Lecture 12:
Self-Supervised Learning
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Administrative

- Midterm next Tuesday (5/13 during lecture time) - Don’t be late;
See this Ed post for logistic details.

- Midterm review section tomorrow, Friday, 5/9 at 12:30 pm.

- Project proposal feedback is available on Gradescope.
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https://edstem.org/us/courses/77520/discussion/6643713

Previous Lecture: GPUs and How to Train On Them

A bit about GPU hardware How to train on lots of GPUs
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Lots of Computer Vision Tasks

Semantic Object Instance
Segmentation Detection Segmentation

Classification

CAT GRASS, CAT, TREE, DOG, DOG, CAT DOG, DOG, CAT
N VAN Ky VAN Y,
Y Y Y
No spatial extent No objects, just pixels Multiple Object Insimage ' CCO b domin
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Last Week: Visualizing and Understanding

schooner
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Last Week: Visualizing and Understanding

Testimage L2 Nearest neighbors in feature space 4096-dim vector
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Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission
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Learned Representations

Testimage L2 Nearest neighbors in feature space 4096-dim vector

Recall: Nearest neighborsin
pixel space
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Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.
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Learned Representations

Max

poaling

Krizhevsky etal, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.
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What is the problem with large-scale training?
- We need a lot of labeled data

Is there a way we can train neural networks without
the need for huge manually labeled datasets?
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Self-Supervised Learning
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Pretext
Objective
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Trained Encoder

Downstream
Objective
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Pretext Task

- Define a task based on
the data itself

- No manual annotation
- Could be considered
an unsupervised task;
- but we learn with
supervised learning
objectives, e.g.,
classification or
regression.

Downstream Task

- The application you
care about

-You do not have large
datasets

- The dataset is labeled



Self-Supervised Learning - Pretext Task

dataset (no labels)

Decoder, Labels/outputs

e automatically
Classifier, generated

Regressor from data

Learned Representation
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Self-Supervised Learning - Downstream Task

dataset (with labels)

Labels

Learned Representation
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Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images

image completion rotation prediction “jigsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.
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How to evaluate a self-supervised learning method?

e Pretext Task Performance
o Measure how well the model performs on the task it was trained on without labels.

e Representation Quality
o Evaluate the quality of the learned representations
m Linear Evaluation Protocol: Train a linear classifier on the leaerned representations;
m  Clustering: Measure clustering performance;
m t-SNE: Visualize the representations to assess their separability.)
e Robustness and Generalization
o Test how well the model generalizes to different datasets and is robust to variations.

e Computational Efficiency
o__Assess the efficiency of the method in terms of training time and resource requirements.
e Transfer Learning and Downstream Task Performance

o Assess the utility of the learned representations by transferring them to a downstream
supervised task.
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How to evaluate a self-supervised learning method?

feature
self-supervised extractor

E> learning E> (e.g.,a
convnet)

lots of

unlabeled
data
* 90°
—_—

conv fc

1. Learn good feature extractors from
self-supervised pretext tasks, e.g.,
predicting image rotations
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How to evaluate a self-supervised learning method?

feature
self-supervised extractor supervised evaluate on the
E> learning E> (e.g., = learning = { target task }
convnet)
lots of e.g. classification, detection
unlabeled
data . 4
bird
small amount of
labeled data on
conv the target task conv lmear
classifier
1. Learn good feature extractors from 2. Attach a shallow network on the
self-supervised pretext tasks, e.g., feature extractor; train the shallow
predicting image rotations network on the target task with small

amount of labeled data
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Broader picture

Today’s lecture
computer vision

Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence
and Manuelli et al., 2018)

Stanford CS231n 10t Anniversary

language modeling

GPT-4 Technical Report

OpenAl’

Abstract

‘We report the development of GPT-4, a large-scale, multimodal model which can
accept image and text inputs and prul:luu: text outputs. While less capable than
humans in many real-world scenarios, GPT-4 :x}ublts human-level performance
on various professional and academic b ding passing a si d
bar exam with a score around the top 10% Uflcsl takers. GPT-4 is a Transformer-
based model pre-trained to predict the next token in a document. The post-training
alignment process results in improved performance on measures of factuality and
adherence to desired behavior. A core component of this project was developing
infrastructure and optimization methods that behave predictably across a wide
range of scales. This allowed us to accurately predict some aspects of GPT-4's
performance based on models trained with no more than 1/1,000th the compute of
GPT-4.

GPT-4 (OpenAl 2023)
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speech synthesis
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Wavenet (van den Oord et al.,
2016)
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Today’s Agenda

Pretext tasks from image transformations

* Rotation, inpainting, rearrangement, coloring

« Reconstruction-based learning (MAE)
Contrastive representation learning

* Intuition and formulation

* Instance contrastive learning: SImCLR and MOCO
* Sequence contrastive learning: CPC

» Self-Distillation Without Labels, DINO
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Today’s Agenda

Pretext tasks from image transformations
* Rotation, inpainting, rearrangement, coloring
« Reconstruction-based learning (MAE)
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Pretext task: predict rotations

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Hypothesis: a model could recognize the correct rotation of an object only if
it has the “visual commonsense” of what the object should look like
unperturbed.

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

0
> (X, v=0) > ﬁ >
R Rotated unngc:..\'“ Self-SU pe rViSed
learning by rotating
gl ilalmmy Eag the entire input
Rotate 90 degrees ‘ i ma ges
2 Rotated image: X~ '
q . N ﬂ o The model learns to
Image X Rotate 180 degrees m . predICt WhiCh rOtatiOn
Rotated image: X~ . .
) is applied (4-way
ey classification)
> glX,y=3) > [

Rotate 270 degrees )
Rotated image: X

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

o0

> (X, v=0) = ﬁ
Rotate 0 degrees

Rotated image: X°

> (X, y=1) »pi g

Rotate 90 degrees
Rotated image: X'

> glX,y=2) > g
1)

Image X Rotate 180 degrees m
Rotated image: X°

Wiy

NS

> gl X, y=3) >

Rotate 270 degrees _ .
Rotated image: X

ConvNet
model F(.)

ConvNet
model F(.)

ConvNet
model F(.)

ConvNet
model F(.)

Objectives:
Maximize prob.
F(x°)
Predict 0 degrees rotation (y=0) Se lf—s u pe rVised
learning by rotating
e the entire input

Predict 90 degrees rotation (y=1) i ma ges.

> Mainizopro The model learns to

Predict 180 degrees rotation (y=2) predICt WhiCh rOtation
is applied (4-way

o Maximize prob. classification)
F(X?)

Predict 270 degrees rotation (y=3)

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Evaluation on semi-supervised learning

1100

g0

Self-supervised learning on
CIFAR10 (entire training set).

