Lecture 10:
Video Understanding
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Instructor today

Ph.D. at UT Austin

| taught CS231N at Stanford Postdoc at Stanford
from 2021-2023

Some time at Meta

Ruohan Gao
https://ruohangao.github.io/

Teaching multimodal University of Maryland,
compute vision now. College Park
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https://ruohangao.github.io/

Recall: (2D) Image classification

(assume given a set of possible labels)
{dog, cat, truck, plane, ...}

> cat

This image by Nikita is
licensed under CC-BY 2.0
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Last Lecture: (2D) Detection and Segmentation

Semantic Object Instance
Segmentation Detection Segmentation

Classification

cAT  GRASS,CAT, TREE,

“ AN Y Y
Y Y | Y |
No spatial extent No objects, just pixels Multiple Objects s mage - CCopublc domai
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en







Today: Video =2D + Time

A video is a sequence of images
4D tensor: Tx3xHxXxW
(or 3xTxHxW)

This image is CCO pu blic domain
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https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Example task: Video Classification

Swimming
Running
ﬁ Jumplng
Eating
Standing
Input video:
TX3XHXW

Running video is in the public domain
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https://commons.wikimedia.org/wiki/File:Running.gif
https://en.wikipedia.org/wiki/en:public_domain

Example task: Video Classification

Dog
Cat
Fish
Truck

Images: Recognize objects

Swimming
Running
Jumping
Eating
Standing

Videos: Recognize actions

Running video is in the public domain
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https://commons.wikimedia.org/wiki/File:Running.gif
https://en.wikipedia.org/wiki/en:public_domain

Problem: Videos are big!

Videos are ~30 frames per second (fps)

Size of uncompressed video
(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute
HD (1920 x 1080): ~10 GB per minute

Input video:
TX3XHXW
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Problem: Videos are big!

Videos are ~30 frames per second (fps)

Size of uncompressed video
(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute
HD (1920 x 1080): ~10 GB per minute

Solution: Train on short clips: low
fps and low spatial resolution
TX3XHXW e.g. T=16, H=W=112

(3.2 seconds at 5 fps, 588 KB)

Input video:
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Training on Clips

Raw video: Long, high FPS
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Training on Clips

Raw video: Long, high FPS
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Training on Clips

Raw video: Long, high FPS
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Video Classification: Single-Frame CNN

Simple idea: train normal 2D CNN to classify video frames independently!
(Average predicted probs at test-time)
Often a very strong baseline for video classification

“Running”  “Running”  “Running” “Running” “Running” “Running” “Running”

4 4 % 4 4 4 4
CNN |/ CNN CNN CNN CNN CNN CNN
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Video Classification: Late Fusion (with FC layers)

Intuition: Get high-level appearance Class scores: C
of each frame, and combine them A Run 2D CNN on each

Clio f TOHW’ frame, concatenate
Ip Teatures: ML-P features and feed to MLP

i ot Flatten
Fame reatures

2DCNNon [ CNN CNN CNN CNN CNN CNN

each frame

Input: {
Tx3XxHXxW [ &

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
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Video Classification: Late Fusion (with pooling)
Run 2D CNN on each

Intuition: Get high-level appearance Class scores: C
of each frame, and combine them A frame, pool features
: and feed to Linear
Linear
Clip features: D A

Frame features Average Pool over space and time

TxDxH xW f f f f f f
2DCNNon [ CNN CNN CNN CNN CNN CNN

each
frame

Input:
TX3IXHXW [«
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Video Classification: Late Fusion (with pooling)

Intuition: Get high-level appearance | Run 2D CNN on each
of each frame, and combine them Class scores: C

. A frame, pool features
Problem: Hard to compare low-level ,
motion between frames Linear and feed to Linear

Clip features: D A

Frame features Average Pool over space and time

TxDxH xW f f f f f f
2DCNNon | CNN CNN CNN CNN CNN CNN

each frame

Input:
TX3XHxW
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Video Classification: Early Fusion

Intuition: Compare frames
with very first conv layer, after

that normal 2D CNN
Class scores: C

4

Rest of the network
is standard 2D CNN

First 2D convolution

collapses all temporal 2 D C N N

information:
Input: 3T X HXxW
Reshape: Output: DxHxW
3TXHXW
Input:
TX3XHXW

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
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Video Classification: Early Fusion

Intuition: Compare frames
with very first conv layer, after
that normal 2D CNN

Problem: One layer of Class scores: C

temporal processing may not 4
Rest of the network

be enough! i dard 2D CNN
First 2D convolution s standar

collapses all temporal 2 D C N N

information:
Input: 3T X HXxW
Reshape: Output: DxHxW
3TXHXW
Input:
TX3XHXW

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
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Video Classification: 3D CNN

Intuition: Use 3D versions of
convolution and pooling to

slowly fuse temporal
information over the course of Class Siores“ C

the network

Each layer in the network is a 4D

tensor:DXTxHXxW
Use 3D conv and 3D pooling 3D CN N

operations

Input:
IXTXxXHxXW

Jietal, “3D Convolutional Neural Networks for Human Action Recognition”, TPAMI 2010 ; Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
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Convolution Layer

activation map

_— 32x32x3 image
5x5x3 filter

V

convolve (slide) over all spatial

Z7:
=
locations
ﬁ 2
3
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3D Convolution

