
Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 - 1

Lecture 11:
Large-Scale Distributed Training

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Administrative

Reminders:
● Friday 5/9: Midterm Review Session
● Tuesday 5/13: In-Class Midterm

2

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 - 3

Today:
Large-Scale Distributed Training

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Running Example: Llama3-405B

4

● GPT4 kicked off a trend of not sharing any model details:
“Given both the competitive landscape and the safety implications of large-scale

models like GPT-4, this report contains no further details about the architecture

(including model size), hardware, training compute, dataset construction, training

method, or similar.”

● Llama3: Open-source LLM released by Meta in April 2024;
paper shares many model and training details

● Llama4: Released initial models April 2025, but no paper yet

Llama Team, “The Llama 3 Herd of Models”, https://arxiv.org/abs/2407.21783

OpenAI, ”GPT4 Technical Report”, arXiv 2023

https://arxiv.org/abs/2407.21783

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

GPUs and How to Train On Them

5

A bit about GPU hardware How to train on lots of GPUs

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

GPUs and How to Train On Them

6

A bit about GPU hardware How to train on lots of GPUs

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Inside a GPU: NVIDIA H100

7

GPU = Graphics Processing Unit

Originally for graphics

Now a general parallel processor

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Inside a GPU: NVIDIA H100

8

GPU = Graphics Processing Unit

Originally for graphics

Now a general parallel processor

Compute Cores

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Inside a GPU: NVIDIA H100

9

GPU = Graphics Processing Unit

Originally for graphics

Now a general parallel processor

Compute Cores

80 GB of HBM Memory

3352 GB/sec bandwidth to cores

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Inside a GPU: NVIDIA H100

10

H100 Compute Cores

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Inside a GPU: NVIDIA H100

11

H100 Compute Cores

50MB of L2 Cache

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Inside a GPU: NVIDIA H100

12

H100 Compute Cores

50MB of L2 Cache

132 Streaming Multiprocessors (SMs)

These are independent parallel cores
(Actually 144 here; only 132 are enabled due to yield)

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Inside a GPU: NVIDIA H100

13

H100 Streaming Multiprocessor

Sort of like

a CPU core

with vector

instructions

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Inside a GPU: NVIDIA H100

14

H100 Streaming Multiprocessor

256 KB L1 cache, 256 KB registers

Sort of like

a CPU core

with vector

instructions

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Inside a GPU: NVIDIA H100

15

H100 Streaming Multiprocessor

256 KB L1 cache, 256 KB registers

128 FP32 Cores
Computes a*x + b per clock cycle

2 FLOPs = Floating Point Operations

256 FLOP/cycle per SM

Sort of like

a CPU core

with vector

instructions

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Inside a GPU: NVIDIA H100

16

H100 Streaming Multiprocessor

256 KB L1 cache, 256 KB registers

128 FP32 Cores
Computes a*x + b per clock cycle

2 FLOPs = Floating Point Operations

256 FLOP/cycle per SM

4 Tensor Cores
Computes AX + B per clock cycle

Matrix operation: [16x4][4x8] + [16x8]

16*4*8*2 = 1024 FLOPs

4096 FLOP/cycle per SM

Mixed precision: 16-bit / 32-bit

Sort of like

a CPU core

with vector

instructions

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

GPUs Have Gotten Much Faster!

17

0

1000

2000

3000

4000

5000

6000

Apr-12 Aug-13 Dec-14 May-16 Sep-17 Feb-19 Jun-20 Oct-21 Mar-23 Jul-24 Dec-25

T
F

L
O

P
/s

e
c

FP32 Tensor Core

K40

5 FP32

P100

10.6 FP32

V100

125 TC
15.7 FP32

A100

312 TC
19.5 FP32

H100

989 TC
67 FP32

B200

5000 TC
83.3 FP32

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

GPUs Have Gotten Much Faster!

18

0

1000

2000

3000

4000

5000

6000

Apr-12 Aug-13 Dec-14 May-16 Sep-17 Feb-19 Jun-20 Oct-21 Mar-23 Jul-24 Dec-25

T
F

L
O

P
/s

e
c

FP32 Tensor Core

K40

5 FP32

P100

10.6 FP32

V100

125 TC
15.7 FP32

A100

312 TC
19.5 FP32

H100

989 TC
67 FP32

B200

5000 TC
83.3 FP32

1000x speedup

since 2013!

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

GPUs Have Gotten Much Faster!

19

0

1000

2000

3000

4000

5000

6000

Apr-12 Aug-13 Dec-14 May-16 Sep-17 Feb-19 Jun-20 Oct-21 Mar-23 Jul-24 Dec-25

T
F

L
O

P
/s

e
c

FP32 Tensor Core

K40

5 FP32

P100

10.6 FP32

V100

125 TC
15.7 FP32

A100

312 TC
19.5 FP32

H100

989 TC
67 FP32

B200

5000 TC
83.3 FP32

1000x speedup

since 2013!

We can also train

with > 1 GPU!

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

NVIDIA H100 GPU

20

H100 GPU

3352 GB/sec inside the GPU

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

NVIDIA H100 GPU

21

GPU Server
H100 GPU

3352 GB/sec inside the GPU

Server = 8x GPU

900 GB/sec between GPUs

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Case Study: Meta’s Llama3 Cluster

22

Server Rack

Llama Team, “The Llama 3 Herd of Models”, https://arxiv.org/abs/2407.21783

H100 GPU

3352 GB/sec inside the GPU

Server = 8x GPU

900 GB/sec between GPUs

Rack = 2 Servers = 16x GPU

https://arxiv.org/abs/2407.21783

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Case Study: Meta’s Llama3 Cluster

23

Llama Team, “The Llama 3 Herd of Models”, https://arxiv.org/abs/2407.21783

H100 GPU

3352 GB/sec inside the GPU

Server = 8x GPU

900 GB/sec between GPUs

Rack = 2 Servers = 16x GPU

Pod = 192 Racks = 3072 GPUs

50 GB/sec between GPUs

https://arxiv.org/abs/2407.21783

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Case Study: Meta’s Llama3 Cluster

24

GPU Cluster

Llama Team, “The Llama 3 Herd of Models”, https://arxiv.org/abs/2407.21783

H100 GPU

3352 GB/sec inside the GPU

Server = 8x GPU

900 GB/sec between GPUs

Rack = 2 Servers = 16x GPU

Pod = 192 Racks = 3072 GPUs

50 GB/sec between GPUs

Cluster = 8 Pods = 24,576 GPUs

< 50GB/sec between GPUs

https://arxiv.org/abs/2407.21783

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

GPU Cluster = One Big Computer

25

GPU Cluster
Total Cluster Stats

24,576 GPUs

1.875 PB of GPU memory

415M FP32 cores

13M Tensor Cores
24.3 EFLOP/sec = 24.3 x 1018

Goal: Train one giant neural

network on this cluster

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Google: Tensor Processing Units (TPUs)

26

Custom chips designed by Google

TPU v5p:

459 TFLOP/sec BF16 per chip

95GB of memory per chip
Arranged in pods of 8960 chips

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Other Training Chips

27

AMD MI325X

1300 TFLOP/sec BF16

256GB memory

AWS Trainium2

667 TFLOP/sec BF16

96GB memory

Packed in UltraServers with 64 chips

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Today: GPUs and How to Train On Them

28

A bit about GPU hardware How to train on lots of GPUs

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Today: GPUs and How to Train On Them

29

A bit about GPU hardware How to train on lots of GPUs

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

How to train on lots of GPUs

30

Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

How to train on lots of GPUs

31

Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

32

Recall: Loss is usually averaged

over a minibatch of N samples

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

33

Recall: Loss is usually averaged

over a minibatch of N samples

Idea: Use minibatch of MN samples,

split over M GPUs

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

34

Recall: Loss is usually averaged

over a minibatch of N samples

Idea: Use minibatch of MN samples,

split over M GPUs

Gradients are linear, so each GPU

computes its own gradient:

𝐿 =
1

𝑀𝑁
෍

𝑖=1

𝑀

෍

𝑗=1

𝑁

ℓ 𝑥𝑖,𝑗,𝑊

𝜕𝐿

𝜕𝑊
=
1

𝑀
෍

𝑖=1

𝑀
1

𝑁
෍

𝑗=1

𝑁
𝜕

𝜕𝑊
ℓ 𝑥𝑖,𝑗,𝑊

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

35

Recall: Loss is usually averaged

over a minibatch of N samples

Idea: Use minibatch of MN samples,

split over M GPUs

Gradients are linear, so each GPU

computes its own gradient:

𝐿 =
1

𝑀𝑁
෍

𝑖=1

𝑀

෍

𝑗=1

𝑁

ℓ 𝑥𝑖,𝑗,𝑊

𝜕𝐿

𝜕𝑊
=
1

𝑀
෍

𝑖=1

𝑀
1

𝑁
෍

𝑗=1

𝑁
𝜕

𝜕𝑊
ℓ 𝑥𝑖,𝑗,𝑊

Each GPU

computes gradient
on N examples

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

36

Recall: Loss is usually averaged

over a minibatch of N samples

Idea: Use minibatch of MN samples,

split over M GPUs

Gradients are linear, so each GPU

computes its own gradient:

𝐿 =
1

𝑀𝑁
෍

𝑖=1

𝑀

෍

𝑗=1

𝑁

ℓ 𝑥𝑖,𝑗,𝑊

𝜕𝐿

𝜕𝑊
=
1

𝑀
෍

𝑖=1

𝑀
1

𝑁
෍

𝑗=1

𝑁
𝜕

𝜕𝑊
ℓ 𝑥𝑖,𝑗,𝑊

Each GPU

computes gradient
on N examples

Average gradients

across M GPUs

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

37

Recall: Loss is usually averaged

over a minibatch of N samples

Idea: Use minibatch of MN samples,

split over M GPUs

Gradients are linear, so each GPU

computes its own gradient:

GPU 1

GPU 2

GPU 3

1. Each GPU has it’s own copy of model + optimizer

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

38

Recall: Loss is usually averaged

over a minibatch of N samples

Idea: Use minibatch of MN samples,

split over M GPUs

Gradients are linear, so each GPU

computes its own gradient:

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

x3,1

x3,2

x3,3

GPU 1

GPU 2

GPU 3

1. Each GPU has it’s own copy of model + optimizer

2. Each GPU loads its own batch of data

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

39

Recall: Loss is usually averaged

over a minibatch of N samples

Idea: Use minibatch of MN samples,

split over M GPUs

Gradients are linear, so each GPU

computes its own gradient:

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

x3,1

x3,2

x3,3

L1

L2

L3

GPU 1

GPU 2

GPU 3

1. Each GPU has it’s own copy of model + optimizer

2. Each GPU loads its own batch of data
3. Each GPU runs forward to compute loss

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

40

Recall: Loss is usually averaged

over a minibatch of N samples

Idea: Use minibatch of MN samples,

split over M GPUs

Gradients are linear, so each GPU

computes its own gradient:

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

x3,1

x3,2

x3,3

L1

L2

L3

𝜕𝐿1
𝜕𝑊4

𝜕𝐿1
𝜕𝑊3

𝜕𝐿1
𝜕𝑊2

𝜕𝐿1
𝜕𝑊1

𝜕𝐿2
𝜕𝑊4

𝜕𝐿2
𝜕𝑊3

𝜕𝐿2
𝜕𝑊2

𝜕𝐿2
𝜕𝑊1

𝜕𝐿3
𝜕𝑊4

𝜕𝐿3
𝜕𝑊3

𝜕𝐿3
𝜕𝑊2

𝜕𝐿3
𝜕𝑊1

GPU 1

GPU 2

GPU 3

1. Each GPU has it’s own copy of model + optimizer

2. Each GPU loads its own batch of data
3. Each GPU runs forward to compute loss
4. Each GPU runs backward to compute gradients

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

41

Recall: Loss is usually averaged

over a minibatch of N samples

Idea: Use minibatch of MN samples,

split over M GPUs

Gradients are linear, so each GPU

computes its own gradient:

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

x3,1

x3,2

x3,3

L1

L2

L3

𝜕𝐿1
𝜕𝑊4

𝜕𝐿1
𝜕𝑊3

𝜕𝐿1
𝜕𝑊2

𝜕𝐿1
𝜕𝑊1

𝜕𝐿2
𝜕𝑊4

𝜕𝐿2
𝜕𝑊3

𝜕𝐿2
𝜕𝑊2

𝜕𝐿2
𝜕𝑊1

𝜕𝐿3
𝜕𝑊4

𝜕𝐿3
𝜕𝑊3

𝜕𝐿3
𝜕𝑊2

𝜕𝐿3
𝜕𝑊1

GPU 1

GPU 2

GPU 3

1. Each GPU has it’s own copy of model + optimizer

2. Each GPU loads its own batch of data
3. Each GPU runs forward to compute loss
4. Each GPU runs backward to compute gradients

5. Average gradients across all GPUs

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

42

Recall: Loss is usually averaged

over a minibatch of N samples

Idea: Use minibatch of MN samples,

split over M GPUs

Gradients are linear, so each GPU

computes its own gradient:

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

x3,1

x3,2

x3,3

L1

L2

L3

𝜕𝐿1
𝜕𝑊4

𝜕𝐿1
𝜕𝑊3

𝜕𝐿1
𝜕𝑊2

𝜕𝐿1
𝜕𝑊1

𝜕𝐿2
𝜕𝑊4

𝜕𝐿2
𝜕𝑊3

𝜕𝐿2
𝜕𝑊2

𝜕𝐿2
𝜕𝑊1

𝜕𝐿3
𝜕𝑊4

𝜕𝐿3
𝜕𝑊3

𝜕𝐿3
𝜕𝑊2

𝜕𝐿3
𝜕𝑊1

GPU 1

GPU 2

GPU 3

1. Each GPU has it’s own copy of model + optimizer

2. Each GPU loads its own batch of data
3. Each GPU runs forward to compute loss
4. Each GPU runs backward to compute gradients

