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Administrative

2

- Midterm next Tuesday (5/13 during lecture time) – Don’t be late; 
See this Ed post for logistic details.

- Midterm review section tomorrow, Friday, 5/9 at 12:30 pm.
- Project proposal feedback is available on Gradescope.

https://edstem.org/us/courses/77520/discussion/6643713
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Previous Lecture: GPUs and How to Train On Them
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A bit about GPU hardware How to train on lots of GPUs
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Lots of Computer Vision Tasks

Classification 
Semantic

Segmentation
Object 

Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Last Week: Visualizing and Understanding
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Last Week: Visualizing and Understanding
Test image L2 Nearest neighbors in feature space 4096-dim vector

Recall: Nearest neighbors in 
pixel space

Krizhevsky et al, “I mageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.
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Learned Representations 
Test image L2 Nearest neighbors in feature space 4096-dim vector

Recall: Nearest neighbors in 
pixel space

Krizhevsky et al, “I mageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.
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Learned Representations 
4096-dim vector

Krizhevsky et al, “I mageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.

Class 
Labels

What is the problem with large-scale training?
- We need a lot of labeled data
Is there a way we can train neural networks without 
the need for huge manually labeled datasets? 
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Self-Supervised Learning

9

Pretext 
Objective

Downstream dataset

Downstream 
Objective

Trained Encoder

Pretext Task 
- Define a task based on 
the data itself
- No manual annotation
- Could be considered 
an unsupervised task;
- but we learn with 
supervised learning 
objectives, e.g., 
classification or 
regression.

Downstream Task 
- The application you 
care about
- You do not have large 
datasets 
- The dataset is labeled
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Decoder, 
Classifier, 
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Self-Supervised Learning – Pretext Task

Labels/outputs 
automatically 

generated 
from data
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Self-Supervised Learning – Downstream Task

Labels/outputs 
automatically 

generated 
from data

FC Labels
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Self-supervised pretext tasks

?

Example: learn to predict image transformations / complete corrupted images

image completion

θ=?

rotation prediction “jigsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.
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How to evaluate a self-supervised learning method?

● Pretext Task Performance 
○ Measure how well the model performs on the task it was trained on without labels.

● Representation Quality
○ Evaluate the quality of the learned representations

■ Linear Evaluation Protocol: Train a linear classifier on the leaerned representations; 
■ Clustering: Measure clustering performance; 
■ t-SNE: Visualize the representations to assess their separability.)

● Robustness and Generalization
○ Test how well the model generalizes to different datasets and is robust to variations.

● Computational Efficiency
○ Assess the efficiency of the method in terms of training time and resource requirements.

● Transfer Learning and Downstream Task Performance
○ Assess the utility of the learned representations by transferring them to a downstream 

supervised task.

13
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How to evaluate a self-supervised learning method?

lots of 
unlabeled 

data

self-supervised 
learning

feature 
extractor

(e.g., a 
convnet) 

90°

conv fc

1. Learn good feature extractors from 
self-supervised pretext tasks, e.g., 
predicting image rotations



Stanford CS231n 10th Anniversary Lecture 12 - May 8, 202515

How to evaluate a self-supervised learning method?

lots of 
unlabeled 

data

self-supervised 
learning

feature 
extractor

(e.g., a 
convnet) 

small amount of 
labeled data on 
the target task

supervised 
learning

evaluate on the 
target task

e.g. classification, detection

90°

conv fc

bird

conv linear 
classifier

1. Learn good feature extractors from 
self-supervised pretext tasks, e.g., 
predicting image rotations

2. Attach a shallow network on the 
feature extractor; train the shallow 
network on the target task with small 
amount of labeled data
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Broader picture
language modeling

GPT-4 (OpenAI 2023)

speech synthesis

Wavenet (van den Oord et al., 
2016)

computer vision

robot / reinforcement learning 

Dense Object Net (Florence 
and Manuelli et al., 2018)

Doersch et al., 2015

...

Today’s lecture
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Today’s Agenda

Pretext tasks from image transformations
• Rotation, inpainting, rearrangement, coloring 
• Reconstruction-based learning (MAE)

Contrastive representation learning
• Intuition and formulation
• Instance contrastive learning: SimCLR and MOCO
• Sequence contrastive learning: CPC
• Self-Distillation Without Labels, DINO
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Today’s Agenda

Pretext tasks from image transformations
• Rotation, inpainting, rearrangement, coloring 
• Reconstruction-based learning (MAE)

Contrastive representation learning
• Intuition and formulation
• Instance contrastive learning: SimCLR and MOCO
• Sequence contrastive learning: CPC
• Self-Distillation Without Labels, DINO
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Pretext task: predict rotations

Hypothesis: a model could recognize the correct rotation of an object only if 
it has the “visual commonsense” of what the object should look like 
unperturbed.

