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Lecture 13:
Generative Models (part 1)
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Administrative

Tomorrow 5/16:
● Assignment 3 out
● Project milestone due
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Last Time: Self-Supervised Learning
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Last Time: Self-Supervised Learning
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Last Time: Self-Supervised Learning
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Pretext tasks from image transformations
• Rotation, inpainting, rearrangement, coloring 
• Reconstruction-based learning (MAE)

Rotation Rearrangement Reconstruction
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Last Time: Self-Supervised Learning
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Contrastive representation learning
• Intuition and formulation
• Instance contrastive learning: SimCLR and MOCO
• Sequence contrastive learning: CPC
• Self-Distillation Without Labels, DINO
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Last Time: Contrastive Learning (SimCLR)
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Chen et al, “A simple framework for contrastive learning of visual representations”, ICML 2020

Input 
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Extract 
features

Corresponding pairs 
should have similar 
features

Other pairs should have 
dissimilar features
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Last Time: Contrastive Learning (SimCLR)

8

Chen et al, “A simple framework for contrastive learning of visual representations”, ICML 2020

Input 
batch

Random 
transforms

Extract 
features

Corresponding pairs 
should have similar 
features

Other pairs should have 
dissimilar features

Problem: Need large 
batch size with lots of 
negatives
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Contrastive Learning: MoCo

9

He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020

no_grad Key differences to SimCLR:

● Keep a running queue of keys (negative 
samples).

● Compute gradients and update the 
encoder only through the queries.

● Decouple min-batch size with the 
number of keys: can support a large 
number of negative samples.

● The key encoder is slowly progressing
through the momentum update rules:
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Self-Supervised Learning: DINO
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Caron et al. 2021 Emerging Properties in Self-Supervised Vision Transformers

Similar in spirit to MoCo, but matches features using KL divergence 
instead of dot product, and uses Vision Transformers instead of ResNets
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Self-Supervised Learning: DINOv2

11

Oquab et al, “DINOv2: Learning Robust Visual Features without Supervision”, arXiv 2023;  Darcet et al, “Vision Transformers Need Registers”, arXiv 2023

Scales up training data from 1M ImageNet images to 142M images
Very strong image features, commonly used in practice

PCA feature 
visualization
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Today:
Generative Models (part 1)
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.
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Supervised vs Unsupervised Learning

Cat

Classification

This image is CC0 public domain

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

Image captioning

A cat sitting on a suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

DOG, DOG, CAT

This image is CC0 public domain

Object Detection

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

Semantic Segmentation

GRASS, CAT, 

TREE, SKY

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.
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Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn hidden structure in data

Examples: Clustering, dimensionality 
reduction, density estimation, etc.

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.
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Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn hidden structure in data

Examples: Clustering, dimensionality 
reduction, density estimation, etc.

K-means clustering

This image is CC0 public domain

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn hidden structure in data

Examples: Clustering, dimensionality 
reduction, density estimation, etc.Principal Component Analysis 

(Dimensionality reduction)

This image from Matthias Scholz  
is CC0 public domain

3-d 2-d

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn hidden structure in data

Examples: Clustering, dimensionality 
reduction, density estimation, etc.

2-d density estimation

2-d density images lef t and right
are CC0 public domain

1-d density estimation

Figure copyright Ian Goodfellow, 2016. Reproduced with permission. 

Modeling p(x)

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Stanford CS231n 10th Anniversary May 15, 2025Lecture 13 - 22

Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Data: x

Label: y
Cat
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Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Data: x

Label: y
Cat

Probability Recap:

Density Function

p(x) assigns a positive 

number to each possible 

x; higher numbers mean 

x is more likely.

Density functions are 

normalized:

න
𝑋

𝑝 𝑥 𝑑𝑥 = 1

Different values of x 

compete for density 
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Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Data: x

Label: y
Cat

න
𝑋

𝑝 𝑥 𝑑𝑥 = 1

Different values of x 

compete for density 

P(cat|      )

P(dog|      )
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Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

P(cat|      )

P(dog|      )

P(cat|      )

P(dog|      )

Possible labels for each image compete for probability.

No competition between images
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Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

P(cat|      )

P(dog|      )

P(cat|      )

P(dog|      )

No way to handle unreasonable inputs; must 

give a label distribution for all possible inputs

Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
https://pixabay.com/service/license/
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Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

P(      )

P(      )

P(      )
P(      )

…

Cat im age is CC0 publi c domain

Dog i mage is CC0 Public Dom ain

M onkey i mage is CC0 Public Dom ain

Abst ract  im age is  f ree to use under the P ixabay license

All possible images compete for probability mass

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
https://pixabay.com/service/license/
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Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

P(      )

P(      )

P(      )
P(      )

…

Cat im age is CC0 publi c domain

Dog i mage is CC0 Public Dom ain

M onkey i mage is CC0 Public Dom ain

Abst ract  im age is  f ree to use under the P ixabay license

All possible images compete for probability mass

Requires deep understanding: Is a dog more 

likely to sit or stand? Is a 3-legged dog more likely 

than a 3-armed monkey?