5. Average gradients across all GPUs
6. Each GPU updates its own weights

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

43

Recall: Loss is usually averaged

over a minibatch of N samples

Idea: Use minibatch of MN samples,

split over M GPUs

Gradients are linear, so each GPU

computes its own gradient:

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

x3,1

x3,2

x3,3

L1

L2

L3

𝜕𝐿1
𝜕𝑊4

𝜕𝐿1
𝜕𝑊3

𝜕𝐿1
𝜕𝑊2

𝜕𝐿1
𝜕𝑊1

𝜕𝐿2
𝜕𝑊4

𝜕𝐿2
𝜕𝑊3

𝜕𝐿2
𝜕𝑊2

𝜕𝐿2
𝜕𝑊1

𝜕𝐿3
𝜕𝑊4

𝜕𝐿3
𝜕𝑊3

𝜕𝐿3
𝜕𝑊2

𝜕𝐿3
𝜕𝑊1

GPU 1

GPU 2

GPU 3

1. Each GPU has it’s own copy of model + optimizer

2. Each GPU loads its own batch of data
3. Each GPU runs forward to compute loss
4. Each GPU runs backward to compute gradients

5. Average gradients across all GPUs
6. Each GPU updates its own weights

(4) and (5) can run in parallel!

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

44

Recall: Loss is usually averaged

over a minibatch of N samples

Idea: Use minibatch of MN samples,

split over M GPUs

Gradients are linear, so each GPU

computes its own gradient:

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

x3,1

x3,2

x3,3

L1

L2

L3

𝜕𝐿1
𝜕𝑊4

𝜕𝐿1
𝜕𝑊3

𝜕𝐿1
𝜕𝑊2

𝜕𝐿1
𝜕𝑊1

𝜕𝐿2
𝜕𝑊4

𝜕𝐿2
𝜕𝑊3

𝜕𝐿2
𝜕𝑊2

𝜕𝐿2
𝜕𝑊1

𝜕𝐿3
𝜕𝑊4

𝜕𝐿3
𝜕𝑊3

𝜕𝐿3
𝜕𝑊2

𝜕𝐿3
𝜕𝑊1

GPU 1

GPU 2

GPU 3

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

Problem: Model size constrained by GPU memory.

Each weight needs 4 numbers (weight, grad, Adam β1,

β2). Each number needs 2 bytes.

1B params takes 8GB; 10B params fills up 80GB GPU.

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism

45

Recall: Loss is usually averaged

over a minibatch of N samples

Idea: Use minibatch of MN samples,

split over M GPUs

Gradients are linear, so each GPU

computes its own gradient:

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

x3,1

x3,2

x3,3

L1

L2

L3

𝜕𝐿1
𝜕𝑊4

𝜕𝐿1
𝜕𝑊3

𝜕𝐿1
𝜕𝑊2

𝜕𝐿1
𝜕𝑊1

𝜕𝐿2
𝜕𝑊4

𝜕𝐿2
𝜕𝑊3

𝜕𝐿2
𝜕𝑊2

𝜕𝐿2
𝜕𝑊1

𝜕𝐿3
𝜕𝑊4

𝜕𝐿3
𝜕𝑊3

𝜕𝐿3
𝜕𝑊2

𝜕𝐿3
𝜕𝑊1

GPU 1

GPU 2

GPU 3

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

𝜕𝐿

𝜕𝑊1

𝜕𝐿

𝜕𝑊2

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊4

Problem: Model size constrained by GPU memory.

Each weight needs 4 numbers (weight, grad, Adam β1,

β2). Each number needs 2 bytes.

1B params takes 8GB; 10B params fills up 80GB GPU.

Solution: Split model weights across GPUs

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

46

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

47

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

48

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

49

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

Fetch Wi+1 while

computing forward

with Wi

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

50

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

Fetch Wi+1 while

computing forward

with Wi

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

51

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

Fetch Wi+1 while

computing forward

with Wi

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

52

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

Fetch Wi+1 while

computing forward

with Wi

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

53

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while

computing forward

with Wi

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

3. Before backward for layer i, owner
broadcasts Wi to all GPUs

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

54

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while

computing forward

with Wi

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

3. Before backward for layer i, owner
broadcasts Wi to all GPUs

Optimization: don’t delete last

weight at end of forward to

avoid immediately resending it

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

55

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while

computing forward

with Wi

Optimization: don’t delete last

weight at end of forward to

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿2
𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

3. Before backward for layer i, owner
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to
compute local dL/dWi and delete Wi

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

56

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while

computing forward

with Wi

Optimization: don’t delete last

weight at end of forward to

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

3. Before backward for layer i, owner
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs
send local dL/dWi to owning GPU and
delete local dL/dWi

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

57

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while

computing forward

with Wi

Optimization: don’t delete last

weight at end of forward to

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

3. Before backward for layer i, owner
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs
send local dL/dWi to owning GPU and
delete local dL/dWi

6. Owner of Wi makes gradient update

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

58

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while

computing forward

with Wi

Optimization: don’t delete last

weight at end of forward to

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

3. Before backward for layer i, owner
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs
send local dL/dWi to owning GPU and
delete local dL/dWi

6. Owner of Wi makes gradient update

Fetch Wi while

computing with

Wi+1; send dL/dWi

and update Wi

while computing

with Wi-1

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

59

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while

computing forward

with Wi

Optimization: don’t delete last

weight at end of forward to

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

3. Before backward for layer i, owner
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs
send local dL/dWi to owning GPU and
delete local dL/dWi

6. Owner of Wi makes gradient update

Fetch Wi while

computing with

Wi+1; send dL/dWi

and update Wi

while computing

with Wi-1

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

60

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while

computing forward

with Wi

Optimization: don’t delete last

weight at end of forward to

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

3. Before backward for layer i, owner
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs
send local dL/dWi to owning GPU and
delete local dL/dWi

6. Owner of Wi makes gradient update

Fetch Wi while

computing with

Wi+1; send dL/dWi

and update Wi

while computing

with Wi-1

𝜕𝐿1
𝜕𝑊3

𝜕𝐿2
𝜕𝑊3

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

61

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while

computing forward

with Wi

Optimization: don’t delete last

weight at end of forward to

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

3. Before backward for layer i, owner
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs
send local dL/dWi to owning GPU and
delete local dL/dWi

6. Owner of Wi makes gradient update

Fetch Wi while

computing with

Wi+1; send dL/dWi

and update Wi

while computing

with Wi-1

𝜕𝐿1
𝜕𝑊3

𝜕𝐿

𝜕𝑊3

𝜕𝐿1
𝜕𝑊2

𝜕𝐿2
𝜕𝑊2

All at the same time:

