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Administrative

e Assignment 3 due on 5/30
e Project Reportdue on 6/4
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Last Time: Generative vs Discriminative Models

Density Function

p(Xx) assigns a positive
number to each possible
X; higher numbers mean
x is more likely.

Discriminative Model.: Data: x
Learn a probability
distribution p(y|x)

Generative Model: Density functions are

Learn a probability normalized:
distribution p(x)
j p(x)dx =1
X
Conditional Generative Label: y |
Model: Learn p(x|y) Cat Different values of x

compete for density
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Figure adapted from lan
Goodfellow, Tutorial on
Generative Adversarial

Last Time: Generative Models ey

Model can Generative models  Cannot compute p(x) but
compute P(x) ‘ can sample from P(x)
l _ l _ lterative
Explicit density Implicit density procedure to
Really ‘ Approximate Can directly ‘ approximate
compute P(x) sample samples
P(x) l l from P(x) l l from P(x)
Tractable density Approximate density Direct Indirect
Autoregressive Variational Autoencoder Generative Adversarial Diffusion Models

(VAE) Network (GAN)
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Last Time: Autoregressive Models

GENERATIVE MODELS

Treat data as a sequence
(e.g. image as sequence of pixels) a

p(x) — P(xpxz» "'rxN)
= pOe)p(xz | x1)p(x3 |24, x2) ... l///l/// /
— Zzl p(xt | X1 '"rxt—l) ﬁ‘//
——'/-
Model with an RNN or Transformer E//b// A
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Last Time: Variational Autoencoders

Jointly train encoder g and decoder p to maximize
the variational lower bound on the data likelihood
Also called Evidence Lower Bound (ELBOo)

logPe(X) = E;-q,(z1x) [108Po (x12)] = Dy, (45 (z12),0(2) )

Encoder Network Decoder Network
¢ (z | x) = N(.uz|x» z:zlx) Po (x | z) = N(.ux|z: 02)
.uz|x z:z|x .ux|z
X YA
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Figure adapted from lan
Goodfellow, Tutorial on
Generative Adversarial

Today: More Generative Models o

Model can Generative models  Cannot compute p(x) but
compute P(x) ‘ can sample from P(x)
l l Iterative
Explicit density Implicit density procedure to
Really ‘ Approximate Can directly ‘ approximate
compute P(x) sample samples
P(x) l l from P(x) l l from P(x)
Tractable density Approximate density Direct Indirect

Variational Autoencoder

Autoregressive (VAE)

Last Time
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Generative Adversarial Networks
(GANS)
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Generative Models So Far

Autoregressive Models directly maximize likelihood of training data:

N
po() = | [poCailns, o\ 2:-)
i=1

Variational Autoencoders introduce a latent z, and maximize a lower bound:

po(x) = JZ po (K| 2)p(2)dz = E;-qy (21 108 96 (x12)] — D (210, p(2))
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Generative Models So Far

Autoregressive Models directly maximize likelihood of training data:

N
po() = | [poCailns, o\ 2:-)
i=1

Variational Autoencoders introduce a latent z, and maximize a lower bound:

po(x) = JZ Po(x|2)p(2)dz = E;q,(z1x) (108 Pg (x]2)] — Dx1, (q¢(zlx),p(z))

Generative Adversarial Networks give up on modeling p(x), but allow us to
draw samples from p(x)
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Goodfellow et al, “Generative
Adversarial Nets”, NeurlPS 2014

Generative Adversarial Networks

Setup: Have data x; drawn from distribution py.,(X). Want to sample from py,
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Goodfellow et al, “Generative
Adversarial Nets”, NeurlPS 2014

Generative Adversarial Networks

Setup: Have data x; drawn from distribution py.,(X). Want to sample from py,

Idea: Introduce a latent variable z with simple prior p(z) (e.g. unit Gaussian)
Sample z ~ p(z) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution pg. Want pg = pyats!
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Goodfellow et al, “Generative
Adversarial Nets”, NeurlPS 2014

Generative Adversarial Networks

Setup: Have data x; drawn from distribution py.,(X). Want to sample from py,

Idea: Introduce a latent variable z with simple prior p(z) (e.g. unit Gaussian)
Sample z ~ p(z) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution pg. Want pg = pyats!

Generator ~ Generated
Network image

Sample ‘ ‘
z from p, z 1 G =

Train Generator Network G to convert
z into fake data x sampled from pg
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Goodfellow et al, “Generative
Adversarial Nets”, NeurlPS 2014

Generative Adversarial Networks

Setup: Have data x; drawn from distribution py.,(X). Want to sample from py,

Idea: Introduce a latent variable z with simple prior p(z) (e.g. unit Gaussian)
Sample z ~ p(z) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution pg. Want pg = pyats!

Generator ~ Generated

Network image Discriminator
Sample . e ’ Network

z from p, . ~ Fake

" D
Train Generator Network G to convert ' — Real

z into fake data x sampled from pg Train Discriminator Network D
) SR Real _
By fooling the discriminator D image to classify data as real or fake
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Goodfellow et al, “Generative
Adversarial Nets”, NeurlPS 2014

Generative Adversarial Networks

Setup: Have data x; drawn from distribution py.,(X). Want to sample from py,

Idea: Introduce a latent variable z with simple prior p(z) (e.g. unit Gaussian)
Sample z ~ p(z) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution pg. Want pg = pyats!

Generator ~ Generated

Network image Discriminator
Sample . e ’ Network

z from p, . ~ Fake

" D
Train Generator Network G to convert ' — Real

z into fake data x sampled from pg Train Discriminator Network D
) SR Real _
By fooling the discriminator D image to classify data as real or fake
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

min max (Ex~pdam llog D(x)] + E, p) [log (1 — D(G(Z)))D

G D

Goodfellow et al, “Generative
Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

min max (Expaaeallog DT+ E., . [log (1~ D(6(2))))

Generator Generated

Network image  Discriminator
Sample ' Network — i
Samee |2 G 4_\_ ~Fake  D(x) = P(xis real)
’ | | 0 2 D(x) = 0 => fake
for— e D(X)=1=>real
Goodfellow et al, “Generative .
Adversarial Nets”, NeurlPS 2014 Real image
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

Discriminator wants Discriminator wants
_ D(x) = 1 for real data D(x) = O for fake data
Imagine A A
fixing G r A r A
max (Ex~pdata logD(xX)] +E, [log (1 — D(G(z)))])
Generator Generated
Network image Discriminator
Sample | ’ Network D(x) = P(x is real)
z G Fake
Z from p. S {p = D(x) = 0 => fake
'_ — Real D(X) =1=>real
Aehvorsarial Neise, NeunbS 2014 Real image
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

This term does not Generator wants
_ depend on G D(x) = 1 for fake data
Imagine A A
fixingD 7 A r N\
min ( +E, ) [log (1 — D(G(z)))])
Generator Generated
Network image Discriminator
Sample | | = Network D(x) = P(x is real)
z G Fake
zfromp. S 1 D I D(x) = 0 => fake
,_ — Real D(X) =1=>real
Aehvorsarial Neise, NeunbS 2014 Real image
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

min max (Ex~pdata [logD(xX)] + E, -, [108 (1 - D(G(Z)))D

G D
= minmax !/ (G, D)
G D

Goodfellow et al, “Generative
Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

min max (Ey-pyea10g D] + E. .., [log (1 - D(6(2))])

G D
= minmax V (G, D) While True:

G D A%

D=D+a,—

“D D

G=G iad

Goodfellow et al, “Generative - aG d G

Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

min max (Ex~pdata [logD(xX)] + E, -, [108 (1 - D(G(Z)))D

G D
= minmax V (G, D) While True:
G D dl/
D=D4+ap——
We are not minimizing any overall b dD
loss! No training curves to look at! dV/
G=G— ag; E