B0

70

Freeze convl + conv2

Learn conv3 + linear layers with
subset of labeled CIFAR10 data
(classification).

B

Test accuracy

507

40

Durs - Semi-supervised
— Supervised

20 106 400 1004 5000
# Training examples

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Transfer learned features to supervised learning

Classification  Detection Segmentation
(FemAF) (FemAP) (%emlol)

Trained layers | fc6-8  all all all Pretrained with full ImageNet
ImageNet labels | 789 799 568 48.0 supervision
Random 533 434 19.8 . .
Random rescaled Krihenbiihl et al. (2015) | 39.2  56.6 45.6 326 |° No pretraining
Egomotion (Agrawal et al., 20135) 31.0 34.2 439
Context Encoders (Pathak et al., 2016b) 346 565 445 29.7 ) )
Tracking (Wang & Gupta, 2015) 556 631 474 Self-supervised learning on
Context (Doersch et al., 2015) 55.1 65.3 51.1 . . .
Colorization (Zhang et al., 2016a) 615 656 469 35.6 ImageNet (entire training
BIGAN (Donahue et al., 2016) 523 60.1 46.9 34.9 :
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 676 53.2 37.6 set) with AlexNet.
NAT (Bojanowski & Joulin, 2017) 567  65.3 49.4
Split-Brain (Zhang et al., 2016b) 630 67.1 46.7 36.0 .
ColorProxy (Larsson et al., 2017) 65.9 38.4 Finetune on labeled data
Counting (Noroozi et al., 2017) - 67.7 514 36.6 from Pascal VOC 2007.

[ (Ours) RotNet 70.87 7297 54.4 39.1 |

Self-supervised learning with rotation prediction source: Gidaris et al. 2018
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https://arxiv.org/abs/1803.07728

Visualize learned visual attentions

Convl 27 x 27 Conv3 13 x 13 Conv56 x 6 Convl 27 x 27 Conv3 13 x 13 Conv56 x 6

(a) Attention maps of supervised model (b) Attention maps of our self-supervised model
(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Pretext task: predict relative patch locations

Example:

(Image source: Doersch et al., 2015)
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https://arxiv.org/abs/1505.05192

Pretext task: solving “jigsaw puzzles”

Ny~ huffisd - P = a5 == [/
snuirie —

3 ' a S -ﬁfﬁ -]

5 - .‘ -e .ﬁ.f.ﬁ o/ 4608 flaons xoo./ .
Permutation Set : ' i 'i '6 Ez- = F o gpeeee
index permutation f:;ggc ;:gfdcm;?ir:g to — - ; 'ﬁ zﬁ e
64 946832517 8 ! P B 4 -ﬁgﬁ - ./

? — i H = Ves - T

Nx11x96 5256 1384 D84 256 o2

(Image source: Noroozi & Favaro, 2016)

64
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https://arxiv.org/abs/1603.09246

Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results
of the other methods are taken from Pathak et al. [30].

Method Pretraining time  Supervision  Classification Detection Segmentation
Krizhevskyet al. [25] 3 days 1000 class labels 78.2% 56.8% 48.0%
Wang and Gupta[39] 1 week motion 58.4% 44.0% -
Doersch et al. [10] 4 weeks context 55.3% 46.6% -
Pathak et al. [30] 14 hours context 56.5% 44.5% 29.7%
Ours 2.5 days context 67.6% 53.2% 37.6%

“Ours” is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro,
2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)
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https://arxiv.org/abs/1603.09246

Pretext task: predict missing pixels (inpainting)

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)
Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Learning to inpaint by reconstruction Auto Encoder

»

e a P
» v |l »
N . . IS
. * * =
@ | Channel-wise | g
— Fully M Decoder .
> Connected g ’
g g
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*

SO TR ——— 14

Learning to reconstruct the missing pixels
Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Inpainting evaluation

Input (context) reconstruction

Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Learning to inpaint by reconstruction
(We will talk about adversarial learning in the next lecture)

Loss =reconstruction + adversarial learning

Element wise multiplication
L(ﬂ:) ‘PECGTE ($) + Lﬂ.d’ﬂ (m) / 0 not masked

»M =

IM// { masked
recan(m) — H iB — Fg 1 — * I )HZ Encoder
\—//1

Loy = maxp Eflog(D(x))] + log(1 — D(F((1 — M) * z)))]

Adversarial loss between “real” images and inpainted images

Source: Pathak 201
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https://arxiv.org/pdf/1604.07379.pdf

Inpainting evaluation

i :
’
———
a

Input (context) reconstruction adversarial recon +adv

Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Transfer learned features to supervised learning

Pretraining Method Supervision Pretraining time Classification Detection Segmentation
ImageNet [ 0] 1000 class labels 3 days 78.2% 56.8% 48.0%
Random Gaussian initialization < 1 minute 53.3% 43.4% 19.8%
Autoencoder - 14 hours 53.8% 41.9% 25.2%
Agrawal et al. [1] egomotion 10 hours 52.9% 41.8% -
Wang et al. [2Y] motion 1 week 58.7% 47.4% -
Doersch et al. [ ] relative context 4 weeks 55.3% 46.6% -

Ours context 14 hours 56.5% 44.5% 30.0%

Self-supervised learning on ImageNet training set, transfer to classification
(Pascal VOC 2007), detection (Pascal VOC 2007), and semantic

segmentation (Pascal VOC 2012)
Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Pretext task: image coloring

.p'i;lv * -
Grayscale image: L channel Color information: ab channels
X ¢ RHxWx1 ?E]RHXWXQ

L

Source: Richard Zhan Phillip Isola
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Pretext task: image coloring

g
'33 ¥ ,
Grayscale image: L channel Concatenate (L,ab) channels
X i IRHXW'XI (X ?)

-

Source: Richard Zhang / Phillip Isola
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Learning features from colorization:
Split-brain Autoencoder

Input Image X

Source: Richard Zhang / Phillip Isola
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Learning features from colorization:

Split-brain Autoencoder
Idea: cross-channel predictions

<)

Split-Brain Autoencoder

Source: Richard Zhang / Phillip Isola
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Learning features from colorization:
Split-brain Autoencoder

RGB channels HHA depth channels

Input / \ Predicted
RGB-HHA RGB-HHA
image image

e

HHA depth channels RGB channels

Source: Richard Zhang / Phillip Isola
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Transfer learned features to supervised learning

- Flaces-labels @-@ Pathak et al.
50 BB ImageNet-labels @@ Zhang et al.
8@ Krachenbuehl et al, OO0 Owens et al,

TV Gauss &0 Donahue et al, . .
45 @-@ Doersch et al, @< Split-Brain Autolcl,cl) Self-SUpe leed lea rnlng on
@8 Wang & Gupta ___————".'_ — o o e
_* .:> _ ImageNet (entire training set).
supervised
o —
L
- _ Use concatenated features
< #_g;?“‘--g& this paper fromF;andF,
S —
~————__ Labeled data is from the
. * Places (Zhou 2016).
—
#:F"DﬁwJ *c*""qﬁ

Source: Zhan 2017
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https://arxiv.org/abs/1611.09842

Pretext task: image coloring
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Pretext task: image coloring

Source: Richard Zhang / Phillip Isola
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Pretext task: video coloring

ldea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Source: Vondrick 201
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https://arxiv.org/abs/1806.09594

Pretext task: video coloring

ldea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Hypothesis: learning to color video frames should allow model to learn to

track regions or objects without labels!
Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Learning to color videos

Reference Frame Input Frame

Establish mappings
between reference and
target framesin a
learned feature space.