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
https://pixabay.com/service/license/
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Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

P(      )

P(      )

P(      )
P(      )

…

Cat im age is CC0 publi c domain

Dog i mage is CC0 Public Dom ain

M onkey i mage is CC0 Public Dom ain

Abst ract  im age is  f ree to use under the P ixabay license

All possible images compete for probability mass

Model can “reject” unreasonable inputs by giving 

them small probability mass

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
https://pixabay.com/service/license/
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Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Cat im age is CC0 publi c domain

Dog i mage is CC0 Public Dom ain

M onkey i mage is CC0 Public Dom ain

Abst ract  im age is  f ree to use under the P ixabay license

Each possible label induces a 

competition across all possible images

P(      |cat) P(      |cat)

P(      |cat)

P(      |cat)

…

P(      |dog)P(      |dog)P(      |dog)
P(      |dog)

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
https://pixabay.com/service/license/
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Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Recall Bayes’ Rule:

𝑃 𝑥 𝑦) =
𝑃 𝑦 𝑥)

𝑃 𝑦
𝑃(𝑥)
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Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Recall Bayes’ Rule:

𝑃 𝑥 𝑦) =
𝑃 𝑦 𝑥)

𝑃 𝑦
𝑃(𝑥)

Discriminative Model

Conditional 

Generative Model

(Unconditional) 

Generative ModelPrior over 

labels

We can build a conditional generative model from 

other components … but not common in practice
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Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Assign labels to data

Feature learning (with labels)



Stanford CS231n 10th Anniversary May 15, 2025Lecture 13 - 34

Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Assign labels to data

Feature learning (with labels)

Detect outliers

Feature learning (without labels)

Sample to generate new data
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Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Assign labels to data

Feature learning (with labels)

Detect outliers

Feature learning (without labels)

Sample to generate new data

Assign labels while rejecting outliers

Sample to generate data from labels
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Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

”Generative models” means 

either of these; conditional 

generative models are most 

common in practice
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Why Generative Models?

Modeling ambiguity: If there are many possible 

outputs x for an input y, we want to model P(x | y)

Language Modeling: Produce output text x from input text y

Write me a short 

rhyming poem about 

generative models

They sample from a learned P,

A distribution—structured, free.

Each token comes conditionally,

On all the ones that used to be.
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Why Generative Models?

Modeling ambiguity: If there are many possible 

outputs x for an input y, we want to model P(x | y)

Text to Image: Produce output image x from input text y

Make me an image showing 

a person teaching a class on 

generative models in front of 

a whiteboard
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Why Generative Models?

Modeling ambiguity: If there are many possible 

outputs x for an input y, we want to model P(x | y)

Image to Video: What happens next?
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Taxonomy of Generative Models

Generative models

Figure adapted from Ian 

Goodfellow, Tutorial on 

Generative Adversarial 

Networks, 2017
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Taxonomy of Generative Models

Generative models

Explicit density

Model can 

compute P(x)

Figure adapted from Ian 

Goodfellow, Tutorial on 

Generative Adversarial 

Networks, 2017
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Model can 

compute P(x)
Cannot compute p(x) but 

can sample from P(x)

Figure adapted from Ian 

Goodfellow, Tutorial on 

Generative Adversarial 

Networks, 2017
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Tractable density

Autoregressive

Model can 

compute P(x)
Cannot compute p(x) but 

can sample from P(x)

Really 

compute 

P(x)

Figure adapted from Ian 

Goodfellow, Tutorial on 

Generative Adversarial 

Networks, 2017
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Tractable density Approximate density

Autoregressive
Variational Autoencoder 

(VAE)

Model can 

compute P(x)
Cannot compute p(x) but 

can sample from P(x)

Really 

compute 

P(x)

Approximate 

P(x)

Figure adapted from Ian 

Goodfellow, Tutorial on 

Generative Adversarial 

Networks, 2017
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Tractable density Approximate density Direct

Autoregressive
Variational Autoencoder 

(VAE)

Generative Adversarial 

Network (GAN)

Model can 

compute P(x)
Cannot compute p(x) but 

can sample from P(x)

Really 

compute 

P(x)

Approximate 

P(x)

Can directly 

sample 

from P(x)

Figure adapted from Ian 

Goodfellow, Tutorial on 

Generative Adversarial 

Networks, 2017
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Tractable density Approximate density Direct Indirect

Autoregressive
Variational Autoencoder 

(VAE)

Generative Adversarial 

Network (GAN)
Diffusion Models

Model can 

compute P(x)
Cannot compute p(x) but 

can sample from P(x)

Really 

compute 

P(x)

Approximate 

P(x)

Can directly 

sample 

from P(x)

Iterative 

procedure to 

approximate 

samples 

from P(x)

Figure adapted from Ian 

Goodfellow, Tutorial on 

Generative Adversarial 

Networks, 2017
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Tractable density Approximate density Direct Indirect

Autoregressive
Variational Autoencoder 

(VAE)

Generative Adversarial 

Network (GAN)
Diffusion Models

Model can 

compute P(x)
Cannot compute p(x) but 

can sample from P(x)

Really 

compute 

P(x)

Approximate 

P(x)

Can directly 

sample 

from P(x)

Iterative 

procedure to 

approximate 

samples 

from P(x)

Figure adapted from Ian 

Goodfellow, Tutorial on 

Generative Adversarial 

Networks, 2017

Today Next Time
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Autoregressive Models
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Maximum Likelihood Estimation

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)
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Maximum Likelihood Estimation

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Given dataset 𝑥(1), 𝑥(2), … 𝑥 𝑁 , train the model by solving:

Maximize probability of training data 

(Maximum likelihood estimation)
𝑊∗ = argmax

W
ෑ

𝑖
𝑝(𝑥 𝑖 )
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Maximum Likelihood Estimation

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Given dataset 𝑥(1), 𝑥(2), … 𝑥 𝑁 , train the model by solving:

Maximize probability of training data 

(Maximum likelihood estimation)
𝑊∗ = argmax

W
ෑ

𝑖
𝑝(𝑥 𝑖 )

