Lecture 11:
Large-Scale Distributed Training

Stanford CS231n 10t Anniversary Lecture 11- 1 May 6, 2025

Administrative

Reminders:
e Friday 5/9: Midterm Review Session
e Tuesday 5/13:In-Class Midterm

Stanford CS231n 10t Anniversary Lecture 11- 2 May 6, 2025

Today:
Large-Scale Distributed Training

Stanford CS231n 10t Anniversary Lecture 11- 3 May 6, 2025

Running Example: Llama3-405B

e GPT4 kicked off a trend of not sharing any model details:
“Given both the competitive landscape and the safety implications of large-scale
models like GPT-4, this report contains no further details about the architecture
(including model size), hardware, training compute, dataset construction, training
method, or similar.”

e Llama3: Open-source LLM released by Meta in April 2024;
paper shares many model and training details
e Llama4: Released initial models April 2025, but no paper yet

Llama Team, “The Llama 3 Herd of Models”, https://arxiv.org/abs/2407.21783
OpenAl, "GPT4 Technical Report”, arXiv 2023

Stanford CS231n 10t Anniversary Lecture 11- 4 May 6, 2025

https://arxiv.org/abs/2407.21783

GPUs and How to Train On Them

A bit about GPU hardware How to train on lots of GPUs

Stanford CS231n 10t Anniversary Lecture11- 5 May 6, 2025

GPUs and How to Train On Them

A bit about GPU hardware

Stanford CS231n 10t Anniversary Lecture11- 6 May 6, 2025

Inside a GPU: NVIDIAH100

GPU = Graphics Processing Unit
Originally for graphics
Now a general parallel processor

Stanford CS231n 10t Anniversary Lecture 11- 7 May 6, 2025

Inside a GPU: NVIDIAH100

GPU = Graphics Processing Unit
Originally for graphics
Now a general parallel processor

Compute Cores

Stanford CS231n 10t Anniversary Lecture 11- 8 May 6, 2025

Inside a GPU: NVIDIAH100

GPU = Graphics Processing Unit
Originally for graphics
Now a general parallel processor

e = TP compute Cores

——, 80 GB of HBM Memory
3352 GB/sec bandwidth to cores

Stanford CS231n 10t Anniversary Lecture 11- 9 May 6, 2025

Inside a GPU: NVIDIAH100

H100 Compute Cores

Stanford CS231n 10t Anniversary Lecture 11- 10 May 6, 2025

Inside a GPU: NVIDIAH100

H100 Compute Cores

50MB of L2 Cache

Stanford CS231n 10t Anniversary Lecture 11- 11 May 6, 2025

Inside a GPU: NVIDIAH100

H100 Compute Cores

50MB of L2 Cache

132 Streaming Multiprocessors (SMs)

These are independent parallel cores
(Actually 144 here; only 132 are enabled due to yield)

Stanford CS231n 10t Anniversary

Lecture 11- 12 May 6, 2025

Inside a GPU: NVIDIAH100

Dispatch Unit (32 thread/cik)

Register File (16,384 x 32-bit)

FP32

TENSOR CORE
4™ GENERATION

W oW W
sT ST ST SFU

Dispatch Unit (32 throad/clk)

Register File (16,384 x 32-bit)

FP32 FPes
FP32

Sort of like
a CPU core
with vector

instructions

TENSOR CORE
4™ GENERATION

@ | sFu

Stanford CS231n 10t Anniversary

H100 Streaming Multiprocessor

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

P32 FPoa

P64

P84

P64

P64

P64

P64

FPB4. TENSOR CORE
4" GENERATION

P4

FP32 P64
FP32 PB4

ol
st

W
st

Tensor Memory Accele

W L

Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit)

P32
FP32

FP32

FP32

P32

P32

P32

FP32 TENSOR CORE
FP32 4" GENERATION
P32 64

P32

FP32

P32

P32

P32

P32

W W L W W Lo

S s s st s s | SFU

rator

Lecture11- 13 May 6, 2025

H100 Streaming Multiprocessor

Inside a GPU: NVIDIAH100

256 KB L1 cache,

INT3Z
INT32

INT32

T2

INT32

INT32 INT32

wTs2 TENSOR CORE TENSOR CORE
INT32 4™ GENERATION 4" GENERATION
INT32 INT

W32

INT32

INT32

INT32 FP84

INT32 FP64.
T2 INT: FPsa
w W W W W W w
st s & & &1 SFU i

T2 FP32
. T3 INT32 FP32
Fi INT32 FP32
Sort of like

INT32 FP32

Pos
TENSOR CORE Fo32 TENSOR CORE
a CO re 2 4" GENERATION Fp32 4" GENERATION
P64 IN FP32 64
sz Fps2
IN' FP32
- FP32
FP32
e P2
INT32 FP32

W W W W W W W Lo
st SFU ST ST ST ST ST ST ST 8T SFU

i n Stru Cti O n S : = Tensor Memory Accelerator

Stanford CS231n 10t Anniversary Lecture 11- 14 May 6, 2025

Inside a GPU: NVIDIAH100

Sort of like
a CPU core
with vector
instructions

INT3Z
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
o
st

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR CORE
4™ GENERATION

W oW W
sT ST ST SFU

TENSOR CORE
4™ GENERATION

Stanford CS231n 10t Anniversary

INT32
INT32
INT32
INT32
INT32
INT32
INTSZ
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
Lot
sT

INT32
INT32
INT32
INTS2
INT32
INT32
INTS2
INT32
INT32
INT3Z
INT32
INTS2
INT32
INT32
INT32
Lol

st

FP32
FP32
FP32
FP32
FP32
P32
FP32
FP32
FP32
FP32
FP32
P32
FP32
FP32
FP32
FP32

Lol

st

iz
P32
P32
P32
P32
P32
P32
P32
P32
P32
P32
P32
P32
P32
P32
P32

o

sT

i

TENSOR CORE
4" GENERATION

PB4

W W W o
T ST ST SFU

TENSOR CORE
4" GENERATION

W W oW W
ST ST SFU

H100 Streaming Multiprocessor

256 KB L1 cache,

128 FP32 Cores

Computes a*x + b per clock cycle

2 FLOPs = Floating Point Operations
256 FLOP/cycle per SM

Lecture 11- 15 May 6, 2025

H100 Streaming Multiprocessor

Inside a GPU: NVIDIAH100

256 KB L1 cache,

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

128 FP32 Cores

R - INT32| FP32

INT3Z | FP32 FP32 INTS2| FP32 FP32

B bk Computes a*x + b per clock cycle

INT32. FP32 FP32 INT32| FP32 FP32

INTS2 FP32 FP32 INTSZ| FP32 FP32

INT32 PR32 FP32 TENSOR CORE INTS2| PR32 FP32 TENSOR CORE — H H H
INT32| FP32 FP32 4" GENERATION || INT32| FP32 FP32 4" GENERATION S Oa I ng OI n pe ra Ion S
INT32 FP32 FP32 INT32 FP32 FP32
W32 FPa2 PR32 T3z | PR32 P32
INT32 FP32 FP32 INT32 FP32 FP32

INT32 FP32 FP32 INTS2| FP32 FP32
INTS2 | FP32 FP32 INT32| FP32 FP32
INT32 FP32 FP32 INT32| FP32 FP32
INT32 FP32 FP32 FPes INT32| FP32 FP32 PB4

W W W W W W WD L W W L L LD LD LD LD
Sl olcil S sl ol ST ST ST ST ST ST ST ST

Warp Scheduler (32 thread/clk)

4 Tensor Cores

Register File (16,384 x 32-bit)

Sort of like o e Computes AX + B per clock cycle

INTS2| FP32 INT32| FP32 P64
INTS2 | FP32 INTS2| FP32 P84

T2 FP32 T3z FP32 FP32| FPed . .
INTS2 FP32 INTS2| FP32 FP32 | FPed - +
INT32 FP32 TENSOR CORE INT32 FP32 FP32 FP84 TENSOR CORE -
a CO re INT32 | FP32 4" GENERATION || INT32 Fp32 FP32 | fPsa 4™ GENERATION
T2 FP32 Pes INTS2| FP32 P32 | FPes
Wra2 | Fpa INT32| FP32 FP32 | FPed
i i wrsaf e rosz | o *A*Q*D) —
H W2 FPa2 INTSZ| FP32 FP32| FPes _—
T2 FP32 32| FP32 FP32 | Fpes
Wiz FPa2 INT32| FP32 FP32| FPes
T3z FP32 NT32| FP32 FP3z | Fpea
W L W W oW L W o W W W gy
instructions S e

Mixed precision: 16-bit / 32-bit

Stanford CS231n 10t Anniversary Lecture 11- 16 May 6, 2025

GPUs Have Gotten Much Faster!

emgen P32 e=g==Tensor Core

B200
5000 TC
83.3 FP32

6000

5000

4000

H100
989 TC
67 FP32

TFLOP/sec
w
8
o

2000

1000 V100 312 TC
K40 piog 125TC 19.5 FP32
5 FP32 10.6 FP32 1°-
0 ® o= — o s °
Apr-12 Aug-13 Dec-14 May-16 Sep-17 Feb-19 Jun-20 Oct-21 Mar-23 Jul-24 Dec-25

Stanford CS231n 10t Anniversary Lecture 11- 17 May 6, 2025

GPUs Have Gotten Much Faster!

emgen P32 e=g==Tensor Core

6000 B200
1000x speedup I » 5000 TC
: | 83.3 FP32
000 since 2013!
4000
o
3
& 3000
I H100
= 989 TC
2000 67 FP32
1000 V100 312 TC
K40 P100 1275FTPC:,;2 19.5 FP32
5 FP32 10.6 FP32 12
0 ® o — ® —)
Apr-12 Aug-13 Dec-14 May-16 Sep-17 Feb-19 Jun-20 Oct-21 Mar-23 Jul-24 Dec-25

Stanford CS231n 10t Anniversary Lecture 11- 18 May 6, 2025

GPUs Have Gotten Much Faster!

emges[-P32 e=g==Tensor Core
B200
1000x speedup I » 5000 TC

since 2013! 83.3 FP32

6000

5000

4000 .
We can also train

with > 1 GPU!
H100

989 TC
67 FP32

TFLOP/sec
w
8
o

2000

1000 V100 312 TC
K40 piog 125TC 19.5 FP32
5 FP32 10.6 FP32 1°-
0 ® o= — o s °
Apr-12 Aug-13 Dec-14 May-16 Sep-17 Feb-19 Jun-20 Oct-21 Mar-23 Jul-24 Dec-25

