Lecture 13:
Generative Models (part 1)
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Administrative

Tomorrow 5/16:
e Assignment 3 out
e Project milestone due
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Last Time: Self-Supervised Learning

Dataset
(no labels)

IDIEISLole S  Labels/outputs

. (e automatically
ClaSSlfler) generated

Regressor from data

Learned Representation
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Last Time: Self-Supervised Learning

Dataset
(no labels)

Labels

Learned Representation
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Last Time: Self-Supervised Learning

Pretext tasks from image transformations
* Rotation, inpainting, rearrangement, coloring
» Reconstruction-based learning (MAE)
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Last Time: Self-Supervised Learning

Contrastive representation learning

* Intuition and formulation

* Instance contrastive learning: SImCLR and MOCO
* Sequence contrastive learning: CPC

» Self-Distillation Without Labels, DINO
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Last Time: Contrastive Learn
Input Random  Extract i‘!

batch transforms features

Corresponding pairs
should have similar
features

2

Other pairs should have
dissimilar features

HEENN"

B HEENT

UUUUOY

Chen et al, “A simple framework for contrastive learning of visual representations”, ICML 2020
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Last Time: Contrastive Learn

Input Random Extract iﬂ

batch transforms features

Corresponding pairs
should have similar
features

2

Other pairs should have
dissimilar features

Problem: Need large
batch size with lots of
negatives

HEENN"

B HEENT

UUUUOY

Chen et al, “A simple framework for contrastive learning of visual representations”, ICML 2020
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Contrastive Learning: MoCo

contrastive loss 15 oraq Key differences to SimCLR:
N _
> simil'arity - / e Keep arunning queue of keys (negative
samples).
q kﬁ kl k? e Compute gradients and update the
A queue } encoder only through the queries.

e Decouple min-batch size with the
number of keys: can support a large
number of negative samples.

momentum

encoder
encoder

A
' e The key encoder is slowly progressing
key key _key

query through the momentum update rules:
€T T T T g P
0 1 2 Ok < mbx + (1 —m)lq

He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
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Self-Supervised Learning: DINO

Similarin spirit to MoCo, but matches features using KL divergence
instead of dot product, and uses Vision Transformers instead of ResNets

loss:
@ p2 log pi @ Teacher
1 -
(oS
58 § Centering + Sharpening

| softmax | | softmax | @ — . : — L |
|

centering °€ \ ET l
I L

ema backprop
student 205 — teacher 26t minibatch \ <
I —> : —>

gteacher —~T- gteacher + (]- - T) ' Gstudent

Caron et al. 2021 Emerging Properties in Self-Supervised Vision Transformers
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Self-Supervised Learning: DINOv2

Scales up training data from 1M ImageNet images to 142M images
Very strong image features, commonly used in practice

PCA feature
visualization

Oquab et al, “DINOv2: Learning Robust Visual Features without Supervision”,arXiv 2023; Darcet et al, “Vision Transformers Need Registers”, arXiv 2023

Stanford CS231n 10t Anniversary Lecture 13- 11 May 15, 2025



Today:
Generative Models (part 1)
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a functionto map x->vy
Examples: Classification, regression,

object detection, semantic
segmentation, image captioning, etc.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a functionto map x->vy

Examples: Classification, regression,
object detection, semantic Classification
segmentation, image captioning, etc.
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a functionto map x->vy

Examples: Classification, regression, A cat sitting on a suitcase on the floor
object detection, semantic o
segmentation, image captioning, etc. Image captioning

neuraltalk2
Image < CCOPublic domain
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https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a functionto map x->vy

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc. Object Detection

DOG, DOG, CAT
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x->y

Examples: Classification, regression, GﬁiA\ESES’SKY ’
object detection, semantic ’
segmentation, image captioning, etc. Semantic Segmentation
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Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn hidden structure in data

Examples: Clustering, dimensionality
reduction, density estimation, etc.
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Supervised vs Unsupervised Learning
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K-means clustering

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn hidden structure in data

Examples: Clustering, dimensionality
reduction, density estimation, etc.
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https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

original data space

PCA .. .. ’.“"_“"";'“."": _
Tpe ol e e e o
PCER amg
¥ st e
T ) e
Y A = =S 2 2 P
-i'ja'“: P{;1
3-d —_— 2-d
Principal Component Analysis
(Dimensionality reduction)

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn hidden structure in data

Examples: Clustering, dimensionality
reduction, density estimation, etc.
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http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

2-d density estimation

Modeling p(x)

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn hidden structure in data

Examples: Clustering, dimensionality
reduction, density estimation, etc.
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https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Generative vs Discriminative Models

Discriminative Model.: Data: x
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative Label: y
Model: Learn p(x]y) Cat
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Generative vs Discriminative Models  Probability Recap:

Density Function

p(x) assigns a positive
number to each possible
X; higher numbers mean
x is more likely.

