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Lecture 11:
Large-Scale Distributed Training
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Administrative

Reminders:
● Friday 5/9: Midterm Review Session
● Tuesday 5/13: In-Class Midterm

2
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Today:
Large-Scale Distributed Training
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Running Example: Llama3-405B
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● GPT4 kicked off a trend of not sharing any model details:
“Given both the competitive landscape and the safety implications of large-scale 

models like GPT-4, this report contains no further details about the architecture 

(including model size), hardware, training compute, dataset construction, training 

method, or similar.”

● Llama3: Open-source LLM released by Meta in April 2024;
paper shares many model and training details

● Llama4: Released initial models April 2025, but no paper yet

Llama Team, “The Llama 3 Herd of Models”, https://arxiv.org/abs/2407.21783

OpenAI, ”GPT4 Technical Report”, arXiv 2023

https://arxiv.org/abs/2407.21783
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GPUs and How to Train On Them
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A bit about GPU hardware How to train on lots of GPUs
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A bit about GPU hardware How to train on lots of GPUs
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Inside a GPU: NVIDIA H100
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GPU = Graphics Processing Unit

Originally for graphics

Now a general parallel processor
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GPU = Graphics Processing Unit

Originally for graphics

Now a general parallel processor

Compute Cores
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Inside a GPU: NVIDIA H100
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GPU = Graphics Processing Unit

Originally for graphics

Now a general parallel processor

Compute Cores

80 GB of HBM Memory

3352 GB/sec bandwidth to cores
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H100 Compute Cores
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Inside a GPU: NVIDIA H100
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H100 Compute Cores

50MB of L2 Cache
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Inside a GPU: NVIDIA H100
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H100 Compute Cores

50MB of L2 Cache

132 Streaming Multiprocessors (SMs)

These are independent parallel cores
(Actually 144 here; only 132 are enabled due to yield)
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H100 Streaming Multiprocessor

Sort of like 

a CPU core 

with vector 

instructions
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H100 Streaming Multiprocessor

256 KB L1 cache, 256 KB registers

Sort of like 

a CPU core 

with vector 

instructions



Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Inside a GPU: NVIDIA H100
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H100 Streaming Multiprocessor

256 KB L1 cache, 256 KB registers

128 FP32 Cores
Computes a*x + b per clock cycle 

2 FLOPs = Floating Point Operations

256 FLOP/cycle per SM

Sort of like 

a CPU core 

with vector 

instructions
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Inside a GPU: NVIDIA H100
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H100 Streaming Multiprocessor

256 KB L1 cache, 256 KB registers

128 FP32 Cores
Computes a*x + b per clock cycle 

2 FLOPs = Floating Point Operations

256 FLOP/cycle per SM

4 Tensor Cores
Computes AX + B per clock cycle

Matrix operation: [16x4][4x8] + [16x8]

16*4*8*2 = 1024 FLOPs

4096 FLOP/cycle per SM

Mixed precision: 16-bit / 32-bit

Sort of like 

a CPU core 

with vector 

instructions
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GPUs Have Gotten Much Faster!
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We can also train 

with > 1 GPU!
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H100 GPU

3352 GB/sec inside the GPU
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NVIDIA H100 GPU
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GPU Server
H100 GPU

3352 GB/sec inside the GPU

Server = 8x GPU

900 GB/sec between GPUs
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Case Study: Meta’s Llama3 Cluster
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Server Rack

Llama Team, “The Llama 3 Herd of Models”, https://arxiv.org/abs/2407.21783

H100 GPU

3352 GB/sec inside the GPU

Server = 8x GPU

900 GB/sec between GPUs

Rack = 2 Servers = 16x GPU

https://arxiv.org/abs/2407.21783
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Llama Team, “The Llama 3 Herd of Models”, https://arxiv.org/abs/2407.21783

H100 GPU

3352 GB/sec inside the GPU

Server = 8x GPU

900 GB/sec between GPUs

Rack = 2 Servers = 16x GPU

Pod = 192 Racks = 3072 GPUs

50 GB/sec between GPUs

https://arxiv.org/abs/2407.21783
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Case Study: Meta’s Llama3 Cluster
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GPU Cluster

Llama Team, “The Llama 3 Herd of Models”, https://arxiv.org/abs/2407.21783

H100 GPU

3352 GB/sec inside the GPU

Server = 8x GPU

900 GB/sec between GPUs

Rack = 2 Servers = 16x GPU

Pod = 192 Racks = 3072 GPUs

50 GB/sec between GPUs

Cluster = 8 Pods = 24,576 GPUs

< 50GB/sec between GPUs

https://arxiv.org/abs/2407.21783
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GPU Cluster = One Big Computer
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GPU Cluster
Total Cluster Stats

