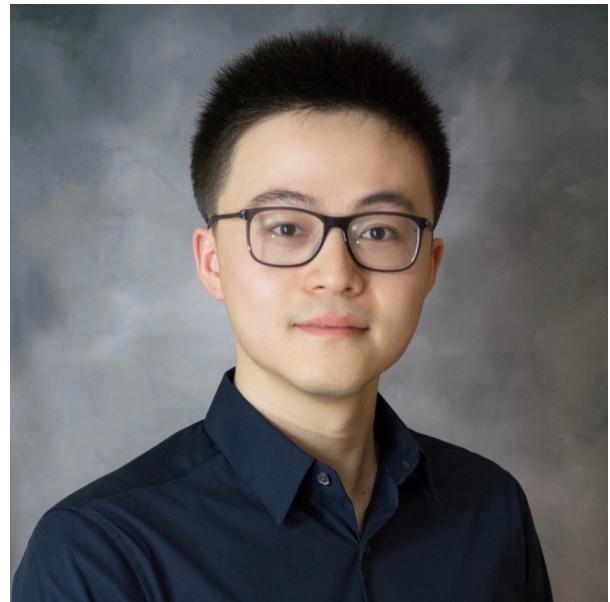


Lecture 10: Video Understanding

Instructor today



Ruohan Gao

<https://ruohangao.github.io/>

I taught CS231N at Stanford
from 2021-2023

Teaching multimodal
compute vision now.

Ph.D. at UT Austin

Postdoc at Stanford

Some time at Meta

University of Maryland,
College Park

Recall: (2D) Image classification

[This image](#) by [Nikita](#) is
licensed under [CC-BY 2.0](#)

(assume given a set of possible labels)
{dog, cat, truck, plane, ...}

cat

Last Lecture: (2D) Detection and Segmentation

Classification

CAT

No spatial extent

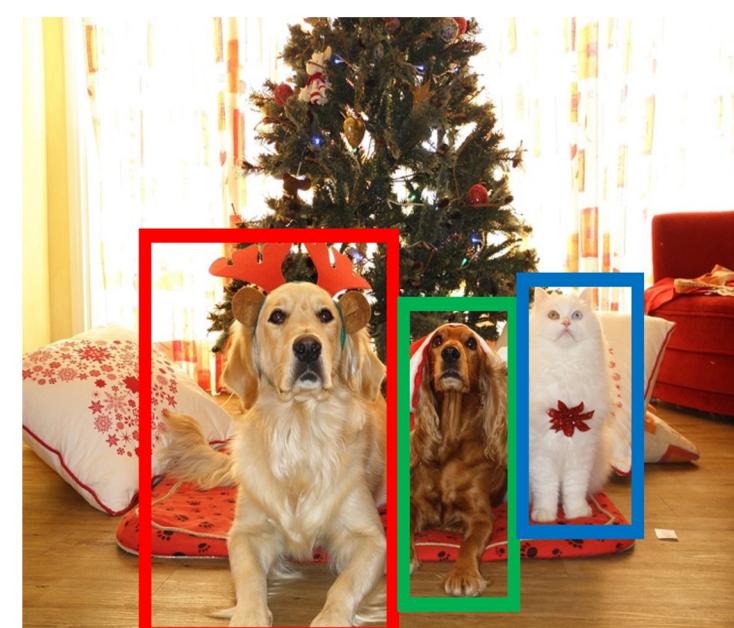
Semantic
Segmentation



GRASS, CAT, TREE,
SKY

No objects, just pixels

Object
Detection



DOG, DOG, CAT

Multiple Objects

Instance
Segmentation

DOG, DOG, CAT

[This image](#) is CC0 public domain

Living room

Dog

Baby

Today: Video = 2D + Time

A video is a sequence of images

4D tensor: $T \times 3 \times H \times W$
(or $3 \times T \times H \times W$)



[This image is CC0 public domain](#)

Example task: Video Classification

Input video:

$T \times 3 \times H \times W$

Swimming
Running
Jumping
Eating
Standing

[Running video](#) is in the [public domain](#)

Example task: Video Classification

Images: Recognize objects

Dog
Cat
Fish
Truck

Videos: Recognize actions

Swimming
Running
Jumping
Eating
Standing

[Running video](#) is in the [public domain](#)

Problem: Videos are big!

Videos are ~30 frames per second (fps)

Size of uncompressed video
(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute

HD (1920 x 1080): ~10 GB per minute

Input video:

$T \times 3 \times H \times W$

Problem: Videos are big!

Videos are ~30 frames per second (fps)

Input video:
 $T \times 3 \times H \times W$

Size of uncompressed video
(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute
HD (1920 x 1080): ~10 GB per minute

Solution: Train on short clips: low
fps and low spatial resolution
e.g. $T = 16$, $H=W=112$
(3.2 seconds at 5 fps, 588 KB)

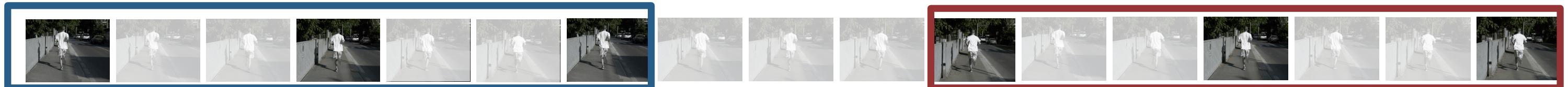
Training on Clips

Raw video: Long, high FPS

Training on Clips

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS



Training on Clips

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

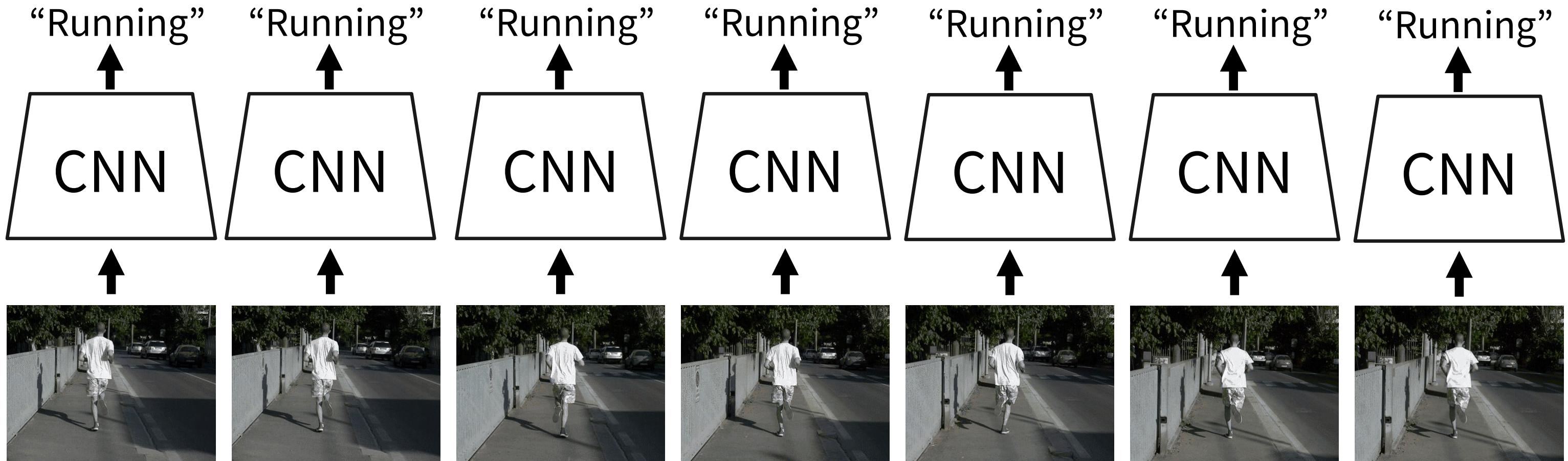
Testing: Run model on different clips, average predictions

Video Classification: Single-Frame CNN

Simple idea: train normal 2D CNN to classify video frames independently!

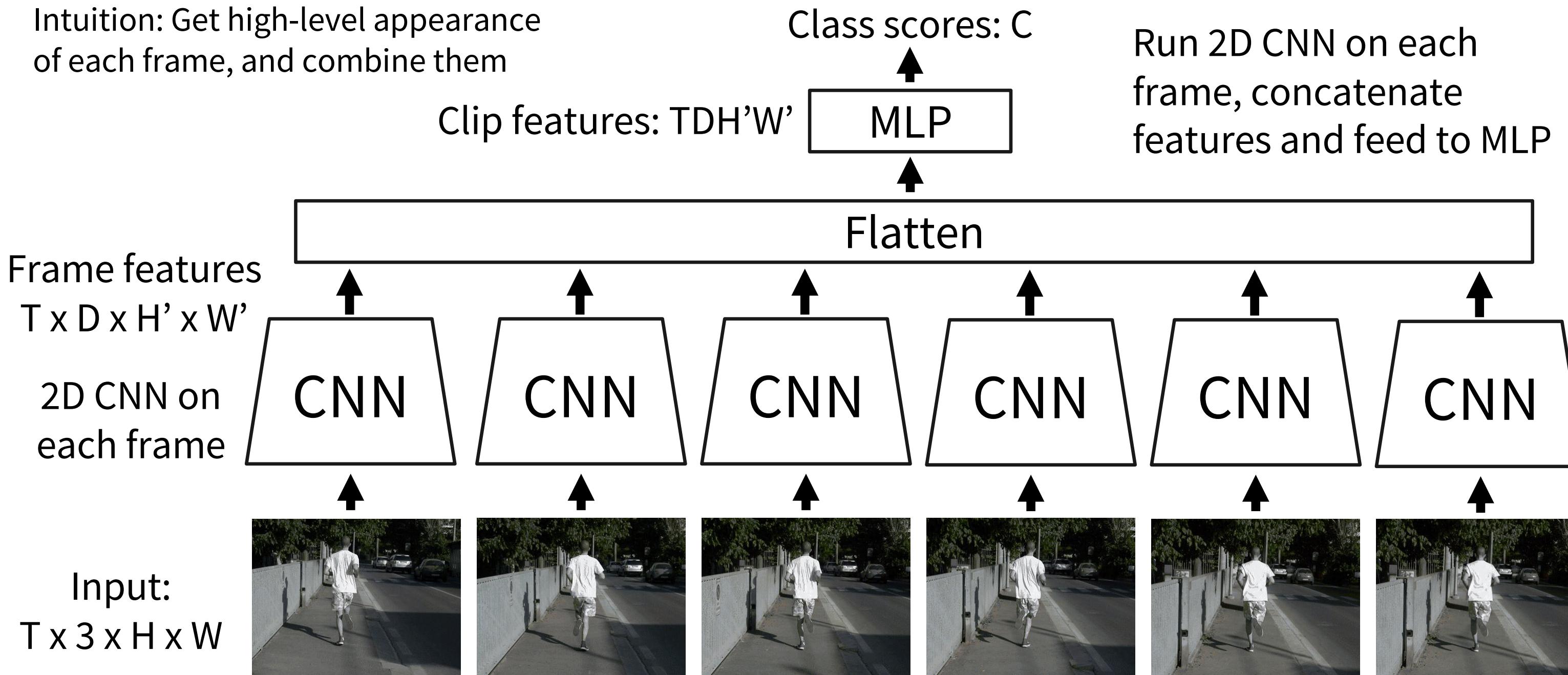
(Average predicted probs at test-time)

Often a very strong baseline for video classification



Video Classification: Late Fusion (with FC layers)

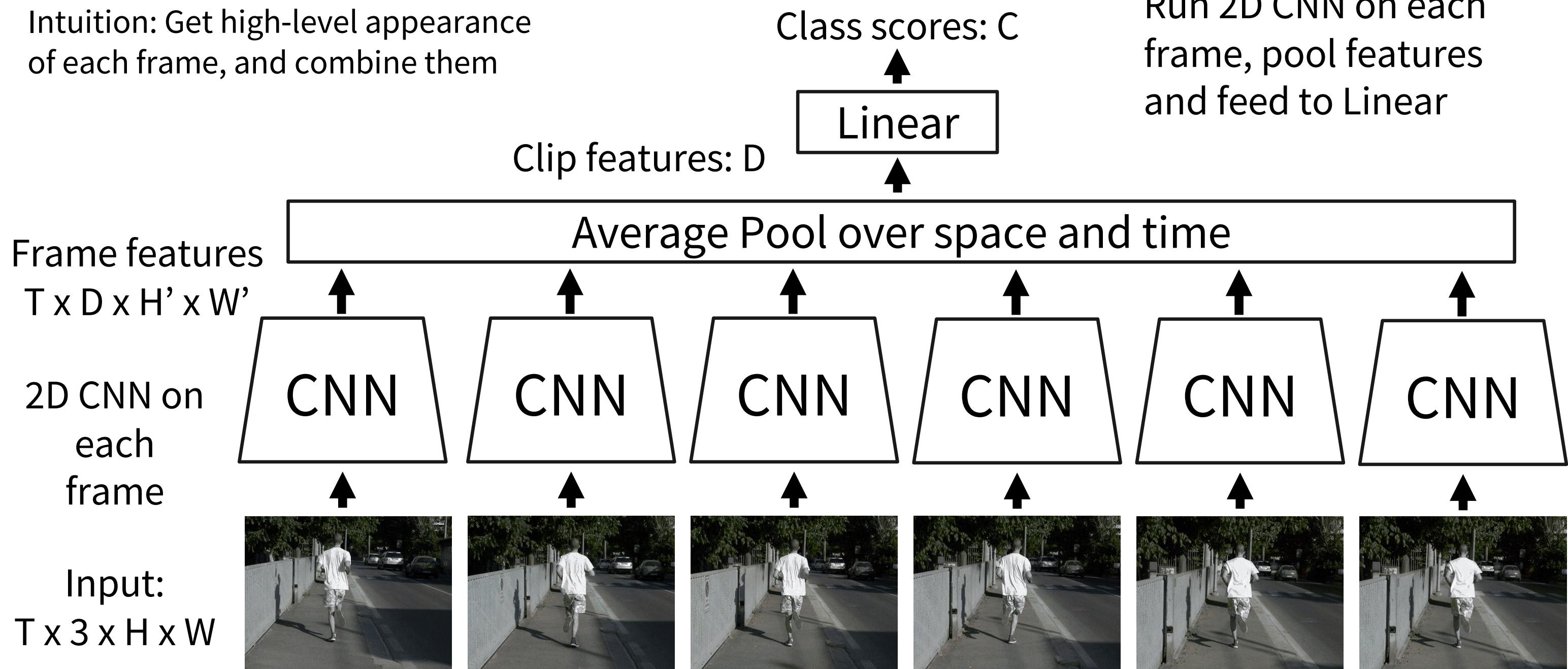
Intuition: Get high-level appearance of each frame, and combine them



Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

Video Classification: Late Fusion (with pooling)

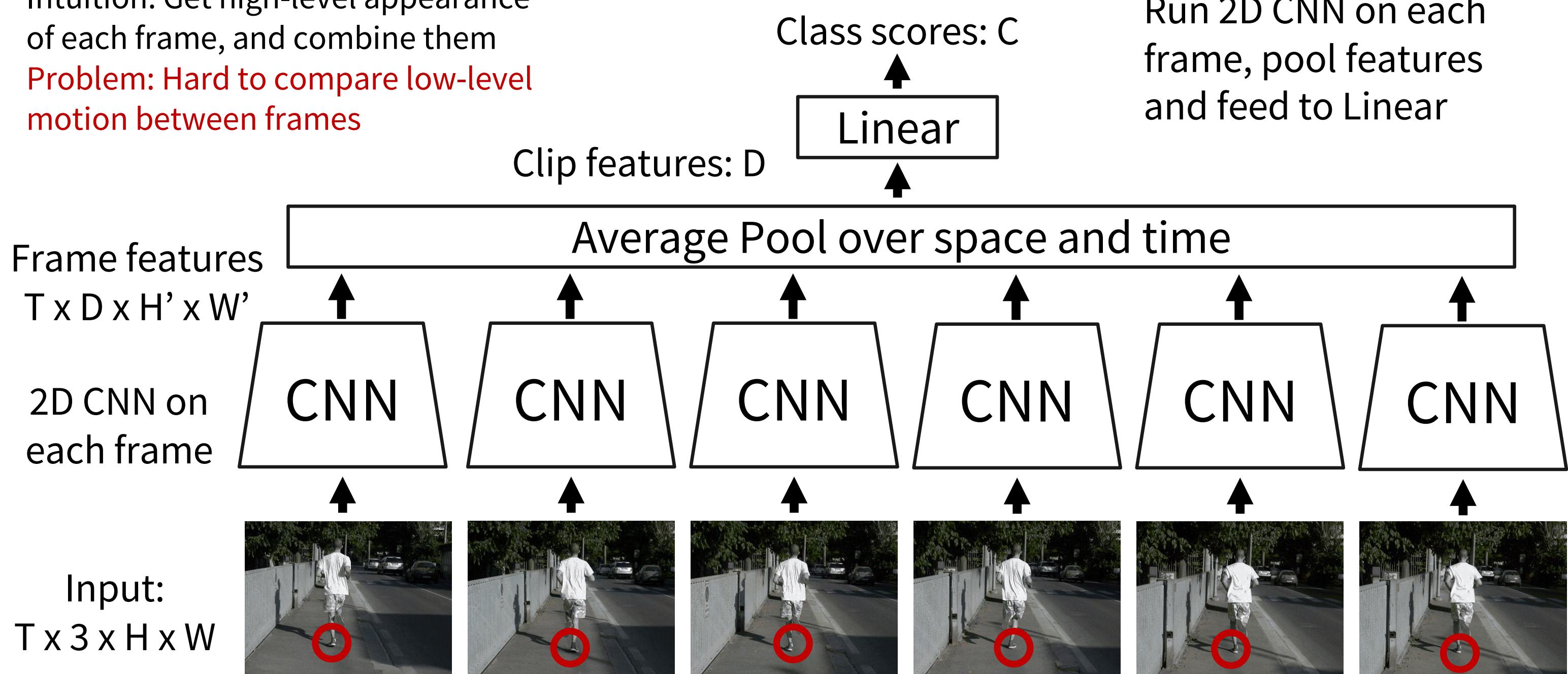
Intuition: Get high-level appearance of each frame, and combine them



Video Classification: Late Fusion (with pooling)

Intuition: Get high-level appearance of each frame, and combine them

Problem: Hard to compare low-level motion between frames



Video Classification: Early Fusion

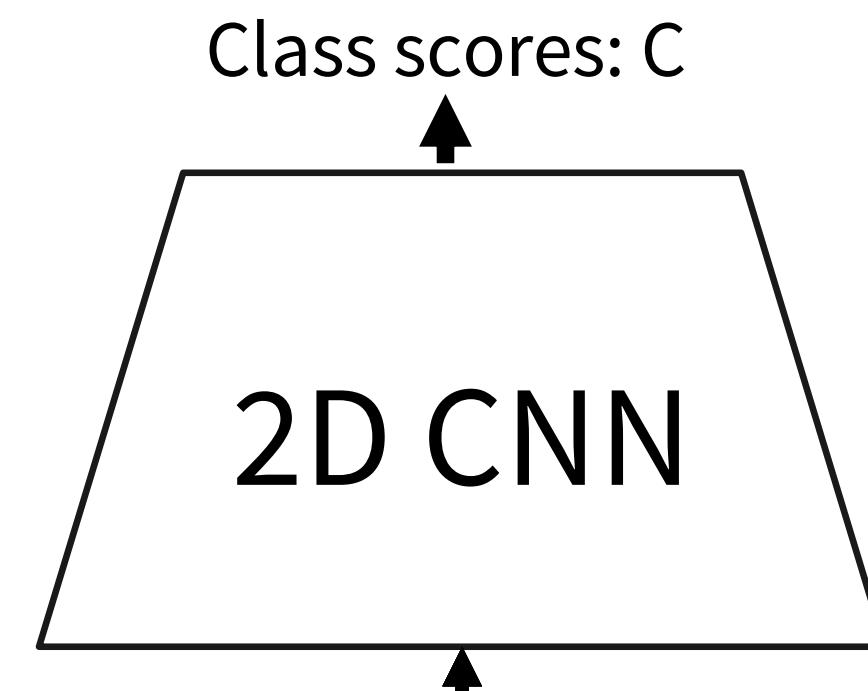
Intuition: Compare frames with very first conv layer, after that normal 2D CNN

Reshape:
 $3T \times H \times W$

Input:
 $T \times 3 \times H \times W$

First 2D convolution collapses all temporal information:

Input: $3T \times H \times W$
Output: $D \times H \times W$



Rest of the network is standard 2D CNN

Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

Video Classification: Early Fusion

Intuition: Compare frames with very first conv layer, after that normal 2D CNN

Problem: One layer of temporal processing may not be enough!

Reshape:
 $3T \times H \times W$

Input:
 $T \times 3 \times H \times W$

Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

Video Classification: 3D CNN

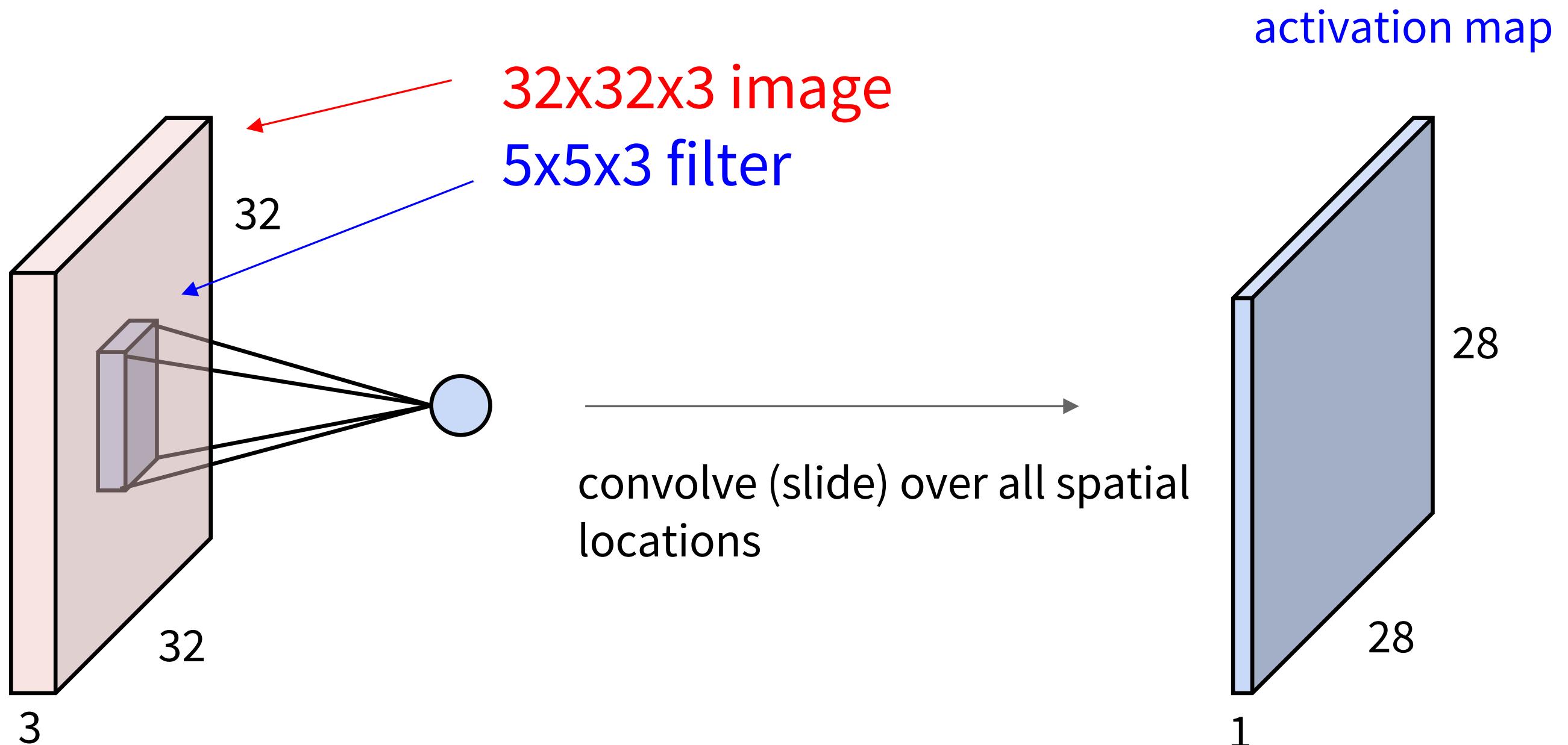
Intuition: Use 3D versions of convolution and pooling to slowly fuse temporal information over the course of the network

Each layer in the network is a 4D tensor: $D \times T \times H \times W$
Use 3D conv and 3D pooling operations

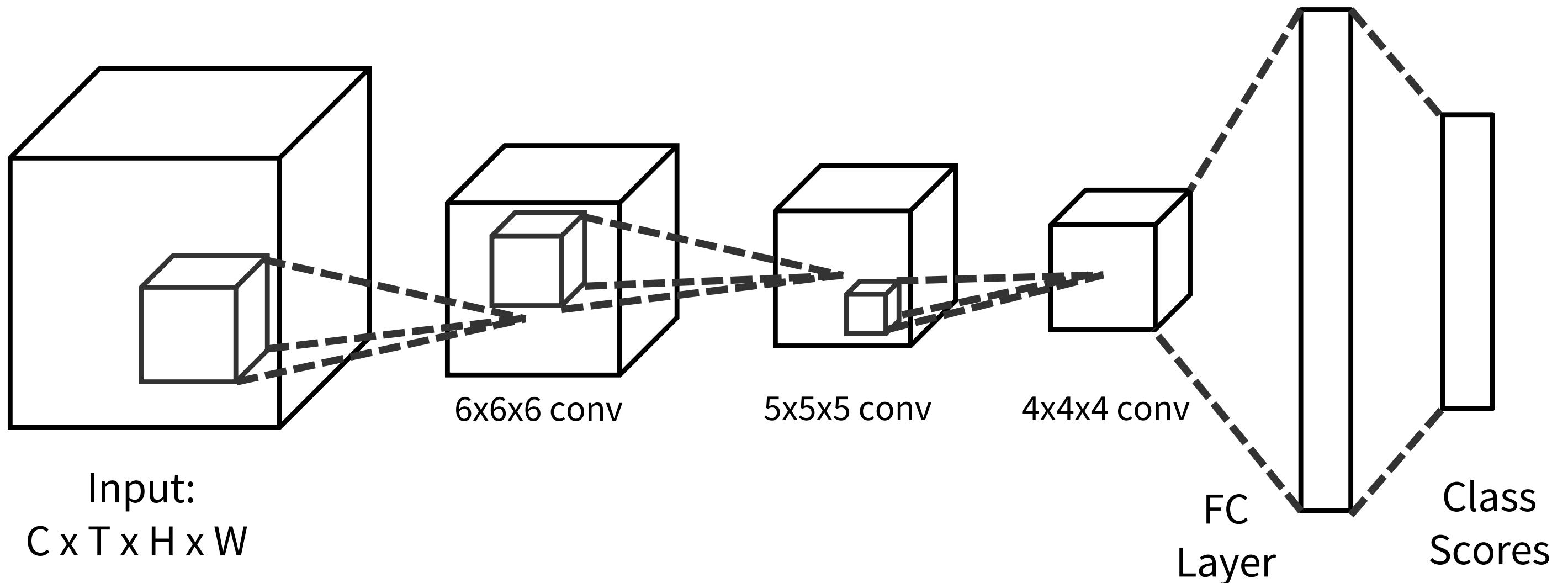
Input:
 $3 \times T \times H \times W$

Ji et al, "3D Convolutional Neural Networks for Human Action Recognition", TPAMI 2010 ; Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

Convolution Layer



3D Convolution



Early Fusion vs Late Fusion vs 3D CNN

Late
Fusion

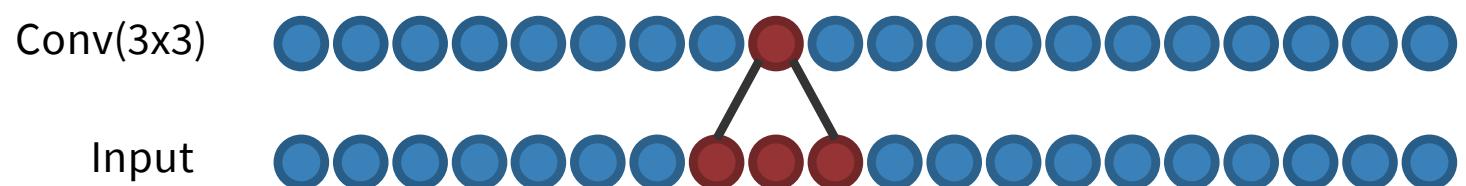
Layer	Size $(C \times T \times H \times W)$	Receptive Field $(T \times H \times W)$
Input	$3 \times 20 \times 64 \times 64$	
Conv2D(3x3, 3->12)	$12 \times 20 \times 64 \times 64$	$1 \times 3 \times 3$

(Small example
architectures, in
practice much bigger)

Early Fusion vs Late Fusion vs 3D CNN

Late
Fusion

Layer	Size $(C \times T \times H \times W)$	Receptive Field $(T \times H \times W)$
Input	$3 \times 20 \times 64 \times 64$	
Conv2D(3×3 , $3 \rightarrow 12$)	$12 \times 20 \times 64 \times 64$	$1 \times 3 \times 3$

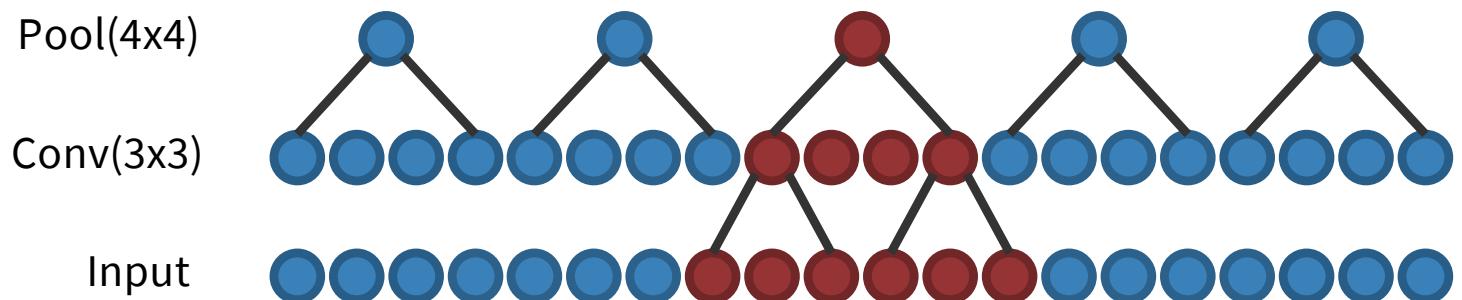


(Small example
architectures, in
practice much bigger)

Early Fusion vs Late Fusion vs 3D CNN

Late
Fusion

Layer	Size $(C \times T \times H \times W)$	Receptive Field $(T \times H \times W)$
Input	$3 \times 20 \times 64 \times 64$	
Conv2D(3×3 , $3 \rightarrow 12$)	$12 \times 20 \times 64 \times 64$	$1 \times 3 \times 3$
Pool2D(4×4)	$12 \times 20 \times 16 \times 16$	$1 \times 6 \times 6$



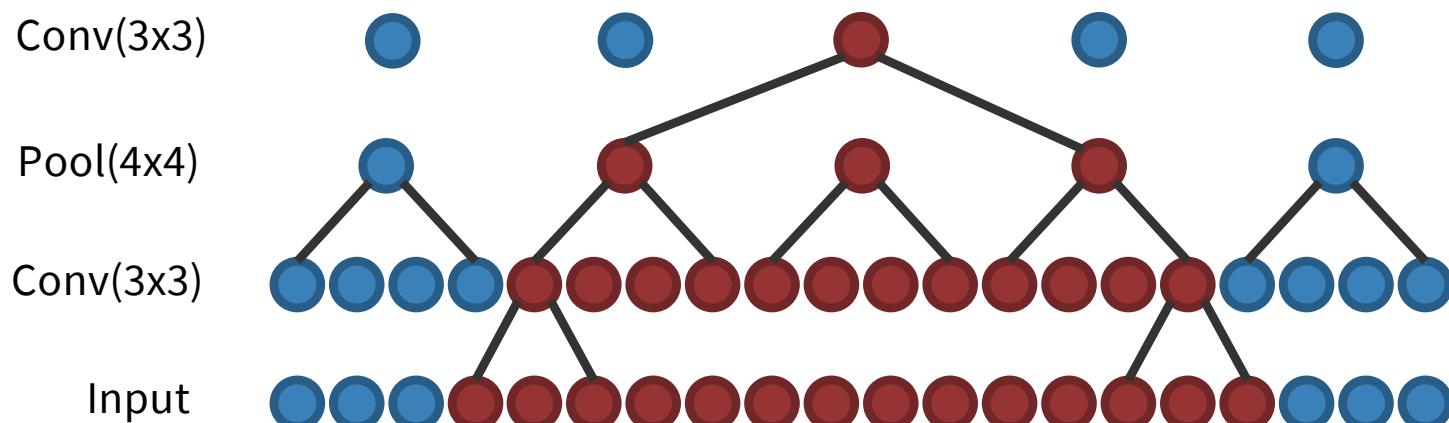
(Small example
architectures, in
practice much bigger)

Early Fusion vs Late Fusion vs 3D CNN

Late
Fusion

Layer	Size $(C \times T \times H \times W)$	Receptive Field $(T \times H \times W)$
Input	$3 \times 20 \times 64 \times 64$	
Conv2D(3x3, 3->12)	$12 \times 20 \times 64 \times 64$	$1 \times 3 \times 3$
Pool2D(4x4)	$12 \times 20 \times 16 \times 16$	$1 \times 6 \times 6$
Conv2D(3x3, 12->24)	$24 \times 20 \times 16 \times 16$	$1 \times 14 \times 14$