= argmax
𝑊

σ𝑖 log 𝑝(𝑥
𝑖 ) Log trick: Swap product and sum
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Maximum Likelihood Estimation

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Given dataset 𝑥(1), 𝑥(2), … 𝑥 𝑁 , train the model by solving:

Maximize probability of training data 

(Maximum likelihood estimation)
𝑊∗ = argmax

W
ෑ

𝑖
𝑝(𝑥 𝑖 )

= argmax
𝑊

σ𝑖 log 𝑝(𝑥
𝑖 )

= argmax
𝑊

σ𝑖 log 𝑓(𝑥
𝑖 ,𝑊)

Log trick: Swap product and sum

This is our loss function.  

maximize it with gradient descent
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Autoregressive Models

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Assume x is a sequence:              𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑇)
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Autoregressive Models

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Assume x is a sequence:              𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑇)

𝑝 𝑥 = 𝑝 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑇
= 𝑝 𝑥1 𝑝 𝑥2 𝑥1)𝑝 𝑥3 𝑥1, 𝑥2)…
= ς𝑡=1

𝑇 𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1)

Use the chain rule of probability:
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Autoregressive Models

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Assume x is a sequence:              𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑇)

𝑝 𝑥 = 𝑝 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑇
= 𝑝 𝑥1 𝑝 𝑥2 𝑥1)𝑝 𝑥3 𝑥1, 𝑥2)…
= ς𝑡=1

𝑇 𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1)

Use the chain rule of probability:
We have already seen this!

Language modeling with RNN
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LLMs are Autoregressive Models

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Assume x is a sequence:              𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑇)

𝑝 𝑥 = 𝑝 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑇
= 𝑝 𝑥1 𝑝 𝑥2 𝑥1)𝑝 𝑥3 𝑥1, 𝑥2)…
= ς𝑡=1

𝑇 𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1)

Use the chain rule of probability:
Language 

modeling 

with masked 

Transformer
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Autoregressive Models of Images

Treat an image as a sequence of 8-bit 

subpixel values (scanline order)

Predict each subpixel as a classification 

among 256 values [0…255]

Model with an RNN or Transformer …

…

… … …

Van den Oord et al,  “Pixel Recurrent Neural Networks”, ICML 2016
Van den Oord et al,  “Conditional Image Generat ion with PixelCNN Decoders”, NeurIPS 2016
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Autoregressive Models of Images

Treat an image as a sequence of 8-bit 

subpixel values (scanline order)

Predict each subpixel as a classification 

among 256 values [0…255]

Model with an RNN or Transformer …

…

… … …

Problem: Too expensive. 1024x1024 

image is a sequence of 3M subpixels

Van den Oord et al,  “Pixel Recurrent Neural Networks”, ICML 2016
Van den Oord et al,  “Conditional Image Generat ion with PixelCNN Decoders”, NeurIPS 2016
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Autoregressive Models of Images

Treat an image as a sequence of 8-bit 

subpixel values (scanline order)

Predict each subpixel as a classification 

among 256 values [0…255]

Model with an RNN or Transformer …

…

… … …

Problem: Too expensive. 1024x1024 

image is a sequence of 3M subpixels

Solution (jumping ahead): Model as 

sequence of tiles, not sequence of subpixels
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Variational Autoencoders (VAEs)
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Variational Autoencoders

PixelRNN / PixelCNN explicitly parameterizes density function with a 

neural network, so we can train to maximize likelihood of training data:

Variational Autoencoders (VAE) define an intractable density that we 

cannot explicitly compute or optimize

But we will be able to directly optimize a lower bound on the density

p𝑊(𝑥) =ෑ

𝑡=1

𝑇

𝑝𝑊 𝑥𝑡 𝑥1, … , 𝑥𝑡−1)
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Variational Autoencoders (VAEs)
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(Non-Variational) Autoencoders

Encoder

Input data

Features

Idea: Unsupervised method for learning to extract features z from inputs x, without labels

Input Data

Features should extract useful information 

(object identity, appearance, scene type, etc) 

that can be used for downstream tasks

Encoder can be MLP, 

CNN, Transformer, …
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(Non-Variational) Autoencoders

Encoder

Input data

Features

Problem: How can we learn without labels?

Input Data

Features should extract useful information 

(object identity, appearance, scene type, etc) 

that can be used for downstream tasks

Encoder can be MLP, 

CNN, Transformer, …
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(Non-Variational) Autoencoders

Encoder

Input data

Features

Problem: How can we learn without labels?

Input Data

Solution: Reconstruct the input data with a decoder. 

Decoder

Reconstructed 

input data

Decoder can be MLP, 

CNN, Transformer, …

“Autoencoding” = 

Encoding yourself
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(Non-Variational) Autoencoders

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data. 

Decoder

Reconstructed 

input data

Loss Function

ො𝑥 − 𝑥 2
2

Input Data

Does not use any 

labels! Just raw data!

Reconstructed data
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(Non-Variational) Autoencoders

Encoder

Input data

Features

After training, can use encoder for downstream tasks

Classifier

Predicted label

Loss Function

(Softmax)

Input Data

Reconstructed data
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(Non-Variational) Autoencoders

Features

If we could generate new z, could use the decoder to generate images

Decoder

Generated image



Stanford CS231n 10th Anniversary May 15, 2025Lecture 13 - 69

(Non-Variational) Autoencoders

Features

If we could generate new z, could use the decoder to generate images

Decoder

Generated image

Problem: Generating new z is not any easier than generating new x
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(Non-Variational) Autoencoders

Features

If we could generate new z, could use the decoder to generate images

Decoder

Generated image

Problem: Generating new z is not any easier than generating new x

Solution: What if we force all z to come from a known distribution?
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Variational Autoencoders (VAEs)

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data

Intuition: x is an image, z is latent 

factors used to generate x: attributes, 

orientation, etc. 