/

~~

_—
-

Input:
CxTxHxW

Stanford CS231n 10t Anniversary

/ \
/ \
/ \
/ N—
/
4
_—l ’ X
\\
6X6X6 conv 5x5x5 conv 4x4x4 conv \\ ’r—
/
S ’
rc N’ Class
Layer Scores
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Early Fusion vs Late Fusion vs 3D CNN

Size Receptive Field
Layer (CxTxHxW) (TxHxW)
Input 3x20x64 x 64
Late  conv2D(3x3, 3->12) 12x20X64X64 1x3x3

Fusion

(Small example
architectures, in
practice much bigger)
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Early Fusion vs Late Fusion vs 3D CNN

Size Receptive Field
Layer (CxTxHxW) (TxHxW)
Input 3x20x64 x 64
Late  conv2D(3x3, 3->12) 12x20X64X64 1x3x3

Fusion

conv33) QO000000000000000000
(Small example
it @QOO00000000000000000

architectures, in
practice much bigger)
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Early Fusion vs Late Fusion vs 3D CNN

Size Receptive Field
Layer (CxTxHxW) (TxHxW)
Input 3x20x64 x 64
Late  conv2D(3x3, 3->12) 12x20X64X64 1x3x3
Fusion Pool2D(4x4) 12x20x16x16 1x6x6

convi33) QO00000000000000000
(Small example
O000000000000 O000000 architectures, in

practice much bigger)

Input
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Early Fusion vs Late Fusion vs 3D CNN

Size Receptive Field
Layer (CxTxHxW) (TxHxW)
Input 3x20x64 x 64
Late  convaD(3x3,3->12) 12x20x64x64 1x3x3 Build slowly in space
Fusion Pool2D(4x4) 12x20x16x16 1x6x6
Conv2D(3x3, 12->24) 24x20x16x16 1x14x14

Conv(3x3) @) O O O
Pool(4x4)
w 00000000000000000000 ehectiren i

practice much bigger)
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Early Fusion vs Late Fusion vs 3D CNN

Size Receptive Field
Layer (CxTxHxW) (TxHxW)
Input 3x20x64x64
Late  conv2D(3x3,3->12) 12x20x64Xx64 1x3x3 Build slowly in space,
. All-at-once in time at end
Fusion Pool2D(4x4) 12x20x16x16 1x6x6
Conv2D(3x3, 12->24) 24x20x16x16 1x14x14
GlobalAvgPool 24x1x1x1 20 x 64 x 64

GlobalAvg
Conv(3x3) O O

convi33) Q@ OOONO0000000000000
(Small example
it @QOO00000000000000000 architectures, in

practice much bigger)
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Early Fusion vs Late Fusion vs 3D CNN

Size
Layer (CxTxHXxW)
Input 3x20x64 x 64
Late  convap(ax3, 3512) 12 X 20 X 64 X 64
Fusion Pool2D(4x4) 12x20x 16 x 16
Conv2D(3x3, 12->24) 24x20x16x 16
GlobalAvgPool 24x1x1x1
Input 3x20x64 x64
Early conva2D(3x3,3*20->12) 12x64x64
Fusion Pool2D(4x4) 12x16x16
Conv2D(3x3, 12->24) 24x16x 16
GlobalAvgPool 24x1x1

Receptive Field
(TxHXxW)

1x3x3 Build slowly in space,
All-at-once in time at end
1X6X6

1x14x14
20 x 64 x 64

20x3x3 Build slowly in space,
All-at-once in time at start
20x6 X6

20x 14 x 14
20x 64 x 64

Stanford CS231n 10t Anniversary
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architectures, in
practice much bigger)
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Early Fusion vs Late Fusion vs 3D CNN

Size Receptive Field
Layer (CxTxHxW) (TxHxW)
Input 3x20x64x64
Late  conv2D(3x3,3->12) 12x20Xx64%x64 1x3x3 Build slowly in space,
Fusion Pool2D(4x4) 12x20x16x16 1X6X6 Alratonceintimeatend
Conv2D(3x3, 12->24) 24x20x16x16 1x14x14
GlobalAvgPool 24x1x1x1 20 x 64 x 64
Input 3x20x64x64
Early conv2D(3x3,3*20->12) 12x64 x 64 20x3x3 Build slowly in space,
Fusion Pool2D(4x4) 12x 16 x 16 20X6x6 All-at-once n time at start
Conv2D(3x3, 12->24) 24 x16x 16 20x14x 14
GlobalAvgPool 24x1x1 20 x 64 x 64
Input 3x20x64x64
Conv3D(3x3x3,3->12)  12x20x64x64 3X3X3 outdsown space,
3D CNN' pool3D(4x4x4) 12x5x16x16  6X6X6 »Slow Fusion” e
Conv3D(3x3x3,12->24) 24x5x16x16 14x 14 x 14 practice much bigger)
GlobalAvgPool 24x1x1 20 x 64 x 64
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Early Fusion vs Late Fusion vs 3D CNN