Goodfellow et al, “Generative
Adversarial Nets”, NeurlPS 2014

May 20, 2025
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

mGin max (Ex"’pdata llogD(x)] + E [log(l — D(G( )))D

At start of training, generator is very

bad and discriminator can easily tell apart o
real/fake, so D(G(z)) close to O 5.
O_
—2 1

—4{ — log(1 = D(G(2))

00 02 04 06 08 10
Goodfellow et al, “Generative D ( G (Z) )

Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

min Max ( Ex-pgy,[10g D] + .., ) [log (1= D(6(2)))

At start of training, generator is very
bad and discriminator can easily tell apart o
real/fake, so D(G(z)) close to O

Problem: Gradients for G are close to 0

_41 = log(1l — D(G(2))
0.0 0.2 0.4 0.6 0.8 10
Goodfellow et al, “Generative D(G(Z))

Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

min max (Ex"’pdata [logD(xX)] +E, [log (1 — D(G(Z)))D

G D

At start of training, generator is very

bad and discriminator can easily tell apart
real/fake, so D(G(z)) close to O

Problem: Gradients for G are close to 0

Solution: Generator wants D(G(z)) = 1.
Train generator to minimize —log(D(G(z))
and discriminator to maximize log(1-D(G(z))
so generator gets strong gradients at start

Goodfellow et al, “Generative
Adversarial Nets”, NeurlPS 2014

Stanford CS231n 10t Anniversary

| = log(1-D(G(2))
—a{ — —log(D(G(2)))

0.0 0.2 0.4 0.6 0.8 1.0
D(G(z))
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

min Max ( Ex-pgy,[10g D] + .., ) [log (1= D(6(2)))

Why is this a good objective?

Goodfellow et al, “Generative
Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

tPaaca 108 D]+ E, ) [log(1 - D(6())|)

min max (E
G D

Why is this a good objective?

Inner objective is maximized by
Pdata(X)

pdata(x) + pe(x)
(for any pg)

Di(x) =

(Proof omitted)

Goodfellow et al, “Generative
Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

tPaaca 108 D]+ E, ) [log(1 - D(6())|)

min max (E
G D

Why is this a good objective?

Inner objective is maximized by Outer objective is
D% (x) = Pdata(x) then minimized by
¢ Paata(X) + pe(x) Pc(x) = Paata(x)

(for any pg)

(Proof omitted)

Goodfellow et al, “Generative
Adversarial Nets”, NeurlPS 2014
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Generative Adversarial Networks: Training Objective

Jointly train generator G and discriminator D with a minimax game

mGin max (Ex"’pdata llogD(x)] + E [log(l — D(G( )))D

Why is this a good objective?

Inner objective is maximized by Outer objective is
) Pdata(x) then minimized by
Da(x) = _
Paata(X) + pg(x) Pc(x) = Paata(x)
(for any pg) Caveats:
1. Neural nets with fixed capacity may not
(Proof omitted) be able to represent optimal D and G
2. This tells us nothing about convergence
Goodfellow et al, “Generative to the solution with finite data

Adversarial Nets”, NeurlPS 2014
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GAN Architectures: DC-GAN

Generator G and discriminator D
are both neural networks

Usually CNNs ... GANSs fell out of
favor before ViT became popular

DC-GAN was the first GAN
architecture that worked on non-
toy data

Radford et al, ICLR 2016
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GAN Architectures: DC-GAN

GPT-1 Paper (2018)

Improving Language Understanding
by Generative Pre-Training

Alec Radford Karthik Narasimhan Tim Salimans Ilya Sutskever
OpenAl OpenAl OpenAl OpenAl
alec@openai.com [ karthikn@openai.com tim@openai.com ilyasu@openai.com

GPT-2 Paper (2019)

Language Models are Unsupervised Multitask Learners

Alec Radford * ' Jeffrey Wu "' Rewon Child' David Luan' Dario Amodei ™' Ilya Sutskever ™!
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G A N A rC h ite Ct u res : Sty le GA N Latent?kz € Synthesis network g Mot
Normalize

| Const 4x4x512 |

Mapping

Generator G and discriminator D
are both neural networks

StyleGAN uses a more complex
architecture that injects noise via
adaptive normalization.

|  Upsample |
|

| Conv3x3 |

At each layer predict a scale w
and shift b the same shape as x:

x; — u(x)
AdaIN(X,W,b)i = W; +bl
) (X ) Karras et al, A Stye-Based Generator Architecture
for Generative Adversarial Networks”, CVPR 2019
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GANSs: Latent Space Interpolation

Latent space is smooth.

Given latent vectors z, and z,, we
can interpolate between them:

z, =tz, + (1 —t)z,
xy = G(z,)

The resulting image x; smoothly
interpolate between samples!
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GANSs: Latent Space Interpolation

Latent space is smooth.

Given latent vectors z, and z,, we
can interpolate between them:

z, =tz, + (1 —t)z,
xy = G(z,)

The resulting image x; smoothly
interpolate between samples!

Karras et al, "Alias-Free Generative Adversarial Networks”, NeurlPS 2021
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Generative Adversarial Networks: Summary

Jointly train Generator and
Discriminator with a minimax game

Pros:
- Simple formulation
- Very good image quality

Cons:

- No loss curve to look at

- Unstable training

- Hard to scale to big models + data

Generator Generated
Network image Discriminator
Network

G Fake
D I:;:
Real

Real image

Sample
z from p,

z

These were the go-to generative
models from ~2016 — 2021

Stanford CS231n 10t Anniversary
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Diffusion Models

Sohl-Dickstein et al, “Deep Unsupervised Learning using noneuilibrium thermodynamics”, ICML 2015
Song and Ermon, “Generative modeling by estimnating gradients of the data distribution”, NaurlPS 2019
Ho et al, “Denoising Diffusion Probabalistic Models”, NeurlPS 2020

Song et al, “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR 2021
Song et al, “Denoising Diffusion Implicit Models”, ICLR 2021
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Warning: Terminology and
notation in this area is a mess!

There are many different
mathematical formalisms; tons

D i ffu S i O n M Od e IS of variance in terminology and

notation between papers.

WEe'll just cover the basics of a
modern “clean” implementation
(Rectified Flow)
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Diffusion Models: Intuition

Pick a noise distribution z ~ p, ;e
(Usually unit Gaussian)
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Diffusion Models: Intuition t=0
No noise
Pick a noise distribution z ~ p, ;.
(Usually unit Gaussian)
Consider data x corrupted under varying
noise levels t to give noisy data x;
t=1
Full noise
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Diffusion Models: Intuition t=0
NoO noise

Pick a noise distribution z ~ p, ;e

(Usually unit Gaussian)

Consider data x corrupted under varying

noise levels t to give noisy data x;

Train a neural network to remove a little

bit of noise: f, (x;,t)

t=1

Full noise
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t=0
No noise

Diffusion Models: Intuition

Pick a noise distribution z ~ p, ;e
(Usually unit Gaussian)

Consider data x corrupted under varying
noise levels t to give noisy data x;

Train a neural network to remove a little
bit of noise: f,(x;, t)

At inference time, sample x; ~ p,,,;se and
apply fg many times in sequence to
generate a noiseless sample x,

t=1
Full noise
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Diffusion Models: Rectified Flow

Pnoise
Suppose we have a simple p,,,ise
(e.g. Gaussian) and samples from pyai, ;
Sl -~ Pdata

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Diffusion Models: Rectified Flow

Pnoise
Suppose we have a simple p,,oise
(e.g. Gaussian) and samples from pg.¢, ,:
On each training iteration, sample: ®
Z ~ Dnoise X ~ Paata t ~ Uniform|0,1] L //::/, ——————— e
S @
S " Pdata

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Diffusion Models: Rectified Flow

