

ON FUNCTIONS OF THREE VARIABLES*

V.I. ARNOL'D

In the present paper there is indicated a method of proof of a theorem which yields a complete solution of the 13th problem of Hilbert (in the sense of a denial of the hypothesis expressed by Hilbert).

Theorem 1. Every real, continuous function $f(x_1, x_2, x_3)$ of three variables which is defined on the unit cube E^3 can be represented in the form

$$f(x_1, x_2, x_3) = \sum_{i=1}^3 \sum_{j=1}^3 h_{ij} [\varphi_{ij}(x_1, x_2), x_3], \quad (1)$$

where the functions h_{ij} and φ_{ij} of two variables are real and continuous.

A.N. Kolmogorov [1] obtained recently the representation

$$f(x_1, x_2, x_3) = \sum_{i=1}^3 h_i [\varphi_i(x_1, x_2), x_3], \quad (2)$$

where the functions h_i and φ_i are continuous, the function h_i is real, and the function φ_i takes on values which belong to some tree Ξ . In the construction of A.N. Kolmogorov (for the case of functions of three variables), the tree Ξ can be taken not as a universal tree, but such that all of its points have a branching index not greater than 3. For this, the functions u_{km}^r of the fundamental lemma [1] (for $n = 2$) must be chosen so that in addition to the indicated five properties they must have the following properties.

(6) The boundary of each level set of each function u_{km}^r divides the plane into not more than 3 parts.

(7) For every r , $G_{11}^r \supset E^2$.

On the basis of this remark, Theorem 1 is a consequence of the existence of the representation (2) and of the next theorem.

Theorem 2. Let F be any family of real equicontinuous functions $f(\xi)$ defined on a tree Ξ all of whose points have a branching index ≤ 3 . One can realize the tree as a subset X of the three-dimensional cube E^3 in such a way that any function of the family F can be represented in the form

$$f(\xi) = \sum_{k=1}^3 f_k(x_k),$$

where $x = (x_1, x_2, x_3)$ is the image of $\xi \in \Xi$ in the tree X ; the $f_k(x_k)$ are continuous real functions of one variable, while the f_k depend continuously

* Editor's note: translation into English published in Amer. Math. Soc. Transl. (2) 28 (1963), 51-54. Translation of V.I. Arnol'd: On functions of three variables Dokl. Akad. Nauk SSSR 114:4 (1957), 679-681

on f (in the sense of uniform convergence).

We will introduce certain auxiliary concepts. Let K be a finite complex of segments contained in E^3 and consisting of segments which are not parallel to any coordinate plane.

Definition 1. A system of points

$$a_0 \neq a_1 \neq \dots \neq a_{n-1} \neq a_n$$

belonging to K will be called a *zigzag* (lightning) if the segments $\overline{a_{i-1}a_i}$ are perpendicular to the axes x_{a_i} , respectively, and

$$a_1 \neq a_2 \neq \dots \neq a_{n-1} \neq a_n.$$

The finite system of the pairwise distinct points $a_{i_1 i_2 \dots i_n}$ tagged by the corteges of indices $i_1 i_2 \dots i_n$, will be called a *branching scheme* if (1) there exists only one point a_0 tagged with one index; (2) the presence of $a_{i_1 i_2 \dots i_{n-1} i_n}$ in the system implies the presence of $a_{i_1 \dots i_{n-1}}$ in the system.

Definition 2. A branching system of points $a_{i_1 \dots i_n}$ contained in K will be called a *generating scheme* if for a given cortege $i_1 \dots i_n$ the set of points of the form $a_{i_1 \dots i_n i_{n+1}}$ lies on the plane passing through $a_{i_1 \dots i_n}$ and perpendicular to some coordinate axis $x_{a_{i_1 \dots i_n}}$, and contains all points of intersection of this plane with K , that are distinct from $a_{i_1 \dots i_n}$.

