Photorealistic Video Generation with Diffusion Models", arXiv 2023 (Dec)
OpenAI, "Sora: Creating Video from Text", 2024 (Feb)
Polyak et al, "Movie Gen: A Cast of Media Foundation Models", arXiv 2024 (Oct)
Kong et al, "HunyuanVideo: A Systematic Framework for Large Video Generative Models", arXiv 2024 (Dec)
NVIDIA, "Cosmos World Foundation Model Platfrom for Physical AI", arXiv 2025 (Jan)
Team Wan, "Wan: Open and Advanced Large-Scale Video Generative Models", arXiv 2025 (March)

Video from Meta Movie Gen
(<https://ai.meta.com/research/movie-gen/>)

Text-to-Video



Example: Meta MovieGen

Text Encoder: UL2, ByT5, MetaCLIP

Encoder/Decoder: 8x8x8 downsample

Diffusion model: 30B param DiT

1x2x2 patchify => 76K tokens

Text Prompt

A red-faced monkey with white fur is bathing in a natural hot spring. The monkey is playing in the water with a miniature sail ship in front of it, made of wood with a white sail and a small rudder. The hot spring is surrounded by lush greenery, with rocks and trees.

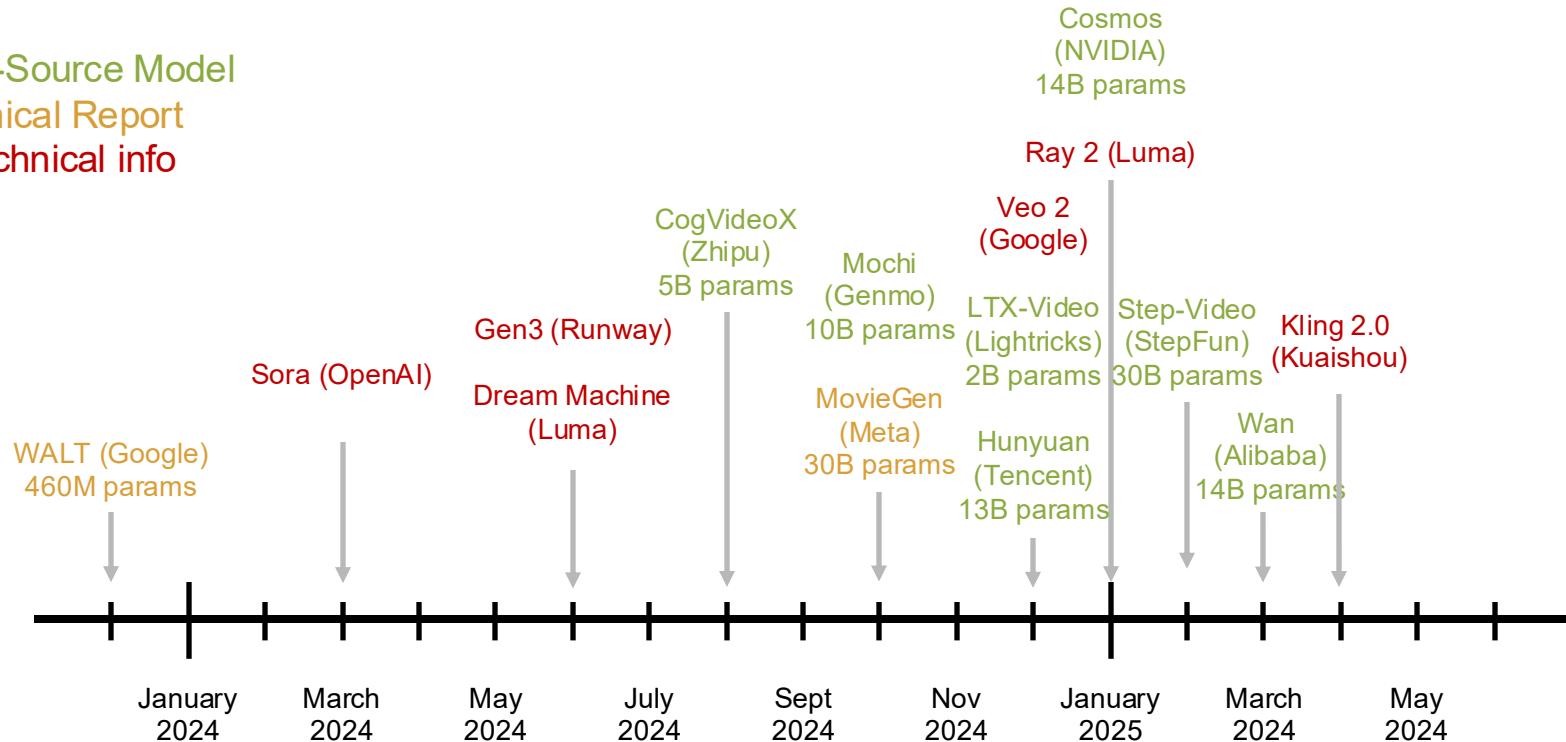
Gupta et al, "Photorealistic Video Generation with Diffusion Models", arXiv 2023 (Dec)
OpenAI, "Sora: Creating Video from Text", 2024 (Feb)
Polyak et al, "Movie Gen: A Cast of Media Foundation Models", arXiv 2024 (Oct)
Kong et al, "HunyuanVideo: A Systematic Framework for Large Video Generative Models", arXiv 2024 (Dec)
NVIDIA, "Cosmos World Foundation Model Platfrom for Physical AI", arXiv 2025 (Jan)
Team Wan, "Wan: Open and Advanced Large-Scale Video Generative Models", arXiv 2025 (March)