Use the mapping as
“pointers” to copy the
correct color (LAB).

Reference Colors Target Colors

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A ‘ f i
Frame O
Target 4

attention map on the reference
frame

oo (T4
Zk exXp (fff;,-)

Aci Reference

® Colors
o ? gr?dmted
yj olors

Source: Vondrick 201
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https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings

Reference A ‘f i
Frame O ;
Target ;
Frame © A *n* ® 4y,

attention map on the reference predicted color = weighted
frame sum of the reference color

T r.
4, exp (fz f:.') ;i = Z Ajjc;

- EkEXP( gfj)

Aci Reference
Colors

Predicted
Y; Colors

Source: Vondrick 201
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https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A ‘f ¢ A.C | Reference
Frame O [ Colors
Target ® o : / P Predicted
Frame A “fj ‘yj Colors
attention map on the reference predicted color = weighted loss between predicted color
frame sum of the reference color and ground truth color
T .
exXp (f% fj) o A ) mmZE(yj.,.cj)
Aij = T Yi = ij Ci 0 &
>xexp (fii £5) i ro
Source: Vondrick 201
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https://arxiv.org/abs/1806.09594

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Stanford CS231n 10t Anniversary Lecture 12- 48 May 8, 2025


https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

LR D TN s s Wy SN S
hy % e N = L
-
\\ e 1 ’ - s . 0 - 2
-~ : 3 : : .
N - — A - :

Y
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https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization

Propagate segmentation masks using learned attention
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https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization

Propagate pose keypoints using learned attention

gl HHTHHHE

May 8, 2025
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Masked Auto Encoders (MAE)
Reconstruction W|th alarger masked Dortlon

masked

masked

75% masking ratio He et al., 2021 Masked Autoencoders
Are Scalable Vision Learners
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Masked Auto Encoders (MAE)

ENEE
=N
NENJ

N,
v
PYREw) 2.4

inpu

encoder

+

He et al., 2021 Masked Autoencoders
Are Scalable Vision Learners
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u
: Mo
| —
Masklng Methos smae NN i RIS
- Similar to the original ViT, A Rl e
- . ) , EEEEN ~  EENEN
divide the input into non-overlapping patches. nput = - e
* Uniformly sample a very large proportion (75%) of é
these patches and mask them Figure 6. MAE architecture

fromthe paper

» Masking a high ratio makes predicting the task
challenging and meaningful.

 Also, not using mask tokens and picking a high
sampling ratio (masking most of the image, e.g.,
75%, and sampling a small visible portion, e.g.,
25%, to feed into the encoder) enables the
encoder to bevery large.

He et al., 2021 Masked Autoencoders
Are Scalable Vision Learners
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[ |
H
e, - 0
MAE Encoder el 2 |  mpme
pammn e 5 B BERNS
- Theencoder only operates Eusms M L uEEER
EENEE = EENE
on unmasked patches (25%) =¥ v
8
|
. . . Figure 6. MAE architectur
- Embeds the patches by linear projection P fromthe paper

and add positional embeddings
- Usestransformer blocks

- Sincetheinput patches are a small part of the input, the encoder is
chosen to be very large. (encoder has over 9 times computations per
tO ken VS deCOde r) He et al., 2021 Masked Autoencoders

Are Scalable Vision Learners
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A
’ 2
| —
oy mEe o R
* Merges the encoder outputs with the shared aunes N . p HEEES
. . L] [ ] p HENEE
mask tokens in previously masked places, nout = - W e
adding positional encodings to them. é
+ Uses transformer blocks, followed Figure 6. MAE architecture

fromthe paper

by a linear projection for finalizing pixel reconstruction.

 Issolely responsible for reconstruction, meaning it is not used post-
training. Hence, it is independent of the encoder design, making it flexible
(unlike traditional AEs or UNet). Thisisan
asymmetrical autoencoder design.

He et al., 2021 Masked Autoencoders
Are Scalable Vision Learners
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Reconstruction

- The MSE (mean squared error loss) in the pixel space between the

inputimage and the reconstructed image is adopted.

- Lossis only computed for masked patches

He et al., 2021 Masked Autoencoders
Are Scalable Vision Learners
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Linear Probing vs Full Fine-tuning

* Inlinear probing, the pre-trained model s fixed, and only one §
linear layer is added at the end, to predict the labels (or produce :§:

the output). This method is used to assess the quality of Encoder E&
representations from a pre-trained feature extraction model. %if 3 é

3

* Infine-tuning, pre-trained modelis further trained (not fixed),
and one or more layers, possibly with non-linearities are added.

* linear probing: provides a measure of representation quality of a
pre-training in restricted conditions

* fine-tuning: exploits models near-true potential to adopt for new
tasks

Learned Representation

He et al., 2021 Masked Autoencoders
Are Scalable Vision Learners
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85 , 84,1_}_7_7%;9,_77530—77_,8},;9 849 845
Ablation Studies o
So many modeling/hyperparameter choices: A
M M »— linear probing 699 7_}_1&(;8_77_,,73@2_7115‘,_]_1‘.‘8\
- Maskingratio e —
 Decoder depth Mo
N Decoder Wldth 10 20 30 2351(1“;;&0 (%)60 70 80 90
« Mask token (used or not in encoder) case  ratio ft i
. random 75 849 735
« Reconstruction target block 50 839 723
. block 75 82.8 639
- Data augmentation orid 66.0

*  Mask sampling method
* Training schedule

3 % ¥
random 75% block 50% grid 75%

He et al., 2021 Masked Autoencoders
Are Scalable Vision Learners
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Masked Autoencoder - Comparisons

method pre-train data ViT-B  ViT-L  ViIT-H ViT-Hygg
scratch, our impl. - 82.3 82.6 83.1 -
DINO [5] IN1K 82.8 - - -
MoCo v3 [9] IN1K 83.2 84.1 - -
BEIiT [2] INIK+DALLE 83.2 85.2 - -
MAE IN1K 83.6 85.9 86.9 87.8

He et al., 2021 Masked Autoencoders
Are Scalable Vision Learners
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Summary: pretext tasks from image
transformations

e Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the pretext

tasks.

e We often do not care about the performance of these pretext tasks, but
rather how useful the learned features are for downstream tasks

(classification, detection, segmentation).
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Summary: pretext tasks from image
transformations

e Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the pretext
tasks.

e We often do not care about the performance of these pretext tasks, but
rather how useful the learned features are for downstream tasks
(classification, detection, segmentation).

e Problems: 1) coming up with individual pretext tasks is tedious, and 2) the
learned representations may not be general.
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Pretext tasks from image transformations

image completion rotation prediction “ligsaw puzzle” colorization

Learned representations may be tied to a specific pretext task!

