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Lecture 14:
Generative Models (part 2)
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Administrative

● Assignment 3 due on 5/30
● Project Report due on 6/4

2
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Last Time: Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Data: x

Label: y
Cat

Density Function

p(x) assigns a positive 

number to each possible 

x; higher numbers mean 

x is more likely.

Density functions are 

normalized:

න
𝑋

𝑝 𝑥 𝑑𝑥 = 1

Different values of x 

compete for density 
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Last Time: Generative Models

Generative models

Explicit density Implicit density

Tractable density Approximate density Direct Indirect

Autoregressive
Variational Autoencoder 

(VAE)

Generative Adversarial 

Network (GAN)
Diffusion Models

Model can 

compute P(x)
Cannot compute p(x) but 

can sample from P(x)

Really 

compute 

P(x)

Approximate 

P(x)

Can directly 

sample 

from P(x)

Iterative 

procedure to 

approximate 

samples 

from P(x)

Figure adapted from Ian 

Goodfellow, Tutorial on 

Generative Adversarial 

Networks, 2017
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Last Time: Autoregressive Models

…

…

… … …

Treat data as a sequence

(e.g. image as sequence of pixels)

𝑝 𝑥 = 𝑝 𝑥1, 𝑥2, … , 𝑥𝑁
= 𝑝 𝑥1 𝑝 𝑥2 𝑥1)𝑝 𝑥3 𝑥1, 𝑥2)…
= ς𝑡=1

𝑇 𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1)

Model with an RNN or Transformer
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Last Time: Variational Autoencoders
Jointly train encoder q and decoder p to maximize 

the variational lower bound on the data likelihood

Also called Evidence Lower Bound (ELBo)

log 𝑝𝜃(𝑥) ≥ 𝐸𝑧~𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧

𝜇𝑥|𝑧

𝑧𝑥

𝜇𝑧|𝑥 Σ𝑧|𝑥

𝑝𝜃 𝑥 | 𝑧 = 𝑁(𝜇𝑥|𝑧 , 𝜎
2)𝑞𝜙 𝑧 | 𝑥 = 𝑁(𝜇𝑧|𝑥 , Σ𝑧|𝑥)

Decoder NetworkEncoder Network
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Today: More Generative Models

Generative models

Explicit density Implicit density

Tractable density Approximate density Direct Indirect

Autoregressive
Variational Autoencoder 

(VAE)

Generative Adversarial 

Network (GAN)
Diffusion Models

Model can 

compute P(x)
Cannot compute p(x) but 

can sample from P(x)

Really 

compute 

P(x)

Approximate 

P(x)

Can directly 

sample 

from P(x)

Iterative 

procedure to 

approximate 

samples 

from P(x)

Figure adapted from Ian 

Goodfellow, Tutorial on 

Generative Adversarial 

Networks, 2017

Last Time Today
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Generative Adversarial Networks
(GANs)
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Generative Models So Far

Autoregressive Models directly maximize likelihood of training data:

𝑝𝜃 𝑥 =ෑ

𝑖=1

𝑁

𝑝𝜃(𝑥𝑖|𝑥1, … , 𝑥𝑖−1)

Variational Autoencoders introduce a latent z, and maximize a lower bound:

𝑝𝜃 𝑥 = න
𝑍

𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑑𝑧 ≥ 𝐸𝑧~𝑞𝜙 𝑧 𝑥 [log 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧
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Generative Models So Far

Autoregressive Models directly maximize likelihood of training data:

𝑝𝜃 𝑥 =ෑ

𝑖=1

𝑁

𝑝𝜃(𝑥𝑖|𝑥1, … , 𝑥𝑖−1)

Variational Autoencoders introduce a latent z, and maximize a lower bound:

𝑝𝜃 𝑥 = න
𝑍

𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑑𝑧 ≥ 𝐸𝑧~𝑞𝜙 𝑧 𝑥 [log 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧

Generative Adversarial Networks give up on modeling p(x), but allow us to 
draw samples from p(x)
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Generative Adversarial Networks
Setup: Have data xi drawn from distribution pdata(x). Want to sample from pdata

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014
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Generative Adversarial Networks
Setup: Have data xi drawn from distribution pdata(x). Want to sample from pdata

Idea: Introduce a latent variable z with simple prior p(z) (e.g. unit Gaussian)

Sample 𝑧 ∼ 𝑝(𝑧) and pass to a Generator Network x = G(z)

Then x is a sample from the Generator distribution pG. Want pG = pdata!

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014
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Generative Adversarial Networks
Setup: Have data xi drawn from distribution pdata(x). Want to sample from pdata

Idea: Introduce a latent variable z with simple prior p(z) (e.g. unit Gaussian)

Sample 𝑧 ∼ 𝑝(𝑧) and pass to a Generator Network x = G(z)

Then x is a sample from the Generator distribution pG. Want pG = pdata!

Sample 

z from pz

Generator 

Network

Train Generator Network G to convert 

z into fake data x sampled from pG

Generated 

image

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

Gz
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Generative Adversarial Networks
Setup: Have data xi drawn from distribution pdata(x). Want to sample from pdata

Idea: Introduce a latent variable z with simple prior p(z) (e.g. unit Gaussian)

Sample 𝑧 ∼ 𝑝(𝑧) and pass to a Generator Network x = G(z)

Then x is a sample from the Generator distribution pG. Want pG = pdata!

Sample 

z from pz
Fake

Real 

image

Real

Generator 

Network Discriminator 

Network

Train Generator Network G to convert 

z into fake data x sampled from pG

By fooling the discriminator D
Train Discriminator Network D 

to classify data as real or fake

Generated 

image

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

z G
D
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Generative Adversarial Networks
Setup: Have data xi drawn from distribution pdata(x). Want to sample from pdata

Idea: Introduce a latent variable z with simple prior p(z) (e.g. unit Gaussian)

Sample 𝑧 ∼ 𝑝(𝑧) and pass to a Generator Network x = G(z)

Then x is a sample from the Generator distribution pG. Want pG = pdata!