The Era of Video Diffusion Models

Open-Source Model

Technical Report

No technical info



Gupta et al., "Photo-realistic Video Generation with Diffusion Models", arXiv 2023 (Dec)

OpenAI, "Sora: Creating Video from Text", 2024 (Feb)

Polyak et al., "MovieGen: A Large-Scale Video Diffusion Model", arXiv 2024 (Mar)

Kong et al., "HunyuanVideo: A Systematic Framework for Large-Video Generation Models", arXiv 2024 (Dec)

NVIDIA, "Cosmos: A Systematic Foundation Model Platform for Physical AI", arXiv 2024 (Jan)

Team Wan, "Wan: Open and Advanced Large-Scale Video Generation Model", arXiv 2024 (March)

Diffusion Distillation

During sampling we need to run the diffusion model many times (~30 – 50 for rectified flow)

This is really slow!

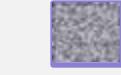
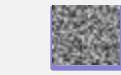
After training:

Sample random **latent**

Iteratively apply **diffusion model** to remove noise

...

run **decoder** to get **image**



Diffusion Distillation

During sampling we need to run the diffusion model many times (~30 – 50 for rectified flow)

This is really slow!

Solution: **distillation** algorithms reduce the number of steps (sometimes all the way to 1), can also bake in CFG

After training:

Sample random
latent

Iteratively apply
diffusion model
to remove noise

...

run **decoder** to
get **image**



Salimans and Ho, "Progressive Distillation for Fast Sampling of Diffusion Models", ICLR 2022
Song et al, "Consistency Models", ICML 2023
Sauer et al, "Adversarial Diffusion Distillation", ECCV 2024
Sauer et al, "Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation", arXiv 2024
Lu and Song, "Simplifying, Stabilizing and Scaling Consistency Models", ICLR 2025
Salimans et al, "Multistep Distillation of Diffusion Models via Moment Matching", NeurIPS 2025