Discriminative Model.: Data: x
Learn a probability
distribution p(y|x)

Generative Model: Density functions are

Learn a probability normalized:
distribution p(x)
j p(x)dx =1
X
Conditional Generative Label: y |
Model: Learn p(x|y) Cat Different values of x

compete for density
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Generative vs Discriminative Models

Discriminative Model: Data: x P(cat| ﬂ)
Learn a probability
distribution p(y|x)
P(dog| & )
j p(x)dx =1
X
Label: y
Cat Different values of x

compete for density
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Generative vs Discriminative Models

Discriminative Model: P(cat| g )
Learn a probability
distribution p(y|x) —
Pl P(dog| a )
P(dog| [ )

—p P(cat|[Z])

Possible labels for each image compete for probability.
No competition between images
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Monkey image is CC0 Public Domain
Abstractimage is free to use under the Pixabay license

Generative vs Discriminative Models
Discriminative Model: P(cat| g
Learn a probability
distribution p(y|x)

No way to handle unreasonable inputs; must
give a label distribution for all possible inputs
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https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
https://pixabay.com/service/license/

Generative vs Discriminative Models

P(E'H)

1 I

Generative Model:
Learn a probability
distribution p(x)

All possible images compete for probability mass
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Generative vs Discriminative Models

P(E'H)

Generative Model:
Learn a probability
distribution p(x)

All possible images compete for probability mass

Requires deep understanding: Is a dog more
likely to sit or stand? Is a 3-legged dog more likely
than a 3-armed monkey?
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Generative vs Discriminative Models

I:’(ﬂ'ﬂ)

1 I

Generative Model:
Learn a probability
distribution p(x)

All possible images compete for probability mass

Model can “reject” unreasonable inputs by giving
them small probability mass
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
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Generative vs Discriminative Models
P(g |cat)
_I P(m |Cat|5’( cat) p g

A |cat)
m [dog)
P( gt |dog)l P(H |dog)P(

Conditional Generative
Model: Learn p(x|y) Each possible label induces a
competition across all possible images
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Generative vs Discriminative Models

Discriminative Model.:
Learn a probability
distribution p(y|x)

Recall Bayes’ Rule:

Generative Model: P (y | X)
Learn a probabili Plx|y) = P(x
s oy W =gy P

Conditional Generative
Model: Learn p(x|y)
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Generative vs Discriminative Models

Discriminative Model.:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Recall Bayes’ Rule:

Discriminative Model

P
P(x|y) = ,(Jy(x )

Generative Model Prior over
labels

We can build a conditional generative model from
other components ... but not common in practice

Stanford CS231n 10t Anniversary
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Generative vs Discriminative Models

Discriminative Model.:
Learn a probability —
distribution p(y|x)

Assign labels to data
Feature learning (with labels)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)
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Generative vs Discriminative Models

Discriminative Model.:
Learn a probability
distribution p(y|x)

) Assign labels to data
Feature learning (with labels)

Generative Model: Detect outliers
Learn a probability — Feature learning (without labels)
distribution p(x) Sample to generate new data

Conditional Generative
Model: Learn p(x|y)
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Generative vs Discriminative Models

Discriminative Model:

Learn a probability — Assign labels to data

Feature learning (with labels)

distribution p(y|x)

Generative Model: Detect outliers

Learn a probability — Feature learning (without labels)
distribution p(x) Sample to generate new data

Conditional Generative ; Assign labels while rejecting outliers
Model: Learn p(x|y) Sample to generate data from labels
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Generative vs Discriminative Models

Generative Model:
Learn a probability
distribution p(x) "Generative models” means
> either of these; conditional
generative models are most

Conditional Generative common in practice

Model: Learn p(x|y)
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Why Generative Models?

Modeling ambiguity: If there are many possible
outputs x for an input y, we want to model P(x | y)

Language Modeling: Produce output text x from input text y

They sample from a learned P,
A distribution—structured, free.
Each token comes conditionally,
On all the ones that used to be.

Write me a short

rhyming poem about - =—f
generative models
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Why Generative Models?

Modeling ambiguity: If there are many possible
outputs x for an input y, we want to model P(x | y)

Text to Image: Produce output image x from input text y
|

| GENERATIVE MODELS

Make me an image showing
a person teaching a class on P
generative models in front of
a whiteboard
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Why Generative Models?

Modeling ambiguity: If there are many possible
outputs x for an input y, we want to model P(x | y)

Image to Video: What happens next?
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Figure adapted from lan
Goodfellow, Tutorial on
Generative Adversarial

Taxonomy of Generative Models e

Generative models

Stanford CS231n 10t Anniversary Lecture 13- 40 May 15, 2025



Figure adapted from lan
Goodfellow, Tutorial on
Generative Adversarial

Taxonomy of Generative Models e

Model can Generative models
compute P(x) ‘

l

Explicit density
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Figure adapted from lan
Goodfellow, Tutorial on
Generative Adversarial

Taxonomy of Generative Models e

Model can Generative models  Cannot compute p(x) but
compute P(x) ‘ can sample from P(x)
Explicit density Implicit density
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Figure adapted from lan
Goodfellow, Tutorial on
Generative Adversarial