Assume training data 𝑥 𝑖
𝑖=1

𝑁
is 

generated from unobserved (latent) 

representation z
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data

Sample z 

from prior

Sample from 

conditional

After training, sample new data like this: Intuition: x is an image, z is latent 

factors used to generate x: attributes, 

orientation, etc. 

Assume training data 𝑥 𝑖
𝑖=1

𝑁
is 

generated from unobserved (latent) 

representation z
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data

Sample z 

from prior

Sample from 

conditional

After training, sample new data like this: Intuition: x is an image, z is latent 

factors used to generate x: attributes, 

orientation, etc. 

Assume simple prior p(z), e.g. Gaussian

Assume training data 𝑥 𝑖
𝑖=1

𝑁
is 

generated from unobserved (latent) 

representation z
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data

Sample z 

from prior

Sample from 

conditional

After training, sample new data like this: How can we train this?

Assume training data 𝑥 𝑖
𝑖=1

𝑁
is 

generated from unobserved (latent) 

representation z

Basic idea: maximum likelihood

If we had a dataset of (x, z) then train a 

conditional generative model p(x | z)
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data

Sample z 

from prior

Sample from 

conditional

After training, sample new data like this: How can we train this?

Assume training data 𝑥 𝑖
𝑖=1

𝑁
is 

generated from unobserved (latent) 

representation z

Basic idea: maximum likelihood

We don’t observe z, so marginalize:

𝑝𝜃 𝑥 = න𝑝𝜃 𝑥, 𝑧 𝑑𝑧 = න𝑝𝜃 𝑥 𝑧 𝑝𝜃 𝑧 𝑑𝑧
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data

Sample z 

from prior

Sample from 

conditional

After training, sample new data like this: How can we train this?

Assume training data 𝑥 𝑖
𝑖=1

𝑁
is 

generated from unobserved (latent) 

representation z

Basic idea: maximum likelihood

We don’t observe z, so marginalize:

𝑝𝜃 𝑥 = න𝑝𝜃 𝑥, 𝑧 𝑑𝑧 = න𝑝𝜃 𝑥 𝑧 𝑝𝜃 𝑧 𝑑𝑧

Ok, we can compute this with the decoder
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data

Sample z 

from prior

Sample from 

conditional

After training, sample new data like this: How can we train this?

Assume training data 𝑥 𝑖
𝑖=1

𝑁
is 

generated from unobserved (latent) 

representation z

Basic idea: maximum likelihood

We don’t observe z, so marginalize:

𝑝𝜃 𝑥 = න𝑝𝜃 𝑥, 𝑧 𝑑𝑧 = න𝑝𝜃 𝑥 𝑧 𝑝𝜃 𝑧 𝑑𝑧

Ok, we assumed Gaussian prior for z
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data

Sample z 

from prior

Sample from 

conditional

After training, sample new data like this: How can we train this?

Assume training data 𝑥 𝑖
𝑖=1

𝑁
is 

generated from unobserved (latent) 

representation z

Basic idea: maximum likelihood

We don’t observe z, so marginalize:

𝑝𝜃 𝑥 = න𝑝𝜃 𝑥, 𝑧 𝑑𝑧 = න𝑝𝜃 𝑥 𝑧 𝑝𝜃 𝑧 𝒅𝒛

Problem, we can’t integrate over all z
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data

Sample z 

from prior

Sample from 

conditional

After training, sample new data like this: How can we train this?

Assume training data 𝑥 𝑖
𝑖=1

𝑁
is 

generated from unobserved (latent) 

representation z

Basic idea: maximum likelihood

Another idea: Try Bayes’ Rule:

𝑝𝜃 𝑥 =
𝑝𝜃 𝑥 𝑧)𝑝𝜃(𝑧)

𝑝𝜃 𝑧 | 𝑥
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data

Sample z 

from prior

Sample from 

conditional

After training, sample new data like this: How can we train this?

Assume training data 𝑥 𝑖
𝑖=1

𝑁
is 

generated from unobserved (latent) 

representation z

Basic idea: maximum likelihood

Another idea: Try Bayes’ Rule:

Ok, we can compute this with the decoder

𝑝𝜃 𝑥 =
𝑝𝜃 𝑥 𝑧)𝑝𝜃(𝑧)

𝑝𝜃 𝑧 | 𝑥
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data

Sample z 

from prior

Sample from 

conditional

After training, sample new data like this: How can we train this?

Assume training data 𝑥 𝑖
𝑖=1

𝑁
is 

generated from unobserved (latent) 

representation z

Basic idea: maximum likelihood

Another idea: Try Bayes’ Rule:

Ok, we assumed Gaussian prior for z

𝑝𝜃 𝑥 =
𝑝𝜃 𝑥 𝑧)𝑝𝜃(𝑧)

𝑝𝜃 𝑧 | 𝑥
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data

Sample z 

from prior

Sample from 

conditional

After training, sample new data like this: How can we train this?

Assume training data 𝑥 𝑖
𝑖=1

𝑁
is 

generated from unobserved (latent) 

representation z

Basic idea: maximum likelihood

Another idea: Try Bayes’ Rule:

𝑝𝜃 𝑥 =
𝑝𝜃 𝑥 𝑧)𝑝𝜃(𝑧)

𝑝𝜃 𝑧 | 𝑥
Problem: no way 

to compute this
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data

Sample z 

from prior

Sample from 

conditional

After training, sample new data like this: How can we train this?