- Send grads and update W3

- Run backward with W2

- Fetch W1

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

62

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while

computing forward

with Wi

Optimization: don’t delete last

weight at end of forward to

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

3. Before backward for layer i, owner
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs
send local dL/dWi to owning GPU and
delete local dL/dWi

6. Owner of Wi makes gradient update

Fetch Wi while

computing with

Wi+1; send dL/dWi

and update Wi

while computing

with Wi-1

𝜕𝐿1
𝜕𝑊3

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊2

𝜕𝐿2
𝜕𝑊2

𝜕𝐿2
𝜕𝑊1

𝜕𝐿1
𝜕𝑊1

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

63

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while

computing forward

with Wi

Optimization: don’t delete last

weight at end of forward to

avoid immediately resending it

𝜕𝐿1
𝜕𝑊4

𝜕𝐿

𝜕𝑊4

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

3. Before backward for layer i, owner
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs
send local dL/dWi to owning GPU and
delete local dL/dWi

6. Owner of Wi makes gradient update

Fetch Wi while

computing with

Wi+1; send dL/dWi

and update Wi

while computing

with Wi-1

𝜕𝐿1
𝜕𝑊3

𝜕𝐿

𝜕𝑊3

𝜕𝐿

𝜕𝑊2

𝜕𝐿2
𝜕𝑊2

𝜕𝐿2
𝜕𝑊1

𝜕𝐿

𝜕𝑊1

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Fully Sharded Data Parallelism (FSPD)

64

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Fetch Wi+1 while

computing forward

with Wi

Optimization: don’t delete last

weight at end of forward to

avoid immediately resending it

Split model weights across GPUs

Each weight Wi is owned by one GPU,
which also holds its grads and optim states

1. Before forward for layer i, the GPU that

owns Wi broadcasts it to all GPUs
2. All GPUs run forward for layer i, then

delete their local copy of Wi

3. Before backward for layer i, owner
broadcasts Wi to all GPUs

4. All GPUs run backward for layer i to
compute local dL/dWi and delete Wi

5. After backward for layer i, all GPUs
send local dL/dWi to owning GPU and
delete local dL/dWi

6. Owner of Wi makes gradient update

Fetch Wi while

computing with

Wi+1; send dL/dWi

and update Wi

while computing

with Wi-1

Repeat with next batch of data

Data was being pre-fetched

during forward+backward

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Hybrid Sharded Data Parallel (HSDP)

65

W1 W2 W3 W4

W1 W2 W3 W4

Split N = M*K GPUs into M groups of K

Each group of K GPUs does FSDP, splits
model weights across all K GPUs. K can

be O(100) GPUs.

Do DP across the M groups.

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

GPU (1, 1)

GPU (1, 2)

GPU (1, 3)

GPU (1, 4)

GPU (2, 1)

GPU (2, 2)

GPU (2, 3)

GPU (2, 4)

Example: HSDP with M=2 groups of K=4 GPUs

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Hybrid Sharded Data Parallel (HSDP)

66

W1 W2 W3 W4

W1 W2 W3 W4

Split N = M*K GPUs into M groups of K

Each group of K GPUs does FSDP, splits
model weights across all K GPUs. K can

be O(100) GPUs.

Do DP across the M groups.

Multidimensional parallelism: Use

different parallelism strategies at the
same time! Organize GPUs in a 2D grid

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

GPU (1, 1)

GPU (1, 2)

GPU (1, 3)

GPU (1, 4)

GPU (2, 1)

GPU (2, 2)

GPU (2, 3)

GPU (2, 4)

Example: HSDP with M=2 groups of K=4 GPUs

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Hybrid Sharded Data Parallel (HSDP)

67

W1 W2 W3 W4

W1 W2 W3 W4

Split N = M*K GPUs into M groups of K

Each group of K GPUs does FSDP, splits
model weights across all K GPUs. K can

be O(100) GPUs.

Do DP across the M groups.

Multidimensional parallelism: Use

different parallelism strategies at the
same time! Organize GPUs in a 2D grid

3x communication inside each group of K:

W in forward, W + dL/dW in backward.

Keep them in the same node / pod.

1x communication across the M groups: dL/dW

in backward. Can use slower communication.

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

W1 W2 W3 W4

GPU (1, 1)

GPU (1, 2)

GPU (1, 3)

GPU (1, 4)

GPU (2, 1)

GPU (2, 2)

GPU (2, 3)

GPU (2, 4)

Example: HSDP with M=2 groups of K=4 GPUs

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism (DP, FSPD, HSDP)

68

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split data and model weights across GPUs

Can now scale up to big models that don’t fit in
a single GPU!

A model with 100B params needs 4 numbers

per param (param, grad, Adam β1, β1);
2 bytes per number takes 800GB;
splitting over 80 GPUs is just 10GB per GPU!

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism (DP, FSPD, HSDP)

69

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split data and model weights across GPUs

Can now scale up to big models that don’t fit in
a single GPU!

A model with 100B params needs 4 numbers

per param (param, grad, Adam β1, β1);
2 bytes per number takes 800GB;
splitting over 80 GPUs is just 10GB per GPU!

Problem: Model activations can fill up memory.
Llama3-405B Transformer has 126 layers,
D=16,384, seq length 4096. Just FFN hidden

activations need 2*126*(4*16384)*4096 bytes
= 63GB; plus need other activations.

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Data Parallelism (DP, FSPD, HSDP)

70

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

L1

L2

GPU 1

GPU 2

W1 W2 W3 W4

W1 W2 W3 W4

Rajbhandrari et al, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Split data and model weights across GPUs

Can now scale up to big models that don’t fit in
a single GPU!

A model with 100B params needs 4 numbers

per param (param, grad, Adam β1, β1);
2 bytes per number takes 800GB;
splitting over 80 GPUs is just 10GB per GPU!

Problem: Model activations can fill up memory.
Llama3-405B Transformer has 126 layers,
D=16,384, seq length 4096. Just FFN hidden

activations need 2*126*(4*16384)*4096 bytes
= 63GB; plus need other activations.

Solution: Don’t keep all activations in

memory; recompute them on the fly!

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

71

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

72

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1)

compute and memory.

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

73

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 1

Current Memory: 1

Peak Memory: 1
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1)

compute and memory.

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

74

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 2

Current Memory: 2

Peak Memory: 2
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1)

compute and memory.

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

75

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 3

Current Memory: 3

Peak Memory: 3
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1)

compute and memory.

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

76

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 4

Current Memory: 4

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1)

compute and memory.

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

77

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 5

Current Memory: 4

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1)

compute and memory.

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

78

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 6

Current Memory: 3

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1)

compute and memory.

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

79

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 7

Current Memory: 2

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1)

compute and memory.

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

80

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 8

Current Memory: 1

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

Q: How much compute and memory does
this take? Assume each 𝐹𝑖

→ and 𝐹𝑖
← is O(1)

compute and memory.

