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Teaching team

Ruohan Gao
https://ruohangao.github.io/

Instructor today
Ph.D. at UT Austin

Postdoc at Stanford

Some time at Meta

University of Maryland,
College Park

I taught CS231N at Stanford 
from 2021-2023

Teaching multimodal
compute vision now.
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Recall: (2D) Image classification
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cat

This image by Nikita is 
licensed under CC-BY 2.0

(assume given a set of possible labels)
{dog, cat, truck, plane, ...}

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Last Lecture: (2D) Detection and Segmentation

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Living room

Baby
Dog
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Today: Video = 2D + Time

This image is CC0 public domain

A video is a sequence of images
4D tensor: T x 3 x H x W

(or 3 x T x H x W)
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… …

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Example task: Video Classification

Input video:
T x 3 x H x W

Running video is in the public domain

Swimming
Running
Jumping
Eating
Standing
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https://commons.wikimedia.org/wiki/File:Running.gif
https://en.wikipedia.org/wiki/en:public_domain
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Example task: Video Classification

Swimming
Running
Jumping
Eating
Standing

Dog
Cat
Fish
Truck

Images: Recognize objects

Videos: Recognize actions

Running video is in the public domain
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https://commons.wikimedia.org/wiki/File:Running.gif
https://en.wikipedia.org/wiki/en:public_domain
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Problem: Videos are big!

Input video:
T x 3 x H x W

10

Videos are ~30 frames per second (fps)

Size of uncompressed video 
(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute
HD (1920 x 1080): ~10 GB per minute
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Problem: Videos are big!

Input video:
T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video 
(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute
HD (1920 x 1080): ~10 GB per minute

Solution: Train on short clips: low 
fps and low spatial resolution
e.g. T = 16, H=W=112
(3.2 seconds at 5 fps, 588 KB)
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Training on Clips

Raw video: Long, high FPS

12
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Training on Clips

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

13
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Training on Clips

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

Testing: Run model on different clips, average predictions

14
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Video Classification: Single-Frame CNN

CNN

“Running”

Simple idea: train normal 2D CNN to classify video frames independently! 
(Average predicted probs at test-time)
Often a very strong baseline for video classification

CNN

“Running”

CNN

“Running”

CNN

“Running”

CNN

“Running”

CNN

“Running”

CNN

“Running”
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Video Classification: Late Fusion (with FC layers)

CNNCNNCNN CNN CNN CNN

Input:
T x 3 x H x W

2D CNN on 
each frame

Frame features
T x D x H’ x W’

Flatten

MLP

Class scores: C

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Run 2D CNN on each 
frame, concatenate 
features and feed to MLPClip features: TDH’W’

Intuition: Get high-level appearance 
of each frame, and combine them

16
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Video Classification: Late Fusion (with pooling)

CNNCNNCNN CNN CNN CNN

Input:
T x 3 x H x W

2D CNN on 
each 

frame

Frame features
T x D x H’ x W’

Average Pool over space and time

Clip features: D
Linear

Class scores: C Run 2D CNN on each 
frame, pool features 
and feed to Linear

Intuition: Get high-level appearance 
of each frame, and combine them

17
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Video Classification: Late Fusion (with pooling)

CNNCNNCNN CNN CNN CNN

Input:
T x 3 x H x W

2D CNN on 
each frame

Frame features
T x D x H’ x W’

Average Pool over space and time

Clip features: D
Linear

Class scores: C Run 2D CNN on each 
frame, pool features 
and feed to Linear

Intuition: Get high-level appearance 
of each frame, and combine them
Problem: Hard to compare low-level 
motion between frames

18
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Video Classification: Early Fusion

2D CNN

Input:
T x 3 x H x W

Reshape:
3T x H x W

Class scores: C

Rest of the network 
is standard 2D CNN

Intuition: Compare frames 
with very first conv layer, after 
that normal 2D CNN

First 2D convolution 
collapses all temporal 
information:
Input: 3T x H x W
Output: D x H x W

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

19
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Video Classification: Early Fusion

2D CNN

Input:
T x 3 x H x W

Reshape:
3T x H x W

Class scores: C

Rest of the network 
is standard 2D CNN

Intuition: Compare frames 
with very first conv layer, after 
that normal 2D CNN
Problem: One layer of 
temporal processing may not 
be enough!