Suppose we have a simple p,ise
(e.g. Gaussian) and samples from p.:, '

On each training iteration, sample:
Z ~ Pnoise X ~ Pdata U~ Uniform[O, 1]

Setx, =1—-t)x+tz,v=z—x

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Diffusion Models: Rectified Flow

Pnoise

Suppose we have a simple p, ...
(e.g. Gaussian) and samples from pg.¢, ,,'
On each training iteration, sample: ® y
Z ~ Dnoise X ~ Paata t ~ Uniform|0,1] Y //'::/, ——————— e
Setx, =(1—-t)x+tz,v=2z—x e ;'

| | N 1
Train a neural network to predict v: P X

L= lfoCe, t) —vli3
J 2 e - Pdata

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Diffusion Models: Rectified Flow

P - o

Core training loop is just ‘.
a few lines of code! 4

for x in dataset:
z = torch.randn_like(x)
t = random.uniform(@, 1)
xt = (1 = t) *x x +t x z
v = model(xt, t)
loss = (z = x = v).square().sum()

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Rectified Flow: Sampling

Pnoise
Choose number of steps T (often T=50)
S " Pdata

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Rectified Flow: Sampling

Pnoise
Choose number of steps T (often T=50)
/////x1 Il’I
Sample X ~ Pnoise S @ .
S " Pdata

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Rectified Flow: Sampling

Choose number of steps T (often T=50)

Sample X ~ Pnoise
Fortin[1,1--,1—-2,...,0]
Evaluate v, = fo(x;, t)

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Rectified Flow: Sampling

‘‘‘‘‘

Choose number of steps T (often T=50) |

Sample X ~ Pnoise

Fortin[1,1--,1—-2,...,0]
Evaluate v, = fo(x;, t)
Stepx =x —v,/T

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Rectified Flow: Sampling

Pnoise
Choose number of steps T (often T=50)
x1 ,"I
Sample X ~ pni)ise , S @ /!
" - _ 4 . ',, x /,/
Fortin[1,1--,1--,..,0]: ,\ 2/3
Evaluate v, = fp(x¢,t) OO e
Step x =x — v, /T V23 \

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Rectified Flow: Sampling

—————

Choose number of steps T (often T=50) |

Sample x ~ pni)ise , S @ /

Fortin [1,1—;,1—;,...,0]: ; x2/3
Evaluate v, = fg(x, 1) 0 " _coniRiiin
Stepx =x —v,/T X

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Rectified Flow: Sampling

—————

Choose number of steps T (often T=50) |

Sample x ~ pni)ise , S @ /
: 1.2 _ ,, X
Fortin[1,1 T,l T,...,O]. 2/3 .
Evaluate v, = fo(x;,t) [ -cnmn
Step x =x — v, /T :

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Rectified Flow: Sampling

—————

Choose number of steps T (often T=50) |

Sample x ~ pni)ise , S @ /
: 1.2 _ ,, X
Fortin[1,1 T,l T,...,O]. 2/3 .
Evaluate v, = fo(x;,t) [ -cnmn
Step x =x — v, /T :

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Rectified Flow: Sampling

—————

Choose number of steps T (often T=50) |

Sample X ~ pni)ise , I,’ ® / /
1 I = . ! x //
Fortin[1,1 T,l T,...,O]. | 2/3 .
Evaluate v, = fo(x;,t) N e emmTRTe
Step x =x — v, /T \
Return x ' @X1/3 "

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Rectified Flow: Sampling

p”l’lOlSB
Choose number of steps T (often T=50)
X /
Sample x ~ p,,,ice /@
: 1 2 £ y
Fortin[1,1—-=,1—=,...,0]: . X2/3 .~
T T | ®
Evaluate v, = fg(x, 1) O ey
Stepx =x —v,/T )
Return x @X1/3
sample = torch.randn(x_shape) .X
for t in torch.linspace(1l, @, num_steps): 0
v = model(sample, t) N - Pdata
sample = sample = v / num_steps >

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Rectified Flow: Summary

Training
for x in dataset:
z = torch.randn_like(x)
t = random.uniform(@, 1)
xt = (1 - t) *x x +t % z
v = model(xt, t)
loss = (z = x = v).square().sum()

Sampling

sample = torch.randn(x_shape)

for t in torch.linspace(1l, @, num_steps):
v = model(sample, t)
sample = sample = v / num_steps

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Conditional Rectified Flow

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Conditional Rectified Flow

Training

for[(x, y)|in dataset:
z = torch.randn_like(x)
t = random.uniform(@, 1)
xt= (1 =1t) * x+ T % 2
v =|model(xt, y, t)
loss = (z = X = v).square().sum()

Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022

May 20, 2025
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Conditional Rectified Flow

Training

for[(x, y)|in dataset:

z = torch.randn_like(x)
t = random.uniform(@, 1)
xt= (1 =1t) * x+ T % 2

v =|model(xt, y, t)
loss = (z = X = v).square().sum()

Sampling

y = user_input()
sample = torch.randn(x_shape)

for t in torch.linspace(l, @, num_steps):

v =|@0de1(sample, y, t)

Sam p ].E = Sam p le v / n le_S te p S Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Conditional Rectified Flow

Traini Can we control how |
raining much we “emphasize”
for[(x, y)|in dataset: the conditioning y?

z = torch.randn_like(x)

t = random.uniform(@, 1)

xt= (1 =1T) * X+ T %2z

v =|model(xt, y, t)
loss = (z = X = v).square().sum()

»

Sampling

y = user_input()
sample = torch.randn(x_shape)

for t in torch.linspace(l, @, num_steps):

v =|Tnde1(sample, y, t)

Sam p ].E = Sam p le v / n Um_s te p S Liu et al, “Flow Straight and Fast: Leaming to Generate and Transfer Data with Rectified Flow”, 2022
Lipman et al, “Flow Matching for Generative Modeling”, 2022
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Classifier-Free Guidance (CFG)

Traini Can we control how .
raining much we “emphasize”

for (x, y) in dataset: e
z = torch.randn_like(x) the COﬂdItlonIng y?

t = random.uniform(@, 1)

xt = (1 - t) % x + t % 7

if random.random() < 08.5: y = y_null

v = modelixt, vy, t)

loss = (z = x = v).square().sum()

»

Randomly drop y during training.

Now the same model is conditional and unconditional!

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Classifier-Free Guidance (CFG)

Training

for (x, y) in dataset:
Z = torch.randn_like(x)
t = random.uniform(®, 1)
xt = (1 - t) * x +t %7

Can we control how
much we “emphasize”
the conditioning y?

if random.random() < 08.5: y = y_null

v = modelixt, vy, t)
loss =

Randomly drop y during training.

(z = x = v).square().sum()

Now the same model is conditional and unconditional!

Consider a noisy x;:

A

»
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Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Classifier-Free Guidance (CFG)

pTlOlSé
Traini Can we control how 4 JPEPETE LTSN -
raining much we “emphasize”
for (x, y) in dataset: th ditioni o e |
z = torch.randn_like(x) € conaitioning y o xt Y
t = random.uniform(@, 1) // ® /
xt = (1 - t) % x + t % Z 4 .
if random.random() < ©8.5: y = y_null : //’ o
v = model(xt, y, tJ] A j B ‘_IZCI_a_tElEx ly=m)
loss = (z = x = v).square().sum() \‘\ ______ ,/::x" ,,——~::\\
. . . ‘\ //’/—’_‘\ /,, \‘ \\
Randomly drop y during training. //',;,’f’ I ]
\_\%’/:// o II, //I
Now the same model is conditional and unconditional! &
Consider a noisy x;: A S 2
points toward p(x) oadl
- - Pdata

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Classifier-Free Guidance (CFG)

Traini Can we control how .
raining much we “emphasize”

for (x, y) in dataset: e
z = torch.randn_like(x) the COﬂdItIOﬂIng y?

t = random.uniform(@, 1)

xt = (1 - t) % %+ t % 7

if random.random() < 08.5: y = y_null
v = modelixt, vy, t)

loss = (z = x = v).square().sum()

»

Randomly drop y during training.