Assume training data 𝑥 𝑖
𝑖=1

𝑁
is 

generated from unobserved (latent) 

representation z

Basic idea: maximum likelihood

Another idea: Try Bayes’ Rule:

𝑝𝜃 𝑥 =
𝑝𝜃 𝑥 𝑧)𝑝𝜃(𝑧)

𝑝𝜃 𝑧 | 𝑥
Problem: no way 

to compute this

Solution: Train another network 

that learns 𝑞𝜙 𝑧 𝑥) ≈ 𝑝𝜃 𝑧 𝑥)
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Variational Autoencoders

Probabilistic spin on autoencoders: 

1. Learn latent features z from raw data

2. Sample from the model to generate new data

Sample z 

from prior

Sample from 

conditional

After training, sample new data like this: How can we train this?

Assume training data 𝑥 𝑖
𝑖=1

𝑁
is 

generated from unobserved (latent) 

representation z

Basic idea: maximum likelihood

Another idea: Try Bayes’ Rule:

𝑝𝜃 𝑥 =
𝑝𝜃 𝑥 𝑧)𝑝𝜃(𝑧)

𝑝𝜃 𝑧 | 𝑥
≈
𝑝𝜃 𝑥 𝑧)𝑝𝜃(𝑧)

𝑞𝜙 𝑧 | 𝑥

Solution: Train another network 

that learns 𝑞𝜙 𝑧 𝑥) ≈ 𝑝𝜃 𝑧 𝑥)
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Variational Autoencoders

𝑝𝜃 𝑥 𝑧)

𝑧

Decoder Network:

Input latent code z,

Output distribution over data x

Encoder Network:

Input data x,

Output distribution 

over latent codes z

𝑥

𝑞𝜙 𝑧 | 𝑥

If we can ensure that 
𝑞𝜙 𝑧 𝑥) ≈ 𝑝𝜃 𝑧 𝑥), 

then we can approximate 

𝑝𝜃 𝑥 ≈
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑞𝜙 𝑧 𝑥)

Idea: Jointly train both 

encoder and decoder
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Variational Autoencoders

𝑝𝜃 𝑥 𝑧)

𝑧

Decoder Network:

Input latent code z,

Output distribution over data x

Encoder Network:

Input data x,

Output distribution 

over latent codes z

𝑥

𝑞𝜙 𝑧 | 𝑥

If we can ensure that 
𝑞𝜙 𝑧 𝑥) ≈ 𝑝𝜃 𝑧 𝑥), 

then we can approximate 

𝑝𝜃 𝑥 ≈
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑞𝜙 𝑧 𝑥)

Idea: Jointly train both 

encoder and decoder

Aside: How to output probability 

distributions from neural networks?

Network outputs mean (and std) of 

a (diagonal) distribution



Stanford CS231n 10th Anniversary May 15, 2025Lecture 13 - 89

Variational Autoencoders

𝜇𝑥|𝑧

𝑧

Decoder Network:

Input latent code z,

Output distribution over data x

Encoder Network:

Input data x,

Output distribution 

over latent codes z

𝑥

𝜇𝑧|𝑥

If we can ensure that 
𝑞𝜙 𝑧 𝑥) ≈ 𝑝𝜃 𝑧 𝑥), 

then we can approximate 

𝑝𝜃 𝑥 ≈
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑞𝜙 𝑧 𝑥)

Idea: Jointly train both 

encoder and decoder

Aside: How to output probability 

distributions from neural networks?

Network outputs mean (and std) of 

a (diagonal) distribution

Σ𝑧|𝑥

𝑝𝜃 𝑥 | 𝑧 = 𝑁(𝜇𝑥|𝑧 , 𝜎
2) 𝑞𝜙 𝑧 | 𝑥 = 𝑁(𝜇𝑧|𝑥 , Σ𝑧|𝑥)
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Variational Autoencoders

𝜇𝑥|𝑧

𝑧

Decoder Network:

Input latent code z,

Output distribution over data x

Encoder Network:

Input data x,

Output distribution 

over latent codes z

𝑥

𝜇𝑧|𝑥

If we can ensure that 
𝑞𝜙 𝑧 𝑥) ≈ 𝑝𝜃 𝑧 𝑥), 

then we can approximate 

𝑝𝜃 𝑥 ≈
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑞𝜙 𝑧 𝑥)

Idea: Jointly train both 

encoder and decoderΣ𝑧|𝑥

𝑝𝜃 𝑥 | 𝑧 = 𝑁(𝜇𝑥|𝑧 , 𝜎
2) 𝑞𝜙 𝑧 | 𝑥 = 𝑁(𝜇𝑧|𝑥 , Σ𝑧|𝑥)

log 𝑝𝜃 𝑥 𝑧) = −
1

2𝜎2
𝑥 − 𝜇 2

2 + 𝐶2

Maximizing log 𝑝𝜃 𝑥 𝑧) is 

equivalent to minimizing 

L2 distance between x 

and network output!
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Variational Autoencoders

𝜇𝑥|𝑧

𝑧

Decoder Network:

Input latent code z,

Output distribution over data x

Encoder Network:

Input data x,

Output distribution 

over latent codes z

𝑥

𝜇𝑧|𝑥

If we can ensure that 
𝑞𝜙 𝑧 𝑥) ≈ 𝑝𝜃 𝑧 𝑥), 

then we can approximate 

𝑝𝜃 𝑥 ≈
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑞𝜙 𝑧 𝑥)