Stanford CS231n 10t Anniversary Lecture 11- 19 May 6, 2025

NVIDIA H100 GPU

H100 GPU
3352 GB/sec inside the GPU

Stanford CS231n 10t Anniversary Lecture 11- 20 May 6, 2025

NVIDIA H100 GPU GPU Server

H100 GPU
3352 GB/sec inside the GPU

Server = 8x GPU
900 GB/sec between GPUs

Stanford CS231n 10t Anniversary Lecture 11- 21 May 6, 2025

Case Study: Meta’s Llama3 Cluster

H100 GPU
3352 GB/sec inside the GPU Server Rack

GPU Server GPU Server

Server = 8x GPU
900 GB/sec between GPUs

Rack = 2 Servers = 16x GPU

Llama Team, “The Llama 3 Herd of Models”, https://arxiv.org/abs/2407.21783

Stanford CS231n 10t Anniversary Lecture 11 - 22 May 6, 2025

https://arxiv.org/abs/2407.21783

Case Study: Meta’s Llama3 Cluster

H100 GPU
3352 GB/sec inside the GPU

Server = 8x GPU
900 GB/sec between GPUs

Rack = 2 Servers = 16x GPU

Pod = 192 Racks = 3072 GPUs

50 GB/sec between GPUs

Stanford CS231n 10t Anniversary

___GPUPod

Lecture 11 - 23

Llama Team, “The Llama 3 Herd of Models”, https:/arxiv.org/abs/2407.21783

May 6, 2025

https://arxiv.org/abs/2407.21783

Case Study: Meta’s Llama3 Cluster

H100 GPU
3352 GB/sec inside the GPU GPU Cluster

GPU Pod -~ GPUPod GPU Pod ~ GPU Pod

Server = 8x GPU
900 GB/sec between GPUs

Rack = 2 Servers = 16x GPU

GPU Pod GPU Pod GPU Pod GPU Pod

Pod = 192 Racks = 3072 GPUs
50 GB/sec between GPUs

Cluster = 8 Pods = 24,576 GPUs
< 50GB/sec between GPUs

Llama Team, “The Llama 3 Herd of Models”, https:/arxiv.org/abs/2407.21783

Stanford CS231n 10t Anniversary Lecture 11 - 24 May 6, 2025

https://arxiv.org/abs/2407.21783

GPU Cluster = One Big Computer

Total Cluster Stats
24,576 GPUs GPU Cluster

1.875 PB of GPU memory

415M FP32 cores 555::;:55:?:%:?;:(1::::::::: angennasness || gessaandeans GPUPOd
13M Tensor Cores :
24.3 EFLOP/sec =24.3 x 1018

GPU Pod GPU Pod GPU Pod GPU Pod

Stanford CS231n 10t Anniversary

Lecture 11 - 25 May 6, 2025

Google: Tensor Processing Units (TPUs)

Custom chips designed by Google

TPU vbp:

459 TFLOP/sec BF16 per chip
95GB of memory per chip
Arranged in pods of 8960 chips

Stanford CS231n 10t Anniversary Lecture 11- 26 May 6, 2025

Other Training Chips

AMD Mi325X AWS Trainium2
1300 TFLOP/sec BF16 667 TFLOP/sec BF16
256GB memory 96GB memory

Packed in UltraServers with 64 chips

Stanford CS231n 10t Anniversary Lecture 11 - 27

May 6, 2025

Today: GPUs and How to Train On Them

A bit about GPU hardware

Stanford CS231n 10t Anniversary Lecture 11 - 28 May 6, 2025

Today: GPUs and How to Train On Them

How to train on lots of GPUs

Stanford CS231n 10t Anniversary Lecture 11- 29 May 6, 2025

How to train on lots of GPUs

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Data Parallelism (DP) Context Parallelism (CP)
Split on Batch dimension Split on Sequence dimension
Pipeline Parallelism (PP) Tensor Parallelism (TP)
Split on L dimension Split on Dim dimension

Stanford CS231n 10t Anniversary Lecture 11- 30 May 6, 2025

How to train on lots of GPUs

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Data Parallelism (DP)
Split on Batch dimension

Stanford CS231n 10t Anniversary Lecture 11- 31 May 6, 2025

Data Parallelism

Recall: Loss is usually averaged
over a minibatch of N samples

Stanford CS231n 10t Anniversary Lecture 11- 32 May 6, 2025

Data Parallelism

Recall: Loss is usually averaged
over a minibatch of N samples

Idea: Use minibatch of MN samples,
split over M GPUs

Stanford CS231n 10t Anniversary Lecture 11- 33 May 6, 2025

Data Parallelism

Recall: Loss is usually averaged
over a minibatch of N samples

Idea: Use minibatch of MN samples,
split over M GPUs

Gradients are linear, so each GPU
computes its own gradient:

MNZZ{)()C”'W)

i=1j=

Stanford CS231n 10t Anniversary Lecture 11 - 34 May 6, 2025

Data Parallelism

Recall: Loss is usually averaged
over a minibatch of N samples

Idea: Use minibatch of MN samples,
split over M GPUs

Gradients are linear, so each GPU
computes its own gradient:

Each GPU

Lx; ;W computes gradient
MNZZ (") on N examples

Stanford CS231n 10t Anniversary Lecture 11- 35 May 6, 2025

Data Parallelism

Recall: Loss is usually averaged
over a minibatch of N samples

Idea: Use minibatch of MN samples,
split over M GPUs

Gradients are linear, so each GPU
computes its own gradient:

Each GPU

Lx; ;W computes gradient
MNZZ (") on N examples

N
oL z 0 .
g _ T (xl i ,W) | Average gradients
ow M (= ow > across M GPUs

Stanford CS231n 10t Anniversary Lecture 11- 36 May 6, 2025

Data Parallelism I"I"H

Recall: Loss is usually averaged
over a minibatch of N samples

Idea: Use minibatch of MN samples,
split over M GPUs

Gradients are linear, so each GPU HH

computes its own gradient:

1. Each GPU has it's own copy of model + optimizer

GPU 3

Stanford CS231n 10t Anniversary Lecture 11 - 37 May 6, 2025

Data Parallelism X I"I"H
X1,2
Recall: Loss is usually averaged X1,3
over a minibatch of N samples

Idea: Use minibatch of MN samples,
split over M GPUs

X2,1
: . X2,2
Gradients are linear, so each GPU Xy 5

computes its own gradient:

1. Each GPU has it's own copy of model + optimizer
2. Each GPU loads its own batch of data

GPU 3

Stanford CS231n 10t Anniversary Lecture 11 - 38 May 6, 2025

Data Parallelism
Recall: Loss is usually averaged X1,3
over a minibatch of N samples

Idea: Use minibatch of MN samples,
split over M GPUs

X2,1
: . X2,2 L,
Gradients are linear, so each GPU Xy 5

computes its own gradient:

1. Each GPU has it's own copy of model + optimizer
2. Each GPU loads its own batch of data

3. Each GPU runs forward to compute loss X3, 1
X3,3

GPU 3

Stanford CS231n 10t Anniversary Lecture 11- 39 May 6, 2025

Data Parallelism
X1,2 L
. H X
Recall: L'OS'E If L:]sufalyly aver?ged GPU1 " oL, oL, oL, oL,
over a minibatch of N samples oW, oW, oW, aw,

Idea: Use minibatch of MN samples,
split over M GPUs

X2,1
: . X2,2 L,
Gradients are linear, so each GPU Xy 5

computes its own gradient: aL, 9L, 0L, 0L,
GPU 2 oW, ow, oW, ow,
1. Each GPU has it's own copy of model + optimizer ~ ~~~~~~~ T T T TT
2. Each GPU loads its own batch of data
3.
4.

Each GPU runs forward to compute loss X3, 1
Each GPU runs backward to compute gradients X3.2 I—I—-H L,
X3,3

GPU 3 dL; L; OL; dLs
oW, ow, oW, aw,

Stanford CS231n 10t Anniversary Lecture 11 - 40 May 6, 2025

oL aL OL aL <
oW, ow, oW ow,

Data Parallelism
X1,2 L
. : X
Recall: L'OS'E If L:]sufalyly aver?ged GPU 1 1.3 oL, oL, 9L, oL,
over a minibatch of N samples oW, oW, oW, aw,

Idea: Use minibatch of MN samples, oL oL oL oL o
split over M GPUs . oWy oW, oWs oW,
2,1
. . X2,2 L,
Gradients are linear, so each GPU Xy 5
computes its own gradient: " 8L, 9L, 0L, oL,
GPU 2 oW, ow, oW, aw,
1. Each GPU has it's own copy of model + optimizer oL oL oL oL)
2. Each GPU loads its own batch of data oW, aw, oWs aw, <
3. Each GPU runs forward to compute loss X3, 1
4. Each GPU runs backward to compute gradients X3 I—I—-H L,
5. Average gradients across all GPUs X33
GPU 3 dL; 0Lz 0Lz 0JL3

oW, ow, oW, aw,

Stanford CS231n 10t Anniversary Lecture 11 - 41 May 6, 2025

oL aL OL aL <
oW, ow, oW ow,

Data Parallelism
X1,2 L
. H X
Recall: L'OS'E If L:]sufalyly aver?ged GPU1 " oL, oL, oL, oL,
over a minibatch of N samples oW, oW, oW, aw,

|dea: Use minibatch of MN samples, oL oL oL 4L

split over M GPUs . oW, W, Wy oW,
2,1
: : X2,2 L,
Gradients are linear, so each GPU Xy 5
computes its own gradient: " 8L, 9L, 0L, oL,
GPU 2 oW, ow, oW, aw,
1. Each GPU has it's own copy of model + optimizer oL oL oL oL)
2. Each GPU loads its own batch of data oW, aw, oWs aw, <
3. Each GPU runs forward to compute loss X3, 1
4. Each GPU runs backward to compute gradients X3 I—I—-H L,
5. Average gradients across all GPUs X33
6. Each GPU updates its own weights GPU 3 dL; 0L; 0Ly 0L,

oW, ow, oW, aw,

Stanford CS231n 10t Anniversary Lecture 11 - 42 May 6, 2025

oL aL OL aL <
oW, ow, oW ow,

Data Parallelism
X1,2 L
. : X
Recall: L'OS'E If L:]sufalyly aver?ged GPU 1 1.3 oL, oL, 9L, oL,
over a minibatch of N samples oW, oW, oW, aw,

Idea: Use minibatch of MN samples, oL oL oL oL o
split over M GPUs . oWy oW, OWs oW,
2,1
. . X2,2 L,
Gradients are linear, so each GPU Xy 5
computes its own gradient: " 8L, 9L, 0L, oL,
GPU 2 oW, ow, oW, aw,
1. Each GPU has it's own copy of model + optimizer oL oL oL oL)
2. Each GPU loads its own batch of data oW, aw, oWs aw, <
3. Each GPU runs forward to compute loss X3, 1
4. Each GPU runs backward to compute gradients X3 I—I—-H L,
5. Average gradients across all GPUs X33
6. Each GPU updates its own weights GPU 3 dL; 0L; 0Ly 0L,
(4) and (5) can run in parallel! ow, ow, ows ow,