Build slowly in space



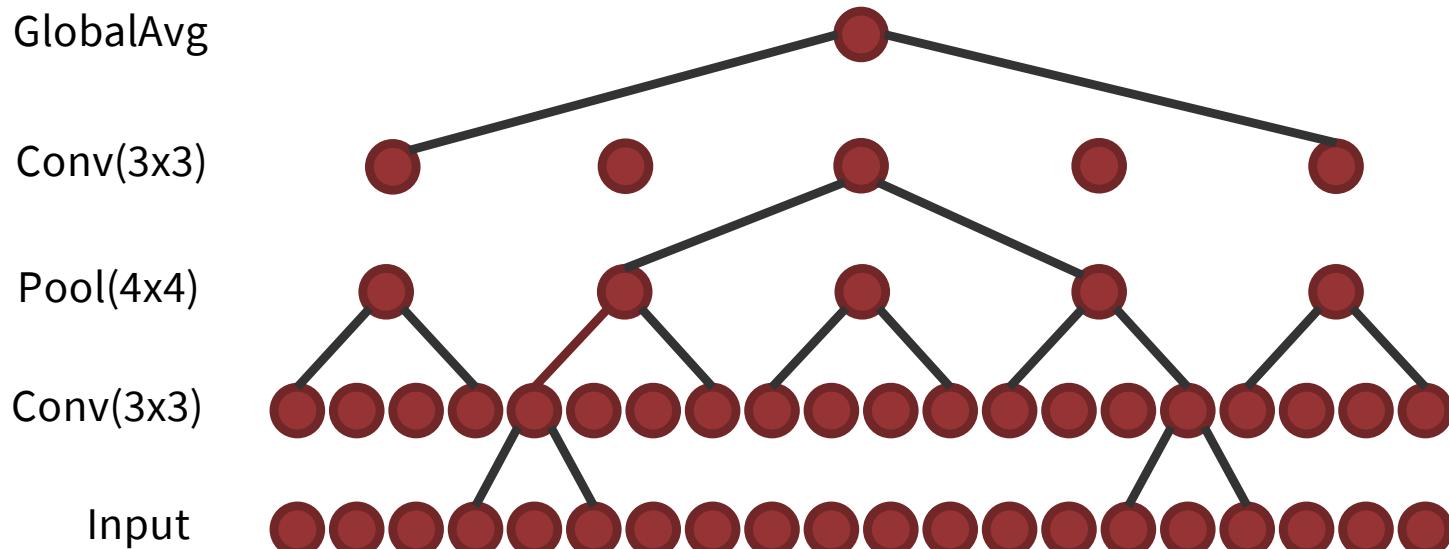
(Small example
architectures, in
practice much bigger)

Early Fusion vs Late Fusion vs 3D CNN

Late
Fusion

Layer	Size $(C \times T \times H \times W)$	Receptive Field $(T \times H \times W)$
Input	$3 \times 20 \times 64 \times 64$	
Conv2D(3x3, 3->12)	$12 \times 20 \times 64 \times 64$	$1 \times 3 \times 3$
Pool2D(4x4)	$12 \times 20 \times 16 \times 16$	$1 \times 6 \times 6$
Conv2D(3x3, 12->24)	$24 \times 20 \times 16 \times 16$	$1 \times 14 \times 14$
GlobalAvgPool	$24 \times 1 \times 1 \times 1$	$20 \times 64 \times 64$

Build slowly in space,
All-at-once in time at end



(Small example
architectures, in
practice much bigger)

Early Fusion vs Late Fusion vs 3D CNN

Late Fusion
Early Fusion

Layer	Size (C x T x H x W)	Receptive Field (T x H x W)
Input	$3 \times 20 \times 64 \times 64$	
Conv2D(3x3, 3->12)	$12 \times 20 \times 64 \times 64$	$1 \times 3 \times 3$
Pool2D(4x4)	$12 \times 20 \times 16 \times 16$	$1 \times 6 \times 6$
Conv2D(3x3, 12->24)	$24 \times 20 \times 16 \times 16$	$1 \times 14 \times 14$
GlobalAvgPool	$24 \times 1 \times 1 \times 1$	$20 \times 64 \times 64$
Input	$3 \times 20 \times 64 \times 64$	
Conv2D(3x3, 3*20->12)	$12 \times 64 \times 64$	$20 \times 3 \times 3$
Pool2D(4x4)	$12 \times 16 \times 16$	$20 \times 6 \times 6$
Conv2D(3x3, 12->24)	$24 \times 16 \times 16$	$20 \times 14 \times 14$
GlobalAvgPool	$24 \times 1 \times 1$	$20 \times 64 \times 64$

Build slowly in space,
All-at-once in time at end

Build slowly in space,
All-at-once in time at start

(Small example
architectures, in
practice much bigger)

Early Fusion vs Late Fusion vs 3D CNN

Late Fusion

Early Fusion

3D CNN

	Size (C x T x H x W)	Receptive Field (T x H x W)
Layer		
Input	3 x 20 x 64 x 64	
Conv2D(3x3, 3->12)	12 x 20 x 64 x 64	1 x 3 x 3
Pool2D(4x4)	12 x 20 x 16 x 16	1 x 6 x 6
Conv2D(3x3, 12->24)	24 x 20 x 16 x 16	1 x 14 x 14
GlobalAvgPool	24 x 1 x 1 x 1	20 x 64 x 64
Input	3 x 20 x 64 x 64	
Conv2D(3x3, 3*20->12)	12 x 64 x 64	20 x 3 x 3
Pool2D(4x4)	12 x 16 x 16	20 x 6 x 6
Conv2D(3x3, 12->24)	24 x 16 x 16	20 x 14 x 14
GlobalAvgPool	24 x 1 x 1	20 x 64 x 64
Input	3 x 20 x 64 x 64	
Conv3D(3x3x3, 3->12)	12 x 20 x 64 x 64	3 x 3 x 3
Pool3D(4x4x4)	12 x 5 x 16 x 16	6 x 6 x 6
Conv3D(3x3x3, 12->24)	24 x 5 x 16 x 16	14 x 14 x 14
GlobalAvgPool	24 x 1 x 1	20 x 64 x 64

Build slowly in space,
All-at-once in time at end

Build slowly in space,
All-at-once in time at start

Build slowly in space,
Build slowly in time
"Slow Fusion"

(Small example
architectures, in
practice much bigger)

Early Fusion vs Late Fusion vs 3D CNN

Late Fusion

Early Fusion

3D CNN

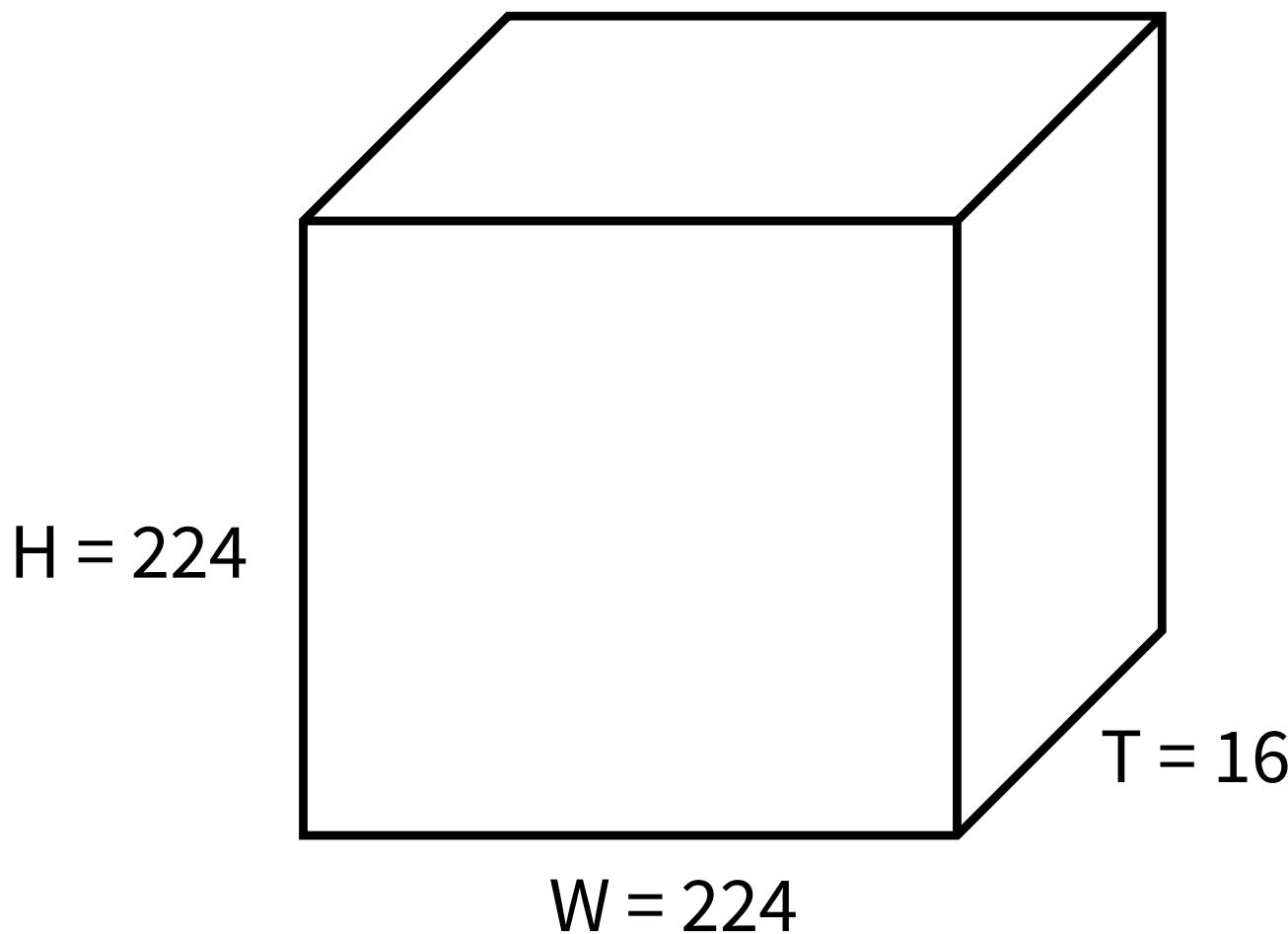
Layer	Size (C x T x H x W)	Receptive Field (T x H x W)
Input	3 x 20 x 64 x 64	Build slowly in space, All-at-once in time at end
Conv2D(3x3, 3->12)	12 x 20 x 64 x 64	
Pool2D(4x4)	12 x 20 x 16 x 16	
Conv2D(3x3, 12->24)	24 x 20 x 16 x 16	
GlobalAvgPool	24 x 1 x 1 x 1	
Input	3 x 20 x 64 x 64	Build slowly in space, All-at-once in time at start
Conv2D(3x3, 3*20->12)	12 x 64 x 64	
Pool2D(4x4)	12 x 16 x 16	
Conv2D(3x3, 12->24)	24 x 16 x 16	
GlobalAvgPool	24 x 1 x 1	20 x 64 x 64
Input	3 x 20 x 64 x 64	Build slowly in space, Build slowly in time "Slow Fusion"
Conv3D(3x3x3, 3->12)	12 x 20 x 64 x 64	
Pool3D(4x4x4)	12 x 5 x 16 x 16	
Conv3D(3x3x3, 12->24)	24 x 5 x 16 x 16	
GlobalAvgPool	24 x 1 x 1	20 x 64 x 64

What is the difference?

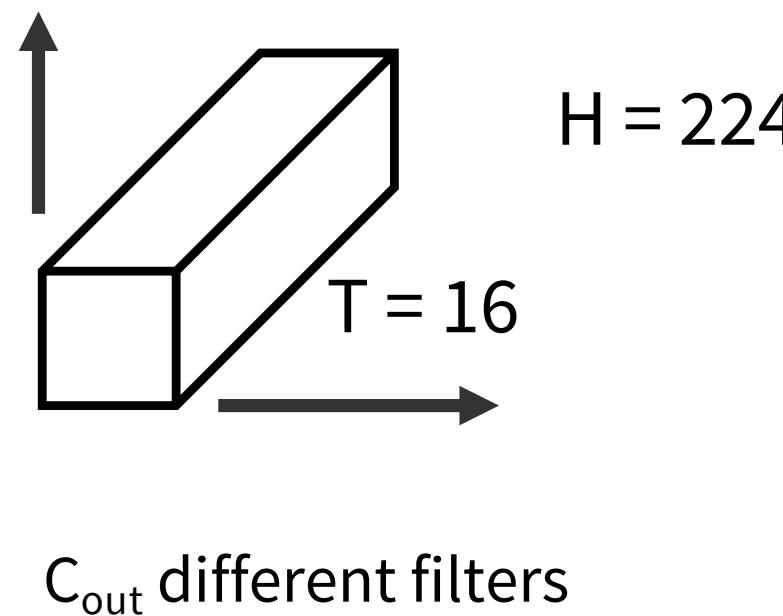
(Small example architectures, in practice much bigger)

2D Conv (Early Fusion) vs 3D Conv (3D CNN)

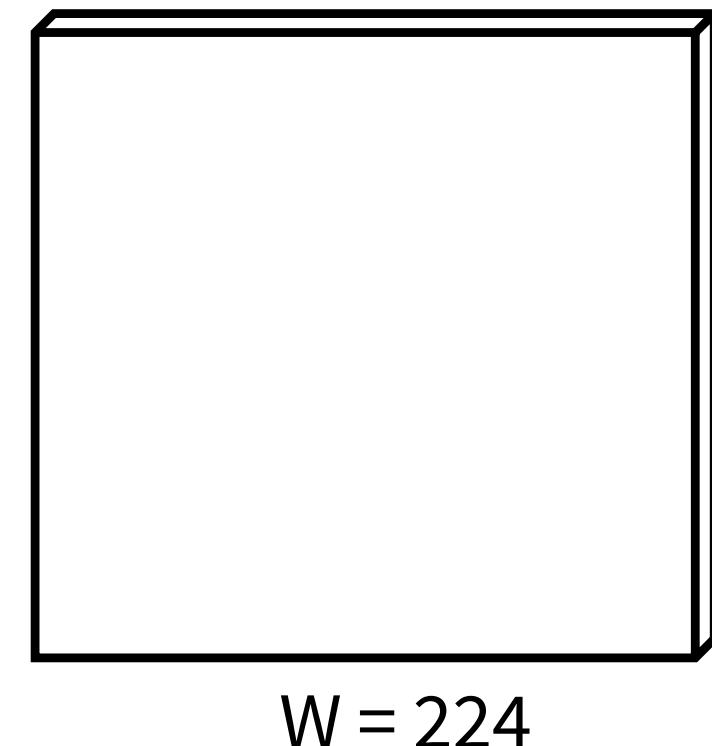
Input: $C_{in} \times T \times H \times W$
(3D grid with C_{in} -dim
feat at each point)



Weight:
 $C_{out} \times C_{in} \times T \times 3 \times 3$
Slide over x and y

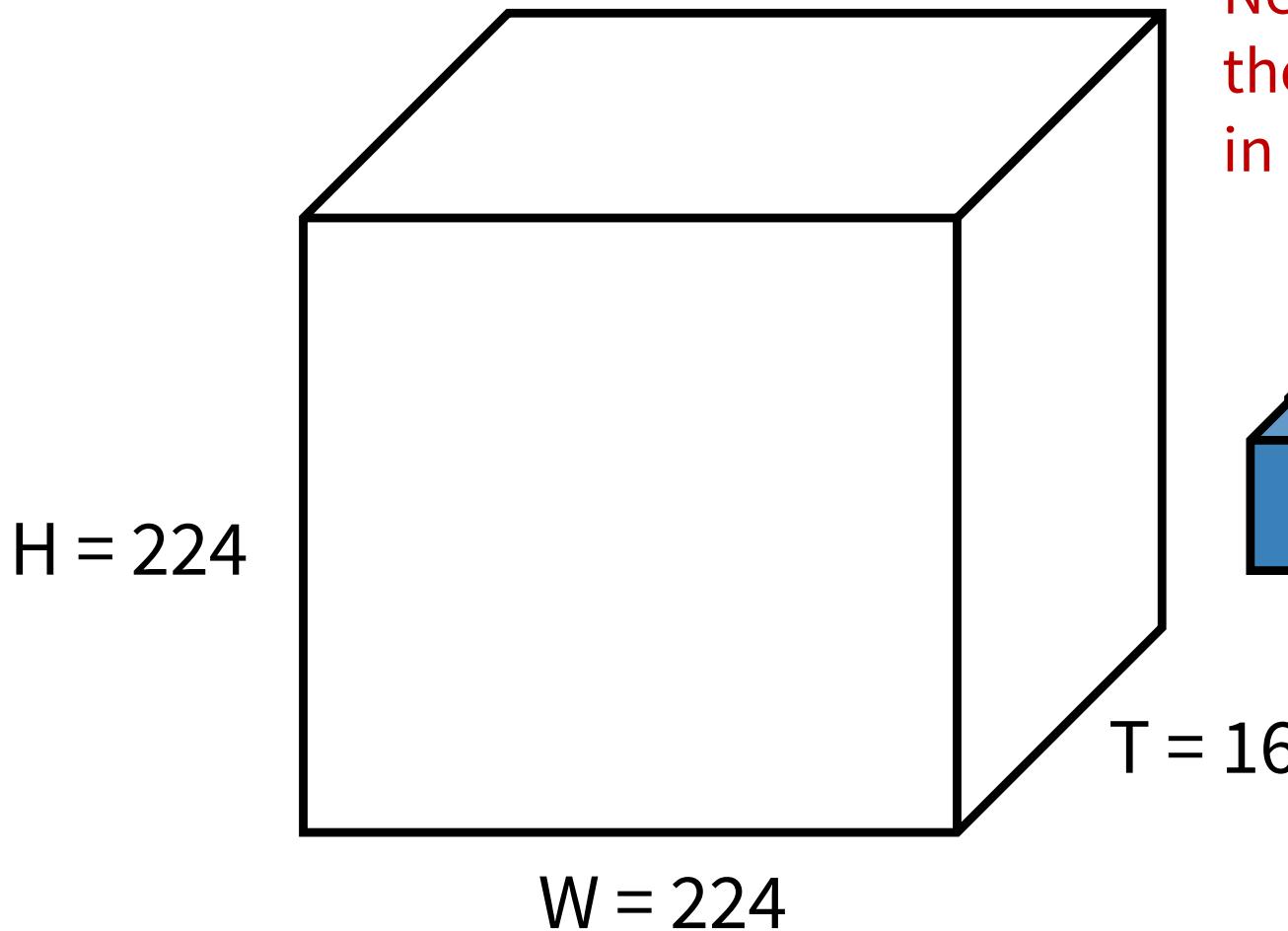


Output:
 $C_{out} \times H \times W$
2D grid with C_{out} -dim
feat at each point

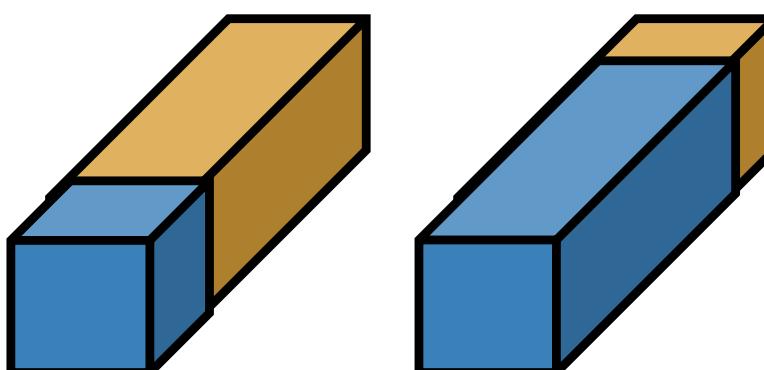


2D Conv (Early Fusion) vs 3D Conv (3D CNN)

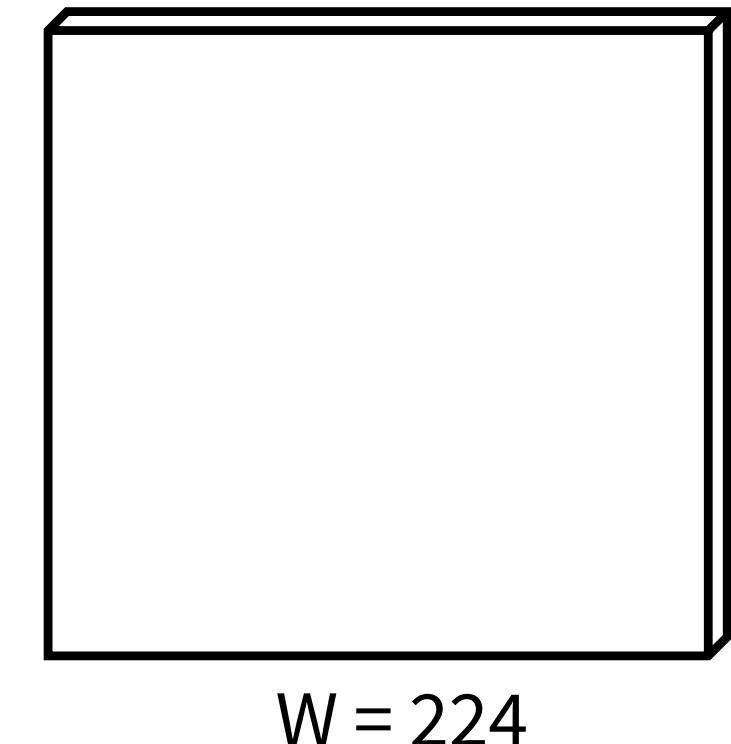
Input: $C_{in} \times T \times H \times W$
(3D grid with C_{in} -dim feat
at each point)



Weight:
 $C_{out} \times C_{in} \times T \times 3 \times 3$
Slide over x and y
No temporal shift-invariance!
Needs to learn separate filters for
the same motion at different times
in the clip

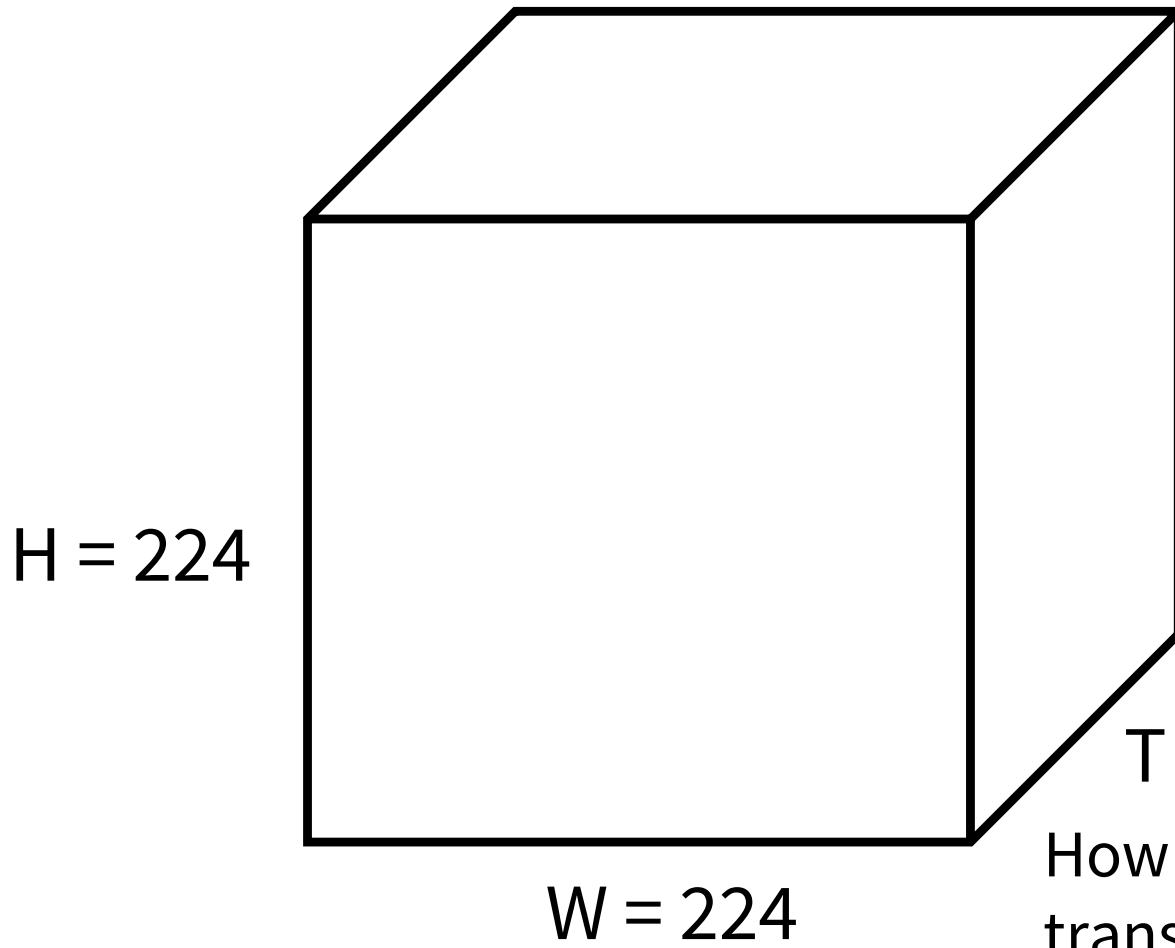


Output:
 $C_{out} \times H \times W$
2D grid with C_{out} -dim
feat at each point



2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: $C_{in} \times T \times H \times W$
(3D grid with C_{in} -dim feat at each point)



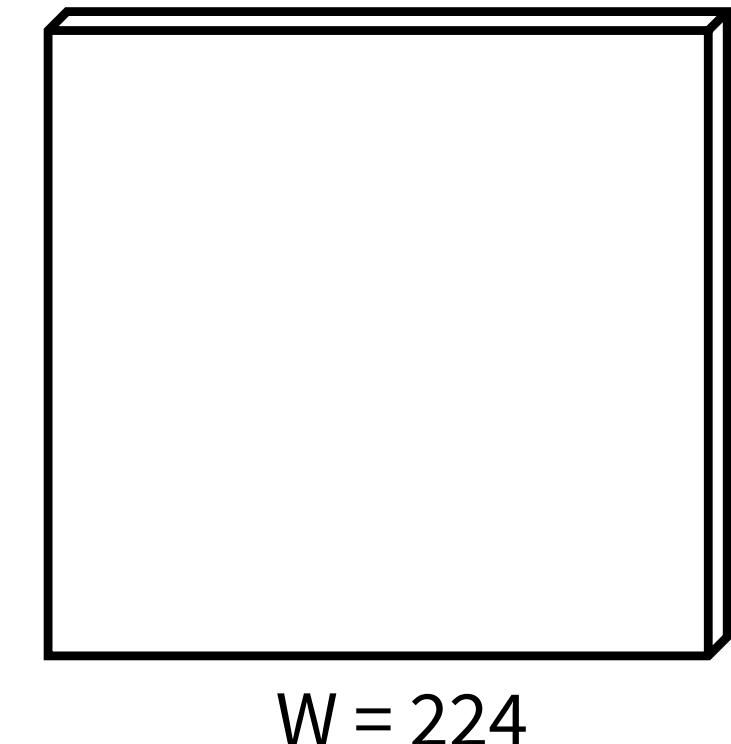
Weight:
 $C_{out} \times C_{in} \times T \times 3 \times 3$
Slide over x and y

No temporal shift-invariance!
Needs to learn separate filters for the same motion at different times in the clip

C_{out} different filters

How to recognize blue to orange transitions anywhere in space and time?

Output:
 $C_{out} \times H \times W$
2D grid with C_{out} -dim feat at each point

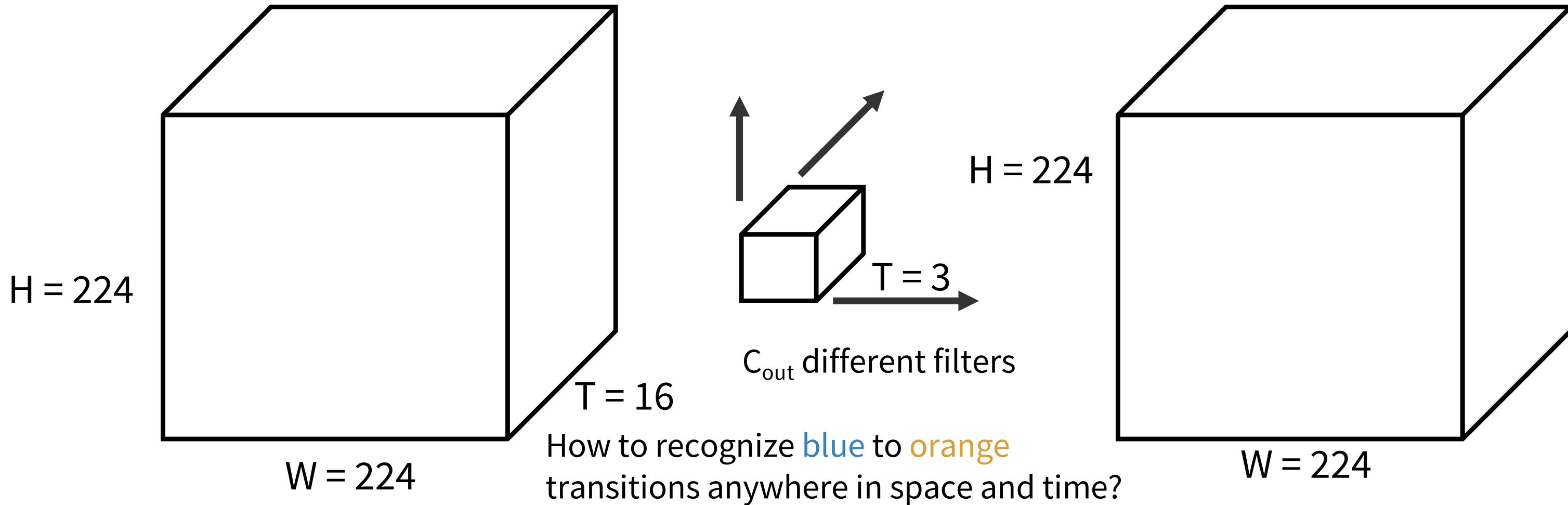


2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: $C_{in} \times T \times H \times W$
(3D grid with C_{in} -dim
feat at each point)

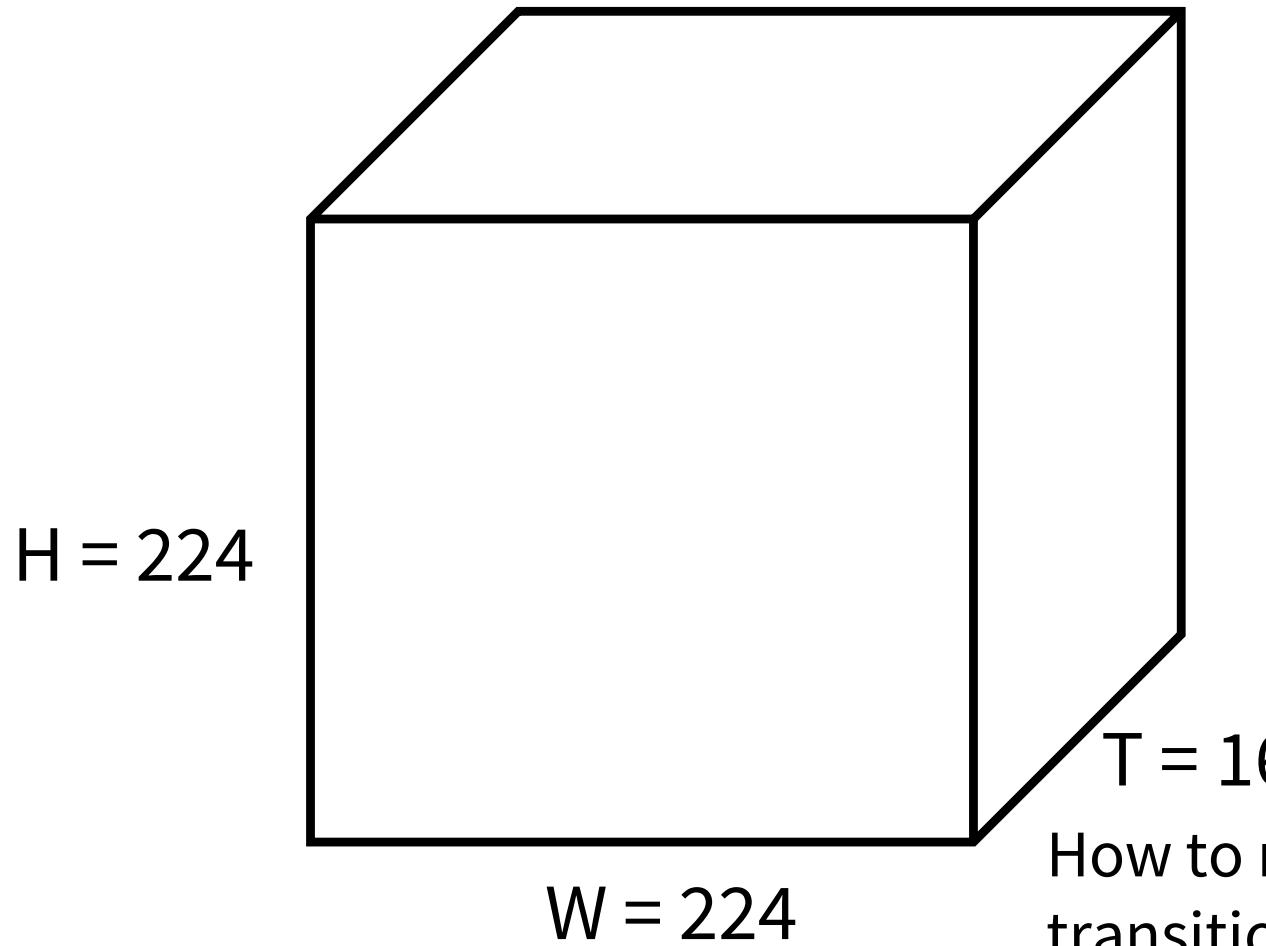
Weight:
 $C_{out} \times C_{in} \times 3 \times 3 \times 3$
Slide over x and y

Output:
 $C_{out} \times T \times H \times W$
3D grid with C_{out} -dim
feat at each point



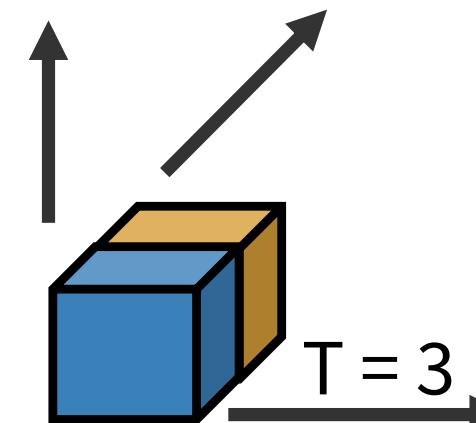
2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: $C_{in} \times T \times H \times W$
(3D grid with C_{in} -dim
feat at each point)

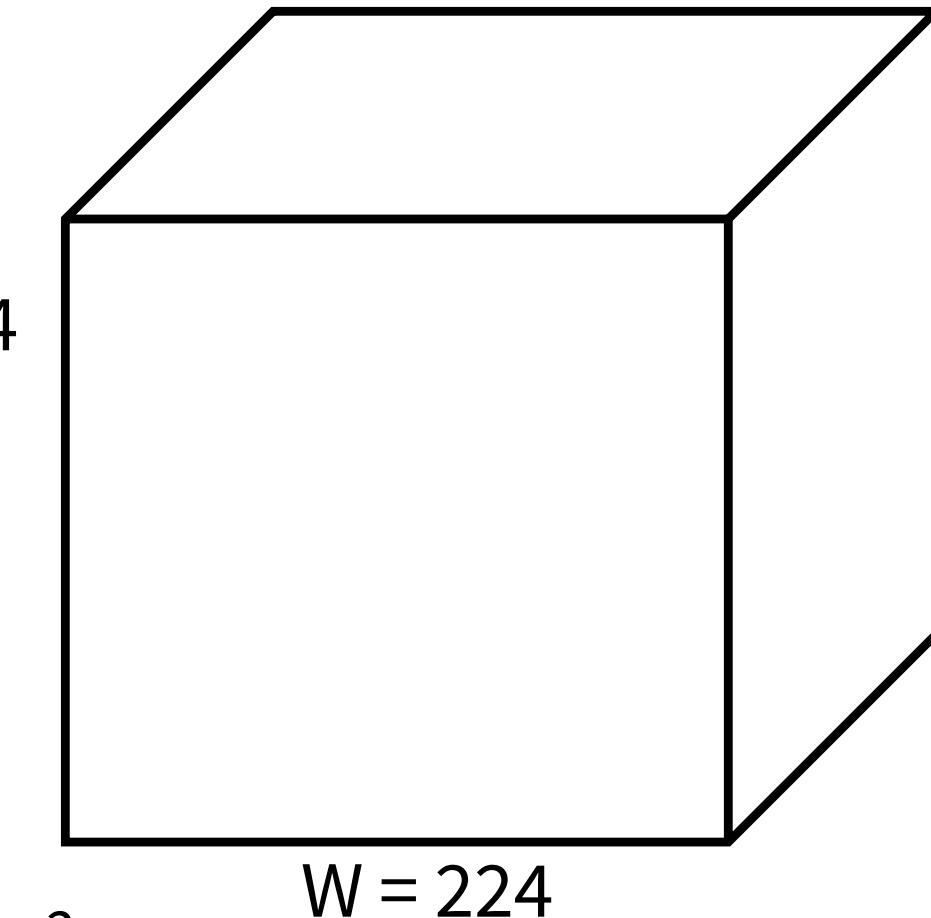


Weight:
 $C_{out} \times C_{in} \times 3 \times 3 \times 3$
Slide over x and y

Temporal shift-invariant since
each filter slides over time!

