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Abstract

This vignette to the R package forecast is an updated version of Hyndman and Khan-
dakar (2008), published in the Journal of Statistical Software. Automatic forecasts of
large numbers of univariate time series are often needed in business and other contexts.
We describe two automatic forecasting algorithms that have been implemented in the
forecast package for R. The first is based on innovations state space models that underly
exponential smoothing methods. The second is a step-wise algorithm for forecasting with
ARIMA models. The algorithms are applicable to both seasonal and non-seasonal data,
and are compared and illustrated using four real time series. We also briefly describe
some of the other functionality available in the forecast package.}

Keywords: ARIMA models, automatic forecasting, exponential smoothing, prediction inter-
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1. Introduction

Automatic forecasts of large numbers of univariate time series are often needed in business.
It is common to have over one thousand product lines that need forecasting at least monthly.
Even when a smaller number of forecasts are required, there may be nobody suitably trained
in the use of time series models to produce them. In these circumstances, an automatic
forecasting algorithm is an essential tool. Automatic forecasting algorithms must determine
an appropriate time series model, estimate the parameters and compute the forecasts. They
must be robust to unusual time series patterns, and applicable to large numbers of series
without user intervention. The most popular automatic forecasting algorithms are based on
either exponential smoothing or ARIMA models.

In this article, we discuss the implementation of two automatic univariate forecasting methods
in the forecast package for R. We also briefly describe some univariate forecasting methods
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that are part of the forecast package.

The forecast package for the R system for statistical computing (R Development Core Team
2008) is available from the Comprehensive R Archive Network at https://CRAN.R-project.

org/package=forecast. Version 9.0.1 of the package was used for this paper. The forecast

package contains functions for univariate forecasting and a few examples of real time series
data. For more extensive testing of forecasting methods, the fma package contains the 90 data
sets from Makridakis, Wheelwright, and Hyndman (1998), the expsmooth package contains 24
data sets from Hyndman, Koehler, Ord, and Snyder (2008b), and the Mcomp package contains
the 1001 time series from the M-competition (Makridakis, Anderson, Carbone, Fildes, Hibon,
Lewandowski, Newton, Parzen, and Winkler 1982) and the 3003 time series from the M3-
competition (Makridakis and Hibon 2000).

The forecast package implements automatic forecasting using exponential smoothing, ARIMA
models, the Theta method (Assimakopoulos and Nikolopoulos 2000), cubic splines (Hyndman,
King, Pitrun, and Billah 2005a), as well as other common forecasting methods. In this article,
we primarily discuss the exponential smoothing approach (in Section 2) and the ARIMA
modelling approach (in Section 3) to automatic forecasting. In Section 4, we describe the
implementation of these methods in the forecast package, along with other features of the
package.

2. Exponential smoothing

Although exponential smoothing methods have been around since the 1950s, a modelling
framework incorporating procedures for model selection was not developed until relatively
recently. Ord, Koehler, and Snyder (1997), Hyndman, Koehler, Snyder, and Grose (2002)
and Hyndman, Koehler, Ord, and Snyder (2005b) have shown that all exponential smoothing
methods (including non-linear methods) are optimal forecasts from innovations state space
models.

Exponential smoothing methods were originally classified by Pegels’ (1969) taxonomy. This
was later extended by Gardner (1985), modified by Hyndman et al. (2002), and extended
again by Taylor (2003), giving a total of fifteen methods seen in the following table.

Seasonal Component
Trend N A M

Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) A,N A,A A,M

Ad (Additive damped) Ad,N Ad,A Ad,M

M (Multiplicative) M,N M,A M,M

Md (Multiplicative damped) Md,N Md,A Md,M

Table 1: The fifteen exponential smoothing methods.

Some of these methods are better known under other names. For example, cell (N,N) describes
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the simple exponential smoothing (or SES) method, cell (A,N) describes Holt’s linear method,
and cell (Ad,N) describes the damped trend method. The additive Holt-Winters’ method is
given by cell (A,A) and the multiplicative Holt-Winters’ method is given by cell (A,M). The
other cells correspond to less commonly used but analogous methods.

2.1. Point forecasts for all methods

We denote the observed time series by y1, y2, . . . , yn. A forecast of yt+h based on all of the
data up to time t is denoted by ŷt+h|t. To illustrate the method, we give the point forecasts
and updating equations for method (A,A), the Holt-Winters’ additive method:

Level: ℓt = α(yt − st−m) + (1 − α)(ℓt−1 + bt−1) (1a)

Growth: bt = β∗(ℓt − ℓt−1) + (1 − β∗)bt−1 (1b)

Seasonal: st = γ(yt − ℓt−1 − bt−1) + (1 − γ)st−m (1c)

Forecast: ŷt+h|t = ℓt + bth + s
t−m+h+

m

. (1d)

where m is the length of seasonality (e.g., the number of months or quarters in a year), ℓt

represents the level of the series, bt denotes the growth, st is the seasonal component, ŷt+h|t

is the forecast for h periods ahead, and h+
m =

[

(h − 1) mod m
]

+ 1. To use method (1), we
need values for the initial states ℓ0, b0 and s1−m, . . . , s0, and for the smoothing parameters
α, β∗ and γ. All of these will be estimated from the observed data.