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728
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Pretext task: predict rotations

Self-supervised 
learning by rotating 
the entire input 
images. 

The model learns to 
predict which rotation 
is applied (4-way 
classification)

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728
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Pretext task: predict rotations

Self-supervised 
learning by rotating 
the entire input 
images. 

The model learns to 
predict which rotation 
is applied (4-way 
classification)

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728
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Evaluation on semi-supervised learning

(Image source: Gidaris et al. 2018)

Self-supervised learning on 
CIFAR10 (entire training set).

Freeze conv1 + conv2
Learn conv3 + linear layers with 
subset of labeled CIFAR10 data 
(classification).

https://arxiv.org/abs/1803.07728
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Transfer learned features to supervised learning

source: Gidaris et al. 2018

Self-supervised learning on 
ImageNet (entire training 
set) with AlexNet.

Finetune on labeled data 
from Pascal VOC 2007.

Pretrained with full ImageNet 
supervision

No pretraining

Self-supervised learning with rotation prediction

https://arxiv.org/abs/1803.07728
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Visualize learned visual attentions

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728
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Pretext task: predict relative patch locations 

(Image source: Doersch et al., 2015)

https://arxiv.org/abs/1505.05192
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Pretext task: solving “jigsaw puzzles”

(Image source: Noroozi & Favaro, 2016)

https://arxiv.org/abs/1603.09246
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Transfer learned features to supervised learning

(source: Noroozi & Favaro, 2016)

“Ours” is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro, 
2016). Doersch et al. is the method with relative patch location

https://arxiv.org/abs/1603.09246
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Pretext task: predict missing pixels (inpainting)

Source: Pathak et al., 2016

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)

https://arxiv.org/pdf/1604.07379.pdf
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Learning to inpaint by reconstruction

Learning to reconstruct the missing pixels

Source: Pathak et al., 2016

DecoderEncoder

Auto Encoder

https://arxiv.org/pdf/1604.07379.pdf
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Inpainting evaluation

Source: Pathak et al., 2016

Input (context) reconstruction

https://arxiv.org/pdf/1604.07379.pdf
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Learning to inpaint by reconstruction 
(We will talk about adversarial learning in the next lecture) 

Source: Pathak et al., 2016

Loss = reconstruction + adversarial learning

Adversarial loss between “real” images and inpainted images

Encoder

𝑀 = ቊ
0 not masked
1 masked

Element wise multiplication

https://arxiv.org/pdf/1604.07379.pdf
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Inpainting evaluation

Source: Pathak et al., 2016

Input (context) reconstruction adversarial recon + adv

https://arxiv.org/pdf/1604.07379.pdf
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Source: Pathak et al., 2016

Transfer learned features to supervised learning

Self-supervised learning on ImageNet training set, transfer to classification 
(Pascal VOC 2007), detection (Pascal VOC 2007), and semantic 
segmentation (Pascal VOC 2012)

https://arxiv.org/pdf/1604.07379.pdf
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Pretext task: image coloring

Source: Richard Zhang / Phillip Isola
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Pretext task: image coloring

Source: Richard Zhang / Phillip Isola
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Learning features from colorization: 
Split-brain Autoencoder

Source: Richard Zhang / Phillip Isola



Stanford CS231n 10th Anniversary Lecture 12 - May 8, 202537

Learning features from colorization: 
Split-brain Autoencoder

Source: Richard Zhang / Phillip Isola

Idea: cross-channel predictions
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Learning features from colorization: 
Split-brain Autoencoder

Source: Richard Zhang / Phillip Isola
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Source: Zhang et al., 2017

Transfer learned features to supervised learning

Self-supervised learning on 
ImageNet (entire training set).

Use concatenated features 
from F1 and F2

Labeled data is from the 
Places (Zhou 2016).

supervised

this paper

https://arxiv.org/abs/1611.09842
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Pretext task: image coloring

Source: Richard Zhang / Phillip Isola
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Pretext task: image coloring

Source: Richard Zhang / Phillip Isola
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Pretext task: video coloring

Source: Vondrick et al., 2018

t = 1 t = 2 t = 3

...

reference frame

t = 0

how should I color these frames?