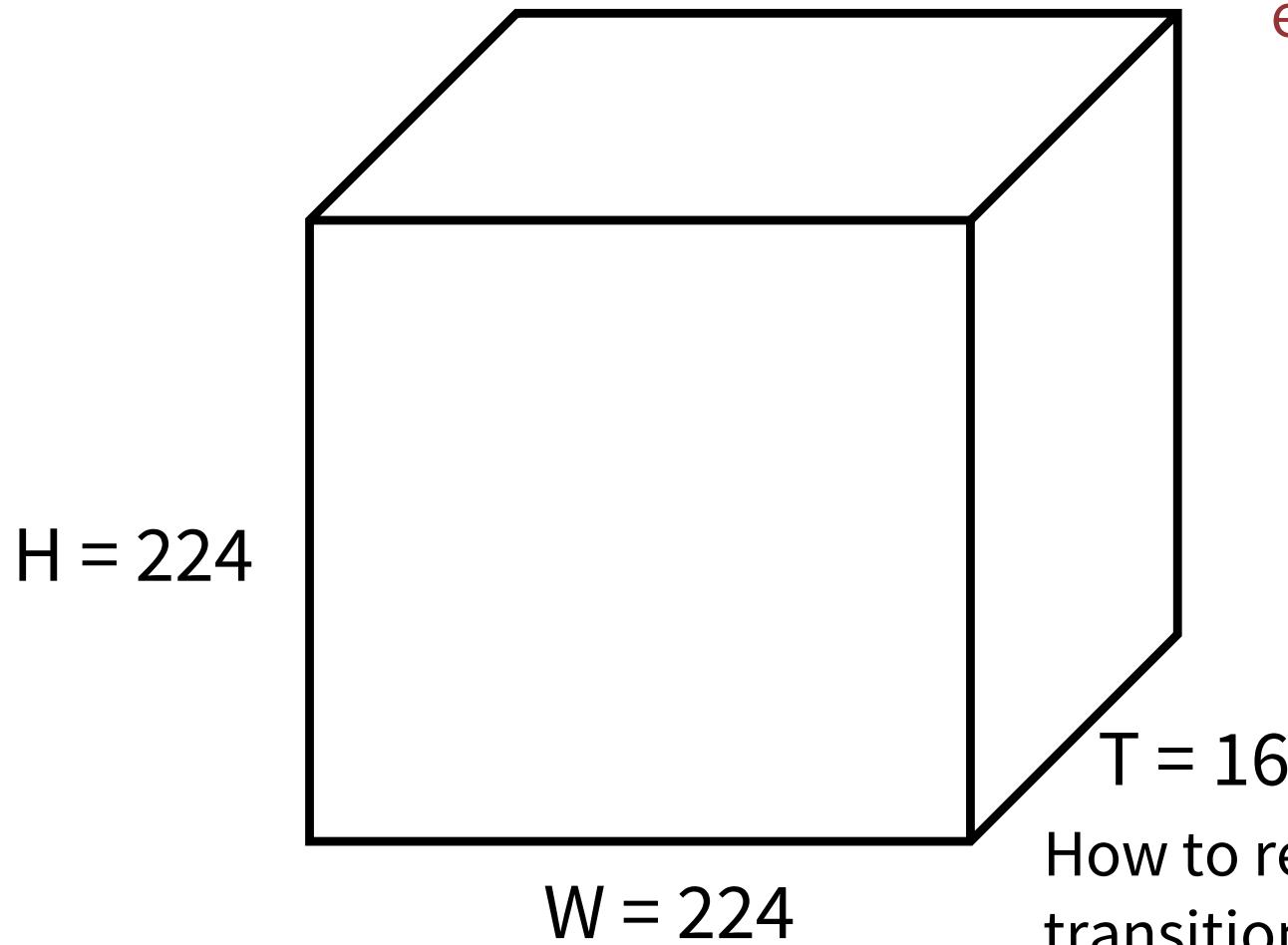


Output:
 $C_{out} \times T \times H \times W$
3D grid with C_{out} -dim
feat at each point



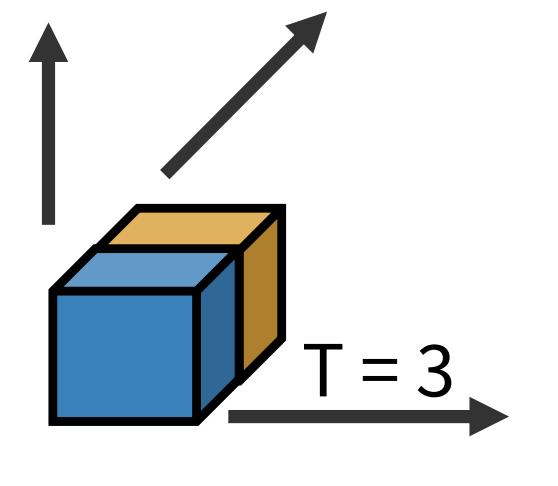
2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Input: $C_{in} \times T \times H \times W$
(3D grid with C_{in} -dim
feat at each point)



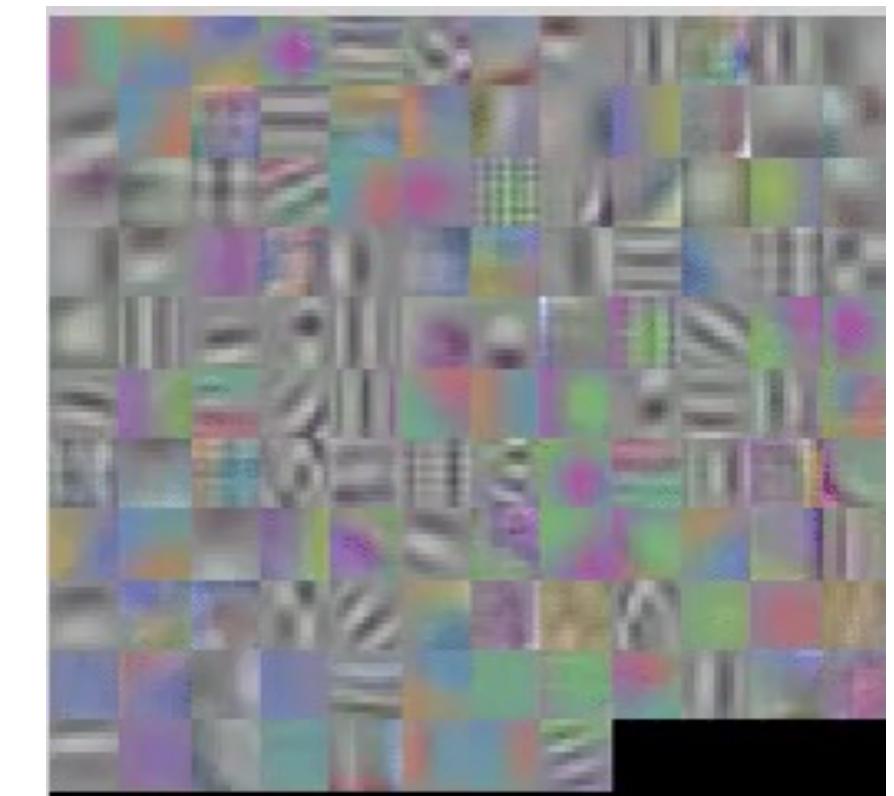
Weight:
 $C_{out} \times C_{in} \times 3 \times 3 \times 3$
Slide over x and y

Temporal shift-invariant since
each filter slides over time!



How to recognize blue to orange
transitions anywhere in space and time?

First-layer filters have shape
3 (RGB) \times 4 (frames) \times 5 \times 5
(space)
Can visualize as video clips!



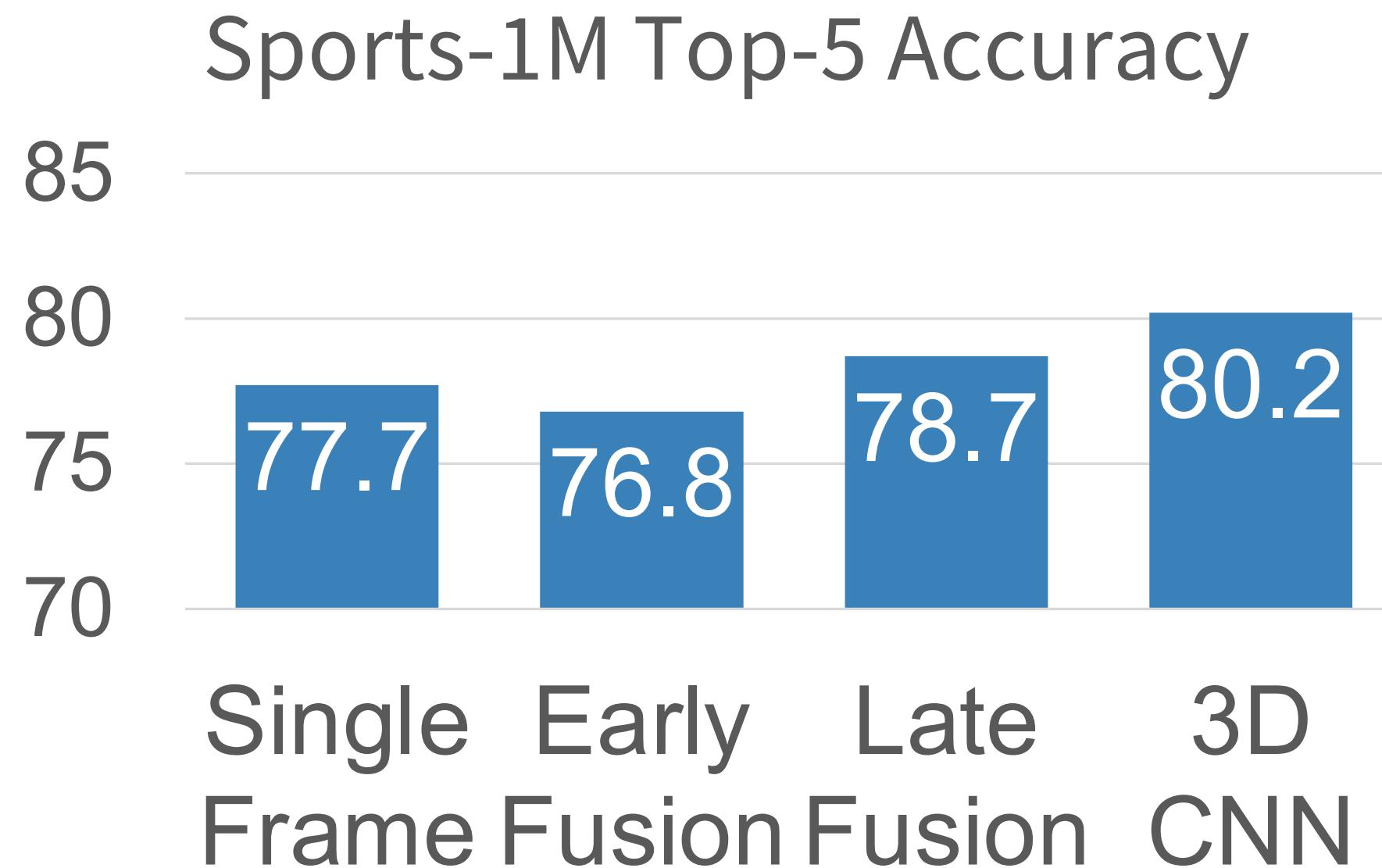
Example Video Dataset: Sports-1M

1 million YouTube videos
annotated with labels for 487
different types of sports

Ground Truth
Correct prediction
Incorrect prediction

Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

Early Fusion vs Late Fusion vs 3D CNN



Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

C3D: The VGG of 3D CNNs

3D CNN that uses all 3x3x3 conv and 2x2x2 pooling (except Pool1 which is 1x2x2)

Released model pretrained on Sports-1M: Many people used this as a video feature extractor

Tran et al, "Learning Spatiotemporal Features with 3D Convolutional Networks", ICCV 2015

Layer	Size
Input	3 x 16 x 112 x 112
Conv1 (3x3x3)	64 x 16 x 112 x 112
Pool1 (1x2x2)	64 x 16 x 56 x 56
Conv2 (3x3x3)	128 x 16 x 56 x 56
Pool2 (2x2x2)	128 x 8 x 28 x 28
Conv3a (3x3x3)	256 x 8 x 28 x 28
Conv3b (3x3x3)	256 x 8 x 28 x 28
Pool3 (2x2x2)	256 x 4 x 14 x 14
Conv4a (3x3x3)	512 x 4 x 14 x 14
Conv4b (3x3x3)	512 x 4 x 14 x 14
Pool4 (2x2x2)	512 x 2 x 7 x 7
Conv5a (3x3x3)	512 x 2 x 7 x 7
Conv5b (3x3x3)	512 x 2 x 7 x 7
Pool5	512 x 1 x 3 x 3
FC6	4096
FC7	4096
FC8	C

C3D: The VGG of 3D CNNs

3D CNN that uses all $3 \times 3 \times 3$ conv and $2 \times 2 \times 2$ pooling
(except Pool1 which is $1 \times 2 \times 2$)

Released model pretrained on Sports-1M: Many people used this as a video feature extractor

Problem: $3 \times 3 \times 3$ conv is very expensive!

AlexNet: 0.7 GFLOP

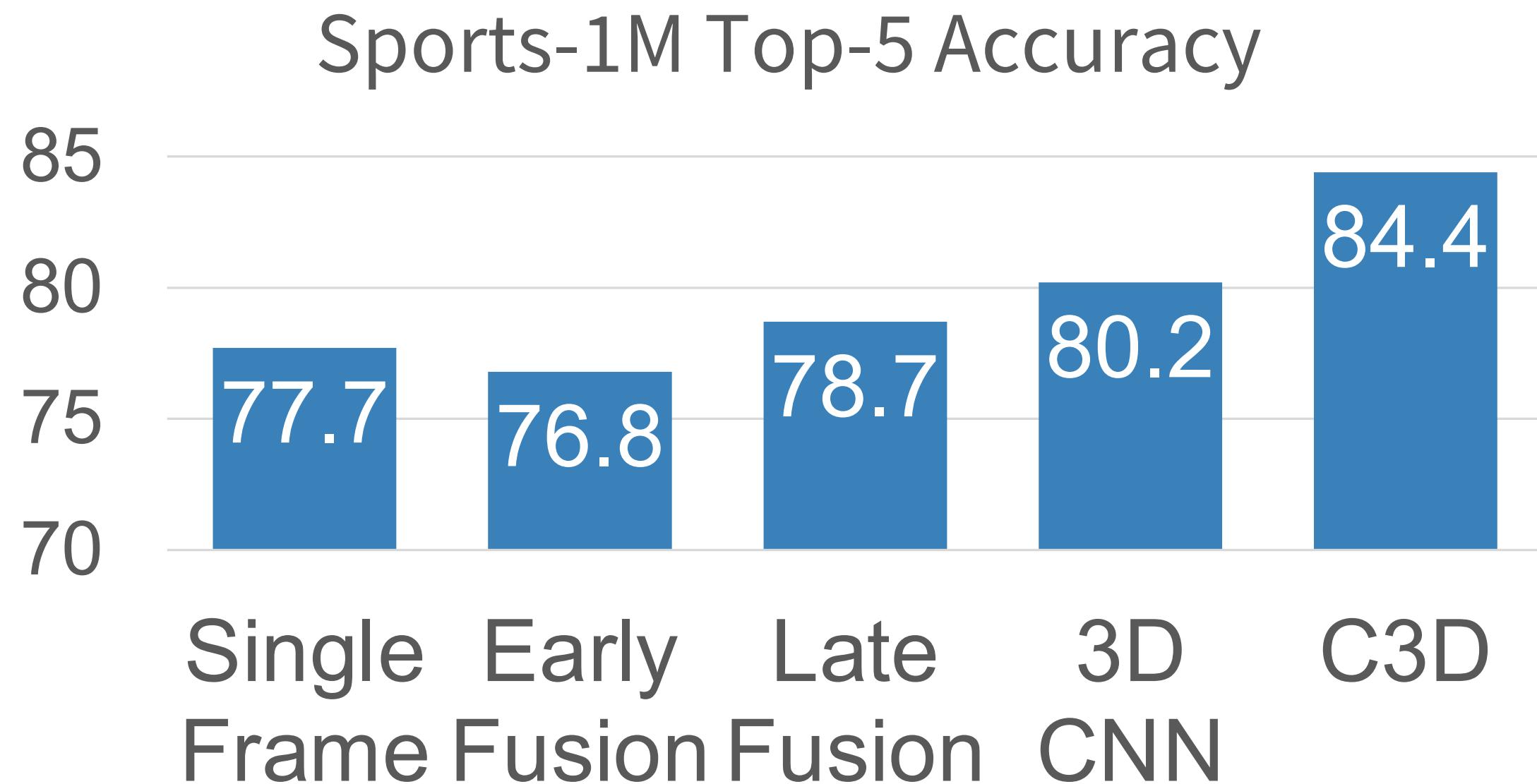
VGG-16: 13.6 GFLOP

C3D: 39.5 GFLOP (2.9x VGG!)

Layer	Size	MFLOPs
Input	$3 \times 16 \times 112 \times 112$	
Conv1 ($3 \times 3 \times 3$)	$64 \times 16 \times 112 \times 112$	1.04
Pool1 ($1 \times 2 \times 2$)	$64 \times 16 \times 56 \times 56$	
Conv2 ($3 \times 3 \times 3$)	$128 \times 16 \times 56 \times 56$	11.10
Pool2 ($2 \times 2 \times 2$)	$128 \times 8 \times 28 \times 28$	
Conv3a ($3 \times 3 \times 3$)	$256 \times 8 \times 28 \times 28$	5.55
Conv3b ($3 \times 3 \times 3$)	$256 \times 8 \times 28 \times 28$	11.10
Pool3 ($2 \times 2 \times 2$)	$256 \times 4 \times 14 \times 14$	
Conv4a ($3 \times 3 \times 3$)	$512 \times 4 \times 14 \times 14$	2.77
Conv4b ($3 \times 3 \times 3$)	$512 \times 4 \times 14 \times 14$	5.55
Pool4 ($2 \times 2 \times 2$)	$512 \times 2 \times 7 \times 7$	
Conv5a ($3 \times 3 \times 3$)	$512 \times 2 \times 7 \times 7$	0.69
Conv5b ($3 \times 3 \times 3$)	$512 \times 2 \times 7 \times 7$	0.69
Pool5	$512 \times 1 \times 3 \times 3$	
FC6	4096	0.51
FC7	4096	0.45
FC8	C	0.05

Tran et al, "Learning Spatiotemporal Features with 3D Convolutional Networks", ICCV 2015

Early Fusion vs Late Fusion vs 3D CNN



Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014
Tran et al, "Learning Spatiotemporal Features with 3D Convolutional Networks", ICCV 2015

Recognizing Actions from Motion

We can easily recognize actions using only motion information

Johansson, "Visual perception of biological motion and a model for its analysis." Perception & Psychophysics. 14(2):201-211. 1973.

Measuring Motion: Optical Flow

Image at frame t

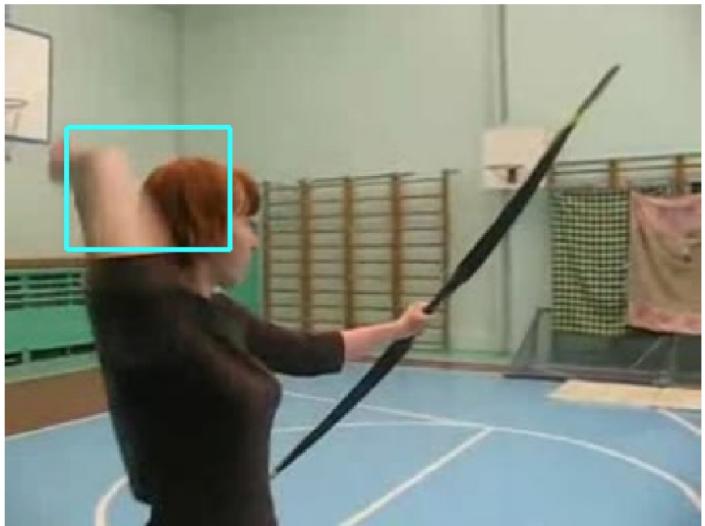
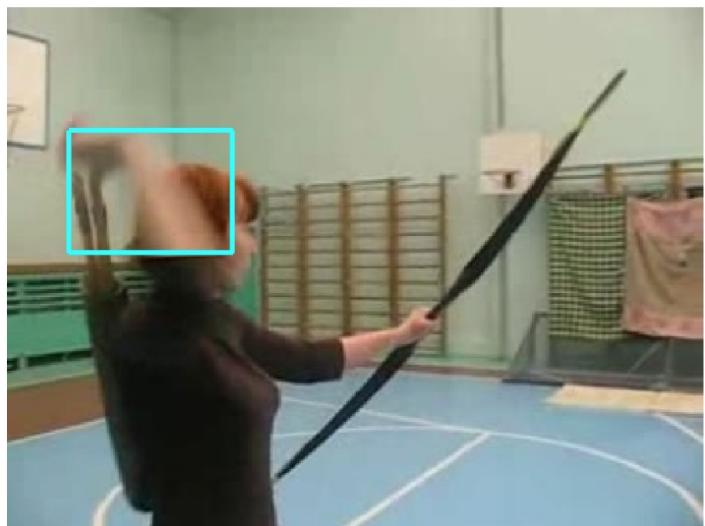


Image at frame t+1

Simonyan and Zisserman, "Two-stream convolutional networks for action recognition in videos", NeurIPS 2014

Measuring Motion: Optical Flow

Optical flow gives a displacement field F between images I_t and I_{t+1}

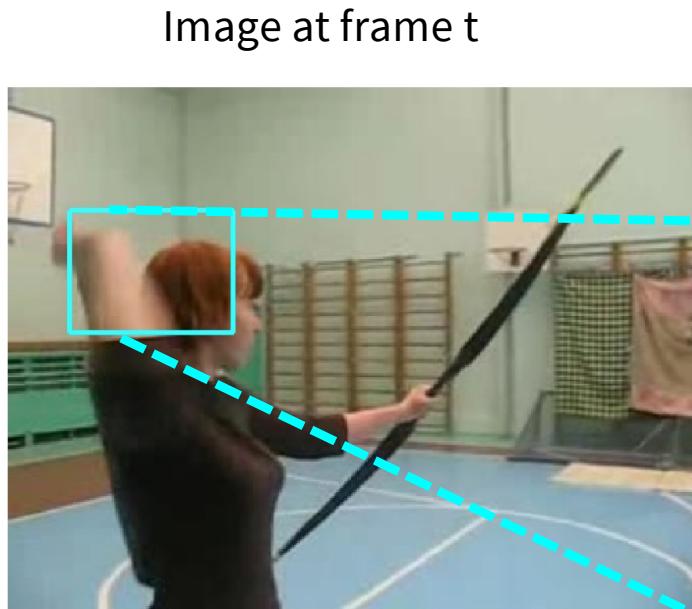
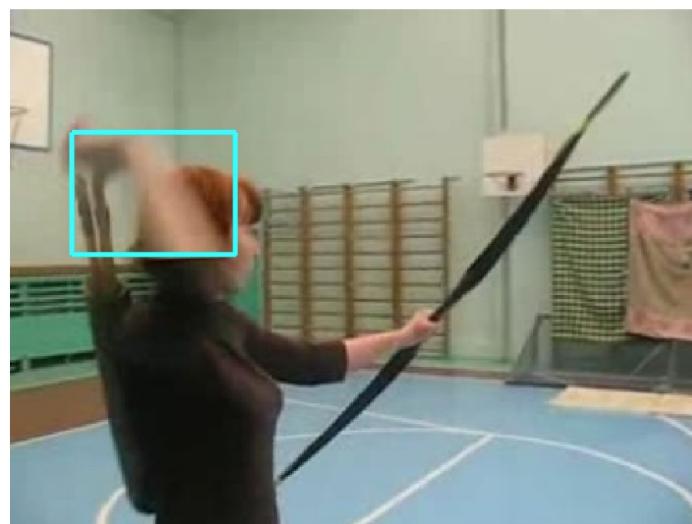


Image at frame $t+1$

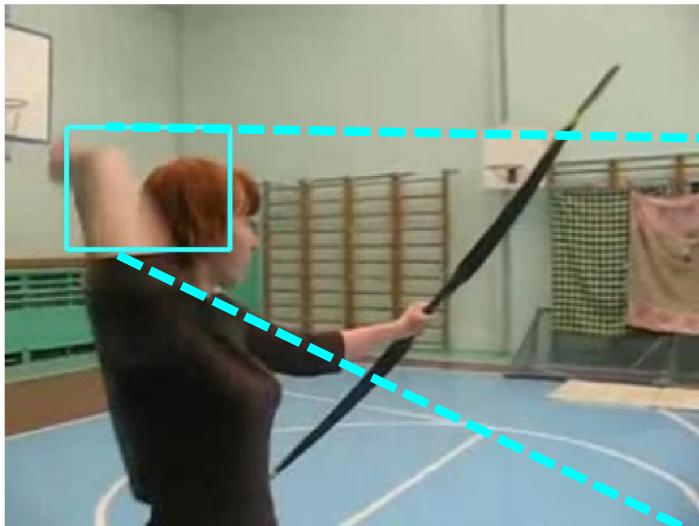
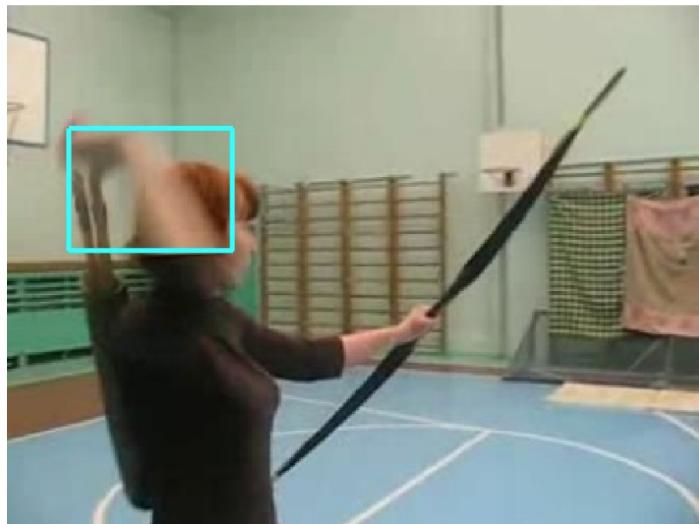
Tells where each pixel will move in the next frame:
 $F(x, y) = (dx, dy)$
 $I_{t+1}(x+dx, y+dy) = I_t(x, y)$

Simonyan and Zisserman, "Two-stream convolutional networks for action recognition in videos", NeurIPS 2014

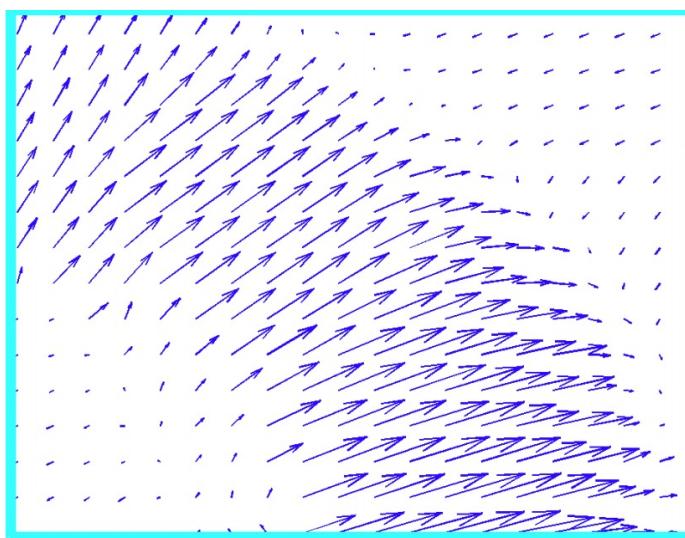
Measuring Motion: Optical Flow

Optical Flow highlights local motion

Image at frame t



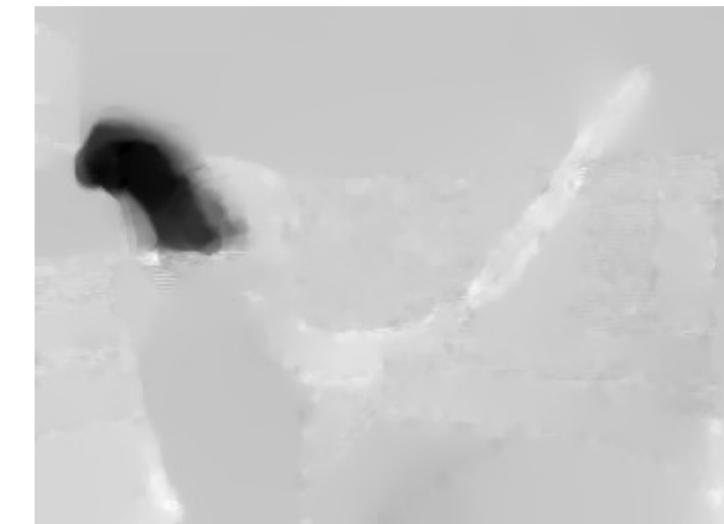
Optical flow gives a displacement field F between images I_t and I_{t+1}



Tells where each pixel will move in the next frame:
 $F(x, y) = (dx, dy)$
 $I_{t+1}(x+dx, y+dy) = I_t(x, y)$

Image at frame $t+1$

Horizontal flow dx



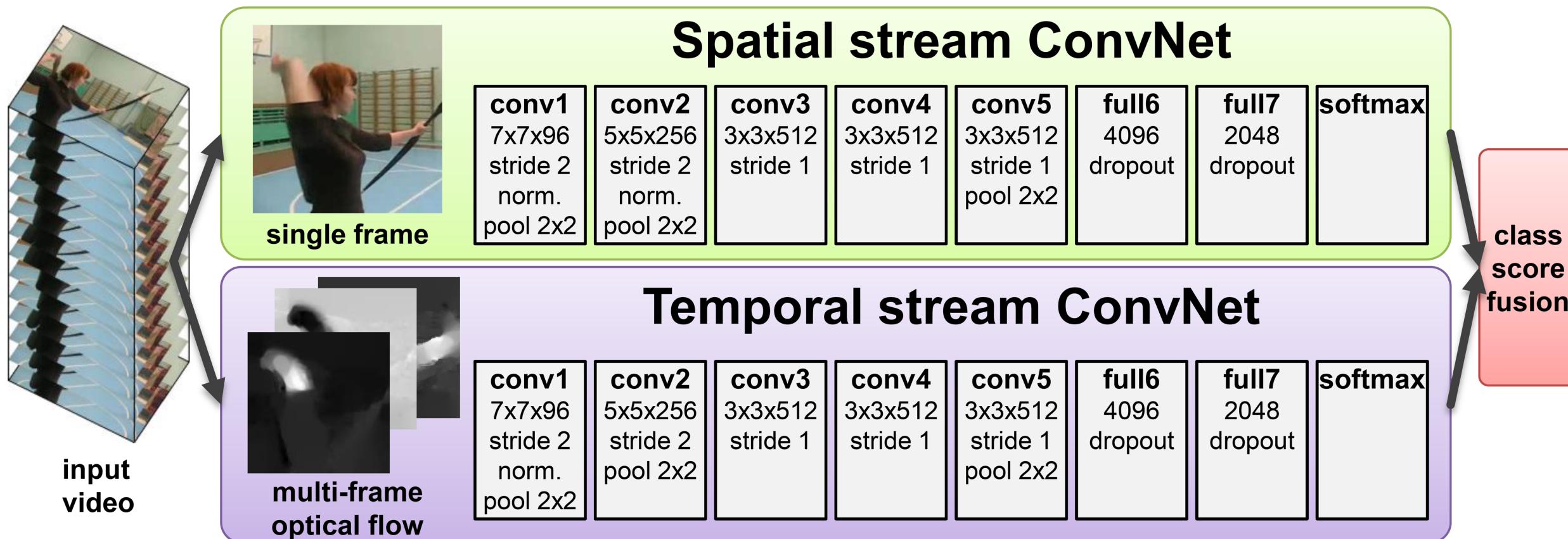
Vertical Flow dy

Simonyan and Zisserman, "Two-stream convolutional networks for action recognition in videos", NeurIPS 2014