Equation (1c) is slightly different from the usual Holt-Winters equations such as those in
Makridakis et al. (1998) or Bowerman, O’Connell, and Koehler (2005). These authors replace
(1c) with

st = γ∗(yt − ℓt) + (1 − γ∗)st−m.

If ℓt is substituted using (1a), we obtain

st = γ∗(1 − α)(yt − ℓt−1 − bt−1) + {1 − γ∗(1 − α)}st−m.

Thus, we obtain identical forecasts using this approach by replacing γ in (1c) with γ∗(1 − α).
The modification given in (1c) was proposed by Ord et al. (1997) to make the state space
formulation simpler. It is equivalent to Archibald’s (1990) variation of the Holt-Winters’
method.

Table 2 gives recursive formulae for computing point forecasts h periods ahead for all of the
exponential smoothing methods. Some interesting special cases can be obtained by setting
the smoothing parameters to extreme values. For example, if α = 0, the level is constant over
time; if β∗ = 0, the slope is constant over time; and if γ = 0, the seasonal pattern is constant
over time. At the other extreme, naïve forecasts (i.e., ŷt+h|t = yt for all h) are obtained using
the (N,N) method with α = 1. Finally, the additive and multiplicative trend methods are
special cases of their damped counterparts obtained by letting ϕ = 1.

2.2. Innovations state space models

For each exponential smoothing method in Table 2, Hyndman et al. (2008b) describe two
possible innovations state space models, one corresponding to a model with additive errors
and the other to a model with multiplicative errors. If the same parameter values are used,
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these two models give equivalent point forecasts, although different prediction intervals. Thus
there are 30 potential models described in this classification.

Historically, the nature of the error component has often been ignored, because the distinction
between additive and multiplicative errors makes no difference to point forecasts.

We are careful to distinguish exponential smoothing methods from the underlying state space
models. An exponential smoothing method is an algorithm for producing point forecasts only.
The underlying stochastic state space model gives the same point forecasts, but also provides
a framework for computing prediction intervals and other properties.

To distinguish the models with additive and multiplicative errors, we add an extra letter to
the front of the method notation. The triplet (E,T,S) refers to the three components: error,
trend and seasonality. So the model ETS(A,A,N) has additive errors, additive trend and
no seasonality—in other words, this is Holt’s linear method with additive errors. Similarly,
ETS(M,Md,M) refers to a model with multiplicative errors, a damped multiplicative trend
and multiplicative seasonality. The notation ETS(·,·,·) helps in remembering the order in
which the components are specified.

Once a model is specified, we can study the probability distribution of future values of the
series and find, for example, the conditional mean of a future observation given knowledge
of the past. We denote this as µt+h|t = E(yt+h | xt), where xt contains the unobserved
components such as ℓt, bt and st. For h = 1 we use µt ≡ µt+1|t as a shorthand notation.
For many models, these conditional means will be identical to the point forecasts given in
Table 2, so that µt+h|t = ŷt+h|t. However, for other models (those with multiplicative trend
or multiplicative seasonality), the conditional mean and the point forecast will differ slightly
for h ≥ 2.

We illustrate these ideas using the damped trend method of Gardner and McKenzie (1985).

Additive error model: ETS(A,Ad,N)

Let µt = ŷt = ℓt−1 + bt−1 denote the one-step forecast of yt assuming that we know the values
of all parameters. Also, let εt = yt − µt denote the one-step forecast error at time t. From
the equations in Table 2, we find that

yt = ℓt−1 + ϕbt−1 + εt (2)

ℓt = ℓt−1 + ϕbt−1 + αεt (3)

bt = ϕbt−1 + β∗(ℓt − ℓt−1 − ϕbt−1) = ϕbt−1 + αβ∗εt. (4)

We simplify the last expression by setting β = αβ∗. The three equations above constitute a
state space model underlying the damped Holt’s method. Note that it is an innovations state
space model (Anderson and Moore 1979; Aoki 1987) because the same error term appears in
each equation. We an write it in standard state space notation by defining the state vector
as xt = (ℓt, bt)

′ and expressing (2)–(4) as

yt = [1ϕ] xt−1 + εt (5a)

xt =

[

1 ϕ
0 ϕ

]

xt−1 +

[

α
β

]

εt. (5b)

The model is fully specified once we state the distribution of the error term εt. Usually we
assume that these are independent and identically distributed, following a normal distribution
with mean 0 and variance σ2, which we write as εt ∼ NID(0, σ2).
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Multiplicative error model: ETS(M,Ad,N)

A model with multiplicative error can be derived similarly, by first setting εt = (yt − µt)/µt,
so that εt is the relative error. Then, following a similar approach to that for additive errors,
we find

yt = (ℓt−1 + ϕbt−1)(1 + εt)

ℓt = (ℓt−1 + ϕbt−1)(1 + αεt)

bt = ϕbt−1 + β(ℓt−1 + ϕbt−1)εt,

or

yt = [1ϕ] xt−1(1 + εt)

xt =

[

1 ϕ
0 ϕ

]

xt−1 + [1ϕ] xt−1

[

α
β

]

εt.

Again we assume that εt ∼ NID(0, σ2).