Taxonomy of Generative Models e

Model can Generative models  Cannot compute p(x) but
compute P(x) ‘ can sample from P(x)
Explicit density Implicit density
Really ‘
compute
PK) |

Tractable density

Autoregressive
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Figure adapted from lan
Goodfellow, Tutorial on
Generative Adversarial

Taxonomy of Generative Models e

Model can Generative models  Cannot compute p(x) but
compute P(x) ‘ can sample from P(x)
Explicit density Implicit density
Really ‘ Approximate
compute P(x)
PK) | |
Tractable density Approximate density

Variational Autoencoder

Autoregressive (VAE)
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Figure adapted from lan
Goodfellow, Tutorial on
Generative Adversarial

Taxonomy of Generative Models e

Model can Generative models  Cannot compute p(x) but
compute P(x) ‘ can sample from P(x)
Explicit density Implicit density
Really ‘ Approximate Can directly ‘
compute P(x) sample
PK) | | from P(x) |
Tractable density Approximate density Direct

Variational Autoencoder Generative Adversarial

Autoregressive (VAE) Network (GAN)
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Figure adapted from lan
Goodfellow, Tutorial on
Generative Adversarial

Taxonomy of Generative Models e

Model can Generative models  Cannot compute p(x) but
compute P(x) ‘ can sample from P(x)
l _ l _ lterative
Explicit density Implicit density procedure to
Really ‘ Approximate Can directly ‘ approximate
compute P(x) sample samples
P(x) l l from P(x) l l from P(x)
Tractable density Approximate density Direct Indirect
Autoregressive Variational Autoencoder Generative Adversarial Diffusion Models

(VAE) Network (GAN)
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Figure adapted from lan
Goodfellow, Tutorial on
Generative Adversarial

Taxonomy of Generative Models e

Model can Generative models  Cannot compute p(x) but
compute P(x) ‘ can sample from P(x)
l l Iterative
Explicit density Implicit density procedure to
Really ‘ Approximate Can directly ‘ approximate
compute P(x) sample samples
P(x) l l from P(x) l from P(x)
Tractable density Approximate density Direct Indirect
Autorearessive Variational Autoencoder Generative Adversarial Diffusion Models
J (VAE) Network (GAN)
Today Next Time
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Autoregressive Models
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Maximum Likelihood Estimation

Goal: Write down an explicit function for p(x) = f(x, W)
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Maximum Likelihood Estimation

Goal: Write down an explicit function for p(x) = f(x, W)

Given dataset x(, x®@, .. xM) train the model by solving:

* ‘ ‘ (i) Maximize probability of training data
w ars mvex i p(x ) (Maximum likelihood estimation)
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Maximum Likelihood Estimation

Goal: Write down an explicit function for p(x) = f(x, W)

Given dataset x(, x®@, .. xM) train the model by solving:

* ‘ ‘ (i) Maximize probability of training data
w al's mvex i p(x ) (Maximum likelihood estimation)
— (i) Log trick: S duct and
= arg mME/iX Zi lng(X ) og trick: Swap product and sum
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Maximum Likelihood Estimation

Goal: Write down an explicit function for p(x) = f(x, W)

Given dataset x(, x®@, .. xM) train the model by solving:

* ‘ ‘ (i) Maximize probability of training data
w al's mvz\}x i p(x ) (Maximum likelihood estimation)
— (i) Log trick: S duct and
= arg mME/iX Zi lng(X ) og trick: Swap product and sum

— (i) This is our loss function.
= arg mME}X Zi lng(X ’ W) maximize it with gradient descent
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Autoregressive Models

Goal: Write down an explicit function for p(x) = f(x, W)

Assume X Is a sequence: X = (Xq1,Xp, e, XT)
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Autoregressive Models

Goal: Write down an explicit function for p(x) = f(x, W)

Assume X Is a sequence: X = (Xq1,Xp, e, XT)

Use the chain rule of probability:

p(x) = p(xy, x5, X3, o, X7 )

— p(xl)p(xz | xl)p(X3 |x1,x2)
— Z=1 p(xe | X1, oy X¢—1)
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Autoregressive Models

Goal: Write down an explicit function for p(x) = f(x, W)

Assume X Is a sequence: X = (Xq1,Xp, e, XT)

We have already seen this!

(X)) p(X) Pplxs) plxy) Use the chain rule of probability:

! ! ! !

hy — h, — h, — h, p(x) = p(xq, x5, X3, oo, X7 )
T 1 I I = P(X1)P(x2 | x1)P(x3 |x1,x2)
Xg X1 Xy X3 — T

_ _ =1 P(xe | xq, s Xp21)
Language modeling with RNN
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LLMs are Autoregressive Models

Goal: Write down an explicit function for p(x) = f(x, W)

Assume X Is a sequence: X = (Xq1,Xp, e, XT)

Y, Y, Ys
—t t t
Product{==), Sum($) |

Language ’:_:|L i U Use the chain rule of probability:

modeling (Vs o [ma] [aa] [ma] |

with masked =" p(x) = p(xy, %3, X3, ..., X7 )