Can we come up with a more general pretext task?
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A more general pretext task?

same object
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A more general pretext task?

same object
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Contrastive Representation Learning
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Today’s Agenda

Contrastive representation learning

* Intuition and formulation

* Instance contrastive learning: SImCLR and MOCO
* Sequence contrastive learning: CPC

» Self-Distillation Without Labels, DINO
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Contrastive Representation Learning
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Contrastive Representation Learning

£ reference
+

i positive

I  negative
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A formulation of contrastive learning

What we want;:

score( f(x), f(xT)) >> score(f(z), f(z7))

x: reference sample; x* positive sample; x negative sample

Given a chosen score function, we aim to learn an encoder
function f thatyields high score for positive pairs (x, x*) and low
scores for negative pairs (x, x).
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(z™))

L =—-Ex |log

Stanford CS231n 10t Anniversary

exp(s(f(z), f(z 1)) + 37, exp(s(f(z), f(z;))
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

L= —Eyx |log exp(s(f(z), f(z™))

exp(s(f (@), f(z1)) + 272, exp(s(f(2), f(z})).
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(z™))

L =—-Ex |log N3 -
exp(s(f(z), f(z+)) + X0 exp(s(f (2), £ (&)
score for the positive score for the N-1 negative
pair pairs

This seems familiar ...
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(z™))

L =—-Ex |log N3 -
exp(s(f(z), f(z+)) + X0 exp(s(f (2), £ (&)
score for the positive score for the N-1 negative
pair pairs

This seems familiar ...
Cross entropy loss for a N-way softmax classifier!
l.e., learn to find the positive sample from the N samples
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A formulation of contrastive learning
Loss fu nction given 1 positive sam pleand N - 1 negative samples:
_|_
L =—-Ex |log exp(s(f(:cg;i(:c ) —
exp(s(f(z), f(z)) + 22,2, exp(s(f(z), f(z}))

Commonly known as the InfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x*)

MI[f(z), f(z*)] — log(N) > —L

The larger the negative sample size (N), the tighter the bound
Detailed derivation: Poole et al., 2019
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SimCLR: A Simple Framework for Contrastive Learning

Cosine similarity as the score function: 2 . Maximize agreement z;

s(u,v) = 4 90 90

[l [[]]] .
h; +— Representation —» h;

Use a projection network g(-) to project
features to a space where contrastive /C) ()
learning is applied e
Generate positive samples through data IR . 7T

augmentation:
e random cropping, random color
distortion, and random blur.

Source: Chen et al.,, 2020
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SimCLR: generating positive samples from data
augmentation
— A

£~
L '
3 !

(a) Original (b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

Source: Chen et al,, 2020
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*We use a slightly different

. Algorithm 1 SimCLR’s main learning algorithm. formulation in the
S | m C L R input: batch size N, constant T, structure of f, g, 7. assignment. You should follow
for sampled minibatch {z;};, do the assignment instructions.

forallke{1.....Nldo

draw two augmentation functions t ~T, t' ~T
/# the hirst augmentation
Top—1 = t(my)

Generate a positive pair — hak—1 = J(@2k-1) # representation
by sampling data 2ok—1 = g(hap_1) # projection
augmentation functions i the second augmentation
T | g =t ()
hap = fl@a) # representation
zok = glhag) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
8ij = z;rzjflillzsllllzjll) # pairwise similarity
end for

define £(i, j) as £(i,j)=—log o exp(si ;/7)

=1 Ypesi) exp(si g /T)
L= Sa [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-) Source: Chen et al.. 2020
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Algorithm 1 SimCLR’s main learning algorithm.

Si m C L R input: batch size N, constant 7, structure of f, g, T.

for sampled minibatch {z; };_, do
forallke{1.....Nldo

draw two augmentation functions t ~T, t' ~T
/# the hirst augmentation
Top—1 = t(my)

Generate a positive pair —~

hak—1 = J(@2k-1) # representation
by sampling data 2ok—1 = g(hap_1) # projection
augmentation functions i the second augmentation
T | g =t ()
hap = fl@a) # representation
zok = glhag) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
si; = z; zi/(||zllz;]) # pairwise similarity
end for

define £(i, j) as |{(i,j)=—log o exp(si ;/7)

o1 Lk expl(si e /T)

L= S [6(2k—T1,2K) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

*We use a slightly different
formulation in the
assignment. You should follow
the assignment instructions.

InfoNCE loss:

Use all non-positive
samples in the batch
asx-

Source: Chen et al.,, 2020
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*We use a slightly different

. Algorithm 1 SimCLR’s main learning algorithm. formulation in the
S | m C L R input: batch size N, constant T, structure of f, g, 7. assignment. You should follow
for sampled minibatch {z;};, do the assignment instructions.

forallke{1.....Nldo

draw two augmentation functions t ~T, t' ~T
/# the hirst augmentation
Top—1 = t(my)

Generate a positive pair — Rak—1 = J(@2k—1) # representation
by sampling data 2ok—1 = g(hap_1) # projection
augmentation functions i the second augmentation
T | g =t ()
hap = fl@a) # representation
zop = g(ha) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
si; =2 z;/(||zll|lz]l)  # pairwise similarity InfoNCE loss:
Iterate through and use 322:22{1- - o exp(si,;/7) Useall nc?n—p05|t|ve
7) as (i, 5) =~ log g i [ samples in the batch
each of the 2N sample e S RT P
—> L 2;‘-.' Zk , [€(2k—1 2!:}+ E?(Ekr 2k—1)] as x-
as reference, compute update networks f and g to minimize £
average loss end for
return encoder network f(-), and throw away g(-) Source: Chen L 202

Stanford CS231n 10t Anniversary Lecture 12- 80 May 8, 2025


https://arxiv.org/pdf/2002.05709.pdf

SimCLR: mini-batch training

T . .
Z; Zj

Sii —
N PATHIPA]
“Affinity matrix”

”——» encoder — Z < R2N}<D

list of positive pairs I —

___,  encoder —/
Each 2k and 2k + 1 element is
a positive pair

*We use a slightly different formulation in the assignment.
You should follow the assignment instructions.