Of course, this is a nonlinear state space model, which is usually considered difficult to handle
in estimating and forecasting. However, that is one of the many advantages of the innovations
form of state space models — we can still compute forecasts, the likelihood and prediction
intervals for this nonlinear model with no more effort than is required for the additive error
model.

2.3. State space models for all exponential smoothing methods

There are similar state space models for all 30 exponential smoothing variations. The general
model involves a state vector xt = (ℓt, bt, st, st−1, . . . , st−m+1)′ and state space equations of
the form

yt = w(xt−1) + r(xt−1)εt (6a)

xt = f(xt−1) + g(xt−1)εt (6b)

where {εt} is a Gaussian white noise process with mean zero and variance σ2, and µt =
w(xt−1). The model with additive errors has r(xt−1) = 1, so that yt = µt + εt. The model
with multiplicative errors has r(xt−1) = µt, so that yt = µt(1 + εt). Thus, εt = (yt − µt)/µt

is the relative error for the multiplicative model. The models are not unique. Clearly, any
value of r(xt−1) will lead to identical point forecasts for yt.

All of the methods in Table 2 can be written in the form (6a) and (6b). The specific form for
each model is given in Hyndman et al. (2008b).

Some of the combinations of trend, seasonality and error can occasionally lead to numeri-
cal difficulties; specifically, any model equation that requires division by a state component
could involve division by zero. This is a problem for models with additive errors and either
multiplicative trend or multiplicative seasonality, as well as for the model with multiplicative
errors, multiplicative trend and additive seasonality. These models should therefore be used
with caution.

The multiplicative error models are useful when the data are strictly positive, but are not
numerically stable when the data contain zeros or negative values. So when the time series
is not strictly positive, only the six fully additive models may be applied.
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The point forecasts given in Table 2 are easily obtained from these models by iterating equa-
tions (6a) and (6b) for t = n + 1, n + 2, . . . , n + h, setting εn+j = 0 for j = 1, . . . , h. In
most cases (notable exceptions being models with multiplicative seasonality or multiplicative
trend for h ≥ 2), the point forecasts can be shown to be equal to µt+h|t = E(yt+h | xt), the
conditional expectation of the corresponding state space model.

The models also provide a means of obtaining prediction intervals. In the case of the linear
models, where the forecast distributions are normal, we can derive the conditional variance
vt+h|t = VAR(yt+h | xt) and obtain prediction intervals accordingly. This approach also works
for many of the nonlinear models. Detailed derivations of the results for many models are
given in Hyndman et al. (2005b).

A more direct approach that works for all of the models is to simply simulate many future
sample paths conditional on the last estimate of the state vector, xt. Then prediction intervals
can be obtained from the percentiles of the simulated sample paths. Point forecasts can also
be obtained in this way by taking the average of the simulated values at each future time
period. An advantage of this approach is that we generate an estimate of the complete
predictive distribution, which is especially useful in applications such as inventory planning,
where expected costs depend on the whole distribution.

2.4. Estimation

In order to use these models for forecasting, we need to know the values of x0 and the
parameters α, β, γ and ϕ. It is easy to compute the likelihood of the innovations state space
model (6), and so obtain maximum likelihood estimates. Ord et al. (1997) show that

L∗(θ, x0) = n log
(

n
∑

t=1

ε2
t

)

+ 2
n

∑

t=1

log |r(xt−1)| (7)

is equal to twice the negative logarithm of the likelihood function (with constant terms
eliminated), conditional on the parameters θ = (α, β, γ, ϕ)′ and the initial states x0 =
(ℓ0, b0, s0, s−1, . . . , s−m+1)′, where n is the number of observations. This is easily computed
by simply using the recursive equations in Table 2. Unlike state space models with multiple
sources of error, we do not need to use the Kalman filter to compute the likelihood.

The parameters θ and the initial states x0 can be estimated by minimizing L∗. Most imple-
mentations of exponential smoothing use an ad hoc heuristic scheme to estimate x0. However,
with modern computers, there is no reason why we cannot estimate x0 along with θ, and the
resulting forecasts are often substantially better when we do.

We constrain the initial states x0 so that the seasonal indices add to zero for additive sea-
sonality, and add to m for multiplicative seasonality. There have been several suggestions for
restricting the parameter space for α, β and γ. The traditional approach is to ensure that
the various equations can be interpreted as weighted averages, thus requiring α, β∗ = β/α,
γ∗ = γ/(1 − α) and ϕ to all lie within (0, 1). This suggests

0 < α < 1, 0 < β < α, 0 < γ < 1 − α, and 0 < ϕ < 1.

However, Hyndman, Akram, and Archibald (2008a) show that these restrictions are usually
stricter than necessary (although in a few cases they are not restrictive enough).
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2.5. Model selection

Forecast accuracy measures such as mean squared error (MSE) can be used for selecting a
model for a given set of data, provided the errors are computed from data in a hold-out set
and not from the same data as were used for model estimation. However, there are often
too few out-of-sample errors to draw reliable conclusions. Consequently, a penalized method
based on the in-sample fit is usually better.

One such approach uses a penalized likelihood such as Akaike’s Information Criterion:

AIC = L∗(θ̂, x̂0) + 2q,

where q is the number of parameters in θ plus the number of free states in x0, and θ̂ and x̂0

denote the estimates of θ and x0. We select the model that minimizes the AIC amongst all
of the models that are appropriate for the data.