Size Receptive Field What is the
Layer (CxTxHxW) (TxHxW) difference?
Input 3x20x64x64
Late  conv2D(3x3, 3->12) 12x20X64X64 1x3x3 Build slowly in space,
Fusion Pool2D(4x4) 12x20x16x16 1x6Xx6
Conv2D(3x3, 12->24) 24x20x16x16 1x14x14
GlobalAvgPool 24x1x1x1 20 x 64 x 64
Input 3x20x64x64
Early convaD(3x3,3*20->12) 12x64x64 20x3x3 Build slowly in space,
Fusion Pool2D(4x4) 12x16x 16 20X 6 %6 All-at-oncein time at start
Conv2D(3x3, 12->24) 24 x16x 16 20x14x 14
GlobalAvgPool 24x1x1 20 x 64 x 64
Input 3x20x64x64
0 Conv3D(3x3x3,3->12)  12x20Xx64Xx64 3X3X3 - zmz 1 space, Small examle
Pool3D(4x4x4) 12x5x16x16 6X6X6 »Slow Fusion” architectures, in
CNN  Conv3D(3x3x3,12->24) 24x5x16x16  14x14x14 practice much bigger)
GlobalAvgPool 24x1x1 20 x 64 x 64
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: C,,xTXxHxXxW Weight: Output:
(3D grid with C;-dim CoutXCin X TX3X3 CoutX HX W |
feat at each point) Slide over x and y 2D grid with C, ;- dim

feat at each point

T H=224
T=16
H=224 —>
/: 16  C,.: different filters

W =224

W =224
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: C;, x TXxHxXxW Weight: Output:

(3D grid with C,,-dim feat C,iXCinXTx3x3 Cout X HXW

at each point) Slide over x and y 2D grid with Cq —dim
No temporal shift-invariance! feat at each point

Needs to learn separate filters for

the same motion at different times
in the clip )

4 4

C,,: different filters
T=16

W =224

H=224

W =224
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: C;, x TXxHxXxW Weight: Output:

(3D grid with C,,-dim feat C,iXCinXTx3x3 Cout X HXW

at each point) Slide over x and y 2D grid with Cq —dim
No temporal shift-invariance! feat at each point

Needs to learn separate filters for

the same motion at different times
in the clip )

4 4

C,,: different filters

H=224

T=16
How to recognize blue to W =224

W =224 transitions anywhere in space and time?
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: C,xTxHxXxW Weight: Output:
(3D grid with C;,-dim Cout X Cin X3 X3 %3 CoutX TXHXW
feat at each point) Slide over x and y 3D grid with C,,—dim

feat at each point

£ '/ L

H =224 Z1=3,

C,,: different filters
T=16

How to recognize blue to W =224

W =224 transitions anywhere in space and time?
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: C,xTxHxXxW Weight: Output:
(3D grid with C;,-dim Cout X Cin X3 X3 %3 CoutX TXHXW
feat at each point) Slide over x and y 3D grid with C,,—dim

feat at each point
Temporal shift-invariant since

/ each filter slides over time! /

T=3
—_—

C,,: different filters
T=16

How to recognize blue to W =224

H=224

W =224 transitions anywhere in space and time?
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: C., XxTXHXxW Weight: First-layer filters have shape
(3D grid with C;,-dim CoutXCinX3x3x3 3 (RGB) x4 (frames) x5 x 5
feat at each point) Slide overxandy gpac.e) . . .

an visualize as video clips!

Temporal shift-invariant since
each filter slides over time!

P/
=

C,,: different filters

H=224

T=16
How to recognize blue to orange
W =224 transitions anywhere in space and time?
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Example Video Dataset: Sports-1M

—
-
-

-
.
>

—

k cycling | : ultramarathon on
cycling ultramarathon heptathlon mushing longboarding
track cycling half marathon decathlon bikejoring aggressive inline skating
road bicycle racing running hurdles harness racing freestyle scootering
marathon marathon pentathlon skijoring frecboard (skateboard)
ultramarathon inline speed skating sprint (running) carting sandboarding

1 million YouTube videos Ground Truth

annotated with labels for 487

different types of sports Incorrect prediction

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
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Early Fusion vs Late Fusion vs 3D CNN

Sports-1M Top-5 Accuracy

Single Frame

89 model works well -
always try this first!

80 ystry
improved a lot

70 since 2014!

Single Early Late
Frame Fusion Fusion CNN

Stanford CS231n 10t Anniversary Lecture 10- 39 May 1, 2025




C3D: The VGG of 3D CNNs

3D CNN that uses all 3x3x3 conv and
2x2x2 pooling
(except Pooll which is 1x2x2)

Released model pretrained on
Sports-1M: Many people used this as
a video feature extractor

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015

Stanford CS231n 10t Anniversary
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Layer

Input

Conv1 (3x3x3)
Pooll (1x2x2)

Conv2 (3x3x3)
Pool2 (2x2x2)

Conv3a (3x3x3)

Conv3b (3x3x3)
Pool3 (2x2x2)

Conv4a (3x3x3)

Conv4b (3x3x3)
Pool4 (2x2x2)

Convb5a (3x3x3)

Conv5b (3x3x3)
Pool5
FC6
FC7
FC8

Size

3x16x112x112

64x16x112x112
64 x 16 x 56 x 56

128 x 16 x 56 x 56
128 x 8 x 28 x 28

256 x 8 x 28 x 28

256 x 8 x 28 x 28
256 x4x14x 14

512x4x14x 14

512x4x14x 14
512 x2XTXT

512 x2XTXT

512x2x7Tx7T
512x1x3x3
4096
4096
C
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C3D: The VGG of 3D CNNs

3D CNN that uses all 3x3x3 conv and
2x2x2 pooling
(except Pooll which is 1x2x2)

Released model pretrained on
Sports-1M: Many people used this as
a video feature extractor

Problem: 3x3x3 conv is very
expensive!

AlexNet: 0.7 GFLOP

VGG-16: 13.6 GFLOP

C3D: 39.5 GFLOP (2.9x VGG!)