First 2D convolution 
collapses all temporal 
information:
Input: 3T x H x W
Output: D x H x W

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
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Video Classification: 3D CNN

3D CNN

Input:
3 x T x H x W

Class scores: C

Intuition: Use 3D versions of 
convolution and pooling to 
slowly fuse temporal 
information over the course of 
the network

Each layer in the network is a 4D 
tensor: D x T x H x W
Use 3D conv and 3D pooling 
operations 

Ji et al, “3D Convolutional Neural Networks for Human Action Recognition”, TPAMI 2010 ; Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

21
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32

32

3

Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial 
locations

activation map

1

28

28

22
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3D Convolution

Class 
Scores

FC 
Layer

Input:
C x T x H x W

6x6x6 conv 5x5x5 conv 4x4x4 conv

23



Stanford CS231n 10th Anniversary Lecture 10 - May 1, 2025

Early Fusion vs Late Fusion vs 3D CNN

Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Late 
Fusion

(Small example 
architectures, in 
practice much bigger)

24
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Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Late 
Fusion

Input

Conv(3x3)

(Small example 
architectures, in 
practice much bigger)

Early Fusion vs Late Fusion vs 3D CNN

25
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Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Late 
Fusion

Input

Pool(4x4)

Conv(3x3)

(Small example 
architectures, in 
practice much bigger)

Early Fusion vs Late Fusion vs 3D CNN
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Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Late 
Fusion

Input

Pool(4x4)

Conv(3x3)

Conv(3x3)

Build slowly in space

(Small example 
architectures, in 
practice much bigger)

Early Fusion vs Late Fusion vs 3D CNN
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Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Late 
Fusion

Input

Pool(4x4)

Conv(3x3)

Conv(3x3)

GlobalAvg

Build slowly in space,
All-at-once in time at end

(Small example 
architectures, in 
practice much bigger)

Early Fusion vs Late Fusion vs 3D CNN
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Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3*20->12) 12 x 64 x 64 20 x 3 x 3
Pool2D(4x4) 12 x 16 x 16 20 x 6 x 6
Conv2D(3x3, 12->24) 24 x 16 x 16 20 x 14 x 14
GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64
Conv3D(3x3x3, 3->12) 12 x 20 x 64 x 64 3 x 3 x 3
Pool3D(4x4x4) 12 x 5 x 16 x 16 6 x 6 x 6
Conv3D(3x3x3, 12->24) 24 x 5 x 16 x 16 14 x 14 x 14
GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Late 
Fusion

Early 
Fusion

3D 
CNN

Build slowly in space,
All-at-once in time at end

Build slowly in space,
All-at-once in time at start

(Small example 
architectures, in 
practice much bigger)

Early Fusion vs Late Fusion vs 3D CNN
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Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3*20->12) 12 x 64 x 64 20 x 3 x 3
Pool2D(4x4) 12 x 16 x 16 20 x 6 x 6
Conv2D(3x3, 12->24) 24 x 16 x 16 20 x 14 x 14
GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64
Conv3D(3x3x3, 3->12) 12 x 20 x 64 x 64 3 x 3 x 3
Pool3D(4x4x4) 12 x 5 x 16 x 16 6 x 6 x 6
Conv3D(3x3x3, 12->24) 24 x 5 x 16 x 16 14 x 14 x 14
GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Late 
Fusion

Early 
Fusion

3D CNN

Build slowly in space,
All-at-once in time at end

Build slowly in space,
All-at-once in time at start

Build slowly in space,
Build slowly in time
”Slow Fusion”

(Small example 
architectures, in 
practice much bigger)

Early Fusion vs Late Fusion vs 3D CNN
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Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3*20->12) 12 x 64 x 64 20 x 3 x 3
Pool2D(4x4) 12 x 16 x 16 20 x 6 x 6
Conv2D(3x3, 12->24) 24 x 16 x 16 20 x 14 x 14
GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64
Conv3D(3x3x3, 3->12) 12 x 20 x 64 x 64 3 x 3 x 3
Pool3D(4x4x4) 12 x 5 x 16 x 16 6 x 6 x 6
Conv3D(3x3x3, 12->24) 24 x 5 x 16 x 16 14 x 14 x 14
GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Late 
Fusion

Early 
Fusion

3D 
CNN

Build slowly in space,
All-at-once in time at end

Build slowly in space,
All-at-once in time at start

Build slowly in space,
Build slowly in time
”Slow Fusion”

What is the 
difference?