The AIC also provides a method for selecting between the additive and multiplicative error
models. The point forecasts from the two models are identical so that standard forecast
accuracy measures such as the MSE or mean absolute percentage error (MAPE) are unable
to select between the error types. The AIC is able to select between the error types because
it is based on likelihood rather than one-step forecasts.

Obviously, other model selection criteria (such as the BIC) could also be used in a similar
manner.

2.6. Automatic forecasting

We combine the preceding ideas to obtain a robust and widely applicable automatic forecast-
ing algorithm. The steps involved are summarized below.

1. For each series, apply all models that are appropriate, optimizing the parameters (both
smoothing parameters and the initial state variable) of the model in each case.

2. Select the best of the models according to the AIC.
3. Produce point forecasts using the best model (with optimized parameters) for as many

steps ahead as required.
4. Obtain prediction intervals for the best model either using the analytical results of Hyn-

dman, Koehler, et al. (2005), or by simulating future sample paths for {yn+1, . . . , yn+h}
and finding the α/2 and 1 − α/2 percentiles of the simulated data at each forecasting
horizon. If simulation is used, the sample paths may be generated using the normal
distribution for errors (parametric bootstrap) or using the resampled errors (ordinary
bootstrap).

Hyndman et al. (2002) applied this automatic forecasting strategy to the M-competition data
(Makridakis et al. 1982) and the IJF-M3 competition data (Makridakis and Hibon 2000) using
a restricted set of exponential smoothing models, and demonstrated that the methodology is
particularly good at short term forecasts (up to about 6 periods ahead), and especially for
seasonal short-term series (beating all other methods in the competitions for these series).

3. ARIMA models

A common obstacle for many people in using Autoregressive Integrated Moving Average
(ARIMA) models for forecasting is that the order selection process is usually considered
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subjective and difficult to apply. But it does not have to be. There have been several
attempts to automate ARIMA modelling in the last 25 years.

Hannan and Rissanen (1982) proposed a method to identify the order of an ARMA model
for a stationary series. In their method the innovations can be obtained by fitting a long
autoregressive model to the data, and then the likelihood of potential models is computed via
a series of standard regressions. They established the asymptotic properties of the procedure
under very general conditions.

Gómez (1998) extended the Hannan-Rissanen identification method to include multiplicative
seasonal ARIMA model identification. Gómez and Maravall (1998) implemented this auto-
matic identification procedure in the software TRAMO and SEATS. For a given series, the
algorithm attempts to find the model with the minimum BIC.

Liu (1989) proposed a method for identification of seasonal ARIMA models using a filtering
method and certain heuristic rules; this algorithm is used in the SCA-Expert software. An-
other approach is described by Mélard and Pasteels (2000) whose algorithm for univariate
ARIMA models also allows intervention analysis. It is implemented in the software package
“Time Series Expert’ ’ (TSE-AX).

Other algorithms are in use in commercial software, although they are not documented in
the public domain literature. In particular, Forecast Pro (Goodrich 2000) is well-known for
its excellent automatic ARIMA algorithm which was used in the M3-forecasting competition
(Makridakis and Hibon 2000). Another proprietary algorithm is implemented in Autobox

(Reilly 2000). Ord and Lowe (1996) provide an early review of some of the commercial
software that implement automatic ARIMA forecasting.

3.1. Choosing the model order using unit root tests and the AIC

A non-seasonal ARIMA(p, d, q) process is given by

ϕ(B)(1 − Bd)yt = c + θ(B)εt

where {εt} is a white noise process with mean zero and variance σ2, B is the backshift
operator, and ϕ(z) and θ(z) are polynomials of order p and q respectively. To ensure causality
and invertibility, it is assumed that ϕ(z) and θ(z) have no roots for |z| < 1 (Brockwell and
Davis 1991). If c ̸= 0, there is an implied polynomial of order d in the forecast function.

The seasonal ARIMA(p, d, q)(P, D, Q)m process is given by

Φ(Bm)ϕ(B)(1 − Bm)D(1 − B)dyt = c + Θ(Bm)θ(B)εt

where Φ(z) and Θ(z) are polynomials of orders P and Q respectively, each containing no
roots inside the unit circle. If c ̸= 0, there is an implied polynomial of order d + D in the
forecast function.

The main task in automatic ARIMA forecasting is selecting an appropriate model order, that
is the values p, q, P , Q, D, d. If d and D are known, we can select the orders p, q, P and Q
via an information criterion such as the AIC:

AIC = −2 log(L) + 2(p + q + P + Q + k)

where k = 1 if c ̸= 0 and 0 otherwise, and L is the maximized likelihood of the model fitted to
the differenced data (1−Bm)D(1−B)dyt. The likelihood of the full model for yt is not actually
defined and so the value of the AIC for different levels of differencing are not comparable.
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One solution to this difficulty is the “diffuse prior’ ’ approach which is outlined in Durbin
and Koopman (2001) and implemented in the arima() function (Ripley 2002) in R. In this
approach, the initial values of the time series (before the observed values) are assumed to
have mean zero and a large variance. However, choosing d and D by minimizing the AIC
using this approach tends to lead to over-differencing. For forecasting purposes, we believe
it is better to make as few differences as possible because over-differencing harms forecasts
(Smith and Yadav 1994) and widens prediction intervals. (Although, see Hendry 1997, for a
contrary view.)