Stanford CS231n 10t Anniversary Lecture 11 - 43 May 6, 2025

dL 9L IL AL <
oW, ow, oW ow,

Data Parallelism
X1,2 L
. : X
Recall: L'OS'S If L:]sufalyly aver?ged GPU 1 1.3 oL, oL, 9L, oL,
over a minibatch of N samples oW, oW, oW, aw,

|ldea: Use minibatch of MN samples, oL oL oL oL o
split over M GPUs oW, oW, 0Ws oW,
X2,1
: : X2,2 L,
Gradients are linear, so each GPU Xy 5
computes its own gradient: " 9L, 0L, 0L, 0L,
Problem: Model size constrained by GPU memory. _G_P_U_Z_ _ oW, ow, oW oW, i
oL aL 9L 4L
Each weight needs 4 numbers (weight, grad, Adam 3, oW, aw, oWs aw, <
B,). Each number needs 2 bytes. X3, 1
X3,2 L
1B params takes 8GB; 10B params fills up 80GB GPU. X33
GPU 3 dL; 0Ly 0L; 0L,

oW, ow, oW, aw,

Stanford CS231n 10t Anniversary Lecture 11 - 44 May 6, 2025

oL oL 9L aL
. oW, aw, Wi aw, <
Data Parallelism
Recall: Loss is usually averaged GPU 1 X1,3 oL, oL, 3L, oL,
oW, oW, OWs oW,

over a minibatch of N samples

Idea: Use minibatch of MN samples, oL oL oL oL o
split over M GPUs . oW, oW, dWs oW,
2,1
. . X2,2 L,
Gradients are linear, so each GPU Xy 5
computes its own gradient: © AL, 0L, 0L, AL,
Problem: Model size constrained by GPU memory. GPU2 ow, ow, aws ow, i
oL 4L AL oL
Each weight needs 4 numbers (weight, grad, Adam 3, owy, aw, oW aw, <
B,). Each number needs 2 bytes. X3 1
1B params takes 8GB; 10B params fills up 80GB GPU. X33
GPU 3 dL; 0Lz 0Lz 0JL3
Solution: Split model weights across GPUs ow, ow, owWs oW,

Stanford CS231n 10t Anniversary Lecture 11 - 45 May 6, 2025

Fully Sharded Data Parallelism (FSPD)

Split model weights across GPUs

Each weight W, is owned by one GPU, 1.1]
which also holds its grads and optim states §1,2 1
1,3

GPU 2

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11 - 46 May 6, 2025

Fully Sharded Data Parallelism (FSPD)

Split model weights across GPUs

Each weight W, is owned by one GPU, 1.1]
which also holds its grads and optim states §1,2 1
1,3

1. Before forward for layer i, the GPU that

owns W, broadcasts it toalGPUS = ======-=-- :| ----------------

GPU 2
4

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11 - 47 May 6, 2025

Fully Sharded Data Parallelism (FSPD)

Split model weights across GPUs

Each weight W, is owned by one GPU, i“]
which also holds its grads and optim states x1'2 !
1,3

_ GPU 1 W, W,
1. Before forward for layer i, the GPU that
owns W, broadcastsittoalGPUs = === - - - - - —mm s mmmmmmm—m————
2. All GPUs run forward for layer i, then
delete their local copy of W,
X2, 1
X2 3 W
W
GPU 2 2

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11 - 48 May 6, 2025

Fully Sharded Data Parallelism (FSPD)

Split model weights across GPUs

Each weight W, is owned by one GPU, 1.1]
which also holds its grads and optim states §1,2 1
1,3

: GPU 1 W, W,
1. Before forward for layer i, the GPU that
owns W; broadcasts it to all GPUs Fetch Wiy While == o — oo oo oo
2. All GPUs run forward for layer i, then CQ{QWF‘”Q forward
delete their local copy of W, with Vv,
X2 1
X23 W W
W
GPU 2 *2 T

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11 - 49 May 6, 2025

Fully Sharded Data Parallelism (FSPD)

Split model weights across GPUs

Each weight W, is owned by one GPU, 1.1]
which also holds its grads and optim states §1,2 1
1,3

. GPU 1 W, W, W,
1. Before forward for layer i, the GPU that
owns W; broadcasts it to all GPUs Fetch Wiy while == o —mmommmmm e
2. All GPUs run forward for layer i, then 3\%‘:%?‘”9 forward

delete their local copy of W,

GPU 2 I

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11- 50 May 6, 2025

Fully Sharded Data Parallelism (FSPD)

Split model weights across GPUs

Each weight W, is owned by one GPU, 1.1]
which also holds its grads and optim states §1,2 1
1,3

. GPU 1 W, W, W,
1. Before forward for layer i, the GPU that
owns W; broadcasts it to all GPUs Fetch Wiy while == oo mommmmm oo
2. All GPUs run forward for layer i, then 3\/?{;%?'”9 forward

delete their local copy of W,

GPU 2 I

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11- 51 May 6, 2025

Fully Sharded Data Parallelism (FSPD)

Split model weights across GPUs

Each weight W, is owned by one GPU, 1.1]
which also holds its grads and optim states §1,2 1
1,3

: GPU 1 W, W,
1. Before forward for layer i, the GPU that
owns W, broadcasts it to all GPUs Fetch Wirqwhile = — e e e e e e e e e e e e e oo oo
2. All GPUs run forward for layer i, then CQtr;Fi/l\J/f'”g forward
delete their local copy of W, with Vv,
X2 1
X23 W
W
GPU 2 3o

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11- 52 May 6, 2025

Fully Sharded Data Parallelism (FSPD)

Split model weights across GPUs

Each weight W, is owned by one GPU, 1.1]
which also holds its grads and optim states §1,2 1
1,3

: GPU 1 W, W, W,
1. Before forward for layer i, the GPU that
owns W, broadcasts it to all GPUs Fetch Wi, while - —-----cccc--ooo--- # ———————
2. Al GPUs run forward for layer i, then 3\/?{;%?'”9 forward

delete their local copy of W,

3. Before backward for layer i, owner X2,1
broadcasts W, to all GPUs X2,2 L,
X2,3

GPU 2 I

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11 - 53 May 6, 2025

Optimization: don’t delete last
weight at end of forward to

Fully Sharded Data Parallelism (FSPD) ~ **mmeseevresendns®

Split model weights across GPUs

Each weight W, is owned by one GPU, 1.1]
which also holds its grads and optim states §1,2 1
1,3

: GPU 1 W, W, W,
1. Before forward for layer i, the GPU that
owns W, broadcasts it to all GPUs Fetch Wi, while - —-----cccc--ooo--- # ———————
2. Al GPUs run forward for layer i, then 3\/?{;%?'”9 forward

delete their local copy of W,

3. Before backward for layer i, owner X2,1
broadcasts W, to all GPUs X2,2 L,
X2,3

GPU 2 I

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11 - 54 May 6, 2025

Optimization: don’t delete last
weight at end of forward to

Fully Sharded Data Parallelism (FSPD) ~ **mmeseevresendns®

Split model weights across GPUs %

4
Each weight W, is owned by one GPU, 1,1]
which also holds its grads and optim states §1,2 1

1,3
: GPU 1 W, W,
1. Before forward for layer i, the GPU that
owns W, broadcasts it to all GPUs Fefch Wiy while = e e e e e e e e e e e e e e e e e e e

2. All GPUs run forward for layer i, then computing forward

delete their local copy of W, with Wi

aL,
aw,
3. Before backward for layer i, owner X2,1
broadcasts W, to all GPUs X2,2 I—’I—’I—’I L,
4. Al GPUs run backward for layer i to X2,3

compute local dL/dW, and delete W, GPU 2 W; W,

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11 - 55 May 6, 2025

Optimization: don’t delete last
weight at end of forward to

Fully Sharded Data Parallelism (FSPD) ~ **mmeseeresendns®

—
Split model weights across GPUs

Each weight W, is owned by one GPU, 1.1]
which also holds its grads and optim states §1,2 1
1,3

_ GPU 1 W, W,
1. Before forward for layer i, the GPU that
owns W, broadcasts it to all GPUs Fetch Wi,y while = - - - - c e mmm oo - ; ———————
2. Al GPUs run forward for layer i, then computing forward

delete their local copy of W, with Wi

oL
aw,
3. Before backward for layer i, owner X2,1
broadcasts W, to all GPUs X2,2 I—’I—’I—’I L,
4. Al GPUs run backward for layer i to X2,3

compute local dL/dW, and delete W, GPU 2 Ws W,
5. After backward for layer i, all GPUs

send local dL/dW, to owning GPU and

delete local dL/dW,

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11- 56 May 6, 2025

Optimization: don’t delete last
weight at end of forward to

Fully Sharded Data Parallelism (FSPD) ~ **mmeseevresendns®

Split model weights across GPUs

Each weight W, is owned by one GPU, 1.1]
which also holds its grads and optim states §1,2 1
1,3

1. Before forward for layer i, the GPU that
owns W, broadcasts it to all GPUs Fetch Wi,y while == - - e e e e e e e o
2. Al GPUs run forward for layer i, then computing forward oL
delete their local copy of W, with Wi W,
3. Before backward for layer i, owner X2,1
broadcasts W, to all GPUs X2,2 L,
4. Al GPUs run backward for layer i to X2,3
compute local dL/dW, and delete W, GPU 2 W W,
5. After backward for layer i, all GPUs
send local dL/dW, to owning GPU and

delete local dL/dW,
6. Owner of W, makes gradient update

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11 - 57 May 6, 2025

Optimization: don’t delete last
weight at end of forward to

Fully Sharded Data Parallelism (FSPD) ~ **mmeseevresendns®

Split model weights across GPUs

Each weight W, is owned by one GPU, 1.1]
which also holds its grads and optim states §1,2 1
1,3

1. Before forward for layer i, the GPU that M
owns W, broadcasts it to all GPUs . Fetch Wirqwhile = — e e e e e e e e e e e e e oo oo
2. Al GPUs run forward for layer i, then computing forward
delete their local copy of W, with Wi

oL
) o,
3. Before backward for layer i, owner D X2,1
broadcasts W, to all GPUs X2,2 L,
4. X2,3

All GPUs run backward for layer i to Fetch W, while

compute local dL/dW, and delete W, computing with GPU 2 W, W,
5. After backward for layer i, all GPUs Wi.+; send dL/dW;

send local dL/dW, to owning GPU and and update W,

delete local dL/dW, while computing

6. Owner of W, makes gradient update with Wi

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11- 58 May 6, 2025

Optimization: don’t delete last
weight at end of forward to

Fully Sharded Data Parallelism (FSPD) ~ **mmeseevresendns®

Split model weights across GPUs

Each weight W, is owned by one GPU, 1.1]
which also holds its grads and optim states §1,2 1
1,3

1. Before forward for layer i, the GPU that M
owns W; broadcasts it to all GPUs > Fetch V.Vi” Whie LA
2. All GPUs run forward for layer i, then computing forward
delete their local copy of W, with Wi

-
3. Before backward for layer i, owner ™) X2,1
broadcasts W, to all GPUs X2,2 L,
4. X2,3