2N

2N
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T

SimCLR: mini-batch training 2 2i

Sii —
N PATHIPA]
”——» encoder — Z < R2N}<D

“Affinity matrix”
list of positive pairs I —

___,  encoder —/
Each 2k and 2k + 1 element is
a positive pair 2N

*We use a slightly different formulation in the assignment. . = classification label for each row
You should follow the assignment instructions.
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Training linear classifier on SImCLR features

% Supervised #SimCLR (4x)
—_— ?5 B - .
3 #*SimCLR (2x) Train feature encoder on ImageNet
9) -0 oCPCv2-L (entire training set) using SiImCLR.
%— *SimCLR PIRLcptCMC JMoCo (4x)
< q oMoCo (24) AMDIM Freeze feature encoder, train a
a r qCPCv2 PIRL-ens. linear classifier on top with labeled
© PIRL . d
» BigBiGAN ata.
3 6o} *MGCO 9
z LA
g
E 55} eRotation
25 elnstDisc
25 50 100 200 400 626

Number of Parameters (Millions)

Source: Chen et al.,, 2020
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Semi-supervised learning on SimCLR features

Label fraction

Method Architecture 1% 10%
Top 5

Methods using other label-propagation: ; o : ;
Dot s P (entire training set) using SimCLR.
VAT+Entropy Min. ResNet-50 470 834
UDA (w. RandAug) ResNet-50 - 88.5 . . 0 0
FixMatch (w. RandAug) ResNet-50 ] 29 1 Finetune the encoder with 1% / 10%
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2 of labeled data on ImageNet.
Methods using representation learning only:
InstDisc ResNet-50 39.2 774
BigBiGAN RevNet-50 (4x) 55.2 78.8
PIRL ResNet-50 57.2 838
CPC v2 ResNet-161(x) 77.9 01.2
SimCLR (ours) ResNet-50 75.5 87.8

SimCLR (ours) ResNet-30(2x) 83.0 91.2
SimCLR (ours) ResNet-50 (4x) 85.8 92.6

Table 7. ImageNet accuracy of models trained with few labels. Source: Chen et al.. 2020
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SimCLR design choices: projection head

70

60 I II II Linear / non-linear projection heads improve
250 | Projection representation learning.
= B Linear
A0 | mmm Non-li . .
= N::E'“ear A possible explanation:
30 P e contrastive learning objective may discard
Q‘l[:‘

useful information for downstream tasks
e representation space zis trained to be

F'rnjectlcn DUIIDLIII dlmenﬁmnahty

AT agetated invariant to data transformation.
[ o) ) ] e by leveraging the projection head g(-), more
hi  +— Representation— b, information can be preserved in the h
50 ln-} representation space
P ()
NS N

~— Source: Chen et al., 2020
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SimCLR design choices: large batch size

700 Large training batch size is crucial for

67. SimCLR!

65,

62. .
- Large batch size causes large memory
260.0 . . .

[¥]

o

LA

Batch riy footprint during backpropagation:

-2 requires distributed training on TPUs
i (ImageNet experiments)

2048

4096

8192

57,

L¥]

335,

o

22,

L

100 200 300 400 500 600 700 800 900 1000

Training epochs Mf[f(:]:).} f($+ )] — lﬂg(N) 2 —L

Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch.'”

50.

=]

Source: Chen et al,, 2020
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Momentum Contrastive Learning (MoCo)

-::-:untrasli\.re loss o grad Key differences to SimCLR:
> similarity < / e Keep arunning queue of keys (negative
samples).
q kﬁ kl k? e Compute gradients and update the
A queue 4 encoder only through the queries.
e Decouple min-batch size with the
encoder m::’;gt:rm number of keys: can support a large
, number of negative samples.
ke ke ke
query y ¥y Yy
€T Ty Ty° Ty ™ ..

Source: He et al., 2020
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Momentum Contrastive Learning (MoCo)

contrastive loss 15 oraq Key differences to SimCLR:
| _
> similarity < / e Keep arunning queue of keys (negative
samples).
q kﬁ kl k? e Compute gradients and update the
A queue 4 encoder only through the queries.
e Decouple min-batch size with the
encoder m::’;gt:rm number of keys: can support a large
, number of negative samples.
' e The key encoder is slowly progressing
pauery mlgey 3_311“33’ 3:}2:61? through the momentum update rules:
Oy < MmO + (1 — m)bq

Source: He et al., 2020
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Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

f_k.params = £_g.params § initialize
for x in loader:

Generate a positive pair xe = wBix) § & randonly wwgmented verelon
bysampllngdata x_k au:qx] -di :I i

. . g = f_g.forwardi({x_qg) & gueri
augmentation functions et e e e

N dient th h / ;_;é;.;.;;"'I"“.*E‘-i*;'.’;';[;j?i,ch k.view(N,C,1)) Use the running

O gradien roug + negative loaita: Nk et of kevs ac the
th k ]_;:';e..;ij - ml‘l‘l:q I.‘J':Le'..e;:!f-.-é']" e view (C,K)) «— q : y

o negative samples

— 1+E)
!oq ts = catttl _pos, l_negl, dim=1)
:.-

Jabe]s o :'h:-"ﬂsm:l : ST [ R— InfONCE loss

loss = “*ofsEnLropysttlaglLsn lam-sb

¥ SGD update: gquery nets
loss.backward()
update (f_g.params)

Update f_k through

E_x.pa.rams - mw E_k.paéa.m54 {1l-m)«£f_oq.params
Undate the FIFO . PR —— momentum
atethe negative apcate < oL lonary
P BAUNE _, removere wewe, 7+ e
sample queue

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concalenation. SOU rce: He Qt al 2020
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“MoCo V2~

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haogi Fan Ross Girshick Kaiming He
Facebook Al Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:
e From SimCLR: non-linear projection head and strong data

augmentation.
e From MoCo: momentum-updated queues that allow training on

a large number of negative samples (no TPU required!).

Source: Chen et al.,, 2020
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MoCo vs. SImCLR vs. MoCo V2

Key takeaways:
unsup. pre-train ImageMet VOC detection

case | MLP aug+ cos epochs| acc. |APsy AP APy e Non-linear projection head and strong
supervised 76.5 81.3 53.5 58.8 . .
MoCo vi 500 | 606 | 815 559 626 data augmentation are crucial for

(a) v 200 66.2 | 82.0 564 62.6 contrastive learning.