Consequently, we need some other approach to choose d and D. We prefer unit-root tests.
However, most unit-root tests are based on a null hypothesis that a unit root exists which
biases results towards more differences rather than fewer differences. For example, variations
on the Dickey-Fuller test (Dickey and Fuller 1981) all assume there is a unit root at lag 1, and
the HEGY test of Hylleberg, Engle, Granger, and Yoo (1990) is based on a null hypothesis
that there is a seasonal unit root. Instead, we prefer unit-root tests based on a null hypothesis
of no unit-root.

For non-seasonal data, we consider ARIMA(p, d, q) models where d is selected based on suc-
cessive KPSS unit-root tests (Kwiatkowski, Phillips, Schmidt, and Shin 1992). That is, we
test the data for a unit root; if the test result is significant, we test the differenced data for a
unit root; and so on. We stop this procedure when we obtain our first insignificant result.

For seasonal data, we consider ARIMA(p, d, q)(P, D, Q)m models where m is the seasonal
frequency and D = 0 or D = 1 depending on an extended Canova-Hansen test (Canova and
Hansen 1995). Canova and Hansen only provide critical values for 2 < m < 13. In our
implementation of their test, we allow any value of m > 1. Let Cm be the critical value for
seasonal period m. We plotted Cm against m for values of m up to 365 and noted that they
fit the line Cm = 0.269m0.928 almost exactly. So for m > 12, we use this simple expression to
obtain the critical value.

We note in passing that the null hypothesis for the Canova-Hansen test is not an ARIMA
model as it includes seasonal dummy terms. It is a test for whether the seasonal pattern
changes sufficiently over time to warrant a seasonal unit root, or whether a stable seasonal
pattern modelled using fixed dummy variables is more appropriate. Nevertheless, we have
found that the test is still useful for choosing D in a strictly ARIMA framework (i.e., without
seasonal dummy variables). If a stable seasonal pattern is selected (i.e., the null hypothesis is
not rejected), the seasonality is effectively handled by stationary seasonal AR and MA terms.

After D is selected, we choose d by applying successive KPSS unit-root tests to the seasonally
differenced data (if D = 1) or the original data (if D = 0). Once d (and possibly D) are
selected, we proceed to select the values of p, q, P and Q by minimizing the AIC. We allow
c ̸= 0 for models where d + D < 2.

3.2. A step-wise procedure for traversing the model space

Suppose we have seasonal data and we consider ARIMA(p, d, q)(P, D, Q)m models where p
and q can take values from 0 to 3, and P and Q can take values from 0 to 1. When c = 0
there is a total of 288 possible models, and when c ̸= 0 there is a total of 192 possible models,
giving 480 models altogether. If the values of p, d, q, P , D and Q are allowed to range more
widely, the number of possible models increases rapidly. Consequently, it is often not feasible
to simply fit every potential model and choose the one with the lowest AIC. Instead, we need



Journal of Statistical Software 11

a way of traversing the space of models efficiently in order to arrive at the model with the
lowest AIC value.

We propose a step-wise algorithm as follows.

Step 1: We try four possible models to start with.

• ARIMA(2, d, 2) if m = 1 and ARIMA(2, d, 2)(1, D, 1) if m > 1.

• ARIMA(0, d, 0) if m = 1 and ARIMA(0, d, 0)(0, D, 0) if m > 1.

• ARIMA(1, d, 0) if m = 1 and ARIMA(1, d, 0)(1, D, 0) if m > 1.

• ARIMA(0, d, 1) if m = 1 and ARIMA(0, d, 1)(0, D, 1) if m > 1.

If d + D ≤ 1, these models are fitted with c ̸= 0. Otherwise, we set c = 0. Of these
four models, we select the one with the smallest AIC value. This is called the “current”
model and is denoted by ARIMA(p, d, q) if m = 1 or ARIMA(p, d, q)(P, D, Q)m if m > 1.

Step 2: We consider up to seventeen variations on the current model:

• where one of p, q, P and Q is allowed to vary by ±1 from the current model;

• where p and q both vary by ±1 from the current model;

• where P and Q both vary by ±1 from the current model;

• where the constant c is included if the current model has c = 0 or excluded if the
current model has c ̸= 0.

Whenever a model with lower AIC is found, it becomes the new “current” model and
the procedure is repeated. This process finishes when we cannot find a model close to
the current model with lower AIC.

There are several constraints on the fitted models to avoid problems with convergence or near
unit-roots. The constraints are outlined below.

• The values of p and q are not allowed to exceed specified upper bounds (with default
values of 5 in each case).

• The values of P and Q are not allowed to exceed specified upper bounds (with default
values of 2 in each case).

• We reject any model which is “close” to non-invertible or non-causal. Specifically, we
compute the roots of ϕ(B)Φ(B) and θ(B)Θ(B). If either have a root that is smaller
than 1.001 in absolute value, the model is rejected.

• If there are any errors arising in the non-linear optimization routine used for estimation,
the model is rejected. The rationale here is that any model that is difficult to fit is
probably not a good model for the data.