Now the same model is conditional and unconditional!
Consider a noisy x;:

points toward p(x)
vY = fo(x;,y,t) points toward p(x | y)

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Classifier-Free Guidance (CFG)

Can we control how |
much we “emphasize”
the conditioning y?

»

Training

for (x, y) in dataset:

Z = torch.randn_like(x)
t = random.uniform(@, 1)
xt = (1 - t) % %+ t % 7
if random.random() < 08.5: y = y_null
v = modelixt, vy, t)

loss = (z = x = v).square().sum()

Randomly drop y during training.

Now the same model is conditional and unconditional!
Consider a noisy x;:
points toward p(x)
vY = fo(x;,y,t) points toward p(x | y)
v'9 = (1 +w)vY —wrv” points more toward p(x | y)

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Classifier-Free Guidance (CFG)

Can we control how |
much we “emphasize”
the conditioning y?

»

Training

for (x, y) in dataset:

Z = torch.randn_like(x)
t = random.uniform(@, 1)
xt = (1 - t) % %+ t % 7
if random.random() < 08.5: y = y_null
v = modelixt, vy, t)

loss = (z = x = v).square().sum()

Randomly drop y during training.

Now the same model is conditional and unconditional!
Consider a noisy x;:

points toward p(x)
vY = fo(x;,y,t) points toward p(x | y)
v'9 = (1 +w)vY —wrv” points more toward p(x | y)
During sampling, step according to v/ ¢

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Classifier-Free Guidance (CFG)

Can we control how |
much we “emphasize”
the conditioning y?

»

Training

for (x, y) in dataset:

Zz = torch.randn_like(x)
t = random.uniform(@®, 1)
xt = (1 - t) % %+ t % 7
if random.random() < 08.5: y = y_null
v = modelixt, vy, t)

loss = (z = x = v).square().sum()

Sampling

y = user_input()

sample = torch.randn(x_shape)

for t in torch.linspace(1, @, num_steps):
vy = model(sample, y, t)
v@d = model(sample, y_null, t)
v=1(1+w *xvy-wsx Vv
sample = sample - v / num_steps

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Classifier-Free Guidance (CFG)

Can we control how |
much we “emphasize”
the conditioning y?

»

Training

for (x, y) in dataset:

Zz = torch.randn_like(x)
t = random.uniform(@®, 1)
xt = (1 - t) % %+ t % 7
if random.random() < 08.5: y = y_null
v = modelixt, vy, t)

loss = (z = x = v).square().sum()

Sampling

y = user_input()

sample = torch.randn(x_shape)

for t in torch.linspace(1, @, num_steps):
vy = model(sample, y, t)
v@d = model(sample, y_null, t)
v=1(1+w *xvy-wsx Vv
sample = sample - v / num_steps

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Classifier-Free Guidance (CFG)

Traini Can we control how
raining much we “emphasize”

for (x, y) in dataset: e
z = torch.randn_like(x) the COﬂdItIOﬂIng y?

t = random.uniform(@, 1) ” e ”
bt m (] et mydtns Classifier-Free” because
if random.random() < 0.5: y = y_null earlier methods used a

v = modelixt, vy, t)
loss = (z = x = v).square().sum()

separate discriminative
model p(y | x) to compute

Sampling step direction = log p(y | x)
y = user_input() 0x
sample = torch.randn(x_shape)
for t in torch.linspace(1l, @, num_steps):
vy = model(sample, y, t)
v@d = model(sample, y_null, t)
v=1(1+w *xvy-wsx Vv

sample = sample - v / num_steps Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021
Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Classifier-Free Guidance (CFG)

Can we control how |
much we “emphasize”
the conditioning y?

»

Training

for (x, y) in dataset:

Zz = torch.randn_like(x)
t = random.uniform(@®, 1)
xt = (1 - t) % %+ t % 7
if random.random() < 08.5: y = y_null
v = modelixt, vy, t)

loss = (z = x = v).square().sum()

Used everywhere in
, practice! Very important
y = user_input()

sample = torch.randn(x_shape) for high'qua”ty OUtpUtS

for t in torch.linspace(1, @, num_steps):
vy = model(sample, y, t)
v@d = model(sample, y_null, t)
v=1(1+w *xvy-wsx Vv

sample = sample - v / num_steps Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021
Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Sampling
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Classifier-Free Guidance (CFG)

Can we control how |
much we “emphasize”
the conditioning y?

»

Training

for (x, y) in dataset:

Zz = torch.randn_like(x)
t = random.uniform(@®, 1)
xt = (1 - t) % %+ t % 7
if random.random() < 08.5: y = y_null
v = modelixt, vy, t)

loss = (z = x = v).square().sum()

Used everywhere in
, practice! Very important
y = user_input()

sample = torch.randn(x_shape) for high'qua”ty OUtpUtS

for t in torch.linspace(1, @, num_steps):
vy = model(sample, y, t)
v@d = model(sample, y_null, t) Doubles the cost
v={(1+w *xvy-wsv0 of sampling...

sample = sample - v / num_steps Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021
Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022

Sampling
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Optimal Prediction

Training Q: What is the
for (x, y) in dataset: Optlmal prediCtion
z = torch.randn_like(x) for the network?

t = random.uniform(@, 1)

Xt = (1 - t) * x+t*z

if random.random() < 08.5: y = y_null
v = model(xt, y, t)

loss = (z = x = v).square().sum()

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021
Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Optimal Prediction

Training Q: What is the
for (x, y) in dataset: Optlmal prediCtion
z = torch.randn_like(x) for the network?

t = random.uniform(@, 1)

xt = (1 -1t) *x+1t=*z

if random.random() < 08.5: y = y_null
v = model(xt, y, t)

loss = (z = x = v).square().sum()

There may be many pairs (x, z) that give the
same x;; network must average over them

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021
Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Optimal Prediction

Training Q: What is the
for (x, y) in dataset: Optlmal prediCtion
z = torch. randn_like(x) for the network?

t = random.uniform(@, 1)

Xt = (1 - t) * x+t*z

if random.random() < 08.5: y = y_null
v = model(xt, y, t)

loss = (z = x = v).square().sum()

There may be many pairs (x, z) that give the
same x;; network must average over them

Full noise (t=1) is easy: optimal v is mean of pyat,

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021
Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Optimal Prediction

Training Q: What is the
for (x, y) in dataset: Optimal prediCtion
z = torch. randn_like(x) for the network?

t = random.uniform(@, 1)

Xt = (1 - t) * x+t*z

if random.random() < 08.5: y = y_null
v = model(xt, y, t)

loss = (z = x = v).square().sum()

There may be many pairs (x, z) that give the
same x;; network must average over them

Full noise (t=1) is easy: optimal v is mean of pyat,
No noise (t=0) is easy: optimal v is mean of p,ise

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021
Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Optimal Prediction

Training Q: What is the
for (x, y) in dataset: Optimal prediCtion
z = torch. randn_like(x) for the network?

t = random.uniform(@, 1)

Xt = (1 - t) * x+t*z

if random.random() < 08.5: y = y_null
v = model(xt, y, t)

loss = (z = x = v).square().sum()

There may be many pairs (x, z) that give the
same x;; network must average over them

Full noise (t=1) is easy: optimal v is mean of pyat,
No noise (t=0) is easy: optimal v is mean of p,qise
Middle noise is hardest, most ambiguous

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021
Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Optimal Prediction

Training Q: What is the
for (x, y) in dataset: Optlmal prediCtion
z = torch. randn_like(x) for the network?

t = random.uniform(@, 1)
Xt = (1 -1T) *s X+ 1T =% 2
if random.random() < 08.5: y = y_null
v = model(xt, y, t)

loss = (z = x = v).square().sum()

There may be many pairs (x, z) that give the
same x;; network must average over them

Full noise (t=1) is easy: optimal v is mean of pyat,
No noise (t=0) is easy: optimal v is mean of p,qise
Middle noise is hardest, most ambiguous

But we give equal weight to all noise levels!