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

81

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 8

Current Memory: 1

Peak Memory: 4

Forward+backward: O(N) compute, O(N) memory

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

82

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 8

Current Memory: 1

Peak Memory: 4

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

83

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 1

Current Memory: 1

Peak Memory: 1

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

84

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 2

Current Memory: 1

Peak Memory: 1

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

85

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 3

Current Memory: 1

Peak Memory: 1

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

86

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 4

Current Memory: 1

Peak Memory: 1

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

87

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 5

Current Memory: 1

Peak Memory: 1

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

88

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 6

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

89

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 7

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

90

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 8

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

91

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 9

Current Memory: 1

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

92

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 10

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

93

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 11

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

94

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 12

Current Memory: 1

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

95

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 13

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

96

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 14

Current Memory: 1

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

97

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 14

Current Memory: 1

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Full Recomputation: O(N2) compute, O(1) memory

Idea: Recompute activations

during the backward pass

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

98

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 14

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Full Recomputation: O(N2) compute, O(1) memory

Idea: Recompute activations

during the backward passProblem: N2 compute is bad!

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

99

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 14

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Full Recomputation: O(N2) compute, O(1) memory

Idea: Don’t recompute everything;

save a checkpoint every C layersProblem: N2 compute is bad!

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

100

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 14

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Full Recomputation: O(N2) compute, O(1) memory

C checkpoints: O(N2/C) compute, O(C) memory Idea: Don’t recompute everything;

save a checkpoint every C layers

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Activation Checkpointing

101

Each layer in the network is two functions:

Forward: Compute next-layer activations
𝐴𝑖+1 = 𝐹𝑖

→ 𝐴𝑖

Backward: Compute prev-layer gradients

𝐺𝑖 = 𝐹𝑖
←(𝐴𝑖, 𝐺𝑖+1)

𝐴1

𝐴3

𝐴2

𝐴4

𝐺1

𝐺3

𝐺4

𝐺2

Compute: 14

Current Memory: 2

Peak Memory: 2

Forward+backward: O(N) compute, O(N) memory

Full Recomputation: O(N2) compute, O(1) memory

C checkpoints: O(N2/C) compute, O(C) memory

√𝑁 checkpoints: O(N √𝑁) compute, O(√𝑁) memory
Idea: Don’t recompute everything;

save a checkpoint every C layers

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

How to train on lots of GPUs

102

HSDP + Activation checkpointing can take you a long way!

Scaling recipe:

1. Use data parallelism up to ~128 GPUs, models with ~1B params

2. Always set per-GPU batch size to max out GPU memory
3. If your model is >1B params, consider FSDP

4. Add activation checkpointing to fit larger batches per GPU

5. If you have >256 GPUs, consider HSDP

6. If you have >1K GPUs, models >50B params, or sequence lengths

> 16K then use more advanced strategies (CP, PP, TP)

Problem: Lots of knobs to tune! How should we set them?

Solution: Maximize Model Flops Utilization (MFU)

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Hardware FLOPs Utilization (HFU)

103

Recall: H100 can theoretically do

989.4 TFLOP/sec of 16-bit matrix

multiplies on Tensor Cores

Question: How much throughput

can we see in practice?

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Hardware FLOPs Utilization (HFU)

104

Recall: H100 can theoretically do

989.4 TFLOP/sec of 16-bit matrix

multiplies on Tensor Cores

Question: How much throughput

can we see in practice?

Hardware FLOPs Utilization (HFU):

The fraction of theoretical matmul

performance we actually achieve

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Hardware FLOPs Utilization (HFU)

105

Recall: H100 can theoretically do

989.4 TFLOP/sec of 16-bit matrix

multiplies on Tensor Cores

Question: How much throughput

can we see in practice?

Hardware FLOPs Utilization (HFU):

The fraction of theoretical matmul

performance we actually achieve

Benchmark for

the best-case

scenario: only

matrix multiply

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Run this with CUDA_LAUNCH_BLOCKING=1,
otherwise GPU kernels launch async and

measurements are wrong

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Hardware FLOPs Utilization (HFU)

106

Recall: H100 can theoretically do

989.4 TFLOP/sec of 16-bit matrix

multiplies on Tensor Cores

Question: How much throughput

can we see in practice?

Hardware FLOPs Utilization (HFU):

The fraction of theoretical matmul

performance we actually achieve

0

20

40

60

80

100

0 10000 20000 30000 40000

H
F

U
 (

%
)

Matrix Size

Matmul HFU on H100

Benchmark for

the best-case

scenario: only

matrix multiply

Large matrix

multiply gets

~80% HFU

on H100

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Hardware FLOPs Utilization (HFU)

107

Recall: H100 can theoretically do

989.4 TFLOP/sec of 16-bit matrix

multiplies on Tensor Cores

Question: How much throughput

can we see in practice?

Hardware FLOPs Utilization (HFU):

The fraction of theoretical matmul

performance we actually achieve

Problem: HFU does not account for

activation checkpointing or “helper”

computation like data augmentation,

optimizer, preprocessing

0

20

40

60

80

100

0 10000 20000 30000 40000

H
F

U
 (

%
)

Matrix Size

Matmul HFU on H100

Benchmark for

the best-case

scenario: only

matrix multiply

Large matrix

multiply gets

~80% HFU

on H100

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Model FLOPs Utilization (MFU)

108

1. Compute FLOPtheoretical = total number of matrix

multiply FLOPs in the forward + backward pass

(can approximate backward = 2x forward)

(Ignore nonlinearities, normalization, elementwise

ops like residuals. They will run on FP32 cores)

2. Look up FLOP/sectheoretical = theoretical max

throughput of your device (H100: 989 TFLOP/sec)

3. Compute ttheoretical = FLOPtheoretical / FLOP/sectheoretical

4. Measure tactual = Actual time for a full iteration of

data loading, forward, backward, optimizer step

5. MFU = ttheoretical / tactual

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Idea: What fraction of the GPU’s theoretical peak

FLOPs is being used for “useful” model computation?

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Model FLOPs Utilization (MFU)

109

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Example: Wide

MLP with big
batch size gets
~49% MFU on

H100

1. Compute FLOPtheoretical = total number of matrix

multiply FLOPs in the forward + backward pass

(can approximate backward = 2x forward)

(Ignore nonlinearities, normalization, elementwise

ops like residuals. They will run on FP32 cores)

2. Look up FLOP/sectheoretical = theoretical max

throughput of your device (H100: 989 TFLOP/sec)

3. Compute ttheoretical = FLOPtheoretical / FLOP/sectheoretical

4. Measure tactual = Actual time for a full iteration of

data loading, forward, backward, optimizer step

5. MFU = ttheoretical / tactual

Idea: What fraction of the GPU’s theoretical peak

FLOPs is being used for “useful” model computation?