Generalized Diffusion

Rectified Flow

Sample $x \sim p_{data}$, $z \sim p_{noise}$

Sample $t \sim p_t$

Set $x_t = (1 - t)x + tz$

Set $v_{gt} = z - x$

Compute $v_{pred} = f_\theta(x_t, t)$

Compute loss $\|v_{gt} - v_{pred}\|_2^2$

Generalized Diffusion

Rectified Flow

Sample $x \sim p_{data}$, $z \sim p_{noise}$

Sample $t \sim p_t$

Set $x_t = (1 - t)x + tz$

Set $v_{gt} = z - x$

Compute $v_{pred} = f_\theta(x_t, t)$

Compute loss $\|v_{gt} - v_{pred}\|_2^2$

Generalized Diffusion

Sample $x \sim p_{data}$, $z \sim p_{noise}$

Sample $\mathbf{t} \sim p_t$

Set $x_t = \mathbf{a}(\mathbf{t})x + \mathbf{b}(\mathbf{t})z$

Set $y_{gt} = \mathbf{c}(\mathbf{t})x + \mathbf{d}(\mathbf{t})z$

Compute $y_{pred} = f_\theta(x_t, \mathbf{t})$

Compute loss $\|y_{gt} - y_{pred}\|_2^2$

Generalized Diffusion

Rectified Flow

Sample $x \sim p_{data}$, $z \sim p_{noise}$

Sample $t \sim p_t$

Set $x_t = (1 - t)x + tz$

Set $v_{gt} = z - x$

Compute $v_{pred} = f_\theta(x_t, t)$

Compute loss $\|v_{gt} - v_{pred}\|_2^2$

$$a(t) = 1 - t$$

$$b(t) = t$$

$$c(t) = -1$$

$$d(t) = 1$$

Generalized Diffusion

Sample $x \sim p_{data}$, $z \sim p_{noise}$

Sample $t \sim p_t$

Set $x_t = a(t)x + b(t)z$

Set $y_{gt} = c(t)x + d(t)z$

Compute $y_{pred} = f_\theta(x_t, t)$

Compute loss $\|y_{gt} - y_{pred}\|_2^2$

Generalized Diffusion

Variance Preserving (VP)

$$a(t) = \sqrt{\sigma(t)}$$

$$b(t) = \sqrt{1 - \sigma(t)}$$

If x and z are independent and variance=1, then x_t also has variance=1

Generalized Diffusion

Sample $x \sim p_{data}$, $z \sim p_{noise}$

Sample $t \sim p_t$

Set $x_t = a(t)x + b(t)z$

Set $y_{gt} = c(t)x + d(t)z$

Compute $y_{pred} = f_\theta(x_t, t)$

Compute loss $\|y_{gt} - y_{pred}\|_2^2$

Generalized Diffusion

Variance Exploding (VE)

$$\mathbf{a}(\mathbf{t}) = 1$$

$$\mathbf{b}(\mathbf{t}) = \sigma(t)$$

$\sigma(1)$ Needs to be big enough
to drown out all signal in x

Generalized Diffusion

Sample $x \sim p_{data}$, $z \sim p_{noise}$

Sample $\mathbf{t} \sim p_t$

Set $x_t = \mathbf{a}(\mathbf{t})x + \mathbf{b}(\mathbf{t})z$

Set $y_{gt} = \mathbf{c}(\mathbf{t})x + \mathbf{d}(\mathbf{t})z$

Compute $y_{pred} = f_{\theta}(x_t, \mathbf{t})$

Compute loss $\|y_{gt} - y_{pred}\|_2^2$

Generalized Diffusion

x-prediction

$$y_{gt} = x \quad [\mathbf{c}(\mathbf{t}) = 1; \mathbf{d}(\mathbf{t}) = 0]$$

ε -prediction

$$y_{gt} = \mathbf{z} \quad [\mathbf{c}(\mathbf{t}) = 0; \mathbf{d}(\mathbf{t}) = 1]$$

v-prediction

$$y_{gt} = \mathbf{b}(\mathbf{t})\mathbf{z} - \mathbf{a}(\mathbf{t})x \quad [\mathbf{c}(\mathbf{t}) = \mathbf{b}(\mathbf{t}); \mathbf{d}(\mathbf{t}) = -\mathbf{a}(\mathbf{t})]$$

Generalized Diffusion

Sample $x \sim p_{data}$, $z \sim p_{noise}$

Sample $\mathbf{t} \sim p_t$

Set $x_t = \mathbf{a}(\mathbf{t})x + \mathbf{b}(\mathbf{t})z$

Set $y_{gt} = \mathbf{c}(\mathbf{t})x + \mathbf{d}(\mathbf{t})z$

Compute $y_{pred} = f_\theta(x_t, \mathbf{t})$

Compute loss $\|y_{gt} - y_{pred}\|_2^2$

Generalized Diffusion

How do we choose these functions?