Sample 

z from pz
z G

D
Fake

Real

Generator 

Network Discriminator 

Network

Train Generator Network G to convert 

z into fake data x sampled from pG

By fooling the discriminator D
Train Discriminator Network D 

to classify data as real or fake

Jointly train G and 

D. Hopefully pG

converges to pdata

Real 

image

Generated 

image

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014
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Generative Adversarial Networks: Training Objective

min
𝐺

max
𝐷

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝐸𝑧~𝑝(𝑧) log 1 − 𝐷 𝐺 𝑧

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

Jointly train generator G and discriminator D with a minimax game
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Generative Adversarial Networks: Training Objective

min
𝑮

max
𝑫

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝐸𝑧~𝑝(𝑧) log 1 − 𝐷 𝐺 𝑧

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

Jointly train generator G and discriminator D with a minimax game

D(x) = P(x is real)

D(x) = 0 => fake

D(x) = 1 => real
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Generative Adversarial Networks: Training Objective

min
𝑮

max
𝑫

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝐸𝑧~𝑝(𝑧) log 1 − 𝐷 𝐺 𝑧

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

D(x) = P(x is real)

D(x) = 0 => fake

D(x) = 1 => real

Imagine 

fixing G

Discriminator wants 

D(x) = 1 for real data

Discriminator wants 

D(x) = 0 for fake data
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Generative Adversarial Networks: Training Objective

min
𝑮

max
𝑫

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝐸𝑧~𝑝(𝑧) log 1 − 𝐷 𝐺 𝑧

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

D(x) = P(x is real)

D(x) = 0 => fake

D(x) = 1 => real

Imagine 

fixing D

This term does not 

depend on G

Generator wants 

D(x) = 1 for fake data
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Generative Adversarial Networks: Training Objective

min
𝑮

max
𝑫

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝐸𝑧~𝑝(𝑧) log 1 − 𝐷 𝐺 𝑧

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

Train G and D using alternating gradient updates

= min
𝑮

max
𝑫

𝑉(𝐺, 𝐷)
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Generative Adversarial Networks: Training Objective

min
𝑮

max
𝑫

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝐸𝑧~𝑝(𝑧) log 1 − 𝐷 𝐺 𝑧

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

Train G and D using alternating gradient updates

= min
𝑮

max
𝑫

𝑉(𝐺, 𝐷) While True:

𝐷 = 𝐷 + 𝛼𝐷
𝑑𝑉

𝑑𝐷

𝐺 = 𝐺 − 𝛼𝐺
𝑑𝑉

𝑑𝐺
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Generative Adversarial Networks: Training Objective

min
𝑮

max
𝑫

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝐸𝑧~𝑝(𝑧) log 1 − 𝐷 𝐺 𝑧

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

Train G and D using alternating gradient updates

= min
𝑮

max
𝑫

𝑉(𝐺, 𝐷) While True:

𝐷 = 𝐷 + 𝛼𝐷
𝑑𝑉

𝑑𝐷

𝐺 = 𝐺 − 𝛼𝐺
𝑑𝑉

𝑑𝐺

We are not minimizing any overall 

loss! No training curves to look at!
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Generative Adversarial Networks: Training Objective

min
𝑮

max
𝑫

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝐸𝑧~𝑝(𝑧) log 1 − 𝐷 𝐺 𝑧

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

At start of training, generator is very

bad and discriminator can easily tell apart 

real/fake, so D(G(z)) close to 0
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Generative Adversarial Networks: Training Objective

min
𝑮

max
𝑫

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝐸𝑧~𝑝(𝑧) log 1 − 𝐷 𝐺 𝑧

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

At start of training, generator is very

bad and discriminator can easily tell apart 

real/fake, so D(G(z)) close to 0

Problem: Gradients for G are close to 0
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Generative Adversarial Networks: Training Objective

min
𝑮

max
𝑫

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝐸𝑧~𝑝(𝑧) log 1 − 𝐷 𝐺 𝑧

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

At start of training, generator is very

bad and discriminator can easily tell apart 

real/fake, so D(G(z)) close to 0

Problem: Gradients for G are close to 0

Solution: Generator wants D(G(z)) = 1.

Train generator to minimize –log(D(G(z)) 

and discriminator to maximize log(1-D(G(z))

so generator gets strong gradients at start
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Generative Adversarial Networks: Training Objective

min
𝑮

max
𝑫

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝐸𝑧~𝑝(𝑧) log 1 − 𝐷 𝐺 𝑧

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

Why is this a good objective?
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Generative Adversarial Networks: Training Objective

min
𝑮

max
𝑫

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝐸𝑧~𝑝(𝑧) log 1 − 𝐷 𝐺 𝑧

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

Why is this a good objective?

Inner objective is maximized by

𝐷𝐺
∗ 𝑥 =

𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝐺(𝑥)
(for any pG)

(Proof omitted)
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Generative Adversarial Networks: Training Objective

min
𝑮

max
𝑫

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝐸𝑧~𝑝(𝑧) log 1 − 𝐷 𝐺 𝑧

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

Why is this a good objective?

Inner objective is maximized by

𝐷𝐺
∗ 𝑥 =

𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝐺(𝑥)
(for any pG)

Outer objective is 

then minimized by

𝑝𝐺 𝑥 = 𝑝𝑑𝑎𝑡𝑎 𝑥

(Proof omitted)
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Generative Adversarial Networks: Training Objective

min
𝑮

max
𝑫

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 + 𝐸𝑧~𝑝(𝑧) log 1 − 𝐷 𝐺 𝑧

Jointly train generator G and discriminator D with a minimax game

Goodfellow et al, “Generative 

Adversarial Nets”, NeurIPS 2014

Why is this a good objective?

Inner objective is maximized by

𝐷𝐺
∗ 𝑥 =

𝑝𝑑𝑎𝑡𝑎 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝐺(𝑥)
(for any pG)

Caveats: 

1. Neural nets with fixed capacity may not 

be able to represent optimal D and G

2. This tells us nothing about convergence

to the solution with finite data

(Proof omitted)

Outer objective is 

then minimized by

𝑝𝐺 𝑥 = 𝑝𝑑𝑎𝑡𝑎 𝑥
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GAN Architectures: DC-GAN

Generator G and discriminator D 

are both neural networks

Usually CNNs … GANs fell out of 

favor before ViT became popular

DC-GAN was the first GAN 

architecture that worked on non-

toy data

Radford et al, ICLR 2016
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GAN Architectures: DC-GAN

Generator G and discriminator D 

are both neural networks

Usually CNNs … GANs fell out of 

favor before ViT became popular

DC-GAN was the first GAN 

architecture that worked on non-

toy data

Radford et al, ICLR 2016

GPT-1 Paper (2018)

GPT-2 Paper (2019)
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GAN Architectures: StyleGAN

Generator G and discriminator D 

are both neural networks

StyleGAN uses a more complex 

architecture that injects noise via 

adaptive normalization.

At each layer predict a scale w 

and shift b the same shape as x:

𝐴𝑑𝑎𝐼𝑁 𝑥, 𝑤, 𝑏 𝑖 = 𝑤𝑖

𝑥𝑖 − 𝜇(𝑥)

𝜎(𝑥)
+ 𝑏𝑖

Karras et al, ”A Stye-Based Generator Architecture 

for Generative Adversarial Networks”, CVPR 2019
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GANs: Latent Space Interpolation

Latent space is smooth.