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Model FLOPs Utilization (MFU)

110

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Example: Wide

MLP with big
batch size gets
~49% MFU on

H100

1. Compute FLOPtheoretical = total number of matrix

multiply FLOPs in the forward + backward pass

(can approximate backward = 2x forward)

(Ignore nonlinearities, normalization, elementwise

ops like residuals. They will run on FP32 cores)

2. Look up FLOP/sectheoretical = theoretical max

throughput of your device (H100: 989 TFLOP/sec)

3. Compute ttheoretical = FLOPtheoretical / FLOP/sectheoretical

4. Measure tactual = Actual time for a full iteration of

data loading, forward, backward, optimizer step

5. MFU = ttheoretical / tactual

Idea: What fraction of the GPU’s theoretical peak

FLOPs is being used for “useful” model computation?

Optimize distributed training setup to maximize MFU!

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Model FLOPs Utilization (MFU)

111

Idea: What fraction of the GPU’s theoretical peak

FLOPs is being used for “useful” model computation?

MFU >30% is good, >40% is excellent

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Model FLOPs Utilization (MFU)

112

Idea: What fraction of the GPU’s theoretical peak

FLOPs is being used for “useful” model computation?

MFU >30% is good, >40% is excellent

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Llama Team, “The Llama3 Herd of Models”, arXiv 2024

Example: Llama3-405B

training on H100 GPUs

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Model FLOPs Utilization (MFU)

113

Idea: What fraction of the GPU’s theoretical peak

FLOPs is being used for “useful” model computation?

MFU >30% is good, >40% is excellent

More recent devices

sometimes get worse MFU

since their peak FLOPs

increases much faster than

their memory bandwidth

A100 => H100:

3.1x FLOPs

2.1x memory bandwidth

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Llama Team, “The Llama3 Herd of Models”, arXiv 2024

Example: Llama3-405B

training on H100 GPUs

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

How to train on lots of GPUs

114

Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

How to train on lots of GPUs

115

Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Context Parallelism (CP)

116

(Usually for Transformers)

Idea: Transformers operate on L-length sequences.

Use multiple GPUs to process a single long sequence

GPU 1 GPU 2

GPU 1 GPU 2

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Context Parallelism (CP)

117

(Usually for Transformers)

Idea: Transformers operate on L-length sequences.

Use multiple GPUs to process a single long sequence

Normalization, residual connections: Easy, they

have no weights and trivially parallelizable

GPU 1 GPU 2

GPU 1 GPU 2

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Context Parallelism (CP)

118

(Usually for Transformers)

Idea: Transformers operate on L-length sequences.

Use multiple GPUs to process a single long sequence

Normalization, residual connections: Easy, they

have no weights and trivially parallelizable

MLP: Trivially parallelizable, but has weights. Each

GPU keeps a copy of the weights and communicates

gradients like in DP

GPU 1 GPU 2

GPU 1 GPU 2

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Context Parallelism (CP)

119

(Usually for Transformers)

Idea: Transformers operate on L-length sequences.

Use multiple GPUs to process a single long sequence

Normalization, residual connections: Easy, they

have no weights and trivially parallelizable

MLP: Trivially parallelizable, but has weights. Each

GPU keeps a copy of the weights and communicates

gradients like in DP

Attention: More complex, need to dig in GPU 1 GPU 2

GPU 1 GPU 2

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Context Parallelism (CP)

120

(Usually for Transformers)

Idea: Transformers operate on L-length sequences.

Use multiple GPUs to process a single long sequence

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Context Parallelism (CP)

121

(Usually for Transformers)

Idea: Transformers operate on L-length sequences.

Use multiple GPUs to process a single long sequence

QKV Projection: Same as MLP, parallelize over the

sequence and sync gradients as in DP

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Context Parallelism (CP)

122

(Usually for Transformers)

Idea: Transformers operate on S-length sequences.

Use multiple GPUs to process a single long sequence

QKV Projection: Same as MLP, parallelize over the

sequence and sync gradients as in DP

Attention operator: Hardest to parallelize

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Context Parallelism (CP)

123

(Usually for Transformers)

Idea: Transformers operate on S-length sequences.

Use multiple GPUs to process a single long sequence

QKV Projection: Same as MLP, parallelize over the

sequence and sync gradients as in DP

Attention operator: Hardest to parallelize

(Option 1) Ring Attention: Divide into blocks and

distribute over GPUs. Inner loop over keys/values,

outer loop over queries. Complex to implement but

can scale to very long sequences.
Liu et al, ”Ring Attention with Blockwise

Transformers for Near-Infinite Context”, arXiv 2023

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Context Parallelism (CP)

124

(Usually for Transformers)

Idea: Transformers operate on S-length sequences.

Use multiple GPUs to process a single long sequence

QKV Projection: Same as MLP, parallelize over the

sequence and sync gradients as in DP

Attention operator: Hardest to parallelize

(Option 2) Ulysses: Don’t try to distribute attention matrix,

instead parallelize over heads in multihead attention.

Simpler, but max parallelism = number of heads

Jacobs et al, “DeepSpeed Ulysses: System Optimizations for Enabling

Training of Extreme Long Sequence Transformer Models”, arXiv 2023

GPU 1 GPU 2 GPU 3

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Context Parallelism (CP)

125

(Usually for Transformers)

Idea: Transformers operate on S-length sequences.

Use multiple GPUs to process a single long sequence

Often used for long-sequence finetuning.

Example: Llama3-405B training:

- Stage 1: S=8192, no context-parallelism

- Stage 2: S=131,072, 16-way context-parallelism

(8192 per GPU)

Llama Team, “The Llama3 Herd of Models”, arXiv 2024

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

How to train on lots of GPUs

126

Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

How to train on lots of GPUs

127

Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Pipeline Parallelism (PP)

128

Idea: Split the layers of the model

across GPUs. Copy activations

between layers at GPU boundaries.

GPU 1 GPU 2 GPU 3 GPU 4

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Pipeline Parallelism (PP)

129

Idea: Split the layers of the model

across GPUs. Copy activations

between layers at GPU boundaries.

Problem: Sequential dependencies;
GPUs are mostly sitting idle.

GPU 1 GPU 2 GPU 3 GPU 4

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Pipeline Parallelism (PP)

130

Idea: Split the layers of the model

across GPUs. Copy activations

between layers at GPU boundaries.

Problem: Sequential dependencies;
GPUs are mostly sitting idle.

Max MFU with N-way PP is 1/N GPU 1 → ←

GPU 2 → ←

GPU 3 → ←

GPU 4 → ←

Time

GPU 1 GPU 2 GPU 3 GPU 4

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Pipeline Parallelism (PP)

131

Idea: Split the layers of the model

across GPUs. Copy activations

between layers at GPU boundaries.

Problem: Sequential dependencies;
GPUs are mostly sitting idle.

Max MFU with N-way PP is 1/N GPU 1 → ←

GPU 2 → ←

GPU 3 → ←

GPU 4 → ←

Time

Bubble

GPU 1 GPU 2 GPU 3 GPU 4

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Pipeline Parallelism (PP)

132

Idea: Split the layers of the model

across GPUs. Copy activations

between layers at GPU boundaries.

Problem: Sequential dependencies;
GPUs are mostly sitting idle.