24,576 GPUs

1.875 PB of GPU memory

415M FP32 cores

13M Tensor Cores
24.3 EFLOP/sec = 24.3 x 1018

Goal: Train one giant neural 

network on this cluster
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Google: Tensor Processing Units (TPUs)
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Custom chips designed by Google

TPU v5p:

459 TFLOP/sec BF16 per chip

95GB of memory per chip
Arranged in pods of 8960 chips
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Other Training Chips

27

AMD MI325X

1300 TFLOP/sec BF16

256GB memory

AWS Trainium2

667 TFLOP/sec BF16

96GB memory

Packed in UltraServers with 64 chips
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A bit about GPU hardware How to train on lots of GPUs
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A bit about GPU hardware How to train on lots of GPUs
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How to train on lots of GPUs
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Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)
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Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)
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Data Parallelism

32

Recall: Loss is usually averaged 

over a minibatch of N samples
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Recall: Loss is usually averaged 

over a minibatch of N samples

Idea: Use minibatch of MN samples, 

split over M GPUs
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Data Parallelism
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Recall: Loss is usually averaged 

over a minibatch of N samples

Idea: Use minibatch of MN samples, 

split over M GPUs

Gradients are linear, so each GPU 

computes its own gradient:
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Recall: Loss is usually averaged 

over a minibatch of N samples

Idea: Use minibatch of MN samples, 

split over M GPUs

Gradients are linear, so each GPU 

computes its own gradient:
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Each GPU 

computes gradient 
on N examples

Average gradients 

across M GPUs
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Recall: Loss is usually averaged 

over a minibatch of N samples

Idea: Use minibatch of MN samples, 

split over M GPUs

Gradients are linear, so each GPU 

computes its own gradient:

GPU 1

GPU 2

GPU 3

1. Each GPU has it’s own copy of model + optimizer
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Recall: Loss is usually averaged 

over a minibatch of N samples

Idea: Use minibatch of MN samples, 

split over M GPUs

Gradients are linear, so each GPU 

computes its own gradient:

x1,1

x1,2
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x3,3

GPU 1

GPU 2

GPU 3

1. Each GPU has it’s own copy of model + optimizer

2. Each GPU loads its own batch of data
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Recall: Loss is usually averaged 

over a minibatch of N samples

Idea: Use minibatch of MN samples, 

split over M GPUs

Gradients are linear, so each GPU 

computes its own gradient:
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GPU 1

GPU 2

GPU 3

1. Each GPU has it’s own copy of model + optimizer

2. Each GPU loads its own batch of data
3. Each GPU runs forward to compute loss
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Recall: Loss is usually averaged 

over a minibatch of N samples

Idea: Use minibatch of MN samples, 

split over M GPUs
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3. Each GPU runs forward to compute loss
4. Each GPU runs backward to compute gradients
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Recall: Loss is usually averaged 

over a minibatch of N samples

Idea: Use minibatch of MN samples, 

split over M GPUs

Gradients are linear, so each GPU 

computes its own gradient:
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1. Each GPU has it’s own copy of model + optimizer

2. Each GPU loads its own batch of data
3. Each GPU runs forward to compute loss
4. Each GPU runs backward to compute gradients

5. Average gradients across all GPUs
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Recall: Loss is usually averaged 

over a minibatch of N samples

Idea: Use minibatch of MN samples, 

split over M GPUs

Gradients are linear, so each GPU 

computes its own gradient:
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1. Each GPU has it’s own copy of model + optimizer

2. Each GPU loads its own batch of data
3. Each GPU runs forward to compute loss
4. Each GPU runs backward to compute gradients

5. Average gradients across all GPUs
6. Each GPU updates its own weights
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Recall: Loss is usually averaged 

over a minibatch of N samples

Idea: Use minibatch of MN samples, 

split over M GPUs

Gradients are linear, so each GPU 

computes its own gradient:
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GPU 1
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1. Each GPU has it’s own copy of model + optimizer

2. Each GPU loads its own batch of data
3. Each GPU runs forward to compute loss
4. Each GPU runs backward to compute gradients

5. Average gradients across all GPUs
6. Each GPU updates its own weights

(4) and (5) can run in parallel!

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4



Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

44

Recall: Loss is usually averaged 

over a minibatch of N samples

Idea: Use minibatch of MN samples, 

split over M GPUs

Gradients are linear, so each GPU 

computes its own gradient:
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Problem: Model size constrained by GPU memory.

Each weight needs 4 numbers (weight, grad, Adam β1, 

β2). Each number needs 2 bytes.