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015

Stanford CS231n 10t Anniversary

Layer
Input

Convl1 (3x3x3)
Pooll (1x2x2)

Conv2 (3x3x3)
Pool2 (2x2x2)

Conv3a (3x3x3)

Conv3b (3x3x3)
Pool3 (2x2x2)

Conv4a (3x3x3)

Conv4b (3x3x3)
Pool4 (2x2x2)

Conv5a (3x3x3)

Conv5b (3x3x3)
Pool5
FC6
FC7
FC8

Lecture 10 - 41

Size

3x16x112x112

64x16x112x112
64 x 16 X 56 x 56

128 x 16 x 56 x 56
128 x 8 x 28 x 28

256 x 8 x 28 x 28

256 x 8 x 28 x 28
256 x4x14x14

512x4x14x 14

512x4x14x 14
512 x2x7Tx7

512Xx2x7Tx7

512x2x7Tx7
512x1x3x3
4096
4096
C

MFLOPs

1.04

11.10

5.55

11.10

2.77

5.55

0.69

0.69

0.51
0.45
0.05
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Early Fusion vs Late Fusion vs 3D CNN

Sports-1M Top-5 Accuracy
85

80
- .
70

Single Early Late C3D
Frame Fusion Fusion CNN
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Recognizing Actions from Motion

We can easily recognize actions using only motion information

Johansson, “Visual perception of biological motion and a model for its analysis.” Perception & Psychophysics. 14(2):201-211. 1973.
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Measuring Motion: Optical Flow

Image at frame t

Image at frame t+1

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurlPS 2014
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Measuring Motion: Optical Flow

Optical flow gives a
displacement field F between
images |, and I,

////////////

Image at frame t

///////////

///////

AT .,

TS e m e
TN

i 4

r ./ ///7////7'%.. |

b & s A ow owm A ////////‘/ﬂ«_ )

,,,,,,, F T T . |

| 4 / //W = . |
. T ZZTZ T e,

Tells where each pixel will
move in the next frame:

F(x,y) = (dx, dy)
It+l(X+an y+dy) = It(Xa y)

Image at frame t+1

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurlPS 2014
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Measuring Motion: Optical Flow

Image at frame t

Image at frame t+1

Optical Flow highlights

local motion
Optical flow gives a
displacement field F between
images |, and I,

/////////////

Horizontal flow dx

,,,,,,,,,,,,

///////

A e e 1
NN Y

o R S ‘

..... j Aol Z Zmew ||
) ////////'////;._‘
7 //////'/////'/
///W pr= =

T

Tells where each pixel will ‘
move in the next frame;
F(x, y) = (dx, dy)

It+1(X+an y+dy) = It(Xa y)
Vertical Flow dy

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014
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Separating Motion and Appearance: Two-Stream Networks

Input: Single Image
3XHxW

Spatial stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv) fullé full7 ||softmax
7X7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
pool 2x2 || pool 2x2

Temporal stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax
7X7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

input

. norm. || pool 2x2 pool 2x2
video multi-frame pool 2x2
. optical flow )
Input: Stack of optical flow: Early fusion: First 2D conv
[2*(T-1)] x Hx W processes all flow images

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurlPS 2014
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Separating Motion and Appearance: Two-Stream Networks

Accuracy on UCF-101
90

80 33.7}00- 9 °°
70

- m i

50

3D CNN  Spatial only Temporal Two-stream Two-stream
only (fuse by (fuse by
average) SVM)

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurlPS 2014
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Modeling long-term temporal structure

So far all our temporal CNNs only model local
motion between frames in very short clips of ~2-5
seconds. What about long-term structure?

First event 3 D Second event

CNN

' Time
~5 seconds
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Modeling long-term temporal structure

So far all our temporal CNNs only model local We know how to handle

motion between frames in very short clips of ~2-5 sequences! How about

seconds. What about long-term structure? recurrent networks?
First event 3D Second event

CNN

' Time
~5 seconds
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Modeling long-term temporal structure

Extract
features
with CNN
(2D or 3D)

I O T I
[ fo) [ [ [

—

Time
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Modeling long-term temporal structure

Process local features using recurrent network (e.g. LSTM)

Extract 1

features
with CNN CNN CNN CNN CNN CNN
(2D or 3D)

—

Time

>
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Modeling long-term temporal structure

Process local features using recurrent network (e.g. LSTM)
Many to one: One output at end of video

1

>I ] I ] I ] I

Extract 1

features

with CNN /CNN\ /CNN\ /CNN\ /CNN\ /CNN\
(2D or 3D)

—

Time

Stanford CS231n 10t Anniversary Lecture 10- 53 May 1, 2025



Modeling long-term temporal structure

Process local features using recurrent network (e.g. LSTM)
Many to many: one output per video frame

1 1 1 1 1

>I ] I ] I ] I

Extract 1

features

with CNN /CNN\ /CNN\ /CNN\ /CNN\ /CNN\
(2D or 3D)

—

Time
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Modeling long-term temporal structure

Sometimes don’t backprop to CNN to save memory;
pretrain and use it as a feature extractor

1 1 1 1 1

>I ! I ! I ! I

Extract 1

features

with CNN /CNN\ /CNN\ /CNN\ /CNN\ /CNN\
(2D or 3D)

—

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011 Time
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015
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Modeling long-term temporal structure

Inside CNN: Each value is a function of a fixed temporal window (local temporal structure)
Inside RNN: Each vector is a function of all previous vectors (global temporal structure)
Can we merge both approaches?