Max MFU with N-way PP is 1/N

Solution: Run multiple microbatches

at the same time, pipeline them
through the GPUs

GPU 1 → ←

GPU 2 → ←

GPU 3 → ←

GPU 4 → ←

Time

Bubble

GPU 1 GPU 2 GPU 3 GPU 4

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Pipeline Parallelism (PP) - Microbatches

133

Idea: Split the layers of the model

across GPUs. Copy activations

between layers at GPU boundaries.

GPU 1 GPU 2 GPU 3 GPU 4

Time

Example:

4-way PP with 4

microbatches.

Max MFU increases

from 1/4 = 25%

to 16/28 ≈ 57.1%
Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

How to train on lots of GPUs

134

Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Tensor Parallelism (TP)

135

Idea: Split the weights of each

linear layer across GPUs, use

block matrix multiply

X: [NxD] W: [DxD] Y: [NxD]

=

XW = Y (1 GPU)

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Tensor Parallelism (TP)

136

Idea: Split the weights of each

linear layer across GPUs, use

block matrix multiply

X: [NxD]

[1x1]

W: [DxD]

[1x4]

Y: [NxD]

[1x4]

=

XW = Y (4-way TP)

Block shapes:

W1 W2 W3 W4 Y1 Y2 Y3 Y4

GPU i computes

XWi = Yi

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Tensor Parallelism (TP)

137

Idea: Split the weights of each

linear layer across GPUs, use

block matrix multiply

Problem: Need to gather
parts of Y after forward, can’t

overlap with communication
X: [NxD]

[1x1]

W: [DxD]

[1x4]

Y: [NxD]

[1x4]

=

XW = Y (4-way TP)

Block shapes:

W1 W2 W3 W4 Y1 Y2 Y3 Y4

GPU i computes

XWi = Yi

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Tensor Parallelism (TP)

138

Idea: Split the weights of each

linear layer across GPUs, use

block matrix multiply

Problem: Need to gather
parts of Y after forward, can’t

overlap with communication

Trick: With 2 consecutive TP

layers, shard first over row
and second over column to

avoid communication

X: [NxD]

[1x1]

W: [DxD]

[1x4]

Y: [NxD]

[1x4]

=

XW = Y (4-way TP)

Block shapes:

W1 W2 W3 W4 Y1 Y2 Y3 Y4

GPU i computes

XWi = Yi

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Tensor Parallelism (TP) – Two Layers

139

X: [NxD] W: [DxD] Y: [NxD]

=

(4-way TP)

XW = Y (layer 1)

YU = Z (layer 2)

U: [DxD]

Y1 Y2 Y3 Y4

U1

U2

U3

U4

=

Z: [DxD]

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Tensor Parallelism (TP) – Two Layers

140

X: [NxD]

[1x1]

W: [DxD]

[1x4]

Y: [NxD]

[1x4]

=

(4-way TP)

XW = Y (layer 1)

YU = Z (layer 2)

Block

shapes:

U: [DxD]

[4x1]

Y1 Y2 Y3 Y4

U1

U2

U3

U4

=

Z: [DxD]

[1x1]

W1 W2 W3 W4

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Tensor Parallelism (TP) – Two Layers

141

X: [NxD]

[1x1]

W: [DxD]

[1x4]

Y: [NxD]

[1x4]

=

(4-way TP)

XW = Y (layer 1)

YU = Z (layer 2)

Block

shapes:

U: [DxD]

[4x1]

Y1 Y2 Y3 Y4

U1

U2

U3

U4

=

Z: [DxD]

[1x1]

Z = Y1U1 + Y2U2

+ Y3U3 + Y4U4

W1 W2 W3 W4

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Tensor Parallelism (TP) – Two Layers

142

X: [NxD]

[1x1]

W: [DxD]

[1x4]

Y: [NxD]

[1x4]

=

(4-way TP)

XW = Y (layer 1)

YU = Z (layer 2)

Block

shapes:

U: [DxD]

[4x1]

Y1 Y2 Y3 Y4

U1

U2

U3

U4

=

Z: [DxD]

[1x1]

Z = Y1U1 + Y2U2

+ Y3U3 + Y4U4

W1 W2 W3 W4

GPU i computes

XWi = Yi

GPU i computes

YiUi = Zi

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Tensor Parallelism (TP) – Two Layers

143

X: [NxD]

[1x1]

W: [DxD]

[1x4]

Y: [NxD]

[1x4]

=

(4-way TP)

XW = Y (layer 1)

YU = Z (layer 2)

Block

shapes:

U: [DxD]

[4x1]

Y1 Y2 Y3 Y4

U1

U2

U3

U4

=

Z: [DxD]

[1x1]

Z = Y1U1 + Y2U2

+ Y3U3 + Y4U4

No need for communication after XW=Y! Each GPU

computes one term of Z, then broadcasts to all other GPUs

W1 W2 W3 W4

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

How to train on lots of GPUs

144

Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

How to train on lots of GPUs

145

Data Parallelism (DP)

Split on Batch dimension

Pipeline Parallelism (PP)

Split on L dimension

Context Parallelism (CP)

Split on Sequence dimension

Tensor Parallelism (TP)

Split on Dim dimension

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Q: Which to use for largest models?

A: All of them!

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

ND Parallelism

146

Use TP, CP, PP, and DP

all at the same time!

Arrange GPUs in a 4D grid

GPUs index in the grid

gives its rank along each

parallelism dimension

Optimize setup to
maximize MFU

Example: LLama3-405B

Llama Team, “The Llama3 Herd of Models”, arXiv 2024

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 -

Summary: Large-Scale Distributed Training

147

A GPU cluster has O(10K) GPUs

A GPU is a parallel processor

with hundreds of cores
Split up the computation along different axes

Consider a model with many Layers, operating

on tensors of shape (Batch, Seq, Dim)

- Data Parallel (DP): Split on Batch

- Context Parallel (CP): Split on Seq

- Pipeline Parallel (PP): Split on Layers

- Tensor Parallel (TP): Split on Dim

Activation Checkpointing saves

memory by recomputing during backward

Tune parallelism recipe to maximize

Model Flops Utilization (MFU)