1B params takes 8GB; 10B params fills up 80GB GPU.
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Recall: Loss is usually averaged 

over a minibatch of N samples

Idea: Use minibatch of MN samples, 

split over M GPUs

Gradients are linear, so each GPU 
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

x3,1

x3,2

x3,3

L1

L2

L3

𝜕𝐿1
𝜕𝑊4

𝜕𝐿1
𝜕𝑊3

𝜕𝐿1
𝜕𝑊2

𝜕𝐿1
𝜕𝑊1

𝜕𝐿2
𝜕𝑊4

𝜕𝐿2
𝜕𝑊3

𝜕𝐿2
𝜕𝑊2

𝜕𝐿2
𝜕𝑊1

𝜕𝐿3
𝜕𝑊4

𝜕𝐿3
𝜕𝑊3

𝜕𝐿3
𝜕𝑊2

𝜕𝐿3
𝜕𝑊1

GPU 1

GPU 2

GPU 3

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

Problem: Model size constrained by GPU memory.

Each weight needs 4 numbers (weight, grad, Adam β1, 

β2). Each number needs 2 bytes.

1B params takes 8GB; 10B params fills up 80GB GPU.

Solution: Split model weights across GPUs
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Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019
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Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

Fetch Wi+1 while 

computing forward 

with Wi
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

Fetch Wi+1 while 

computing forward 

with Wi
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

Fetch Wi+1 while 

computing forward 

with Wi
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

Fetch Wi+1 while 

computing forward 

with Wi



Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

53

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while 

computing forward 

with Wi

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

3. Before backward for layer i, owner 
broadcasts Wi to all GPUs
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while 

computing forward 

with Wi

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

3. Before backward for layer i, owner 
broadcasts Wi to all GPUs

Optimization: don’t delete last 

weight at end of forward to 

avoid immediately resending it



Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

55

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while 

computing forward 

with Wi

Optimization: don’t delete last 

weight at end of forward to 

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿2
𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

3. Before backward for layer i, owner 
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to 
compute local dL/dWi and delete Wi
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while 

computing forward 

with Wi

Optimization: don’t delete last 

weight at end of forward to 

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

3. Before backward for layer i, owner 
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to 
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs 
send local dL/dWi to owning GPU and 
delete local dL/dWi
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while 

computing forward 

with Wi

Optimization: don’t delete last 

weight at end of forward to 

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

3. Before backward for layer i, owner 
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to 
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs 
send local dL/dWi to owning GPU and 
delete local dL/dWi

6. Owner of Wi makes gradient update
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while 

computing forward 

with Wi

Optimization: don’t delete last 

weight at end of forward to 

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

3. Before backward for layer i, owner 
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to 
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs 
send local dL/dWi to owning GPU and 
delete local dL/dWi

6. Owner of Wi makes gradient update

Fetch Wi while 

computing with 

Wi+1; send dL/dWi

and update Wi

while computing 

with Wi-1
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while 

computing forward 

with Wi

Optimization: don’t delete last 

weight at end of forward to 

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

3. Before backward for layer i, owner 
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to 
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs 
send local dL/dWi to owning GPU and 
delete local dL/dWi

6. Owner of Wi makes gradient update

Fetch Wi while 

computing with 

Wi+1; send dL/dWi

and update Wi

while computing 

with Wi-1
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while 

computing forward 

with Wi

Optimization: don’t delete last 

weight at end of forward to 

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

3. Before backward for layer i, owner 
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to 
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs 
send local dL/dWi to owning GPU and 
delete local dL/dWi

6. Owner of Wi makes gradient update

Fetch Wi while 

computing with 

Wi+1; send dL/dWi

and update Wi

while computing 

with Wi-1

𝜕𝐿1
𝜕𝑊3

𝜕𝐿2
𝜕𝑊3
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while 

computing forward 

with Wi

Optimization: don’t delete last 

weight at end of forward to 

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

3. Before backward for layer i, owner 
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to 
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs 
send local dL/dWi to owning GPU and 
delete local dL/dWi

6. Owner of Wi makes gradient update

Fetch Wi while 

computing with 

Wi+1; send dL/dWi

and update Wi

while computing 

with Wi-1

𝜕𝐿1
𝜕𝑊3

𝜕𝐿

𝜕𝑊3

𝜕𝐿1
𝜕𝑊2

𝜕𝐿2
𝜕𝑊2

All at the same time:

- Send grads and update W3

- Run backward with W2

- Fetch W1
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while 

computing forward 

with Wi

Optimization: don’t delete last 

weight at end of forward to 

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

3. Before backward for layer i, owner 
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to 
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs 
send local dL/dWi to owning GPU and 
delete local dL/dWi

6. Owner of Wi makes gradient update

Fetch Wi while 

computing with 

Wi+1; send dL/dWi

and update Wi

while computing 

with Wi-1

𝜕𝐿1
𝜕𝑊3

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊2

𝜕𝐿2
𝜕𝑊2

𝜕𝐿2
𝜕𝑊1

𝜕𝐿1
𝜕𝑊1
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while 

computing forward 

with Wi

Optimization: don’t delete last 

weight at end of forward to 

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

3. Before backward for layer i, owner 
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to 
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs 
send local dL/dWi to owning GPU and 
delete local dL/dWi