(Small example 
architectures, in 
practice much bigger)

Early Fusion vs Late Fusion vs 3D CNN
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)
Input:  Cin x T x H x W
(3D grid with Cin-dim 
feat at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x T x 3 x 3
Slide over x and y

T = 16

Cout different filters

Output: 
Cout x H x W
2D grid with Cout – dim 
feat at each point

W = 224

H = 224

32
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Input:  Cin x T x H x W
(3D grid with Cin-dim feat 
at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x T x 3 x 3
Slide over x and y

Cout different filters

Output: 
Cout x H x W
2D grid with Cout –dim 
feat at each point

W = 224

No temporal shift-invariance! 
Needs to learn separate filters for 
the same motion at different times 
in the clip

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

33
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Input:  Cin x T x H x W
(3D grid with Cin-dim feat 
at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x T x 3 x 3
Slide over x and y

Cout different filters

Output: 
Cout x H x W
2D grid with Cout –dim 
feat at each point

W = 224

No temporal shift-invariance! 
Needs to learn separate filters for 
the same motion at different times 
in the clip

How to recognize blue to orange 
transitions anywhere in space and time?

2D Conv (Early Fusion) vs 3D Conv (3D CNN)
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Input:  Cin x T x H x W
(3D grid with Cin-dim 
feat at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x 3 x 3 x 3
Slide over x and y

T = 3

Cout different filters

Output: 
Cout x T x H x W
3D grid with Cout–dim 
feat at each point

W = 224

H = 224

How to recognize blue to orange 
transitions anywhere in space and time?

2D Conv (Early Fusion) vs 3D Conv (3D CNN)
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Input:  Cin x T x H x W
(3D grid with Cin-dim 
feat at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x 3 x 3 x 3
Slide over x and y

T = 3

Cout different filters

Output: 
Cout x T x H x W
3D grid with Cout–dim 
feat at each point

W = 224

H = 224

How to recognize blue to orange 
transitions anywhere in space and time?

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Temporal shift-invariant since 
each filter slides over time!

36
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Input:  Cin x T x H x W
(3D grid with Cin-dim 
feat at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x 3 x 3 x 3
Slide over x and y

T = 3

Cout different filters

How to recognize blue to orange 
transitions anywhere in space and time?

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Temporal shift-invariant since 
each filter slides over time!

First-layer filters have shape 
3 (RGB) x 4 (frames) x 5 x 5 
(space)
Can visualize as video clips!
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Example Video Dataset: Sports-1M

1 million YouTube videos 
annotated with labels for 487 
different types of sports

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Ground Truth
Correct prediction
Incorrect prediction

38
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77.7 76.8 78.7 80.2
84.4

70

75

80

85

Single
Frame

Early
Fusion

Late
Fusion

3D
CNN

C3D

Sports-1M Top-5 Accuracy

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Single Frame 
model works well –
always try this first!

3D CNNs have 
improved a lot 
since 2014!

Early Fusion vs Late Fusion vs 3D CNN
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C3D: The VGG of 3D CNNs Layer Size

Input 3 x 16 x 112 x 112

Conv1 (3x3x3) 64 x 16 x 112 x 112
Pool1 (1x2x2) 64 x 16 x 56 x 56

Conv2 (3x3x3) 128 x 16 x 56 x 56
Pool2 (2x2x2) 128 x 8 x 28 x 28

Conv3a (3x3x3) 256 x 8 x 28 x 28

Conv3b (3x3x3) 256 x 8 x 28 x 28
Pool3 (2x2x2) 256 x 4 x 14 x 14

Conv4a (3x3x3) 512 x 4 x 14 x 14

Conv4b (3x3x3) 512 x 4 x 14 x 14
Pool4 (2x2x2) 512 x 2 x 7 x 7

Conv5a (3x3x3) 512 x 2 x 7 x 7

Conv5b (3x3x3) 512 x 2 x 7 x 7
Pool5 512 x 1 x 3 x 3

FC6 4096
FC7 4096
FC8 C

3D CNN that uses all 3x3x3 conv and 
2x2x2 pooling 
(except Pool1 which is 1x2x2)