(b) v 200 | 634 | 822 568 632

(©) 200 | 673 | 825 57.2 639

() v v < 200 | 675 |824 570 636

(e) v ¥ v 800 | TL1 |825 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(i) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP": with an MLP head; “aug+":
with extra blur augmentation; “cos™: cosine learning rate schedule.

Stanford CS231n 10t Anniversary
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MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageNet Key ta keawayS:

case MLP aug+ cos epochs batch ace. . . .

MoCo v1 [0] 300 256 | 606 e Non-linear projection head and strong

SimCLR[2] | v v ¢ 200 256 | 619 data augmentation are crucial for

SimCLR [2] v v v 200 8192 66.6 . .

MoCo v2 v S 200 256 | 675 contrastive learning.

results of longer unsupervised training follow: . L. . .

SImCLR [2] | v Y 1000 4096 | 693 e Decoupling mini-batch size with

LD A 800 256 | 711 negative sample size allows MoCo-V2 to
Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy outperform SimCLR with smaller batch
(ResNet-50, 1-crop 224x224), trained on features from unsuper- size (256 Vs. 8 192).

vised pre-training. “aug+" in SimCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

Source: Chen et al.,, 2020
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MoCo vs. SImCLR vs. MoCo V2

Key takeaways:

e Non-linear projection head and strong

mechanism  batch  memory / GPU  time / 200-ep. data augmentatlon are crucial for

MoCo 256 5.0G 53 hrs contrastive learning.
end-to-end 256 7.4G 65 hrs
end-to-end 4096 93.0G n/a e Decoupling mini-batch size with
Table 3. Memory and time cost in § V100 16G GPUs, imple- negative sample size allows MoCo-V2 to
mented in PyTorch. ': based on our estimation. outperfo rm SimCLR with smaller batch

size (256 vs. 8192).

e ... all with much smaller memory
footprint! (“end-to-end” means SimCLR
here)

Source: Chen et al.,, 2020
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Instance vs. Sequence Contrastive Learning

Predictions

: e
v-wfv ------ \ [ \/ aVcayzayza)

Fi—3 Ty Tpq2 Trga Fpgd

q‘;mllﬂjlllm_rlu_rlul_lm =l -— W "'"'*u“l"""

Source: van den Qord et al., 2018

Instance-level contrastive learning;: Sequence-level contrastive learning;
contrastive learning based on contrastive learning based on
positive & negative instances. sequential / temporal orders.

Examples: SimCLR, MoCo Example: Contrastive Predictive Coding (CPC)
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Contrastive Predictive Coding (CPC)

f':f_ Predictions
E T T Contrastive: contrast between “right”
W/ i \ and “wrong” sequences using
* contrastive learning.
Henc fleme | Bene Jene Henc Henc Hene llll' Henc icti . i
' 5"1 Xf \ f 9. \/r RX; \ X: \X; \ /; Predictive: the model has to predict

future patterns given the current

Ty-3 Ty Tyya Tppq

EEEE
. - i, Coding: the model learns useful
. - ‘ positive feature vectors, or “code”, for
e downstream tasks, similar to other
oo ] 15 -
- self-supervised methods.

negative

Figure source Source:van den QOord et al., 2018,
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Contrastive Predictive Coding (CPC)

1. Encode all samplesin a sequence into
vectors z, = g, .(x;)

~

LR S SO I
RVEAVEAVISVEAVEAVE V\

EEEE
ot 1 5 @

negative

L\ J
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Contrastive Predictive Coding (CPC)

{:f- Predictions
EEIEEER LI T 1. Encode all samplesin a sequence into

vectors z, = g, .(x;)

2. Summarize context (e.g., half of a
sequence) into a context code ¢, using an

;, . aﬁﬂl Xq n\ ff N ,“\ /q e \X‘; ,,r\ Xu m\ Xq, "sﬂ /;, ,,c\ [a)l;;oe-rrleﬁreeSSéil\Q/S_nF:;dNerl]égg.).The original

Tp—3 Tey Tyt Lypd
19 ﬁ EY ki
EEBEE_
/
=L

negative

Figure source Source:van den Oord et al., 2018,
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Contrastive Predictive Coding (CPC)

Predictions

RITEERRII T 1. Encode all samplesin a sequence into
' vectors z, = g, .(x;)

* * + L 2. Summarize context (e.g., half of a
sequence) into a context code ¢, using an

;, ne | Xh\ f %% \ /;, Kr_; \ X;, \ Kq, \ /q auto-regressive model (g,,)

Teer | T2 | Tees | T 3. Compute InfoNCE loss between the
; context ¢, and future code z,,, using the
E—i b . . following time-dependent score
= E W S Postive e
[ — T
. = Sk(zt-f-k!ct) - Eﬁ_i_kwkct
oo S @
: where W, is a trainable matrix.

negative

Figure source Source:van den QOord et al., 2018,
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CPC example: modeling audio sequences

Ct Predictions
1 i -
s “~. H‘"\_ - H‘.\‘ ..__1“
. ‘« " -
. . .
\'\ \ ”‘.\ \
'1'. N . %
Zt41 <42 143 Zt44
/genc\ /genc\ /genc\ /g&ﬂﬂ\ genc
Tt—2 Ti—1 | Tit1 Tt42 Ti+3 | Ttya

W W o

Source: van den Oord et al., 2018,
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CPC example: modeling audio sequences

R 3
W, | -’3-&«*”*\”’

. Ve g e
g, el et e

‘g*ﬁfv‘) %R @w &
&Aﬁ} . ':‘t:'-{
R

Figure 2: t-SNE visualization of audio (speech)
representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.

Ay

Stanford CS231n 10t Anniversary

Method | ACC
Phone classification

Random initialization 27.6
MFCC features 39.7
CPC 64.6
Supervised 74.6
Speaker classification
Random initialization 1.87
MFCC features 17.6
CPC 07.4
Supervised 98.5

Linear classification on trained
representations (LibriSpeech dataset)

Source:van den Oord et al., 2018,
May 8, 2025
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CPC example: modeling visual context

|dea: split image into patches, model rows of patches from top to bottom as a
sequence. l.e., use top rows as context to predict bottom rows.

Gene - out Pllt

-1

64 px _
- Zty2| e
- Pl
, t+4|  feat-
50% overlap |
256 px: :
input image I

Gar - Output

Ctin

—

==

.
—_—

i

L

i ."/.l"
-r;‘ Fl
- r

_-~ Predictions

L

Source: van den Oord et al., 2018,
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Other examples

“This paper does not describe a

novel method.”