Idea: model the temporal coherence of colors in videos

https://arxiv.org/abs/1806.09594
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Pretext task: video coloring

Source: Vondrick et al., 2018

t = 1 t = 2 t = 3

...

reference frame

t = 0

how should I color these frames?

Idea: model the temporal coherence of colors in videos

Should be the same color!

Hypothesis: learning to color video frames should allow model to learn to 
track regions or objects without labels!

https://arxiv.org/abs/1806.09594
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Learning to color videos

Source: Vondrick et al., 2018

Learning objective: 

Establish mappings 
between reference and 
target frames in a 
learned feature space. 

Use the mapping as 
“pointers” to copy the 
correct color (LAB).

https://arxiv.org/abs/1806.09594
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Learning to color videos

Source: Vondrick et al., 2018

attention map on the reference 
frame

https://arxiv.org/abs/1806.09594
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Learning to color videos

Source: Vondrick et al., 2018

attention map on the reference 
frame

predicted color = weighted 
sum of the reference color

https://arxiv.org/abs/1806.09594
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Learning to color videos

Source: Vondrick et al., 2018

attention map on the reference 
frame

predicted color = weighted 
sum of the reference color

loss between predicted color 
and ground truth color

https://arxiv.org/abs/1806.09594
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Colorizing videos (qualitative)

reference frame

Source: Google AI blog post

target frames (gray) predicted color

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
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Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google AI blog post

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
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Tracking emerges from colorization
Propagate segmentation masks using learned attention

Source: Google AI blog post

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
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Tracking emerges from colorization
Propagate pose keypoints using learned attention

Source: Google AI blog post

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
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Masked Auto Encoders (MAE)
Reconstruction with a larger masked portion

50% masking ratio

75% masking ratio He et al., 2021 Masked Autoencoders 
Are Scalable Vision Learners

52
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Masked Auto Encoders (MAE)

He et al., 2021 Masked Autoencoders 
Are Scalable Vision Learners

53
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Masking Methos

Figure 6. MAE architecture
from the paper

• Similar to the original ViT, 

divide the input into non-overlapping patches.

• Uniformly sample a very large proportion (75%) of 

these patches and mask them

• Masking a high ratio makes predicting the task 

challenging and meaningful.

• Also, not using mask tokens and picking a high 

sampling ratio (masking most of the image, e.g., 

75%, and sampling a small visible portion, e.g., 

25%, to feed into the encoder) enables the 

encoder to be very large.

He et al., 2021 Masked Autoencoders 
Are Scalable Vision Learners

54
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MAE Encoder

Figure 6. MAE architecture
from the paper

• The encoder only operates 

on unmasked patches (25%)

• Embeds the patches by linear projection

and add positional embeddings

• Uses transformer blocks

• Since the input patches are a small part of the input, the encoder is 

chosen to be very large. (encoder has over 9 times computations per 

token vs decoder) He et al., 2021 Masked Autoencoders 
Are Scalable Vision Learners

55
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MAE Decoder

Figure 6. MAE architecture
from the paper

• Merges the encoder outputs with the shared

mask tokens in previously masked places,

adding positional encodings to them.

• Uses transformer blocks, followed

by a linear projection for finalizing pixel reconstruction.

• Is solely responsible for reconstruction, meaning it is not used post-

training. Hence, it is independent of the encoder design, making it flexible 

(unlike traditional AEs or UNet). This is an

asymmetrical autoencoder design.

He et al., 2021 Masked Autoencoders 
Are Scalable Vision Learners

56
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Reconstruction

• The MSE (mean squared error loss) in the pixel space between the 

input image and the reconstructed image is adopted.

• Loss is only computed for masked patches

He et al., 2021 Masked Autoencoders 
Are Scalable Vision Learners

57
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Linear Probing vs Full Fine-tuning
• In linear probing, the pre-trained model is fixed, and only one 

linear layer is added at the end, to predict the labels (or produce 

the output). This method is used to assess the quality of 

representations from a pre-trained feature extraction model.

• In fine-tuning, pre-trained model is further trained (not fixed),

and one or more layers, possibly with non-linearities are added.