Released model pretrained on 
Sports-1M: Many people used this as 
a video feature extractor

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015
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C3D: The VGG of 3D CNNs Layer Size MFLOPs

Input 3 x 16 x 112 x 112

Conv1 (3x3x3) 64 x 16 x 112 x 112 1.04
Pool1 (1x2x2) 64 x 16 x 56 x 56

Conv2 (3x3x3) 128 x 16 x 56 x 56 11.10
Pool2 (2x2x2) 128 x 8 x 28 x 28

Conv3a (3x3x3) 256 x 8 x 28 x 28 5.55

Conv3b (3x3x3) 256 x 8 x 28 x 28 11.10
Pool3 (2x2x2) 256 x 4 x 14 x 14

Conv4a (3x3x3) 512 x 4 x 14 x 14 2.77

Conv4b (3x3x3) 512 x 4 x 14 x 14 5.55
Pool4 (2x2x2) 512 x 2 x 7 x 7

Conv5a (3x3x3) 512 x 2 x 7 x 7 0.69

Conv5b (3x3x3) 512 x 2 x 7 x 7 0.69
Pool5 512 x 1 x 3 x 3

FC6 4096 0.51
FC7 4096 0.45
FC8 C 0.05

3D CNN that uses all 3x3x3 conv and 
2x2x2 pooling 
(except Pool1 which is 1x2x2)

Released model pretrained on 
Sports-1M: Many people used this as 
a video feature extractor

Problem: 3x3x3 conv is very 
expensive! 
AlexNet: 0.7 GFLOP
VGG-16: 13.6 GFLOP
C3D: 39.5 GFLOP (2.9x VGG!)

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015
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77.7 76.8 78.7 80.2
84.4

70

75

80

85

Single
Frame

Early
Fusion

Late
Fusion

3D
CNN

C3D

Sports-1M Top-5 Accuracy

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015

Early Fusion vs Late Fusion vs 3D CNN
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Recognizing Actions from Motion

Johansson, “Visual perception of biological motion and a model for its analysis.” Perception & Psychophysics. 14(2):201-211. 1973.

We can easily recognize actions using only motion information 
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Measuring Motion: Optical Flow
Image at frame t

Image at frame t+1

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014
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Image at frame t

Image at frame t+1

Optical flow gives a 
displacement field F between 
images It and It+1

Tells where each pixel will 
move in the next frame:
F(x, y) = (dx, dy)
It+1(x+dx, y+dy) = It(x, y)

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Measuring Motion: Optical Flow
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Image at frame t

Image at frame t+1

Optical flow gives a 
displacement field F between 
images It and It+1

Tells where each pixel will 
move in the next frame:
F(x, y) = (dx, dy)
It+1(x+dx, y+dy) = It(x, y)

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Measuring Motion: Optical Flow

Vertical Flow dy

Optical Flow highlights 
local motion

Horizontal flow dx

46
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Separating Motion and Appearance: Two-Stream Networks

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Input: Stack of optical flow:
[2*(T-1)] x H x W

Early fusion: First 2D conv 
processes all flow images

Input: Single Image
3 x H x W

47
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65.4
73

83.7 86.9 88

50
60
70
80
90

3D CNN Spatial only Temporal
only

Two-stream
(fuse by
average)

Two-stream
(fuse by
SVM)

Accuracy on UCF-101

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Separating Motion and Appearance: Two-Stream Networks
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Modeling long-term temporal structure

First event Second event3D 
CNN

~5 seconds

So far all our temporal CNNs only model local 
motion between frames in very short clips of ~2-5 
seconds. What about long-term structure?

