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Abstract

We address the image captioning task by combining a convolutional neural net-
work (CNN) with various recurrent neural network architectures. We train the
models on over 400,000 training examples ( roughly 80,000 images, with 5 cap-
tions per image) from the Microsoft 2014 COCO challenge. We demonstrate that
stacking a 2-Layer RNN provides better results on image captioning tasks than
both a Vanilla LSTM and a Vanilla RNN.

1 Introduction: this section introduces your problem, and the
overall plan for approaching your problem
Th
Not only do machine-generated captions offer scene understanding of arbitrary
photographs, they also provide a way to reduce the workload of radiologists and
clinicians as they diagnose patients via medical image analysis. Previous efforts
in this space have been hindered by a lack of a large enough, curated data set,
mapping images to free-text.

2 Background/Related Work: This section discusses relevant
literature for your project
Encoder-decoder models have achieved extraordinary results in recent neural ma-
chine translation work [10] [6]. I use a ConvNet to encode information in one
language (pixels), and an LSTM to decode the information into another language
(human natural language).[10]

3 Approach:
3.1 Encoder-Decoder Model

I use the flattened (4096 x 1) output of a VGG-16 Net’s FC-7 layer to initialize the
hidden state of a recurrent neural network.

3.2 Vanilla RNN Model

For t = 1, ..., n− 1
e(t) = x(t)L

h(t) = sigmoid(h(t−1)H + e(t)I + b1)

ŷ(t) = softmax(h(t)U + b2)

where h0 = h0 is the initialization vector for the hidden layer. I use the CNN fc7
output for the image to initialize h0. x(t)L is the product of L with the one-hot
row-vector x(t) representing the index of the current word.
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Figure 1: Encoder-Decoder Diagram, from [10]

The vectors yt have size |V | + 1, where V is the token vocabulary, and where the
additional token is for a special <END> token. I use an average cross-entropy
loss function on the vectors yt, where the targets at times t = 0, ..., T − 1 are the
token indices for st+1, and the target at t = T is the< END> token. I will ignore
the vector y−1. I plan to use a size of 512 for my tokens and hidden layers.
At test time, I will feed the visual information x−1 to the RNN. At every single
time step, I will sample the most likely next token and feed it into the RNN in the
next time step, repeating the process, until the special <END> token is sampled.

3.3 Vanilla LSTM Model

For the RNN, I use a vanilla RNN. The LSTM architecture is a memory cell which
can maintain its state over time, with non-linear gating units which regulate the
information flow into and out of the cell. [4] [5].
Similar to the vanilla RNN, at each timestep we receive an input xt ∈ RD and the
previous hidden state ht−1 ∈ RH ; the LSTM also maintains an H-dimensional
*cell state*, so we also receive the previous cell state ct−1 ∈ RH . The learn-
able parameters of the LSTM are an *input-to-hidden* matrix Wx ∈ R4H×D,
a *hidden-to-hidden* matrix Wh ∈ R4H×H and a *bias vector* b ∈ R4H .
At each timestep, we first compute an *activation vector* a ∈ R4H as a =
Wxxt + Whht−1 + b. We then divide this into four vectors ai, af , ao, ag ∈ RH

where ai consists of the first H elements of a, af is the next H elements of a, etc.
We then compute the *input gate* g ∈ RH , *forget gate* f ∈ RH , *output gate*
o ∈ RH and *block input* g ∈ RH as

i = σ(ai) f = σ(af ) o = σ(ao) g = tanh(ag)

where σ is the sigmoid function and tanh is the hyperbolic tangent, both applied
elementwise.
Finally we compute the next cell state ct and next hidden state ht as

ct = f � ct−1 + i� g ht = o� tanh(ct)

where � is the elementwise product of vectors.

pt+1 = Softmax(ht)

3.4 Stacked RNN / LSTM Model

Pascanu et al. continue the work of Hihi and Bengio [3] in [7]. They define the
Stacked-RNN as follows:

ht
(l) = fh

(l)(ht
(l−1), ht−1

(l)) = φh(Wl
Tht−1

(l) + Ul
Tht

(l−1))

where, ht(l) is the hidden state of the l-th level at time t. When l = 1, the state
is computed using xt instead of ht(l−1). The hidden states of all the levels are
recursively computed from the bottom level l= 1.
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Figure 2: Stacked Recurrent
Neural Network Architecture.