Dhariwal and Nichol, “Diffusion Models beat GANs on Image Synthesis”, arXiv 2021
Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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Optimal Prediction

Training Q: What is the
for (x, y) in dataset: Optlmal prediCtion
z = torch.randn_like(x) for the network?

t = random.uniform(@, 1)
Xt = (1l - 1T) * X+ 1T * 2
if random.random() < 08.5: y = y_null
v = model(xt, y, t)

loss = (z = x = v).square().sum()

There may be many pairs (x, z) that give the
same x;; network must average over them

Full noise (t=1) is easy: optimal v is mean of pyat,
No noise (t=0) is easy: optimal v is mean of p,qise
Middle noise is hardest, most ambiguous

But we give equal weight to all noise levels!
Solution: Use a non-uniform noise schedule Dhariwal and Nichol, ‘Diffusion Models beat GANs on Image Synthesis”, arXiv 2021

Ho and Salimans, “Classifier-Free Diffusion Guidance”, arXiv 2022
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M mp(t; m=0.0,5=0.5)
olse scnedultes oo te
3.0 m,(t; m=0.5,5s=1.0)

my(t; m= —0.5,5s=1.0)

Training

for (x, y) in dataset:

Z = torch.randn_like(x)
t = random.uniform(@®, 1)
Xt = (1l - 1T) * X+ 1T * 2
if random.random() < 0.5: y = y_null
v = model(xt, y, t)

0.4 0.6

loss = (z = x = v).square().sum() | | t

There may be many pairs (x, z) that give the Put more emphasis on middle noise
same x;; network must average over them

Full noise (t=1) is easy: optimal v is mean of pyat,
No noise (t=0) is easy: optimal v is mean of ppise
Middle noise is hardest, most ambiguous

But we give equal weight to all noise levels!
Solution: Use a non-uniform noise schedule

Esser et al, “Scaling Rectified Flow Transformers for High-Resolution Image Synthesis”, arXiv 2024
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M : mp(t; m=0.0,5=0.5)

oise Schedules

my(t; m=0.5,5s=1.0)
my(t; m= —0.5,5s=1.0)

Training
for (x, y) in dataset: p(t)
z = torch.randn like(x) "
t = torch.randn(()).sigmoid() 26
xt=1(1-1T) *x+1T=* 2
if random.random() < @.5: y = y_null o
v = model(xt, y, t) ool ‘ . . -
loss = (z = x = v).square().sum() ' t '
There may be many pairs (x, z) that give the Put more emphasis on middle noise

same x;; network must average over them Common choice: logit-normal sampling
Full noise (t=1) is easy: optimal v is mean of pyat,

No noise (t=0) is easy: optimal v is mean of p,qise

Middle noise is hardest, most ambiguous

But we give equal weight to all noise levels!

Solution: Use a non-uniform noise schedule

Esser et al, “Scaling Rectified Flow Transformers for High-Resolution Image Synthesis”, arXiv 2024
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M : mp(t; m=0.0,5=0.5)
ol1se scneaultes
3.0 my(t; m=0.5,5s=1.0)

my(t; m= —0.5,5s=1.0)

Training

for (x, y) in dataset:

z = torch.randn_like(x)

t = torch.randn(()).sigmoid()
XL =(1-=-1T) %« x+ 1 % 2

if random.random() < @.5: y = y_null
v = model(xt, y, t) . . , , .

loss = (z = x = v).square().sum() | t

There may be many pairs (x, z) that give the Put more emphasis on middle noise
same x;; network must average over them

Common choice: logit-normal sampling
Full noise (t=1) is easy: optimal v is mean of pyat,
No noise (t=0) is easy: optimal v is mean of p,qise
Middle noise is hardest, most ambiguous

But we give equal weight to all noise levels!
Solution: Use a non-uniform noise schedule

For high-res data, often shift to higher
noise to account for pixel correlations

Esser et al, “Scaling Rectified Flow Transformers for High-Resolution Image Synthesis”, arXiv 2024
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Diffusion: Rectified Flow e

3.0 m,(t; m=0.5,5s=1.0)

L Simple and scalable setup B
Training for many generative £ "
for (x, ¥) in dataset: modeling problems! p(t) 1

z = torch.randn_like(x)
t = torch.randn(()).sigmoid()

xt = (1 =-1t) *x+1t=%*x2z

1.0

if random.random() < @.5: y = y_null o

v = model(xt, y, t) sl ‘ » . “

loss = (z = x = v).square().sum() t

. Put more emphasis on middle noise

Sampling | _ _
y = user_input() Common choice: logit-normal sampling
sample = torch.randn(x_shape)
for t in torch.linspace(1l, @, num_steps): For high-res data, often shift to higher

vy = model(sample, y, t)

v@d = model(sample, y_null, t)
v=1(1+w *xvy-wsx Vv
sample = sample - v / num_steps

noise to account for pixel correlations

Esser et al, “Scaling Rectified Flow Transformers for High-Resolution Image Synthesis”, arXiv 2024
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Diffusion: Rectified Flow e

3.0 m,(t; m=0.5,5s=1.0)

L Simple and scalable setup B
Training for many generative £ "
for (x, ¥) in dataset: modeling problems! p(t) 1

z = torch.randn_like(x)
t = torch.randn(()).sigmoid()
Xxt=(1-1t) *x+1%z

if random.random() < @.5: y = y_null o
v = model(xt, y, t) - . . b

loss = (z = x = v).square().sum() | | t

1.0

Samolin Problem: Does not Put more emphasis on middle noise
P , 9 work naively on high-
y = user_input() .

sample = torch.randn(x_shape) resolution data

for t in torch.linspace(1l, @, num_steps): For high-res data, often shift to higher

vy = model(sample, y, t) noise to account for pixel correlations
v@d = model(sample, y_null, t)

v=1(1+w *xvy-wsx Vv
sample = sample - v / num_steps

Common choice: logit-normal sampling

Esser et al, “Scaling Rectified Flow Transformers for High-Resolution Image Synthesis”, arXiv 2024
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Rombach et al, “High-Resolution Image Synthesis
with Latent Diffusion Models”, CVPR 2022

Latent Diffusion Models (LDMs)

Train encoder + decoder to
convert images to latents

Image
HxWx3
\ Decoder/
Latent
H/Dx W/D x C
/ Encoder \
Image
HxWx3
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Rombach et al, “High-Resolution Image Synthesis
with Latent Diffusion Models”, CVPR 2022

Latent Diffusion Models (LDMs)

Train encoder + decoder to
convert images to latents

Image
HxWx3
Common setting: D=8, C=16
Decoder

Image: 256 x 256 x 3
=> Latent: 32 x 32 x 16

Latent

H/Dx W/D x C

Encoder / Decoder are CNNs with attention

/ Encoder \

Image
HxWx3
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Latent Diffusion Models (LDMs)

Train diffusion model to
remove noise from latents
(Encoder is frozen)

Train encoder + decoder to
convert images to latents

Denoised Latent
Image
HXWX3 H/DXW/DXC

\ Decoder /

Latent
H/Dx W/Dx C S
-_— S AL
/ Encoder \ Noisy Latent
H/Dx W/Dx C
Image
HxWx3 ﬂ

Rombach et al, “High-Resolution Image Synthesis
with Latent Diffusion Models”, CVPR 2022
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Latent Diffusion Models (LDMs)