Idea: Jointly train both 

encoder and decoderΣ𝑧|𝑥

𝑝𝜃 𝑥 | 𝑧 = 𝑁(𝜇𝑥|𝑧 , 𝜎
2) 𝑞𝜙 𝑧 | 𝑥 = 𝑁(𝜇𝑧|𝑥 , Σ𝑧|𝑥)

log 𝑝𝜃 𝑥 𝑧) = −
1

2𝜎2
𝑥 − 𝜇 2

2 + 𝐶2

Q: What’s our 

training objective?
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Variational Autoencoders (ELBO)

log 𝑝𝜃(𝑥) = log
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑝𝜃 𝑧 𝑥)
= log

𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑞𝜙(𝑧|𝑥)

𝑝𝜃 𝑧 𝑥 𝑞𝜙(𝑧|𝑥)

Bayes’ Rule
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Variational Autoencoders (ELBO)

log 𝑝𝜃(𝑥) = log
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑝𝜃 𝑧 𝑥)
= log

𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑞𝜙(𝑧|𝑥)

𝑝𝜃 𝑧 𝑥 𝑞𝜙(𝑧|𝑥)

Multiply top and bottom by qΦ(z|x)
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Variational Autoencoders (ELBO)

log 𝑝𝜃(𝑥) = log
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑝𝜃 𝑧 𝑥)
= log

𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑞𝜙(𝑧|𝑥)

𝑝𝜃 𝑧 𝑥 𝑞𝜙(𝑧|𝑥)

= log 𝑝𝜃 𝑥 𝑧 − log
𝑞𝜙 𝑧|𝑥

𝑝(𝑧)
+ log

𝑞𝜙(𝑧|𝑥)

𝑝𝜃(𝑧|𝑥)

Logarithms + rearranging 
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Variational Autoencoders (ELBO)

log 𝑝𝜃(𝑥) = log
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑝𝜃 𝑧 𝑥)
= log

𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑞𝜙(𝑧|𝑥)

𝑝𝜃 𝑧 𝑥 𝑞𝜙(𝑧|𝑥)

= log 𝑝𝜃 𝑥 𝑧 − log
𝑞𝜙 𝑧|𝑥

𝑝(𝑧)
+ log

𝑞𝜙(𝑧|𝑥)

𝑝𝜃(𝑧|𝑥)

log 𝑝𝜃 𝑥 = 𝐸𝑧~𝑞𝜙(𝑧|𝑥) log 𝑝𝜃(𝑥)
We can wrap in an 

expectation since it 

doesn’t depend on z
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Variational Autoencoders (ELBO)

log 𝑝𝜃(𝑥) = log
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑝𝜃 𝑧 𝑥)
= log

𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑞𝜙(𝑧|𝑥)

𝑝𝜃 𝑧 𝑥 𝑞𝜙(𝑧|𝑥)

= 𝐸𝑧[log 𝑝𝜃(𝑥|𝑧)] − 𝐸𝑧 log
𝑞𝜙 𝑧 𝑥

𝑝 𝑧
+ 𝐸𝑧 log

𝑞𝜙(𝑧|𝑥)

𝑝𝜃(𝑧|𝑥)

log 𝑝𝜃 𝑥 = 𝐸𝑧~𝑞𝜙(𝑧|𝑥) log 𝑝𝜃(𝑥)
We can wrap in an 

expectation since it 

doesn’t depend on z
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Variational Autoencoders (ELBO)

log 𝑝𝜃(𝑥) = log
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑝𝜃 𝑧 𝑥)
= log

𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑞𝜙(𝑧|𝑥)

𝑝𝜃 𝑧 𝑥 𝑞𝜙(𝑧|𝑥)

= 𝐸𝑧[log 𝑝𝜃(𝑥|𝑧)] − 𝐸𝑧 log
𝑞𝜙 𝑧 𝑥

𝑝 𝑧
+ 𝐸𝑧 log

𝑞𝜙(𝑧|𝑥)

𝑝𝜃(𝑧|𝑥)

= 𝐸𝑧~𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧 + 𝐷𝐾𝐿(𝑞𝜙 𝑧 𝑥 , 𝑝𝜃 𝑧 𝑥 )
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Variational Autoencoders (ELBO)

log 𝑝𝜃(𝑥) = log
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑝𝜃 𝑧 𝑥)
= log

𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑞𝜙(𝑧|𝑥)

𝑝𝜃 𝑧 𝑥 𝑞𝜙(𝑧|𝑥)

= 𝐸𝑧[log 𝑝𝜃(𝑥|𝑧)] − 𝐸𝑧 log
𝑞𝜙 𝑧 𝑥

𝑝 𝑧
+ 𝐸𝑧 log

𝑞𝜙(𝑧|𝑥)

𝑝𝜃(𝑧|𝑥)

= 𝐸𝑧~𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧 + 𝐷𝐾𝐿(𝑞𝜙 𝑧 𝑥 , 𝑝𝜃 𝑧 𝑥 )

Data reconstruction: x => encoder => decoder should reconstruct x

Can compute in closed form for Gaussians. 
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Variational Autoencoders (ELBO)

log 𝑝𝜃(𝑥) = log
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑝𝜃 𝑧 𝑥)
= log

𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑞𝜙(𝑧|𝑥)

𝑝𝜃 𝑧 𝑥 𝑞𝜙(𝑧|𝑥)

= 𝐸𝑧[log 𝑝𝜃(𝑥|𝑧)] − 𝐸𝑧 log
𝑞𝜙 𝑧 𝑥

𝑝 𝑧
+ 𝐸𝑧 log

𝑞𝜙(𝑧|𝑥)

𝑝𝜃(𝑧|𝑥)

= 𝐸𝑧~𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧 + 𝐷𝐾𝐿(𝑞𝜙 𝑧 𝑥 , 𝑝𝜃 𝑧 𝑥 )

Prior: Encoder output should match prior over z.

