Package ‘PortfolioAnalytics’

February 4, 2026

Type Package

Title Portfolio Analysis, Including Numerical Methods for Optimization
of Portfolios

Version 2.1.1

Date 2026-02-02

Maintainer Brian G. Peterson <brian@braverock.com>

Description Portfolio optimization and analysis routines and graphics.

Depends R (>=4.0.0), zoo, xts (>= 0.10-1), foreach,
PerformanceAnalytics (>= 1.5.1)

Suggests quantmod, DEoptim (>= 2.2.1), iterators, doParallel, doMC,
fGarch, Rglpk, quadprog, ROI (>= 0.1.0), ROLplugin.glpk (>=
0.0.2), ROILplugin.quadprog (>= 0.0.2), corpcor, testthat,
nloptr (>= 1.0.0), MASS, robustbase, osqp, CVXR, data.table,
knitr, rmarkdown, GSE, RobStatTM, PCRA, R.rsp, RPESE, TTR,
Matrix

VignetteBuilder R.rsp
Imports methods, GenSA, ROI.plugin.symphony, mco, pso
License GPL-3

URL https://github.com/braverock/PortfolioAnalytics
Copyright (c) 2004-2026

RoxygenNote 7.3.3

Encoding UTF-8

NeedsCompilation yes

Author Brian G. Peterson [cre, aut, cph],
Peter Carl [aut, cph],
Ross Bennett [ctb, cph],
Kris Boudt [ctb, cph],
Xinran Zhao [ctb, cph],
R. Douglas Martin [ctb],
Guy Yollin [ctb],
Hezky Varon [ctb],


https://github.com/braverock/PortfolioAnalytics

2 Contents

Xiaokang Feng [ctb],
Yifu Kang [ctb]

Repository CRAN
Date/Publication 2026-02-04 06:40:44 UTC

Contents
PortfolioAnalytics-package . . . . . . . . . . ... ... 5
acranking . . . . . .. e e e e e e 10
add.constraint . . . . . . . ... L. e e e e e e 11
add.objective . . . ... . 14
add.sub.portfolio . . . . . . L. 16
applyFUN . . e 17
backtest.plot . . . . . . .. e e 18
barplotGroupWeights . . . . . . . . . . . L 19
black.litterman . . . . . . . . .. L 20
BlackLittermanFormula . . . . . . . . . . . . .. .. .. ... 21
box_constraint. . . . . . . . ... e e e 22
CCCgarch. MM . . . . . . . e 23
CEMEET . . . v o v v e e e e e e e e e e e e e 24
centroid.buckets . . . . . . . L e e e 24
centroid.complete.mc . . . . .. L. L. e 25
centroid.SECtOrS . . . . . . . . . e e e 26
centroid.Sign . . . . . . L L. e e e e 26
chart.Concentration . . . . . . . . . . . . . . .t e e e e e e 27
chart EEWeights . . . . . . . . .. .. 28
chart.EfficientFrontier . . . . . . . . . . . . ... ... 30
chart.EfficientFrontierCompare . . . . . . . . . . . . . ... ... 33
chart.EfficientFrontierOverlay . . . . . . . . . ... ... ... . 35
chart.GroupWeights . . . . . . . . . .. L 36
chart.RiskBudget . . . . . . . . . . .. 38
chart.RiskReward . . . . . . . . . . . . . . . ... 40
chart. Weights . . . . . . . . . . . e 43
check_constraints . . . . . . . . . ... e e 46
cokurtosisMF . . . . . . e 47
cokurtosisSF . . . . L. e e e 47
combine.optimizations . . . . . . . . . . .. e e e e e e e e e 48
combine.portfolios . . . . . . L. 49
constrained_objective . . . . . ... L. 49
constraint ROI . . . . . . . . e 51
constraint_ vl . . . .. L e 52
coskewnessMF . . . . . . .. 53
coskewnessSF . . . . ... e e e 54
covarianceMF . . . . . . .. e 54
covarianceSF . . . . . . e 55
create EfficientFrontier . . . . . . . . . . . .. ... 56