6. Owner of Wi makes gradient update

Fetch Wi while 

computing with 

Wi+1; send dL/dWi

and update Wi

while computing 

with Wi-1

𝜕𝐿1
𝜕𝑊3

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊2

𝜕𝐿2
𝜕𝑊2

𝜕𝐿2
𝜕𝑊1

𝜕𝐿

𝜕𝑊1
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while 

computing forward 

with Wi

Optimization: don’t delete last 

weight at end of forward to 

avoid immediately resending it

Split model weights across GPUs

Each weight Wi is owned by one GPU, 
which also holds its grads and optim states

1. Before forward for layer i, the GPU that 

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then 

delete their local copy of Wi

3. Before backward for layer i, owner 
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to 
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs 
send local dL/dWi to owning GPU and 
delete local dL/dWi

6. Owner of Wi makes gradient update

Fetch Wi while 

computing with 

Wi+1; send dL/dWi

and update Wi

while computing 

with Wi-1

Repeat with next batch of data

Data was being pre-fetched 

during forward+backward
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W1 W2 W3 W4

W1 W2 W3 W4

Split N = M*K GPUs into M groups of K

Each group of K GPUs does FSDP, splits 
model weights across all K GPUs. K can 

be O(100) GPUs.

Do DP across the M groups.

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

GPU (1, 1)

GPU (1, 2)

GPU (1, 3)

GPU (1, 4)

GPU (2, 1)

GPU (2, 2)

GPU (2, 3)

GPU (2, 4)

Example: HSDP with M=2 groups of K=4 GPUs
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W1 W2 W3 W4

W1 W2 W3 W4

Split N = M*K GPUs into M groups of K

Each group of K GPUs does FSDP, splits 
model weights across all K GPUs. K can 

be O(100) GPUs.

Do DP across the M groups.

Multidimensional parallelism: Use 

different parallelism strategies at the 
same time! Organize GPUs in a 2D grid

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

GPU (1, 1)

GPU (1, 2)

GPU (1, 3)

GPU (1, 4)

GPU (2, 1)

GPU (2, 2)

GPU (2, 3)

GPU (2, 4)

Example: HSDP with M=2 groups of K=4 GPUs
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W1 W2 W3 W4

W1 W2 W3 W4

Split N = M*K GPUs into M groups of K

Each group of K GPUs does FSDP, splits 
model weights across all K GPUs. K can 

be O(100) GPUs.

Do DP across the M groups.

Multidimensional parallelism: Use 

different parallelism strategies at the 
same time! Organize GPUs in a 2D grid

3x communication inside each group of K:

W in forward, W + dL/dW in backward.

Keep them in the same node / pod.

1x communication across the M groups: dL/dW

in backward. Can use slower communication.

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

GPU (1, 1)

GPU (1, 2)

GPU (1, 3)

GPU (1, 4)

GPU (2, 1)

GPU (2, 2)

GPU (2, 3)

GPU (2, 4)

Example: HSDP with M=2 groups of K=4 GPUs
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split data and model weights across GPUs

Can now scale up to big models that don’t fit in 
a single GPU!

A model with 100B params needs 4 numbers 

per param (param, grad, Adam β1, β1); 
2 bytes per number takes 800GB;
splitting over 80 GPUs is just 10GB per GPU!
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split data and model weights across GPUs

Can now scale up to big models that don’t fit in 
a single GPU!

A model with 100B params needs 4 numbers 

per param (param, grad, Adam β1, β1); 
2 bytes per number takes 800GB;
splitting over 80 GPUs is just 10GB per GPU!

Problem: Model activations can fill up memory.
Llama3-405B Transformer has 126 layers, 
D=16,384, seq length 4096. Just FFN hidden 

activations need 2*126*(4*16384)*4096 bytes 
= 63GB; plus need other activations.
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x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split data and model weights across GPUs

Can now scale up to big models that don’t fit in 
a single GPU!

A model with 100B params needs 4 numbers 

per param (param, grad, Adam β1, β1); 
2 bytes per number takes 800GB;
splitting over 80 GPUs is just 10GB per GPU!

Problem: Model activations can fill up memory.
Llama3-405B Transformer has 126 layers, 
D=16,384, seq length 4096. Just FFN hidden 

activations need 2*126*(4*16384)*4096 bytes 
= 63GB; plus need other activations.

Solution: Don’t keep all activations in 

memory; recompute them on the fly! 
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does 
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1) 

compute and memory.

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2
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𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 1

Current Memory: 1

Peak Memory: 1
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does 
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1) 

compute and memory.
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𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 2

Current Memory: 2

Peak Memory: 2
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does 
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1) 

compute and memory.
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𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 3

Current Memory: 3

Peak Memory: 3
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does 
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1) 

compute and memory.
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𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 4

Current Memory: 4

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does 
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1) 

compute and memory.
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𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 5

Current Memory: 4

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does 
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1) 

compute and memory.
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𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 6

Current Memory: 3

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does 
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1) 

compute and memory.



Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

79

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 7

Current Memory: 2

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does 
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1) 

compute and memory.
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𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 8

Current Memory: 1

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does 
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1) 

compute and memory.
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 8

Current Memory: 1

Peak Memory: 4

Forward+backward: O(N) compute, O(N) memory
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 8

Current Memory: 1

Peak Memory: 4

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 1

Current Memory: 1

Peak Memory: 1

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 2

Current Memory: 1

Peak Memory: 1

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 3

Current Memory: 1

Peak Memory: 1

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 4

Current Memory: 1

Peak Memory: 1

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 5

Current Memory: 1

Peak Memory: 1

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 6

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 7

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 8

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass



Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

91

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 9

Current Memory: 1

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 10

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass



Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

93

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 11

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 12

Current Memory: 1

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 13

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 14

Current Memory: 1

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations 

during the backward pass
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 14

Current Memory: 1

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Full Recomputation: O(N2) compute, O(1) memory

Idea: Recompute activations 

during the backward pass
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 14

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Full Recomputation: O(N2) compute, O(1) memory

Idea: Recompute activations 

during the backward passProblem: N2 compute is bad!
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 14

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Full Recomputation: O(N2) compute, O(1) memory

Idea: Don’t recompute everything; 

save a checkpoint every C layersProblem: N2 compute is bad!
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Activation Checkpointing
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 14

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Full Recomputation: O(N2) compute, O(1) memory

C checkpoints: O(N2/C) compute, O(C) memory Idea: Don’t recompute everything; 

save a checkpoint every C layers
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Activation Checkpointing
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Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 14

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Full Recomputation: O(N2) compute, O(1) memory

C checkpoints: O(N2/C) compute, O(C) memory

√𝑁 checkpoints: O(N √𝑁) compute, O(√𝑁) memory
Idea: Don’t recompute everything; 

save a checkpoint every C layers
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HSDP + Activation checkpointing can take you a long way!

Scaling recipe:

1. Use data parallelism up to ~128 GPUs, models with ~1B params

2. Always set per-GPU batch size to max out GPU memory
3. If your model is >1B params, consider FSDP

4. Add activation checkpointing to fit larger batches per GPU

5. If you have >256 GPUs, consider HSDP

6. If you have >1K GPUs, models >50B params, or sequence lengths 

> 16K then use more advanced strategies (CP, PP, TP)

Problem: Lots of knobs to tune! How should we set them?

Solution: Maximize Model Flops Utilization (MFU)
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Hardware FLOPs Utilization (HFU)
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Recall: H100 can theoretically do 

989.4 TFLOP/sec of 16-bit matrix 

multiplies on Tensor Cores

Question: How much throughput 

can we see in practice?

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022
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Hardware FLOPs Utilization (HFU)
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Recall: H100 can theoretically do 

989.4 TFLOP/sec of 16-bit matrix 

multiplies on Tensor Cores

Question: How much throughput 

can we see in practice?

Hardware FLOPs Utilization (HFU): 

The fraction of theoretical matmul

performance we actually achieve

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022
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Hardware FLOPs Utilization (HFU)
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Recall: H100 can theoretically do 

989.4 TFLOP/sec of 16-bit matrix 

multiplies on Tensor Cores

Question: How much throughput 

can we see in practice?

Hardware FLOPs Utilization (HFU): 

The fraction of theoretical matmul

performance we actually achieve

Benchmark for 

the best-case 

scenario: only 

matrix multiply

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Run this with CUDA_LAUNCH_BLOCKING=1, 
otherwise GPU kernels launch async and 

measurements are wrong
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Recall: H100 can theoretically do 

989.4 TFLOP/sec of 16-bit matrix 

multiplies on Tensor Cores

Question: How much throughput 

can we see in practice?

Hardware FLOPs Utilization (HFU): 

The fraction of theoretical matmul

performance we actually achieve
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Matmul HFU on H100

Benchmark for 

the best-case 

scenario: only 

matrix multiply

Large matrix 

multiply gets 

~80% HFU 

on H100

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022
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Hardware FLOPs Utilization (HFU)
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Recall: H100 can theoretically do 

989.4 TFLOP/sec of 16-bit matrix 

multiplies on Tensor Cores

Question: How much throughput 

can we see in practice?