Transformer <=l o] [ = p(;cl)p(xz | x )p(x3 %1, x5) ...
3 Qf.1. 52 Q — t=1 p(xt | X1, ---)xt—l)
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Autoregressive Models of Images

! GENERATIVE MODELS

DA | CENERTVE L ourpur

Treat an image as a sequence of 8-bit
subpixel values (scanline order)

Predict each subpixel as a classification B
among 256 values [0...255]

Model with an RNN or Transformer

al, “Pixel Recurrent Neural Networks”, ICML 2016
etal, “Conditional Image Generation with PixelCNN Decoders”, NeurlPS 2016
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Autoregressive Models of Images

! GENERATIVE MODELS

. . DA —> OUTPUT
Treat an image as a sequence of 8-bit TS
subpixel values (scanline order)
Predict each subpixel as a classification BT | /7

among 256 values [0...255]

Model with an RNN or Transformer

Problem: Too expensive. 1024x1024

image is a sequence of 3M subpixels E,/b// /
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Autoregressive Models of Images

GENERATIVE MODELS

Treat an image as a sequence of 8-bit
subpixel values (scanline order)

Predict each subpixel as a classification e w2
among 256 values [0...255]

Model with an RNN or Transformer

Problem: Too expensive. 1024x1024

image is a sequence of 3M subpixels E,/b// /

Solution (jumping ahead): Model as
sequence of tiles, not sequence of subpixels
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Variational Autoencoders (VAESs)
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Variational Autoencoders

PixelRNN / PixelCNN explicitly parameterizes density function with a
neural network, so we can train to maximize likelihood of training data:

T
pw(x) = pr(xt | X1, o) Xe—1)
t=1

Variational Autoencoders (VAE) define an intractable density that we
cannot explicitly compute or optimize

But we will be able to directly optimize a lower bound on the density
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Autoencoders ( AEs)

Stanford CS231n 10t Anniversary Lecture 13- 62 May 15, 2025



(Non-Variational) Autoencoders

Idea: Unsupervised method for learning to extract features z from inputs x, without labels

Features should extract useful information

(object identity, appearance, scene type, etc)

that can be used for downstream tasks

Encoder can be MLP,

CNN, Transformer, ...

Features e

Encoder

Input data b

lliiﬁ I
PR L&Ne
HEQ&EW

sl < [FiBs

Input Data
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(Non-Variational) Autoencoders

Problem: How can we learn without labels?

Features should extract useful information

(object identity, appearance, scene type, etc)

that can be used for downstream tasks

Encoder can be MLP,

CNN, Transformer, ...

Features e

Encoder

Input data b

e i = N
PR L&Ne
R el e ] P N

sl < [FiBs

Input Data
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(Non-Variational) Autoencoders

“‘Autoencoding” =
Encoding yourself
Problem: How can we learn without labels?

Decoder can be MLP,

Solution: Reconstruct the input data with a decoder.
CNN, Transformer, ...

Reconstructed
input data -

Decoder

B = NI
Features % ,.‘?ﬂ ,& @
Encoder nsﬂw
Input data I -H < .E

Input Data
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(Non-Variational) Autoencoders

Loss: L2 distance between input and reconstructed data.

Does not use any Loss Function

labels! Just raw data! ”5& _ .X'” 5
Reconstructed ff:
input data -
Decoder
Features e
Encoder
Input data b

Reconstructed data

o RS

BN L&0ES
i RS S
b < S

oy |
o= MR
ML
F

ol RS
sl < [FiBs

Input Data
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(Non-Variational) Autoencoders Reconstructed data

o RS

After training, can use encoder for downstream tasks ’Eﬁn
o el o " A

Loss Function

(Softmax) sl <« S5
Predicted label (] y
Classifier s —_——
W i = N

Features Z 'E ﬁ @
Encoder nsgn
Input data i -H < .E

Input Data
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(Non-Variational) Autoencoders

If we could generate new z, could use the decoder to generate images

Generated image

)
XL
A

Decoder

Features e

Stanford CS231n 10t Anniversary Lecture 13- 68 May 15, 2025



(Non-Variational) Autoencoders

If we could generate new z, could use the decoder to generate images

Generated image

)
XL
A

Decoder

Features e

Problem: Generating new z is not any easier than generating new x
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(Non-Variational) Autoencoders

If we could generate new z, could use the decoder to generate images

Generated image

)
XL
A

Decoder

Features e

Problem: Generating new z is not any easier than generating new x

Solution: What if we force all z to come from a known distribution?
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Variational Autoencoders (VAESs)

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014
Stanford CS231n 10t Anniversary Lecture 13- 71 May 15, 2025




Variational Autoencoders

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data
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Variational Autoencoders

Probabilistic spin on autoencoders: Assume training data {x(i)}]l.v=1 is
1. Learn latent features z from raw data generated from unobserved (latent)
2. Sample from the model to generate new data representation z

Intuition: x is an image, z is latent
factors used to generate x: attributes,
orientation, etc.
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Variational Autoencoders