custom.covRob.Mcd . . . . . . L 57



Contents

3
custom.covROb.MM . . . . . . .. e e 58
custom.covRob.Rocke . . . . . . . ... ... 59
custom.covRob. TSGS . . . . . . . . . . 59
diversification . . . . . . . . . . L e e e e e 60
diversification_constraint . . . . . . . . . . .. L. L. e e e e 61
EntropyProg . . . . . . .. 62
equal.weight . . . . . . . . L 63
etl_milp_opt . . . . . . e e 64
etl_opt . . . e 65
extractCoKurtoSis . . . . . . . . . . . e e e 65
extractCoskewness . . . . . . . . ... e e e 66
extractCovarianCe . . . . . . . . . . .. e e e e e e e e e e e e e e e e e e e 67
extractEfficientFrontier . . . . . . . . . . .. ..o 67
eXtractGroups . . . . . . . o e 68
extractObjectiveMeasures . . . . . . . . o u e e e e e e e e e e e 69
eXtractStats . . . . . . . e e e e 70
extractWeights . . . . . . . .. 71
extract_risk . . . . . . e 71
factor_exposure_constraint . . . . . . . . ... oL e 72
fi_map . . . . 73
ENETateSEqUENCE . . . .« « ¢ o v e e e e e e e e e e e e e e e e e e 74
GEL_CONSIIAINIS . . . . . . v i it e o e e e e e e e e e e e e e e e 75
SIMV_OPL . . . o o e 76
gmV_opt_leverage . . . . . . . ... e e 77
EMV_OPL_PIC . . . o o e e e e e e e e e e e e 77
SMV_OPL_LOC .« . vt it e e e e e e e e e e e e e 78
roup_CONSIIAINt . . . . . . . . . o e e e e 79
group_fail . . . ... 81
HHI . . . e e e e e 81
INdEXES . . . . . e e e e 82
INSErt_CONSIraints . . . . . . . . v v e e e e e e e 82
INSEIt_ObJECtIVES . . . . . . ot e e e e e e 83
inverse.volatility.weight . . . . . . . ... ..o oL 83
IS.CONSIIAINt . . . . . . . . . o e e e e e e e 84
1S.ODJECHIVE . . . . o e e 84
is.portfolio . . . . . . 85
leverage_exposure_constraint . . . . . . . . ... oLl e e 85
maxret_milp_opt . . . . .. e 86
MAXTEL_OPL . o o v v o e e e e e e e e e e e e e e e e e e e e e 87
meancsm.efficient.frontier . . . . . . . ... e 88
meanetl.efficient.frontier . . . . . . . . ... ... 89
meanrisk.efficient.frontier . . . . . . . . . ... ... 90
meanvar.efficient.frontier . . . . . . . ... ... 91
MEUCCI.MOMENES . . . . . . . . . ittt e e e e e e e 92
meucci.ranking . . . . . . ... e e 92
minmax_objective . . . . . . ... e 93
mult.portfolio.spec . . . . . . ... 94

MycovRobMed . . . . . .. 95



Contents

MycovRobTSGS . . . . . . e e 96
name.replace . . . . . .. L. 97
ODJECLIVE . . . . . L L 98
opt.owtputMVOo . . . .. e 99
optimize.portfolio . . . . . . . .. L 100
optimize.portfolio.parallel . . . . . . .. ... ... . 105
optimize.portfolio.rebalancing . . . . . . . . ... ..o o 106
PHiSt . . . o e e e 109
plot.optimize.portfolio.DEoptim . . . . . . . .. .. ... oo 110
plotFrontiers . . . . . . . . .. L 112
portfoliomoments.bl . . . . . ... oL 114
portfolio.moments.boudt . . . . . . . ... L 115
portfolio.Spec . . . . . . L 116
portfolio_risk_objective . . . . . . . ... L 117
position_limit_constraint . . . . . . . . ... oL e 118
pos_limit_fail . . . . . . . L. 119
Print.constraint . . . . . . ... ... e e e 120
printefficientfrontier . . . . . . . .. . ... 120
print.optimize.portfolio.rebalancing . . . . . . .. ... Lo 121
print.optimize.portfolioROI . . . . . . . ... ... 121
print.portfolio . . . . ..o 122
print.summary.optimize.portfolio . . . . . ... .. oL oo 123
print.summary.optimize.portfolio.rebalancing . . . . . . . ... ... oL 124
quadratic_utility_objective . . . . . . ..o 124
randomize_portfolio . . . . . . . L. L 125
randomize_portfolio_vl . . . . . .. oL o 126
random_portfolios . . . . . . . . .. 126
random_portfolios_vl . . . . . . . .. L 128
random_walk_portfolios . . . . . . . ... 129
regime.portfolios . . . . . ... 129
return_CONSLraint . . . . . . . . . e e e e e e 130
return_ObJectiVve . . . . . . . . . e e e e e e e e 131
risk_budget_objective . . . . . ... L 132
rp_grid . . .o 133
rp_sample ... oL 134
TP_SIMPIEX . . . . . e e e e e 134
rp_transform . . . ... L e 135
scatterFUN . . . . . L o e 137
set.portfolio.MOMENts . . . . . . . . ... e e e e e e e 137
set.portfolio.moments_v1l . . . . . . ... L e 138
statistical.factormodel . . . . . . ... L. oL 139
summary.efficientfrontier . . . . . . . . . . ... 139
summary.optimize.portfolio . . . . . . .. ... L 140
summary.optimize.portfolio.rebalancing . . . . . . . . .. ... ... L. 141
summary.portfolio . . . . . .. 141
trailingFUN . . . . . . o e 142
transaction_CoSt_CONSLraint . . . . . . . . . . . v v v v i e e e e e 142