Hardware FLOPs Utilization (HFU): 

The fraction of theoretical matmul

performance we actually achieve

Problem: HFU does not account for 

activation checkpointing or “helper” 

computation like data augmentation, 

optimizer, preprocessing
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Matrix Size

Matmul HFU on H100

Benchmark for 

the best-case 

scenario: only 

matrix multiply

Large matrix 

multiply gets 

~80% HFU 

on H100

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022
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1. Compute FLOPtheoretical = total number of matrix 

multiply FLOPs in the forward + backward pass

(can approximate backward = 2x forward)

(Ignore nonlinearities, normalization, elementwise 

ops like residuals. They will run on FP32 cores)

2. Look up FLOP/sectheoretical = theoretical max 

throughput of your device (H100: 989 TFLOP/sec)

3. Compute ttheoretical = FLOPtheoretical / FLOP/sectheoretical

4. Measure tactual = Actual time for a full iteration of 

data loading, forward, backward, optimizer step

5. MFU = ttheoretical / tactual

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Idea: What fraction of the GPU’s theoretical peak 

FLOPs is being used for “useful” model computation?
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Model FLOPs Utilization (MFU)
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Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Example: Wide 

MLP with big 
batch size gets 
~49% MFU on 

H100

1. Compute FLOPtheoretical = total number of matrix 

multiply FLOPs in the forward + backward pass

(can approximate backward = 2x forward)

(Ignore nonlinearities, normalization, elementwise 

ops like residuals. They will run on FP32 cores)

2. Look up FLOP/sectheoretical = theoretical max 

throughput of your device (H100: 989 TFLOP/sec)

3. Compute ttheoretical = FLOPtheoretical / FLOP/sectheoretical

4. Measure tactual = Actual time for a full iteration of 

data loading, forward, backward, optimizer step

5. MFU = ttheoretical / tactual

Idea: What fraction of the GPU’s theoretical peak 

FLOPs is being used for “useful” model computation?



Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Model FLOPs Utilization (MFU)
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Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Example: Wide 

MLP with big 
batch size gets 
~49% MFU on 

H100

1. Compute FLOPtheoretical = total number of matrix 

multiply FLOPs in the forward + backward pass

(can approximate backward = 2x forward)

(Ignore nonlinearities, normalization, elementwise 

ops like residuals. They will run on FP32 cores)

2. Look up FLOP/sectheoretical = theoretical max 

throughput of your device (H100: 989 TFLOP/sec)

3. Compute ttheoretical = FLOPtheoretical / FLOP/sectheoretical

4. Measure tactual = Actual time for a full iteration of 

data loading, forward, backward, optimizer step

5. MFU = ttheoretical / tactual

Idea: What fraction of the GPU’s theoretical peak 

FLOPs is being used for “useful” model computation?

Optimize distributed training setup to maximize MFU!
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Model FLOPs Utilization (MFU)
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Idea: What fraction of the GPU’s theoretical peak 

FLOPs is being used for “useful” model computation?

MFU >30% is good, >40% is excellent



Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Model FLOPs Utilization (MFU)
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Idea: What fraction of the GPU’s theoretical peak 

FLOPs is being used for “useful” model computation?

MFU >30% is good, >40% is excellent

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Llama Team, “The Llama3 Herd of Models”, arXiv 2024

Example: Llama3-405B 

training on H100 GPUs
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Model FLOPs Utilization (MFU)
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Idea: What fraction of the GPU’s theoretical peak 

FLOPs is being used for “useful” model computation?

MFU >30% is good, >40% is excellent

More recent devices 

sometimes get worse MFU 

since their peak FLOPs 

increases much faster than 

their memory bandwidth

A100 => H100:

3.1x FLOPs

2.1x memory bandwidth

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Llama Team, “The Llama3 Herd of Models”, arXiv 2024

Example: Llama3-405B 

training on H100 GPUs
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Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)
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Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)
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(Usually for Transformers)

Idea: Transformers operate on L-length sequences. 

Use multiple GPUs to process a single long sequence

GPU 1 GPU 2

GPU 1 GPU 2
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Context Parallelism (CP)
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(Usually for Transformers)

Idea: Transformers operate on L-length sequences. 

Use multiple GPUs to process a single long sequence

Normalization, residual connections: Easy, they 

have no weights and trivially parallelizable

GPU 1 GPU 2

GPU 1 GPU 2
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Context Parallelism (CP)
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(Usually for Transformers)

Idea: Transformers operate on L-length sequences. 

Use multiple GPUs to process a single long sequence

Normalization, residual connections: Easy, they 

have no weights and trivially parallelizable

MLP: Trivially parallelizable, but has weights. Each 

GPU keeps a copy of the weights and communicates 

gradients like in DP

GPU 1 GPU 2

GPU 1 GPU 2
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(Usually for Transformers)

Idea: Transformers operate on L-length sequences. 

Use multiple GPUs to process a single long sequence

Normalization, residual connections: Easy, they 

have no weights and trivially parallelizable

MLP: Trivially parallelizable, but has weights. Each 

GPU keeps a copy of the weights and communicates 

gradients like in DP

Attention: More complex, need to dig in GPU 1 GPU 2

GPU 1 GPU 2
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(Usually for Transformers)

Idea: Transformers operate on L-length sequences. 