Stanford CS231n 10t Anniversary

MoCo v3

An Empirical Study of Training Self-Supervised Vision Transformers

Xinlei Chen*

Saining Xie*

Kaiming He

Facebook Al Research (FAIR)

Code: https://github.com/facebookresearch/moco-v3

Abstract

This paper does not describe a novel method. Instead,
it studies a straightforward, incremental, yet must-know
baseline given the recent progress in computer vision: self-
supervised learning for Vision Transformers (ViT). While
the training recipes for standard convolutional networks
have been highly mature and robust, the recipes for ViT are
yet to be built, especially in the self-supervised scenarios
where training becomes more challenging. In this work, we
go back to basics and investigate the effects of several fun-
damental components for training self-supervised ViT. We
observe that instability is a major issue that degrades accu-
racy, and it can be hidden by apparently good results. We
reveal that these results are indeed partial failure, and they
can be improved when training is made more stable. We
benchmark ViT results in MoCo v3 and several other self-
supervised frameworks, with ablations in various aspects.
We discuss the currently positive evidence as well as chal-
lenges and open questions. We hope that this work will pro-
vide useful data points and experience for future research.

framework model params acc. (%)
linear probing:
iGPT [9] iGPT-L 1362M 69.0
iGPT [9] iGPT-XL 6801M 72.0
MoCo v3 ViT-B 86M 76.7
MoCo v3 ViT-L 304M 77.6
MoCo v3 ViT-H 632M 78.1
MoCo v3 ViT-BN-H 632M 79.1
MoCo v3 ViT-BN-L/7 304M 81.0
end-to-end fine-tuning:
masked patch pred. [16] ViT-B 86M 79.9F
MoCo v3 ViT-B 86M 832
MoCo v3 VIiT-L 304M 84.1
Table 1.  State-of-the-art Self-supervised Transformers in

ImageNet classification, evaluated by linear probing (top panel)
or end-to-end fine-tuning (bottom panel). Both iGPT [9] and
masked patch prediction [16] belong to the masked auto-encoding
paradigm. MoCo v3 is a contrastive learning method that com-
pares two (224 x224) crops. ViT-B, -L, -H are the Vision Trans-
formers proposed in [16]. ViT-BN is modified with BatchNorm,
and */7” denotes a patch size of 7x7. !: pre-trained in JFT-300M.

Chen et al., An Empirical Study of Training Self-Supervised Vision Transformers, FAIR
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DINO: Self-Distillation with No Labels

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron’?>  Hugo Touvron!®  Ishan Misra! = Hervé Jegou®
Julien Mairal>  Piotr Bojanowski!  Armand Joulin!

! Facebook Al Research 2 Inria* 3 Sorbonne University

Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model Caronetal. 2021 Emergi ng Prop ertiesin
automatically learns class-specific features leading to unsupervised object segmentations. Self-Su pervise d Vision Transformers
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DINO
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Caron et al. 2021 Emerging Propertiesin
Self-Supervised Vision Transformers
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D | N O Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

# gs, gt: student and teacher networks

# C: center (K)

# tps, tpt: student and teacher temperatures

# 1, m: network and center momentum rates

gt .params = gs.params

for x in loader: # load a minibatch x with n samples
x1l, x2 = augment (x), augment(x) # random views

sl, s2
tl, t2

= gs(xl), gs(x2) # student output n-by-K
= gt (x1), gt(x2) # teacher output n-by-K
loss = H(tl, s2)/2 + H(t2, sl)/2
loss.backward() # back-propagate

# student, teacher and center updates
update (gs) # SGD

gt.params = lxgt.params + (l-1)x*gs.params
C = mxC + (1-m)=*cat([tl, t2]) .mean (dim=0)

def H(t, s):
t = t.detach() # stop gradient
s softmax(s / tps, dim=1)
t softmax((t — C) / tpt, dim=1) # center + sharpen
return - (t * log(s)).sum(dim=1) .mean ()

Caron et al. 2021 Emerging Propertiesin
Self-Supervised Vision Transformers
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DINO v2

Figure 1: Visualization of the first PCA components. We compute a PCA between the patches of the
images from the same column (a, b, ¢ and d) and show their first 3 components. Each component is matched
to a different color channel. Same parts are matched between related images despite changes of pose, style
or even objects. Background is removed by thresholding the first PCA component.

Caron et al. 2021 Emerging Propertiesin
Self-Supervised Vision Transformers

Stanford CS231n 10t Anniversary Lecture 12- 106 May 8, 2025



Summary: Contrastive Representation Learning

A general formulation for contrastive learning:

score(f(z), f(z™)) >> score(f(z), f(z™))

InfoNCE loss: N-way classification among positive and negative samples

L= —Ey |log exp(s(f(x), f(z™))
exp(s(f(z), f(z+)) + Xy exp(s(f(z), f(z}))

Commonly known as the InfoNCE loss (van den Qord et al., 2018)
A lower bound on the mutualinformation between f(x) and f(x*)

MIf(z), f(z7)] —log(N) > —L
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Summary: Contrastive Representation Learning

SimCLR: a simple framework for contrastive 2 . Maximizeagreement
representation learning
e Keyideas: non-linear projection head to allow
flexible representation learning
e Simpletoimplement, effective in learning visual )

h; +— Representation —» h;

representation
e Requires large training batch size to be effective; s &;

large memory footprint
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Summary: Contrastive Representation Learning

MoCo (v1, v2): contrastive learning using momentum contrastive loss
sample encoder - similarity <
e Decouples negative sample size from minibatch
size; allows large batch training without TPU q ko k1 ks ...
e MoCo-v2 combines the key ideas from SimCLR, 4 queue
i.e., nonlinear projection head, strong data ST
augmentation, with momentum contrastive encoder encoder
learning A
avery m};ﬁf” mLfey m]fy
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Summary: Contrastive Representation Learning

CPC: sequence-level contrastive learning et Prodictions

e Contrast “right” sequence with “wrong” re N
sequence. (&) —-f,_";fi- 5 ‘ ,

e InfoNCE loss with a time-dependent score 3 5 2 M F ¥ il i
function. Jme\ [ac\ [ome\ [oue\ [ouc\ [omc\ [ome\ [ g

e Canbe applied to a variety of learning el B W LB || B | s
problems, but not as effective in learning EL )74 .
image representations compared toinstance- . ‘ positive
level methods. T m VS ,ﬂ ‘.