Train diffusion model to
remove noise from latents
(Encoder is frozen)

Train encoder + decoder to
convert images to latents

Denoised Latent
Image ‘
HXWX3 H/DXW/DXC

\ Decoder /

Latent _
H/D x W/D x C 255
—_— LAY
/ Encoder \ Noisy Latent
H/Dx W/Dx C
Image
HxWx3 ﬁ

Rombach et al, “High-Resolution Image Synthesis
with Latent Diffusion Models”, CVPR 2022

After training:

Stanford CS231n 10t Anniversary Lecture 14 - 88 May 20, 2025



Latent Diffusion Models (LDMs)

Train diffusion model to
remove noise from latents
(Encoder is frozen)

Train encoder + decoder to
convert images to latents

Denoised Latent
Image ‘
HXWX3 H/DXW/DXC

\ Decoder /

Latent _
H/D x W/D x C 255
—_— LAY
/ Encoder \ Noisy Latent
H/Dx W/Dx C
Image
HxWx3 ﬁ

Rombach et al, “High-Resolution Image Synthesis
with Latent Diffusion Models”, CVPR 2022

After training:

Sample random
latent
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Latent Diffusion Models (LDMs)

Train diffusion model to
remove noise from latents
(Encoder is frozen)

Train encoder + decoder to
convert images to latents

Denoised Latent
Image
HXWX3 H/DXW/DXC

\ Decoder /

Latent |
H/Dx W/D x C S
_— '"i',. 736X
/ Encoder \ Noisy Latent
H/Dx W/Dx C
Image
HxWx3 ﬁ

Rombach et al, “High-Resolution Image Synthesis
with Latent Diffusion Models”, CVPR 2022

After training:

Sample random
latent

Iteratively apply
diffusion model
to remove noise
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Latent Diffusion Models (LDMs)

Train diffusion model to
remove noise from latents
(Encoder is frozen)

Train encoder + decoder to
convert images to latents

Denoised Latent
Image
HXWX3 H/DXW/DXC

\ Decoder /

Latent |
H/Dx W/D x C S
_— '"i',. 736X
/ Encoder \ Noisy Latent
H/Dx W/Dx C
Image
HxWx3 ﬁ

Rombach et al, “High-Resolution Image Synthesis
with Latent Diffusion Models”, CVPR 2022

After training:

Sample random
latent

Iteratively apply
diffusion model
to remove noise

run decoder to
get image
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Latent Diffusion Models (LDMs)

Train diffusion model to
remove noise from latents
(Encoder is frozen)

Train encoder + decoder to
convert images to latents

Denoised Latent
Image
HXWX3 H/DXW/DXC

\ Decoder /

Rombach et al, “High-Resolution Image Synthesis
with Latent Diffusion Models”, CVPR 2022

After training:

Sample random
latent

Iteratively apply
diffusion model
to remove noise

Latent
DD o e run de.coder to
— S get image
/ Encoder \ Noisy Latent
H/Dx W/Dx C
Image ﬁ Latent diffusion is the most
HxWx3 common form today
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Rombach et al, “High-Resolution Image Synthesis
with Latent Diffusion Models”, CVPR 2022

Latent Diffusion Models (LDMs)

Train encoder + decoder to How do we train the
convert images to latents encoder+decoder?
Image
HxWx3

\ Decoder /
Latent

H/Dx W/D x C

/ Encoder \

Image
HxWx3
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Rombach et al, “High-Resolution Image Synthesis
with Latent Diffusion Models”, CVPR 2022

Latent Diffusion Models (LDMs)

Train encoder + decoder to How do we train the
convert images to latents encoder+decoder? Recall: VAE
logpg(x) = E;—q, (s [l0gPe (x12)] — Dy (44 (21%),p(2))
SOIUtion: |t’S a VAE' Encoder Network Decoder Network
Image qp(z| ) = Nz, Z2r)  Po(x | 2) = Nz, 0%)

Typically with very
small KL prior weight

T
Decoder
Latent

H/Dx W/D x C

/ Encoder \

Hz|x ‘ Ez|x x|z

HxWx3

Image
HxWx3
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Rombach et al, “High-Resolution Image Synthesis
with Latent Diffusion Models”, CVPR 2022

Latent Diffusion Models (LDMs)

Train encoder + decoder to How do we train the
convert images to latents encoder+decoder? Recall: VAE
logpg(x) = E;—q, (s [l0gPe (x12)] — Dy (44 (21%),p(2))
SOIUtion: |t’S a VAE' Encoder Network Decoder Network
Image qp(z| ) = Nz, Z2r)  Po(x | 2) = Nz, 0%)

Typically with very

Hz|x ‘ Ez|x x|z

HxWx3

small KL prior weight

]
Decoder Problem: Decoder

outputs often blurry

Latent
H/Dx W/D x C

/ Encoder \

Image
HxWx3
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Rombach et al, “High-Resolution Image Synthesis
with Latent Diffusion Models”, CVPR 2022

Latent Diffusion Models (LDMs)

How do we train the
Discriminator encoder+decoder? Recall: VAE
logpg(x) = E,_qq(zfx[logPe (x12)] — Dy, (44 (21%),(2))

SOI utio n: |‘t’ S a VA E| Encoder Network Decoder Network
M m T |Ca” Wlth ver Q'qb(zlx) ?N(ﬂzlx:zzl;) palx | 2) =N(ﬂxlza02)
|mage |mage yp y y Hz|x ‘ Zoix x|z

small KL prior weight

.
Decoder Problem: Decoder

outputs often blurry

H/D La\’;\?/n[’; C Recall: GAN
g § Solution: Add a Generator ~ Generated
’ Network image Discriminator
' imi Sampl Network

/ Encoder\ discriminator! Sample |2 (6 | eDo -

E Real
Image Real image

HxWx3
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Rombach et al, “High-Resolution Image Synthesis
with Latent Diffusion Models”, CVPR 2022

Latent Diffusion Models (LDMs)

Train diffusion model to After training:
remove noise from latents

(Encoder is frozen) Sample random %

e Fake latent
imageﬁ ﬁ image _
Iteratively apply
diffusion model
Decoder to remove noise

Discriminator

Latent E
H/D x W/D x C S run de_coder to
e get image T
s ﬁ
/ Encoder \ D
| Modern LDM pipelines use E
mage

HxWx3 ﬂ VAE + + diffusion! L:L
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Peebles and Xie, "Scalable Diffusion
Models with Transformer”, ICCV 2023

Diffusion Transformer (DiT)

Diffusion uses standard Transformer blocks!
Main question: How to inject conditioning (timestep t, text, ...)

Noise )
32x32x4 32x32x4
+ 4

Linear and Reshape
1

Layer Norm
1

N x DiT Block

I I
Patchify  Embed
|

Noised Timestep ¢

Latent
32x32x4 Labely.
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Peebles and Xie, "Scalable Diffusion
Models with Transformer”, ICCV 2023

Diffusion Transformer (DiT)

Diffusion uses standard Transformer blocks!
Main question: How to inject conditioning (timestep t, text, ...)