Time

49



Stanford CS231n 10th Anniversary Lecture 10 - May 1, 2025

Modeling long-term temporal structure

First event Second event3D 
CNN

~5 seconds
Time

We know how to handle 
sequences! How about 
recurrent networks?

So far all our temporal CNNs only model local 
motion between frames in very short clips of ~2-5 
seconds. What about long-term structure?
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Modeling long-term temporal structure

CNN

Time

CNN CNN CNN CNN

Extract 
features 

with CNN 
(2D or 3D)
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Modeling long-term temporal structure

CNN

Time

CNN CNN CNN CNN

Extract 
features 

with CNN 
(2D or 3D)

Process local features using recurrent network (e.g. LSTM)
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Modeling long-term temporal structure

CNN

Time

CNN CNN CNN CNN

Extract 
features 

with CNN 
(2D or 3D)

Process local features using recurrent network (e.g. LSTM)
Many to one: One output at end of video
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Modeling long-term temporal structure

CNN

Time

CNN CNN CNN CNN

Extract 
features 

with CNN 
(2D or 3D)

Process local features using recurrent network (e.g. LSTM)
Many to many: one output per video frame
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Modeling long-term temporal structure

CNN

Time

CNN CNN CNN CNN

Extract 
features 

with CNN 
(2D or 3D)

Sometimes don’t backprop to CNN to save memory; 
pretrain and use it as a feature extractor

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015
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Modeling long-term temporal structure

CNN

Time

CNN CNN CNN CNN

Extract 
features 

with CNN 
(2D or 3D)

Inside CNN: Each value is a function of a fixed temporal window (local temporal structure)
Inside RNN: Each vector is a function of all previous vectors (global temporal structure)

Can we merge both approaches?

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015
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Recall: Multi-layer RNN

time

depth x0 x1 x2 x3 x4 x5 x6

h2
0 h2

1 h2
2 h2

3 h2
4 h2

5 h2
6

y0 y1 y2 y3 y4 y5 y6

h1
0 h1

1 h1
2 h1

3 h1
4 h1

5 h1
6

Three-layer RNN

h3
0 h31 h32 h3

3 h3
4 h3

5 h3
6

We can use a similar 
structure to process 
videos!
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Recurrent Convolutional Network

2D conv 2D conv 2D conv 2D conv

Layer 2

Layer 1

Layer 3

Entire network 
uses 2D feature 
maps: C x H x W 

Each depends on 
two inputs:
1. Same layer, 
previous timestep
2. Prev layer, 
same timestep

Use different weights 
at each layer, share 
weights across time

Ballas et al, “Delving Deeper into 
Convolutional Networks for Learning 
Video Representations”, ICLR 2016
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Input features:
C x H x W

Output features:
C x H x W

2D Conv

Normal 2D CNN:

Recurrent Convolutional Network
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Recurrent Convolutional Network

Features for layer 
L, timestep t

Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016

new state old state

some function
with parameters W

Recall: Recurrent Network

RNN-like 
recurrence

Features from layer 
L-1, timestep t

Features from layer L, 
timestep t-1
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Features from layer 
L-1, timestep t

Features for layer 
L, timestep t

Features from layer L, 
timestep t-1

Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016

Recall: Vanilla RNN

ℎ!"# = tanh(𝑊$ℎ! +𝑊%𝑥)

Replace all matrix multiply 
with 2D convolution!

2D Conv

2D Conv

𝑊!

𝑊"

+ tanh

Recurrent Convolutional Network
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Modeling long-term temporal structure

CNN

Time

CNN

Recurrent
CNN

CNN: finite 
temporal extent
(convolutional)

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015

Recurrent
CNN

RNN: Infinite 
temporal extent

(fully-connected)

Time

Recurrent CNN: Infinite 
temporal extent
(convolutional)

Ballas et al, “Delving Deeper into Convolutional Networks for 
Learning Video Representations”, ICLR 2016
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Modeling long-term temporal structure

CNN

Time

CNN

Recurrent
CNN

CNN: finite 
temporal extent
(convolutional)

Recurrent
CNN

RNN: Infinite 
temporal extent

(fully-connected)

Time

Recurrent CNN: Infinite 
temporal extent
(convolutional)

Problem: RNNs are slow for long 
sequences (can’t be parallelized)