“ n;‘gative .
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Next time:; Generative Models
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CPC example: modeling visual context

Method | Top-1ACC e Compares favorably with other pretext task-
Using AlexNet convs based self-supervised learning method.
Video [28] 29.8 e D 't d 1 d
Relative Position [11] 304 oesn 0 as well compared to newer
BiGan [35] 34.8 instance-based contrastive learning methods
Colorization [10] 352 . .
Jigsaw [29] * 38.1 on image feature learning.
- % Supervised *SimCLR (4x)
Using ResNet-V2 g °r *SimGLR (2x)
Motion Segmentation [36] 27.6 =
Exemplar [36] 31.5 £ 70 *simcLR oo $MOC0 (44
Relative Position [36] 36.2 e ePIRL-c2x AMDIM
Colorization [36] 39.6 7, 65 K SpiRL-eng MO0 24
CPC 48.7 = oBigBiGAN
E (] 5 Erlj?c{"
Table 3: ImageNet top-1 unsupervised classifi- &
cation results. *Jigsaw is not directly compa- E 55t o inetDisc sFotstion
rable to the other AlexNet results because of . . L . —
25 60 100 200 400 626

architectural differences.
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Other examples: Dense Object Net

Contrastive learning on pixel-wise feature descriptors

Dense Object Net, Florence et al., 2018
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Other examples: Dense Object Net
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Dense Object Net, Florence et al., 2018
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Other examples: Dense Object Net

Dense Object Net, Florence et al., 2018

Stanford CS231n 10t Anniversary Lecture 12- 117



	Slide 1
	Slide 2: Administrative
	Slide 3: Previous Lecture: GPUs and How to Train On Them
	Slide 4: Lots of Computer Vision Tasks
	Slide 5: Last Week: Visualizing and Understanding
	Slide 6: Last Week: Visualizing and Understanding
	Slide 7: Learned Representations 
	Slide 8: Learned Representations 
	Slide 9: Self-Supervised Learning
	Slide 10: Self-Supervised Learning – Pretext Task
	Slide 11: Self-Supervised Learning – Downstream Task
	Slide 12: Self-supervised pretext tasks
	Slide 13: How to evaluate a self-supervised learning method?
	Slide 14: How to evaluate a self-supervised learning method?
	Slide 15: How to evaluate a self-supervised learning method?
	Slide 16: Broader picture
	Slide 17: Today’s Agenda
	Slide 18: Today’s Agenda
	Slide 19: Pretext task: predict rotations
	Slide 20: Pretext task: predict rotations
	Slide 21: Pretext task: predict rotations
	Slide 22: Evaluation on semi-supervised learning
	Slide 23: Transfer learned features to supervised learning
	Slide 24: Visualize learned visual attentions
	Slide 25: Pretext task: predict relative patch locations 
	Slide 26: Pretext task: solving “jigsaw puzzles”
	Slide 27: Transfer learned features to supervised learning
	Slide 28: Pretext task: predict missing pixels (inpainting)
	Slide 29: Learning to inpaint by reconstruction
	Slide 30: Inpainting evaluation
	Slide 31: Learning to inpaint by reconstruction  (We will talk about adversarial learning in the next lecture) 
	Slide 32: Inpainting evaluation
	Slide 33: Transfer learned features to supervised learning
	Slide 34: Pretext task: image coloring
	Slide 35: Pretext task: image coloring
	Slide 36: Learning features from colorization:  Split-brain Autoencoder
	Slide 37: Learning features from colorization:  Split-brain Autoencoder
	Slide 38: Learning features from colorization:  Split-brain Autoencoder
	Slide 39: Transfer learned features to supervised learning
	Slide 40: Pretext task: image coloring
	Slide 41: Pretext task: image coloring
	Slide 42: Pretext task: video coloring
	Slide 43: Pretext task: video coloring
	Slide 44: Learning to color videos
	Slide 45: Learning to color videos
	Slide 46: Learning to color videos
	Slide 47: Learning to color videos
	Slide 48: Colorizing videos (qualitative)
	Slide 49: Colorizing videos (qualitative)
	Slide 50: Tracking emerges from colorization
	Slide 51: Tracking emerges from colorization
	Slide 52: Masked Auto Encoders (MAE) Reconstruction with a larger masked portion
	Slide 53: Masked Auto Encoders (MAE)
	Slide 54: Masking Methos
	Slide 55: MAE Encoder
	Slide 56: MAE Decoder
	Slide 57: Reconstruction
	Slide 58: Linear Probing vs Full Fine-tuning
	Slide 59: Ablation Studies 
	Slide 60: Masked Autoencoder – Comparisons 
	Slide 61: Summary: pretext tasks from image transformations
	Slide 62: Summary: pretext tasks from image transformations
	Slide 63: Pretext tasks from image transformations
	Slide 64: A more general pretext task?
	Slide 65: A more general pretext task?
	Slide 66: Contrastive Representation Learning
	Slide 67: Today’s Agenda
	Slide 68: Contrastive Representation Learning
	Slide 69: Contrastive Representation Learning
	Slide 70: A formulation of contrastive learning
	Slide 71: A formulation of contrastive learning
	Slide 72: A formulation of contrastive learning
	Slide 73: A formulation of contrastive learning
	Slide 74: A formulation of contrastive learning
	Slide 75: A formulation of contrastive learning
	Slide 76: SimCLR: A Simple Framework for Contrastive Learning
	Slide 77: SimCLR: generating positive samples from data augmentation
	Slide 78: SimCLR
	Slide 79: SimCLR
	Slide 80: SimCLR
	Slide 81: SimCLR: mini-batch training
	Slide 82: SimCLR: mini-batch training
	Slide 83: Training linear classifier on SimCLR features
	Slide 84: Semi-supervised learning on SimCLR features
	Slide 85: SimCLR design choices: projection head
	Slide 86: SimCLR design choices: large batch size
	Slide 87: Momentum Contrastive Learning (MoCo)
	Slide 88: Momentum Contrastive Learning (MoCo)
	Slide 89: MoCo
	Slide 90: “MoCo V2”
	Slide 91: MoCo vs. SimCLR vs. MoCo V2
	Slide 92: MoCo vs. SimCLR vs. MoCo V2
	Slide 93: MoCo vs. SimCLR vs. MoCo V2
	Slide 94: Instance vs. Sequence Contrastive Learning
	Slide 95: Contrastive Predictive Coding (CPC)
	Slide 96: Contrastive Predictive Coding (CPC)
	Slide 97: Contrastive Predictive Coding (CPC)
	Slide 98: Contrastive Predictive Coding (CPC)
	Slide 99: CPC example: modeling audio sequences
	Slide 100: CPC example: modeling audio sequences
	Slide 101: CPC example: modeling visual context
	Slide 102: Other examples: MoCo v3
	Slide 103: DINO: Self-Distillation with No Labels
	Slide 104: DINO
	Slide 105: DINO
	Slide 106: DINO v2
	Slide 107: Summary: Contrastive Representation Learning
	Slide 108: Summary: Contrastive Representation Learning
	Slide 109: Summary: Contrastive Representation Learning
	Slide 110: Summary: Contrastive Representation Learning
	Slide 111
	Slide 114: CPC example: modeling visual context
	Slide 115: Other examples: Dense Object Net
	Slide 116: Other examples: Dense Object Net
	Slide 117: Other examples: Dense Object Net