Separating Motion and Appearance: Two-Stream Networks

Input: Single Image

$3 \times H \times W$



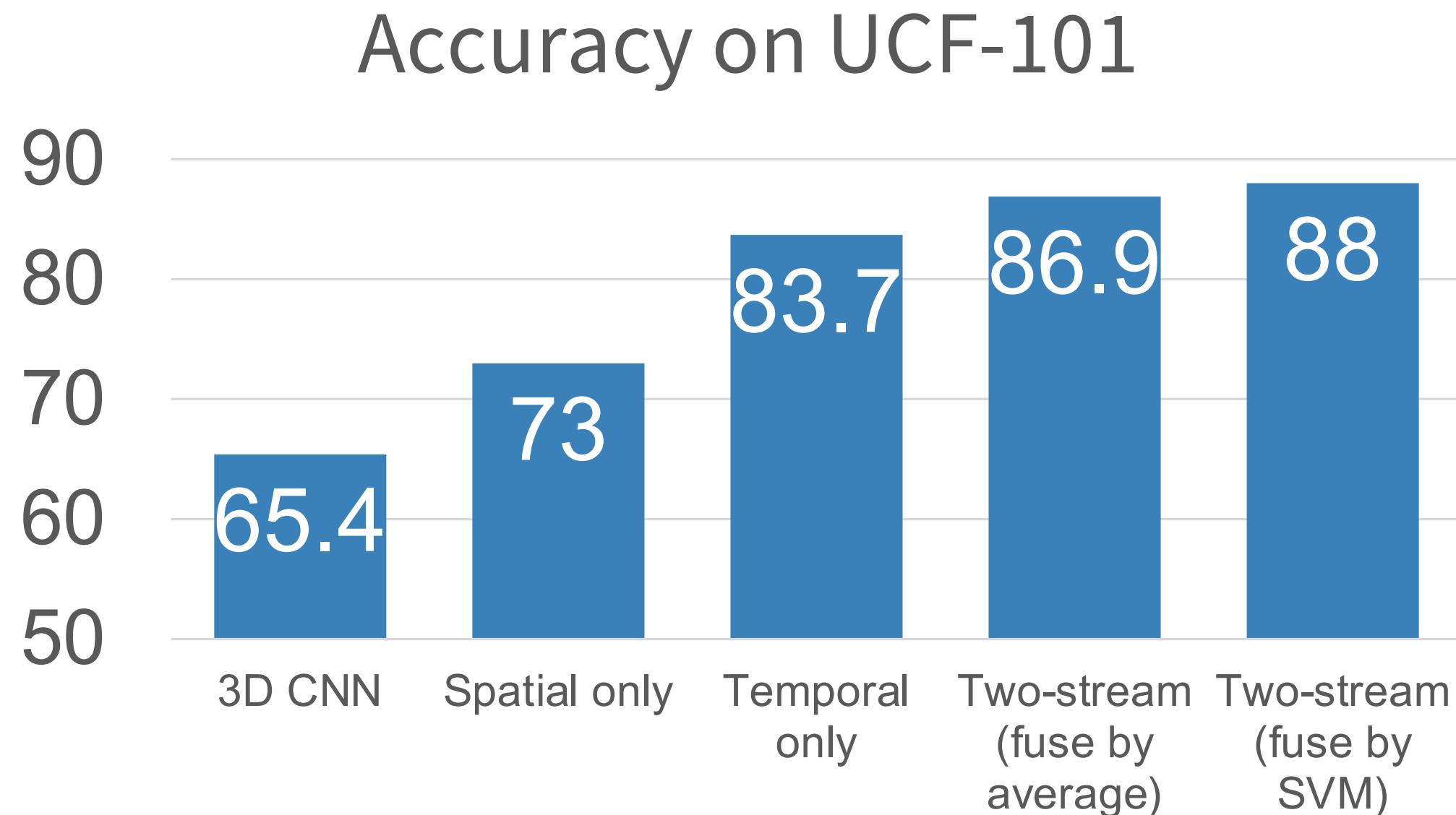
Input: Stack of optical flow:

$[2^*(T-1)] \times H \times W$

Early fusion: First 2D conv
processes all flow images

Simonyan and Zisserman, "Two-stream convolutional networks for action recognition in videos", NeurIPS 2014

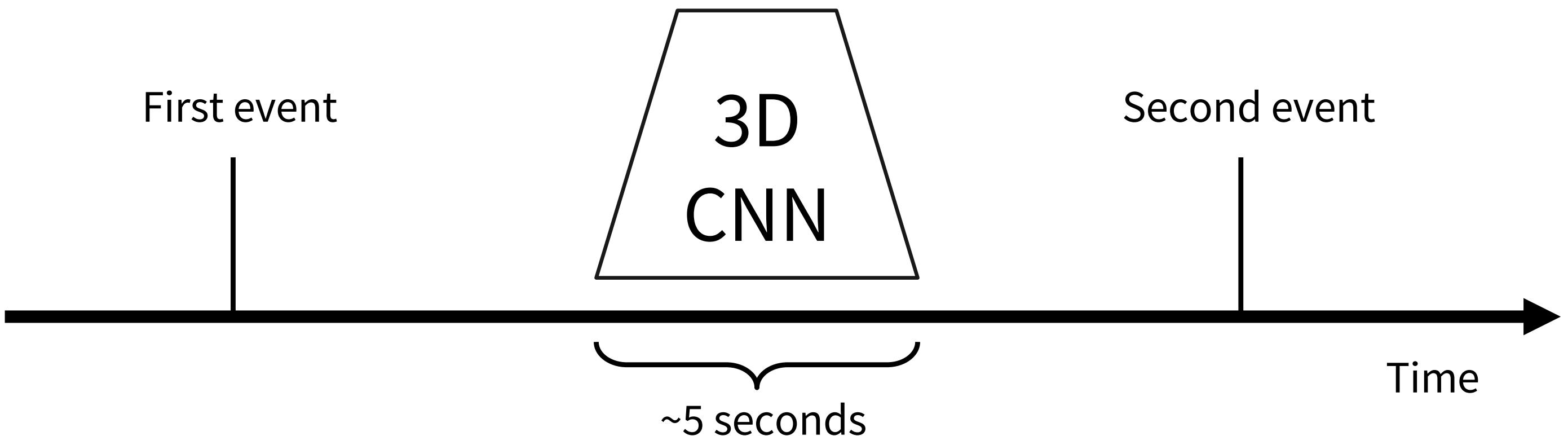
Separating Motion and Appearance: Two-Stream Networks



Simonyan and Zisserman, "Two-stream convolutional networks for action recognition in videos", NeurIPS 2014

Modeling long-term temporal structure

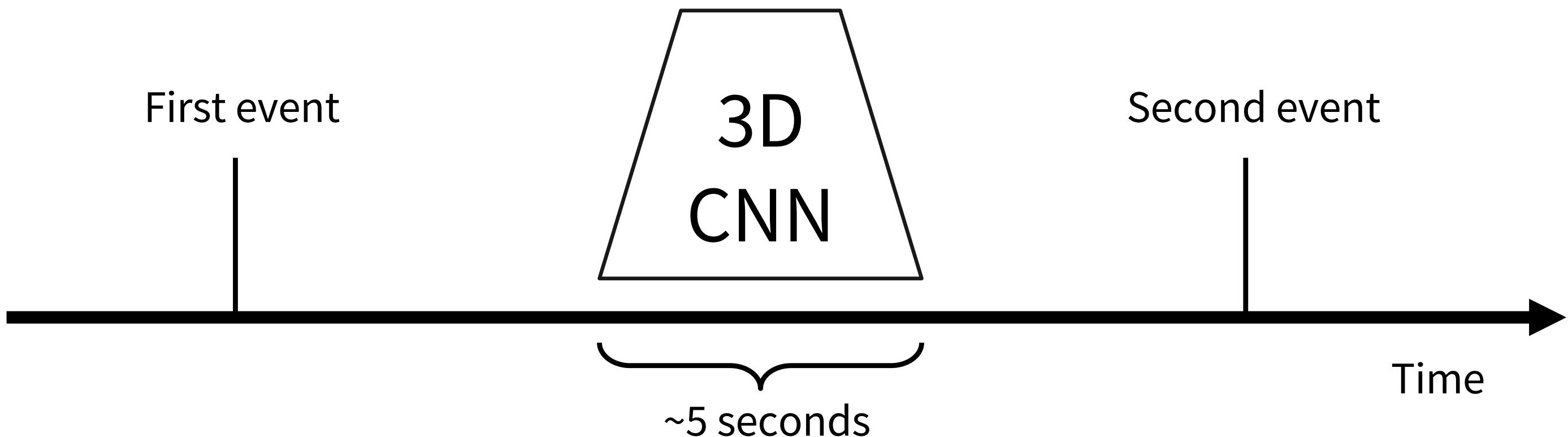
So far all our temporal CNNs only model local motion between frames in very short clips of ~2-5 seconds. What about long-term structure?



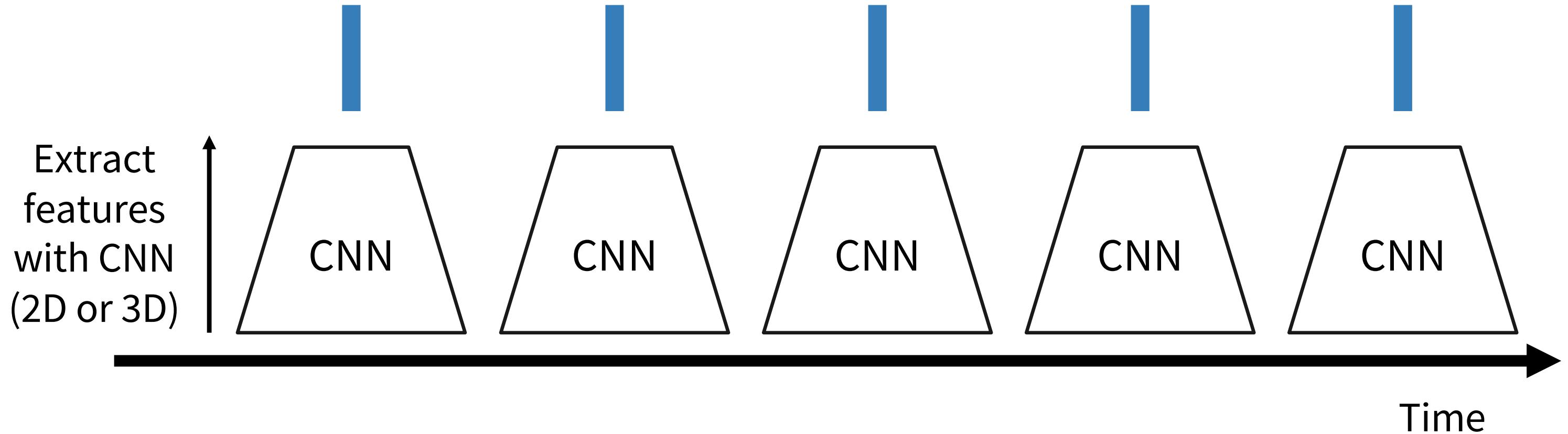
Modeling long-term temporal structure

So far all our temporal CNNs only model local motion between frames in very short clips of ~2-5 seconds. What about long-term structure?

We know how to handle sequences! How about recurrent networks?

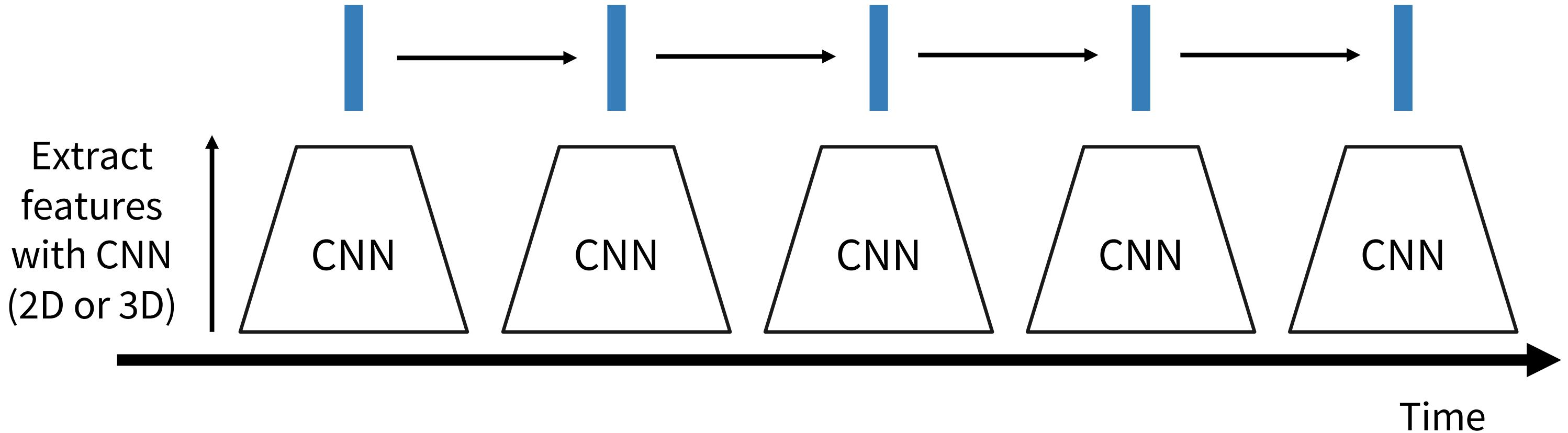


Modeling long-term temporal structure



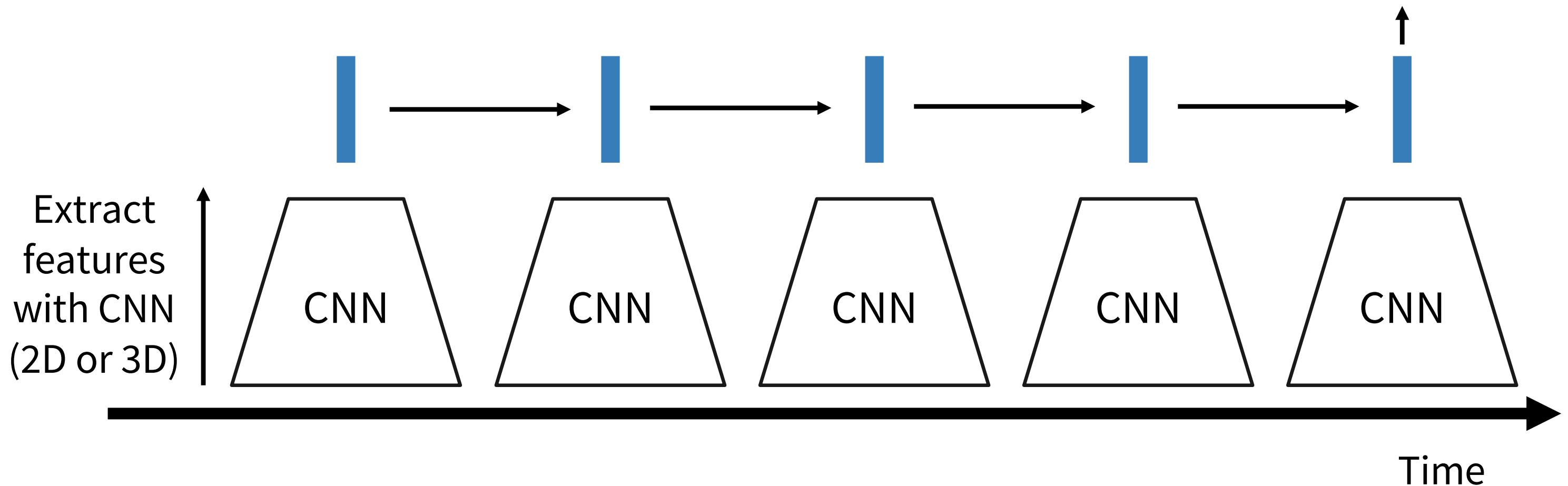
Modeling long-term temporal structure

Process local features using recurrent network (e.g. LSTM)



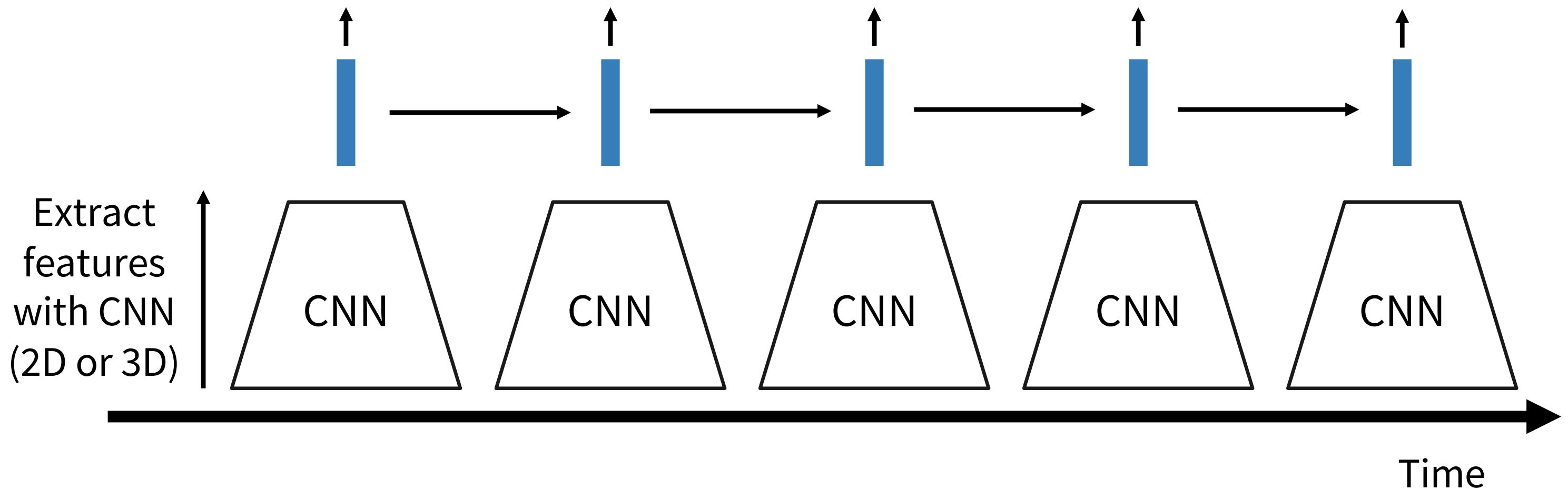
Modeling long-term temporal structure

Process local features using recurrent network (e.g. LSTM)
Many to one: One output at end of video



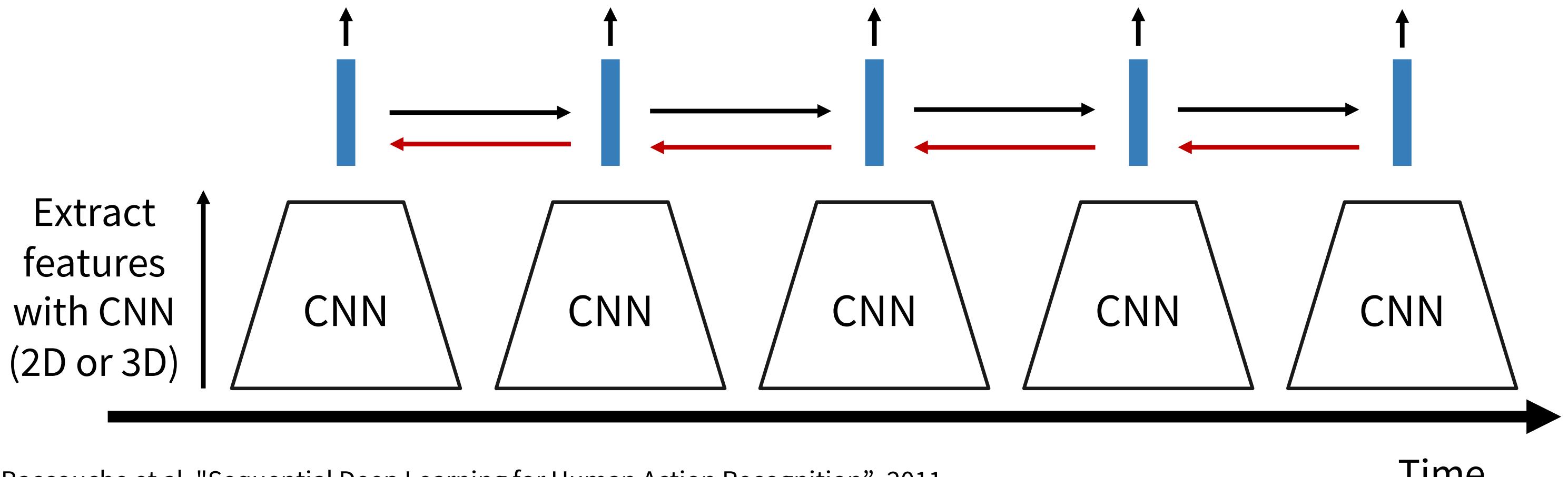
Modeling long-term temporal structure

Process local features using recurrent network (e.g. LSTM)
Many to many: one output per video frame



Modeling long-term temporal structure

Sometimes don't backprop to CNN to save memory;
pretrain and use it as a feature extractor



Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011

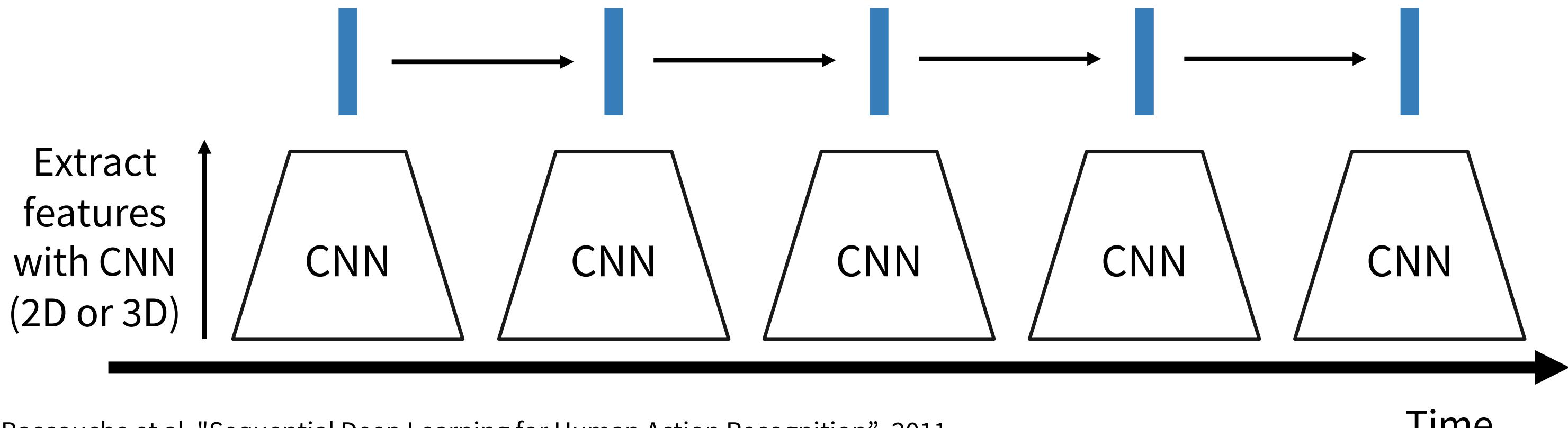
Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

Modeling long-term temporal structure

Inside CNN: Each value is a function of a fixed temporal window (local temporal structure)

Inside RNN: Each vector is a function of all previous vectors (global temporal structure)

Can we merge both approaches?

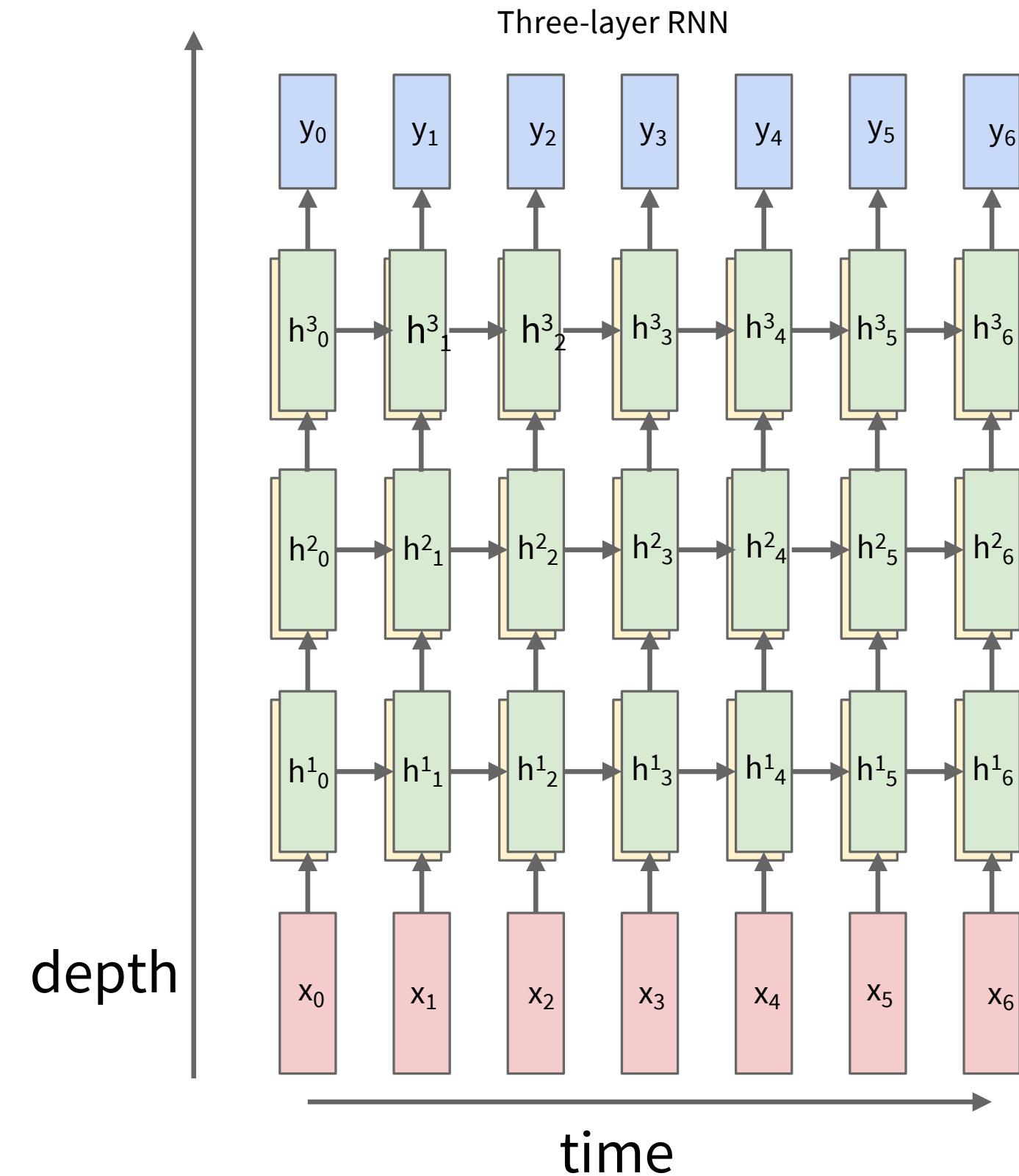


Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011

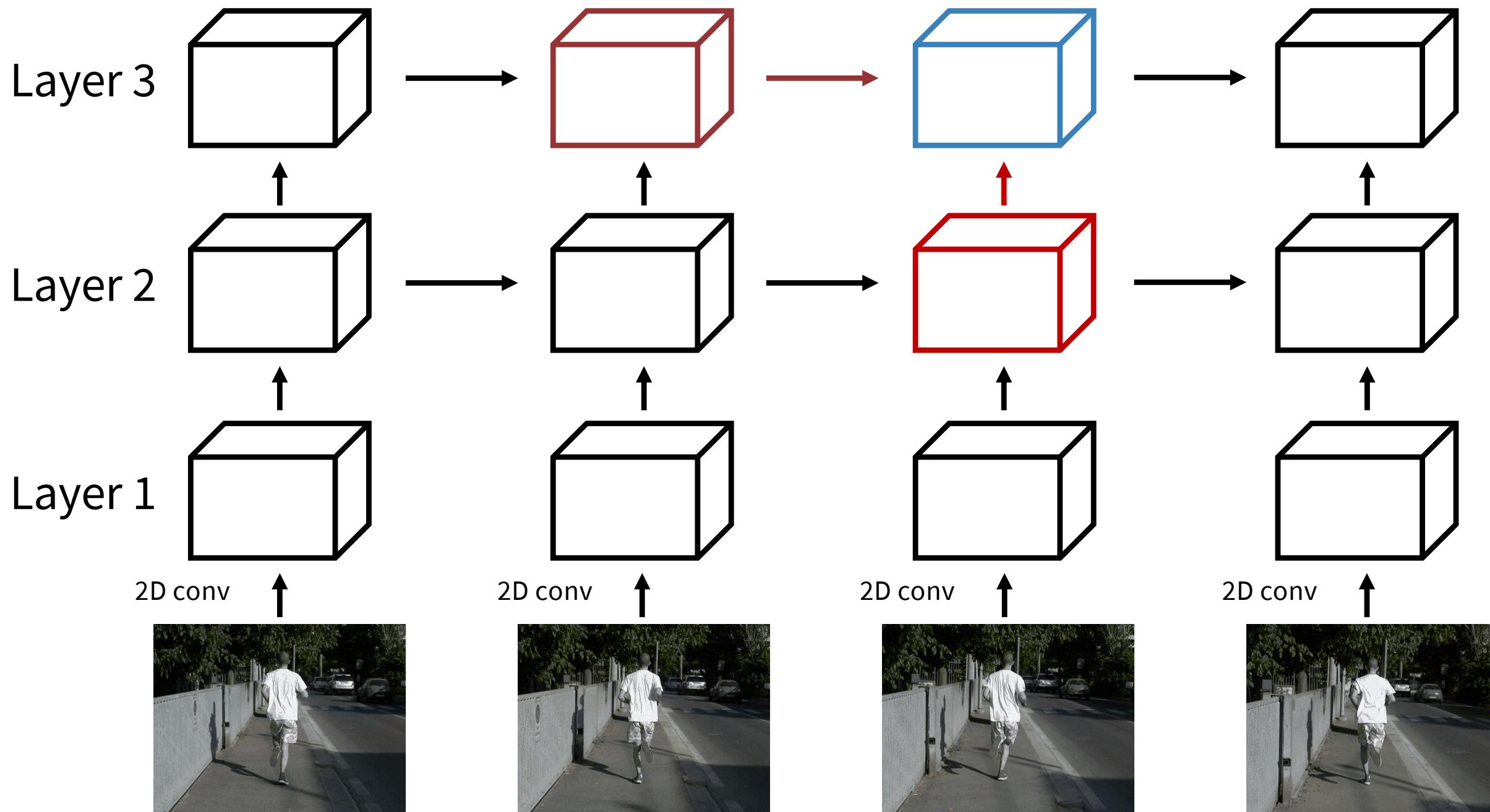
Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

Recall: Multi-layer RNN

We can use a similar structure to process videos!