>I ] I ] I ] I

Extract 1

features

with CNN /CNN\ /CNN\ /CNN\ /CNN\ /CNN\
(2D or 3D)

—

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011 Time
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015
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Three-layer RNN

Recall: Multi-layer RNN R PR
t 1t 1t 1 t
h3, 3 h3/— h3}— h3;— h3;—a h3; —a h3
T 1+ 1 1+ 1T 1T T

We can use a similar 0 A e A

structure to process Sl e e
videos! RN

hi,— hi; 3 hi,— hiz3— hi—t hi; — hig

T T Tttt 11

d € pt h Xo X1 Xy X3 X4 X5 Xg
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maps: CxHxW

Recurrent Convolutional Network Entire network
Layer3( U—>( U—»( U—»( U
i i i o depenceo
-aver ( U T ( U T ( U ( U ;rs\?ir::jsl?nigstep
2. Prev layer,
same timestep
Layer 1 ( U ( U ( U U

2D conv 2D conv 2D conv

Use different weights
at each layer, share
¥ weights across time

Ballas et al, “Delving Deeper into
Convolutional Networks for Learning
Video Representations”, ICLR 2016
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Recurrent Convolutional Network

Normal 2D CNN:

/ 2D Conv /

4 4

Input features: Output features:
CxHxW CxHxW

Stanford CS231n 10t Anniversary Lecture 10- 59 May 1, 2025



Recurrent Convolutional Network  Recalt: Recurrent Network
hy|= fW(ht—la wt)

/ new state / old state

some function
with parameters W

Features from layer L, /

timestep t-1

RNN-like
/ recurrence

4

Features for layer
L, timestep t

Features from layer
L-1, timestep t

Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016
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Recurrent Convolutional Network Recall: Vanilla RNN
/ / ht+1 — tanh(Whht + WxX)

2D Conv Replace all matrix multiply
- with 2D convolution!

/ o
Features from layer L, /

timestep t-1

tanh

L L L/

2D Conv

—

¥ Wy Features for layer
L, timestep t

Features from layer
L-1, timestep t

Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016
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Modeling long-term temporal structure

Recurrent CNN: Infinite

RNN: Infinite temporal extent
temporal extent (convolutional)
(fully-connected) > >

—
CNN: finite Recurrent Recurrent
temporal extent CNN CNN
poral € CNN CNN .
(convolutional)
— —
Time Time
Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011 Ballas et al, “Delving Deeper into Convolutional Networks for
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015 Learning Video Representations”, ICLR 2016
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Modeling long-term temporal structure

Problem: RNNs are slow for long

sequences (can’t be parallelized) Recurrent CNN: Infinite
RNN: Infinite temporal extent
temporal extent (convolutional)
(fully-connected) > >
—
CNN: finite Recurrent Recurrent
temporal extent CNN CNN
poral € CNN CNN .
(convolutional)
— —
Time Time
Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011 Ballas et al, “Delving Deeper into Convolutional Networks for
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015 Learning Video Representations”, ICLR 2016
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Recall: Self-Attention

io y: 12 Outputs:

i i : context vectors: y (shape: 1 )

mul(=>) +add (1)

N

P V0 —»| ag do,1 do2
C
ke, Yo || Y1 || Y2
P Vi TP ee fes @ = | QOperations:
12 = T
v, P @ || e | a | < Key vectors: k=1 self-attention
Value vectors: v = x "
t t ¢ Query vectors: g = x\\,
softmax (1) Alignment: e;;= ¢ -k, / VD %o || % || %
g T 1t Attention: a = softmax(e)
O || H Xo > ko —»| 0 || ea || ez | Output:y; =3; ;)
O c
> ()
4:—5’ Xl — kl —| €ip €11 €17 g
Q. 20
E X2 — k2 —P| €20 €1 €2 z
T T T Inputs:
a4 | a1 | @ Input vectors: x (shape: N x D)
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Spatio-Temporal Self-Attention (Nonlocal Block)
a O}

Features:
CxTXxHxW

Input clip

Nonlocal Block

Wang et al, “Non-local neural networks”, CVPR 2018
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Spatio-Temporal Self-Attention (Nonlocal Block)

‘ Queries:
CxTxHxW @

Input clip

1x1x1 Conv
Keys:
3D CxTxHxW
CN N 1x1x1 Conv
Features:
CxTXxHxW
Values:
CxTxHxW
1x1x1 Conv

Nonlocal Block

Wang et al, “Non-local neural networks”, CVPR 2018
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Spatio-Temporal Self-Attention (Nonlocal Block)

Input clip

Attention Weights

Queries:
Transpose (THW) x (THW)

CxTxHxW

1x1x1 Conv

Keys:
3D @— CxTxHxW
CNN

1x1x1 Conv
Features:

CxTXxHxW

softmax

Values:
CxTxHxW

1x1x1 Conv

Nonlocal Block

Wang et al, “Non-local neural networks”, CVPR 2018
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Spatio-Temporal Self-Attention (Nonlocal Block)

Input clip

Attention Weights

QIETEs (THW) X (THW)

C’xTxHxW Transpose

1x1x1 Conv
softmax

X >

Keys:
3D =3 CxTxHxW

>
C N N 1x1x1 Conv
Features:

CxTxHxW CXxTxHxW

Values:

CxTxHxW
>

1x1x1 Conv

Nonlocal Block

Wang et al, “Non-local neural networks”, CVPR 2018
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Spatio-Temporal Self-Attention (Nonlocal Block)