The algorithm is guaranteed to return a valid model because the model space is finite and at
least one of the starting models will be accepted (the model with no AR or MA parameters).
The selected model is used to produce forecasts.

3.3. Comparisons with exponential smoothing
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There is a widespread myth that ARIMA models are more general than exponential smooth-
ing. This is not true. The two classes of models overlap. The linear exponential smoothing
models are all special cases of ARIMA models—the equivalences are discussed in Hyndman
et al. (2008a). However, the non-linear exponential smoothing models have no equivalent
ARIMA counterpart. On the other hand, there are many ARIMA models which have no
exponential smoothing counterpart. Thus, the two model classes overlap and are complimen-
tary; each has its strengths and weaknesses.

The exponential smoothing state space models are all non-stationary. Models with seasonality
or non-damped trend (or both) have two unit roots; all other models—that is, non-seasonal
models with either no trend or damped trend—have one unit root. It is possible to define
a stationary model with similar characteristics to exponential smoothing, but this is not
normally done. The philosophy of exponential smoothing is that the world is non-stationary.
So if a stationary model is required, ARIMA models are better.

One advantage of the exponential smoothing models is that they can be non-linear. So
time series that exhibit non-linear characteristics including heteroscedasticity may be better
modelled using exponential smoothing state space models.

For seasonal data, there are many more ARIMA models than the 30 possible models in the
exponential smoothing class of Section 2. It may be thought that the larger model class
is advantageous. However, the results in Hyndman et al. (2002) show that the exponential
smoothing models performed better than the ARIMA models for the seasonal M3 competition
data. (For the annual M3 data, the ARIMA models performed better.) In a discussion of
these results, Hyndman (2001) speculates that the larger model space of ARIMA models
actually harms forecasting performance because it introduces additional uncertainty. The
smaller exponential smoothing class is sufficiently rich to capture the dynamics of almost all
real business and economic time series.

4. The forecast package

The algorithms and modelling frameworks for automatic univariate time series forecasting
are implemented in the forecast package in R. We illustrate the methods using the following
four real time series shown in Figure 1.

• Figure 1(a) shows 125 monthly US government bond yields (percent per annum) from
January 1994 to May 2004.

• Figure 1(b) displays 55 observations of annual US net electricity generation (billion
kwh) for 1949 through 2003.

• Figure 1(c) presents 113 quarterly observations of passenger motor vehicle production
in the U.K. (thousands of cars) for the first quarter of 1977 through the first quarter of
2005.

• Figure 1(d) shows 240 monthly observations of the number of short term overseas visitors
to Australia from May 1985 to April 2005.

4.1. Implementation of the automatic exponential smoothing algorithm

The innovations state space modelling framework described in Section 2 is implemented via
the ets() function in the forecast package. (The default settings of ets() do not allow models
with multiplicative trend, but they can be included using allow.multiplicative.trend=TRUE.)
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Figure 1: Four time series showing point forecasts and 80% & 95% prediction intervals ob-
tained using exponential smoothing state space models.

The models chosen via the algorithm for the four data sets were:

• ETS(A,Ad,N) for monthly US 10-year bonds yield
(α = 0.9999, β = 0.09545, ϕ = 0.8026, ℓ0 = 5.3252, b0 = 0.5934);

• ETS(M,A,N) for annual US net electricity generation
(α = 0.9999, β = 0.2191, ℓ0 = 254.9338, b0 = 38.3125);

• ETS(A,N,A) for quarterly UK motor vehicle production
(α = 0.6199, γ = 1e−04, ℓ0 = 314.2568, s−3 = 25.5223, s−2 = 21.1956, s−1 = −44.9601,
s0 = −1.7579);

• ETS(M,A,M) for monthly Australian overseas visitors
(α = 0.6146, β = 0.00019, γ = 0.1920, ℓ0 = 92.9631, b0 = 2.2221, s−11 = 0.8413,
s−10 = 0.8755, s−9 = 1.0046, s−8 = 0.9317, s−7 = 0.8219, s−6 = 1.0012, s−5 = 1.1130,
s−4 = 1.3768, s−3 = 0.9625, s−2 = 1.0669, s−1 = 1.0666, s0 = 0.9378).

Although there is a lot of computation involved, it can be handled remarkably quickly on
modern computers. Each of the forecasts shown in Figure 1 took no more than a few seconds
on a standard PC. The US electricity generation series took the longest as there are no
analytical prediction intervals available for the ETS(M,Md,N) model. Consequently, the
prediction intervals for this series were computed using simulation of 5000 future sample
paths.

To apply the algorithm to the US net electricity generation time series usnetelec, we use
the following command.

R> etsfit <- ets(usnetelec)
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The object etsfit is of class “ets’ ’ and contains all of the necessary information about the
fitted model including model parameters, the value of the state vector xt for all t, residuals
and so on. Printing the etsfit object shows the main items of interest.

R> etsfit

ETS(M,A,N)

Call:

ets(y = usnetelec)

Smoothing parameters:

alpha = 0.9999

beta = 0.2191

Initial states:

l = 254.9338

b = 38.3125

sigma: 0.0259

AIC AICc BIC

634.0437 635.2682 644.0803

Some goodness-of-fit measures (defined in Hyndman and Koehler 2006) are obtained using
accuracy().