Use multiple GPUs to process a single long sequence
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Context Parallelism (CP)
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(Usually for Transformers)

Idea: Transformers operate on L-length sequences. 

Use multiple GPUs to process a single long sequence

QKV Projection: Same as MLP, parallelize over the 

sequence and sync gradients as in DP
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Context Parallelism (CP)
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(Usually for Transformers)

Idea: Transformers operate on S-length sequences. 

Use multiple GPUs to process a single long sequence

QKV Projection: Same as MLP, parallelize over the 

sequence and sync gradients as in DP

Attention operator: Hardest to parallelize
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Context Parallelism (CP)
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(Usually for Transformers)

Idea: Transformers operate on S-length sequences. 

Use multiple GPUs to process a single long sequence

QKV Projection: Same as MLP, parallelize over the 

sequence and sync gradients as in DP

Attention operator: Hardest to parallelize

(Option 1) Ring Attention: Divide into blocks and 

distribute over GPUs. Inner loop over keys/values, 

outer loop over queries. Complex to implement but 

can scale to very long sequences.
Liu et al, ”Ring Attention with Blockwise

Transformers for Near-Infinite Context”, arXiv 2023
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Context Parallelism (CP)
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(Usually for Transformers)

Idea: Transformers operate on S-length sequences. 

Use multiple GPUs to process a single long sequence

QKV Projection: Same as MLP, parallelize over the 

sequence and sync gradients as in DP

Attention operator: Hardest to parallelize

(Option 2) Ulysses: Don’t try to distribute attention matrix, 

instead parallelize over heads in multihead attention. 

Simpler, but max parallelism = number of heads

Jacobs et al, “DeepSpeed Ulysses: System Optimizations for Enabling 

Training of Extreme Long Sequence Transformer Models”, arXiv 2023

GPU 1 GPU 2 GPU 3
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Context Parallelism (CP)
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(Usually for Transformers)

Idea: Transformers operate on S-length sequences. 

Use multiple GPUs to process a single long sequence

Often used for long-sequence finetuning.

Example: Llama3-405B training:

- Stage 1: S=8192, no context-parallelism

- Stage 2: S=131,072, 16-way context-parallelism

(8192 per GPU)

Llama Team, “The Llama3 Herd of Models”, arXiv 2024
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Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)
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Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)
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Pipeline Parallelism (PP)
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Idea: Split the layers of the model 

across GPUs. Copy activations 

between layers at GPU boundaries.

GPU 1 GPU 2 GPU 3 GPU 4

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018
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Pipeline Parallelism (PP)
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Idea: Split the layers of the model 

across GPUs. Copy activations 

between layers at GPU boundaries.

Problem: Sequential dependencies; 
GPUs are mostly sitting idle.

GPU 1 GPU 2 GPU 3 GPU 4

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018
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Pipeline Parallelism (PP)
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Idea: Split the layers of the model 

across GPUs. Copy activations 

between layers at GPU boundaries.

Problem: Sequential dependencies; 
GPUs are mostly sitting idle. 

Max MFU with N-way PP is 1/N GPU 1 → ←

GPU 2 → ←

GPU 3 → ←

GPU 4 → ←

Time

GPU 1 GPU 2 GPU 3 GPU 4

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018
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Pipeline Parallelism (PP)
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Idea: Split the layers of the model 

across GPUs. Copy activations 

between layers at GPU boundaries.

Problem: Sequential dependencies; 
GPUs are mostly sitting idle.

Max MFU with N-way PP is 1/N GPU 1 → ←

GPU 2 → ←

GPU 3 → ←

GPU 4 → ←

Time

Bubble

GPU 1 GPU 2 GPU 3 GPU 4

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018
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Pipeline Parallelism (PP)
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Idea: Split the layers of the model 

across GPUs. Copy activations 

between layers at GPU boundaries.

Problem: Sequential dependencies; 
GPUs are mostly sitting idle. 

Max MFU with N-way PP is 1/N

Solution: Run multiple microbatches

at the same time, pipeline them 
through the GPUs

GPU 1 → ←

GPU 2 → ←

GPU 3 → ←

GPU 4 → ←

Time

Bubble

GPU 1 GPU 2 GPU 3 GPU 4

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018
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Idea: Split the layers of the model 

across GPUs. Copy activations 

between layers at GPU boundaries.

GPU 1 GPU 2 GPU 3 GPU 4

Time

Example: 

4-way PP with 4 

microbatches.