TUIMOVET . . . . o o o o o e e e e e e e e e e e e e 143



PortfolioAnalytics-package 5

fUMMOVEr_CONSLIAINT . . . . . . . o v v v e o e e e e e e e e e e e e 144
turnover_objective . . . . . . L. e e e e e 145
update.Constraint . . . . . .. ... 146
update_constraint_vItov2 . . . . . . .. L. L. 146
varportfolio . . . . . .. 147
weight_concentration_objective . . . . . . . . ... 148
weight_sum_constraint . . . . . . . . . ... e 149
Index 151

PortfolioAnalytics-package
Numeric methods for optimization of portfolios

Description

PortfolioAnalytics is an R package to provide numerical solutions for portfolio problems with
complex constraints and objective sets. The goal of the package is to aid practicioners and re-
searchers in solving portfolio optimization problems with complex constraints and objectives that
mirror real-world applications.

One of the goals of the packages is to provide a common interface to specify constraints and ob-
jectives that can be solved by any supported solver (i.e. optimization method). Currently supported
optimization methods include

* random portfolios

« differential evolution

* particle swarm optimization
 generalized simulated annealing

* linear and quadratic programming routines

The solver can be specified with the optimize_method argument in optimize.portfolio and
optimize.portfolio.rebalancing. The optimize_method argument must be one of "random",
"DEoptim", "pso", "GenSA", "ROI", "quadprog", "glpk", or "symphony".

Additional information on random portfolios is provided below. The differential evolution algo-
rithm is implemented via the DEoptim package, the particle swarm optimization algorithm via the
pso package, the generalized simulated annealing via the GenSA package, and linear and quadratic
programming are implemented via the ROI package which acts as an interface to the Rglpk, Rsymphony,
and quadprog packages.

A key strength of PortfolioAnalytics is the generalization of constraints and objectives that can
be solved.

If optimize_method="ROI" is specified, a default solver will be selected based on the optimiza-
tion problem. The glpk solver is the default solver for LP and MILP optimization problems. The
quadprog solver is the default solver for QP optimization problems. For example, optimize_method
= "quadprog" can be specified and the optimization problem will be solved via ROI using the quad-
prog plugin package.

The extension to ROI solves a limited type of convex optimization problems:



PortfolioAnalytics-package

* Maxmimize portfolio return subject leverage, box, group, position limit, target mean return,
and/or factor exposure constraints on weights.

* Minimize portfolio variance subject to leverage, box, group, turnover, and/or factor exposure
constraints (otherwise known as global minimum variance portfolio).

» Minimize portfolio variance subject to leverage, box, group, and/or factor exposure constraints
and a desired portfolio return.

* Maximize quadratic utility subject to leverage, box, group, target mean return, turnover, and/or
factor exposure constraints and risk aversion parameter. (The risk aversion parameter is passed
into optimize.portfolio as an added argument to the portfolio object).

* Maximize portfolio mean return per unit standard deviation (i.e. the Sharpe Ratio) can be done
by specifying maxSR=TRUE in optimize.portfolio. If both mean and StdDev are specified
as objective names, the default action is to maximize quadratic utility, therefore maxSR=TRUE
must be specified to maximize Sharpe Ratio.