All GPUs run backward for layer i to Fetch W, while

compute local dL/dW, and delete W, computing with GPU 2 W, W,
5. After backward for layer i, all GPUs Wi.+; send dL/dW; |

send local dL/dW, to owning GPU and and update W,

delete local dL/dW, while computing

6. Owner of W, makes gradient update with Wi

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11 - 59 May 6, 2025

Optimization: don’t delete last
weight at end of forward to

Fully Sharded Data Parallelism (FSPD) ~ **mmeseevresendns®

oL,

Split model weights across GPUs —
AW,

Each weight W, is owned by one GPU,
which also holds its grads and optim states

XXX
w v oo
r

_ ~ GPU 1 W, W,
1. Before forward for layer i, the GPU that
owns W, broadcasts it to all GPUs . Fetch Wisqwhile == e e e e e e e e e e e e e e e oo oo
2. Al GPUs run forward for layer i, then computing forward 0L, oL
with W, W~ oW,
3 4

delete their local copy of W,

-
3. Before backward for layer i, owner ™) X2,1
broadcasts W, to all GPUs X2,2 L,
4. X2,3

All GPUs run backward for layer i to Fetch W, while

compute local dL/dW; and delete W, computing with GPU 2 W, W,; W,
5. After backward for layer i, all GPUs Wi.4; send dL/dW; +

send local dL/dW, to owning GPU and and update W,

delete local dL/dW, while computing

6. Owner of W, makes gradient update with Wi

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11- 60 May 6, 2025

Optimization: don’t delete last
weight at end of forward to

Fully Sharded Data Parallelism (FSPD) ~ ** ™ resendns®

—
oL,

Split model weights across GPUs —
oW,

Each weight W, is owned by one GPU,
which also holds its grads and optim states

XXX
w v oo
r

1. Before forward for layer i, the GPU that M
owns W, broadcasts it to all GPUs . Fetch Wi,q while - —----oeqem -
2. All GPUs run forward for layer i, then computing forward oL, oL oL
with W, oW, oW, aw,

delete their local copy of W,

-
3. Before backward for layer i, owner ™) X2,1
broadcasts W, to all GPUs X2,2 L,
4. X2,3

All GPUs run backward for layer i to Fetch W, while
compute local dL/dW, and delete W, computing with GPU 2 W, W; W,
5. After backward for layer i, all GPUs Wi.1; send dL/dW; } All at the same time:
send local dL/dW, to owning GPU and and update W, - Send grads and update W
delete local dL/dW, while computing - Run backward with W,

i ith Wi - Fetch W
6. Owner of W, makes gradient update with Wi etch V4

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11 - 61 May 6, 2025

Optimization: don’t delete last
weight at end of forward to

Fully Sharded Data Parallelism (FSPD) g™ ="

Split model weights across GPUs % aa—vi
1 2

Each weight W, is owned by one GPU, X1 L
which also holds its grads and optim states :2 1
1. Before forward for layer i, the GPU that h GPUT Wi W,

owns W, broadcasts it to all GPUs . Fetch Wi,q while - ——---—oeee—- |
2. Al GPUs run forward for layer i, then computing forward 0L, 0L oL

delete their local copy of W, D with Wi oW, ows oW,
3. Before backward for layer i, owner ™) X2,1

broadcasts W, to all GPUs X2,2 I—’I—’I—’I L,
4. Al GPUs run backward for layer i to Fetch W. while X2,3

compute local dL/dW; and delete W, computing with GPU 2 W; W,
5. After backward for layer i, all GPUs Wi.4; send dL/dW;

send local dL/dW, to owning GPU and and update W,

delete local dL/dW, e omputne
6. Owner of W, makes gradient update .

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11- 62 May 6, 2025

Optimization: don’t delete last
weight at end of forward to

Fully Sharded Data Parallelism (FSPD) g™ !

oL | oL

Split model weights across GPUs —| —
ow, | aw,

Each weight W, is owned by one GPU,
which also holds its grads and optim states

XXX
w N -
NEE

I

1. Before forward for layer i, the GPU that h GPUT W,
owns W, broadcasts it to all GPUs . Fetch Wi.; while === —=—--
2. Al GPUs run forward for layer i, then computing forward 0L oL
delete their local copy of W, D with Wi oWs oW,
3. Before backward for layer i, owner D X2,1
broadcasts W, to all GPUs X2,2 L,
4. All GPUs run backward for layer i to Fetch W, while X2,3
compute local dL/dW, and delete W, computing with GPU 2 w; W,
5. After backward for layer i, all GPUs Wi.4; send dL/dW;
send local dL/dW, to owning GPU and and update Wi
delete local dL/dW, e omputne
6. Owner of W, makes gradient update .

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11 - 63 May 6, 2025

Optimization: don’t delete last
weight at end of forward to

Fully Sharded Data Parallelism (FSPD) ~ **mmeseevresendns®

Split model weights across GPUs

Each weight W, is owned by one GPU, i“]
which also holds its grads and optim states x1'2 !
1,3

1. Before forward for layer i, the GPU that R GPU 1 Wi Wa

owns W, broadcasts it to all GPUs > Fetch Wiiywhile = e e e e e e e e e e e e e e o e
2. All GPUs run forward for layer i, then computing forward

delete their local copy of W, D with Wi
3. Before backward for layer i, owner) X2,1

broadcasts W, to all GPUs X2 2 L,
4. All GPUs run backward for layer i to Fetch W, while X2,3

compute local dL/dW; and delete W, computing with GPU 2 W; W,
5. After backward for layer i, all GPUs Wi.4; send dL/dW; _

send local dL/dW, to owning GPU and anql update V_/i Repeat with r\ext batch of data

delete local dL/dW. while computing Dat.a was being pre-fetched

! : with W4 during forward+backward

6. Owner of W, makes gradient update

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11 - 64 May 6, 2025

Hybrid Sharded Data Parallel (HSDP)

Split N = M*K GPUs into M groups of K Example: HSDP with M=2 groups of K=4 GPUs
I
Each group of K GPUs does FSDP, splits I—»I—»H : I—»l—»l—»l
model weights across all K GPUs. K can GPU (1, 1) ! GPU (2, 1)
be O(100) GPUs. Wi | Wi
___________________ e e e e e e e e e e -
|
Do DP across the M groups. I—»l—»l—.l ! I—»l—»l—»l
GPU (1, 2) ' GPU (2, 2)
W, I W,
___________________ L e e e e e e e e e e e e e e - -
|
1
GPU (1, 3) I_’I_’H ' GPU (2, 3) I_’l_’H
W, ! W,
e Y Yo
I
GPU (1, 4) I"l"H | GPU (2, 4) I"l"l"l
W, | W,
1

Stanford CS231n 10t Anniversary Lecture 11- 65 May 6, 2025

Hybrid Sharded Data Parallel (HSDP)

Split N = M*K GPUs into M groups of K Example: HSDP with M=2 groups of K=4 GPUs

Each group of K GPUs does FSDP, splits I—»I—»H I—»l—»l—»l
GPU (1, 1) GPU (2, 1)
W,

model weights across all K GPUs. K can

_—g = ——— - -

be O(100) GPUs. Wi
Do DP across the M groups. I—»l—»l—.l I—»l—»l—»l
GPU (1, 2) ' GPU (2, 2)
Multidimensional parallelism: Use W, ! W,
different parallelism strategies atthe =~~~ 77T =27 =7 o7 o I = mm o Bm Bm
same time! Organize GPUs in a 2D grid GPU (1, 3) I—>I—>H ' GPU (2, 3)
W, | W,
g
I
GPU (1, 4) I"l"H | GPU (2, 4) I"l"l"l
W, | W,

Stanford CS231n 10t Anniversary Lecture 11 - 66 May 6, 2025

Hybrid Sharded Data Parallel (HSDP)

Split N = M*K GPUs into M groups of K Example: HSDP with M=2 groups of K=4 GPUs
I
Each group of K GPUs does FSDP, splits I—»I—»H : I—»l—»l—»l
model weights across all K GPUs. K can GPU (1, 1) ! GPU (2, 1)
be O(100) GPUs. W, | W,
___________________ e e e e e e e e e e -
|
Do DP across the M groups. I_.I_.H ! I_.l_.l_.l
GPU (1, 2) ' GPU (2, 2)
Multidimensional parallelism: Use W, ! W,
different parallelism strategies atthe =~ 77T =27 o o oo L T mm e e
same time! Organize GPUs in a 2D grid GPU (1, 3) I—>I—>H ' GPU (2, 3)
3x communication inside each group of K: Wi : W,

W in forward, W + dL/dW in backward. @~ ~ ~~ -~~~ 7—777—=7=—-=—-=—"="7T-TTT-T-TTT77T=T7T7T=T77/T777"

]
Keep them in the same node / pod. I_’I_’H :
GPU (1, 4) . GPU (2, 4)
I
I
1

1x communication across the M groups: dL/dW A
in backward. Can use slower communication.

E

Stanford CS231n 10t Anniversary Lecture 11 - 67 May 6, 2025

Data Parallelism (DP, FSPD, HSDP)

Split data and model weights across GPUs

Can now scale up to big models that don't fit in X1 L
a single GPU! ;(1'2 L
1,3

PU 1

A model with 100B params needs 4 numbers GPU Wi W,
per param (param, grad, Adam B,,B:); = ee e e e e e e e e mm—m——————
2 bytes per number takes 800GB;
splitting over 80 GPUs is just 10GB per GPU!

X2,1

X2,3 W

W
GPU 2 o

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11 - 68 May 6, 2025

Data Parallelism (DP, FSPD, HSDP)

Split data and model weights across GPUs

Can now scale up to big models that don't fit in X1 L
a single GPU! ;(1'2 L
1,3

A model with 100B params needs 4 numbers
per param (param, grad, Adam 3., B4); e e e e e e e e e e e mm— - -
2 bytes per number takes 800GB;

splitting over 80 GPUs is just 10GB per GPU!

X
Problem: Model activations can fill up memory. Xz; L,
Llama3-405B Transformer has 126 layers, Xz' 3

D=16,384, seq length 4096. Just FFN hidden ' W, W,
activations need 2*126*(4*16384)*4096 bytes GPU 2
= 63GB; plus need other activations.

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11 - 69 May 6, 2025

Data Parallelism (DP, FSPD, HSDP)

Split data and model weights across GPUs

Can now scale up to big models that don't fit in X1
; X1,2 L
a single GPU! o
1,3

A model with 100B params needs 4 numbers
per param (param, grad, Adam 3., B4); e e e e e e e e e e e mm— - -
2 bytes per number takes 800GB;

splitting over 80 GPUs is just 10GB per GPU!

X
Problem: Model activations can fill up memory. Xz; I—»I—»I—»I L,
Llama3-405B Transformer has 126 layers, Xz' 3
D=16,384, seq length 4096. Just FFN hidden ' W, W,

activations need 2*126*(4*16384)*4096 bytes GPU 2
= 63GB; plus need other activations.

Solution: Don’t keep all activations in
memory; recompute them on the fly!

Rajbhandrari etal, “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”, arXiv 2019

Stanford CS231n 10t Anniversary Lecture 11- 70 May 6, 2025

Activation Checkpointing

Each layer in the network is two functions:

Ay Gy

Forward: Compute next-layer activations f 1
A1 = F(4) As o G4

Backward: Compute prev-layer gradients 1 !
Gy = F; (A; Giyq) Ay) G2

| !