Usually through some **mathematical formalism**

Generalized Diffusion

Sample $x \sim p_{data}$, $z \sim p_{noise}$

Sample $\mathbf{t} \sim p_t$

Set $x_t = \mathbf{a}(\mathbf{t})x + \mathbf{b}(\mathbf{t})z$

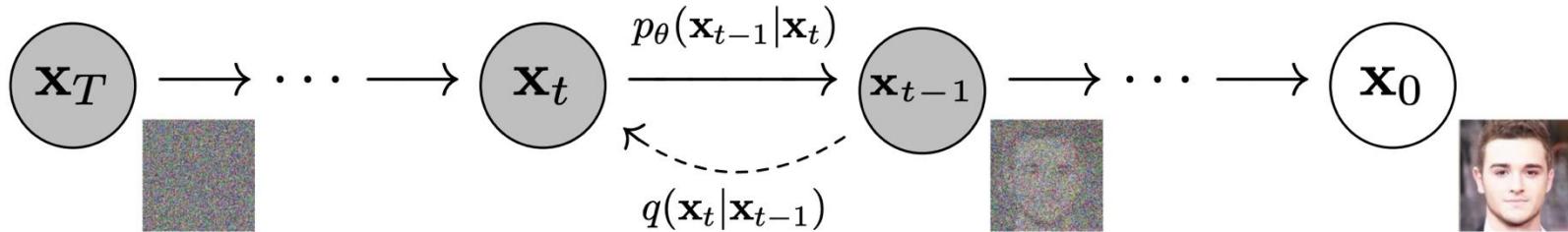
Set $y_{gt} = \mathbf{c}(\mathbf{t})x + \mathbf{d}(\mathbf{t})z$

Compute $y_{pred} = f_{\theta}(x_t, \mathbf{t})$

Compute loss $\|y_{gt} - y_{pred}\|_2^2$

Diffusion is a Latent Variable Model

We know the forward process: Add Gaussian noise



Learn a network to approximate the backward process

Optimize variational lower bound (same as VAE)

Diffusion Learns the Score Function

For any distribution $p(x)$ over $x \in \mathbb{R}^N$ the **score function**

$$s: \mathbb{R}^N \rightarrow \mathbb{R}^N \quad s(x) = \frac{\partial}{\partial x} \log p(x)$$

Is a vector field pointing toward areas of high probability density

Diffusion learns a neural network to approximate the score function of p_{data}

Diffusion Solves Stochastic Differential Equations

We can describe a continuous noising process as an SDE

$$dx = f(x, t)dt + g(t)d\mathbf{w}$$

Gives a relationship between infinitesimal changes in data x , time t , and noise w .

Diffusion learns a neural network to approximately solve this SDE

Perspectives on Diffusion

1. *Diffusion models are autoencoders*
2. *Diffusion models are deep latent variable models*
3. *Diffusion models predict the score function*
4. *Diffusion models solve reverse SDEs*
5. *Diffusion models are flow-based models*
6. *Diffusion models are recurrent neural networks*
7. *Diffusion models are autoregressive models*
8. *Diffusion models estimate expectations*

Great blog post by Sander Dieleman:

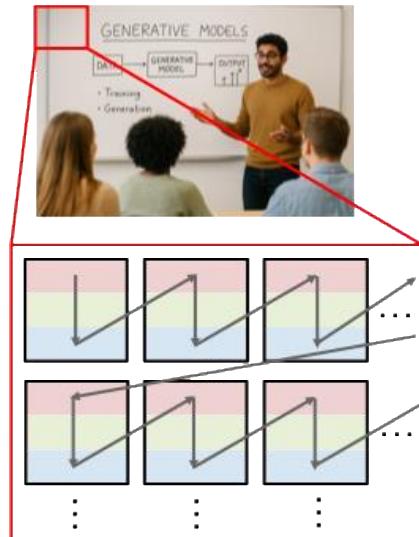
<https://sander.ai/2023/07/20/perspectives.html>

(All his blog posts are great)