4 C‘:‘) ™
/| ———
/ a
N / Scale P -
Noise x / ]
32x32x4 32x32x4 ,'/ FoiTtwse
R2ox xeex Feedforward
4 4 /
Li Resh / ' Y2.82
inear and Reshape Scale, Shift  +———
1 / 1
Layer N
Layer Norm o yer: o
I
N x DiT Block Scale P
1
! I . Multi-Head
Patchify ~ Embed '\ SeliAtiention 5
1
1 \\ Scale, Shift 01|
. \ !
Noised Timestep ¢ \ Layer Norm MLP
Latent 0 \\ — |
32x32x4 Labely k Input Tokens Conditioning /

Predict scale/shift:
Most common for
diffusion timestep t
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Peebles and Xie, "Scalable Diffusion
Models with Transformer”, ICCV 2023

Diffusion Transformer (DiT)

Diffusion uses standard Transformer blocks!
Main question: How to inject conditioning (timestep t, text, ...)

e N ™ ~
r——
"/ Scale 4“—2
Noise z // ! Pointwise
Pointwise f rward
32x32x4 32xi2x4 // Eaaeray
1 Layer Norm
Linear and Reshape Soalo shit <7252 w
! / ! —
Layer Norm
Layer Norm i 2
' — Ell) ST
' Multi-Head
N i a e Self-Attentior
X DiT Block Scale PR Layer Norm
N ;
. . X Multi-Head — (i) ’
Patchify Embed \ Self-Attention _— ‘
1 Multi-Head
| | \\ Scale, Shift M Self-Attention
. \ ! .
Noised Timestep ¢ \ Layer Norm MLP Layer Norm
Latent Lt N — I —
32x32x4 Zlaoli Input Tokens Conditionin Input Tokens Conditionin c
X X \ p g / \ L T naitior g ] j

Predict scale/shift:
Most common for
diffusion timestep t

Cross-Attention / Joint Attention:
Common for text, image, etc conditioning
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Text-to-Image

Diffusion

timestep
(scalar)
. \
Noisy latents
hxwxc .
Diffusion
. Transformer
Text embeddings
DxL
Pretrained
textencoder

(e.g. T5, CLIP)

Text Prompt I

A professional documentary photograph of a
monkey shaking hands with a tiger in front of
the Eiffel tower. The monkey is wearing a hat
made out of bananas, and the tiger is
standing on two legs and wearing a suit.

Stanford CS231n 10t Anniversary

Clean latents

Decoder
hxwxc

Output image
HxWx3

Lecture 14 - 101
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Diffusion

TeXt_tO_I mage timestep
(scalar)
. \
Noisy latents
128 x128x 16 . .
Diffusion Clean latents Decoder Output image
Transformer 128 x128x 16 1024 x 1024 x 3
Text embeddings
DxL
Pretrained
textencoder

(e.g. T5, CLIP) Example: FLUX.1 [dev]

Text Encoder: T5+ CLIP
I Encoder/Decoder: 8x8 downsampling
Text Prompt Diffusion model: 12B parameter model

A professional documentary photograph of a %2 patchify => 64x64 = 1024 image tokens ¥
monkey shaking hands with a tiger in front of \
the Eiffel tower. The monkey is wearing a hat
made out of bananas, and the tiger is
standing on two legs and wearing a suit.

https://qithub.com/black-forest-labs/flux
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https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux
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Text-to-Video

Diffusion
timestep
(scalar)

\

Noisy latents
txhxwxc

Text embeddings

Diffusion
Transformer

DxL

Pretrained
text encoder
(e.g. T5, CLIP)

Text Prompt I

A red-faced monkey with white fur is bathingin a
natural hot spring. The monkey is playingin the water
with a miniature sail ship in front ofit, made of wood
with a white sail and a small rudder. The hot spring is
surrounded by lush greenery, with rocks and trees.

N

Gupta et al, “Photorealistic Video Generation with Diffusion Models”, arXiv 2023 (Dec)

OpenAl, “Sora: Creating Video from Text”, 2024 (Feb)

Polyak et al, “Movie Gen: A Cast of Media Foundation Models”,arXiv 2024 (Oct)

Kong et al, “HunyuanVideo: A Systematic Framework for Large Video Generative Models”, arXiv 2024 (Dec)
NVIDIA, “Cosmos World Foundation Model Platform for Physical Al”, arXiv 2025 (Jan)

Team Wan, “Wan: Open and Advanced Large-Scale Video Generative Models”, arXiv 2025 (March)

Clean latents Decoder Output video
txhxwxc TxHxWx3

Stanford CS231n 10t Anniversary
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Text-to-Video

Diffusion
timestep
(scalar)

'

Noisy latents
txhxwxc

Text embeddings

Diffusion
Transformer

DxL

Pretrained
text encoder
(e.g. T5, CLIP)

Text Prompt I

A red-faced monkey with white fur is bathingin a
natural hot spring. The monkey is playingin the water
with a miniature sail ship in front of it, made of wood
with a white sail and a small rudder. The hot spring is
surrounded by lush greenery, with rocks and trees.

N

Gupta et al, “Photorealistic Video Generation with Diffusion Models”, arXiv 2023 (Dec)

OpenAl, “Sora: Creating Video from Text”, 2024 (Feb)

Polyak et al, “Movie Gen: A Cast of Media Foundation Models”,arXiv 2024 (Oct)

Kong et al, “HunyuanVideo: A Systematic Framework for Large Video Generative Models”, arXiv 2024 (Dec)
NVIDIA, “Cosmos World Foundation Model Platform for Physical Al", arXiv 2025 (Jan)

Team Wan, “Wan: Open and Advanced Large-Scale Video Generative Models”, arXiv 2025 (March)

Clean latents

txhxwxc Decoder

Output video
TxHxWx3

Video from Meta Movie Gen

-gen/)

Stanford CS231n 10t Anniversary
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https://ai.meta.com/research/movie-gen/
https://ai.meta.com/research/movie-gen/
https://ai.meta.com/research/movie-gen/

Text-to-Video

Noisy latents
32x128x72x16

Text embeddings
DxL

Pretrained
text encoder
(e.g. T5, CLIP)

Text Prompt I

A red-faced monkey with white fur is bathingin a
natural hot spring. The monkey is playingin the water
with a miniature sail ship in front ofit, made of wood
with a white sail and a small rudder. The hot spring is
surrounded by lush greenery, with rocks and trees.

Diffusion
timestep
(scalar)

'

Diffusion
Transformer

N

Example: Meta MovieGen

Text Encoder: UL2, ByT5, MetaCLIP
Encoder/Decoder: 8x8x8 downsample

Diffusion model: 30B param DiT
1x2x2 patchify => 76K tokens

Gupta et al, “Photorealistic Video Generation with Diffusion Models”, arXiv 2023 (Dec)

OpenAl, “Sora: Creating Video from Text”, 2024 (Feb)

Polyak et al, “Movie Gen: A Cast of Media Foundation Models”,arXiv 2024 (Oct)

Kong et al, “HunyuanVideo: A Systematic Framework for Large Video Generative Models”, arXiv 2024 (Dec)
NVIDIA, “Cosmos World Foundation Model Platform for Physical Al", arXiv 2025 (Jan)

Team Wan, “Wan: Open and Advanced Large-Scale Video Generative Models”, arXiv 2025 (March)

Clean latents Decoder Output video
33x128x72x16 257x1024 x576 x 3

Stanford CS231n 10t Anniversary
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The Era of Video Diffusion Models

Cosmos
(NVIDIA)

Open-Source Model 14B params

Ray 2 (Luma)

Veo 2
(Google)

No technical info

CogVideoX

(Zhipu) — \ochi
5B params

. (Genmo) | Tx-video |Step-Video

Gen3 (Runway) 10B params (nghtrleS) (StepFun) Klmg 2.0
Sora (OpenAl) 2B params [30B params (Kuaishou)
Dream Machine P P
(Luma) Wan
(HT‘;%‘;??) (Alibaba)
14B $
13B params paam
[ I [ [ [ [ [ [ [ [ [ [ [ I [ [ [ [ [ ]
1 I 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1
January March May July Sept Nov January March May
2024 2024 2024 2024 2024 2024 2025 2024 2024

Guptaet al, Photo realistic Vi
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Diffusion Distillation
After training:

many times (~30 — 50 for rectified flow) latent

Iteratively apply
diffusion model
to remove noise

This is really slow!

During sampling we need to run the diffusion model Sample random Dﬂ

run decoder to
get image

May 20, 2025
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Diffusion Distillation

During sampling we need to run the diffusion model
many times (~30 — 50 for rectified flow)

This is really slow!