Given latent vectors z0 and z1, we 

can interpolate between them:

𝑧𝑡 = 𝑡𝑧𝑜 + 1 − 𝑡 𝑧1
𝑥𝑡 = 𝐺 𝑧𝑡

The resulting image xt smoothly 

interpolate between samples!
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GANs: Latent Space Interpolation

Latent space is smooth.

Given latent vectors z0 and z1, we 

can interpolate between them:

𝑧𝑡 = 𝑡𝑧𝑜 + 1 − 𝑡 𝑧1
𝑥𝑡 = 𝐺 𝑧𝑡

The resulting image xt smoothly 

interpolate between samples!

Karras et al, ”Alias-Free Generative Adversarial Networks”, NeurIPS 2021
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Generative Adversarial Networks: Summary

Jointly train Generator and 

Discriminator with a minimax game 

Pros:

- Simple formulation

- Very good image quality

Cons:

- No loss curve to look at

- Unstable training

- Hard to scale to big models + data

These were the go-to generative 

models from ~2016 – 2021 
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Diffusion Models

Sohl-Dickstein et al, “Deep Unsupervised Learning using noneuilibrium thermodynamics”, ICML 2015

Song and Ermon, “Generative modeling by estimnating gradients of the data distribution”, NaurIPS 2019

Ho et al, “Denoising Diffusion Probabalistic Models”, NeurIPS 2020

Song et al, “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR 2021

Song et al, “Denoising Diffusion Implicit Models”, ICLR 2021
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Diffusion Models

Warning: Terminology and 

notation in this area is a mess!

There are many different 

mathematical formalisms; tons 

of variance in terminology and 

notation between papers.

We’ll just cover the basics of a 

modern “clean” implementation 

(Rectified Flow)
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Diffusion Models: Intuition

Pick a noise distribution 𝑧 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
(Usually unit Gaussian)
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Diffusion Models: Intuition

Pick a noise distribution 𝑧 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
(Usually unit Gaussian)

Consider data x corrupted under varying 

noise levels t to give noisy data xt

t = 0

No noise

t = 1

Full noise



Stanford CS231n 10th Anniversary May 20, 2025Lecture 14 - 40

Diffusion Models: Intuition

Pick a noise distribution 𝑧 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
(Usually unit Gaussian)

Consider data x corrupted under varying 

noise levels t to give noisy data xt

Train a neural network to remove a little 

bit of noise: 𝑓𝜃(𝑥𝑡 , 𝑡)

t = 0

No noise

t = 1

Full noise
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Diffusion Models: Intuition

Pick a noise distribution 𝑧 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
(Usually unit Gaussian)

Consider data x corrupted under varying 

noise levels t to give noisy data xt

Train a neural network to remove a little 

bit of noise: 𝑓𝜃(𝑥𝑡 , 𝑡)

At inference time, sample 𝑥1 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒 and 

apply 𝑓𝜃 many times in sequence to 

generate a noiseless sample x0

t = 0

No noise

t = 1

Full noise
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Diffusion Models: Rectified Flow

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Suppose we have a simple pnoise

(e.g. Gaussian) and samples from pdata

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Diffusion Models: Rectified Flow

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Suppose we have a simple pnoise

(e.g. Gaussian) and samples from pdata

On each training iteration, sample:

𝑧 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎 𝑡 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0, 1

𝑧

𝑥

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Diffusion Models: Rectified Flow

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Suppose we have a simple pnoise

(e.g. Gaussian) and samples from pdata

On each training iteration, sample:

𝑧 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎 𝑡 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0, 1

Set 𝑥𝑡 = 1 − 𝑡 𝑥 + 𝑡𝑧, 𝑣 = 𝑧 − 𝑥

𝑧

𝑥
𝑥𝑡

𝑣

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Diffusion Models: Rectified Flow

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Suppose we have a simple pnoise

(e.g. Gaussian) and samples from pdata

On each training iteration, sample:

𝑧 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎 𝑡 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0, 1

Set 𝑥𝑡 = 1 − 𝑡 𝑥 + 𝑡𝑧, 𝑣 = 𝑧 − 𝑥

Train a neural network to predict v:

𝐿 = 𝑓𝜃 𝑥𝑡 , 𝑡 − 𝑣 2
2

𝑧

𝑥

𝑣

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑥𝑡
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Diffusion Models: Rectified Flow

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑧

𝑥

𝑣

Core training loop is just 

a few lines of code!

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑥𝑡
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Rectified Flow: Sampling

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Choose number of steps T (often T=50)
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Rectified Flow: Sampling

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Choose number of steps T (often T=50)

Sample 𝑥 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
𝑥1
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Rectified Flow: Sampling

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Choose number of steps T (often T=50)

Sample 𝑥 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
For t in [1, 1 −

1

𝑇
, 1 −

2

𝑇
, … , 0]:

Evaluate 𝑣𝑡 = 𝑓𝜃(𝑥𝑡 , 𝑡)
𝑣1

𝑥1
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Rectified Flow: Sampling

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Choose number of steps T (often T=50)

Sample 𝑥 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
For t in [1, 1 −

1

𝑇
, 1 −

2

𝑇
, … , 0]:

Evaluate 𝑣𝑡 = 𝑓𝜃(𝑥𝑡 , 𝑡)
Step 𝑥 = 𝑥 − 𝑣𝑡/𝑇

𝑣1

𝑥1
𝑥2/3
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Rectified Flow: Sampling

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Choose number of steps T (often T=50)

Sample 𝑥 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
For t in [1, 1 −

1

𝑇
, 1 −

2

𝑇
, … , 0]:

Evaluate 𝑣𝑡 = 𝑓𝜃(𝑥𝑡 , 𝑡)
Step 𝑥 = 𝑥 − 𝑣𝑡/𝑇 𝑣2/3

𝑥1
𝑥2/3
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Rectified Flow: Sampling

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Choose number of steps T (often T=50)

Sample 𝑥 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
For t in [1, 1 −

1

𝑇
, 1 −

2

𝑇
, … , 0]:

Evaluate 𝑣𝑡 = 𝑓𝜃(𝑥𝑡 , 𝑡)
Step 𝑥 = 𝑥 − 𝑣𝑡/𝑇 𝑣2/3

𝑥1
𝑥2/3

𝑥1/3
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Rectified Flow: Sampling

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Choose number of steps T (often T=50)

Sample 𝑥 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
For t in [1, 1 −

1

𝑇
, 1 −

2

𝑇
, … , 0]:

Evaluate 𝑣𝑡 = 𝑓𝜃(𝑥𝑡 , 𝑡)
Step 𝑥 = 𝑥 − 𝑣𝑡/𝑇 𝑣1/3

𝑥1
𝑥2/3

𝑥0

𝑥1/3
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Rectified Flow: Sampling

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Choose number of steps T (often T=50)

Sample 𝑥 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
For t in [1, 1 −

1

𝑇
, 1 −

2

𝑇
, … , 0]:

Evaluate 𝑣𝑡 = 𝑓𝜃(𝑥𝑡 , 𝑡)
Step 𝑥 = 𝑥 − 𝑣𝑡/𝑇 𝑣1/3

𝑥1
𝑥2/3

𝑥0

𝑥1/3
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Rectified Flow: Sampling

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Choose number of steps T (often T=50)

Sample 𝑥 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
For t in [1, 1 −

1

𝑇
, 1 −

2

𝑇
, … , 0]:

Evaluate 𝑣𝑡 = 𝑓𝜃(𝑥𝑡 , 𝑡)
Step 𝑥 = 𝑥 − 𝑣𝑡/𝑇

Return x

𝑥1
𝑥2/3

𝑥0

𝑥1/3
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Rectified Flow: Sampling

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Choose number of steps T (often T=50)

Sample 𝑥 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
For t in [1, 1 −

1

𝑇
, 1 −

2

𝑇
, … , 0]:

Evaluate 𝑣𝑡 = 𝑓𝜃(𝑥𝑡 , 𝑡)
Step 𝑥 = 𝑥 − 𝑣𝑡/𝑇

Return x

𝑥1
𝑥2/3

𝑥0

𝑥1/3
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Rectified Flow: Summary

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑧

𝑥

𝑣

𝑥𝑡

Training

Sampling
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𝑥𝑡

58

Conditional Rectified Flow

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑧

𝑥

𝑣

Training

Sampling

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎
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𝑥𝑡
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Conditional Rectified Flow

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑧

𝑥

𝑣

Training

Sampling

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎
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Conditional Rectified Flow

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑧

𝑥

𝑣

Training

Sampling

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎
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𝑥𝑡

61

Conditional Rectified Flow

Liu et al, “Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow”, 2022

Lipman et al, “Flow Matching for Generative Modeling”, 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑧

𝑥

𝑣

Training

Sampling

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

Can we control how 

much we “emphasize” 

the conditioning y?
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Classifier-Free Guidance (CFG)

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Training

Randomly drop y during training.

Now the same model is conditional and unconditional!

Can we control how 

much we “emphasize” 

the conditioning y?

𝑥𝑡

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑧

𝑥

𝑣 𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎
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Classifier-Free Guidance (CFG)

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Training

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡

Randomly drop y during training.

Now the same model is conditional and unconditional! 

Consider a noisy 𝑥𝑡:

Can we control how 

much we “emphasize” 

the conditioning y?
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Classifier-Free Guidance (CFG)

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒
Training

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡
𝑣∅

Randomly drop y during training.

Now the same model is conditional and unconditional! 

Consider a noisy 𝑥𝑡:
𝑣∅ = 𝑓𝜃(𝑥𝑡, 𝑦∅, 𝑡) points toward 𝑝(𝑥)

Can we control how 

much we “emphasize” 

the conditioning y?
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Classifier-Free Guidance (CFG)

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑣𝑦Training

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡
𝑣∅

Randomly drop y during training.

Now the same model is conditional and unconditional! 

Consider a noisy 𝑥𝑡:
𝑣∅ = 𝑓𝜃(𝑥𝑡, 𝑦∅, 𝑡) points toward 𝑝(𝑥)

𝑣𝑦 = 𝑓𝜃(𝑥𝑡, 𝑦, 𝑡) points toward 𝑝 𝑥 𝑦

Can we control how 

much we “emphasize” 

the conditioning y?
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Classifier-Free Guidance (CFG)

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑣𝑦Training

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡
𝑣∅

𝑣𝑐𝑓𝑔

Randomly drop y during training.

Now the same model is conditional and unconditional! 

Consider a noisy 𝑥𝑡:
𝑣∅ = 𝑓𝜃(𝑥𝑡, 𝑦∅, 𝑡) points toward 𝑝(𝑥)

𝑣𝑦 = 𝑓𝜃(𝑥𝑡, 𝑦, 𝑡) points toward 𝑝 𝑥 𝑦

𝑣𝑐𝑓𝑔 = 1 + 𝑤 𝑣𝑦 − 𝑤𝑣∅ points more toward 𝑝 𝑥 𝑦

Can we control how 

much we “emphasize” 

the conditioning y?
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Classifier-Free Guidance (CFG)

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑣𝑦Training

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡
𝑣∅

𝑣𝑐𝑓𝑔

Randomly drop y during training.

Now the same model is conditional and unconditional! 

Consider a noisy 𝑥𝑡:
𝑣∅ = 𝑓𝜃(𝑥𝑡, 𝑦∅, 𝑡) points toward 𝑝(𝑥)

𝑣𝑦 = 𝑓𝜃(𝑥𝑡, 𝑦, 𝑡) points toward 𝑝 𝑥 𝑦

𝑣𝑐𝑓𝑔 = 1 + 𝑤 𝑣𝑦 − 𝑤𝑣∅ points more toward 𝑝 𝑥 𝑦
During sampling, step according to 𝑣𝑐𝑓𝑔

Can we control how 

much we “emphasize” 

the conditioning y?
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Classifier-Free Guidance (CFG)

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑣𝑦Training

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡
𝑣∅

𝑣𝑐𝑓𝑔

Can we control how 

much we “emphasize” 

the conditioning y?

Sampling
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Classifier-Free Guidance (CFG)

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑣𝑦Training

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡
𝑣∅

𝑣𝑐𝑓𝑔

Can we control how 

much we “emphasize” 

the conditioning y?

Sampling
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Classifier-Free Guidance (CFG)

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑣𝑦Training

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡
𝑣∅

𝑣𝑐𝑓𝑔

Can we control how 

much we “emphasize” 

the conditioning y?

Sampling

”Classifier-Free” because 

earlier methods used a 

separate discriminative 

model 𝑝(𝑦 ∣ 𝑥) to compute 

step direction 
𝜕

𝜕𝑥
log 𝑝(𝑦 ∣ 𝑥)
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Classifier-Free Guidance (CFG)

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑣𝑦Training

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡
𝑣∅

𝑣𝑐𝑓𝑔

Can we control how 

much we “emphasize” 

the conditioning y?