Input clip

Attention Weights

QIETEs (THW) X (THW)

C’xTxHxW Transpose

1x1x1 Conv
softmax

X >

CxTxHxW
Keys:
3D =3 CxTxHxW

>
CNN
1x1x1 Con
Features: XX v 4

CxTxHxW CXxTxHxW

Values:

CxTxHxW
> 1x1x1 Conv

1x1x1 Conv

Nonlocal Block

Wang et al, “Non-local neural networks”, CVPR 2018
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Spatio-Temporal Self-Attention (Nonlocal Block)

Input clip

3D
CNN

Queries:
CxTxHxW

1x1x1 Conv

Keys:
=3 CxTxHxW

Transpose

X

softmax

Attention Weights
(THW) x (THW)

>

CxTxHxW

1x1x1 Conv
Features:
CxTxHxW
Values:
CxTxHxW
1x1x1 Conv

Nonlocal Block

Wang et al, “Non-local neural networks”, CVPR 2018
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Spatio-Temporal Self-Attention (Nonlocal Block)

Input clip

We can add nonlocal blocks into existing 3D CNN architectures.

‘ \ But what is the best 3D CNN architecture?

Residual Connection Residual Connection
Queries: Attention Weights Queries: Attention Weights
xxxxxxx w Transpose  (THW) x (THW) CXxTxHXW Transpose  (THW) x (THW)
bt b -
111111111111111111
ssssssssssss
xxxxxx w CxTxHxW °
Keys: Keys:
| xTxHx w — | xTxHx w — l l n n I n g
_— —
. es: 1x1x1 Conv
W w W w

111111111

Nonlocal Block / Nonlocal Block /
Wang et al, “Non-local neural networks”, CVPR 2018
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Inflating 2D Networks to 3D (I13D)

There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

ldea: take a 2D CNN architecture.

Replace each 2D K, x K,, conv/pool
layer with a 3D K, x K;,x K,, version

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017
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Inflating 2D Networks to 3D (I13D)

There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

ldea: take a 2D CNN architecture. Inception Block: Original
t
Replace each 2D K, x K,, conv/pool > Concatenate
layer with a 3D K, x K;, x K,, version | | |
5x5 Conv 3x3 Conv 1x1 Conv
1x1 Conv T T

A 1x1 Conv 1x1 Conv

' t

Previous layer

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017
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Inflating 2D Networks to 3D (I13D)

There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

ldea: take a 2D CNN architecture. Inception Block: Inflated
t
Replace each 2D K, x K,, conv/pool > Concatenate
layer with a 3D K, x K;, x K,, version | | |
5x5x5 3x3x3 1x1x1
Conv Conv Conv
b | T
vy 1x1x1 1x1x1
Conv Conv

' t

Previous layer

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017
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Inflating 2D Networks to 3D (I13D)

There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

. Input: 2D conv kernel: Output:
ldea: take a 2D CNN architecture. 3xHXW

it

Replace each 2D K, x K,, conv/pool
layer with a 3D K, x K, x K,, version

times times, divide same!

l Duplicate input K; Copy kernel K; l Output is the
by Kq

Can use weights of 2D conv to

initialize 3D conv: copy K, times in

space and divide by K, ‘

This gives the same result as 2D conv

given “constant” video input Input: 3D conv kernel: Output:

3XKixHXW G, x K x K, X K, IxHxXxW

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017
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Inflating 2D Networks to 3D (I13D)

There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

Idea: take a 2D CNN architecture. Top-1 Accuracy on Kinetics-400

80
Replace each 2D K, x K,, conv/pool ;g
layer with a 3D K, x K, x K,, version a5 1.6

° A

60 |
Can use weights of 2D conv to 55 _
initialize 3D conv: copy K; times in 50 -

. 45
space and divide by K, 40
This gives the same result as 2D conv Per-frame  CNN+LSTM Two-stream Inflated CNN  Two-stream
given “constant” video input CNR CNN inflated CNN
B Train from scratch Pretrain on ImageNet

All using Inception CNN

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017
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Vision Transformers for Video

Factorized attention:
Attend over space / time

Pooling module:
Reduce number of tokens

Video masked autoencoders:
Efficient scalable pretraining

T
‘ khlltlal_az }—» Class { Add & Norm ]

THW x D
Transformer |Encoder {
o s ok [ MatMul ] oy
osition + Token A
Embedding T * l'/l'/l'// -7 lEncoder Decoder l Supervision
P o masking masking
(405) AAA
[ Softmax ] (| fe
&5 t raw < taw FAW x D '.} i
—C O—
L : [ MatMUI & Scale ] Input video g Tube masking Running cell masking
_'8_, X: |Self-Attention -~
| @ — % TAW x D THW x D
: , Embed to Multi-Head Q K Cube embedding
: tokens Dot-Product Pool Pool Pool Pool Latent representation e .
= . Attention o0 Q y Q OAO K 20 4 Learnable mask token —* Encoder — _’CQ_> —> Decoder —»>
. Y
- T Q THW x D ~ THW x D ~ THW x D Reconstructed pixel
—(__)— Layer Norm
L Linear Linear Linear
A N A
THW x D

Wang et al. VideoMAE V2: Scaling Video Masked
Autoencoders with Dual Making. CVPR 2023.
Tong et al. Video MAE: Masked Autoencoders are Data-

Efficient Learners for Self-Supervised Video Pre-Training.
NeurlPS 2022.