A4 Gy

Stanford CS231n 10t Anniversary Lecture11- 71 May 6, 2025

Activation Checkpointing

Each layer in the network is two functions:

Ay Gy

Forward: Compute next-layer activations f 1
A1 = F(4) As o G4

Backward: Compute prev-layer gradients i !
G; = F; (A Giyq) Ay) G2

1 '

Q: How much compute and memory does A, — G,

this take? Assume each F;” and F;" is O(1)
compute and memory.

Stanford CS231n 10t Anniversary Lecture 11- 72 May 6, 2025

Activation Checkpointing Compute: 1

Current Memory: 1

Peak Memory: 1
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Gi+1)

Q: How much compute and memory does Al
this take? Assume each F;” and F;" is O(1)
compute and memory.

Stanford CS231n 10t Anniversary Lecture 11- 73 May 6, 2025

Activation Checkpointing Compute: 2

Current Memory: 2

Peak Memory: 2
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients

Gi = Fi (A, Gi41) Az
1
Q: How much compute and memory does A,

this take? Assume each F;” and F;" is O(1)
compute and memory.

Stanford CS231n 10t Anniversary Lecture 11 - 74 May 6, 2025

Activation Checkpointing Compute: 3

Current Memory: 3

Peak Memory: 3
Each layer in the network is two functions:

Forward: Compute next-layer activations

Ai+1 = Fi_)(Ai) A3

Backward: Compute prev-layer gradients i
G; = F; (Ai, Gi+1) Ay

t

Q: How much compute and memory does A,

this take? Assume each F;” and F;" is O(1)
compute and memory.

Stanford CS231n 10t Anniversary Lecture 11- 75 May 6, 2025

Compute: 4
Current Memory: 4
Peak Memory: 4

Activation Checkpointing

Each layer in the network is two functions:

Ay

Forward: Compute next-layer activations f
Ai+1 = Fi_)(Ai) A3

Backward: Compute prev-layer gradients i
G; = F; (Ai, Gi+1) Ay

t

Q: How much compute and memory does A,

this take? Assume each F;” and F;" is O(1)
compute and memory.

Stanford CS231n 10t Anniversary Lecture 11- 76 May 6, 2025

Activation Checkpointing Compute: 5

Current Memory: 4

Peak Memory: 4
Each layer in the network is two functions:

Gy

Forward: Compute next-layer activations

Ai+1 = Fi_)(Ai) A3

Backward: Compute prev-layer gradients i
G; = F; (Ai, Gi+1) Ay

t

Q: How much compute and memory does A,

this take? Assume each F;” and F;" is O(1)
compute and memory.

Stanford CS231n 10t Anniversary Lecture 11- 77 May 6, 2025

Activation Checkpointing Compute: 6

Current Memory: 3

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

G3
Backward: Compute prev-layer gradients
G; = F; (Ai, Gi+1) Ay
t
Q: How much compute and memory does A,

this take? Assume each F;” and F;" is O(1)
compute and memory.

Stanford CS231n 10t Anniversary Lecture 11- 78 May 6, 2025

Activation Checkpointing Compute: 7

Current Memory: 2

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Gi+1) G,

Q: How much compute and memory does 14.1
this take? Assume each F;” and F;" is O(1)
compute and memory.

Stanford CS231n 10t Anniversary Lecture 11- 79 May 6, 2025

Activation Checkpointing Compute: 8

Current Memory: 1

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Gi+1)

Q: How much compute and memory does G,
this take? Assume each F;” and F;" is O(1) —
compute and memory.

Stanford CS231n 10t Anniversary Lecture 11- 80 May 6, 2025

Activation Checkpointing Compute: 8

Current Memory: 1

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Gi+1)

Forward+backward: O(N) compute, O(N) memory G4

Stanford CS231n 10t Anniversary Lecture 11- 81 May 6, 2025

Activation Checkpointing Compute: 8

Current Memory: 1

Peak Memory: 4
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1)

Forward+backward: O(N) compute, O(N) memory G4

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11- 82 May 6, 2025

Activation Checkpointing Compute: 1

Current Memory: 1

Peak Memory: 1
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1)

Forward+backward: O(N) compute, O(N) memory Ay

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11 - 83 May 6, 2025

Activation Checkpointing Compute: 2

Current Memory: 1

Peak Memory: 1
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1) Az

Forward+backward: O(N) compute, O(N) memory

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11 - 84 May 6, 2025

Activation Checkpointing Compute: 3

Current Memory: 1

Peak Memory: 1
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1)

Forward+backward: O(N) compute, O(N) memory

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11- 85 May 6, 2025

Activation Checkpointing Compute: 4

Current Memory: 1

Peak Memory: 1
Each layer in the network is two functions:

Ay

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1)

Forward+backward: O(N) compute, O(N) memory

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11- 86 May 6, 2025

Activation Checkpointing Compute: 5

Current Memory: 1

Peak Memory: 1
Each layer in the network is two functions:

Gy

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1)

Forward+backward: O(N) compute, O(N) memory

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11 - 87 May 6, 2025

Activation Checkpointing Compute: 6

Current Memory: 2

Peak Memory: 2
Each layer in the network is two functions:

Gy

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1)

Forward+backward: O(N) compute, O(N) memory Al

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11- 88 May 6, 2025

Activation Checkpointing Compute: 7

Current Memory: 2

Peak Memory: 2
Each layer in the network is two functions:

Gy

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1) Ay

Forward+backward: O(N) compute, O(N) memory

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11- 89 May 6, 2025

Activation Checkpointing Compute: 8

Current Memory: 2

Peak Memory: 2
Each layer in the network is two functions:

Gy

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1)

Forward+backward: O(N) compute, O(N) memory

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11- 90 May 6, 2025

Activation Checkpointing Compute: 9

Current Memory: 1

Peak Memory: 2
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1)

Forward+backward: O(N) compute, O(N) memory

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture11- 91 May 6, 2025

Activation Checkpointing Compute: 10

Current Memory: 2

Peak Memory: 2
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1)

Forward+backward: O(N) compute, O(N) memory Ay

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11- 92 May 6, 2025

Activation Checkpointing Compute: 11

Current Memory: 2

Peak Memory: 2
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1) Ay

Forward+backward: O(N) compute, O(N) memory

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11 - 93 May 6, 2025

Activation Checkpointing Compute: 12

Current Memory: 1

Peak Memory: 2
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1) G,

Forward+backward: O(N) compute, O(N) memory

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11 - 94 May 6, 2025

Activation Checkpointing Compute: 13

Current Memory: 2

Peak Memory: 2
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1) G,

Forward+backward: O(N) compute, O(N) memory Ay

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11- 95 May 6, 2025

Activation Checkpointing Compute: 14

Current Memory: 1

Peak Memory: 2
Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1)

Forward+backward: O(N) compute, O(N) memory G1

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11- 96 May 6, 2025

Compute: 14
Current Memory: 1
Peak Memory: 2

Activation Checkpointing

Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1)

Forward+backward: O(N) compute, O(N) memory G1
Full Recomputation: O(N2) compute, O(1) memory

|dea: Recompute activations
during the backward pass

Stanford CS231n 10t Anniversary Lecture 11 - 97 May 6, 2025

Compute: 14
Current Memory: 2
Peak Memory: 2

Activation Checkpointing

Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1)

Forward+backward: O(N) compute, O(N) memory G1
Full Recomputation: O(N2) compute, O(1) memory

_ |dea: Recompute activations
Problem: N2 compute is bad! during the backward pass

Stanford CS231n 10t Anniversary Lecture 11- 98 May 6, 2025

Compute: 14
Current Memory: 2
Peak Memory: 2

Activation Checkpointing

Each layer in the network is two functions:

Forward: Compute next-layer activations
Ajpq = Fi_)(Ai)

Backward: Compute prev-layer gradients
G; = F; (Ai, Giy1)

Forward+backward: O(N) compute, O(N) memory G1
Full Recomputation: O(N2) compute, O(1) memory

Idea: Don’t recompute everything;

Problem: N2 compute is bad! save a checkpoint every C layers

Stanford CS231n 10t Anniversary Lecture 11- 99 May 6, 2025

Compute: 14
Current Memory: 2
Peak Memory: 2

Activation Checkpointing

Each layer in the network is two functions:

A, Gy

Forward: Compute next-layer activations f 1
A1 = F7 (4

1+1 l (l) A3 > G3

Backward: Compute prev-layer gradients i !

G; = F; (A Giyq) Ay) G2

t v

Forward+backward: O(N) compute, O(N) memory Ay > G,

Full Recomputation: O(N2) compute, O(1) memory
C checkpoints: O(N2/C) compute, O(C) memory

Stanford CS231n 10t Anniversary Lecture 11- 100 May 6, 2025

Compute: 14
Current Memory: 2
Peak Memory: 2

Activation Checkpointing

Each layer in the network is two functions:

A, Gy

Forward: Compute next-layer activations f 1
A1 = F7 (4

1+1 l (l) A3 > G3

Backward: Compute prev-layer gradients i !

G; = F; (A Giyq) Ay) G2

t v

Forward+backward: O(N) compute, O(N) memory Ay > G,

Full Recomputation: O(N2) compute, O(1) memory
C checkpoints: O(N2/C) compute, O(C) memory
VN checkpoints: O(N VN) compute, O(v'N) memory

Stanford CS231n 10t Anniversary Lecture 11- 101 May 6, 2025

How to train on lots of GPUs

HSDP + Activation checkpointing can take you a long way!

Scaling recipe:

Use data parallelism up to ~128 GPUs, models with ~1B params
Always set per-GPU batch size to max out GPU memory

If your model is >1B params, consider FSDP

Add activation checkpointing to fit larger batches per GPU

If you have >256 GPUs, consider HSDP

If you have >1K GPUs, models >50B params, or sequence lengths
> 16K then use more advanced strategies (CP, PP, TP)

Ok wh =~

Problem: Lots of knobs to tune! How should we set them?

Stanford CS231n 10t Anniversary Lecture 11- 102 May 6, 2025

Hardware FLOPs Utilization (HFU)

Recall: H100 can theoretically do
989.4 TFLOP/sec of 16-bit matrix

multiplies on Tensor Cores

Question: How much throughput
can we see in practice?

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Stanford CS231n 10t Anniversary Lecture 11- 103 May 6, 2025

Hardware FLOPs Utilization (HFU)

Recall: H100 can theoretically do
989.4 TFLOP/sec of 16-bit matrix

multiplies on Tensor Cores

Question: How much throughput
can we see in practice?