63

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015

Ballas et al, “Delving Deeper into Convolutional Networks for 
Learning Video Representations”, ICLR 2016
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mul(→) + add (↑)

Recall: Self-Attention

Al
ig

nm
en

t

q0

At
te

nt
io

n

Inputs:
Input vectors: x (shape: N x D)

softmax (↑)

y1 Outputs:
context vectors: y (shape: Dv)

Operations:
Key vectors: k = xWk
Value vectors: v = xWv
Query vectors: q = xWq
Alignment: ei,j = qj ᐧ ki / √D
Attention: a = softmax(e)
Output: yj = ∑i ai,jvi

x2

x1

x0

e2,0

e1,0

e0,0

a2,0

a1,0

a0,0

e2,1

e1,1

e0,1

e2,2

e1,2

e0,2

a2,1

a1,1

a0,1

a2,2

a1,2

a0,2

q1 q2

y2y0

In
pu

t v
ec

to
rs

k2

k1

k0

v2

v1

v0

x2x1x0

self-attention

y1 y2y0
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Spatio-Temporal Self-Attention (Nonlocal Block)

3D 
CNN

Features: 
C x T x H x W

Wang et al, “Non-local neural networks”, CVPR 2018

Nonlocal Block

Input clip
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Spatio-Temporal Self-Attention (Nonlocal Block)

3D 
CNN

Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

1x1x1 Conv

Wang et al, “Non-local neural networks”, CVPR 2018

Nonlocal Block

Input clip
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Spatio-Temporal Self-Attention (Nonlocal Block)

3D 
CNN

Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

x

Transpose

softmax

Attention Weights
(THW) x (THW)

1x1x1 Conv

Wang et al, “Non-local neural networks”, CVPR 2018

Nonlocal Block

Input clip
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Spatio-Temporal Self-Attention (Nonlocal Block)

3D 
CNN

Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

x

Transpose

softmax

Attention Weights
(THW) x (THW)

x

C’ x T x H x W

1x1x1 Conv

Wang et al, “Non-local neural networks”, CVPR 2018

Nonlocal Block

Input clip
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Spatio-Temporal Self-Attention (Nonlocal Block)

3D 
CNN

Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

x

Transpose

softmax

Attention Weights
(THW) x (THW)

x

C’ x T x H x W

1x1x1 Conv

C x T x H x W

1x1x1 Conv

Wang et al, “Non-local neural networks”, CVPR 2018

Nonlocal Block

Input clip
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Spatio-Temporal Self-Attention (Nonlocal Block)

3D 
CNN

Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

x

Transpose

softmax

Attention Weights
(THW) x (THW)

x

C’ x T x H x W

1x1x1 Conv

+

C x T x H x W

Residual Connection

1x1x1 Conv

Wang et al, “Non-local neural networks”, CVPR 2018

Nonlocal Block

Input clip
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Spatio-Temporal Self-Attention (Nonlocal Block)
Input clip

3D CNN

Wang et al, “Non-local neural networks”, CVPR 2018

Nonlocal Block

Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

x

Transpose

softmax

Attention Weights
(THW) x (THW)

x

C’ x T x H x W

1x1x1 Conv

+
C x T x H x W

Residual Connection

1x1x1 Conv

3D CNN 3D CNN
Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

x

Transpose

softmax

Attention Weights
(THW) x (THW)

x

C’ x T x H x W

1x1x1 Conv

+
C x T x H x W

Residual Connection

1x1x1 Conv

Running

We can add nonlocal blocks into existing 3D CNN architectures.
But what is the best 3D CNN architecture?