Can compute in closed for for Gaussians.



Stanford CS231n 10th Anniversary May 15, 2025Lecture 13 - 100

Variational Autoencoders (ELBO)

log 𝑝𝜃(𝑥) = log
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑝𝜃 𝑧 𝑥)
= log

𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑞𝜙(𝑧|𝑥)

𝑝𝜃 𝑧 𝑥 𝑞𝜙(𝑧|𝑥)

= 𝐸𝑧[log 𝑝𝜃(𝑥|𝑧)] − 𝐸𝑧 log
𝑞𝜙 𝑧 𝑥

𝑝 𝑧
+ 𝐸𝑧 log

𝑞𝜙(𝑧|𝑥)

𝑝𝜃(𝑧|𝑥)

= 𝐸𝑧~𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧 + 𝐷𝐾𝐿(𝑞𝜙 𝑧 𝑥 , 𝑝𝜃 𝑧 𝑥 )

Posterior Approximation: Encoder output 𝑞𝜙(𝑧|𝑥) should match 𝑝𝜃 𝑧 𝑥

We cannot compute this for Gaussians…
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Variational Autoencoders (ELBO)

log 𝑝𝜃(𝑥) = log
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑝𝜃 𝑧 𝑥)
= log

𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑞𝜙(𝑧|𝑥)

𝑝𝜃 𝑧 𝑥 𝑞𝜙(𝑧|𝑥)

= 𝐸𝑧[log 𝑝𝜃(𝑥|𝑧)] − 𝐸𝑧 log
𝑞𝜙 𝑧 𝑥

𝑝 𝑧
+ 𝐸𝑧 log

𝑞𝜙(𝑧|𝑥)

𝑝𝜃(𝑧|𝑥)

= 𝐸𝑧~𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧 + 𝐷𝐾𝐿(𝑞𝜙 𝑧 𝑥 , 𝑝𝜃 𝑧 𝑥 )

Posterior Approximation: Decoder output 𝑞𝜙(𝑧|𝑥) should match 𝑝𝜃 𝑧 𝑥

KL is >= 0, so we can drop it to get a lower bound on likelihood
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Variational Autoencoders (ELBO)

log 𝑝𝜃(𝑥) = log
𝑝𝜃 𝑥 𝑧)𝑝(𝑧)

𝑝𝜃 𝑧 𝑥)
= log

𝑝𝜃 𝑥 𝑧 𝑝 𝑧 𝑞𝜙(𝑧|𝑥)

𝑝𝜃 𝑧 𝑥 𝑞𝜙(𝑧|𝑥)

= 𝐸𝑧[log 𝑝𝜃(𝑥|𝑧)] − 𝐸𝑧 log
𝑞𝜙 𝑧 𝑥

𝑝 𝑧
+ 𝐸𝑧 log

𝑞𝜙(𝑧|𝑥)

𝑝𝜃(𝑧|𝑥)

= 𝐸𝑧~𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧 + 𝐷𝐾𝐿(𝑞𝜙 𝑧 𝑥 , 𝑝𝜃 𝑧 𝑥 )

log 𝑝𝜃(𝑥) ≥ 𝐸𝑧~𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧
This is our VAE 

training objective
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Variational Autoencoders
Jointly train encoder q and decoder p to maximize 

the variational lower bound on the data likelihood

Also called Evidence Lower Bound (ELBo)

log 𝑝𝜃(𝑥) ≥ 𝐸𝑧~𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧

𝜇𝑥|𝑧

𝑧𝑥

𝜇𝑧|𝑥 Σ𝑧|𝑥

𝑝𝜃 𝑥 | 𝑧 = 𝑁(𝜇𝑥|𝑧 , 𝜎
2)𝑞𝜙 𝑧 | 𝑥 = 𝑁(𝜇𝑧|𝑥 , Σ𝑧|𝑥)

Decoder NetworkEncoder Network
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Variational Autoencoders: Training

𝐸𝑧~𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧

Train by maximizing the 

variational lower bound
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Variational Autoencoders: Training

𝐸𝑧~𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧

𝑥

𝜇𝑧|𝑥 Σ𝑧|𝑥

𝑞𝜙 𝑧 | 𝑥 = 𝑁(𝜇𝑧|𝑥 , Σ𝑧|𝑥)

Encoder

Train by maximizing the 

variational lower bound

1. Run input data through encoder to get 

distribution over z
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Variational Autoencoders: Training

𝐸𝑧~𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧

𝑥

𝜇𝑧|𝑥 Σ𝑧|𝑥

𝑞𝜙 𝑧 | 𝑥 = 𝑁(𝜇𝑧|𝑥 , Σ𝑧|𝑥)

Encoder

Train by maximizing the 

variational lower bound

1. Run input data through encoder to get 

distribution over z

2. Prior loss: Encoder output should be unit 

Gaussian (zero mean, unit variance)
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Variational Autoencoders: Training

𝐸𝑧~𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧

𝑧

𝑥

𝜇𝑧|𝑥 Σ𝑧|𝑥

𝑞𝜙 𝑧 | 𝑥 = 𝑁(𝜇𝑧|𝑥 , Σ𝑧|𝑥)