• linear probing: provides a measure of representation quality of a 

pre-training in restricted conditions

• fine-tuning: exploits models near-true potential to adopt for new 

tasks
He et al., 2021 Masked Autoencoders 
Are Scalable Vision Learners
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Ablation Studies 
So many modeling/hyperparameter choices:

• Masking ratio

• Decoder depth

• Decoder width

• Mask token (used or not in encoder)

• Reconstruction target

• Data augmentation

• Mask sampling method

• Training schedule

He et al., 2021 Masked Autoencoders 
Are Scalable Vision Learners

59
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Masked Autoencoder – Comparisons

He et al., 2021 Masked Autoencoders 
Are Scalable Vision Learners
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Summary: pretext tasks from image 
transformations

● Pretext tasks focus on “visual common sense”, e.g., predict rotations, 
inpainting, rearrangement, and colorization.

● The models are forced learn good features about natural images, e.g., 
semantic representation of an object category, in order to solve the pretext 
tasks.

● We often do not care about the performance of these pretext tasks, but 
rather how useful the learned features are for downstream tasks 
(classification, detection, segmentation).
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Summary: pretext tasks from image 
transformations

● Pretext tasks focus on “visual common sense”, e.g., predict rotations, 
inpainting, rearrangement, and colorization.

● The models are forced learn good features about natural images, e.g., 
semantic representation of an object category, in order to solve the pretext 
tasks.

● We often do not care about the performance of these pretext tasks, but 
rather how useful the learned features are for downstream tasks 
(classification, detection, segmentation).

● Problems: 1) coming up with individual pretext tasks is tedious, and 2) the 
learned representations may not be general.
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Pretext tasks from image transformations

?

image completion

θ=?

rotation prediction “jigsaw puzzle” colorization

Learned representations may be tied to a specific pretext task!

Can we come up with a more general pretext task?
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A more general pretext task?

?

θ=?

same object
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A more general pretext task?

?

θ=?

same object

different object
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Contrastive Representation Learning

?

θ=?

attract

repel
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Today’s Agenda

Pretext tasks from image transformations
• Rotation, inpainting, rearrangement, coloring 
• Reconstruction-based learning (MAE)

Contrastive representation learning
• Intuition and formulation
• Instance contrastive learning: SimCLR and MOCO
• Sequence contrastive learning: CPC
• Self-Distillation Without Labels, DINO
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Contrastive Representation Learning

?

θ=?

attract

repel
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Contrastive Representation Learning

?

θ=?

reference

positive

negative
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A formulation of contrastive learning

What we want:

x: reference sample; x+ positive sample; x- negative sample

Given a chosen score function, we aim to learn an encoder 
function f that yields high score for positive pairs (x, x+) and low 
scores for negative pairs (x, x-).
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:



Stanford CS231n 10th Anniversary Lecture 12 - May 8, 202572

A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

...
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

score for the positive 
pair

score for the N-1 negative 
pairs

This seems familiar …
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

score for the positive 
pair

score for the N-1 negative 
pairs

This seems familiar …
Cross entropy loss for a N-way softmax classifier!
I.e., learn to find the positive sample from the N samples
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

Commonly known as the InfoNCE loss (van den Oord et al., 2018)

A lower bound on the mutual information between f(x) and f(x+)

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019

https://arxiv.org/abs/1807.03748
https://arxiv.org/pdf/1905.06922.pdf
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SimCLR: A Simple Framework for Contrastive Learning

Source: Chen et al., 2020

Use a projection network g(·) to project 
features to a space where contrastive 
learning is applied

Generate positive samples through data 
augmentation:
● random cropping, random color 

distortion, and random blur.

Cosine similarity as the score function:

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR: generating positive samples from data 
augmentation

Source: Chen et al., 2020

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR

Source: Chen et al., 2020

Generate a positive pair 
by sampling data 
augmentation functions

*We use a slightly different 
formulation in the 
assignment. You should follow 
the assignment instructions.

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR

Source: Chen et al., 2020

InfoNCE loss:
Use all non-positive 
samples in the batch 
as x -

Generate a positive pair 
by sampling data 
augmentation functions

*We use a slightly different 
formulation in the 
assignment. You should follow 
the assignment instructions.

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR

Source: Chen et al., 2020

InfoNCE loss:
Use all non-positive 
samples in the batch 
as x -

Generate a positive pair 
by sampling data 
augmentation functions

*We use a slightly different 
formulation in the 
assignment. You should follow 
the assignment instructions.