Solution: distillation algorithms reduce the number
of steps (sometimes all the way to 1),
can also bake in CFG

Salimans and Ho, “Progressive Distillation for Fast Sampling of Diffusion Models”, ICLR 2022

Song et al, “Consistency Models”, ICML 2023

Sauer et al, “Adversarial Diffusion Distillation”, ECCV 2024

Sauer et al, “Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation”, arXiv 2024
Lu and Song, “Simplifying, Stabilizing and Scaling Consistency Models”, ICLR 2025

Salimans et al, “Multistep Distillation of Diffusion Models via Moment Matching”, NeurlPS 2025

After training:

Sample random
latent

Iteratively apply
diffusion model
to remove noise

run decoder to
get image
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Generalized Diffusion

Rectified Flow

Sample x ~ Paatas Z ~ Pnoise
Sample t ~ p;

Setx, =(1—-t)x+tz
Setv,, =z—x

Compute vy,,0q = fo(x, t)

2

Compute loss ||vgt — vpred”z
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Generalized Diffusion

Rectified Flow Generalized Diffusion
Sample X ~ Pdatar Z ~ Pnoise Sample X ~ Pdatar Z ~ Pnoise
Sample t ~ p, Sample t ~ p,

Setv,, =z—x Sety,, = c(t)x + d(t)z
Compute vy,,0q = fo(x, t) Compute y,,eq = fo(x, 1)

2

Compute loss ||vgt — vpred”z

Compute loss ||y,; — ypred”z
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Generalized Diffusion

Rectified Flow Generalized Diffusion
Sample X ~ Pdatar Z ~ Pnoise Sample X ~ Pdatar Z ~ Pnoise
Sample t ~ p, Sample t ~ p,
Setv,, =z—x Sety,, = c(t)x + d(t)z
Compute Vpreda = fo (xt» t) Compute Ypred = fo (xt; £)
2 2
Compute 10ss [|vge — Vpreal, Compute 10ss ||yg¢ — Vpreall,
t)=1—t
b(t) =t
c(t) =-1
=1
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Generalized Diffusion

Variance Preserving (VP) Generalized Diffusion
t) =+ o(t) Sample x ~ Paatas Z ~ Proise
b(t) =1=a(0 Sample ¢ ~ p,

Setx, = a(t)x + b()z

If x and z are independent and Set yge = c(t)x + d(t)z
variance=1, then x, also has Compute ypreq = fo(xe, )

variance=1 Compute 10ss [|yg¢ = Ypreall,

Song et al, “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR 2021

Stanford CS231n 10t Anniversary Lecture 14- 112 May 20, 2025



Generalized Diffusion

Variance Exploding (VE) Generalized Diffusion
a(t) =1 Sample x ~ paatar Z ~ Pnoise
b(t) =a(t) Sample t ~ p;

Setx; =alt)x+ b(t)z
a(1) Needs to be big enough Sety, = c(D)x + d(t)z
to drown out all signal in x Compute y,,eq = fo(xe, )

Compute loss ||y,; — ypred”z

Song et al, “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR 2021
Karras et al, “Elucidating the Design Space of Diffusion-Based Generative Models”, NeurlPS 2022
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Generalized Diffusion

X-prediction Generalized Diffusion

Ygr =x [c(t) =1; d(t) = 0] Sample x ~ Paatas Z ~ Proise
Sample t ~ p,
o Setx; =alt)x+ b(t)z
e-prediction Setyye = c(D)x + d(t)z

Vge =2 [c(t) =0; d(t) =1] Compute y,req = fo(xt, )
Compute loss ||y, — yp,,ed”z

v-prediction

Vgt = bz —a(t)x  [c(t) = b(t); d(t) = — a(t)]

Salimans and Ho, “Progressive Distillation of Diffusion Models”, ICLR 2022
Ho et al, “Imagen Video: High Definition Video Generation with Diffusion Models”, arXiv 2022
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Generalized Diffusion

Generalized Diffusion

Sample x ~ Paatar Z ~ Pnoise

How do we choose these Sample t ~ p,

functions? Setx, = alt)x + b(t)z
Sety,, = c(t)x + d(t)z

Usually through some Compute y,,eq = fo(xs, £)

mathematical formalism 2
Compute 10ss ||yg¢ — Vpreall,

Salimans and Ho, “Progressive Distillation of Diffusion Models”, ICLR 2022
Ho et al, “Imagen Video: High Definition Video Generation with Diffusion Models”, arXiv 2022
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Diffusion is a Latent Variable Model

We know the forward process: Add Gaussian noise

pe(Xt 1|Xt)
() 2 H@ @H H

\__—’

Learn a network to approximate the backward process

Optimize variational lower bound (same as VAE)

Sohl-Dickstein et al, “Deep Unsupervised Learning using Nonequilibrium Thermodynamics”, NeurlPS 2015
Figure from Ho et al, “Denoising Diffusion Probabilistic Models”, NeurlPS 2020
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Diffusion Learns the Score Function

For any distribution p(x) over x € R" the score function
0
s:RVN - RN s(x) = alogp(x)

Is a vector field pointing toward areas of high probability density

Diffusion learns a neural network to approximate the score
function of py.i,

Song and Ermon, “Generative Modeling by Estimating Gradients of the Data Distribution”, NeurlPS 2019
Ho et al, “Denoising Diffusion Probabilistic Models”, NeurlPS 2020
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Diffusion Solves Stochastic Differential Equations

We can describe a continuous noising process
as an SDE

dx = f(x,t)dt + g(t)dw

Gives a relationship between infinitesimal
changes in data x, time t, and noise w.

Diffusion learns a neural network to
approximately solve this SDE

Song et al, “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR 2021
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Pe 'S peCtlveS on lefu SlO N Great blog post by Sander Dieleman:

https://sander.ai/2023/07/20/perspectives.html

1. Diffusion models are autoencoders (All his blog posts are great)

2. Diffusion models are deep latent variable models
3. Diffusion models predict the score function

4. Diffusion models solve reverse SDEs

5. Diffusion models are flow-based models

6. Diffusion models are recurrent neural networks
7. Diffusion models are autoregressive models

8. Diffusion models estimate expectations
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https://sander.ai/2023/07/20/perspectives.html

Autoregressive Models Strike Back

Recall autoregressive models

Too slow on raw pixels

1M
A | =

They work great on
(discrete) latents!
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Autoregressive Models Strike Back

Train encoder + decoder Train autoregressive model
to convert images to to model sequences of
discrete latents discrete latents
HxWx3 =N :
: Sample discrete latents from
Decoder S e the autoregressive model,
Latent 1 L pass to decoder to get an
H/D x W/D AT LA A image
integers! —
Vb P
Encoder ot |l [l

.
. . .
- - .
| ma e van den Oord etal, “Neura Discrete Representation Learning”, NeulPS 2017
Razavi etal, “Generating Diverse High-Fidelity Images with VQ-VAE-2", NeulPS 2019
H X W X 3 Esser etal, “Taming Transformers for High-Resolution Image Synthesis’, CVPR 2021

Stanford CS231n 10t Anniversary

Yuetal, “Scaling Autoregressive Madels for Content-Rich Text-to-Image Generation”, arXiv 2022
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Summary

Generative Adversarial Networks

Generator ~ Generated

image Discriminat . .
sample e Newok Latent Diffusion Models
z from p, = [ B Fake

Image
Real HxWx3
Real image
Diffusion Models

Latent -

Pnoise H/D x W/D x C i

[
Image
HxWx3 ﬂ
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Next Time:
Vision + Language

Stanford CS231n 10t Anniversary Lecture 14- 123 May 20, 2025



	Slide 1
	Slide 2: Administrative
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123