Sampling
Used everywhere in 

practice! Very important 

for high-quality outputs
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Classifier-Free Guidance (CFG)

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑣𝑦Training

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡
𝑣∅

𝑣𝑐𝑓𝑔

Can we control how 

much we “emphasize” 

the conditioning y?

Sampling
Used everywhere in 

practice! Very important 

for high-quality outputs

Doubles the cost 

of sampling…
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Optimal Prediction

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Training Q: What is the 

optimal prediction 

for the network?

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑣𝑦

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡
𝑣∅

𝑣𝑐𝑓𝑔
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Optimal Prediction

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Training

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡

Q: What is the 

optimal prediction 

for the network?

There may be many pairs (x, z) that give the 

same xt; network must average over them 
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Optimal Prediction

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Training

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡

Q: What is the 

optimal prediction 

for the network?

There may be many pairs (x, z) that give the 

same xt; network must average over them 

Full noise (t=1) is easy: optimal v is mean of pdata 𝑣𝑜𝑝𝑡
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Optimal Prediction

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Training

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡

Q: What is the 

optimal prediction 

for the network?

There may be many pairs (x, z) that give the 

same xt; network must average over them 

Full noise (t=1) is easy: optimal v is mean of pdata

No noise (t=0) is easy: optimal v is mean of pnoise

𝑣𝑜𝑝𝑡
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Optimal Prediction

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Training

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡

Q: What is the 

optimal prediction 

for the network?

There may be many pairs (x, z) that give the 

same xt; network must average over them 

Full noise (t=1) is easy: optimal v is mean of pdata

No noise (t=0) is easy: optimal v is mean of pnoise

Middle noise is hardest, most ambiguous
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Optimal Prediction

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Training

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡

Q: What is the 

optimal prediction 

for the network?

There may be many pairs (x, z) that give the 

same xt; network must average over them 

Full noise (t=1) is easy: optimal v is mean of pdata

No noise (t=0) is easy: optimal v is mean of pnoise

Middle noise is hardest, most ambiguous

But we give equal weight to all noise levels!
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Optimal Prediction

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Training

𝑝𝑑𝑎𝑡𝑎

𝑝𝑛𝑜𝑖𝑠𝑒

𝑝𝑑𝑎𝑡𝑎 𝑥 ∣ 𝑦 = ∎

𝑥𝑡

Q: What is the 

optimal prediction 

for the network?

There may be many pairs (x, z) that give the 

same xt; network must average over them 

Full noise (t=1) is easy: optimal v is mean of pdata

No noise (t=0) is easy: optimal v is mean of pnoise

Middle noise is hardest, most ambiguous

But we give equal weight to all noise levels!

Solution: Use a non-uniform noise schedule
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Noise Schedules

Esser et al, “Scaling Rectified Flow Transformers for  High-Resolution Image Synthesis”, arXiv 2024

There may be many pairs (x, z) that give the 

same xt; network must average over them 

Full noise (t=1) is easy: optimal v is mean of pdata

No noise (t=0) is easy: optimal v is mean of pnoise

Middle noise is hardest, most ambiguous

But we give equal weight to all noise levels!

Solution: Use a non-uniform noise schedule

Training

t

p(t)

Put more emphasis on middle noise
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Noise Schedules

Esser et al, “Scaling Rectified Flow Transformers for  High-Resolution Image Synthesis”, arXiv 2024

There may be many pairs (x, z) that give the 

same xt; network must average over them 

Full noise (t=1) is easy: optimal v is mean of pdata

No noise (t=0) is easy: optimal v is mean of pnoise

Middle noise is hardest, most ambiguous

But we give equal weight to all noise levels!

Solution: Use a non-uniform noise schedule

Training

t

p(t)

Put more emphasis on middle noise

Common choice: logit-normal sampling
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Noise Schedules

Esser et al, “Scaling Rectified Flow Transformers for  High-Resolution Image Synthesis”, arXiv 2024

There may be many pairs (x, z) that give the 

same xt; network must average over them 

Full noise (t=1) is easy: optimal v is mean of pdata

No noise (t=0) is easy: optimal v is mean of pnoise

Middle noise is hardest, most ambiguous

But we give equal weight to all noise levels!

Solution: Use a non-uniform noise schedule

Training

t

p(t)

Put more emphasis on middle noise

Common choice: logit-normal sampling

For high-res data, often shift to higher 

noise to account for pixel correlations
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Diffusion: Rectified Flow

Esser et al, “Scaling Rectified Flow Transformers for  High-Resolution Image Synthesis”, arXiv 2024

Training

t

p(t)

Put more emphasis on middle noise

Common choice: logit-normal sampling

For high-res data, often shift to higher 

noise to account for pixel correlations

Sampling

Simple and scalable setup 

for many generative 

modeling problems!
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Diffusion: Rectified Flow

Esser et al, “Scaling Rectified Flow Transformers for  High-Resolution Image Synthesis”, arXiv 2024

Training

t

p(t)

Put more emphasis on middle noise

Common choice: logit-normal sampling

For high-res data, often shift to higher 

noise to account for pixel correlations

Sampling

Simple and scalable setup 

for many generative 

modeling problems!

Problem: Does not 

work naively on high-

resolution data
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Latent Diffusion Models (LDMs)

Image

H x W x 3

Encoder

Decoder

Image

H x W x 3

Latent

H/D x W/D x C

Train encoder + decoder to 

convert images to latents

Rombach et al, “High-Resolution Image Synthesis 

with Latent Diffusion Models”, CVPR 2022
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Latent Diffusion Models (LDMs)

Image

H x W x 3

Encoder

Decoder

Image

H x W x 3

Latent

H/D x W/D x C

Train encoder + decoder to 

convert images to latents

Rombach et al, “High-Resolution Image Synthesis 

with Latent Diffusion Models”, CVPR 2022

Common setting: D=8, C=16

Image: 256 x 256 x 3 
=> Latent: 32 x 32 x 16

Encoder / Decoder are CNNs with attention
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Latent Diffusion Models (LDMs)

Image

H x W x 3

Encoder

Decoder

Image

H x W x 3

Latent

H/D x W/D x C

Train encoder + decoder to 

convert images to latents

Train diffusion model to 

remove noise from latents

(Encoder is frozen)

Rombach et al, “High-Resolution Image Synthesis 

with Latent Diffusion Models”, CVPR 2022

Noisy Latent

H/D x W/D x C

Denoised Latent

H/D x W/D x C
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Latent Diffusion Models (LDMs)

Image

H x W x 3

Encoder

Decoder

Image

H x W x 3

Latent

H/D x W/D x C

Train encoder + decoder to 

convert images to latents

Train diffusion model to 

remove noise from latents

(Encoder is frozen)