Recurrent Convolutional Network



Entire network uses 2D feature maps: $C \times H \times W$

Each depends on two inputs:

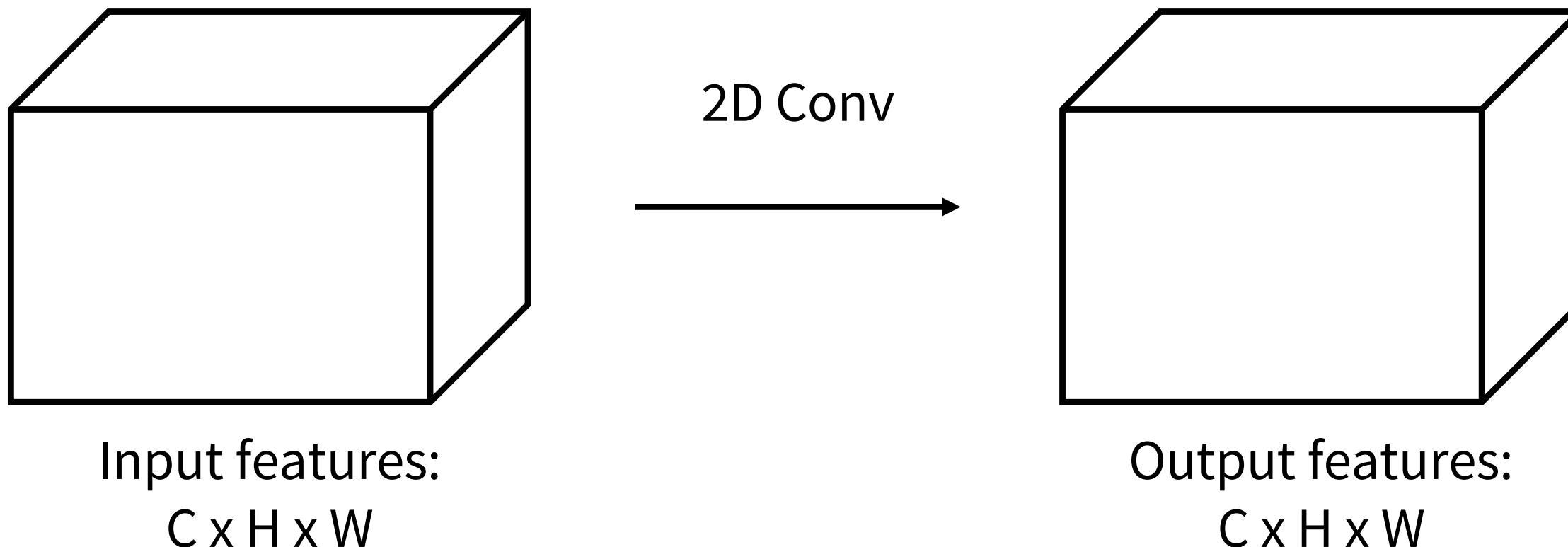
1. Same layer, previous timestep
2. Prev layer, same timestep

Use different weights at each layer, share weights across time

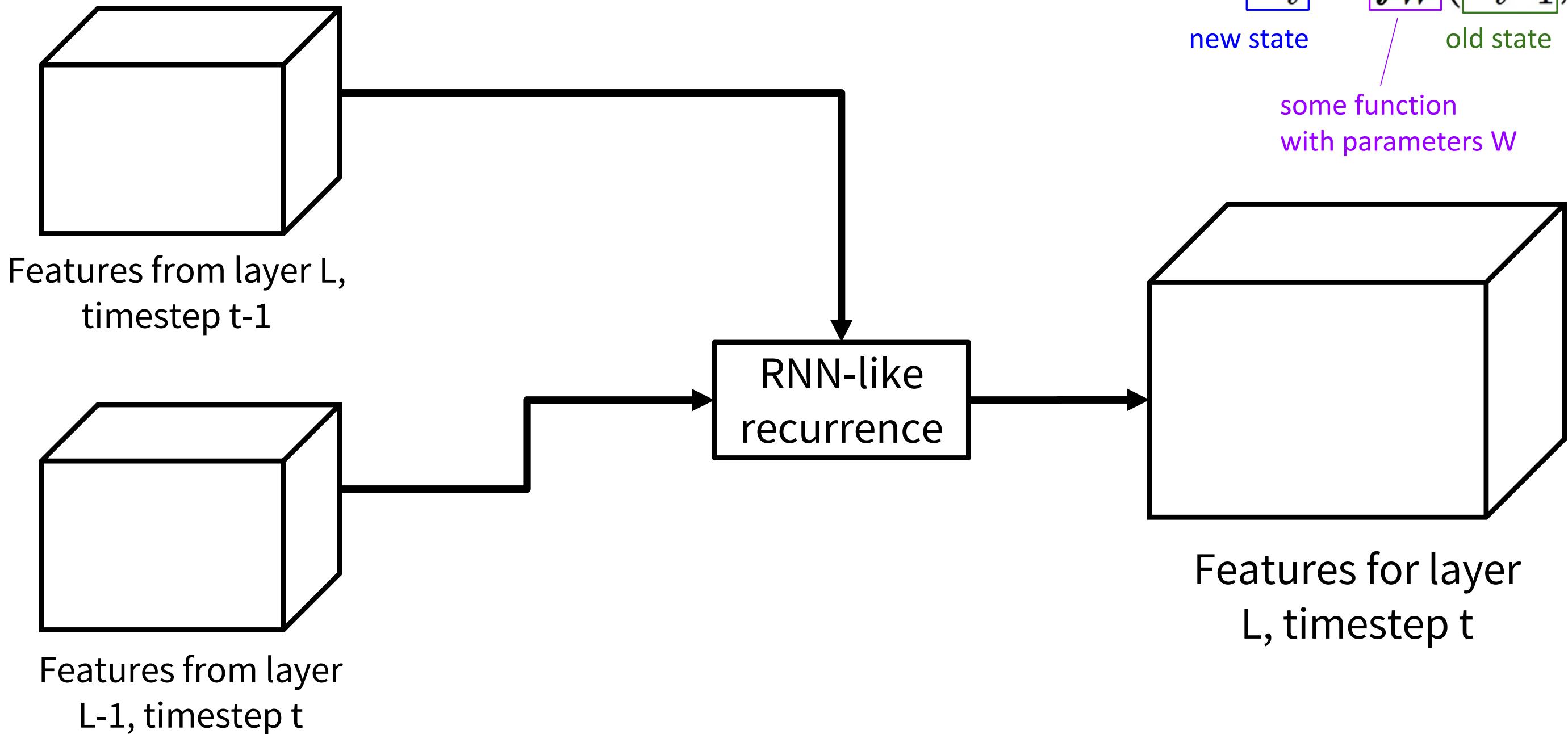
Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016

Recurrent Convolutional Network

Normal 2D CNN:



Recurrent Convolutional Network

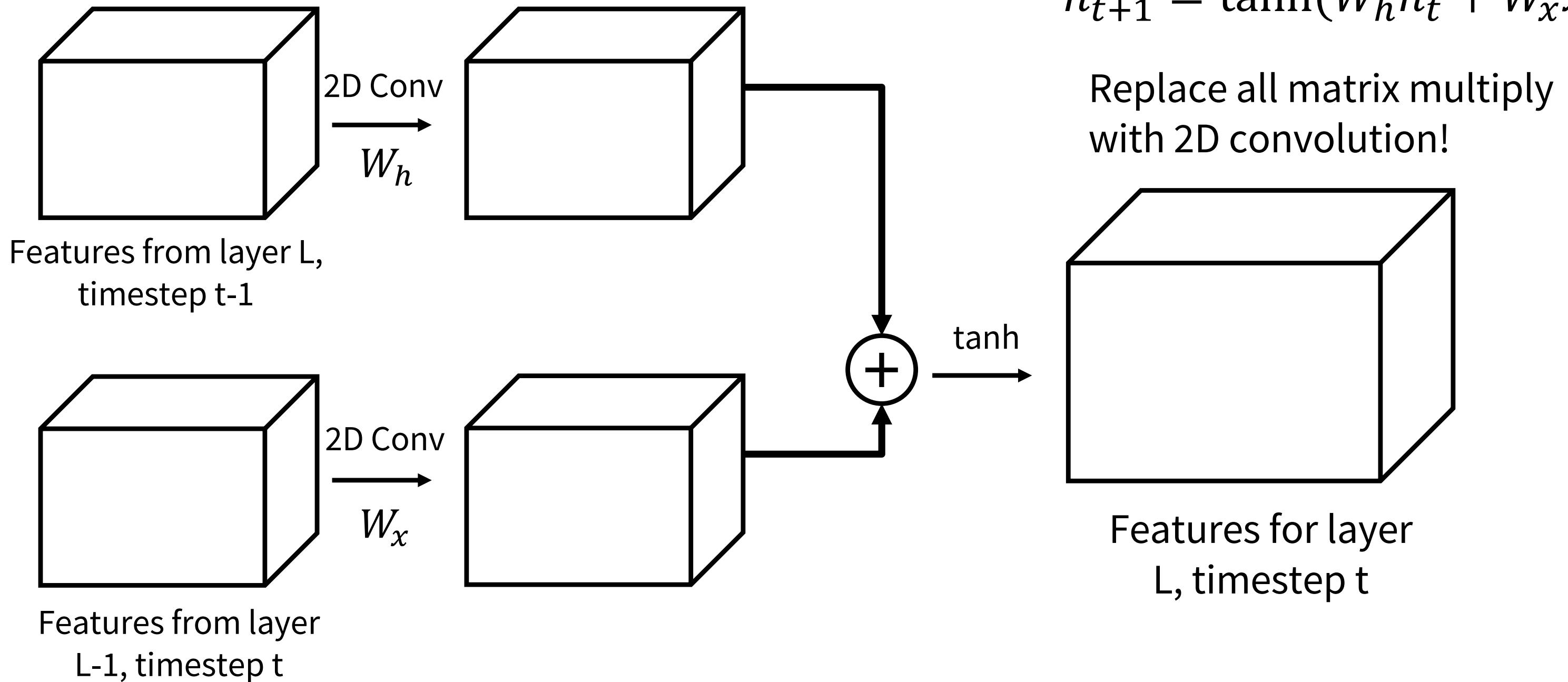


Ballas et al, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016

Recurrent Convolutional Network

Recall: Vanilla RNN

$$h_{t+1} = \tanh(W_h h_t + W_x x)$$

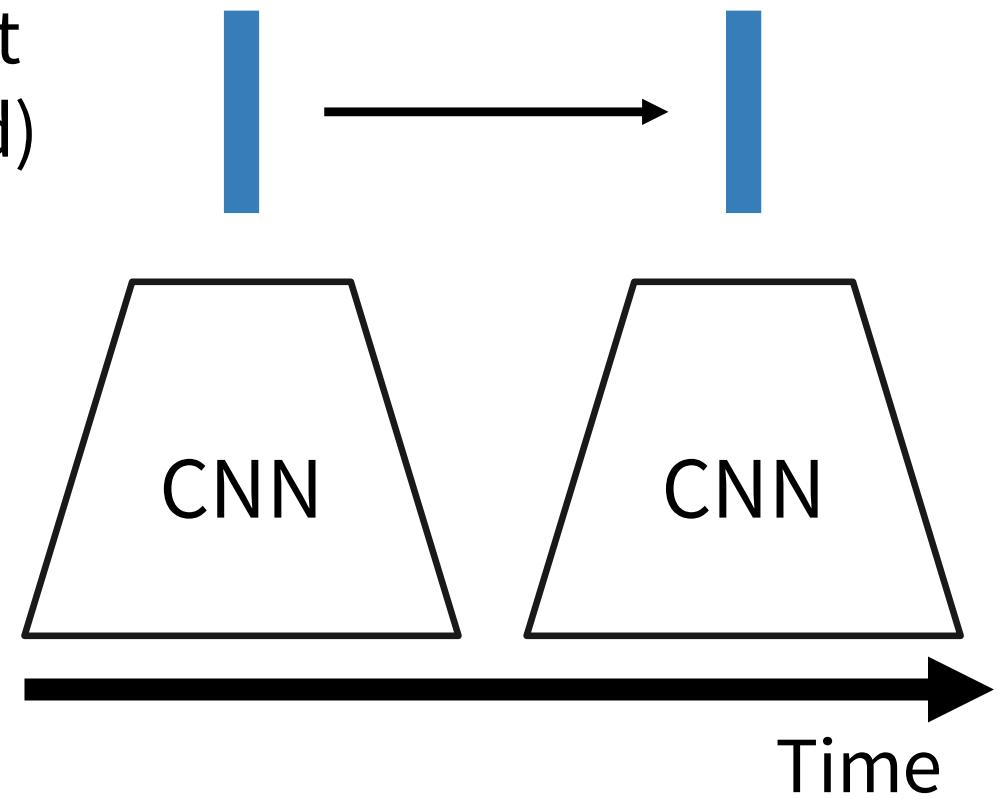


Ballas et al, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016

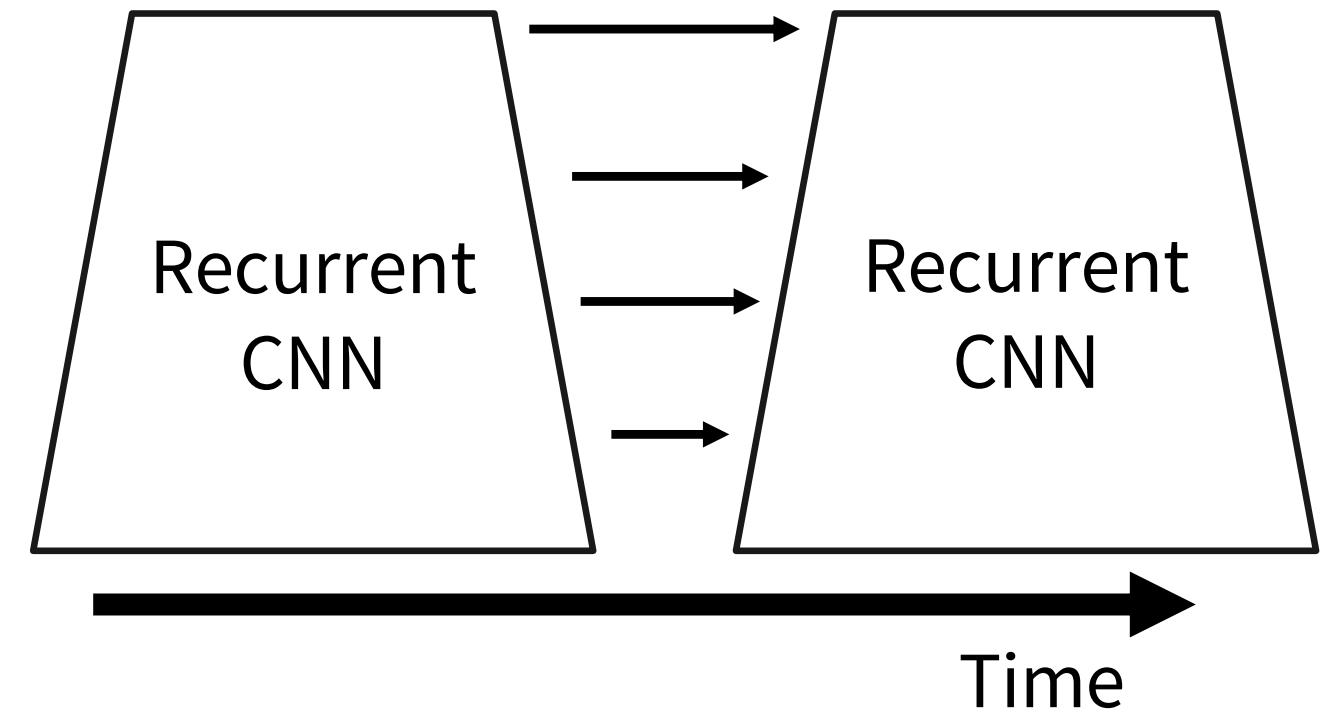
Modeling long-term temporal structure

RNN: Infinite
temporal extent
(fully-connected)

CNN: finite
temporal extent
(convolutional)



Recurrent CNN: Infinite
temporal extent
(convolutional)



Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011

Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

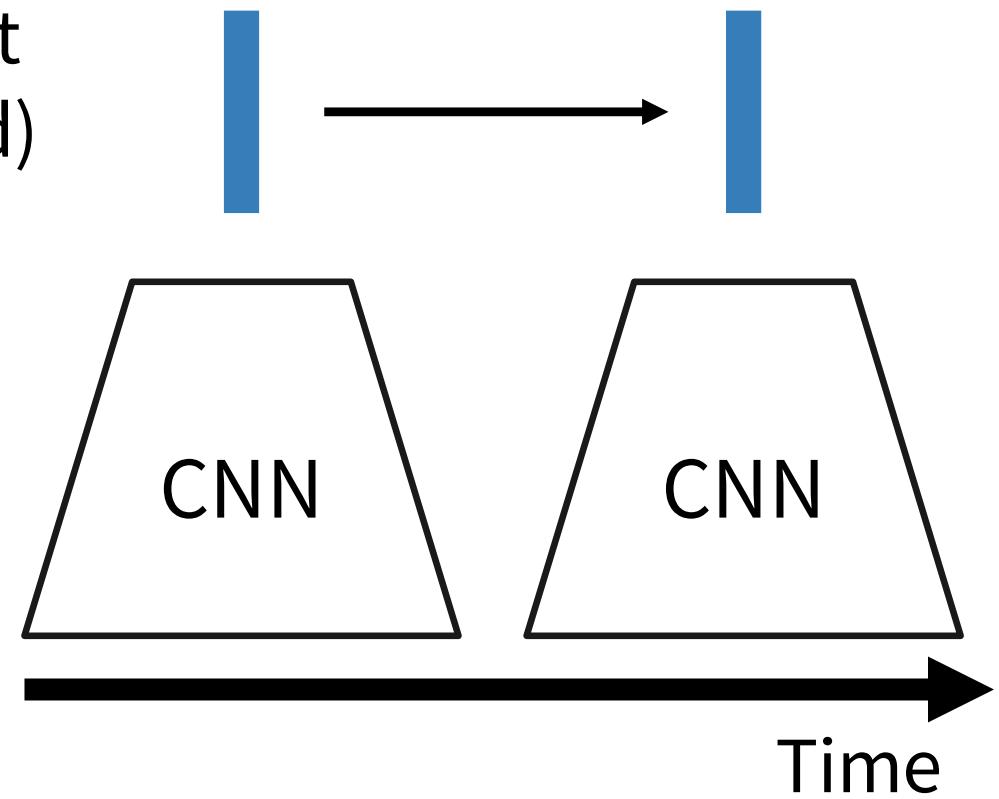
Ballas et al, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016

Modeling long-term temporal structure

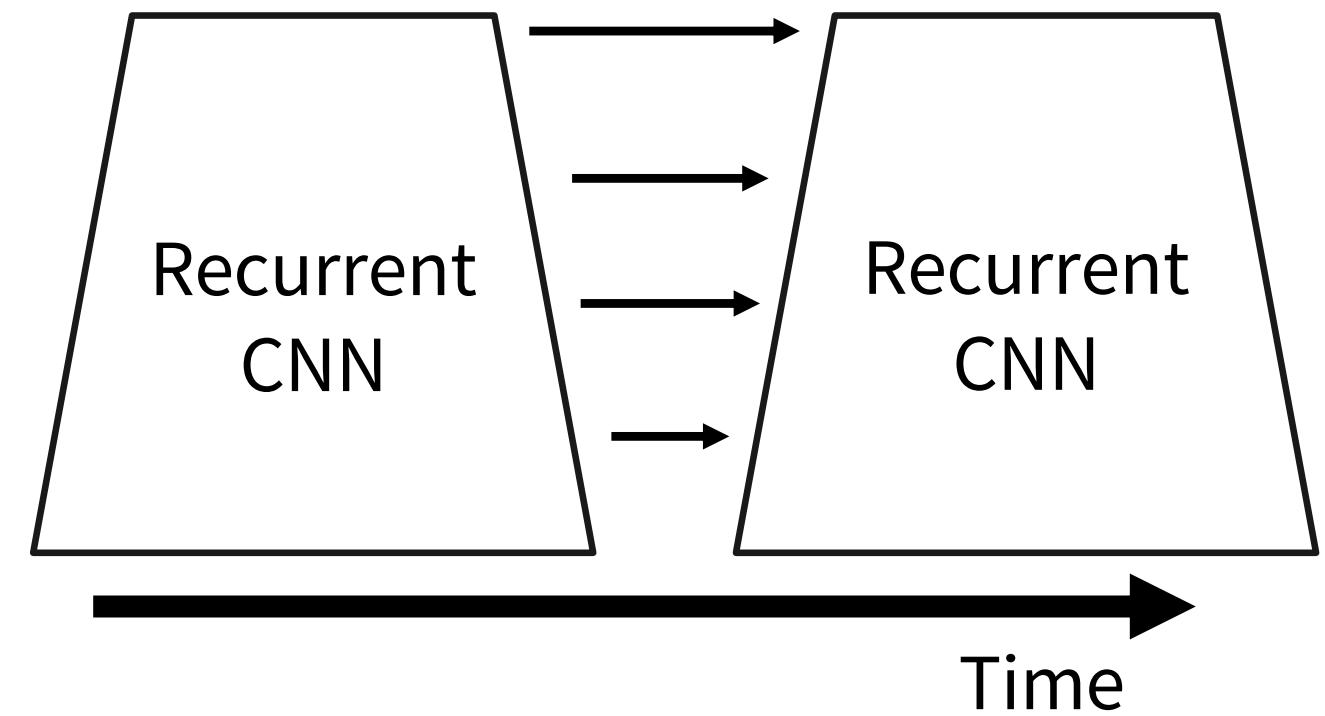
Problem: RNNs are slow for long sequences (can't be parallelized)

RNN: Infinite temporal extent (fully-connected)

CNN: finite temporal extent (convolutional)



Recurrent CNN: Infinite temporal extent (convolutional)

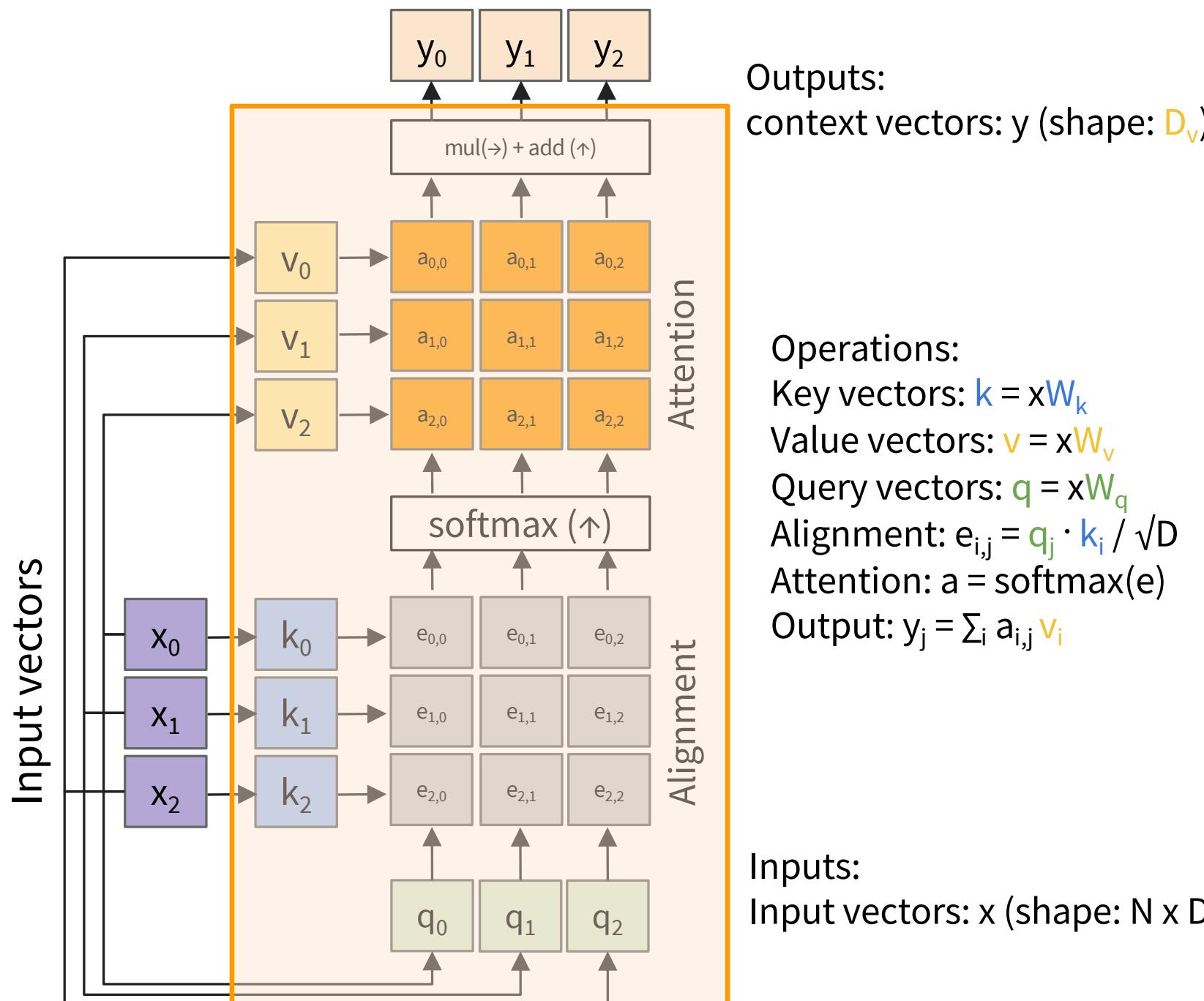
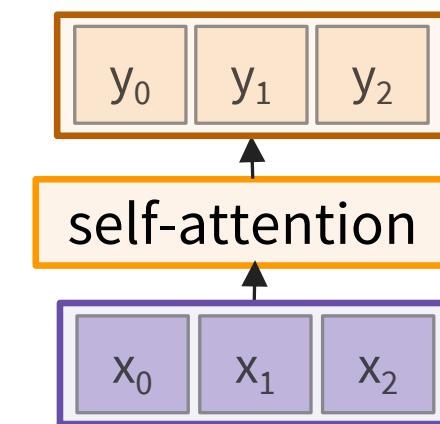


Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011

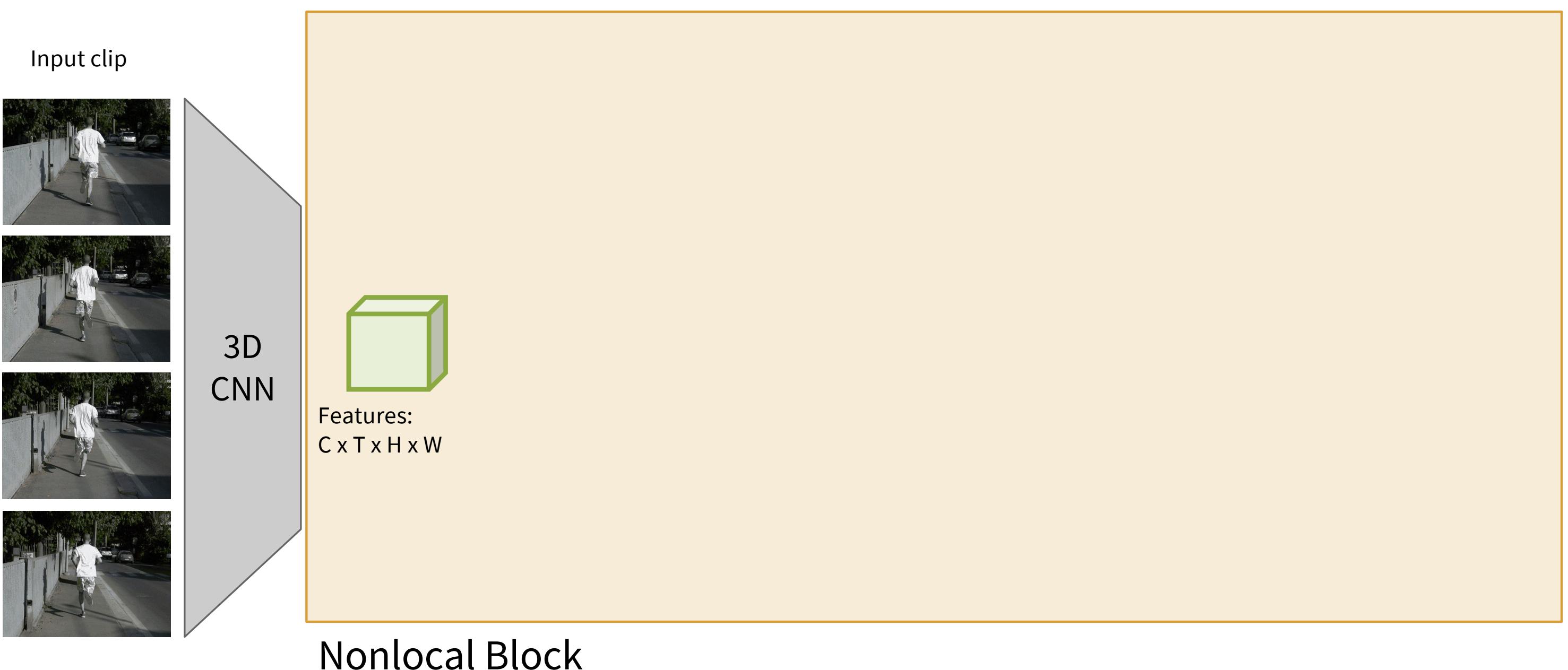
Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

Ballas et al, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016

Recall: Self-Attention

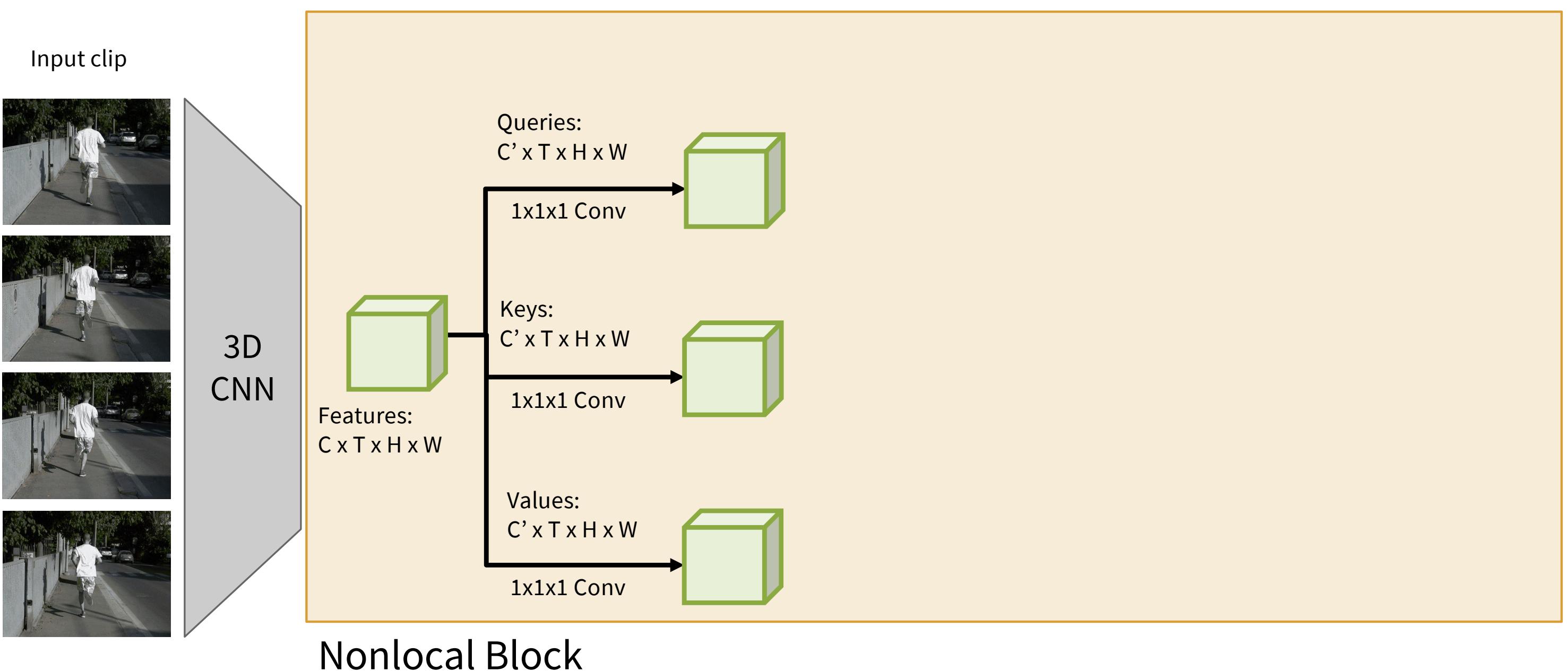


Spatio-Temporal Self-Attention (Nonlocal Block)



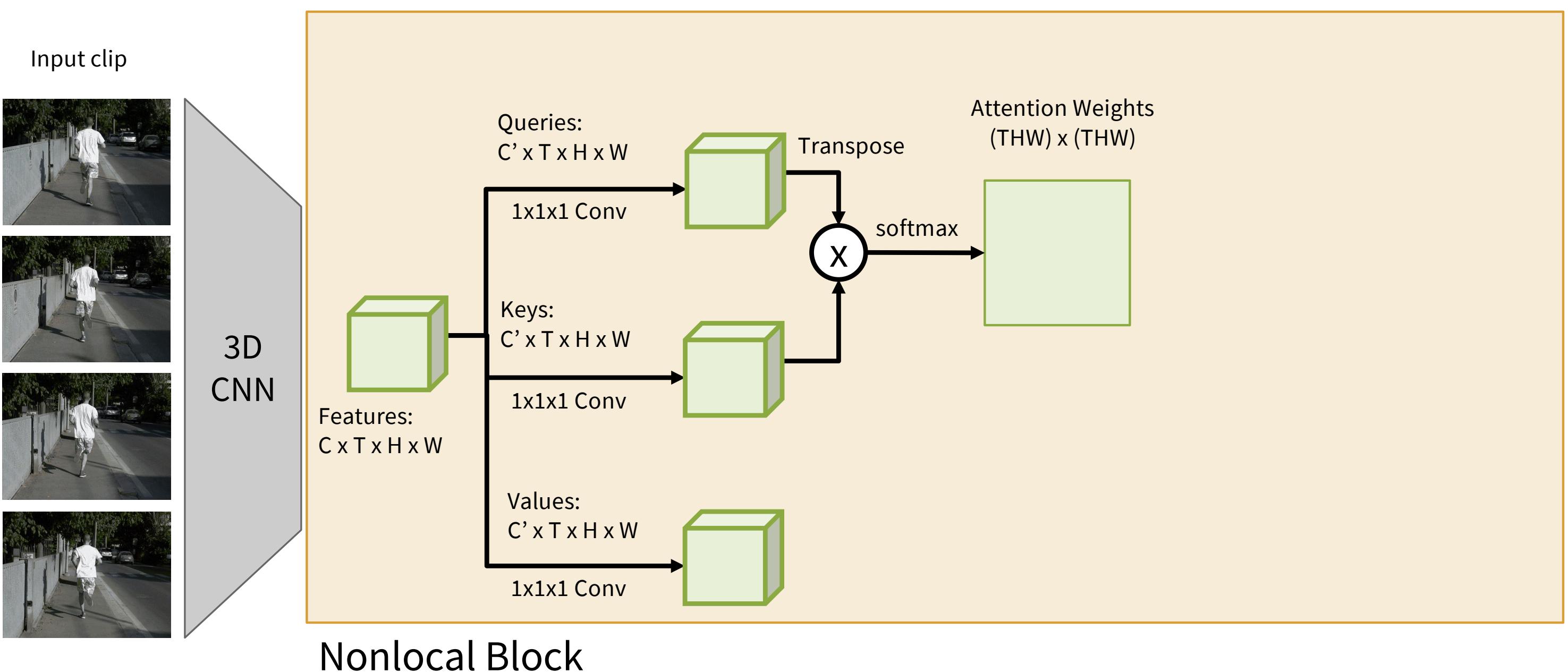
Wang et al, "Non-local neural networks", CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)



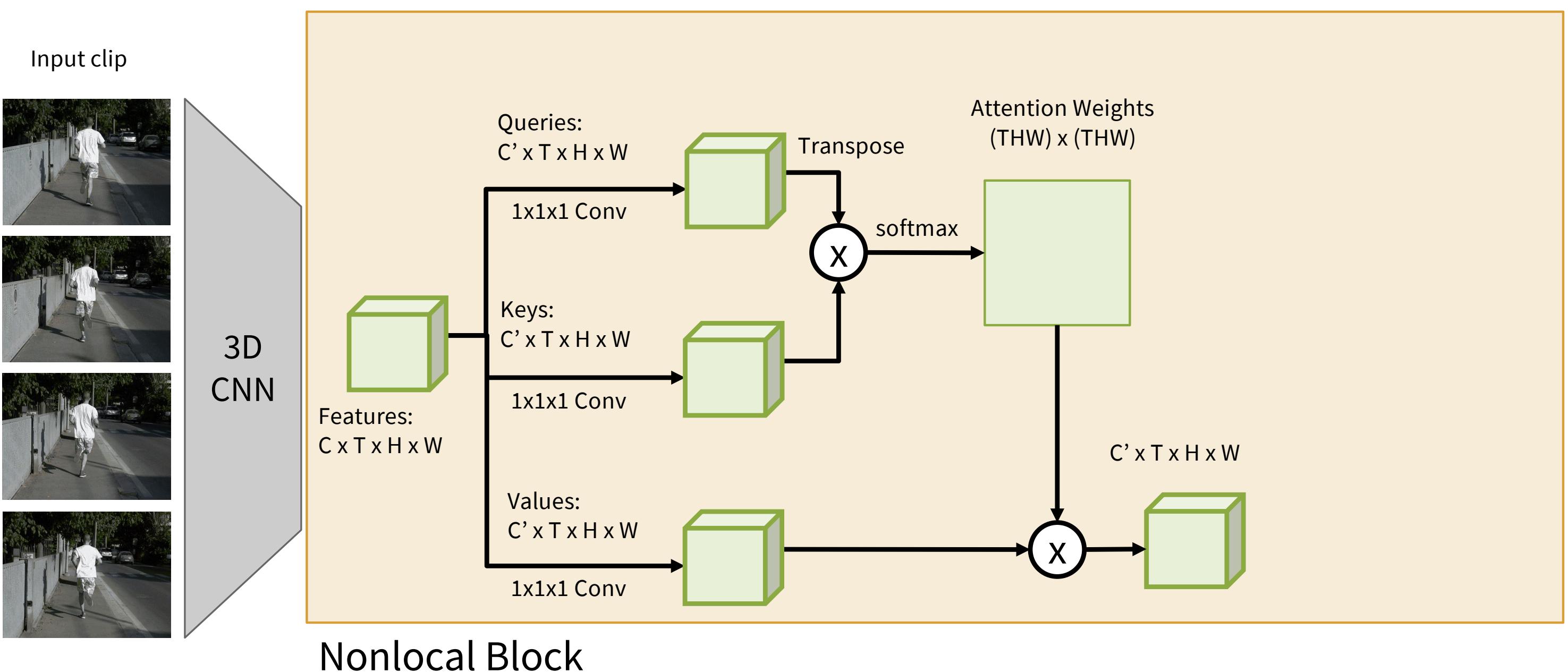
Wang et al, "Non-local neural networks", CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)