Iterate through and use 
each of the 2N sample 
as reference, compute 
average loss

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR: mini-batch training

list of positive pairs

Each 2k and 2k + 1 element is 
a positive pair

“Affinity matrix”

*We use a slightly different formulation in the assignment. 
You should follow the assignment instructions.
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SimCLR: mini-batch training

list of positive pairs

= classification label for each row 

Each 2k and 2k + 1 element is 
a positive pair

“Affinity matrix”

*We use a slightly different formulation in the assignment. 
You should follow the assignment instructions.
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Training linear classifier on SimCLR features

Train feature encoder on ImageNet 
(entire training set) using SimCLR.

Freeze feature encoder, train a 
linear classifier on top with labeled 
data.

Source: Chen et al., 2020

https://arxiv.org/pdf/2002.05709.pdf
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Semi-supervised learning on SimCLR features

Train feature encoder on ImageNet 
(entire training set) using SimCLR.

Finetune the encoder with 1% / 10% 
of labeled data on ImageNet.

Source: Chen et al., 2020

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR design choices: projection head

Linear / non-linear projection heads improve 
representation learning.

A possible explanation: 
● contrastive learning objective may discard 

useful information for downstream tasks
● representation space z is trained to be 

invariant to data transformation. 
● by leveraging the projection head g(ᐧ), more 

information can be preserved in the h 
representation space

Source: Chen et al., 2020

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR design choices: large batch size

Large training batch size is crucial for 
SimCLR!

Large batch size causes large memory 
footprint during backpropagation: 
requires distributed training on TPUs 
(ImageNet experiments) 

Source: Chen et al., 2020

https://arxiv.org/pdf/2002.05709.pdf
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Momentum Contrastive Learning (MoCo)

Key differences to SimCLR:

● Keep a running queue of keys (negative 
samples).

● Compute gradients and update the 
encoder only through the queries.

● Decouple min-batch size with the 
number of keys: can support a large 
number of negative samples.

no_grad

Source: He et al., 2020

https://arxiv.org/abs/1911.05722
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Momentum Contrastive Learning (MoCo)

Key differences to SimCLR:

● Keep a running queue of keys (negative 
samples).

● Compute gradients and update the 
encoder only through the queries.

● Decouple min-batch size with the 
number of keys: can support a large 
number of negative samples.

no_grad

Source: He et al., 2020

● The key encoder is slowly progressing
through the momentum update rules:

https://arxiv.org/abs/1911.05722
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MoCo

Generate a positive pair 
by sampling data 
augmentation functions

No gradient through 
the key

Use the running 
queue of keys as the 
negative samples

InfoNCE loss

Update f_k through 
momentum

Update the FIFO negative 
sample queue

Source: He et al., 2020

https://arxiv.org/abs/1911.05722
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“MoCo V2”

A hybrid of ideas from SimCLR and MoCo:
● From SimCLR: non-linear projection head and strong data 

augmentation.
● From MoCo: momentum-updated queues that allow training on 

a large number of negative samples (no TPU required!).

Source: Chen et al., 2020

https://arxiv.org/pdf/2002.05709.pdf
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MoCo vs. SimCLR vs. MoCo V2

Key takeaways:

● Non-linear projection head and strong 
data augmentation are crucial for 
contrastive learning.

Source: Chen et al., 2020

https://arxiv.org/pdf/2002.05709.pdf
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MoCo vs. SimCLR vs. MoCo V2

Source: Chen et al., 2020

Key takeaways:

● Non-linear projection head and strong 
data augmentation are crucial for 
contrastive learning.

● Decoupling mini-batch size with 
negative sample size allows MoCo-V2 to 
outperform SimCLR with smaller batch 
size (256 vs. 8192). 

https://arxiv.org/pdf/2002.05709.pdf
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MoCo vs. SimCLR vs. MoCo V2

Source: Chen et al., 2020

Key takeaways:

● Non-linear projection head and strong 
data augmentation are crucial for 
contrastive learning.

● Decoupling mini-batch size with 
negative sample size allows MoCo-V2 to 
outperform SimCLR with smaller batch 
size (256 vs. 8192). 

● … all with much smaller memory 
footprint! (“end-to-end” means SimCLR
here)

https://arxiv.org/pdf/2002.05709.pdf
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Instance vs. Sequence Contrastive Learning

Instance-level contrastive learning: 
contrastive learning based on 
positive & negative instances.

Examples: SimCLR, MoCo

Sequence-level contrastive learning: 
contrastive learning based on 
sequential / temporal orders.