After training:

Rombach et al, “High-Resolution Image Synthesis 

with Latent Diffusion Models”, CVPR 2022

Noisy Latent

H/D x W/D x C

Denoised Latent

H/D x W/D x C
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Latent Diffusion Models (LDMs)

Image

H x W x 3

Encoder

Decoder

Image

H x W x 3

Latent

H/D x W/D x C

Train encoder + decoder to 

convert images to latents

Train diffusion model to 

remove noise from latents

(Encoder is frozen)

After training:

Sample random 

latent

Rombach et al, “High-Resolution Image Synthesis 

with Latent Diffusion Models”, CVPR 2022

Noisy Latent

H/D x W/D x C

Denoised Latent

H/D x W/D x C
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Latent Diffusion Models (LDMs)

Image

H x W x 3

Encoder

Decoder

Image

H x W x 3

Latent

H/D x W/D x C

Train encoder + decoder to 

convert images to latents

Train diffusion model to 

remove noise from latents

(Encoder is frozen)

…

After training:

Sample random 

latent

Iteratively apply 

diffusion model

to remove noise

Rombach et al, “High-Resolution Image Synthesis 

with Latent Diffusion Models”, CVPR 2022

Noisy Latent

H/D x W/D x C

Denoised Latent

H/D x W/D x C
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Latent Diffusion Models (LDMs)

Image

H x W x 3

Encoder

Decoder

Image

H x W x 3

Latent

H/D x W/D x C

Train encoder + decoder to 

convert images to latents

Train diffusion model to 

remove noise from latents

(Encoder is frozen)

…

After training:

Sample random 

latent

Iteratively apply 

diffusion model

to remove noise

run decoder to 

get image

Rombach et al, “High-Resolution Image Synthesis 

with Latent Diffusion Models”, CVPR 2022

Noisy Latent

H/D x W/D x C

Denoised Latent

H/D x W/D x C
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Latent Diffusion Models (LDMs)

Image

H x W x 3

Encoder

Decoder

Image

H x W x 3

Latent

H/D x W/D x C

Train encoder + decoder to 

convert images to latents

Train diffusion model to 

remove noise from latents

(Encoder is frozen)

…

After training:

Sample random 

latent

Iteratively apply 

diffusion model

to remove noise

run decoder to 

get image

Rombach et al, “High-Resolution Image Synthesis 

with Latent Diffusion Models”, CVPR 2022

Latent diffusion is the most 

common form today

Noisy Latent

H/D x W/D x C

Denoised Latent

H/D x W/D x C
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Latent Diffusion Models (LDMs)

Image

H x W x 3

Encoder

Decoder

Image

H x W x 3

Latent

H/D x W/D x C

Train encoder + decoder to 

convert images to latents

Rombach et al, “High-Resolution Image Synthesis 

with Latent Diffusion Models”, CVPR 2022

How do we train the 

encoder+decoder?
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Latent Diffusion Models (LDMs)

Image

H x W x 3

Encoder

Decoder

Image

H x W x 3

Latent

H/D x W/D x C

Train encoder + decoder to 

convert images to latents

Rombach et al, “High-Resolution Image Synthesis 

with Latent Diffusion Models”, CVPR 2022

How do we train the 

encoder+decoder?

Solution: It’s a VAE!

Typically with very 

small KL prior weight

Recall: VAE
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Latent Diffusion Models (LDMs)

Image

H x W x 3

Encoder

Decoder

Image

H x W x 3

Latent

H/D x W/D x C

Train encoder + decoder to 

convert images to latents

Rombach et al, “High-Resolution Image Synthesis 

with Latent Diffusion Models”, CVPR 2022

How do we train the 

encoder+decoder?

Solution: It’s a VAE!

Typically with very 

small KL prior weight

Problem: Decoder 

outputs often blurry

Recall: VAE
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Latent Diffusion Models (LDMs)

Image

H x W x 3

Encoder

Decoder

Fake 

image

Latent

H/D x W/D x C

Rombach et al, “High-Resolution Image Synthesis 

with Latent Diffusion Models”, CVPR 2022

How do we train the 

encoder+decoder?

Solution: It’s a VAE!

Typically with very 

small KL prior weight

Problem: Decoder 

outputs often blurry

Solution: Add a 

discriminator!

Discriminator

Real 

image

Recall: VAE

Recall: GAN
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Latent Diffusion Models (LDMs)

Image

H x W x 3

Encoder

Decoder

Fake 

image

Latent

H/D x W/D x C

Rombach et al, “High-Resolution Image Synthesis 

with Latent Diffusion Models”, CVPR 2022

Discriminator

Real 

image

Train diffusion model to 

remove noise from latents

(Encoder is frozen)

…

After training:

Sample random 

latent

Iteratively apply 

diffusion model

to remove noise

run decoder to 

get image

Modern LDM pipelines use 

VAE + GAN + diffusion! 
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Diffusion Transformer (DiT)
Peebles and Xie, ”Scalable Diffusion 

Models with Transformer”, ICCV 2023

Diffusion uses standard Transformer blocks!

Main question: How to inject conditioning (timestep t, text, …)
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Diffusion Transformer (DiT)
Peebles and Xie, ”Scalable Diffusion 

Models with Transformer”, ICCV 2023

Diffusion uses standard Transformer blocks!

Main question: How to inject conditioning (timestep t, text, …)

Predict scale/shift:

Most common for 

diffusion timestep t
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Diffusion Transformer (DiT)
Peebles and Xie, ”Scalable Diffusion 

Models with Transformer”, ICCV 2023

Diffusion uses standard Transformer blocks!

Main question: How to inject conditioning (timestep t, text, …)

Predict scale/shift:

Most common for 

diffusion timestep t

Cross-Attention / Joint Attention:

Common for text, image, etc conditioning
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Text-to-Image

A professional documentary photograph of a 
monkey shaking hands with a tiger in front of 
the Eiffel tower. The monkey is wearing a hat 
made out of bananas, and the tiger is 
standing on two legs and wearing a suit.

Text Prompt

Pretrained 
text encoder 
(e.g. T5, CLIP)

Text embeddings
D x L 

Diffusion 
Transformer

Noisy latents
h x w x c

Diffusion 
timestep

(scalar)

Clean latents
h x w x c

Decoder
Output image

H x W x 3
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Text-to-Image

A professional documentary photograph of a 
monkey shaking hands with a tiger in front of 
the Eiffel tower. The monkey is wearing a hat 
made out of bananas, and the tiger is 
standing on two legs and wearing a suit.