R> accuracy(etsfit)

ME RMSE MAE MPE MAPE MASE

Training set 1.162583 52.00363 36.77721 0.2629582 1.942062 0.5211014

ACF1

Training set 0.006113498

There are also coef(), plot(), summary(), residuals(), fitted() and simulate() meth-
ods for objects of class “ets’ ’. The plot() function shows time plots of the original time
series along with the extracted components (level, growth and seasonal).

The forecast() function computes the required forecasts which are then plotted as in Figure
1(b).

Printing the fcast object gives a table showing the prediction intervals.

R> fcast

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

2004 3900.329 3770.801 4029.857 3702.233 4098.425

2005 3952.650 3747.279 4158.022 3638.562 4266.738



Journal of Statistical Software 15

2006 4004.972 3725.589 4284.355 3577.692 4432.251

2007 4057.293 3701.885 4412.701 3513.743 4600.842

2008 4109.614 3674.968 4544.259 3444.881 4774.347

2009 4161.935 3644.367 4679.503 3370.383 4953.487

2010 4214.256 3609.881 4818.632 3289.944 5138.569

2011 4266.577 3571.428 4961.726 3203.439 5329.716

2012 4318.898 3528.985 5108.812 3110.830 5526.967

2013 4371.220 3482.552 5259.888 3012.119 5730.320

The ets() function also provides the useful feature of applying a fitted model to a new data
set. For example, we could withhold 10 observations from the usnetelec data set when
fitting, then compute the one-step forecast errors for the out-of-sample data.

R> fit <- ets(usnetelec[1:45])

R> test <- ets(usnetelec[46:55], model = fit)

R> accuracy(test)

We can also look at the measures of forecast accuracy where the forecasts are based on only
the fitting data.

R> accuracy(forecast(fit,10), usnetelec[46:55])

4.2. The HoltWinters() function

There is another implementation of exponential smoothing in R via the HoltWinters() func-
tion (Meyer 2002) in the stats package. It implements only the (N,N), (A,N), (A,A) and
(A,M) methods. The initial states x0 are fixed using a heuristic algorithm. Because of the
way the initial states are estimated, a full three years of seasonal data are required to imple-
ment the seasonal forecasts using HoltWinters(). (See Hyndman and Kostenko (2007) for
the minimal sample size required.) The smoothing parameters are optimized by minimizing
the average squared prediction errors, which is equivalent to minimizing (7) in the case of
additive errors.

There is a predict() method for the resulting object which can produce point forecasts and
prediction intervals. Although it is nowhere documented, it appears that the prediction in-
tervals produced by predict() for an object of class HoltWinters are based on an equivalent
ARIMA model in the case of the (N,N), (A,N) and (A,A) methods, assuming additive er-
rors. These prediction intervals are equivalent to the prediction intervals that arise from the
(A,N,N), (A,A,N) and (A,A,A) state space models. For the (A,M) method, the prediction
interval provided by predict() appears to be based on Chatfield and Yar (1991) which is
an approximation to the true prediction interval arising from the (A,A,M) model. Prediction
intervals with multiplicative errors are not possible using the HoltWinters() function.

4.3. Implementation of the automatic ARIMA algorithm

The algorithm of Section 3 is applied to the same four time series. Unlike the exponential
smoothing algorithm, the ARIMA class of models assumes homoscedasticity, which is not
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Figure 2: Four time series showing point forecasts and 80% & 95% prediction intervals ob-
tained using ARIMA models.

always appropriate. Consequently, transformations are sometimes necessary. For these four
time series, we model the raw data for series (a)–(c), but the logged data for series (d). The
prediction intervals are back-transformed with the point forecasts to preserve the probability
coverage.

To apply this algorithm to the US net electricity generation time series usnetelec, we use
the following commands.

R> arimafit <- auto.arima(usnetelec)

R> fcast <- forecast(arimafit)

R> plot(fcast)

The function auto.arima() implements the algorithm of Section 3 and returns an object of
class Arima. The resulting forecasts are shown in Figure 2. The fitted models are as follows:

• ARIMA(0,1,1) for monthly US 10-year bonds yield
(θ1 = 0.3220);

• ARIMA(2,1,2) with drift for annual US net electricity generation
(ϕ1 = −1.3032; ϕ2 = −0.4332; θ1 = 1.5284; θ2 = 0.8340; c = 66.1585);

• ARIMA(1,0,1)(1,1,2)4 for quarterly UK motor vehicle production
(ϕ1 = 0.9253; ϕ2 = NA; Φ1 = −0.7526; Φ2 = NA);

• ARIMA(1,0,1)(0,1,2)12 with drift for monthly Australian overseas visitors
(ϕ1 = 0.8968; θ1 = −0.3187; Θ1 = −0.7110; Θ2 = 0.1461; c = 1.4820).

Note that the R parameterization has θ(B) = (1 + θ1B + · · · + θqB) and ϕ(B) = (1 − ϕ1B +
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· · · − ϕqB), and similarly for the seasonal terms.

A summary of the forecasts is available, part of which is shown below.