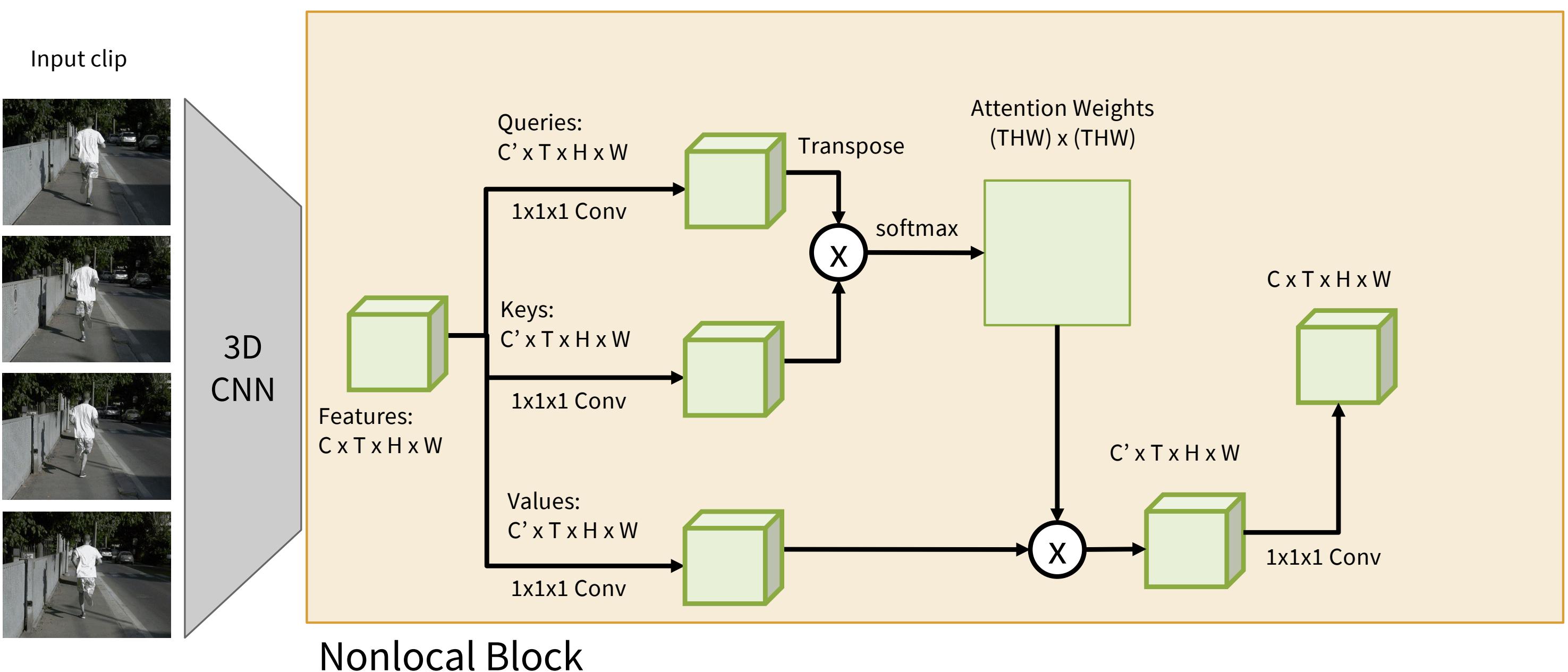
Wang et al, "Non-local neural networks", CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)



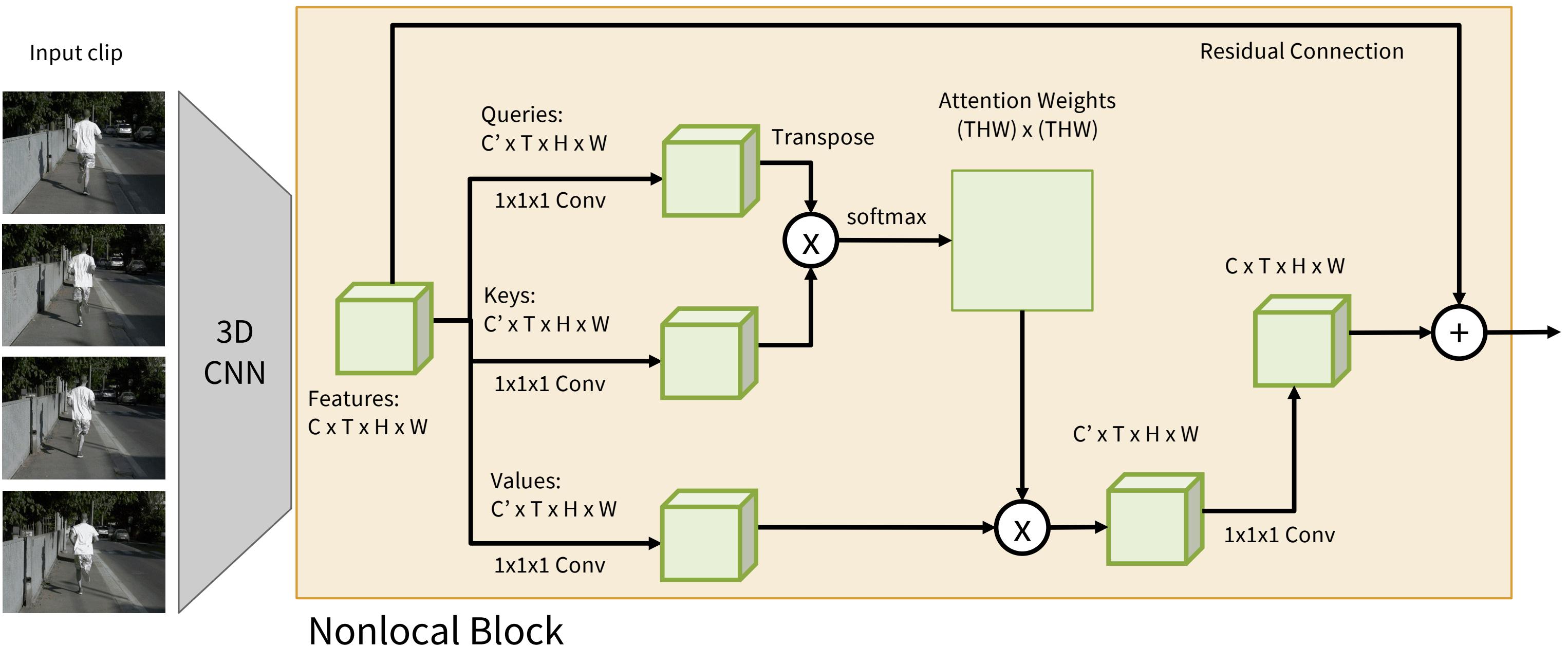
Wang et al, "Non-local neural networks", CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)



Wang et al, "Non-local neural networks", CVPR 2018

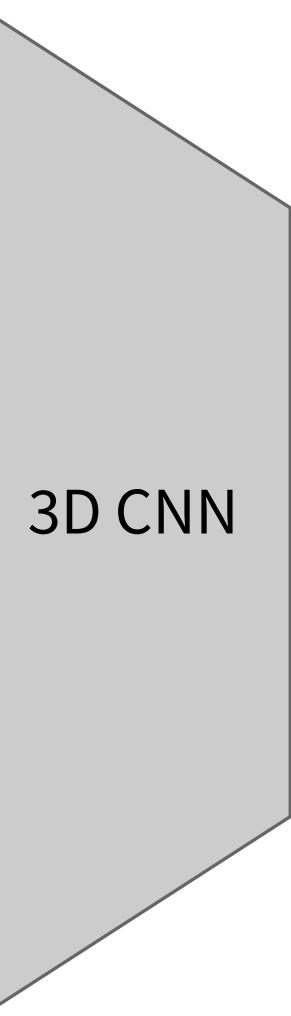
Spatio-Temporal Self-Attention (Nonlocal Block)



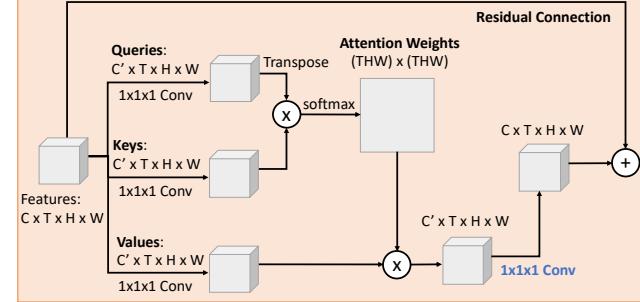
Wang et al, "Non-local neural networks", CVPR 2018

Spatio-Temporal Self-Attention (Nonlocal Block)

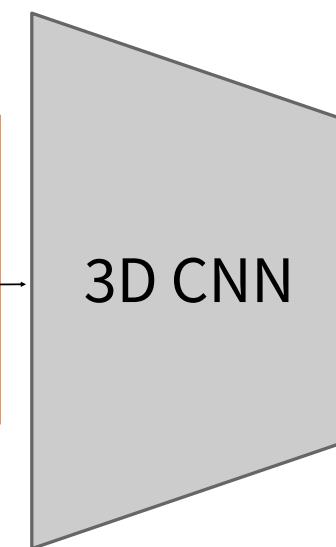
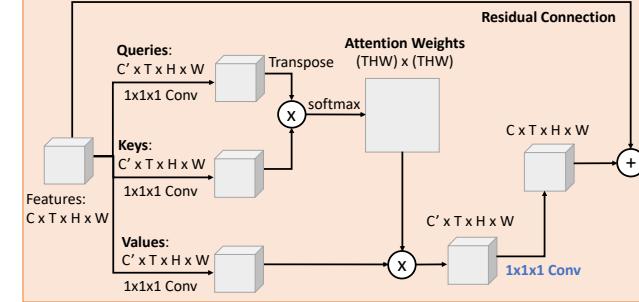
Input clip



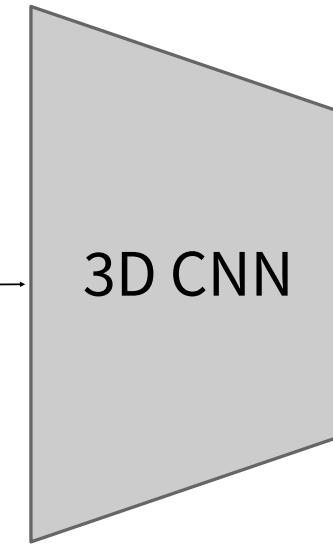
We can add nonlocal blocks into existing 3D CNN architectures.
But what is the best 3D CNN architecture?



Nonlocal Block



Nonlocal Block



Running

Wang et al, "Non-local neural networks", CVPR 2018

Inflating 2D Networks to 3D (I3D)

There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D $K_h \times K_w$ conv/pool
layer with a 3D $K_t \times K_h \times K_w$ version

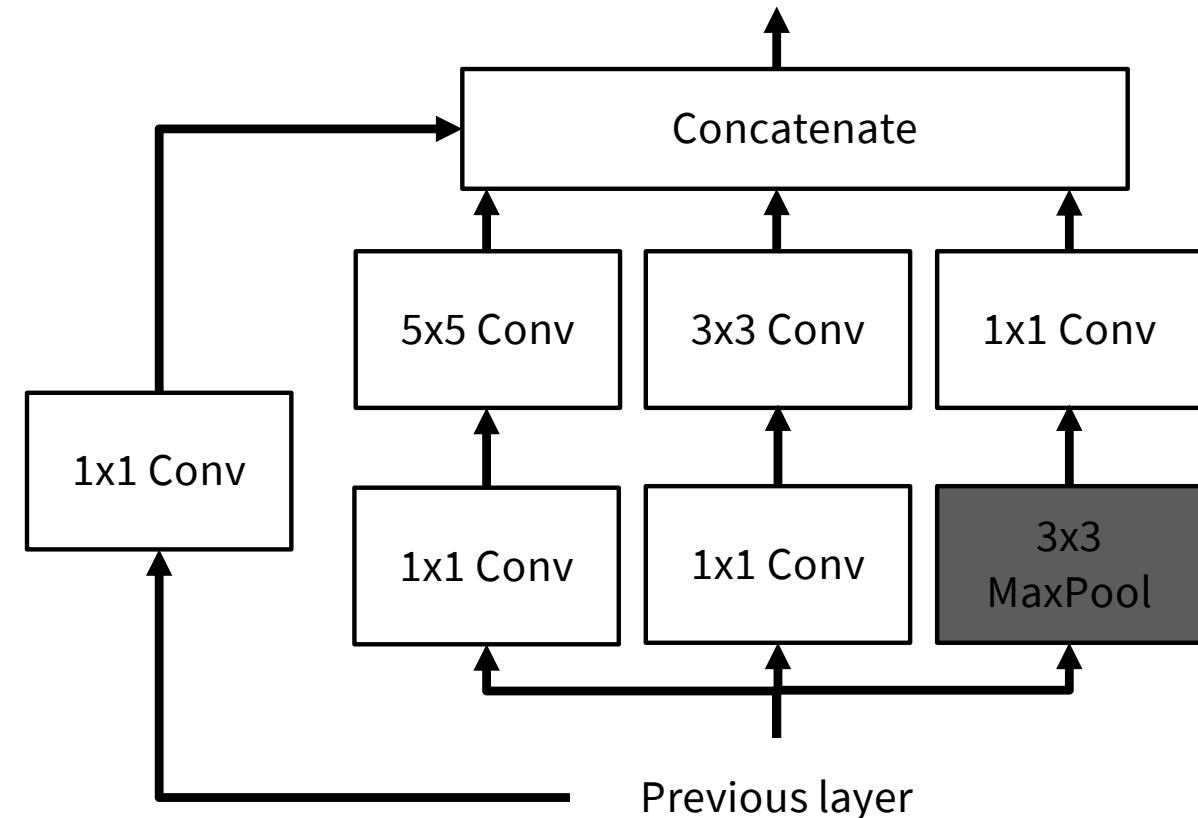
Inflating 2D Networks to 3D (I3D)

There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D $K_h \times K_w$ conv/pool layer with a 3D $K_t \times K_h \times K_w$ version

Inception Block: Original



Carreira and Zisserman, "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset", CVPR 2017

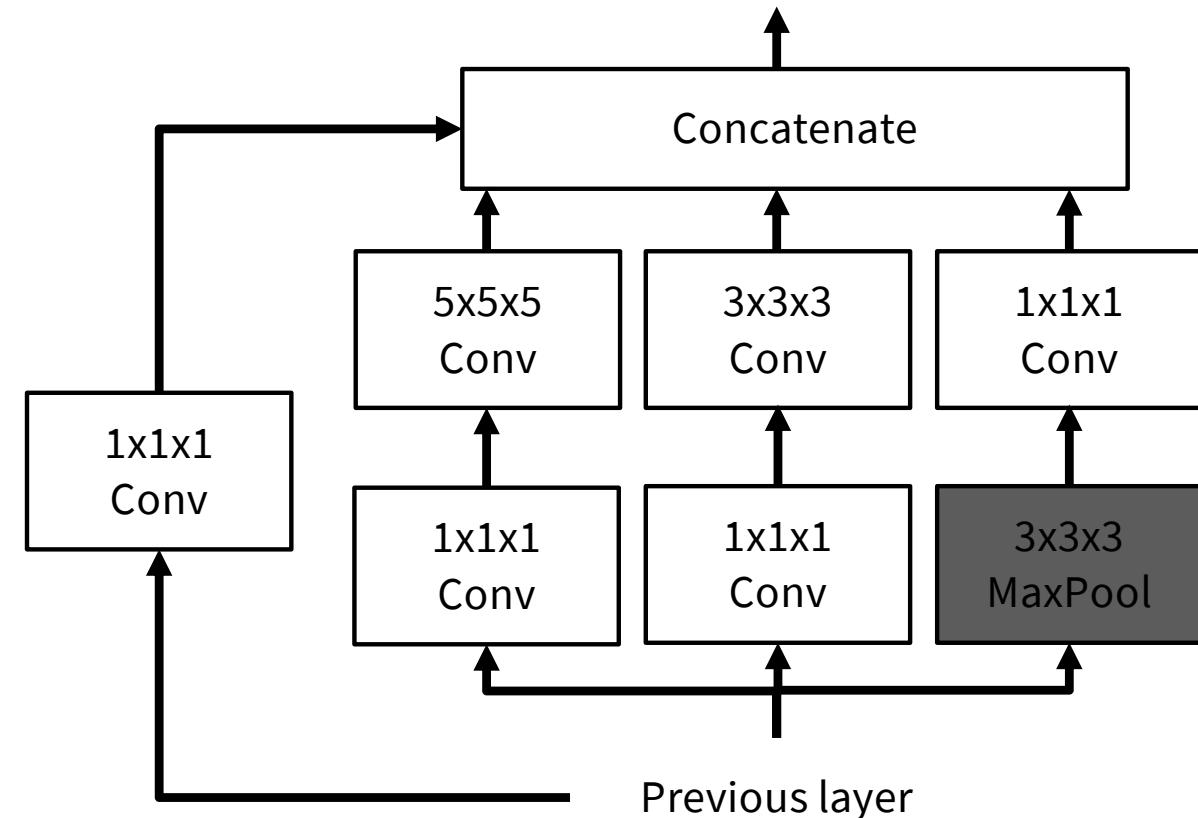
Inflating 2D Networks to 3D (I3D)

There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each $2D\ K_h \times K_w$ conv/pool layer with a $3D\ K_t \times K_h \times K_w$ version

Inception Block: Inflated



Carreira and Zisserman, "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset", CVPR 2017

Inflating 2D Networks to 3D (I3D)

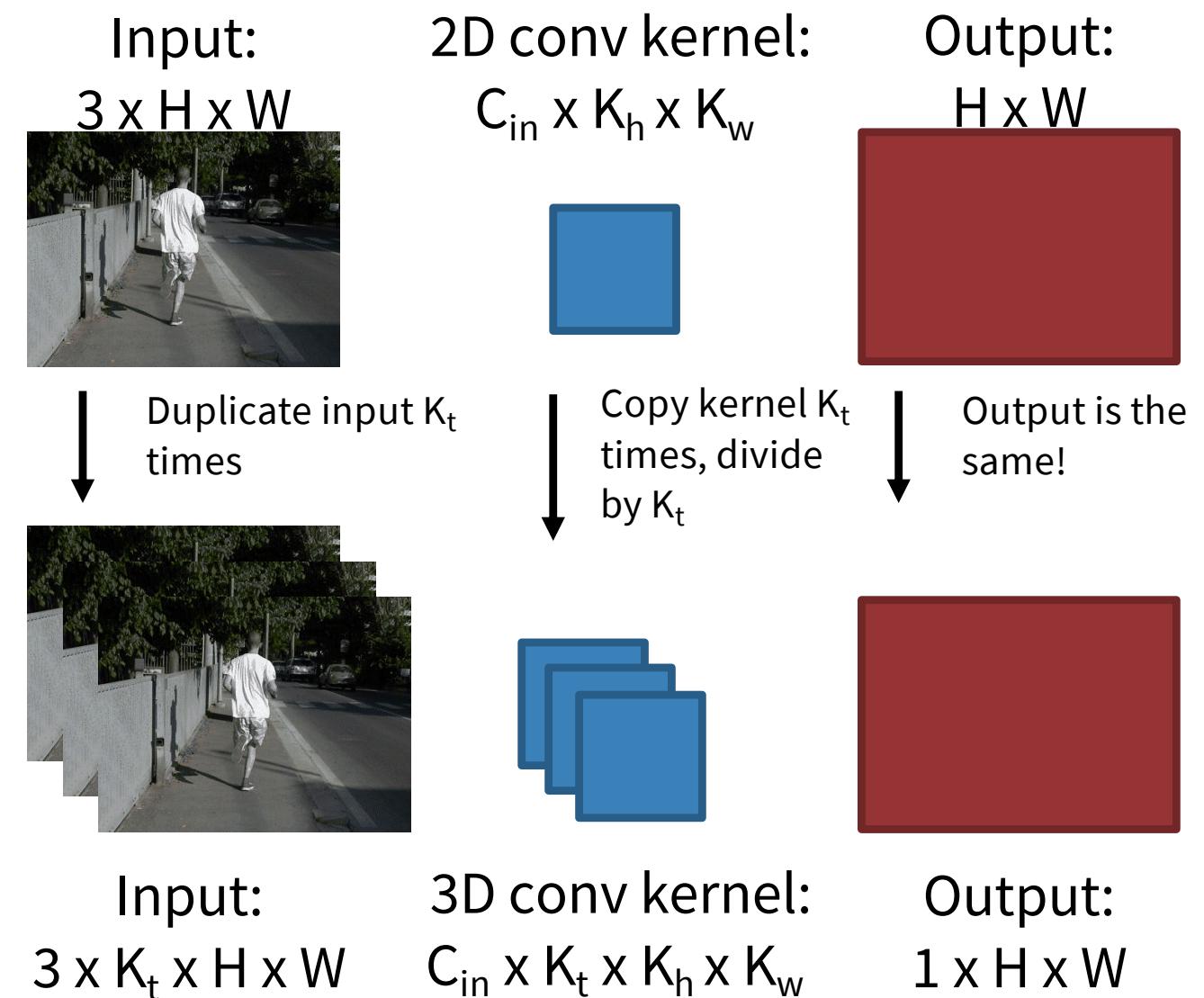
There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D $K_h \times K_w$ conv/pool layer with a 3D $K_t \times K_h \times K_w$ version

Can use weights of 2D conv to initialize 3D conv: copy K_t times in space and divide by K_t

This gives the same result as 2D conv given “constant” video input



Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Inflating 2D Networks to 3D (I3D)

There has been a lot of work on architectures for images.
Can we reuse image architectures for video?

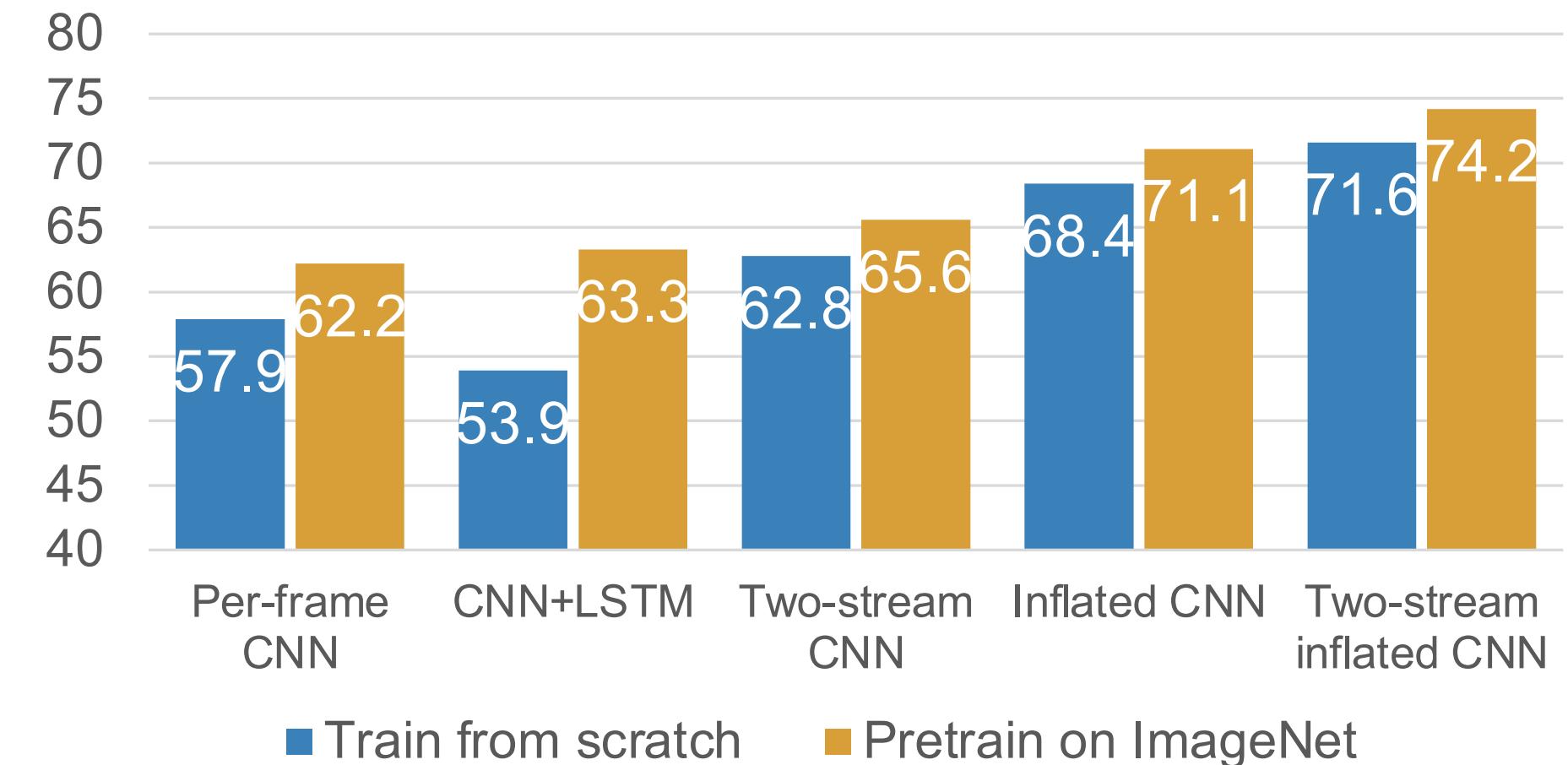
Idea: take a 2D CNN architecture.

Replace each $2D K_h \times K_w$ conv/pool layer with a $3D K_t \times K_h \times K_w$ version

Can use weights of 2D conv to initialize 3D conv: copy K_t times in space and divide by K_t

This gives the same result as 2D conv given “constant” video input

Top-1 Accuracy on Kinetics-400

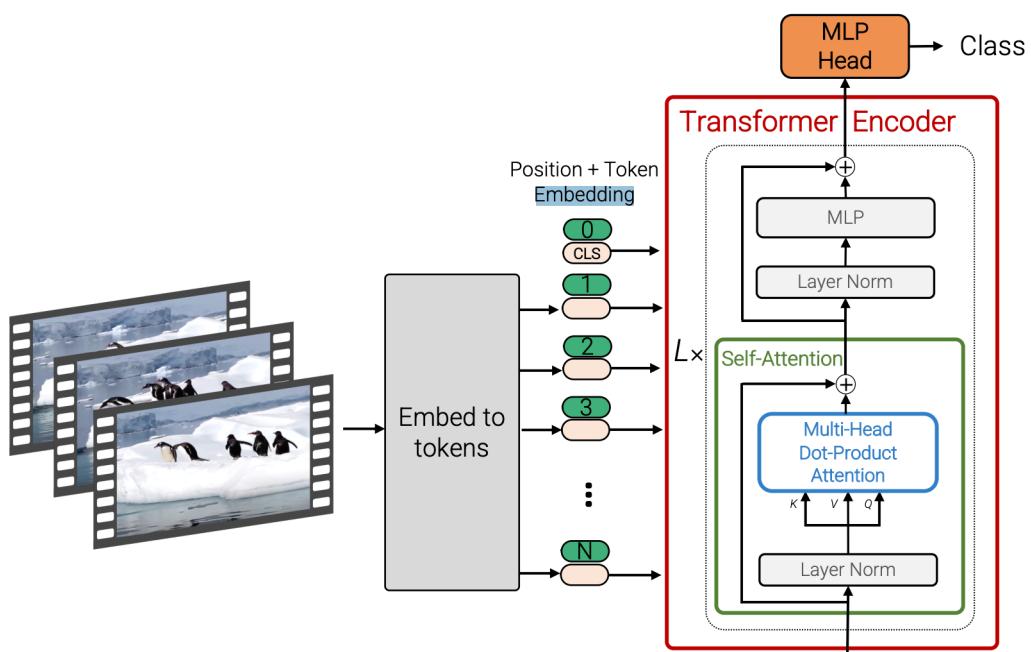


Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

All using Inception CNN

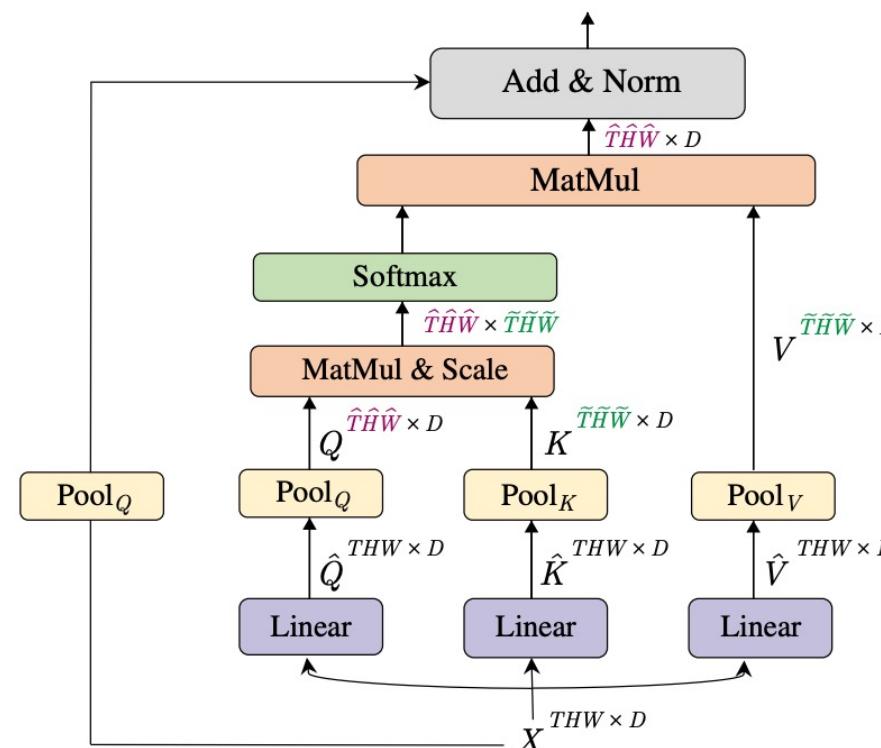
Vision Transformers for Video

Factorized attention:
Attend over space / time



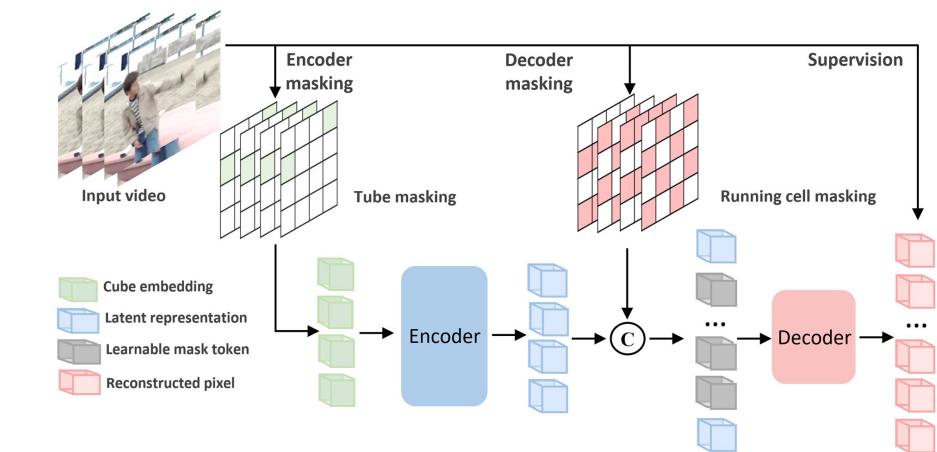
Bertasius et al, “Is Space-Time Attention All You Need for Video Understanding?”, ICML 2021
Arnab et al, “ViViT: A Video Vision Transformer”, ICCV 2021
 Neimark et al, “Video Transformer Network”, ICCV 2021

Pooling module:
Reduce number of tokens



Fan et al, “Multiscale Vision Transformers”, ICCV 2021
 Li et al, “MViTv2: Improved Multiscale Vision Transformers for Classification and Detection”, CVPR 2022

Video masked autoencoders:
Efficient scalable pretraining

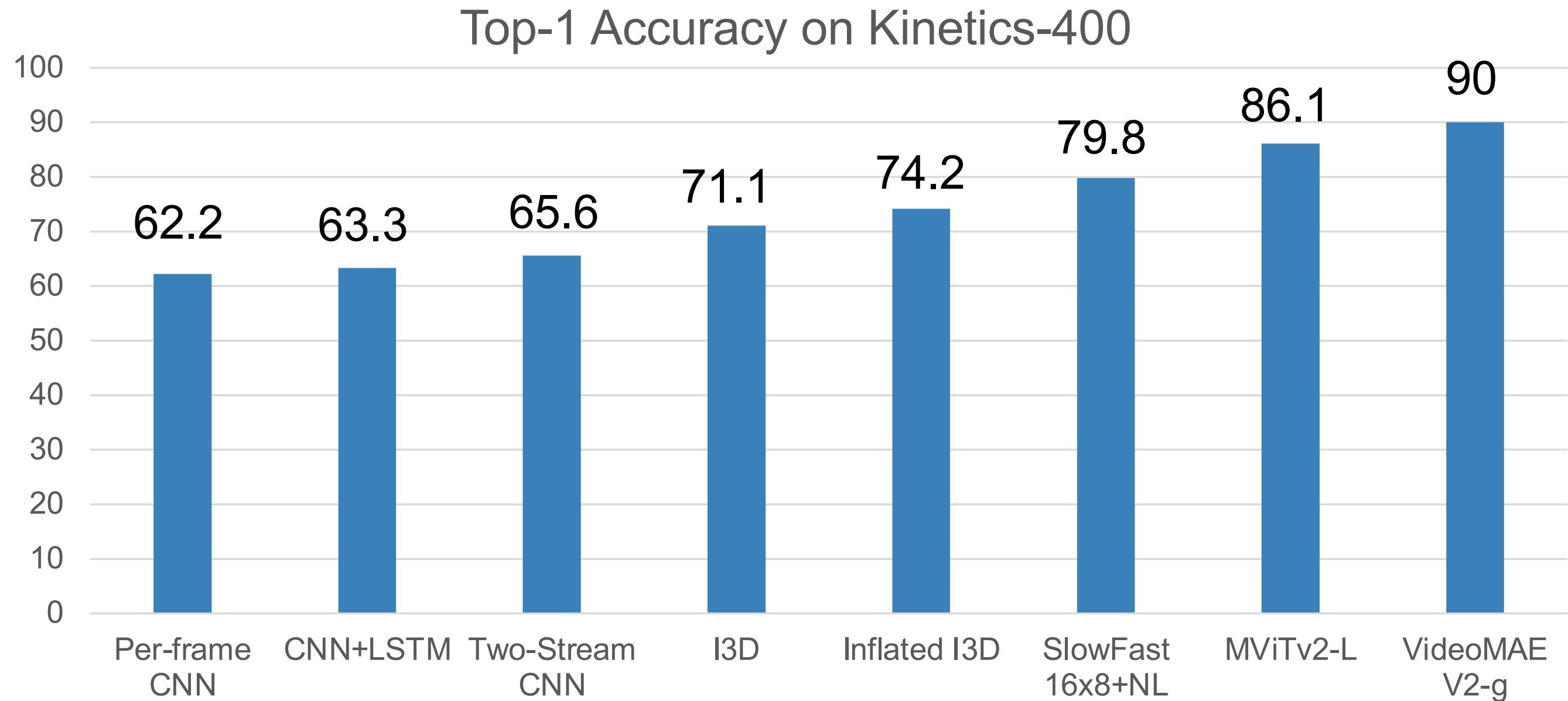


Wang et al. VideoMAE V2: Scaling Video Masked Autoencoders with Dual Making. CVPR 2023.