Hardware FLOPs Utilization (HFU):
The fraction of theoretical matmul
performance we actually achieve

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Stanford CS231n 10t Anniversary Lecture 11- 104 May 6, 2025

h100_tflop_per_sec = 989.4
sizes = [512, 1024, 2048, 4096,
8192, 16_384, 32_768]

Hardware FLOPs Utilization (HFU) |EEEssssempps

dtype=torch.bfloat16)

flops =2 * N x N x N

Recall: H100 can theoretically do tines = []
989.4 TFLOP/sec of 16-bit matrix Benchmark for ECEEEEEEE
multiplies on Tensor Cores the best-case y=xex .
. if i > 2: times.append(time.time() - t0)
scenario: only sac e imeanoives R

. ops_per_sec = flops sec *kK
(:2[]6355t|()r]: P{()\A/ rT1LJ(3f1 tf1r()l1 f\ th i i hfu = 100 x tflops_per_sec / h100_tflop_per_sec
Luestion matrix multiply
can we see in practice? PR e

f"HFU: {hfu:.2f}%")

Hardware FLOPs Utilization (HFU): R“Qt:gfwvivsiéhGCF‘,JUDkAe—;’g}JS’\I‘aCLﬂEE;g%'g‘rff;1’
The fraction of theoretical matmul measurements are wrong

performance we actually achieve

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Stanford CS231n 10t Anniversary Lecture 11- 105 May 6, 2025

h100_tflop_per_sec = 989.4
sizes = [512, 1024, 2048, 4096,
8192, 16_384, 32_768]

Hardware FLOPs Utilization (HFU) |EEEssssempps

dtype=torch.bfloat16)

flops =2 * N x N x N

Recall: H100 can theoretically do times = (]
989.4 TFLOP/sec of 16-bit matrix Benchmark for ECEEEEEEE
multiplies on Tensor Cores the best-case REROE .
if i > 2: times.append(time.time() - t0)

Scenarlo Only sec = np.mean(times)

tflops_per_sec = flops / sec / 10 xx 12

Question: How much throughput matrix mu|t|p|y hfu = 100 * tflops_per_sec / h100_tflop_per_sec

can we see |n praCtICGf) prlnt(:'"?':FL;:;;ec: {tflops_per_sec:.2f}, "
f"HFU: {hfu:.2f}%")

Hardware FLOPs Utilization (HFU): Matmul HEU on H100

The fraction of theoretical matmul 100

Large matrix 80
multiply gets jg

~80% HFU 20
on H100 0

performance we actually achieve

HFU (%)

0 10000 20000 30000 40000
Matrix Size

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Stanford CS231n 10t Anniversary Lecture 11- 106 May 6, 2025

Hardware FLOPs Utilization (HFU)

Recall: H100 can theoretically do
989.4 TFLOP/sec of 16-bit matrix

multiplies on Tensor Cores

Question: How much throughput
can we see in practice?

Hardware FLOPs Utilization (HFU):
The fraction of theoretical matmul
performance we actually achieve

Problem: HFU does not account for
activation checkpointing or “helper”

computation like data augmentation,
optimizer, preprocessing

Benchmark for
the best-case
scenario: only
matrix multiply

h100_tflop_per_sec = 989.4
sizes = [512, 1024, 2048, 4096,
8192, 16_384, 32_768]
for N in sizes:
x = torch.randn(N, N, device="cuda",
dtype=torch.bfloat16)
flops = 2 x N * N *x N
times = []
for i in range(12):
t0 = time.time()
y =Xx@x
if i > 2: times.append(time.time() - t0)
sec = np.mean(times)
tflops_per_sec = flops / sec / 10 xx 12
hfu = 100 x tflops_per_sec / h100_tflop_per_sec
print(f"N: {N}, "
f"TFLOP/sec: {tflops_per_sec:.2f}, "
f"HFU: {hfu:.2f}%")

Matmul HFU on H100

. 100
Large matrix =
: = 60
multlp())ly gets S o
~80% HFU =
0

on H1OO 0 10000 20000 30000 40000

Matrix Size

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Stanford CS231n 10t Anniversary

Lecture 11 - 107

May 6, 2025

Model FLOPs Utilization (MFU)

Idea: What fraction of the GPU’s theoretical peak
FLOPs is being used for “useful” model computation?

1. Compute FLOPcoretical = total number of matrix
multiply FLOPs in the forward + backward pass

2. Look up FLOP/seCieomiical = theoretical max
throughput of your device

3. CompUte 1:theoretical = FLOPtheoreticaI / I:I—OP/Sectheoretical

4. Measure t .4 = Actual time for a full iteration of
data loading, forward, backward, optimizer step

5. MFU= 1:theoretical / tactual

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Stanford CS231n 10t Anniversary Lecture 11- 108 May 6, 2025

L, b, N = 8, 8192, 8192

flop_fwd =N *x L x 2 x D x D

Model FLOPs Utilization (MFU) [ammm

t_theoretical = flop_theoretical / (989.4 x 10 x* 12)

Idea: What fraction of the GPU'’s theoretical peak s - .
FLOPS |S belng used for “useful” model Computatlon’? layers += [torch.nn.Linear(D, D), torch.nn.ReLU()]

model = torch.nn.Sequential(xlayers).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=le-4)

1. Compute FLOPcoretical = total number of matrix

for _ in range(20):

multiply FLOPs in the forward + backward pass N S e
t0 = time.time() Examle: W|de

x = torch. randn|(. 0
N, D, device="cuda", MLP Wlth blg
dtype=torch.float32 batch Size gets
!)vi'th torch.autocast(~49% MFU on

2. Look up FLOP/seCieortical = theoretical max device_type="cuda", 100
throughput of your device T

3. ComDUte 1:theoretical = |:I—Optheoretical / I:I—OP/Sectheoretical 1ossy==(Tzd§1;))()** 2.0).sum()

4. Measure t,qa = Actual time for a full iteration of i
data loading, forward, backward, optimizer step A b L

5_ MFU = ttheoretical / tactual t_actual = time.time() - tO

mfu = t_theoretical / t_actual
print(f"MFU: {100xmfu:.2f}%")

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Stanford CS231n 10t Anniversary Lecture 11- 109 May 6, 2025

L, b, N = 8, 8192, 8192

flop_fwd =N *x L x 2 x D x D

Model FLOPs Utilization (MFU) [ammm

t_theoretical = flop_theoretical / (989.4 x 10 x* 12)

Idea: What fraction of the GPU'’s theoretical peak s - .
FLOPS |S belng used for “useful” model Computatlon’? layers += [torch.nn.Linear(D, D), torch.nn.ReLU()]

model = torch.nn.Sequential(xlayers).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=le-4)

1. Compute FLOPcoretical = total number of matrix

for _ in range(20):

multiply FLOPs in the forward + backward pass N S e
t0 = time.time() Examle: W|de

x = torch. randn|(. 0
N, D, device="cuda", MLP Wlth blg
dtype=torch.float32 batch Size gets
?vi‘th torch.autocast(~49% MFU on

2. Look up FLOP/seCieortical = theoretical max device_type="cuda”, 100
. dt =torch.bfloat16,
throughput of your device o i
_ y = model(x)
3. ComDUte 1:theoretical - |:I—Optheoretical / I:I—OP/Sectheoretical loss = ((x — y) %k 2.0).sum()
4. Measure t gy, = Actual time for a full iteration of i
data loading, forward, backward, optimizer step optinizer.zero_gradl)
torch.cuda.synchronize()
5_ MFU = ttheoretical / tactual t_actual = time.time() - tO

mfu = t_theoretical / t_actual
print(f"MFU: {100xmfu:.2f}%")

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

Stanford CS231n 10t Anniversary Lecture 11- 110 May 6, 2025

Model FLOPs Utilization (MFU)

Idea: What fraction of the GPU’s theoretical peak
FLOPs is being used for “useful” model computation?

MFU >30% is good, >40% is excellent

Stanford CS231n 10t Anniversary Lecture 11- 111 May 6, 2025

Model FLOPs Utilization (MFU)

Idea: What fraction of the GPU’s theoretical peak
FLOPs is being used for “useful” model computation?

MFU >30% is good, >40% is excellent

of Parameters Model FLOPS

Model (in billions) Accelerator chips utilization
GPT-3 175B V100 21.3%
Gopher 280B 4096 TPU v3 32.5%
Megatron-Turing NLG 530B 2240 A100 30.2%
PaLM 540B 6144 TPU v4 46.2%

Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022

GPUs TFLOPs/GPU BF16 MFU

Example: Llama3-405B 8,192 430 43%
training on H100 GPUs 16,384 400 41%
16,384 380 38%

Llama Team, “The Llama3 Herd of Models”, arXiv 2024

Stanford CS231n 10t Anniversary Lecture 11- 112 May 6, 2025

Model FLOPs Utilization (MFU)

Idea: What fraction of the GPU’s theoretical peak
FLOPs is being used for “useful” model computation?

MFU >30% is good, >40% is excellent

of Parameters . Model FLOPS
Model (in billions) Accelerator chips utilization
GPT-3 175B V100 21.3%
Gopher 280B 4096 TPU v3 32.5%
Megatron-Turing NLG 530B 2240 A100 30.2%
PaLM 540B 6144 TPU v4 46.2%
Chowdhery et al, “PaLM: Scaling Language Modeling with Pathways”, arXiv 2022
GPUs TFLOPs/GPU BF16 MFU
Example: Llama3-405B 8,192 430 43%
training on H100 GPUs 16,384 400 41%

16,384 380 38%

Llama Team, “The Llama3 Herd of Models”, arXiv 2024

More recent devices
sometimes get worse MFU
since their peak FLOPs
increases much faster than
their memory bandwidth

A100 => H100:
3.1x FLOPs
2.1x memory bandwidth

Stanford CS231n 10t Anniversary Lecture 11 -

113 May 6, 2025

How to train on lots of GPUs

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Data Parallelism (DP)
Split on Batch dimension

Stanford CS231n 10t Anniversary Lecture11- 114 May 6, 2025

How to train on lots of GPUs

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Context Parallelism (CP)
Split on Sequence dimension

Stanford CS231n 10t Anniversary Lecture 11- 115 May 6, 2025

|
. 1
Context Parallelism (CP) GPU1 1 GPU2
|
(Usually for Transformers) 5"] Y2 1 {3 }:“
|
|dea: Transformers operate on L-length sequences. §
Use multiple GPUs to process a single long sequence M|I_p | M|I_p M|I_p l M|]_p
t] $]
Layer Noinalization
R4
Self-Attention

Layer Normalization
t t t t

t t t 1

%%
GPU 2

Stanford CS231n 10t Anniversary Lecture 11- 116 May 6, 2025

|
M 1
Context Parallelism (CP) GPU1 I GPU2
|
(Usually for Transformers) i Y21 Y Ya
|dea: Transformers operate on L-length sequences. : : g | :
Use multiple GPUs to process a single long sequence MLP |[MLP || MLP || MLP
t] $]
Normalization, residual connections: Easy, they Layer Noinalization
have no weights and trivially parallelizable .t
| Self-Attention
Layer Normalization
4 4 + 4
i f f i

% [
GPU 2

Stanford CS231n 10t Anniversary Lecture 11- 117 May 6, 2025

|
. 1
Context Parallelism (CP) GPU1 1 GPU2
|
(Usually for Transformers) i Y2 /1 Y3 Ya
|dea: Transformers operate on L-length sequences. ¢
Use multiple GPUs to process a single long sequence MLP I MLP | MLP l MLP
Normalization, residual connections: Easy, they Layer Noinalization
have no weights and trivially parallelizable "D
| Self-Attention
Layer Normalization
4 + + #
i f f i