Figure 3: Another View of a
Stacked RNN.

4 Experiment:

4.1 Data Set

The MS COCO challenge is a competition to achieve the highest quality sentence
descriptions of images. Microsoft provides a publicly-available dataset of ground-
truth (human-annotated) captions and images.
I use just over 400,000 training examples. Each ground-truth caption is 17 words
in length, including a START and END token. I use a preliminary vocabulary
of 1004 words (including one class to map all other, unknown words to an UNK
token). I define one epoch as one pass over 400,000 training examples

4.2 Vanilla RNN Results

4.2.1 RNN Decoder on Full Data Set
12 epochs required 9.49 hours on a CPU. The model is not extremely robust, but
it does learn very interesting, correct captions at times that were not realized in
the ground-truth text.
I used a batch size of 25, a word embedding size of 256, a hidden size of 512 in my
hidden state, 17 time-steps, 12 epochs over 400,000 training examples, dropout
of 0.9, and a learning rate of 5e-3.

4.3 Vanilla LSTM Results

4.3.1 LSTM Decoder on Full Data Set
I trained for 4 epochs on a GeForce GTX TITAN GPU. I used a learning rate of
1e-3.

4.4 Stacked RNN / Stacked LSTM Results

4.4.1 2-Layer Stacked RNN, Trained for 4 Epochs
4.4.2 2-Layer Stacked RNN, Trained for 10 Epochs. 5 Times lower
learning rate than Stacked-RNN trained for 4 epochs, with batch size 32
instead of 25.
I decay the learning rate to 96 percent every 20,000 epochs.

4.5 Perplexity, CIDEr, METEOR, BLEU

Qualitative evaluation is not sufficient. I use the coco-captions code produced
by Microsoft [2] to compute a BLEU,METEOR, nad CIDEr score for generated
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Figure 4: GT: many people are
walking or on bikes near
the trains
RNN: two red and white trucks
sitting on display in a UNK

Figure 5: GT: a UNK out herd
of horses UNK on a snow
covered field
RNN: two horses are standing
close to a body of water

Figure 6: GT: a pitcher UNK a
baseball on the back of his
hand
RNN: two children play ball
with a UNK getting ready to hit
a ball

Table 1: Quantitative evaluation of full image predictions on 30 train images.

2*Model
B-1 B-2 B-3 B-4 METEOR CIDEr

Vanilla LSTM TBD TBD TBD TBD TBD TBD
Vanilla RNN TBD TBD TBD TBD TBD TBD
Stacked RNN,4 Epochs 0.250 0.113 0.051 0.000 TBD TBD
Stacked RNN,10 Epochs 0.285 0.123 0.047 0.000 0.081 0.086
Karpathy et al. 62.5 45 32.1 23.0 19.5 66.0

captions. Papineni et al. provide a way that correlates closely to human judgment
by analyzing the co-occurrences of n-grams between the candidate and reference
translation sentences. Perplexity is not a sufficient metric [2] [1] [9].

BLEUN (C, S) = b(C, S, )e
∑

wn∗log(C∗Pn(C,S))

Note that Karpathy’s numbers may or may not be scaled by 100, in comparison to
mine. B-n is BLEU score that uses up to n-grams. High is good in all columns. I
test on 30 examples from training set.

I also use the perplexity of the model to evaluate the performance of the LSTM
for given generated text. The perplexity is the geometric mean of the inverse
probability for each predicted word [DBLP:conf/cvpr/VinyalsTBE15 ].