Text Prompt

Pretrained 
text encoder 
(e.g. T5, CLIP)

Text embeddings
D x L 

Diffusion 
Transformer

Noisy latents
128 x 128 x 16

Diffusion 
timestep

(scalar)

Clean latents
128 x 128 x 16

Decoder
Output image
1024 x 1024 x 3

Example: FLUX.1 [dev]

Text Encoder: T5 + CLIP
Encoder/Decoder: 8x8 downsampling
Diffusion model: 12B parameter model
2x2 patchify => 64x64 = 1024 image tokens

https://github.com/black-forest-labs/flux

https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux
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Text-to-Video

A red-faced monkey with white fur is bathing in a 
natural hot spring. The monkey is playing in the water 
with a miniature sail ship in front of it, made of wood 
with a white sail and a small rudder. The hot spring is 
surrounded by lush greenery, with rocks and trees.

Text Prompt

Pretrained 
text encoder 
(e.g. T5, CLIP)

Text embeddings
D x L 

Diffusion 
Transformer

Diffusion 
timestep

(scalar)

Clean latents
t x h x w x c

Decoder
Output video

T x H x W x 3

Gupta et al, “Photorealistic Video Generat ion with Diffusion Models”, arXiv 2023 (Dec)
OpenAI, “Sora: Creating Video from Text”, 2024 (Feb)

Polyak et al, “Movie Gen: A Cast of Media Foundation Models”, arXiv 2024 (Oct)

Kong et al, “HunyuanVideo: A Systematic Framework for Large Video Generative Models”, arXiv 2024 (Dec)
NVIDIA, “Cosmos World Foundation Model Platform for Physical AI”, arXiv 2025 (Jan)

Team Wan, “Wan: Open and Advanced Large-Scale Video Generative Models”,  arXiv 2025 (March)

Noisy latents
t x h x w x c
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Text-to-Video

A red-faced monkey with white fur is bathing in a 
natural hot spring. The monkey is playing in the water 
with a miniature sail ship in front of it, made of wood 
with a white sail and a small rudder. The hot spring is 
surrounded by lush greenery, with rocks and trees.

Text Prompt

Pretrained 
text encoder 
(e.g. T5, CLIP)

Text embeddings
D x L 

Diffusion 
Transformer

Diffusion 
timestep

(scalar)

Clean latents
t x h x w x c

Decoder
Output video

T x H x W x 3

Gupta et al, “Photorealistic Video Generat ion with Diffusion Models”, arXiv 2023 (Dec)
OpenAI, “Sora: Creating Video from Text”, 2024 (Feb)

Polyak et al, “Movie Gen: A Cast of Media Foundation Models”, arXiv 2024 (Oct)

Kong et al, “HunyuanVideo: A Systematic Framework for Large Video Generative Models”, arXiv 2024 (Dec)
NVIDIA, “Cosmos World Foundation Model Platform for Physical AI”, arXiv 2025 (Jan)

Team Wan, “Wan: Open and Advanced Large-Scale Video Generative Models”,  arXiv 2025 (March)

Video from Meta Movie Gen

(https://ai.meta.com/research/movie-gen/) 

Noisy latents
t x h x w x c

https://ai.meta.com/research/movie-gen/
https://ai.meta.com/research/movie-gen/
https://ai.meta.com/research/movie-gen/
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Noisy latents
32 x 128 x 72 x 16
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Text-to-Video

A red-faced monkey with white fur is bathing in a 
natural hot spring. The monkey is playing in the water 
with a miniature sail ship in front of it, made of wood 
with a white sail and a small rudder. The hot spring is 
surrounded by lush greenery, with rocks and trees.

Text Prompt

Pretrained 
text encoder 
(e.g. T5, CLIP)

Text embeddings
D x L 

Diffusion 
Transformer

Diffusion 
timestep

(scalar)

Clean latents
33 x 128 x 72 x 16

Decoder
Output video

257 x 1024 x 576 x 3

Example: Meta MovieGen

Text Encoder: UL2, ByT5, MetaCLIP
Encoder/Decoder: 8x8x8 downsample
Diffusion model: 30B param DiT
1x2x2 patchify => 76K tokens

Gupta et al, “Photorealistic Video Generat ion with Diffusion Models”, arXiv 2023 (Dec)
OpenAI, “Sora: Creating Video from Text”, 2024 (Feb)

Polyak et al, “Movie Gen: A Cast of Media Foundation Models”, arXiv 2024 (Oct)

Kong et al, “HunyuanVideo: A Systematic Framework for Large Video Generative Models”, arXiv 2024 (Dec)
NVIDIA, “Cosmos World Foundation Model Platform for Physical AI”, arXiv 2025 (Jan)

Team Wan, “Wan: Open and Advanced Large-Scale Video Generative Models”,  arXiv 2025 (March)
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Cosmos
(NVIDIA)

14B params

Ray 2 (Luma)

106

The Era of Video Diffusion Models

Gup ta et al, “Photo realistic Video Ge nerat io n with Diffusion Models” , ar Xiv 202 3 (Dec)

Ope nAI , “ So ra: Cr eating Video from  Text ”, 20 24 (Feb)
Polyak et al, “M ovie Gen:  A Ca st of M edia Founda tion Mo dels”, ar Xiv 202 4 (Oct )

Kong e t al, “Hunyua nVide o: A System atic Fr amewor k for  Larg e Vid eo Gen erative Models” , ar Xiv 202 4 (Dec)

NVIDIA,  “Cosmo s World Founda tion Mo del Pla tform  for  Ph ysica l AI” , ar Xiv 202 5 (Jan )

Team Wan , “Wan:  Open and Advance d Lar ge-Scale Video Ge nerat ive  Mode ls” , ar Xiv 202 5 (M arch)

WALT (Google)
460M params

January
2024

January
2025

Sora (OpenAI)

Mochi
(Genmo)

10B params

MovieGen

(Meta)
30B params

March
2024

May
2024

July
2024

Sept
2024

Nov
2024

March
2024

May
2024

Wan 
(Alibaba)

14B params

Veo 2
(Google)

LTX-Video

(Lightricks)

2B params

Hunyuan

(Tencent)

13B params

Step-Video
(StepFun)

30B params

CogVideoX
(Zhipu)

5B params

Kling 2.0 
(Kuaishou)

Gen3 (Runway)

Dream Machine

(Luma)

Open-Source Model

Technical Report
No technical info
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Diffusion Distillation

…

After training:

Sample random 

latent

Iteratively apply 

diffusion model

to remove noise

run decoder to 

get image

During sampling we need to run the diffusion model 

many times (~30 – 50 for rectified flow)

This is really slow!
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Diffusion Distillation

…

After training:

Sample random 

latent

Iteratively apply 

diffusion model

to remove noise

run decoder to 

get image

During sampling we need to run the diffusion model 

many times (~30 – 50 for rectified flow)

This is really slow!