* Minimize portfolio ES/ETL/CVaR optimization subject to leverage, box, group, position limit,
target mean return, and/or factor exposure constraints and target portfolio return.

* Maximize portfolio mean return per unit ES/ETL/CVaR (i.e. the STARR Ratio) can be done
by specifying maxSTARR=TRUE in optimize.portfolio. If both mean and ES/ETL/CVaR
are specified as objective names, the default action is to maximize mean return per unit
ES/ETL/CVaR.

These problems also support a weight_concentration objective where concentration of weights as
measured by HHI is added as a penalty term to the quadratic objective.

Because these convex optimization problem are standardized, there is no need for a penalty term.
The multiplier argument in add.objective passed into the complete constraint object are ing-
nored by the ROI solver.

Many real-world portfolio optimization problems are global optimization problems, and therefore
are not suitable for linear or quadratic programming routines. PortfolioAnalytics provides a
random portfolio optimization method and also utilizes the R packages DEoptim, pso, and GenSA
for solving non-convex global optimization problems.

PortfolioAnalytics supports three methods of generating random portfolios.

* The sample method to generate random portfolios is based on an idea by Pat Burns. This is
the most flexible method, but also the slowest, and can generate portfolios to satisfy leverage,
box, group, position limit, and leverage constraints.

* The simplex method to generate random portfolios is based on a paper by W. T. Shaw. The
simplex method is useful to generate random portfolios with the full investment constraint
(where the sum of the weights is equal to 1) and min box constraints. Values for min_sum
and max_sum of the leverage constraint will be ignored, the sum of weights will equal 1.
All other constraints such as the box constraint max, group and position limit constraints will
be handled by elimination. If the constraints are very restrictive, this may result in very few
feasible portfolios remaining. Another key point to note is that the solution may not be along
the vertexes depending on the objective. For example, a risk budget objective will likely place
the portfolio somewhere on the interior.

* The grid method to generate random portfolios is based on the gridSearch function in pack-
age NMOF. The grid search method only satisfies the min and max box constraints. The



PortfolioAnalytics-package 7

min_sum and max_sum leverage constraint will likely be violated and the weights in the ran-
dom portfolios should be normalized. Normalization may cause the box constraints to be
violated and will be penalized in constrained_objective.

PortfolioAnalytics leverages the PerformanceAnalytics package for many common objective
functions. The objective types in PortfolioAnalytics are designed to be used with PerformanceAnalytics
functions, but any user supplied valid R function can be used as an objective.

Optimization

This summary attempts to provide an overview of how to construct a portfolio object with con-
straints and objectives, run the optimization, and chart the results.

The portfolio object is initialized with the portfolio.spec function. The main argument to
portfolio.spec is assets. The assets argument can be a scalar value for the number of as-
sets, a character vector of fund names, or a named vector of initial weights.

Adding constraints to the portfolio object is done with add.constraint. The add.constraint
function is the main interface for adding and/or updating constraints to the portfolio object. This
function allows the user to specify the portfolio to add the constraints to, the type of constraints,
arguments for the constraint, and whether or not to enable the constraint. If updating an existing
constraint, the indexnum argument can be specified.

Objectives can be added to the portfolio object with add.objective. The add.objective function
is the main function for adding and/or updating objectives to the portfolio object. This function
allows the user to specify the portfolio to add the objectives to, the type, name of the objective
function, arguments to the objective function, and whether or not to enable the objective. If updating
an existing objective, the indexnum argument can be specified.

With the constraints and objectives specified in the portfolio object, the portfolio object can be
passed to optimize.portfolio or optimize.portfolio.rebalancing to run the optimization.
Arguments to optimize.portfolio include asset returns, the portfolio obect specifying constraints
and objectives, optimization method, and other parameters specific to the solver. optimize.portfolio.rebalancing
adds support for backtesting portfolio optimization through time with rebalancing or rolling periods.

Advanced Optimization

In addition to the more standard optimizations described above, PortfolioAnalytics also sup-
ports multi-layer optimization and regime switching optimization.