Encoder

𝜖 ∼ 𝑁 0, 𝐼
𝑧 = 𝜖 ⊙ Σ𝑧|𝑥 + 𝜇𝑧|𝑥

Train by maximizing the 

variational lower bound

1. Run input data through encoder to get 

distribution over z

2. Prior loss: Encoder output should be unit 

Gaussian (zero mean, unit variance)
3. Sample z from encoder output 𝑞𝜙 𝑧 | 𝑥

(Reparameterization trick)
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Variational Autoencoders: Training

𝐸𝑧~𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧

𝜇𝑥|𝑧

𝑧

𝑥

𝜇𝑧|𝑥 Σ𝑧|𝑥

𝑝𝜃 𝑥 | 𝑧 = 𝑁(𝜇𝑥|𝑧 , 𝜎
2)

𝑞𝜙 𝑧 | 𝑥 = 𝑁(𝜇𝑧|𝑥 , Σ𝑧|𝑥)

Encoder

Decoder

𝜖 ∼ 𝑁 0, 𝐼
𝑧 = 𝜖 ⊙ Σ𝑧|𝑥 + 𝜇𝑧|𝑥

Train by maximizing the 

variational lower bound

1. Run input data through encoder to get 

distribution over z

2. Prior loss: Encoder output should be unit 

Gaussian (zero mean, unit variance)
3. Sample z from encoder output 𝑞𝜙 𝑧 | 𝑥

(Reparameterization trick)

4. Run z through decoder to get predicted 

data mean
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Variational Autoencoders: Training

𝐸𝑧~𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧

𝜇𝑥|𝑧

𝑧

𝑥

𝜇𝑧|𝑥 Σ𝑧|𝑥

𝑝𝜃 𝑥 | 𝑧 = 𝑁(𝜇𝑥|𝑧 , 𝜎
2)

𝑞𝜙 𝑧 | 𝑥 = 𝑁(𝜇𝑧|𝑥 , Σ𝑧|𝑥)

Encoder

Decoder

𝜖 ∼ 𝑁 0, 𝐼
𝑧 = 𝜖 ⊙ Σ𝑧|𝑥 + 𝜇𝑧|𝑥

Train by maximizing the 

variational lower bound

1. Run input data through encoder to get 

distribution over z

2. Prior loss: Encoder output should be unit 

Gaussian (zero mean, unit variance)
3. Sample z from encoder output 𝑞𝜙 𝑧 | 𝑥

(Reparameterization trick)

4. Run z through decoder to get predicted 

data mean
5. Reconstruction loss: predicted mean 

should match x in L2
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Variational Autoencoders: Training

𝐸𝑧~𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔 𝑝𝜃(𝑥|𝑧)] − 𝐷𝐾𝐿 𝑞𝜙 𝑧 𝑥 , 𝑝 𝑧

𝜇𝑥|𝑧

𝑧

𝑥

𝜇𝑧|𝑥 Σ𝑧|𝑥

𝑝𝜃 𝑥 | 𝑧 = 𝑁(𝜇𝑥|𝑧 , 𝜎
2)

𝑞𝜙 𝑧 | 𝑥 = 𝑁(𝜇𝑧|𝑥 , Σ𝑧|𝑥)

Encoder

Decoder

𝜖 ∼ 𝑁 0, 𝐼
𝑧 = 𝜖 ⊙ Σ𝑧|𝑥 + 𝜇𝑧|𝑥

Train by maximizing the 

variational lower bound

The loss terms fight against each other!

Reconstruction loss wants Σ𝑧|𝑥 = 0 and 

𝜇𝑧|𝑥 to be unique for each x, so decoder can 

deterministically reconstruct x

Prior loss wants Σ𝑧|𝑥 = 𝐈 and 𝜇𝑧|𝑥 = 0 so 

encoder output is always a unit Gaussian
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Variational Autoencoders: Sampling

𝜇𝑥|𝑧

𝑧

𝑝𝜃 𝑥 | 𝑧 = 𝑁(𝜇𝑥|𝑧 , 𝜎
2)

Decoder

𝑧 ∼ 𝑁 0, 𝐼

1. Sample z from the prior

2. Run through decoder to get an image
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Variational Autoencoders: Disentangling

Vary z1

Vary z2

The diagonal prior on p(z) causes 

dimensions of z to be independent

“Disentangling factors of variation”

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014
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Recap: Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn hidden structure in data

Examples: Clustering, dimensionality 
reduction, density estimation, etc.

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.
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Recap: Generative vs Discriminative Models

Discriminative Model:
Learn a probability 
distribution p(y|x)

Generative Model:
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Data: x

Label: y
Cat

Density Function

p(x) assigns a positive 

number to each possible 

x; higher numbers mean 

x is more likely.

Density functions are 

normalized:

න
𝑋

𝑝 𝑥 𝑑𝑥 = 1

Different values of x 

compete for density 



Stanford CS231n 10th Anniversary May 15, 2025Lecture 13 - 115

Recap: Generative Models

Generative models

Explicit density Implicit density

Tractable density Approximate density Direct Indirect

Autoregressive
Variational Autoencoder 

(VAE)

Generative Adversarial 

Network (GAN)
Diffusion Models

Model can 

compute P(x)
Cannot compute p(x) but 

can sample from P(x)

Really 

compute 

P(x)

Approximate 

P(x)

Can directly 

sample 

from P(x)

Iterative 

procedure to 

approximate 

samples 

from P(x)

Figure adapted from Ian 

Goodfellow, Tutorial on 

Generative Adversarial 

Networks, 2017

Today Next Time
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Next Time:
Generative Models (part 2)
Generative Adversarial Networks
Diffusion Models
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