Probabilistic spin on autoencoders: Assume training data {x(i)}]l.v=1 is
1. Learn latent features z from raw data generated from unobserved (latent)
2. Sample from the model to generate new data representation z
After training, sample new data like this: Intuition: x is an image, z is latent
factors used to generate x: attributes,
Sample from orientation, etc.
conditional I

po- (x | =)

Sample z
from prior

po~ () <
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Variational Autoencoders

Probabilistic spin on autoencoders: Assume training data {x(i)}ll.v=1 is
1. Learn latent features z from raw data generated from unobserved (latent)
2. Sample from the model to generate new data representation z
After training, sample new data like this: Intuition: x is an image, z is latent
factors used to generate x: attributes,
Sample from orientation, etc.
conditional I
Do+ (T | z(”’:)) Assume simple prior p(z), e.g. Gaussian

Sample z
from prior

po~ ()
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Variational Autoencoders

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

After training, sample new data like this:

Sample from
conditional

po-(z | =)

Sample z
from prior

po~ () <

Stanford CS231n 10t Anniversary

Assume training data {x(i)}liv=1 is

generated from unobserved (latent)
representation z

How can we train this?
Basic idea: maximum likelihood

If we had a dataset of (x, z) then train a
conditional generative model p(x | z)
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Variational Autoencoders

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data

2. Sample from the model to generate new data

After training, sample new data like this:

Sample from
conditional

po-(z | =)

Sample z
from prior

po~ () <

Stanford CS231n 10t Anniversary

Assume training data {x(i)}liv=1 is
generated from unobserved (latent)
representation z

How can we train this?

Basic idea: maximum likelihood

We don’t observe z, so marginalize:

pe(x) = Jpg(x,z)dz = jpe(xlz)Pe(Z)dZ
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Variational Autoencoders

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data

2. Sample from the model to generate new data

After training, sample new data like this:

Sample from
conditional

p-(z | =)

Sample z
from prior

po~ () <

Stanford CS231n 10t Anniversary

Assume training data {x(i)}liv=1 is
generated from unobserved (latent)
representation z

How can we train this?

Basic idea: maximum likelihood

We don’t observe z, so marginalize:

pe(x) = Jpg(x,z)dz = jPQ(X|Z)Pe(Z)dZ

Ok, we can compute this with the decoder
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Variational Autoencoders

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data

2. Sample from the model to generate new data

After training, sample new data like this:

Sample from
conditional

p-(z | =)

Sample z
from prior

po~ () <

Stanford CS231n 10t Anniversary

Assume training data {x(i)}liv=1 is
generated from unobserved (latent)
representation z

How can we train this?

Basic idea: maximum likelihood

We don’t observe z, so marginalize:

pe(x) = Jpg(x,z)dz = jpe(xlz)Pe(Z)dZ

Ok, we assumed Gaussian prior for z
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Variational Autoencoders

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data

2. Sample from the model to generate new data

After training, sample new data like this:

Sample from
conditional

po-(z | =)

Sample z
from prior

po~ () <

Stanford CS231n 10t Anniversary

Assume training data {x(i)}liv=1 is
generated from unobserved (latent)
representation z

How can we train this?

Basic idea: maximum likelihood

We don’t observe z, so marginalize:

pe(x) = jpg(x,z)dz = JPQ(X|Z)P9(Z)dZ

Problem, we can’t integrate over all z
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Variational Autoencoders

Probabilistic spin on autoencoders: Assume training data {x(i)}ll.v=1 is
1. Learn latent features z from raw data

generated from unobserved (latent)
2. Sample from the model to generate new data

representation z

After training, sample new data like this: How can we train this?

Basic idea: maximum likelihood
Sample from
conditional

: Another idea: Try Bayes’ Rule:
po- (x| 27) v

o 2o (x) = po(x | 2)pg(2)

ample z =

from prior pe(z | x)
po~ () <
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Variational Autoencoders

Probabilistic spin on autoencoders: Assume training data {x(i)}ll.v=1 is
1. Learn latent features z from raw data

generated from unobserved (latent)
2. Sample from the model to generate new data

representation z

After training, sample new data like this: How can we train this?

Basic idea: maximum likelihood
Sample from
conditional

: 1 Another idea: Try Bayes’ Rule:
po- (x| ) v
pe(x | 2)pg(2)

Sample z pe(x) =
from prior pe(z | x)
Po+(2) < Ok, we can compute this with the decoder
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Variational Autoencoders

Probabilistic spin on autoencoders: Assume training data {x(i)}ll.v=1 is
1. Learn latent features z from raw data

generated from unobserved (latent)
2. Sample from the model to generate new data

representation z

After training, sample new data like this: How can we train this?

Basic idea: maximum likelihood
Sample from
conditional

: 1 Another idea: Try Bayes’ Rule:
po- (x| ) o
po(x | 2)py(2)

Sample z pe(x) =
from prior pe(z | x)
P+ (2) < Ok, we assumed Gaussian prior for z
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Variational Autoencoders

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

After training, sample new data like this:

Sample from
conditional

po-(z | =)

Sample z
from prior

po~ () <

Assume training data {x(i)}liv=1 is

generated from unobserved (latent)
representation z

How can we train this?