Support for multi-layer optimization allows one to construct a top level portfolio and several sub-
portfolios with potentially different assets, constraints, and objectives. First, each sub-portfolio is
optimized out-of-sample which creates a time series of returns. One can think of the out of sample
returns for each sub-portfolio as the returns for a synthetic instrument. Finally, the out-of-sample
returns of each sub-portfolio are then used as inputs for the top level optimization. The top level
portfolio and sub-portfolios are created as normal using portfolio.spec, add.constraint, and
add.objective. The multi-layer portfolio specification object is first initialized by passing the top
level portfolio tomult.portfolio.spec. Sub-portfolios are then added with add. sub.portfolio.
The multi-layer portfolio specification object can then be passed to optimize.portfolio and
optimize.portfolio.rebalancing. See demo(multi_layer_optimization).

Support for regime switching models allows one to change constraints and objectives depending on
the current regime. Portfolios are created as normal with portfolio.spec, add.constraint, and



8 PortfolioAnalytics-package

add.objective. The portfolios are then combined with a regime object using regime.portfolios
to create a regime portfolio specification which can then be passed to optimize.portfolio and
optimize.portfolio.rebalancing. Regime switching optimization is implemented in such a
way that any arbitrary regime model can be used. See demo(regime_switching).

Portfolio Moments

The PortfolioAnalytics framework to estimate solutions to constrained optimization problems

is implemented in such a way that the moments of the returns are set once for use in lower level

optimization functions. The set.portfolio.moments function computes the first, second, third,

and fourth moments depending on the objective function(s) in the portfolio object. For ex-

ample, if the third and fourth moments do not need to be calculated for a given objective, then
set.portfolio.moments will try to detect this and not compute those moments. Currently, set.portfolio.moments
implements methods to compute moments based on sample estimates, higher moments from fitting

a statistical factor model based on the work of Kris Boudt, the Black Litterman model, and the Fully

Flexible Framework based on the work of Attilio Meucci (NEED REFERENCE HERE). See the

Custom Moment and Objective Functions vignette for a more detailed description and examples.

Charts and Graphs

Intuition into the optimization can be aided through visualization. The goal of creating the charts is
to provide visualization tools for optimal portfolios regardless of the chosen optimization method.

chart.Weights plots the weights of the optimal portfolio. chart.RiskReward plots the optimal
portfolio in risk-reward space. The random portfolios, DEoptim, and pso solvers will return trace
portfolio information at each iteration when optimize.portfolio is run with trace=TRUE. If this
is the case, chart.RiskReward will plot these portfolios so that the feasible space can be easily
visualized. Although the GenSA and ROI solvers do not return trace portfolio information, ran-
dom portfolios can be be generated with the argument rp=TRUE in chart.RiskReward. A plot
function is provided that will plot the weights and risk-reward scatter chart. The component risk
contribution can be charted for portfolio optimization problems with risk budget objectives with
chart.RiskBudget. Neighbor portfolios can be plotted in chart.RiskBudget, chart.Weights,
and chart.RiskReward.

Efficient frontiers can be extracted from optimize.portfolio objects or created from a portfolio
object. The efficient frontier can be charted in risk-reward space with chart.EfficientFrontier.
The weights along the efficient frontier can be charted with chart.EF.Weights.

Multiple objects created via optimize.portfolio can be combined with combine.optimizations
for visual comparison. The weights of the optimal portfolios can be plotted with chart.Weights.
The optimal portfolios can be compared in risk-reward space with chart.RiskReward. The portfo-
lio component risk contributions of the multiple optimal portfolios can be plotted with chart.RiskBudget.

Demos

PortfolioAnalytics contains a comprehensive collection of demos to demonstrate the function-
ality from very basic optimization problems such as estimating the solution to a minimum variance
portfolio to more complex optimization problems with custom moment and objective functions.

Vignettes
TODO



PortfolioAnalytics-package 9

Package Dependencies

Several of the functions in the PortfolioAnalytics package require time series data of returns
and the xts package is used for working with time series data.

The PerformanceAnalytics package is used for many common objective functions. The objective
types in PortfolioAnalytics are designed to be used with PerformanceAnalytics functions
such as StdDev, VaR, and ES.

The foreach and iterators packages are used extensively throughout the package to support par-
allel programming. The primary functions where foreach loops are used is optimize.portfolio,
optimize.portfolio.rebalancing, and create.EfficientFrontier.

In addition to a random portfolios optimzation method, PortfolioAnalytics supports backend
solvers by leveraging the following packages: DEoptim, pso, GenSA, ROI and associated ROI plugin
packages.