Nonlocal Block
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Inflating 2D Networks to 3D (I3D)
There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version
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There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

Previous layer

3x3 Conv 1x1 Conv

3x3 
MaxPool

Concatenate

1x1 Conv1x1 Conv

5x5 Conv

1x1 Conv

Inception Block: Original

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version

Inflating 2D Networks to 3D (I3D)
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There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

Previous layer

3x3x3 
Conv

1x1x1 
Conv

3x3x3 
MaxPool

Concatenate

1x1x1 
Conv

1x1x1 
Conv

5x5x5 
Conv

1x1x1 
Conv

Inception Block: Inflated

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version

Inflating 2D Networks to 3D (I3D)
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There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version

Can use weights of 2D conv to 
initialize 3D conv: copy Kt times in 
space and divide by Kt
This gives the same result as 2D conv 
given “constant” video input

2D conv kernel:
Cin x Kh x Kw

3D conv kernel:
Cin x Kt x Kh x Kw

Input:
3 x H x W

Input:
3 x Kt x H x W

Copy kernel Kt
times, divide 
by Kt

Output:
H x W

Output:
1 x H x W

Duplicate input Kt
times

Output is the 
same!

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Inflating 2D Networks to 3D (I3D)
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There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

57.9
53.9

62.8
68.4

71.6

62.2 63.3 65.6
71.1

74.2

40
45
50
55
60
65
70
75
80

Per-frame
CNN

CNN+LSTM Two-stream
CNN

Inflated CNN Two-stream
inflated CNN

Top-1 Accuracy on Kinetics-400

Train from scratch Pretrain on ImageNet

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017 All using Inception CNN

Inflating 2D Networks to 3D (I3D)

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version

Can use weights of 2D conv to 
initialize 3D conv: copy Kt times in 
space and divide by Kt
This gives the same result as 2D conv 
given “constant” video input
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Bertasius et al, “Is Space-Time Attention All You Need for Video 
Understanding?”, ICML 2021
Arnab et al, “ViViT: A Video Vision Transformer”, ICCV 2021
Neimark et al, “Video Transformer Network”, ICCV 2021

Fan et al, “Multiscale Vision Transformers”, ICCV 2021
Li et al, “MViTv2: Improved Multiscale Vision 
Transformers for Classification and Detection”, CVPR 
2022

Factorized attention: 
Attend over space / time

Pooling module: 
Reduce number of tokens

Vision Transformers for Video

77

Video masked autoencoders: 
Efficient scalable pretraining

Wang et al. VideoMAE V2: Scaling Video Masked
Autoencoders with Dual Making. CVPR 2023.
Tong et al. Video MAE: Masked Autoencoders are Data-
Efficient Learners for Self-Supervised Video Pre-Training.
NeurIPS 2022.
Feichtenhofer et al. Masked autoencoders as
spatiotemporal learners. NeurIPS 2022.
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Vision Transformers for Video

78

0

10

20

30

40

50

60

70

80

90

100

Per-frame
CNN

CNN+LSTM Two-Stream
CNN

I3D Inflated I3D SlowFast
16x8+NL

MViTv2-L VideoMAE
V2-g

Top-1 Accuracy on Kinetics-400

62.2 63.3 65.6 71.1 74.2
79.8

86.1 90
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Visualizing Video Models
Image

Flow

Forward: Compute class score

Backward: Compute gradient

”weightlifting
” score

Figure credit: Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014
Feichtenhofer et al, “What have we learned from deep representations for action recognition?”, CVPR 2018
Feichtenhofer et al, “Deep insights into convolutional networks for video recognition?”, IJCV 2019. 

Add a term to encourage spatially 
smooth flow; tune penalty to pick out 
“slow” vs “fast” motion
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Fast motion appearance

Appearance “Slow” motion “Fast” motion

Feichtenhofer et al, “What have we learned from deep 
representations for action recognition?”, CVPR 2018
Feichtenhofer et al, “Deep insights into convolutional 
networks for video recognition?”, IJCV 2019. 
Slide credit: Christoph Feichtenhofers

Can you guess the action? 

80
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Can you guess the action?   Weightlifting 

Fast motion appearance

Appearance “Slow” motion “Fast” motion

”Bar Shaking” “Push overhead”
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Can you guess the action?