Forecast method: ARIMA(2,1,2) with drift

Series: usnetelec

Coefficients:

ar1 ar2 ma1 ma2 drift

-1.3032 -0.4332 1.5284 0.8340 66.1585

s.e. 0.2122 0.2084 0.1417 0.1185 7.5595

sigma^2 estimated as 2262: log likelihood=-283.34

AIC=578.67 AICc=580.46 BIC=590.61

Error measures:

ME RMSE MAE MPE MAPE MASE ACF1

Training set 0.046402 44.894 32.333 -0.61771 2.1012 0.45813 0.022492

Forecasts:

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

2004 3968.957 3908.002 4029.912 3875.734 4062.180

2005 3970.350 3873.950 4066.751 3822.919 4117.782

2006 4097.171 3971.114 4223.228 3904.383 4289.959

2007 4112.332 3969.691 4254.973 3894.182 4330.482

2008 4218.671 4053.751 4383.591 3966.448 4470.894

2009 4254.559 4076.108 4433.010 3981.641 4527.476

2010 4342.760 4147.088 4538.431 4043.505 4642.014

2011 4393.306 4185.211 4601.401 4075.052 4711.560

2012 4470.261 4248.068 4692.455 4130.446 4810.077

2013 4529.113 4295.305 4762.920 4171.535 4886.690

The training set error measures for the two models are very similar. Note that the information
criteria are not comparable.

The forecast package also contains the function Arima() which is largely a wrapper to the
arima() function in the stats package. The Arima() function in the forecast package makes
it easier to include a drift term when d+D = 1. (Setting include.mean=TRUE in the arima()

function from the stats package will only work when d + D = 0.) It also provides the facility
for fitting an existing ARIMA model to a new data set (as was demonstrated for the ets()

function earlier).

One-step forecasts for ARIMA models are now available via a fitted() function. We also
provide a new function arima.errors() which returns the original time series after adjusting
for regression variables. If there are no regression variables in the ARIMA model, then the
errors will be identical to the original series. If there are regression variables in the ARIMA
model, then the errors will be equal to the original series minus the effect of the regression
variables, but leaving in the serial correlation that is modelled with the AR and MA terms.
In contrast, residuals() provides true residuals, removing the AR and MA terms as well.
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The generic functions summary(), print(), fitted() and forecast() apply to models ob-
tained from either the Arima() or arima() functions.

4.4. The forecast() function

The forecast() function is generic and has S3 methods for a wide range of time series models.
It computes point forecasts and prediction intervals from the time series model. Methods exist
for models fitted using ets(), auto.arima(), Arima(), arima(), ar(), HoltWinters() and
StructTS().

There is also a method for a ts object. If a time series object is passed as the first argu-
ment to forecast(), the function will produce forecasts based on the exponential smoothing
algorithm of Section 2.

In most cases, there is an existing predict() function which is intended to do much the same
thing. Unfortunately, the resulting objects from the predict() function contain different
information in each case and so it is not possible to build generic functions (such as plot()

and summary()) for the results. So, instead, forecast() acts as a wrapper to predict(),
and packages the information obtained in a common format (the forecast class). We also
define a default predict() method which is used when no existing predict() function exists,
and calls the relevant forecast() function. Thus, predict() methods parallel forecast()

methods, but the latter provide consistent output that is more usable.

4.5. The forecast class

The output from the forecast() function is an object of class “forecast’ ’ and includes at
least the following information:

• the original series;
• point forecasts;
• prediction intervals of specified coverage;
• the forecasting method used and information about the fitted model;
• residuals from the fitted model;
• one-step forecasts from the fitted model for the period of the observed data.

There are print(), plot() and summary() methods for the “forecast’ ’ class. Figures 1 and
2 were produced using the plot() method.

The prediction intervals are, by default, computed for 80% and 95% coverage, although other
values are possible if requested. Fan charts (Wallis 1999) are possible using the combination
plot(forecast(model.object, fan = TRUE)).

4.6. Other functions

We now briefly describe some of the other features of the forecast package. Each of the
following functions produces an object of class “forecast’ ’.

croston()

: implements the method of Croston (1972) for intermittent demand forecasting. In this
method, the time series is decomposed into two separate sequences: the non-zero values and
the time intervals between non-zero values. These are then independently forecast using
simple exponential smoothing and the forecasts of the original series are obtained as ratios of



Journal of Statistical Software 19

the two sets of forecasts. No prediction intervals are provided because there is no underlying
stochastic model (Shenstone and Hyndman 2005).

theta()

: provides forecasts from the Theta method (Assimakopoulos and Nikolopoulos 2000). Hyn-
dman and Billah (2003) showed that these were equivalent to a special case of simple expo-
nential smoothing with drift.

splinef()

: gives cubic-spline forecasts, based on fitting a cubic spline to the historical data and ex-
trapolating it linearly. The details of this method, and the associated prediction intervals,
are discussed in Hyndman et al. (2005a).

meanf()

: returns forecasts based on the historical mean.

rwf()

: gives “naïve’ ’ forecasts equal to the most recent observation assuming a random walk model.
This function also allows forecasting using a random walk with drift.

In addition, there are some new plotting functions for time series.

tsdisplay()

: provides a time plot along with an ACF and PACF.

seasonplot()

: produces a seasonal plot as described in Makridakis et al. (1998).
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