Further Work

Continued work to improved charts and graphs.
Continued work to improve features to combine and compare multiple optimal portfolio objects.
Support for more solvers.

Comments, suggestions, and/or code patches are welcome.

Acknowledgements

TODO

Author(s)

Ross Bennett
Kris Boudt

Peter Carl

Brian G. Peterson

Maintainer: Brian G. Peterson <brian@braverock.com>

References

Boudt, Kris and Lu, Wanbo and Peeters, Benedict, Higher Order Comoments of Multifactor Models
and Asset Allocation (June 16, 2014). Available at SSRN: http://ssrn.com/abstract=2409603 or
http://dx.doi.org/10.2139/ssrn.2409603

Chriss, Neil A and Almgren, Robert, Portfolios from Sorts (April 27, 2005). Available at SSRN:
http://ssrn.com/abstract=720041 or http://dx.doi.org/10.2139/ssrn.72004 1

Meucci, Attilio, The Black-Litterman Approach: Original Model and Extensions (August 1, 2008).
Shorter version in, THE ENCYCLOPEDIA OF QUANTITATIVE FINANCE, Wiley, 2010. Avail-
able at SSRN: http://ssrn.com/abstract=1117574 or http://dx.doi.org/10.2139/ssrn.1117574



10 ac.ranking

Meucci, Attilio, Fully Flexible Views: Theory and Practice (August 8, 2008). Fully Flexible Views:
Theory and Practice, Risk, Vol. 21, No. 10, pp. 97-102, October 2008. Available at SSRN:
http://ssrn.com/abstract=1213325

Scherer, Bernd and Martin, Doug, Modern Portfolio Optimization. Springer. 2005.

Shaw, William Thornton, Portfolio Optimization for VAR, CVaR, Omega and Utility with General
Return Distributions: A Monte Carlo Approach for Long-Only and Bounded Short Portfolios with
Optional Robustness and a Simplified Approach to Covariance Matching (June 1, 2011). Available
at SSRN: http://ssrn.com/abstract=1856476 or http://dx.doi.org/10.2139/ssrn. 1856476

See Also
CRAN task view on Empirical Finance
https://cran.r-project.org/view=Econometrics

CRAN task view on Optimization
https://cran.r-project.org/view=0Optimization

Large-scale portfolio optimization with DEoptim
https://cran.r-project.org/package=DEoptim

ac.ranking Asset Ranking

Description

Compute the first moment from a single complete sort

Usage
ac.ranking(R, order, ...)
Arguments
R xts object of asset returns
order a vector of indexes of the relative ranking of expected asset returns in ascending
order. For example, order = c(2, 3, 1, 4) means that the expected returns of
R[,21<RL[,31, <RL[,11<RL,41.
any other passthrough parameters
Details

This function computes the estimated centroid vector from a single complete sort using the analyti-
cal approximation as described in R. Almgren and N. Chriss, "Portfolios from Sorts". The centroid
is estimated and then scaled such that it is on a scale similar to the asset returns. By default, the
centroid vector is scaled according to the median of the asset mean returns.


https://cran.r-project.org/view=Econometrics
https://cran.r-project.org/view=Optimization
https://cran.r-project.org/package=DEoptim

add.constraint 11

Value

The estimated first moments based on ranking views

References
R. Almgren and N. Chriss, "Portfolios from Sorts" https://papers.ssrn.com/sol3/papers.
cfm?abstract_id=720041

See Also

centroid.complete.mc centroid.sectors centroid.sign centroid.buckets

Examples

data(edhec)
R <- edhec[,1:4]
ac.ranking(R, c(2, 3, 1, 4))

add.constraint General interface for adding and/or updating optimization con-

straints.

Description

This is the main function for adding and/or updating constraints to the portfolio. spec object.

Usage

add.constraint(
portfolio,
type,
enabled = TRUE,
message = FALSE,

L

indexnum = NULL

)
Arguments

portfolio an object of class "portfolio’ to add the constraint to, specifying the constraints
for the optimization, see portfolio. spec

type character type of the constraint to add or update, currently weight_sum’ (also
"leverage’ or *weight’), box’, ’group’, turnover’, *diversification’, *position_limit’,
‘return’, *factor_exposure’, or ’leverage_exposure’

enabled TRUE/FALSE. The default is enabled=TRUE.

message TRUE/FALSE. The default is message=FALSE. Display messages if TRUE.