% [
GPU 2

Stanford CS231n 10t Anniversary Lecture 11- 118 May 6, 2025

|
Context Parallelism (CP) GPU1 | GPU2

(Usually for Transformers) i Y2 i Ys Ya

Idea: Transformers operate on L-length sequences. §

Use multiple GPUs to process a single long sequence M:Lp I M|:_p MlLP l M:Lp

Normalization, residual connections: Easy, they Layer chinalization

have no weights and trivially parallelizable

| Self-Attention

Layer Normalization
$ + 5 +

t f f f

% [
GPU 2

Attention: More complex, need to dig in GPU 1

Stanford CS231n 10t Anniversary Lecture 11- 119 May 6, 2025

Yi [[Yz] | Ys
t t

: t
CO Nntext Pa I'a “ehsm (C P) | Product(—), Sum(#) |
t .
(Usually for Transformers) — Vo A | [A] [A
Vo | A Az Aaz
|dea: Transformers operate on L-length sequences. X
Use multiple GPUs to process a single long sequence V3 [| [fer] [
Softmax(¢)
—* K-| =* | Eia Ezq | Es1
K, —*| Eiz =P | Esz
K3 =+ | Eia E;a | Eaa
I B T
Qi | Q | Qg
t ¢
Xq] | sz | X3

Stanford CS231n 10t Anniversary Lecture 11- 120 May 6, 2025

Yi [[Yz] | Ys
t t

: t
ConteXt Pa ra“ehsm (CP) | Product(—), Sum(#) |
t .
(Usually for Transformers) o VRl | [| [A
T Vo i | A Az Aaz
|dea: Transformers operate on L-length sequences. : |'
Use multiple GPUs to process a single long sequence LV L] [] [Ao
Softmax(¢)
1™ K-| ™| Eia Ez4 |E:1
™ Kz 1| Eiz Ezz | =T
"1™ K3 =" | Eia Ezs | Eaa
- T . -
Qi | Q | Qg
s + D
X4 | sz | X3

Stanford CS231n 10t Anniversary Lecture 11- 121 May 6, 2025

Y, Yy Ys
Context Parallelism (CP) [Prosusii) Sum(t) |

(Usually for Transformers) -\, m | A

|dea: Transformers operate on S-length sequences.
Use multiple GPUs to process a single long sequence

Attention operator: Hardest to parallelize

Stanford CS231n 10t Anniversary Lecture 11- 122 May 6, 2025

Yi [[Yz] | Ys

Context Parallelism (CP) rodutims) Sum() |

(Usually for Transformers)

|dea: Transformers operate on S-length sequences.
Use multiple GPUs to process a single long sequence

Attention operator: Hardest to parallelize

(Option 1) Ring Attention: Divide into blocks and
distribute over GPUs. Inner loop over keys/values,
outer loop over queries. Complex to implement but
can scale to very long sequences.

Liu et al, "Ring Attention with Blockwise
Transformers for Near-Infinite Context”, arXiv 2023

Stanford CS231n 10t Anniversary Lecture 11- 123 May 6, 2025

Context Parallelism (CP)

(Usually for Transformers)

|dea: Transformers operate on S-length sequences.
Use multiple GPUs to process a single long sequence

@
U
an
w

GPU 1 GPU 2
Attention operator: Hardest to parallelize
(Option 2) Ulysses: Don'’t try to distribute attention matrix,
instead parallelize over heads in multihead attention. X X. X

Simpler, but max parallelism = number of heads ' 8

Jacobs et al, “DeepSpeed Ulysses: System Optimizations for Enabling
Training of Extreme Long Sequence Transformer Models”, arXiv 2023

Stanford CS231n 10t Anniversary Lecture 11- 124 May 6, 2025

Context Parallelism (CP)

(Usually for Transformers)

|dea: Transformers operate on S-length sequences.
Use multiple GPUs to process a single long sequence

Often used for long-sequence finetuning.
Example: Llama3-405B training:
- Stage 1: S=8192, no context-parallelism

- Stage 2: S=131,072, 16-way context-parallelism
(8192 per GPU)

Llama Team, “The Llama3 Herd of Models”, arXiv 2024

Stanford CS231n 10t Anniversary Lecture 11- 125 May 6, 2025

How to train on lots of GPUs

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Context Parallelism (CP)
Split on Sequence dimension

Stanford CS231n 10t Anniversary Lecture 11- 126 May 6, 2025

How to train on lots of GPUs

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Pipeline Parallelism (PP)
Split on L dimension

Stanford CS231n 10t Anniversary Lecture 11- 127 May 6, 2025

Pipeline Parallelism (PP)

|dea: Split the layers of the model i i i
across GPUs. Copy activations , , .
between layers at GPU boundaries. : : :

GPU1 | GPU2 , GPU3 | GPU 4

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018

Stanford CS231n 10t Anniversary Lecture 11- 128 May 6, 2025

Pipeline Parallelism (PP)

|dea: Split the layers of the model i i i
across GPUs. Copy activations , , .
between layers at GPU boundaries. : : :

GPU1 , GPU2 , GPU3 ; GPU 4
Problem: Sequential dependencies;
GPUs are mostly sitting idle.

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018

Stanford CS231n 10t Anniversary Lecture 11- 129 May 6, 2025

Pipeline Parallelism (PP)

|dea: Split the layers of the model i i i
across GPUs. Copy activations , , .
between layers at GPU boundaries. : : :

GPU1 , GPU2 , GPU3 , GPU 4
Problem: Sequential dependencies;

GPUs are mostly sitting idle. Time

Max MFU with N-way PP is 1/N aputl o -
GPU 2 — —
GPU 3 — —
GPU 4 — | «

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018

Stanford CS231n 10t Anniversary Lecture 11- 130 May 6, 2025

Pipeline Parallelism (PP)

I I I
Idea: Split the layers of the model I—I_E_I_ILI_I_LH
across GPUs. Copy activations : : :
between layers at GPU boundaries. ; ; ;
GPU1 , GPU2 , GPU3 , GPU 4
Problem: Sequential dependencies;

GPUs are mostly sitting idle. Time /_\

Max MFU with N-way PP is 1/N 1|~ [Bubble L — 1
GPU 2 —>‘\ N

7 >
GPU 3 7\/]1—
V/
GPU 4 | — | « |

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018

Stanford CS231n 10t Anniversary Lecture 11- 131 May 6, 2025

Pipeline Parallelism (PP)

Idea: Split the layers of the model i i i
across GPUs. Copy activations I—I—:—I—I—:—I—I—:-H
between layers at GPU boundaries. ; ; ;

GPU1 , GPU2 , GPU3 , GPU 4
Problem: Sequential dependencies;

GPUs are mostly sitting idle. Time /_\

Max MFU with N-way PP is 1/N 1|~ (Bubble L — 1

Solution: Run multiple microbatches GPU2 _ \ N

at the same time, pipeline them GPU3 [\[\'/lf_ /
through the GPUs m\) | N | '

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018

Stanford CS231n 10t Anniversary Lecture 11- 132 May 6, 2025

Pipeline Parallelism (PP) - Microbatches

|dea: Split the layers of the model
across GPUs. Copy activations
between layers at GPU boundaries.

GPU1 | GPU2 , GPU3 | GPU 4

Time
Example: >
4-way PP with 4 GPUT1 » » > — e | | — [
microbatches.
| GPU2 — — — — 0 P P P
Max MFU increases GPU 3 S —a - — — —
from 1/4 = 25%
to 16/28 = 57.1% GPU 4 > > > > — — —

Huang et al, “Gpipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism”, arXiv 2018

Stanford CS231n 10t Anniversary

Lecture 11- 133 May 6, 2025

How to train on lots of GPUs

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Tensor Parallelism (TP)
Split on Dim dimension

Stanford CS231n 10t Anniversary Lecture 11- 134 May 6, 2025

Tensor Parallelism (TP) XW = Y (1 GPU)

|dea: Split the weights of each
linear layer across GPUs, use
block matrix multiply

X: [NxD] W: [DxD] Y: [NxD]

Stanford CS231n 10t Anniversary Lecture 11- 135 May 6, 2025

Tensor Parallelism (TP) XW =Y (4-way TP)

|dea: Split the weights of each
linear layer across GPUs, use
block matrix multiply

X: [NxD] W: [DxD] Y: [NxD]
Block shapes: [1x1] [1x4] [1x4]

GPU i computes
XW; =Y,

Stanford CS231n 10t Anniversary Lecture 11- 136 May 6, 2025

Tensor Parallelism (TP) XW =Y (4-way TP)

|dea: Split the weights of each
linear layer across GPUs, use
block matrix multiply

Problem: Need to gather
parts of Y after forward, can’t
overlap with communication

X: [NxD] W: [DxD] Y: [NxD]
Block shapes: [1x1] [1x4] [1x4]

GPU i computes
XW; =Y,

Stanford CS231n 10t Anniversary Lecture 11- 137 May 6, 2025

Tensor Parallelism (TP) XW =Y (4-way TP)

|dea: Split the weights of each
linear layer across GPUs, use
block matrix multiply

Problem: Need to gather
parts of Y after forward, can’t
overlap with communication

X: [NxD] W: [DxD] Y: [NxD]
Trick: With 2 consecutive TP Block shapes: [1x1] [1x4] [1x4]

layers, shard first over row
and second over column to
avoid communication

GPU i computes
XW; =Y,

Stanford CS231n 10t Anniversary Lecture 11- 138 May 6, 2025

(4-way TP)
XW =Y (layer 1)

Tensor Parallelism (TP) - Two Layers {7, (225,

X: [NxD] W: [DxD] Y: [NxD] U: [DxD] Z: [DxD]

Stanford CS231n 10t Anniversary Lecture 11- 139 May 6, 2025

(4-way TP)
XW =Y (layer 1)

Tensor Parallelism (TP) - Two Layers {7, (225,

U,
W, |Wo|W3IWy = | Y, YslY, T =
3
U,
X: [NxD] W: [DxD] Y: [NxD] U: [DxD] Z: [DxD]
Block
shapes: [1x1] [1x4] [1x4] [4x1] [1x1]

Stanford CS231n 10t Anniversary Lecture 11- 140 May 6, 2025

(4-way TP)
XW =Y (layer 1)

Tensor Parallelism (TP) - Two Layers {7, (225,

U,
W, |Wo|W3IWy = | Y, YslY, T =
3
U,
X: [NxD] W: [DxD] Y: [NxD] U: [DxD] Z: [DxD]
Block
shapes: [1x1] [1x4] [1x4] [4x1] [1x1]

Z=Y,U, +
+Y,U; +Y,U,

Stanford CS231n 10t Anniversary Lecture 11- 141 May 6, 2025

(4-way TP)
XW =Y (layer 1)

Tensor Parallelism (TP) - Two Layers {7, (225,

U,
W1 W3 W4I = Y1 Y3 Y4 =

U,

U,
X: [NxD] W: [DxD] Y: [NxD] U: [DxD] Z: [DxD]

Block
shapes: [1x1] [1x4] [1x4] [4x1] [1x1]
GPU i computes GPU i computes Z=Y,U,+
XW; =Y, YU =4 + Y;Us + YUy

Stanford CS231n 10t Anniversary Lecture 11- 142 May 6, 2025

(4-way TP)
XW =Y (layer 1)

Tensor Parallelism (TP) - Two Layers {7, (225,

U,
Wi [Wo|Waf Wy = Y[Y| Y| Y, =
U,
U,
X: [NxD] W: [DxD] Y: [NxD] U: [DxD] Z: [DxD]
Block
shapes:; [1x1] [1x4] [1x4] [4x1] [1x1]
No need for communication after XW=Y! Each GPU Z=Y,U, +
computes one term of Z, then broadcasts to all other GPUs +Y;U; +Y,Uy

Stanford CS231n 10t Anniversary Lecture 11- 143 May 6, 2025

How to train on lots of GPUs

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Tensor Parallelism (TP)
Split on Dim dimension

Stanford CS231n 10t Anniversary Lecture 11- 144 May 6, 2025

How to train on lots of GPUs

A model with L layers operates on tensors of shape (Batch, Sequence, Dim)

Data Parallelism (DP) Context Parallelism (CP)
Split on Batch dimension Split on Sequence dimension

Q: Which to use for largest models?