Basic idea: maximum likelihood

Another idea: Try Bayes’ Rule:

po(x | 2)Pe(2) Problem: no way
po(z | x) to compute this

pe(x) =

Stanford CS231n 10t Anniversary
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Variational Autoencoders

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

After training, sample new data like this:

Sample from
conditional

p-(z | =)

Sample z
from prior

po~ () <

Assume training data {x(i)}liv=1 is

generated from unobserved (latent)
representation z

How can we train this?

Basic idea: maximum likelihood

Another idea: Try Bayes’ Rule:

po(x | 2)Pe(2) Problem: no way
po(z | x) to compute this

pe(x) =

Solution: Train another network
that learns q4(z | x) ~ pg(z | x)

Stanford CS231n 10t Anniversary
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Variational Autoencoders

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

After training, sample new data like this:

Sample from
conditional

p-(z | =)

Sample z
from prior

po~ () <

Assume training data {x(i)}liv=1 is
generated from unobserved (latent)
representation z

How can we train this?

Basic idea: maximum likelihood

Another idea: Try Bayes’ Rule:

po(x | 2)pg(z) pe(x| z)pe(2)
po(z | x) q¢(z | x)

Solution: Train another network

that learns q4(z | x) ~ pg(z | x)

pe(x) =

Stanford CS231n 10t Anniversary
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Variational Autoencoders

Decoder Network:
Input latent code z,
Output distribution over data x

po (x| 2)

Encoder Network:
Input data x,
Output distribution
over latent codes z

d¢ (z|x)

If we can ensure that
CIqb(Z | x) = pe(z| x),

then we can approximate
pe(x | 2)p(2)
%(Z | x)

pe(x) =

Idea: Jointly train both
encoder and decoder

Stanford CS231n 10 Anniversary
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Variational Autoencoders

Decoder Network:
Input latent code z,
Output distribution over data x

po (x| 2)

Encoder Network:
Input data x,
Output distribution
over latent codes z

¢ (z | x)

If we can ensure that
CIqb(Z | x) = pe(z| x),

then we can approximate
pe(x | 2)p(2)
%(Z | x)

pe(x) =

Idea: Jointly train both
encoder and decoder

Aside: How to output probability
distributions from neural networks?

Network outputs mean (and std) of
a (diagonal) distribution

Stanford CS231n 10t Anniversary
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Variational Autoencoders If we can ensure that
de(z | x) = pe(z | x),

Decoder Network: Encoder Network:
Input data x,

Input latent code z, M .
OUtpUt distribution over data x OUtpUt distribution then we can appI’OXImate
over latent codes z po (x| 2)p(2)

po(x) = qd)(z %)

po(x|z) = N(.ux|z: 0-2) qu(Z | x) = N(.uz|xrzz|x)

Idea: Jointly train both

encoder and decoder
.ux|z .uz|x z:z|x
Aside: How to output probability
distributions from neural networks?
Network outputs mean (and std) of
Z X a (diagonal) distribution
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Variational Autoenco

Decoder Network:

ders

Encoder Network:

If we can ensure that
CIqb(Z | x) = pe(z| x),

Input latent code z, Inputdata x, .
OUtpUt distribution over data x OUtpUt distribution then we can appI’OXImate
over latent codes z ) po (x| 2)p(2)
x) =
Po(x12) = Nz, 0%)  Qp(z|20) = Ny, Zpx) 7O 46z %)
log po(x 1 2) = — — llx — ull3 + C
0gpolx[2) = =5 gllx —ullz + G Idea: Jointly train both
encoder and decoder
.ux|z .uz|x z:z|x
Z X

Stanford CS231n 10t Anniversary
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Variational Autoencoders

Decoder Network:
Input latent code z,
Output distribution over data x

po(x|z) = N(.ux|z: 0?)

logpg(x | z) =

202

lx — ull5 + C,

Encoder Network:

Input data x,

Output distribution

If we can ensure that
CIqb(Z | x) = pe(z| x),

then we can approximate

over latent codes z po(x | 2)p(2)

Qcp(Z | X) = N(:uz|xizz|x)

po(x) = qd)(z %)

Idea: Jointly train both

2z

encoder and decoder

|x

.ux|z
A

.uz|x
A

A

A

Q: What's our
training objective?