Feichtenhofer et al. Masked autoencoders as
spatiotemporal learners. NeurlPS 2022.

Fan et al, “Multiscale Vision Transformers”, ICCV 2021
Li et al, “MViTv2: Improved Multiscale Vision

Transformers for Classification and Detection”, CVPR
2022

Bertasius et al, “Is Space-Time Attention All You Need for Video
Understanding?”, ICML 2021

Arnab et al, “ViViT: A Video Vision Transformer”, ICCV 2021
Neimark et al, “Video Transformer Network”, ICCV 2021
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Vision Transformers for Video

Top-1 Accuracy on Kinetics-400

100 90
90 29 8 86.1

80 /4.2

70

60

50

40

30

20

10

0

Per-frame CNN+LSTM Two-Stream Inflated I3D  SlowFast  MViTv2-L VideoMAE
CNN CNN 16x8+NL V2-g
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Visualizing Video Models

Image Forward: Compute class score
Spatial stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax

r‘lllllll-l '

class

. e
<o Weightlifting
” score

o [ Lo e e o

pool 2x2

. .
optlcal row

Flow Backward: Compute gradient

Add a term to encourage spatially
Figure credit: Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurlPS 2014
. 1 Feichtenhofer et al, “What have we learned from deep representations for action recognition?”, CVPR 2018
SmOOth flOW) tune penalty to pICk OUt Feichtenhofer et al, “Deep insights into convolutional networks for video recognition?”, [JCV 2019.
(14 » (44 » M
slow” vs “fast” motion
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® 7 Feichtenhofer et al, “What have we learned from deep
a n O u u eSS t e a Ct I O n representations for action recognition?”, CVPR 2018
o Feichtenhofer et al, “Deep insights into convolutional

networks for video recognition?”, 1JCV 2019.
Slide credit: Christoph Feichtenhofers

Appearance “Slow” motion “Fast” motion
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Canyou guess the action? Weightlifting

Appearance “Slow” motion “Fast” motion
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Can you guess the action?

Appearance “Slow” motion “Fast” motion
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Canyou guess the action? Apply Eye Makeup

Appearance “Slow” motion “Fast” motion
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So far: Classify short clips

| | . Swimming

Videos: Recognize actions Running

— Jumping
Eating
Standing
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Temporal Action Localization

Given a long untrimmed video sequence, identify
frames corresponding to different actions

Running Jumping

Can use architecture similar to Faster R-CNN: first
generate temporal proposals then classify

Chao et al, ” Rethinking the Faster R-CNN Architecture for Temporal Action Localization”, CVPR 2018
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Spatio-Temporal Detection

Given a long untrimmed video, detect all the people in both
space and time and classify the activities they are performing.
Some examples from AVA Dataset:

grab (a person) — hug look at phon — answer phone

Gu et al, “AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions”, CVPR 2018
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Today: Temporal Stream

)\
X g

| o' ‘
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Video source: BBC (MCGurk & McDonald 1976)




Video source: BBC (MCGurk & McDonald 1976)




Video source: BBC . . J rl’ Ponald 1976)




Visually-guided audio source separation

]

uolneledas

|

[Gao et al. ECCV 2018, Afouras et al. Interspeech’18, Gabby et al. Interspeech’18, Owens & Efros ECCV’18, Ephrat et al.
SIGGRAPH’18, Zhao et al. ECCV 2018, Gao & Grauman ICCV 2019, Zhao et al. ICCV 2019, Xu et al. ICCV 2019, Gan et al.

CVPR 2020, Gao et al. CVPR 2021, Tzinis et al. ECCV 2022, Chen et al. CVPR 2023]
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Gao et al., VisualVoice, CVPR 2021




Separated voice for t

Gao et al., VisualVoice, CVPR 2021




Separated voice for th

Gao et al., VisualVoice, CVPR 2021




Musical instruments source separation

Train on 100,000 unlabeled multi-source video clips,
then separate audio for novel video.

RIVER FLOWSHNYOL ‘
?ﬁ!@xn,n
\ :

Gao & Grauman, Co-Separating Sounds of Visual Objects, ICCV 2019

original video

(before separation)

object detections:
violin & flute

|

|
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Audio-Visual Video Understanding

_______________________________________________________________________________________________________________

avg logits = alil
[ classifier | ! [ classifier | 5

3  Video Projection E,, | Muttimodal _ Audio Projection £, | | B
’  EEDE - 2 SEE e B
S o8 RGB frame patches Audio spectrogram patches @

|

Attention Bottlenecks for Multimodal Fusion, Nagrani et al. NeurlIPS 2021

Audiovisual MAE

Absent-activity learning

Target domain audio

Ww Audk:;(n;:oder Audio prediction Target domain Absent-activity loss [ EnCOder ]
R o= =—== [
1 I | |
I | -
B T preudocbuen LML [ Decoder ]
1 | ] Pseudo-absent e P
" e ‘} N I . I label i)

——————————————

Source domain audio  Audio-based attentlon Transformer
() —
Groundtruth e
Target domain video Attention vector Ausdm bal:nced g OTTWTTT] . m]]mn:}q-
; ource domain Audio-balanced loss e
. & Visual encoder %
L = e TN
- T | 737 Custering | Assiening iz
— | P 119g: weights
—® g | At < : ~
1 ! =/ P — @@
' R N V0 e & =g§
-—— — ——— 1 \' A _JI \__,’ ) G ~= &
Visual prediction ‘Q’ -/ & :
Source domaln video e ﬁ — -
Activity class |