A: All of them!
Pipeline Parallelism (PP) Tensor Parallelism (TP)
Split on L dimension Split on Dim dimension

Stanford CS231n 10t Anniversary Lecture 11- 145 May 6, 2025

ND Parallelism

Use TP, CP, PP, and DP
all at the same time!

Arrange GPUs in a 4D grid

GPUs index in the grid
gives its rank along each
parallelism dimension

Optimize setup to
maximize MFU

PP

v

TPO CP1 PPO DPO TP1 Cf

PPO DPO TPO CP1 PPO DP1 TP1 CP1 PPO DP1
TPO CPO PPO DPO TP1 CPO PPO DPO TPO CPO PPO DP1 TP1 CPO PPO DP1
TPO CP1 PP1 DPO TP1 CP1 PP1 DPO TPO CP1 PP1 DP1 TP1 CP1 PP1 DP1
TPO CPO PP1 DPO TP1 CPO PP1 DPO TPO CPO PP1 DP1 TP1 CPO PP1 DP1
—>

™

DP

Example: LLama3-405B

GPUs TP CP

PP DP Seq.Len. Batchsize/DP Tokens/Batch ‘ TFLOPs/GPU BF16 MFU

8192 8 1
16,384 8 1
16,384 8 16

16 64 8,192 32 16M 430 43%
16 128 8,192 16 16M 400 41%
16 8 131,072 16 16M 380 38%

Llama Team, “The Llama3 Herd of Models”, arXiv 2024

Stanford CS231n 10t Anniversary

Lecture 11 - 146 May 6, 2025

Summary: Large-Scale Distributed Training

A GPU is a parallel processor
with hundreds of cores

A GPU cluster has O(10K) GPUs
GPU Cluster

Stanford CS231n 10t Anniversary

Split up the computation along different axes
Consider a model with many Layers, operating
on tensors of shape (Batch, Seq, Dim)

Data Parallel (DP): Split on Batch
Context Parallel (CP): Split on Seq
Pipeline Parallel (PP): Split on Layers
Tensor Parallel (TP): Split on Dim

Activation Checkpointing saves
memory by recomputing during backward

Tune parallelism recipe to maximize
Model Flops Utilization (MFU)

Lecture 11 - 147

May 6, 2025

Next Time:
Self-Supervised Learning

Stanford CS231n 10t Anniversary Lecture 11- 148 May 6, 2025

	Slide 1
	Slide 2: Administrative
	Slide 3
	Slide 4: Running Example: Llama3-405B
	Slide 5: GPUs and How to Train On Them
	Slide 6: GPUs and How to Train On Them
	Slide 7: Inside a GPU: NVIDIA H100
	Slide 8: Inside a GPU: NVIDIA H100
	Slide 9: Inside a GPU: NVIDIA H100
	Slide 10: Inside a GPU: NVIDIA H100
	Slide 11: Inside a GPU: NVIDIA H100
	Slide 12: Inside a GPU: NVIDIA H100
	Slide 13: Inside a GPU: NVIDIA H100
	Slide 14: Inside a GPU: NVIDIA H100
	Slide 15: Inside a GPU: NVIDIA H100
	Slide 16: Inside a GPU: NVIDIA H100
	Slide 17: GPUs Have Gotten Much Faster!
	Slide 18: GPUs Have Gotten Much Faster!
	Slide 19: GPUs Have Gotten Much Faster!
	Slide 20: NVIDIA H100 GPU
	Slide 21: NVIDIA H100 GPU
	Slide 22: Case Study: Meta’s Llama3 Cluster
	Slide 23: Case Study: Meta’s Llama3 Cluster
	Slide 24: Case Study: Meta’s Llama3 Cluster
	Slide 25: GPU Cluster = One Big Computer
	Slide 26: Google: Tensor Processing Units (TPUs)
	Slide 27: Other Training Chips
	Slide 28: Today: GPUs and How to Train On Them
	Slide 29: Today: GPUs and How to Train On Them
	Slide 30: How to train on lots of GPUs
	Slide 31: How to train on lots of GPUs
	Slide 32: Data Parallelism
	Slide 33: Data Parallelism
	Slide 34: Data Parallelism
	Slide 35: Data Parallelism
	Slide 36: Data Parallelism
	Slide 37: Data Parallelism
	Slide 38: Data Parallelism
	Slide 39: Data Parallelism
	Slide 40: Data Parallelism
	Slide 41: Data Parallelism
	Slide 42: Data Parallelism
	Slide 43: Data Parallelism
	Slide 44: Data Parallelism
	Slide 45: Data Parallelism
	Slide 46: Fully Sharded Data Parallelism (FSPD)
	Slide 47: Fully Sharded Data Parallelism (FSPD)
	Slide 48: Fully Sharded Data Parallelism (FSPD)
	Slide 49: Fully Sharded Data Parallelism (FSPD)
	Slide 50: Fully Sharded Data Parallelism (FSPD)
	Slide 51: Fully Sharded Data Parallelism (FSPD)
	Slide 52: Fully Sharded Data Parallelism (FSPD)
	Slide 53: Fully Sharded Data Parallelism (FSPD)
	Slide 54: Fully Sharded Data Parallelism (FSPD)
	Slide 55: Fully Sharded Data Parallelism (FSPD)
	Slide 56: Fully Sharded Data Parallelism (FSPD)
	Slide 57: Fully Sharded Data Parallelism (FSPD)
	Slide 58: Fully Sharded Data Parallelism (FSPD)
	Slide 59: Fully Sharded Data Parallelism (FSPD)
	Slide 60: Fully Sharded Data Parallelism (FSPD)
	Slide 61: Fully Sharded Data Parallelism (FSPD)
	Slide 62: Fully Sharded Data Parallelism (FSPD)
	Slide 63: Fully Sharded Data Parallelism (FSPD)
	Slide 64: Fully Sharded Data Parallelism (FSPD)
	Slide 65: Hybrid Sharded Data Parallel (HSDP)
	Slide 66: Hybrid Sharded Data Parallel (HSDP)
	Slide 67: Hybrid Sharded Data Parallel (HSDP)
	Slide 68: Data Parallelism (DP, FSPD, HSDP)
	Slide 69: Data Parallelism (DP, FSPD, HSDP)
	Slide 70: Data Parallelism (DP, FSPD, HSDP)
	Slide 71: Activation Checkpointing
	Slide 72: Activation Checkpointing
	Slide 73: Activation Checkpointing
	Slide 74: Activation Checkpointing
	Slide 75: Activation Checkpointing
	Slide 76: Activation Checkpointing
	Slide 77: Activation Checkpointing
	Slide 78: Activation Checkpointing
	Slide 79: Activation Checkpointing
	Slide 80: Activation Checkpointing
	Slide 81: Activation Checkpointing
	Slide 82: Activation Checkpointing
	Slide 83: Activation Checkpointing
	Slide 84: Activation Checkpointing
	Slide 85: Activation Checkpointing
	Slide 86: Activation Checkpointing
	Slide 87: Activation Checkpointing
	Slide 88: Activation Checkpointing
	Slide 89: Activation Checkpointing
	Slide 90: Activation Checkpointing
	Slide 91: Activation Checkpointing
	Slide 92: Activation Checkpointing
	Slide 93: Activation Checkpointing
	Slide 94: Activation Checkpointing
	Slide 95: Activation Checkpointing
	Slide 96: Activation Checkpointing
	Slide 97: Activation Checkpointing
	Slide 98: Activation Checkpointing
	Slide 99: Activation Checkpointing
	Slide 100: Activation Checkpointing
	Slide 101: Activation Checkpointing
	Slide 102: How to train on lots of GPUs
	Slide 103: Hardware FLOPs Utilization (HFU)
	Slide 104: Hardware FLOPs Utilization (HFU)
	Slide 105: Hardware FLOPs Utilization (HFU)
	Slide 106: Hardware FLOPs Utilization (HFU)
	Slide 107: Hardware FLOPs Utilization (HFU)
	Slide 108: Model FLOPs Utilization (MFU)
	Slide 109: Model FLOPs Utilization (MFU)
	Slide 110: Model FLOPs Utilization (MFU)
	Slide 111: Model FLOPs Utilization (MFU)
	Slide 112: Model FLOPs Utilization (MFU)
	Slide 113: Model FLOPs Utilization (MFU)
	Slide 114: How to train on lots of GPUs
	Slide 115: How to train on lots of GPUs
	Slide 116: Context Parallelism (CP)
	Slide 117: Context Parallelism (CP)
	Slide 118: Context Parallelism (CP)
	Slide 119: Context Parallelism (CP)
	Slide 120: Context Parallelism (CP)
	Slide 121: Context Parallelism (CP)
	Slide 122: Context Parallelism (CP)
	Slide 123: Context Parallelism (CP)
	Slide 124: Context Parallelism (CP)
	Slide 125: Context Parallelism (CP)
	Slide 126: How to train on lots of GPUs
	Slide 127: How to train on lots of GPUs
	Slide 128: Pipeline Parallelism (PP)
	Slide 129: Pipeline Parallelism (PP)
	Slide 130: Pipeline Parallelism (PP)
	Slide 131: Pipeline Parallelism (PP)
	Slide 132: Pipeline Parallelism (PP)
	Slide 133: Pipeline Parallelism (PP) - Microbatches
	Slide 134: How to train on lots of GPUs
	Slide 135: Tensor Parallelism (TP)
	Slide 136: Tensor Parallelism (TP)
	Slide 137: Tensor Parallelism (TP)
	Slide 138: Tensor Parallelism (TP)
	Slide 139: Tensor Parallelism (TP) – Two Layers
	Slide 140: Tensor Parallelism (TP) – Two Layers
	Slide 141: Tensor Parallelism (TP) – Two Layers
	Slide 142: Tensor Parallelism (TP) – Two Layers
	Slide 143: Tensor Parallelism (TP) – Two Layers
	Slide 144: How to train on lots of GPUs
	Slide 145: How to train on lots of GPUs
	Slide 146: ND Parallelism
	Slide 147: Summary: Large-Scale Distributed Training
	Slide 148