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=720041
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=720041

12 add.constraint

any other passthru parameters to specify constraints

indexnum if you are updating a specific constraint, the index number in the $constraints
list to update

Details
The following constraint types may be specified:

weight_sum, weight, leverage Specify constraint on the sum of the weights, see weight_sum_constraint
full_investment Special case to set min_sum=1 and max_sum=1 of weight sum constraints
dollar_neutral, active Special case to set min_sum=0 and max_sum=0 of weight sum constraints

box box constraints for the individual asset weights, see box_constraint

long_only Special case to set min=0 and max=1 of box constraints

group specify the sum of weights within groups and the number of assets with non-zero weights
in groups, see group_constraint

turnover Specify a constraint for target turnover. Turnover is calculated from a set of initial
weights, see turnover_constraint

diversification target diversification of a set of weights, see diversification_constraint
position_limit Specify the number of non-zero, long, and/or short positions, see position_limit_constraint
return Specify the target mean return, see return_constraint

factor_exposure Specify risk factor exposures, see factor_exposure_constraint

leverage_exposure Specify a maximum leverage exposure, see leverage_exposure_constraint

Author(s)

Ross Bennett

See Also

portfolio.specweight_sum_constraint, box_constraint, group_constraint, turnover_constraint,
diversification_constraint,position_limit_constraint, return_constraint, factor_exposure_constraint,
leverage_exposure_constraint

Examples

data(edhec)

returns <- edhec[, 1:4]

fund.names <- colnames(returns)

pspec <- portfolio.spec(assets=fund.names)

# Add the full investment constraint that specifies the weights must sum to 1.
pspec <- add.constraint(portfolio=pspec, type="weight_sum”, min_sum=1, max_sum=1)

# The full investment constraint can also be specified with type="full_investment”
pspec <- add.constraint(portfolio=pspec, type="full_investment")

# Another common constraint is that portfolio weights sum to 0.



add.constraint

pspec <- add.constraint(portfolio=pspec, type="weight_sum”, min_sum=0, max_sum=0)
pspec <- add.constraint(portfolio=pspec, type="dollar_neutral”)
pspec <- add.constraint(portfolio=pspec, type="active")

# Add box constraints
pspec <- add.constraint(portfolio=pspec, type="box", min=0.05, max=0.4)

# min and max can also be specified per asset
pspec <- add.constraint(portfolio=pspec,
type="box",
min=c(0.05, 0, 0.08, 0.1),
max=c(0.4, 0.3, 0.7, 0.55))

# A special case of box constraints is long only where min=0 and max=1
# The default action is long only if min and max are not specified
pspec <- add.constraint(portfolio=pspec, type="box")

pspec <- add.constraint(portfolio=pspec, type="long_only")

# Add group constraints

pspec <- add.constraint(portfolio=pspec,
type="group”,
groups=list(c(1, 2, 1), 4),
group_min=c(@0.1, 0.15),
group_max=c(0.85, 0.55),
group_labels=c("GroupA”, "GroupB"),
group_pos=c(2, 1))

# Add position limit constraint such that we have a maximum number
# of three assets with non-zero weights.
pspec <- add.constraint(portfolio=pspec, type="position_limit"”, max_pos=3)

# Add diversification constraint
pspec <- add.constraint(portfolio=pspec, type="diversification”, div_target=0.7)

# Add turnover constraint
pspec <- add.constraint(portfolio=pspec, type="turnover"”, turnover_target=0.2)

# Add target mean return constraint
pspec <- add.constraint(portfolio=pspec, type="return”, return_target=0.007)

# Example using the indexnum argument

portf <- portfolio.spec(assets=fund.names)

portf <- add.constraint(portf, type="full_investment")
portf <- add.constraint(portf, type="long_only")

# indexnum corresponds to the index number of the constraint

# The full_investment constraint was the first constraint added and has
# indexnum=1

portf$constraints[[1]]

# View the constraint with indexnum=2
portf$constraints[[2]]

13



14 add.objective

# Update the constraint to relax the sum of weights constraint
portf <- add.constraint(portf, type="weight_sum”,
min_sum=0.99, max_sum=1.01,

indexnum=1)