Autoregressive Models Strike Back

Recall autoregressive models

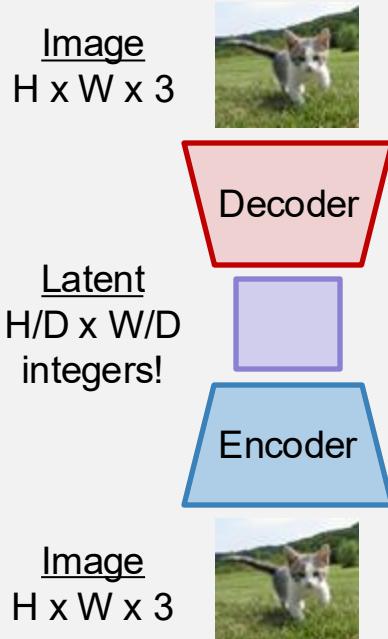
Too slow on raw pixels



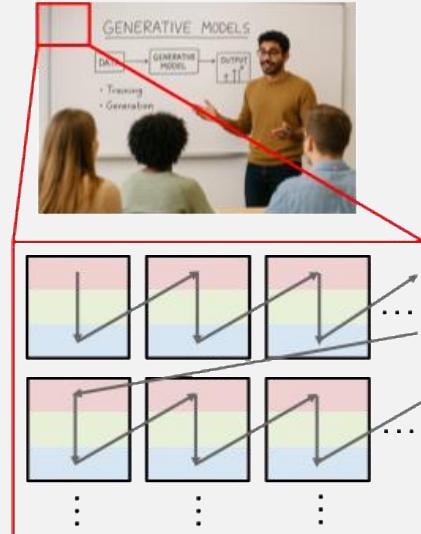
They work great on
(discrete) latents!

Autoregressive Models Strike Back

Train **encoder** + **decoder**
to convert images to
discrete latents



Train **autoregressive model**
to model sequences of
discrete latents

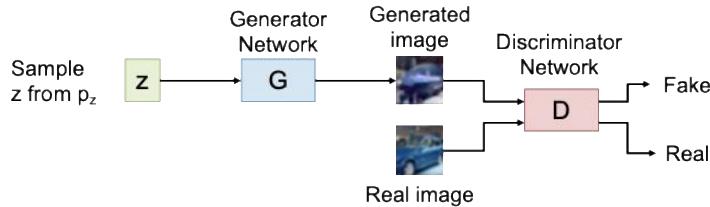


Sample discrete latents from
the **autoregressive model**,
pass to **decoder** to get an
image

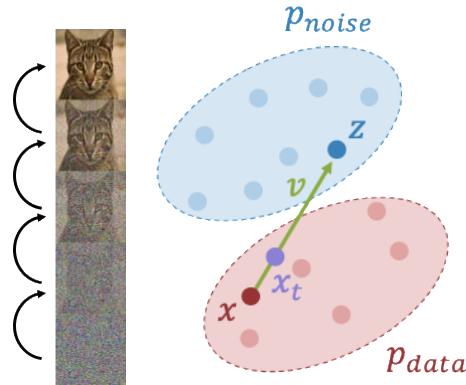
van den Oord et al, "Neural Discrete Representation Learning", NeurIPS 2017
Razavi et al, "Generating Diverse High-Fidelity Images with VQ-VAE-2", NeurIPS 2019
Esser et al, "Taming Transformers for High-Resolution Image Synthesis", CVPR 2021
Yu et al, "Scaling Autoregressive Models for Content-Rich Text-to-Image Generation", arXiv 2022

Summary

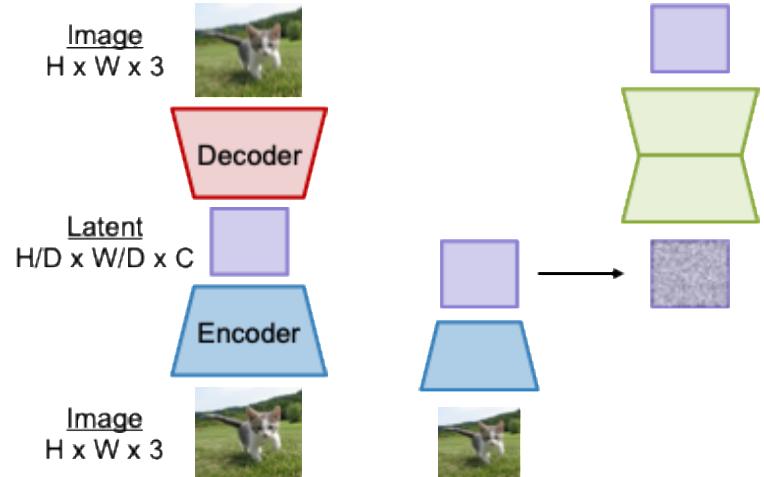
Generative Adversarial Networks



Diffusion Models



Latent Diffusion Models



Next Time: Vision + Language