Stanford CS231n 10th Anniversary May 6, 2025Lecture 11 - 148

Next Time:
Self-Supervised Learning

	Slide 1
	Slide 2: Administrative
	Slide 3
	Slide 4: Running Example: Llama3-405B
	Slide 5: GPUs and How to Train On Them
	Slide 6: GPUs and How to Train On Them
	Slide 7: Inside a GPU: NVIDIA H100
	Slide 8: Inside a GPU: NVIDIA H100
	Slide 9: Inside a GPU: NVIDIA H100
	Slide 10: Inside a GPU: NVIDIA H100
	Slide 11: Inside a GPU: NVIDIA H100
	Slide 12: Inside a GPU: NVIDIA H100
	Slide 13: Inside a GPU: NVIDIA H100
	Slide 14: Inside a GPU: NVIDIA H100
	Slide 15: Inside a GPU: NVIDIA H100
	Slide 16: Inside a GPU: NVIDIA H100
	Slide 17: GPUs Have Gotten Much Faster!
	Slide 18: GPUs Have Gotten Much Faster!
	Slide 19: GPUs Have Gotten Much Faster!
	Slide 20: NVIDIA H100 GPU
	Slide 21: NVIDIA H100 GPU
	Slide 22: Case Study: Meta’s Llama3 Cluster
	Slide 23: Case Study: Meta’s Llama3 Cluster
	Slide 24: Case Study: Meta’s Llama3 Cluster
	Slide 25: GPU Cluster = One Big Computer
	Slide 26: Google: Tensor Processing Units (TPUs)
	Slide 27: Other Training Chips
	Slide 28: Today: GPUs and How to Train On Them
	Slide 29: Today: GPUs and How to Train On Them
	Slide 30: How to train on lots of GPUs
	Slide 31: How to train on lots of GPUs
	Slide 32: Data Parallelism
	Slide 33: Data Parallelism
	Slide 34: Data Parallelism
	Slide 35: Data Parallelism
	Slide 36: Data Parallelism
	Slide 37: Data Parallelism
	Slide 38: Data Parallelism
	Slide 39: Data Parallelism
	Slide 40: Data Parallelism
	Slide 41: Data Parallelism
	Slide 42: Data Parallelism
	Slide 43: Data Parallelism
	Slide 44: Data Parallelism
	Slide 45: Data Parallelism
	Slide 46: Fully Sharded Data Parallelism (FSPD)
	Slide 47: Fully Sharded Data Parallelism (FSPD)
	Slide 48: Fully Sharded Data Parallelism (FSPD)
	Slide 49: Fully Sharded Data Parallelism (FSPD)
	Slide 50: Fully Sharded Data Parallelism (FSPD)
	Slide 51: Fully Sharded Data Parallelism (FSPD)
	Slide 52: Fully Sharded Data Parallelism (FSPD)
	Slide 53: Fully Sharded Data Parallelism (FSPD)
	Slide 54: Fully Sharded Data Parallelism (FSPD)
	Slide 55: Fully Sharded Data Parallelism (FSPD)
	Slide 56: Fully Sharded Data Parallelism (FSPD)
	Slide 57: Fully Sharded Data Parallelism (FSPD)
	Slide 58: Fully Sharded Data Parallelism (FSPD)
	Slide 59: Fully Sharded Data Parallelism (FSPD)
	Slide 60: Fully Sharded Data Parallelism (FSPD)
	Slide 61: Fully Sharded Data Parallelism (FSPD)
	Slide 62: Fully Sharded Data Parallelism (FSPD)
	Slide 63: Fully Sharded Data Parallelism (FSPD)
	Slide 64: Fully Sharded Data Parallelism (FSPD)
	Slide 65: Hybrid Sharded Data Parallel (HSDP)
	Slide 66: Hybrid Sharded Data Parallel (HSDP)
	Slide 67: Hybrid Sharded Data Parallel (HSDP)
	Slide 68: Data Parallelism (DP, FSPD, HSDP)
	Slide 69: Data Parallelism (DP, FSPD, HSDP)
	Slide 70: Data Parallelism (DP, FSPD, HSDP)
	Slide 71: Activation Checkpointing
	Slide 72: Activation Checkpointing
	Slide 73: Activation Checkpointing
	Slide 74: Activation Checkpointing
	Slide 75: Activation Checkpointing
	Slide 76: Activation Checkpointing
	Slide 77: Activation Checkpointing
	Slide 78: Activation Checkpointing
	Slide 79: Activation Checkpointing
	Slide 80: Activation Checkpointing
	Slide 81: Activation Checkpointing
	Slide 82: Activation Checkpointing
	Slide 83: Activation Checkpointing
	Slide 84: Activation Checkpointing
	Slide 85: Activation Checkpointing
	Slide 86: Activation Checkpointing
	Slide 87: Activation Checkpointing
	Slide 88: Activation Checkpointing
	Slide 89: Activation Checkpointing
	Slide 90: Activation Checkpointing
	Slide 91: Activation Checkpointing
	Slide 92: Activation Checkpointing
	Slide 93: Activation Checkpointing
	Slide 94: Activation Checkpointing
	Slide 95: Activation Checkpointing
	Slide 96: Activation Checkpointing
	Slide 97: Activation Checkpointing
	Slide 98: Activation Checkpointing
	Slide 99: Activation Checkpointing
	Slide 100: Activation Checkpointing
	Slide 101: Activation Checkpointing
	Slide 102: How to train on lots of GPUs
	Slide 103: Hardware FLOPs Utilization (HFU)
	Slide 104: Hardware FLOPs Utilization (HFU)
	Slide 105: Hardware FLOPs Utilization (HFU)
	Slide 106: Hardware FLOPs Utilization (HFU)
	Slide 107: Hardware FLOPs Utilization (HFU)
	Slide 108: Model FLOPs Utilization (MFU)
	Slide 109: Model FLOPs Utilization (MFU)
	Slide 110: Model FLOPs Utilization (MFU)
	Slide 111: Model FLOPs Utilization (MFU)
	Slide 112: Model FLOPs Utilization (MFU)
	Slide 113: Model FLOPs Utilization (MFU)
	Slide 114: How to train on lots of GPUs
	Slide 115: How to train on lots of GPUs
	Slide 116: Context Parallelism (CP)
	Slide 117: Context Parallelism (CP)
	Slide 118: Context Parallelism (CP)
	Slide 119: Context Parallelism (CP)
	Slide 120: Context Parallelism (CP)
	Slide 121: Context Parallelism (CP)
	Slide 122: Context Parallelism (CP)
	Slide 123: Context Parallelism (CP)
	Slide 124: Context Parallelism (CP)
	Slide 125: Context Parallelism (CP)
	Slide 126: How to train on lots of GPUs
	Slide 127: How to train on lots of GPUs
	Slide 128: Pipeline Parallelism (PP)
	Slide 129: Pipeline Parallelism (PP)
	Slide 130: Pipeline Parallelism (PP)
	Slide 131: Pipeline Parallelism (PP)
	Slide 132: Pipeline Parallelism (PP)
	Slide 133: Pipeline Parallelism (PP) - Microbatches
	Slide 134: How to train on lots of GPUs
	Slide 135: Tensor Parallelism (TP)
	Slide 136: Tensor Parallelism (TP)
	Slide 137: Tensor Parallelism (TP)
	Slide 138: Tensor Parallelism (TP)
	Slide 139: Tensor Parallelism (TP) – Two Layers
	Slide 140: Tensor Parallelism (TP) – Two Layers
	Slide 141: Tensor Parallelism (TP) – Two Layers
	Slide 142: Tensor Parallelism (TP) – Two Layers
	Slide 143: Tensor Parallelism (TP) – Two Layers
	Slide 144: How to train on lots of GPUs
	Slide 145: How to train on lots of GPUs
	Slide 146: ND Parallelism
	Slide 147: Summary: Large-Scale Distributed Training
	Slide 148