Solution: distillation algorithms reduce the number 

of steps (sometimes all the way to 1),

can also bake in CFG

Salimans and Ho, “Progressive Distilla tion for Fast Sampling of Diffusion Models” , ICLR 2022

Song et al, “Consistency Models”, ICML 2023

Sauer et al, “Adversarial Diffusion Distillation”, ECCV 2024

Sauer et al, “Fast High-Resolution Image Synthesis with Latent Adversaria l Diffusion Distillation”, arXiv 2024

Lu and Song, “S implifying, Stabilizing and Scaling Consistency Models”, ICLR 2025

Salimans et al, “Multistep Distillation of Diffusion Models via Moment Match ing”, NeurIPS 2025
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Generalized Diffusion

Rectified Flow

Sample 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎, 𝑧 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
Sample 𝑡 ∼ 𝑝𝑡
Set 𝑥𝑡 = 1 − 𝑡 𝑥 + 𝑡𝑧
Set 𝑣𝑔𝑡 = 𝑧 − 𝑥

Compute 𝑣𝑝𝑟𝑒𝑑 = 𝑓𝜃 𝑥𝑡 , 𝑡

Compute loss 𝑣𝑔𝑡 − 𝑣𝑝𝑟𝑒𝑑 2

2
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2

Generalized Diffusion
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Generalized Diffusion

Rectified Flow
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2

Generalized Diffusion

𝒂 𝒕 = 1 − 𝑡
𝒃(𝒕) = 𝑡
𝒄(𝒕) = −1
𝒅(𝒕) = 1
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Generalized Diffusion

Sample 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎, 𝑧 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
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2

Generalized Diffusion

𝒂 𝒕 = 𝜎 𝑡

𝒃(𝒕) = 1 − 𝜎 𝑡

If x and z are independent and 

variance=1, then xt also has 

variance=1

Variance Preserving (VP)

Song et al, “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR 2021
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Generalized Diffusion
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2

Generalized Diffusion

𝒂 𝒕 = 1
𝒃(𝒕) = 𝜎 𝑡

𝜎 1 Needs to be big enough 

to drown out all signal in x

Variance Exploding (VE)

Song et al, “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR 2021

Karras et al, “Elucidating the Design Space of Diffusion-Based Generative Models” , NeurIPS 2022
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Generalized Diffusion
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2

Generalized Diffusion

𝑦𝑔𝑡 = 𝑥 [𝒄 𝒕 = 1; 𝒅(𝒕) = 0]

x-prediction

Salimans and Ho, “Progressive Distilla tion of Diffusion Models”, ICLR 2022

Ho et al, “Imagen Video: High Definition Video Generation with Diffusion Models”, arXiv 2022

ε-prediction

𝑦𝑔𝑡 = 𝒛 [𝒄 𝒕 = 0; 𝒅(𝒕) = 1]

v-prediction

𝑦𝑔𝑡 = 𝒃 𝒕 𝑧 − 𝒂 𝒕 𝑥 [𝒄 𝒕 = 𝒃 𝒕 ; 𝒅(𝒕) = − 𝒂 𝒕 ]
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Generalized Diffusion

Sample 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎, 𝑧 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒
Sample 𝒕 ∼ 𝑝𝑡
Set 𝑥𝑡 = 𝒂 𝒕 𝑥 + 𝒃(𝒕)𝑧
Set 𝑦𝑔𝑡 = 𝒄(𝒕)𝑥 + 𝒅(𝒕)𝑧

Compute 𝑦𝑝𝑟𝑒𝑑 = 𝑓𝜃 𝑥𝑡 , 𝒕
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2

Generalized Diffusion

Salimans and Ho, “Progressive Distilla tion of Diffusion Models”, ICLR 2022

Ho et al, “Imagen Video: High Definition Video Generation with Diffusion Models”, arXiv 2022

How do we choose these 

functions?

Usually through some 

mathematical formalism
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Diffusion is a Latent Variable Model

Sohl-Dickste in et al, “Deep Unsupervised Learning using Nonequilibrium Thermodynamics”, NeurIPS 2015

Figure from Ho et al, “Denoising Diffusion Probabilistic Models”, NeurIPS 2020

We know the forward process: Add Gaussian noise

Learn a network to approximate the backward process

Optimize variational lower bound (same as VAE)
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Diffusion Learns the Score Function

Song and Ermon, “Generative Modeling by Estimating Gradients of the Data Distribution”, NeurIPS 2019

Ho et al, “Denoising Diffusion Probabilistic Models”, NeurIPS 2020

For any distribution 𝑝 𝑥 over 𝑥 ∈ ℝ𝑁 the score function

𝑠:ℝ𝑁 → ℝ𝑁 𝑠 𝑥 =
𝜕

𝜕𝑥
log 𝑝(𝑥)

Is a vector field pointing toward areas of high probability density

Diffusion learns a neural network to approximate the score 

function of pdata
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Diffusion Solves Stochastic Differential Equations

Song et al, “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR 2021

We can describe a continuous noising process 

as an SDE

𝑑𝒙 = 𝑓 𝒙, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘

Gives a relationship between infinitesimal 

changes in data x, time t, and noise w.

Diffusion learns a neural network to 

approximately solve this SDE
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Perspectives on Diffusion Great blog post by Sander Dieleman:

https://sander.ai/2023/07/20/perspectives.html

(All his blog posts are great)

https://sander.ai/2023/07/20/perspectives.html
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Autoregressive Models Strike Back
Recall autoregressive models

Too slow on raw pixels

They work great on 

(discrete) latents!
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Image

H x W x 3

Encoder

Decoder

Image

H x W x 3

Latent

H/D x W/D
integers!

Train encoder + decoder

to convert images to 

discrete latents

Autoregressive Models Strike Back
Train autoregressive model 

to model sequences of 

discrete latents

Sample discrete latents from 

the autoregressive model, 

pass to decoder to get an 

image

van den Oord et al, “Neural Discrete Representation Learning”, NeurIPS 2017
Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurIPS 2019
Esser et al, “Taming Transformers for High-Resolution Image Synthesis”, CVPR 2021
Yu et al, “Scaling Autoregressive Models for Content-Rich Text-to-Image Generation”, arXiv 2022
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Summary

Generative Adversarial Networks

Diffusion Models

Latent Diffusion Models
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Next Time:
Vision + Language
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