Max MFU increases

from 1/4 = 25%

to 16/28 ≈ 57.1%
Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018
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Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)
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Tensor Parallelism (TP)
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Idea: Split the weights of each 

linear layer across GPUs, use 

block matrix multiply

X: [NxD] W: [DxD] Y: [NxD]

=

XW = Y (1 GPU)
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Tensor Parallelism (TP)

136

Idea: Split the weights of each 

linear layer across GPUs, use 

block matrix multiply

X: [NxD]

[1x1]

W: [DxD]

[1x4]

Y: [NxD]

[1x4]

=

XW = Y (4-way TP)

Block shapes:

W1 W2 W3 W4 Y1 Y2 Y3 Y4

GPU i computes 

XWi = Yi
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Tensor Parallelism (TP)
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Idea: Split the weights of each 

linear layer across GPUs, use 

block matrix multiply

Problem: Need to gather 
parts of Y after forward, can’t 

overlap with communication
X: [NxD]

[1x1]

W: [DxD]

[1x4]

Y: [NxD]

[1x4]

=

XW = Y (4-way TP)

Block shapes:

W1 W2 W3 W4 Y1 Y2 Y3 Y4

GPU i computes 

XWi = Yi
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Tensor Parallelism (TP)

138

Idea: Split the weights of each 

linear layer across GPUs, use 

block matrix multiply

Problem: Need to gather 
parts of Y after forward, can’t 

overlap with communication

Trick: With 2 consecutive TP 

layers, shard first over row 
and second over column to 

avoid communication

X: [NxD]

[1x1]

W: [DxD]

[1x4]

Y: [NxD]

[1x4]

=

XW = Y (4-way TP)

Block shapes:

W1 W2 W3 W4 Y1 Y2 Y3 Y4

GPU i computes 

XWi = Yi
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X: [NxD] W: [DxD] Y: [NxD]

=

(4-way TP)

XW = Y (layer 1)

YU = Z  (layer 2)

U: [DxD]

Y1 Y2 Y3 Y4

U1

U2

U3

U4

=

Z: [DxD]
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Tensor Parallelism (TP) – Two Layers
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X: [NxD]

[1x1]

W: [DxD]

[1x4]

Y: [NxD]

[1x4]

=

(4-way TP)

XW = Y (layer 1)

YU = Z  (layer 2)

Block 

shapes:

U: [DxD]

[4x1]

Y1 Y2 Y3 Y4

U1

U2

U3

U4

=

Z: [DxD]

[1x1]

W1 W2 W3 W4
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Tensor Parallelism (TP) – Two Layers
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X: [NxD]

[1x1]

W: [DxD]

[1x4]

Y: [NxD]

[1x4]

=

(4-way TP)

XW = Y (layer 1)

YU = Z  (layer 2)

Block 

shapes:

U: [DxD]

[4x1]

Y1 Y2 Y3 Y4

U1

U2

U3

U4

=

Z: [DxD]

[1x1]

Z = Y1U1 + Y2U2

+ Y3U3 + Y4U4

W1 W2 W3 W4
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Tensor Parallelism (TP) – Two Layers

142

X: [NxD]

[1x1]

W: [DxD]

[1x4]

Y: [NxD]

[1x4]

=

(4-way TP)

XW = Y (layer 1)

YU = Z  (layer 2)

Block 

shapes:

U: [DxD]

[4x1]

Y1 Y2 Y3 Y4

U1

U2

U3

U4

=

Z: [DxD]

[1x1]

Z = Y1U1 + Y2U2

+ Y3U3 + Y4U4

W1 W2 W3 W4

GPU i computes 

XWi = Yi

GPU i computes 

YiUi = Zi
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Tensor Parallelism (TP) – Two Layers
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X: [NxD]

[1x1]

W: [DxD]

[1x4]

Y: [NxD]

[1x4]

=

(4-way TP)

XW = Y (layer 1)

YU = Z  (layer 2)

Block 

shapes:

U: [DxD]

[4x1]

Y1 Y2 Y3 Y4

U1

U2

U3

U4

=

Z: [DxD]

[1x1]

Z = Y1U1 + Y2U2

+ Y3U3 + Y4U4

No need for communication after XW=Y! Each GPU 

computes one term of Z, then broadcasts to all other GPUs

W1 W2 W3 W4
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Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)
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Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Q: Which to use for largest models?

A: All of them!
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ND Parallelism
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Use TP, CP, PP, and DP 

all at the same time!

Arrange GPUs in a 4D grid

GPUs index in the grid 

gives its rank along each 

parallelism dimension

Optimize setup to 
maximize MFU

Example: LLama3-405B

Llama Team, “The Llama3 Herd of Models”, arXiv 2024
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Summary: Large-Scale Distributed Training

147

A GPU cluster has O(10K) GPUs

A GPU is a parallel processor 

with hundreds of cores
Split up the computation along different axes

Consider a model with many Layers, operating 

on tensors of shape (Batch, Seq, Dim)

- Data Parallel (DP): Split on Batch

- Context Parallel (CP): Split on Seq

- Pipeline Parallel (PP): Split on Layers

- Tensor Parallel (TP): Split on Dim

Activation Checkpointing saves 

memory by recomputing during backward

Tune parallelism recipe to maximize 

Model Flops Utilization (MFU)
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Next Time:
Self-Supervised Learning
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