Tong et al. Video MAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training. NeurIPS 2022.

Feichtenhofer et al. Masked autoencoders as spatiotemporal learners. NeurIPS 2022.

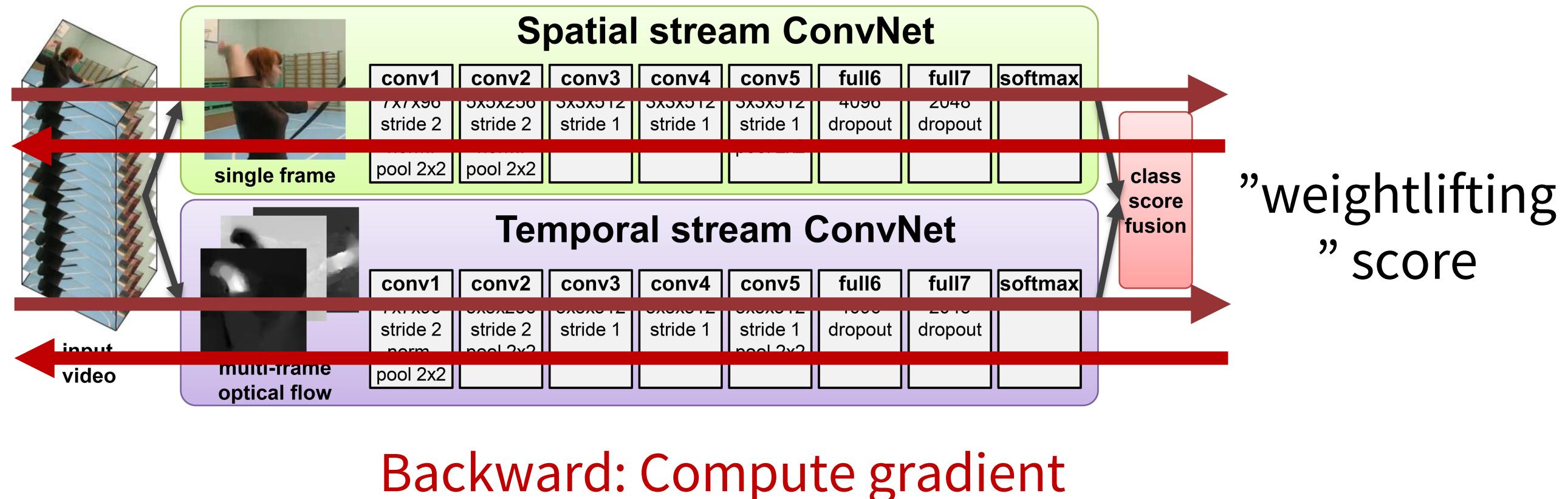
Vision Transformers for Video



Visualizing Video Models

Image

Forward: Compute class score



Add a term to encourage spatially smooth flow; tune penalty to pick out “slow” vs “fast” motion

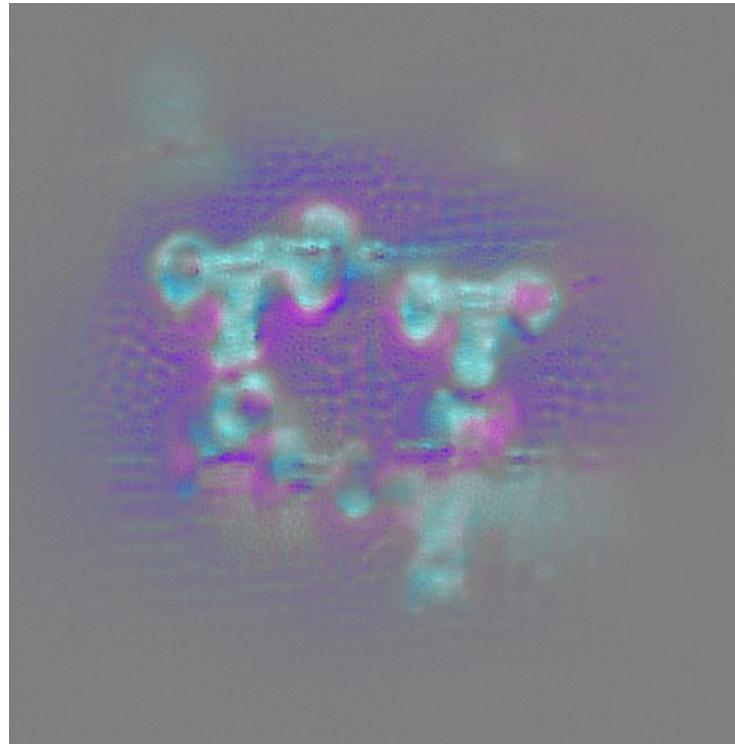
Figure credit: Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014
Feichtenhofer et al, “What have we learned from deep representations for action recognition?”, CVPR 2018
Feichtenhofer et al, “Deep insights into convolutional networks for video recognition?”, IJCV 2019.

Can you guess the action?

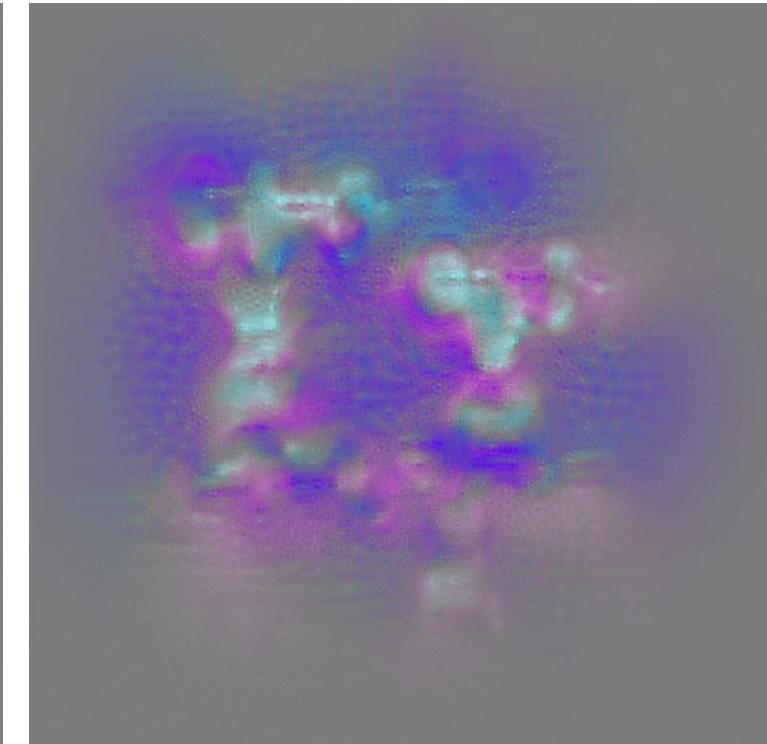
Feichtenhofer et al, “What have we learned from deep representations for action recognition?”, CVPR 2018
Feichtenhofer et al, “Deep insights into convolutional networks for video recognition?”, IJCV 2019.
Slide credit: Christoph Feichtenhofers

Appearance

“Slow” motion



“Fast” motion

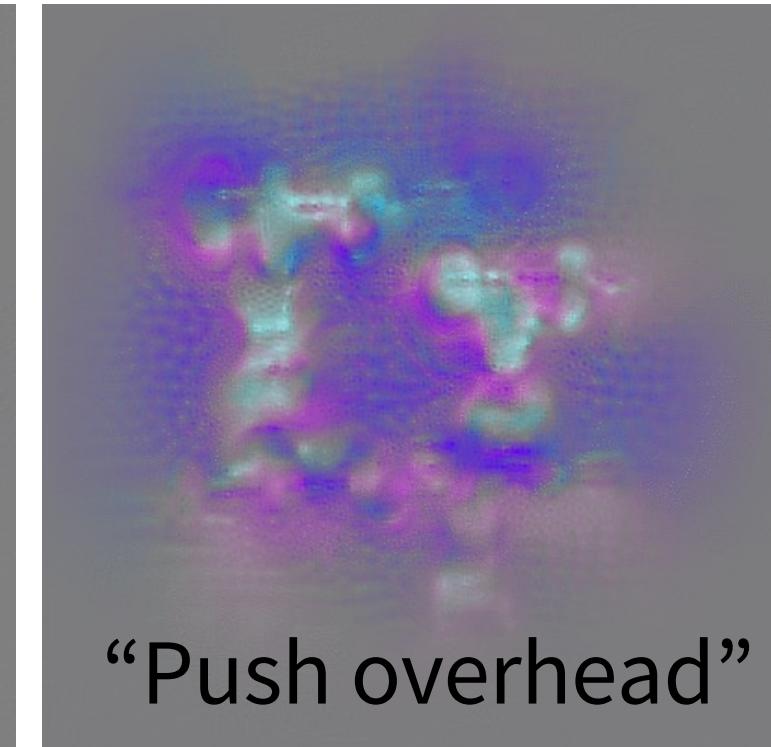


Can you guess the action? Weightlifting

Appearance

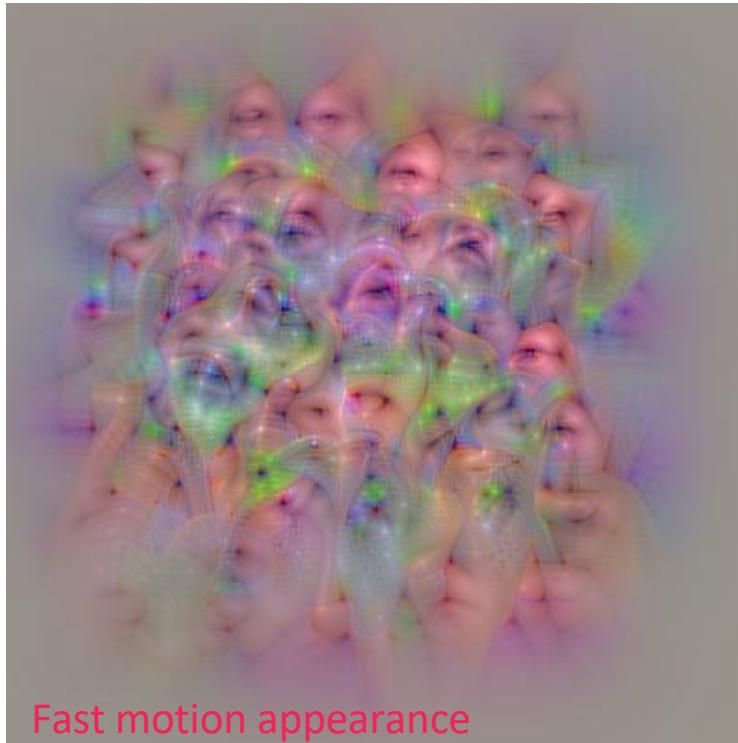
“Slow” motion

“Fast” motion

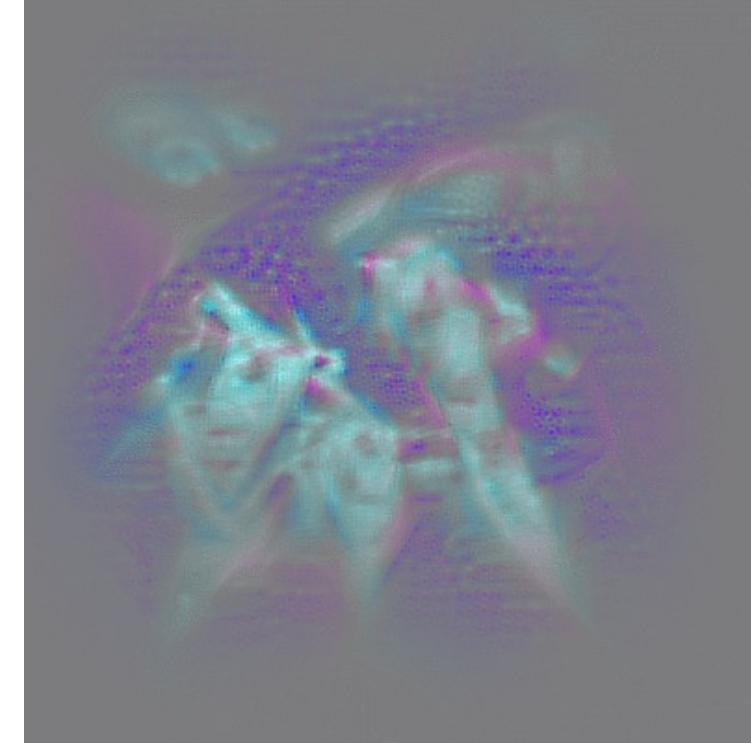


Can you guess the action?

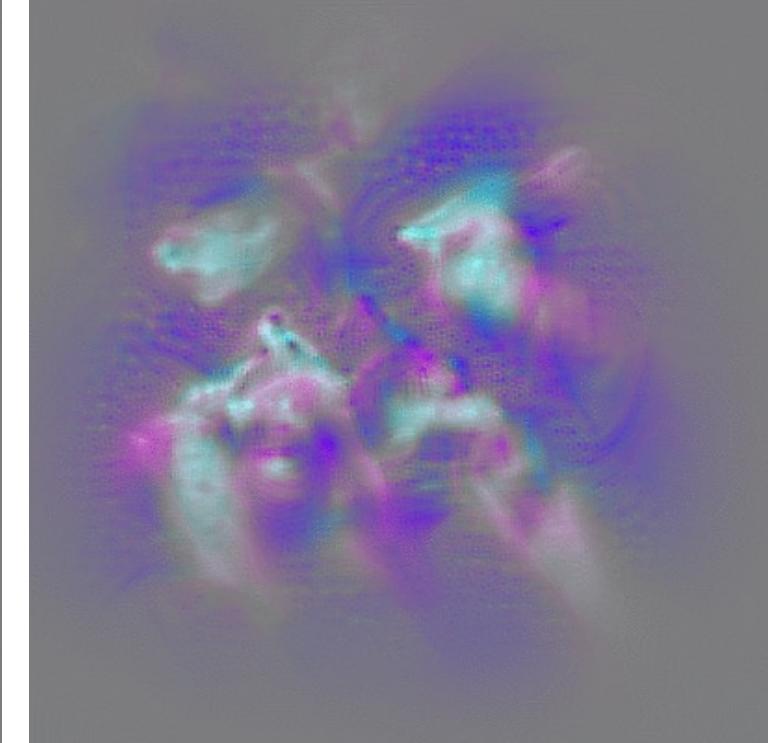
Appearance



“Slow” motion



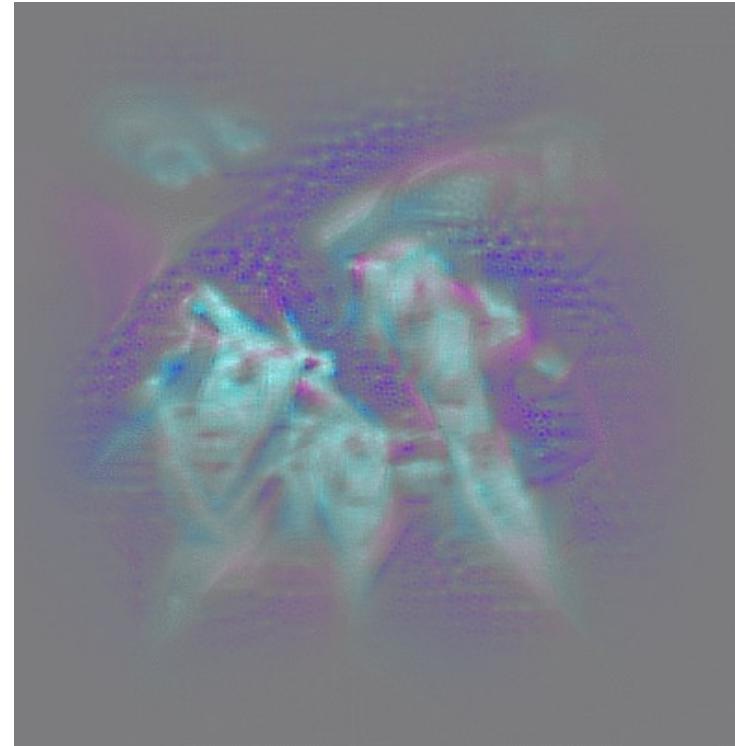
“Fast” motion



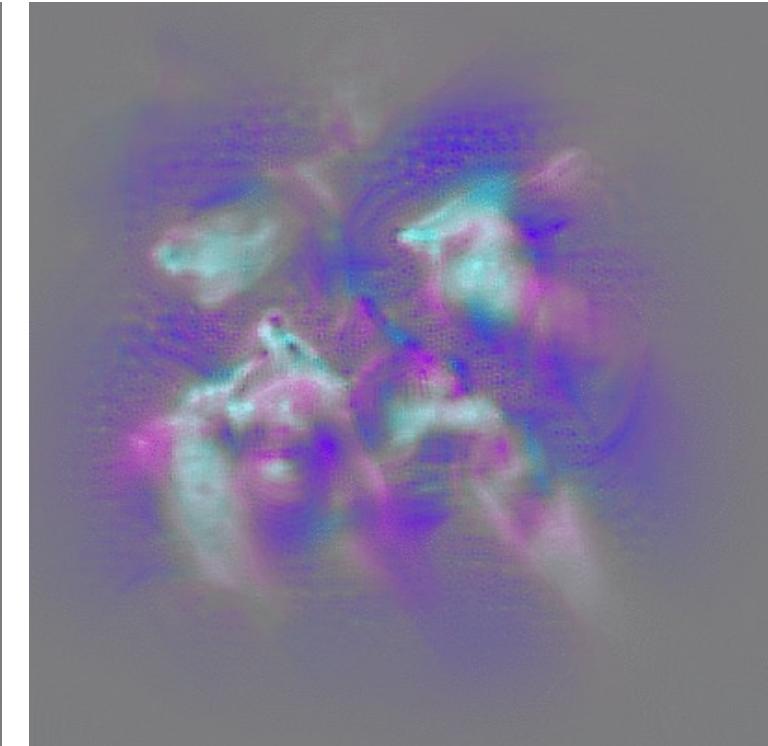
Can you guess the action? Apply Eye Makeup

Appearance

“Slow” motion



“Fast” motion



So far: Classify short clips

Videos: Recognize actions

Swimming
Running
Jumping
Eating
Standing

Temporal Action Localization

Given a long untrimmed video sequence, identify frames corresponding to different actions

Running

Jumping

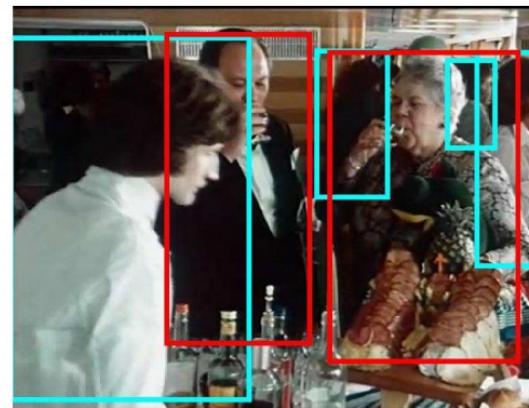
Can use architecture similar to Faster R-CNN: first generate temporal proposals then classify

Chao et al, "Rethinking the Faster R-CNN Architecture for Temporal Action Localization", CVPR 2018

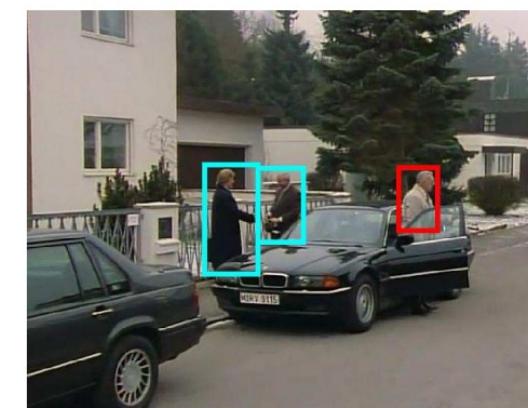
Spatio-Temporal Detection

Given a long untrimmed video, detect all the people in both space and time and classify the activities they are performing.
Some examples from AVA Dataset:

clink glass → drink

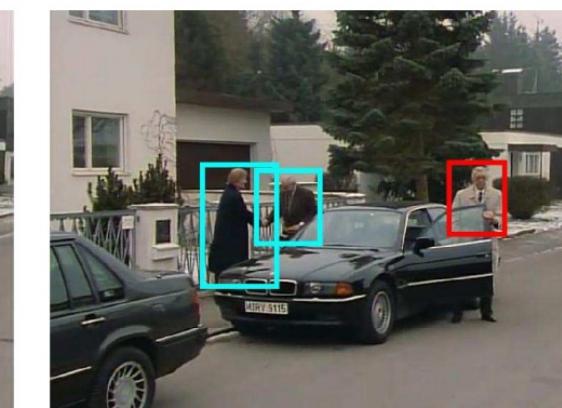


open → close



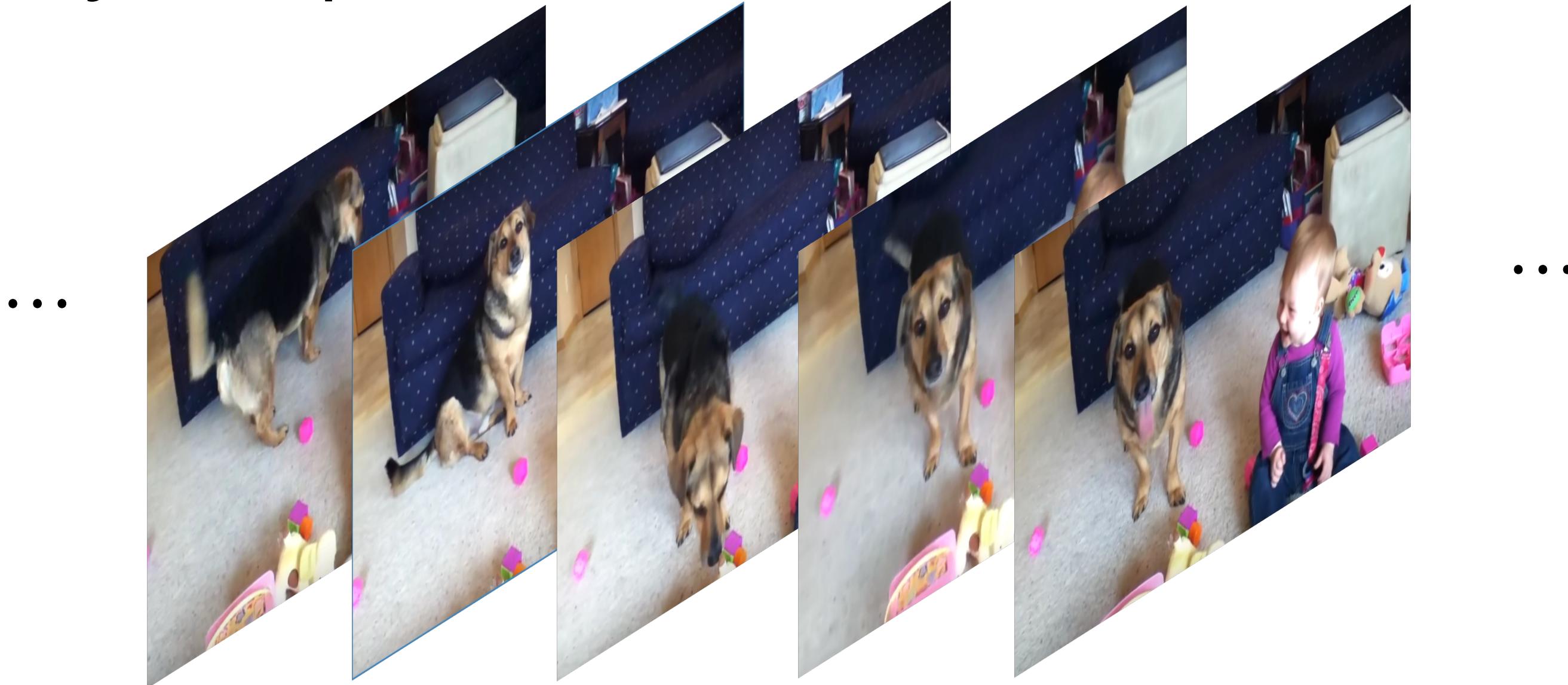
grab (a person) → hug

look at phone → answer phone

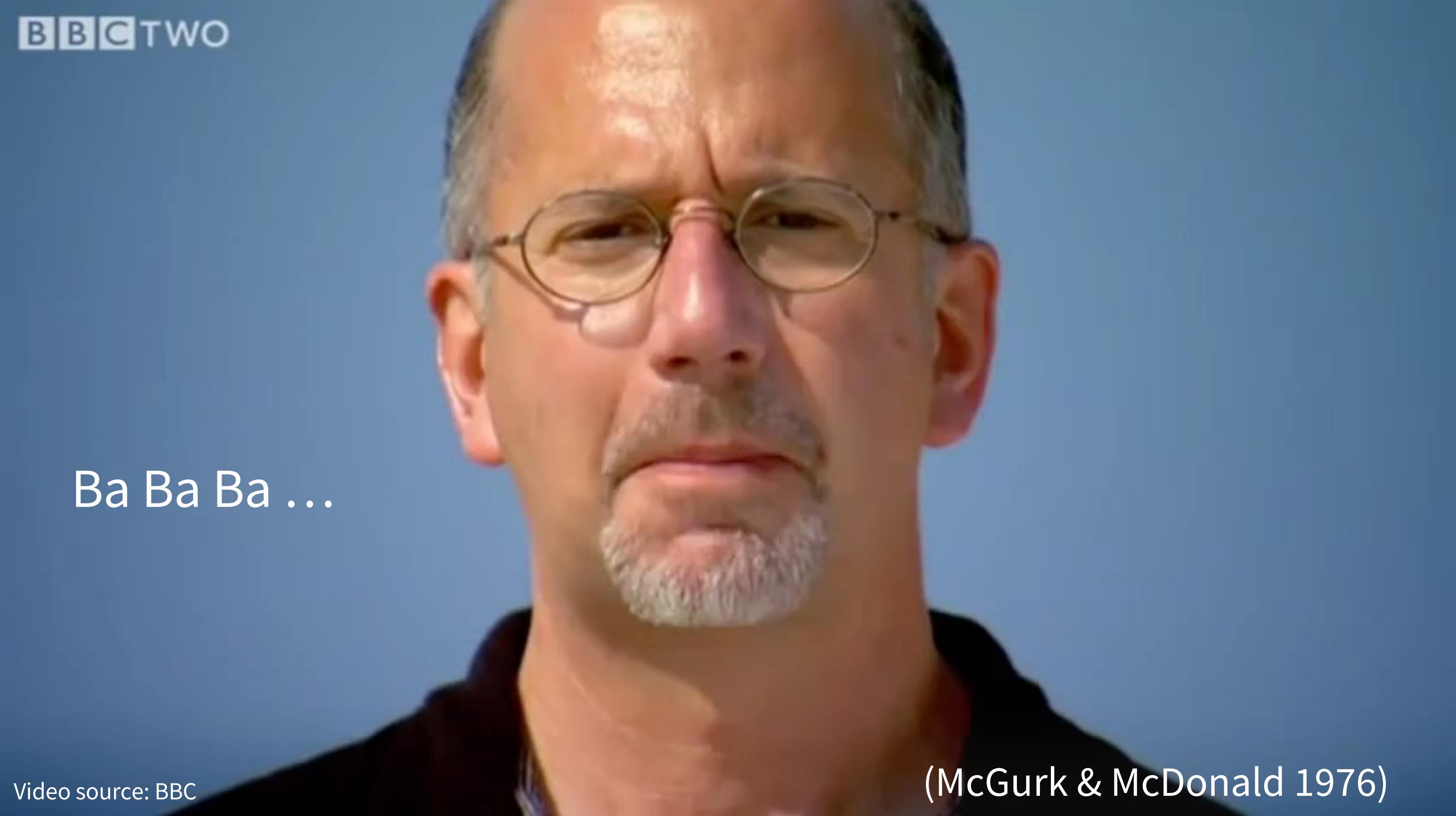


Gu et al, "AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions", CVPR 2018

Today: Temporal Stream



3D CNN, Two-Stream Neural Network, Spatial-Temporal Self-Attention.....



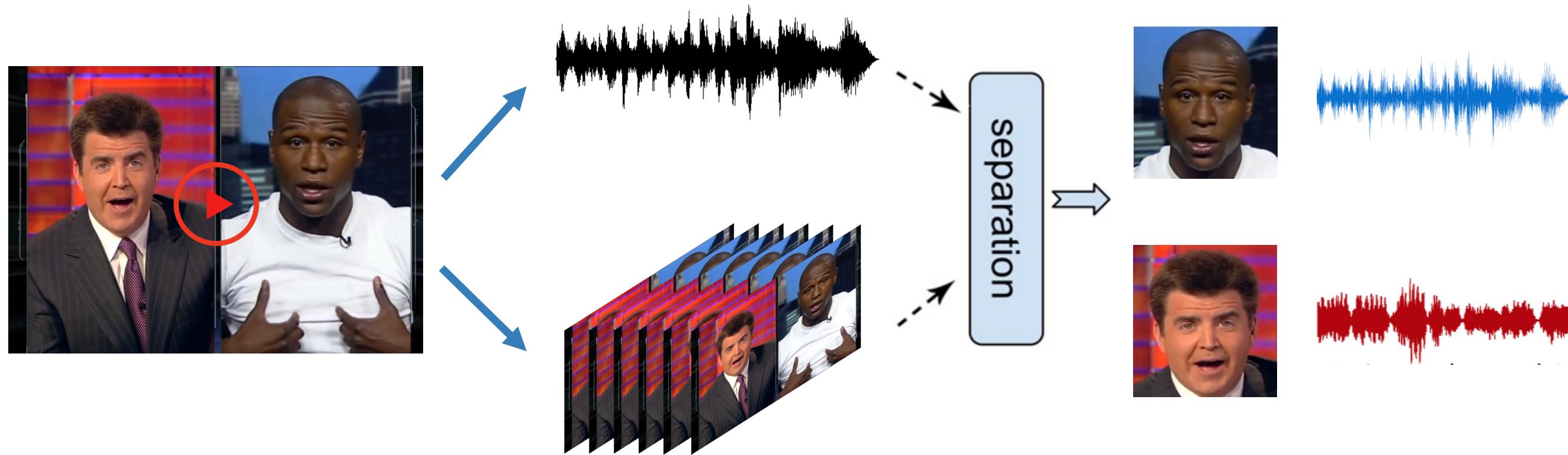
Ba Ba Ba ...

Fa Fa Fa ...