The tree Ξ can be represented in the form

$$\Xi = \overline{\bigcup_{n=1}^{\infty} D_n}, \quad D_n \subset D_{n+1},$$

where D_n is a finite tree, D_1 is a simple arc, and D_{n+1} is obtained from D_n by attaching segments S_n at certain points p_n that are not branch points or endpoints of D_n [2].

We will denote by ω_n the upper boundary of the oscillations of the functions $f \in F$ on the components of the difference $\Xi \setminus D_n$. It is easy to see that

$$\omega_n \rightarrow 0 \text{ when } n \rightarrow \infty.$$

Therefore, one can select a sequence

$$n_1 < n_2 < \dots < n_r < \dots,$$

so that

$$\omega_n \leq \frac{1}{r^2} \text{ when } n \geq n_r.$$

The realization X of the tree Ξ in E^3 is constructed in the form

$$X = \overline{\bigcup_{n=1}^{\infty} D'_n},$$

where D'_n is a complex of segments which realize D_n in such a way that the images S'_n of the arcs S_n are segments that are not perpendicular to the coordinate axes.

The inductive construction of D'_n is performed so that $\overline{\bigcup_{n=1}^{\infty} D'_n}$ is a tree [2], and that the following conditions are satisfied.

(1) Every function $f \in F$ can be represented on D_n in the form

$$f(\xi) = \sum_{k=1}^3 f_k^n(x_k), \quad (3)$$

where the $f_k^n(x_k)$ depend continuously on f .

(2) The tree D'_n has for every point a_0 a generating system issuing from a_1 , and whose initial direction α_0 can be chosen arbitrarily.

(3) Let A_n be the set of points D'_n which is the image of the branch points of Ξ . There exists a denumerable set $B_n \subseteq D'_n$, $B_n \cap A_n = 0$ such that the zigzag $a_0 \dots a_m$, which begins at $a_0 \in D'_n \setminus B_n$, has no points in common with A_n and no coincident points $a_i = a_j$, $i \neq j$.

(4) If $n_r < n \leq n_{r+1}$, then

$$|f_k^n(x_k) - f_k^{n_r}(x_k)| \leq \left(3 + \frac{n - n_r}{n_{r+1} - n_r} \right) \frac{1}{r^2}. \quad (4)$$

This proof of the possibility of the inductive construction of the trees D'_n , and of the functions f_k^n with properties (1) to (4), is too complicated to be given here. Roughly speaking, at each step the attached segment S'_{n+1} is chosen of very short length; its direction, and the way of mapping of S_{n+1} on S'_{n+1} are selected so as to guarantee the fulfillment of properties (2) and (3) by D'_{n+1} . The preservation of equality (3), in the transition from n to $n+1$, on the newly attached segment S_{n+1} , requires the introduction of a correction $f_k^{n+1} - f_k^n$, for at least one of the functions f_k^n , on the projection S'_{n+1} on the axis x_k . For the preservation of equality (3) on the earlier constructed tree D'_n , it is necessary to compensate for this correction by means of new corrections for the functions f_k^n on a number of other segments. The exact method of the introduction of these corrections, we will not present here. We only note the following: these corrections must be such that inequality (4) will be preserved for $n' = n+1$; if S'_{n+1} is chosen small enough, and if

its direction is chosen appropriately, it must be possible to produce it for every function f_k^n on a finite system of non-intersecting segments of the axis x_k . In the proof of this possibility one makes use of the fact that the tree D'_n has properties (2) and (3).

The proof of the existence of the continuous function

$$f_k(x_k) = \lim_{n \rightarrow \infty} f_k^n(x_k)$$

and of the validity of the equation

$$f(\xi) = \sum_{k=1}^3 f_k(x_k)$$

on the entire X , is not complicated.

I express my sincere thanks to A.N. Kolmogorov for the aid and advice I have received from him in the preparation of this work.

Bibliography

- [1] A.N. Kolmogorov, *On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables*, Dokl. Akad. Nauk SSSR **108** (1956), 179-182. (Russian)
- [2] K. Menger, *Kurventheorie*, Teubner, Leipzig, 1932.

Translated by:

H.P. Thielman