Audio-Adaptive Activity Recognition Across Video Domains,
Zhang et al. CVPR 2022
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Efficient Video Understanding

Action recognition in long videos

Video level prediction

////\\\\

Clip Chip Clip Clip Clip Clip Clip
Classifier Classifier Classifier Classifier Classifier Classifier Claaslﬁ Classifier

N 3

Image Credit: Korbar et al.
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Efficient Video Understanding ideo level orediction

Streaming EvaI\ / \

MoViNets: Il\(/loblle Video Networks for Efficient Video Recognition. scsampler: Sampling Salient Clips from Video for
Kondratyuk et al. CVPR 2021 Efficient Action Recognition. Korbar et al. ICCV 2019

. Input frames
I8, i | Policy Network Recognition
s I~ Network
’Y ’_) % RGB D:.fferee E
4 77 ’Yb H’WTLT) Audio
i mmw. Mﬂlﬂmﬁ'
’Yw < M\N N i !
> Subnet 3
X3D: Expanding Architecture for Efficient Video Recognition. -t . o .
Christoph Feichtenhofer. CVPR 2020. AdaMML: Adaptive Multi-Modal Learning for Efficient Video
Recognition. Pandal et al. ICCV 2021
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Efficient Video Understanding

llllllllllllllllllllllllllllllllIlIlIllllllllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIlllllIIIIIIIIIIIIIIIIIllllllllllllIIIIIlllllllllllIlIIIIIIIIIIIIIIIIIIIIlIIII
e 5 % |1

J

J
Y
19Ae] uoisn4
%
N2
)
—
wn
_|
<

Y
JaAe) uoisn4

i
i
L.
{

AL — \_ :
Zt | Zt+1
Audio feature l )

‘»)) ana WWWMW ———

Audio as a preview mechanism for efficient action recognition

Gao et al., Listen to Look: Action Recognition by Previewing Audio, CVPR 2020
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Multimodal Egocentric Video Understanding

|
| J:})‘ f‘uﬁ‘( 9.,\4\_\-(‘ \,v\ \pl" I ?\f 1‘ s M‘l’r, j\m /f ,"Mt\ W

| |
' } { | ﬁ
| W““]\‘f‘rw\qfiy\]}m ﬂf\ L/ MJN ‘u ‘“

YL )

"ff"«”\w ﬁ W f\f\ M Mﬁ WWJ

Camera

@ Microphone array

Ego-Exo Conversational Graph Prediction

Prediction

The Audio-Visual Conversational Graph: From and Egocentric-Exocentric Perspective. Jia et al. CVPR 2024
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Video Understanding + LLMs

LLM LLM LLM LLM
Projection Projection Projection Projection Projection
Image Video Visual Image Video
Encoder Encoder Encoder Encoder Encoder
Image Text Video Text Image Video Text Image Video Text
MniGPT-4 / InstructionBLIP Video-ChatGPT VideoChat / Video-LLaMA Macaw-LLM / X-LLM
e
LLM i LLM
1
— Share Projection
Projection poache
atabase
Select image Pre-align
Seatures
Image Image Video
Encoder Encoder Encoder
) A
Image Video Text Image Video Text

ImageBind-LLM / LLaMA-Adapter Video-LLaVA (Ours)

Video-LLaVA: Learning United Visual Representations
by Alignment Before Projection. Lin et al. EMNLP 2024

\) Video-ChatGPT Response

e W This video is taken in New York City, especially in the vicinity of the Statue of Liberty. The
statue is shown in the background, and the video also shows the city skyline in the background.
A

- ’? Video-ChatGPT ;
Large Language Model (Vicuna, v1.1)

T
Linear Layer ¢% User Query

System Command

You are Video-ChatGPT, a
large vision-langauage
model trained with video
instruction data.

Where is this video

Temporal Features taken from?

11

Spatial Features

.

Temporal Pooling

Video Frames

Video-ChatGPT: Towards Detailed Video Understanding via
Large Vision and Language Models. Maaz et al. ACL 2024.

Stanford CS231n 10t Anniversary

[ VideoLLaMAZ3: The boy in the image 1 has blonde hair, and the man in video 1 is diving. ]
A
[ Pre-trained Large Language Model ]
A A
[ Query: What color is the boy‘s hair in the image 1? What is the man doing in video 1? ] [ Projection ]
A

——————————

Height:
393

Height:
640

Width: 500
Image 1

Height:
480

A
4

Width: 640
Video 1

oooooooo--oo0
" |—| 00000000000 |»>

o0ooDooo-00o0
0O0000D00-000

L >

I

I
2] |
Height: J_) % Sl
369 | % §_>, |

Lo }
I I
Width: 640 | |
Image 3 | |
I 2

mage J I
____________ — |
Original Video Tokens |
I
I
I

Iapooug
[ensIA
Jossaxdwo))
09PIA

I

| aooooooo-000

=
Dynamic Vision Tokens |

Image 1 tokens
|

oooooo--ooo

Image 2 tokens

A
I Ll

oooooooo-ooo

Image 3 tokens

I
r 1

ooooooo--oo0a0

Video 1 tokens

A
I 1

oooooooo--0o0o0

VideoLLaMA 3: Frontier Multimodal Foundation Models
for Video Understanding. Zhang et al. arXiv 2025
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Next time: Large Scale Distributed Training
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