Video source: BBC

(McGurk & McDonald 1976)

Visually-guided audio source separation



[Gao et al. ECCV 2018, Afouras et al. Interspeech'18, Gabby et al. Interspeech'18, Owens & Efros ECCV'18, Ephrat et al. SIGGRAPH'18, Zhao et al. ECCV 2018, Gao & Grauman ICCV 2019, Zhao et al. ICCV 2019, Xu et al. ICCV 2019, Gan et al. CVPR 2020, Gao et al. CVPR 2021, Tzinis et al. ECCV 2022, Chen et al. CVPR 2023]

Speech mixture

Separated voice for the left speaker

Musical instruments source separation

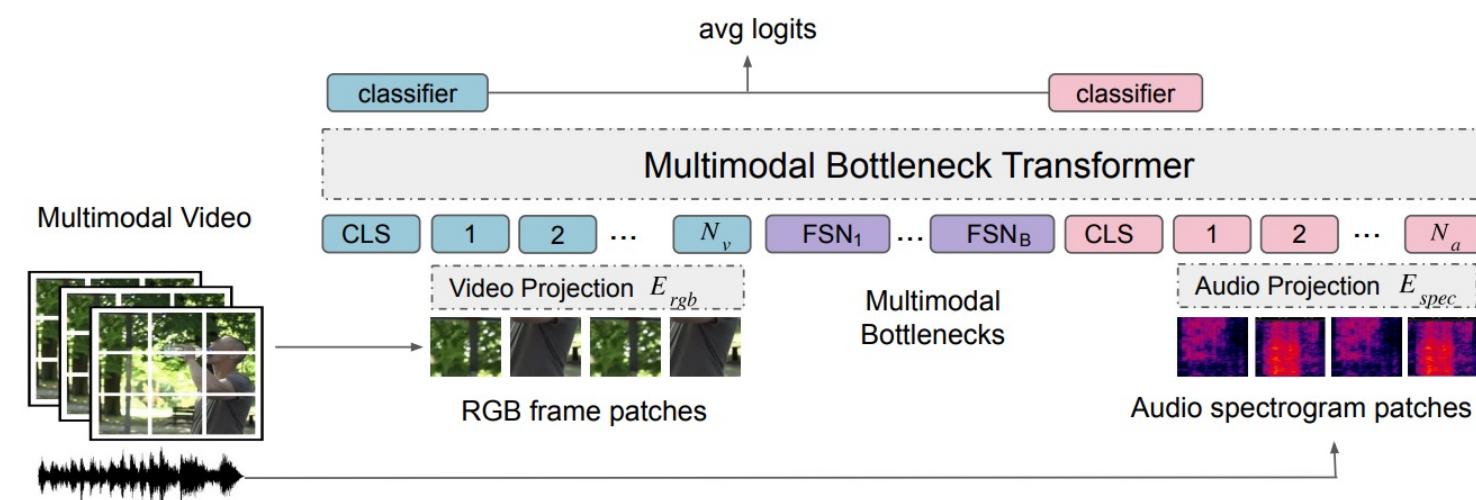
Train on 100,000 unlabeled multi-source video clips,
then separate audio for novel video.

original video
(before separation)

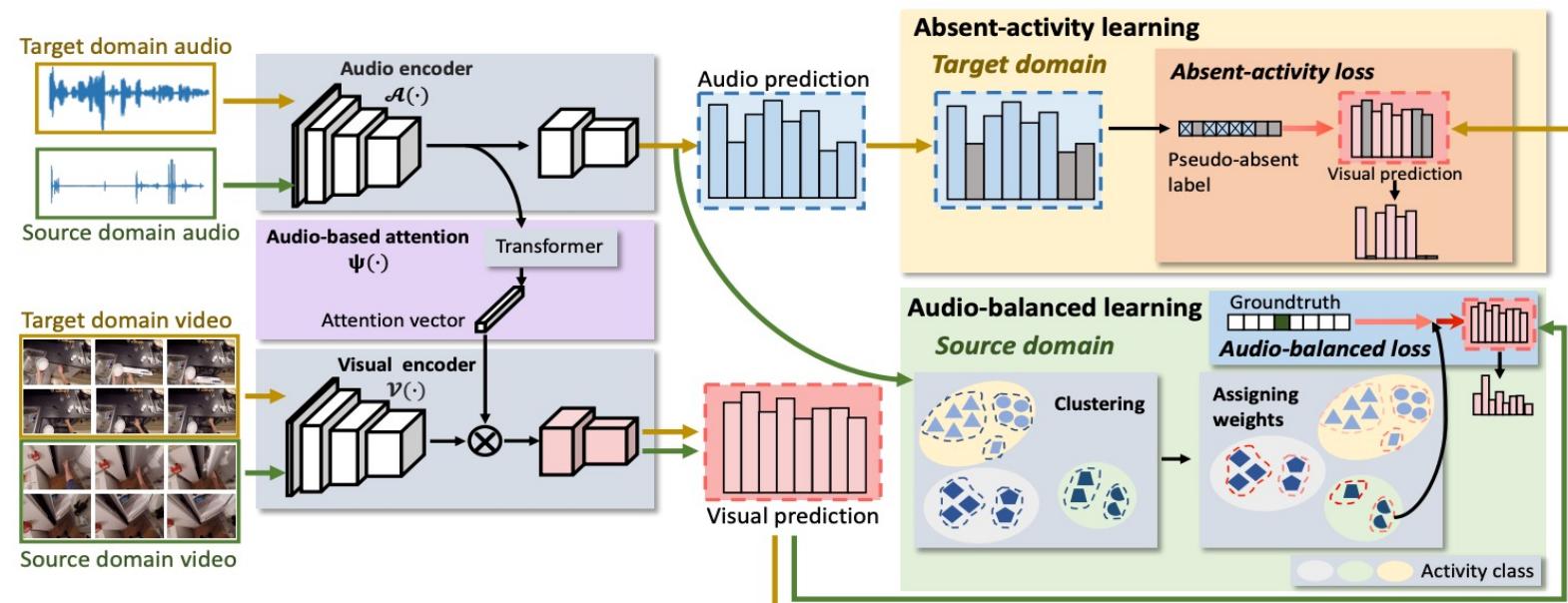
object detections:
violin & flute

Gao & Grauman, Co-Separating Sounds of Visual Objects, ICCV 2019

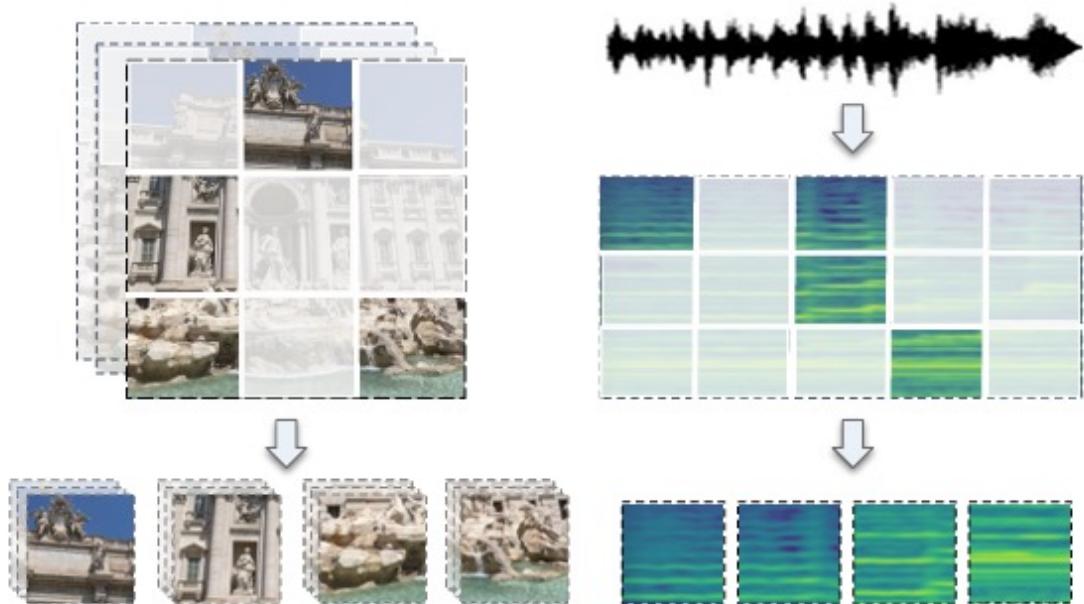
Audio-Visual Video Understanding



Attention Bottlenecks for Multimodal Fusion, Nagrani et al. NeurIPS 2021



Audio-Adaptive Activity Recognition Across Video Domains,
Zhang et al. CVPR 2022



Audio-Visual Masked Autoencoders. Georgescu et al. ICCV 2023.

Efficient Video Understanding

Action recognition in long videos

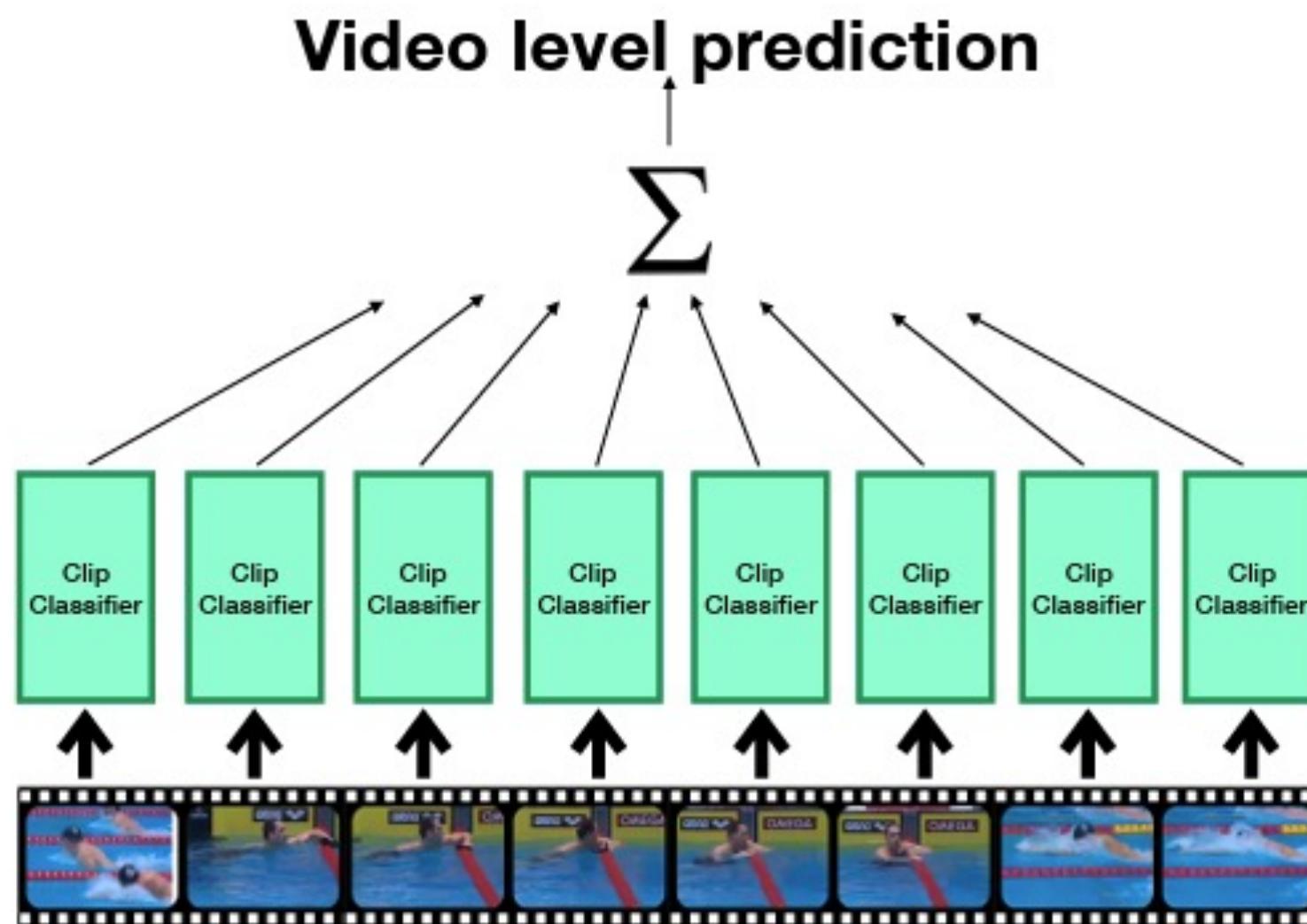
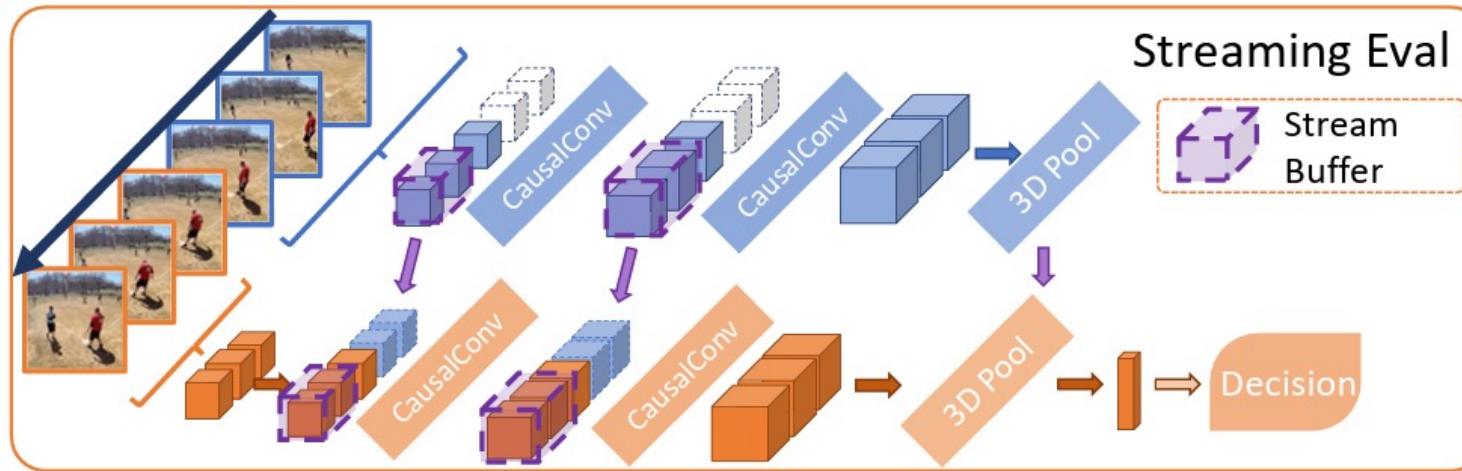
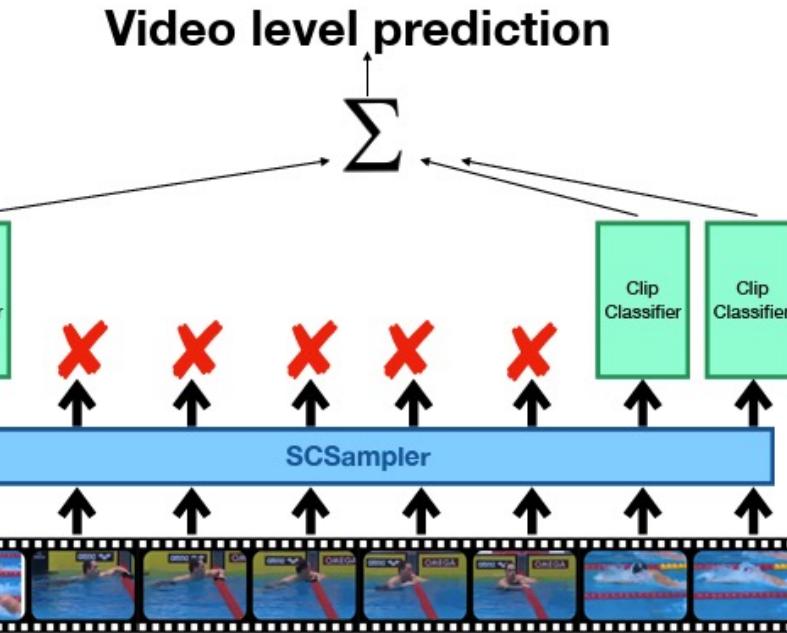


Image Credit: Korbar et al.

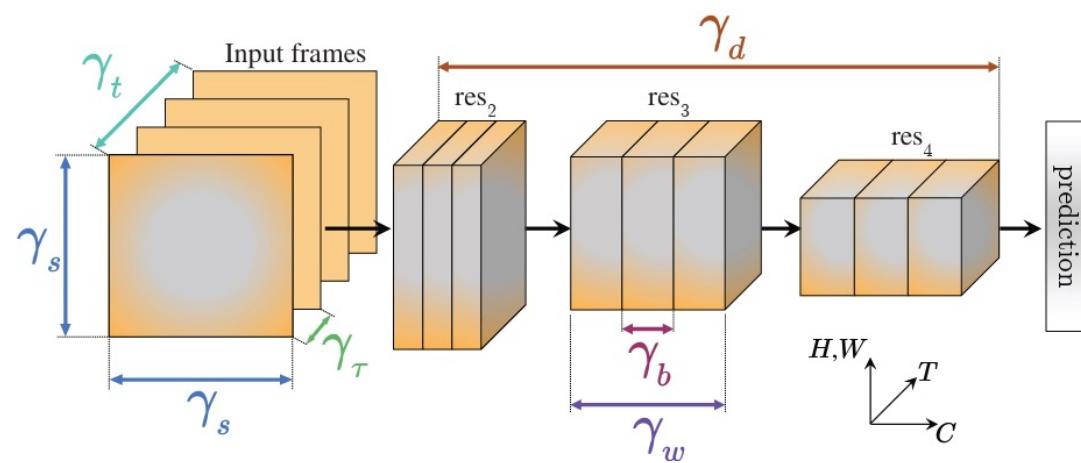
Efficient Video Understanding



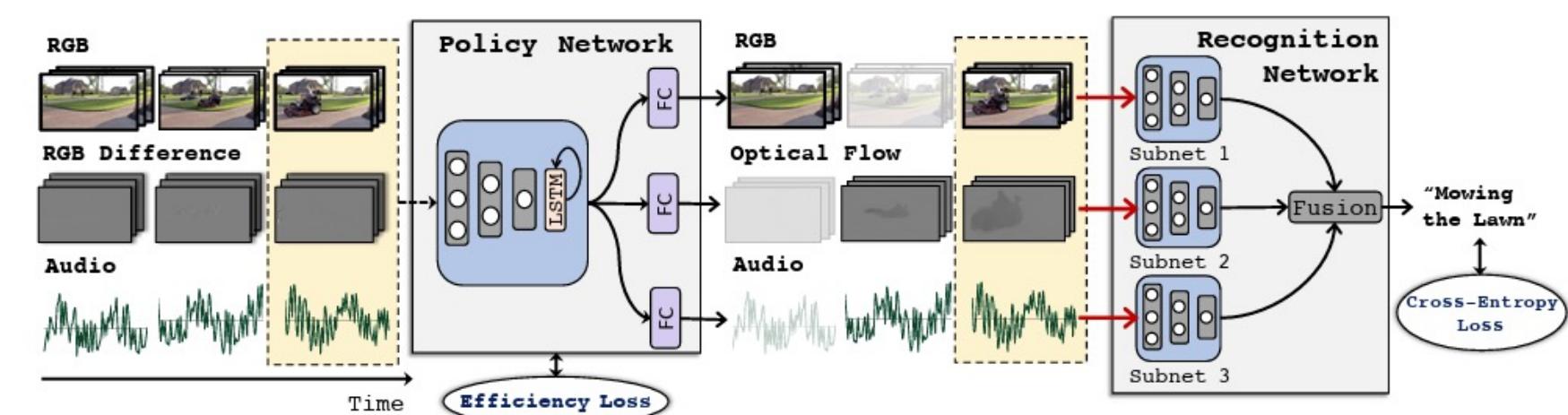
MoViNets: Mobile Video Networks for Efficient Video Recognition.
Kondratyuk et al. CVPR 2021



SCSampler: Sampling Salient Clips from Video for Efficient Action Recognition. Korbar et al. ICCV 2019

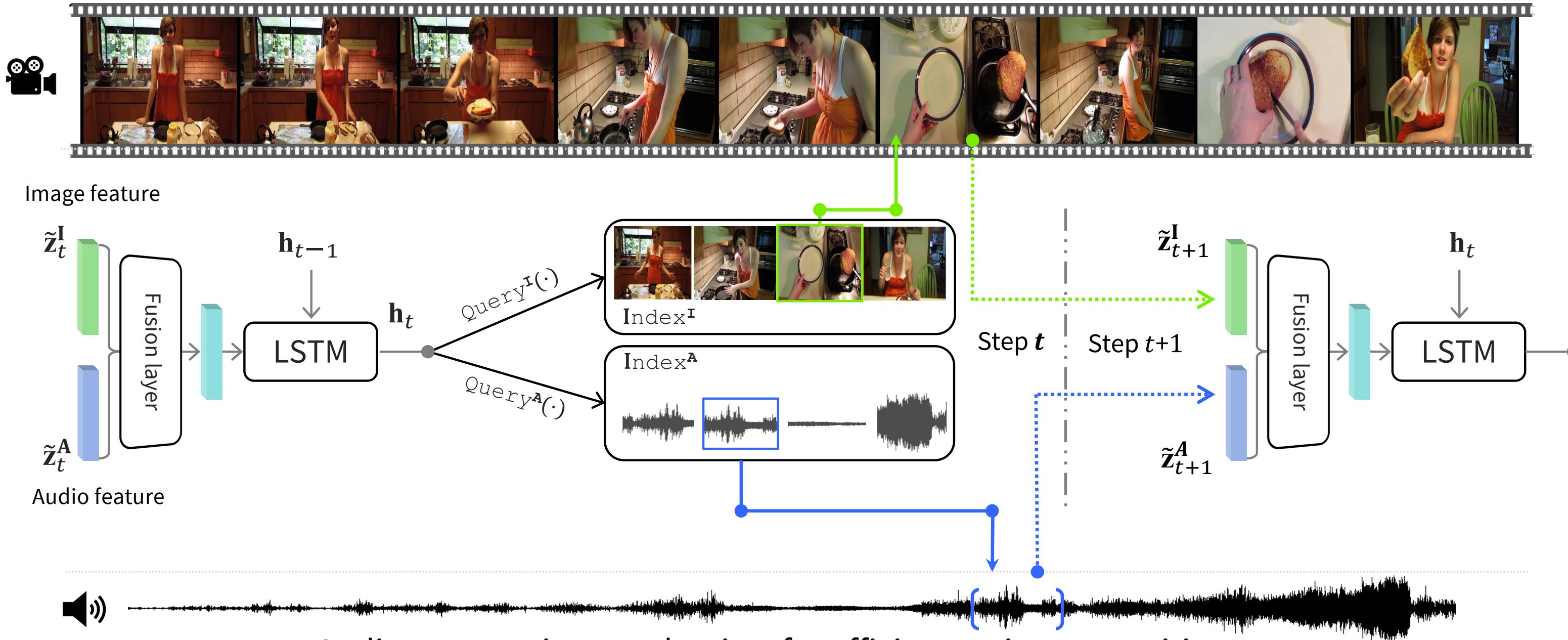


X3D: Expanding Architecture for Efficient Video Recognition.
Christoph Feichtenhofer. CVPR 2020.

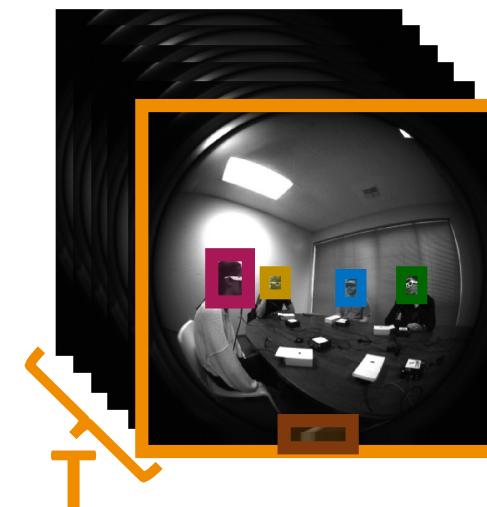
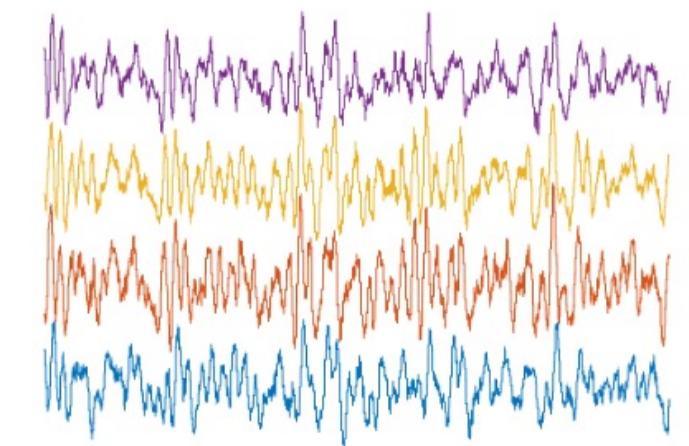


AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition. Pandal et al. ICCV 2021

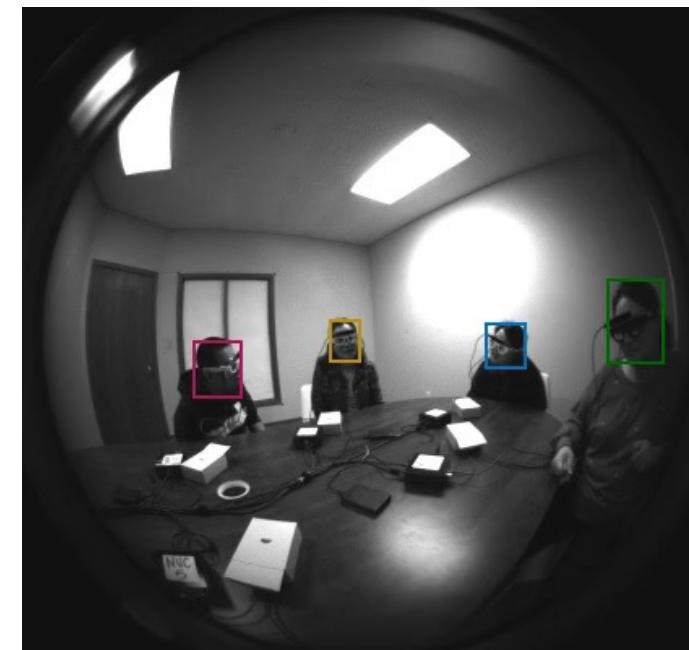
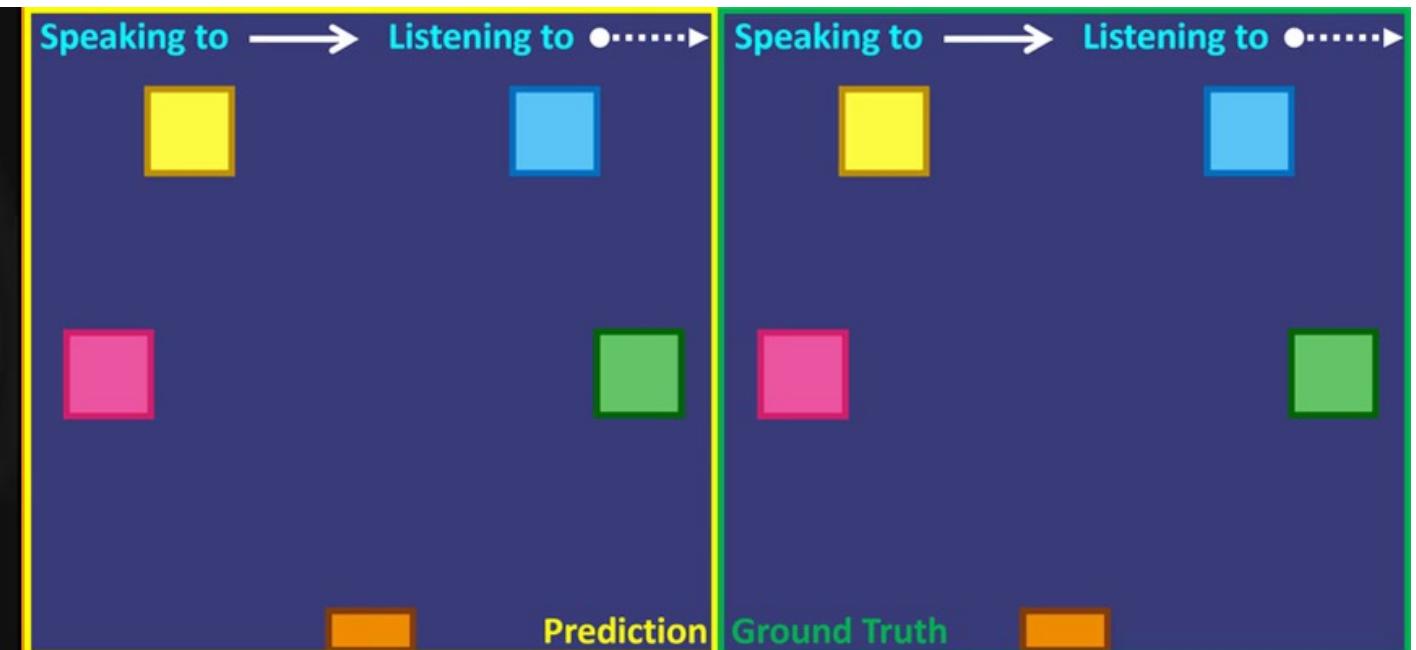
Efficient Video Understanding



Multimodal Egocentric Video Understanding

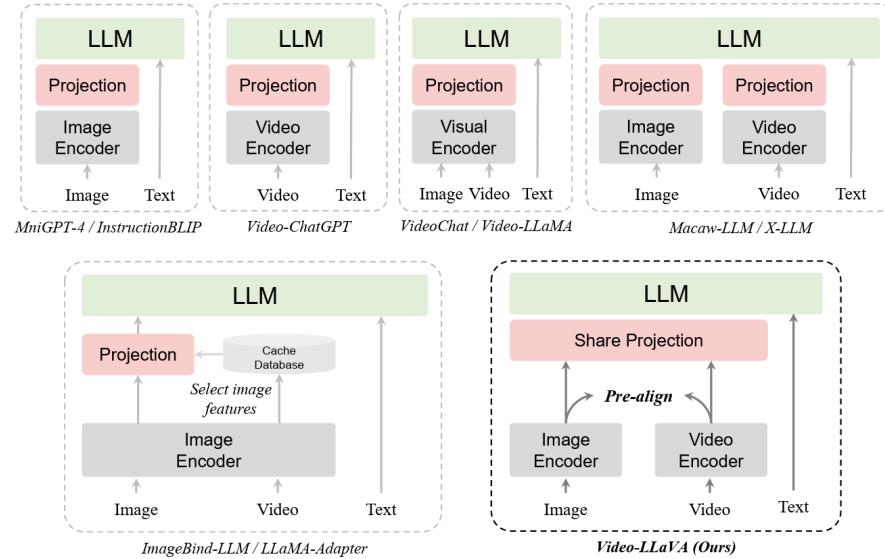


Ego-Exo Conversational Graph Prediction

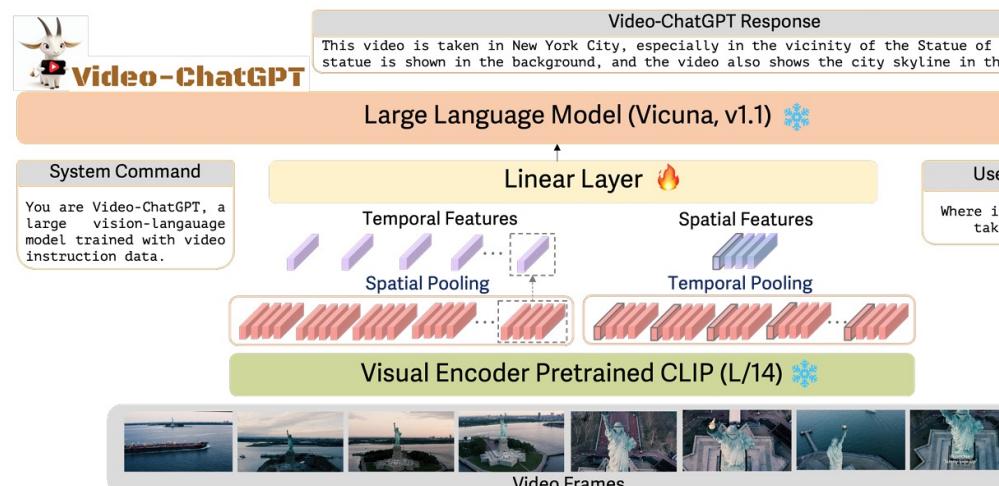


The Audio-Visual Conversational Graph: From and Egocentric-Exocentric Perspective. Jia et al. CVPR 2024

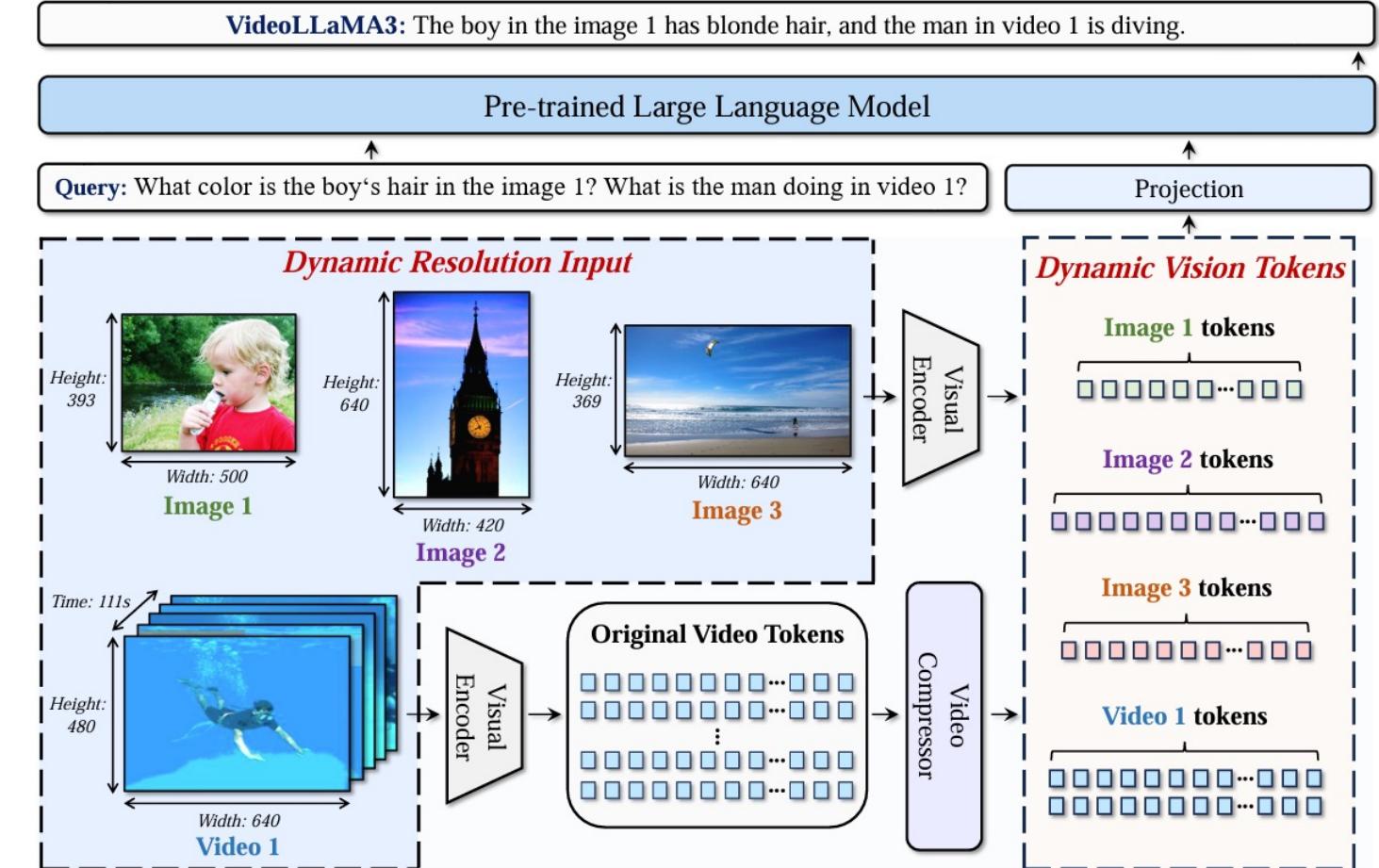
Video Understanding + LLMs



Video-LLaVA: Learning United Visual Representations by Alignment Before Projection. Lin et al. EMNLP 2024



Video-ChatGPT: Towards Detailed Video Understanding via Large Vision and Language Models. Maaz et al. ACL 2024.



VideoLLaMA 3: Frontier Multimodal Foundation Models for Video Understanding. Zhang et al. arXiv 2025

Next time: Large Scale Distributed Training