Stanford CS231n 10t Anniversary
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Variational Autoencoders (ELBO)

pe(x | 2)p(2)
pe(z | x)

logpg(x) = log

Bayes’ Rule
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Variational Autoencoders (ELBO)

pe(x | 2)p(2) 10 P? (x|z)p(2)qy4 (z]x)
pe(z | %) S ezl a0y (211

logpg(x) = log

Multiply top and bottom by g4 (z|x)
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Variational Autoencoders (ELBO)

pg(x | 2)p(2) _ log P (x|z)p(2)qq (z|x)
pe(z | x) 5 q¢(z|x)

logpg(x) = log

qqp(z]x) qp(z|x)

p(z)

= logny(x|z) — log + log

Logarithms + rearranging
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Variational Autoencoders (ELBO)

pe(x | z)p(2) 1o e (x|2)p(z)q4 (z]x)
pe(z | %) 5 e (210 a4 (z])

logpg(x) = log

qe(z|x)
Pe (2]x)

qp(z|x)
p(2)

= logpg(x|z) — log + log

We can wrap in an

] =F ] expectation since it
8 Pe (X) 2~qg(2]X) [ 08 Po (x)] doesn’t depend on z
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Variational Autoencoders (ELBO)

pe(x | z)p(2) 1o e (x|2)p(z)q4 (z]x)
pe(z | %) 5 e (210 a4 (z])

logpg(x) = log

qe(z|x)
pe(z|x)

qe(z|x)
p(z)

= E,[logpe(x|2)] — E, [log +E, [log

We can wrap in an

] =F ] expectation since it
8 Pe (X) 2~qg(2]X) [ 08 Po (x)] doesn’t depend on z
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Variational Autoencoders (ELBO)

pe(x | 2)p(2) 0o e (x|2)p(z)q4 (z]x)

logpg(x) = log 1o (z | %) 05 Po(z]x)qe(z|x)

qe(z|x)
pe(z|x)

qe(z|x)
p(z)

= E;[logpg(x|z)] — E, [log + E, [log

= Ez~q¢(z|x) [logpg (x|2)] — Dk1. (CIqb (le),p(z)) + Dk1.(q¢ (z|x), pg(z]x))
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Variational Autoencoders (ELBO)

pe(x | 2)p(2) 10 P? (x|2)p(2)qp (z]x)
pe(z | %) 5 e (210 a4 (z])

logpg(x) = log

qe(z|x)
po (2]x)

qe(z|x)
p(z)

= E,[logpe(x|2)] — E, [log +E, [log

= Ez-qg(z1x) 108 P9 (x]2)] — Dy (q¢ (ZIx),p(Z)) + Dk (94 (2]x), po(2]x))
Data reconstruction: x => encoder => decoder should reconstruct x
Can compute in closed form for Gaussians.
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Variational Autoencoders (ELBO)

pe(x | 2)p(2) 0o e (x|2)p(z)q4 (z]x)

logpg(x) = log 1o (z | %) 05 Po(z]x)qe(z|x)

q¢(z]x) [ qy(z]x)
= E_[lo x|z)| —E, |lo + E, |lo
— Ez~q¢(z|x) [logpﬁ (XlZ)] o + DKL(Q(,{) (le); Po (le))
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Variational Autoencoders (ELBO)

pe(x | 2)p(2) 10 P? (x|2)p(z)q4 (z]x)
pe(z | %) 5 e (210 a4 (z])

logpg(x) = log

qe(z|x)
po (2]x)

qe(z|x)
p(z)

= E;[logpg(x|z)] — E, [log + E, [log

= Ez~q¢(z|x) [logpe (x|2)] — Dk, (qu (z|x), P(Z)) + Dk, (q¢(2]x), pe(2]x))
Posterior Approximation: Encoder output g4 (z|x) should match py(z|x)
We cannot compute this for Gaussians...
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Variational Autoencoders (ELBO)

pe(x | 2)p(2) 10 P? (x|2)p(z)q4 (z]x)
pe(z | %) 5 e (210 a4 (z])

logpg(x) = log

qe(z|x)
po (2]x)

qe(z|x)
p(z)

= E;[logpg(x|z)] — E, [log + E, [log

= Ez~q¢(z|x) [logpe (x|2)] — Dk, (qu (z|x), P(Z)) + Dk, (q¢(2]x), pe(2]x))
Posterior Approximation: Decoder output g, (z|x) should match py(z|x)
KL is >= 0, so we can drop it to get a lower bound on likelihood
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Variational Autoencoders (ELBO)

pe(x | z)p(2) 1o e (x|2)p(z)q4 (z]x)
pe(z | %) 5 e (210 a4 (z])

logpg(x) = log

qe(z|x)
pe(z|x)

qe(z|x)
p(z)

= E;[logpg(x|z)] — E, [log + E, [log

= Ez~q¢(z|x) [logpe (x|2)] — Dk, (CIqb (le),p(z)) + Di (94 (z|x), Do (2]x))

This is our VAE
log Peo (X) = Ez~q¢(z|x) [log Peo (XlZ)] _ DKL (Q(p (le); P(Z)) training objective
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Variational Autoencoders

Jointly train encoder g and decoder p to maximize
the variational lower bound on the data likelihood
Also called Evidence Lower Bound (ELBOo)

logPe(X) = E;-q,(z1x) [108Po (x12)] = Dy, (45 (z12),0(2) )

Encoder Network Decoder Network
¢ (z | x) = N(.uz|x» z:zlx) Po (x | z) = N(.ux|z: 02)
.uz|x z:z|x .ux|z
X YA
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Variational Autoencoders: Training

Train by maximizing the
variational lower bound

Ez~q,a0)[109 Do (x12)] = Dy (4 (z1%), p(2))
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Variational Autoencoders: Training