5 Conclusion:

Image captioning is a very feasible task. The LSTM is slightly more effective
than RNN, as I presumed, as its more complex architecture can capture more
nuances than the Vanilla RNN. The 2-Layer Stacked RNN was most effective.
Experimentation demonstrated that the choice of learning rate was critical to the
success of our models.
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Figure 7: GT: a hand holding a
banana with a table
in background
LSTM: a banana and gray and
white polar UNK holding a
UNK of dishes and mouse rest
beside a sit at outdoor kitchen
corner

Figure 8: GT:a bunch of people
are standing around
some buildings
LSTM: a UNK of a couple of
vehicle bed many chairs and
people are both hanging down
ice leaning outside palm trees
and a black of small boys on the
water

Figure 9: GT: a close up of
sliced pizza on a plate
LSTM: pizza and other at the
end of the animal lays down
end of elephants stall outfit over
a huge vase of water pitcher
throwing ball in parking lot
where kites

Figure 10: GT: a gray and white
cat perched atop a microwave
oven
LSTM: a cat sit down UNK and
covered lawn chairs facing wa-
ter of small train

Figure 11: Loss and Perplexity of LSTM Trained for 4 Epochs.
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Figure 12: GT: the woman
UNK a laptop near a lamp on
the floor
2-Layer RNN: a television sit-
ting next to a brown table

Figure 13: GT: a group of peo-
ple UNK outside of a stopped
bus
2-Layer RNN: a white car with
UNK UNK and the horse

Figure 14: GT: a girl leaning on
a table with a cake
2-Layer RNN: a home plate in a
kitchen setting next to a pile of
candles

Figure 15: Training Set Loss and Perplexity of 2-Layer Stacked RNN over 4 epochs.

Figure 16

Figure 17 Figure 18
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Figure 19 Figure 20 Figure 21

Figure 22: Training Set Loss and Perplexity of 2-Layer Stacked RNN over 10 epochs, with learning
rate decay.

5.1 Future Work

5.1.1 Initialize Word Embeddings with GloVe
Pennington, Socher, and Manning introduced the State-of-the-Art word embed-
dings in [8]. They combine co-occurence statistics with prediction methods as
follows:

J(Θ) =
1

2

W∑
i,j=1

f(Pij)(ui
T vj − log(Pij))

2

5.1.2 Clip Gradients
Karpathy et al. [6] state that clamping gradients elementwise was crucial to their
success. In future work, we hope to evaluate the effect of clipping gradients in
similar fashion in our recurrent networks.

5.1.3 Bidirectional RNN
5.2 Bidirectional RNN

We hope to extend our evaluations to include that of a bidirectional RNN for image
captioning, as defined by Karpathy et al.:

xt = WwIt

et = f(Wext + be)

ht
f = f(et +Wfht−1

f + bf )

ht
b = f(et +Wbht−1

b + bb)
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Figure 23: Mammogram Image of a Cancerous Lump, published by Stanford [2].

st = f(Wd(ht
f + ht

b) + bd)

[6]

5.2.1 Extension to New Image Domain: Mammography
Dr. Daniel Rubin, Associate Professor of Radiology and Medicine at Stanford
University, and Francisco Gimenez, PhD, have provided with me a .csv file of
270,706 lines of natural language narratives, each mapped to an accession number
of an imaging scan. These imaging scans are stored in a picture archiving and
communication system (PACS) at Stanford Hospital.
Each report includes anatomical observations, along with a classification along
various Breast Imaging Reporting and Data System (BI-RADS) categories (I-VI).
We will apply our image captioning to the imaging data, and we hope to achieve
better performance than a radiology clinician. I will place my generated narratives
(withholding the ground-truth reports) and ask a group of radiologists, to evaluate
the performance of the LSTM. Another gauge of my model’s success will be its
ability to generate text describing images with very malignant breast cancers.
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