Fast motion appearance

Appearance “Slow” motion “Fast” motion

”Bar Shaking” “Push overhead”Fast motion appearance
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Can you guess the action?   Apply Eye Makeup 

Fast motion appearance

Appearance “Slow” motion “Fast” motion

”Bar Shaking” “Push overhead”Fast motion appearance
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So far: Classify short clips

Swimming
Running
Jumping
Eating
Standing

Videos: Recognize actions
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Temporal Action Localization

Running Jumping

Given a long untrimmed video sequence, identify 
frames corresponding to different actions

Chao et al, ” Rethinking the Faster R-CNN Architecture for Temporal Action Localization”, CVPR 2018

Can use architecture similar to Faster R-CNN: first 
generate temporal proposals then classify
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Spatio-Temporal Detection
Given a long untrimmed video, detect all the people in both
space and time and classify the activities they are performing.
Some examples from AVA Dataset:

Gu et al, “AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions”, CVPR 2018
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… …

Today: Temporal Stream

3D CNN, Two-Stream Neural Network, Spatial-Temporal Self-Attention……

87
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Stanford CS231n 10th Anniversary Lecture 10 - May 1, 2025(McGurk & McDonald 1976)

Ba Ba Ba …

Video source: BBC
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Multisensory fusion

(McGurk & McDonald 1976)

Fa Fa Fa …

Video source: BBC
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Visually-guided audio source separation

[Gao et al. ECCV 2018, Afouras et al. Interspeech’18, Gabby et al. Interspeech’18, Owens & Efros ECCV’18, Ephrat et al.
SIGGRAPH’18, Zhao et al. ECCV 2018, Gao & Grauman ICCV 2019, Zhao et al. ICCV 2019, Xu et al. ICCV 2019, Gan et al.

CVPR 2020, Gao et al. CVPR 2021, Tzinis et al. ECCV 2022, Chen et al. CVPR 2023]
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Speech mixture

Gao et al., VisualVoice, CVPR 2021
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Separated voice for the left speaker

Gao et al., VisualVoice, CVPR 2021
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Separated voice for the right speaker

Gao et al., VisualVoice, CVPR 2021
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Gao & Grauman, Co-Separating Sounds of Visual Objects, ICCV 2019

Train on 100,000 unlabeled multi-source video clips, 
then separate audio for novel video.

Musical instruments source separation

96



Stanford CS231n 10th Anniversary Lecture 10 - May 1, 2025

Audio-Visual Video Understanding

Attention Bottlenecks for Multimodal Fusion, Nagrani et al. NeurIPS 2021

Audio-Adaptive Activity Recognition Across Video Domains,
Zhang et al. CVPR 2022

97

Audio-Visual Masked Autoencoders. Georgescu et al. ICCV 2023.
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Action recognition in long videos

98

Efficient Video Understanding

Image Credit: Korbar et al.
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SCSampler: Sampling Salient Clips from Video for 
Efficient Action Recognition. Korbar et al. ICCV 2019

AdaMML: Adaptive Multi-Modal Learning for Efficient Video
Recognition. Pandal et al. ICCV 2021

MoViNets: Mobile Video Networks for Efficient Video Recognition.
Kondratyuk et al. CVPR 2021

99

X3D: Expanding Architecture for Efficient Video Recognition.
Christoph Feichtenhofer. CVPR 2020.

Efficient Video Understanding
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IndexIQue
ry

I(⋅)

IndexA
QueryA(⋅)

LSTM

h!

Fusion layer

#z!𝐈

#z!𝐀

LSTM

h!$$

Fusion layer

h!
Step 𝒕

#z!%$𝐈

#z!%$𝑨

Step 𝑡+1

Audio as a preview mechanism for efficient action recognition

Audio feature

Image feature

Gao et al., Listen to Look: Action Recognition by Previewing Audio, CVPR 2020

100

Efficient Video Understanding
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Ego-Exo Conversational Graph Prediction

Multimodal Egocentric Video Understanding

T

Camera

Microphone array

The Audio-Visual Conversational Graph: From and Egocentric-Exocentric Perspective. Jia et al. CVPR 2024
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Video Understanding + LLMs

102

Video-LLaVA: Learning United Visual Representations
by Alignment Before Projection. Lin et al. EMNLP 2024

Video-ChatGPT: Towards Detailed Video Understanding via
Large Vision and Language Models. Maaz et al. ACL 2024.

VideoLLaMA 3: Frontier Multimodal Foundation Models 
for Video Understanding. Zhang et al. arXiv 2025
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Next time: Large Scale Distributed Training

103