Example: Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 2018

https://arxiv.org/abs/1807.03748


Stanford CS231n 10th Anniversary Lecture 12 - May 8, 202595

Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 2018, Figure source

Contrastive: contrast between “right” 
and “wrong” sequences using 
contrastive learning.

Predictive: the model has to predict 
future patterns given the current 
context.

Coding: the model learns useful 
feature vectors, or “code”, for 
downstream tasks, similar to other 
self-supervised methods.

context

positive

negative

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding
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Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 2018, Figure source

context

positive

negative

1. Encode all samples in a sequence into 
vectors zt = genc(xt ) 

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding
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Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 2018, Figure source

context

positive

negative

1. Encode all samples in a sequence into 
vectors zt = genc(xt ) 

2. Summarize context (e.g., half of a 
sequence) into a context code ct using an 
auto-regressive model (gar). The original 
paper uses GRU-RNN here.

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding
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Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 2018, Figure source

context

positive

negative

1. Encode all samples in a sequence into 
vectors zt = genc(xt ) 

2. Summarize context (e.g., half of a 
sequence) into a context code ct using an 
auto-regressive model (gar)

3. Compute InfoNCE loss between the 
context ct and future code zt+k using the 
following time-dependent score 
function:

where Wk is a trainable matrix.

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding


Stanford CS231n 10th Anniversary Lecture 12 - May 8, 202599

CPC example: modeling audio sequences

Source: van den Oord et al., 2018, 

https://arxiv.org/abs/1807.03748
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CPC example: modeling audio sequences

Linear classification on trained 
representations (LibriSpeech dataset)

Source: van den Oord et al., 2018, 

https://arxiv.org/abs/1807.03748


Stanford CS231n 10th Anniversary Lecture 12 - May 8, 2025101

CPC example: modeling visual context

Source: van den Oord et al., 2018, 

Idea: split image into patches, model rows of patches from top to bottom as a 
sequence. I.e., use top rows as context to predict bottom rows.

https://arxiv.org/abs/1807.03748
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Other examples: MoCo v3

Chen et al., An Empirical Study of Training Self-Supervised Vision Transformers, FAIR

“This paper does not describe a 
novel method.”
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DINO: Self-Distillation with No Labels

Caron et al. 2021 Emerging Properties in 
Self-Supervised Vision Transformers
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DINO

104

Caron et al. 2021 Emerging Properties in 
Self-Supervised Vision Transformers
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DINO
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Caron et al. 2021 Emerging Properties in 
Self-Supervised Vision Transformers
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DINO v2

Caron et al. 2021 Emerging Properties in 
Self-Supervised Vision Transformers
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Summary: Contrastive Representation Learning

A general formulation for contrastive learning:

InfoNCE loss: N-way classification among positive and negative samples

Commonly known as the InfoNCE loss (van den Oord et al., 2018)

A lower bound on the mutual information between f(x) and f(x+)

https://arxiv.org/abs/1807.03748
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Summary: Contrastive Representation Learning

SimCLR: a simple framework for contrastive 
representation learning
● Key ideas: non-linear projection head to allow 

flexible representation learning
● Simple to implement, effective in learning visual 

representation
● Requires large training batch size to be effective; 

large memory footprint
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Summary: Contrastive Representation Learning

MoCo (v1, v2): contrastive learning using momentum 
sample encoder
● Decouples negative sample size from minibatch 

size; allows large batch training without TPU
● MoCo-v2 combines the key ideas from SimCLR, 

i.e., nonlinear projection head, strong data 
augmentation, with momentum contrastive 
learning 
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Summary: Contrastive Representation Learning

CPC: sequence-level contrastive learning
● Contrast “right” sequence with “wrong” 

sequence.
● InfoNCE loss with a time-dependent score 

function.
● Can be applied to a variety of learning 

problems, but not as effective in learning 
image representations compared to instance-
level methods.
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Next time:  Generative Models
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CPC example: modeling visual context

Source: van den Oord et al., 2018, 

● Compares favorably with other pretext task-
based self-supervised learning method.

● Doesn’t do as well compared to newer 
instance-based contrastive learning methods 
on image feature learning.

https://arxiv.org/abs/1807.03748
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Other examples: Dense Object Net

Dense Object Net, Florence et al., 2018

Contrastive learning on pixel-wise feature descriptors
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Dense Object Net, Florence et al., 2018

Other examples: Dense Object Net
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Other examples: Dense Object Net

Dense Object Net, Florence et al., 2018
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