Train by maximizing the
variational lower bound

Ez~q,a0)[109 Do (x12)] = Dy (4 (z1%), p(2))

1. Run input data through encoder to get
distribution over z

qu(z | X) — N(:uz|x' z:z|x)
ﬂz|x z:z|x

A

Encoder
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Variational Autoencoders: Training

Train by maximizing the
variational lower bound

Ez~q, a0 [109 D6 (x12)] | Dy (45 (z1%), p(2))

1. Run input data through encoder to get
distribution over z
2. Prior loss: Encoder output should be unit

Gaussian (zero mean, unit variance)
qu(z | X) — N(:uz|x' z:z|x)

Hz|x z:z|x
A

A

Encoder
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Variational Autoencoders: Training

Train by maximizing the
variational lower bound

Ez~q,a0)[109 Do (x12)] = Dy (4 (z1%), p(2))

YA
1. Run input data through encoder to get
distribution over z e ~N(0,I)
2. Prior loss: Encoder output should be unit z=€Q0 Zzlx + Ugx
Gaussian (zero mean, unit variance)
3. Sample z from encoder output q4(z | x) q¢(Z | x) = N(:uz|x; Zz|x)
(Reparameterization trick) [TH %, x
Encoder
X
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Variational Autoencoders: Training x| 2 = Ny, 02)

Train by maximizing the x|z

variational lower bound
Decoder
Ey~q,(z)[109 Do (X12)] — Dy (44 (21), p(2))
1. Run input data through encoder to get “
distribution over z e ~N(0,I)
2. Prior loss: Encoder output should be unit z=€Q0 Zzlx + Ugx
Gaussian (zero mean, unit variance)
3. Sample z from encoder output q4(z | x) q¢(z | x) = N(:uz|x; Zz|x)
(Reparameterization trick) [TH %, x
4. Run z through decoder to get predicted 5 5
data mean Encoder
X
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Variational Autoencoders: Training x| 2 = Ny, 02)

Train by maximizing the x|z

variational lower bound
Decoder
Eyq, (2 (109 Do (x12)]|— Dicr (q4(212), p(2))
1. Run input data through encoder to get “
distribution over z e ~N(0,I)
2. Prior loss: Encoder output should be unit z=€Q0 Zzlx + Ugx
Gaussian (zero mean, unit variance)
3. Sample z from encoder output q4(z | x) q¢(z | x) = N(:uz|x; Zz|x)
(Reparameterization trick) [TH %, x
4. Run z through decoder to get predicted 5 5
data mean Encoder
5. Reconstruction loss: predicted mean
should match x in L2 25
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Variational Autoencoders: Training x| 2 = Ny, 02)

Train by maximizing the |z
variational lower bound 3
Decoder
Eyq,(z10)[109 Do (x12)] = Dy (q(212),0(2) )
YA
The loss terms fight against each other!
e ~N(0,I)
Reconstruction loss wants X,, = 0 and z=€( Yzt Uzpx
Uz|x to be unique for each x, so decoder can _N 5
deterministically reconstruct x qp(7 | %) = N(pzpx, Zz1x)
Hz|x z:z|x
Prior loss wants Z,, = Iand u,, = 0 so 4 4
. ) : Encoder
encoder output is always a unit Gaussian
X
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Variational Autoencoders: Sampling

1. Sample z from the prior

_ 2
2. Run through decoder to get an image Po(x | 2) = N(iyjz, 0)

.ux|z
A

Decoder

z~ N(0,I)
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dimensions of z to be independent

The diagonal prior on p(z) causes
“Disentangling factors of variation”

A
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Vary z,
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Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014
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Recap: Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning

Data: (x, y) Data: x

x is data, y is label Just data, no labels!

Goal: Learn a functionto map x->vy Goal: Learn hidden structure in data
Examples: Classification, regression, Examples: Clustering, dimensionality
object detection, semantic reduction, density estimation, etc.

segmentation, image captioning, etc.
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Recap: Generative vs Discriminative Models

Density Function

p(Xx) assigns a positive
number to each possible
X; higher numbers mean
x is more likely.

Discriminative Model.: Data: x
Learn a probability
distribution p(y|x)

Generative Model: Density functions are

Learn a probability normalized:
distribution p(x)
j p(x)dx =1
X
Conditional Generative Label: y |
Model: Learn p(x|y) Cat Different values of x

compete for density
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Figure adapted from lan
Goodfellow, Tutorial on
Generative Adversarial

Recap: Generative Models i

Model can Generative models  Cannot compute p(x) but
compute P(x) ‘ can sample from P(x)
l l Iterative
Explicit density Implicit density procedure to
Really ‘ Approximate Can directly ‘ approximate
compute P(x) sample samples
P(x) l l from P(x) l from P(x)
Tractable density Approximate density Direct Indirect
Autorearessive Variational Autoencoder Generative Adversarial Diffusion Models
J (VAE) Network (GAN)
Today Next Time
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Next Time:
Generative Models (part 2)
Generative Adversarial Networks

Diffusion Models
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