# Update the constraint to modify the box constraint
portf <- add.constraint(portf, type="box",

min=0.1, max=0.8,

indexnum=2)

add.objective General interface for adding optimization objectives, including risk,
return, and risk budget

Description

This function is the main function for adding and updating business objectives in an object of type
portfolio.spec

Usage

add.objective_v1(
constraints,
type,
name,
arguments = NULL,
enabled = TRUE,

L

indexnum = NULL

add.objective(
portfolio,
constraints = NULL,
type,
name,
arguments = NULL,
enabled = TRUE,

L

indexnum = NULL

)
Arguments
constraints a ’vl_constraint’ object for backwards compatibility, see constraint
type character type of the objective to add or update, currently 'return’,’risk’, "risk_budget’,

’quadratic_utility’, or "weight_concentration’



add.objective 15
name name of the objective, should correspond to a function, though we will try to
make allowances
arguments default arguments to be passed to an objective function when executed
enabled TRUE/FALSE
any other passthru parameters
indexnum if you are updating a specific objective, the index number in the $objectives list
to update
portfolio an object of type ’portfolio’ to add the objective to, specifying the portfolio for
the optimization, see portfolio
Details

In general, you will define your objective as one of the following types: 'return’, 'risk’, 'risk_budget’,
’quadratic utility’, or *weight_concentration’. These have special handling and intelligent defaults
for dealing with the function most likely to be used as objectives, including mean, median, VaR,

ES, etc.

Objectives of type ’turnover’ and *'minmax’ are also supported.

Author(s)

Brian G. Peterson and Ross Bennett

See Also

objective, portfolio.spec

Examples

data(edhec)

returns <- edhec[,1:4]

fund.names <- colnames(returns)

portf <- portfolio.spec(assets=fund.names)

# Add some basic constraints

portf <- add.constraint(portf, type="full_investment”)
portf <- add.constraint(portf, type="long_only")

# Creates a new portfolio object using portf and adds a quadratic utility

# objective. This will add two objectives to the portfolio object; 1) mean and

# 2) var. The risk aversion parameter is commonly referred to as lambda in the

# quadratic utility formulation that controls how much the portfolio variance

# is penalized.

portf.maxQU <- add.objective(portf, type="quadratic_utility"”,
risk_aversion=0.25)

# Creates a new portfolio object using portf and adds mean as an objective
portf.maxMean <- add.objective(portf, type="return”, name="mean")

# Creates a new portfolio object using portf and adds StdDev as an objective
portf.minStdDev <- add.objective(portf, type="risk”, name="StdDev")



16 add.sub.portfolio

# Creates a new portfolio object using portf and adds ES as an objective.

# Note that arguments to ES are passed in as a named list.

portf.minES <- add.objective(portf, type="risk"”, name="ES",
arguments=1ist(p=0.925, clean="boudt"))

# Creates a new portfolio object using portf.minES and adds a risk budget

# objective with limits on component risk contribution.

# Note that arguments to ES are passed in as a named list.

portf.RiskBudgetES <- add.objective(portf.minES, type="risk_budget"”, name="ES",
arguments=1ist(p=0.925, clean="boudt"),
min_prisk=0, max_prisk=0.6)

# Creates a new portfolio object using portf.minES and adds a risk budget

# objective with equal component risk contribution.

# Note that arguments to ES are passed in as a named list.

portf.EqRiskES <- add.objective(portf.minES, type="risk_budget"”, name="ES",
arguments=1ist(p=0.925, clean="boudt"),
min_concentration=TRUE)

# Creates a new portfolio object using portf and adds a weight_concentration
# objective. The conc_aversion parameter controls how much concentration is
# penalized. The portfolio concentration is defined as the Herfindahl Hirschman
# Index of the weights.
portf.conc <- add.objective(portf, type="weight_concentration”,
name="HHI", conc_aversion=0.01)

add.sub.portfolio Add sub-portfolio

Description

Add a sub-portfolio to a multiple layer portfolio specification object

Usage

add.sub.portfolio(
mult.portfolio,
portfolio,
optimize_method = c("DEoptim”, "random”, "ROI", "pso”, "GenSA"),
search_size = 20000,
rp = NULL,
rebalance_on = NULL,
training_period = NULL,
trailing_periods = NULL,

D

indexnum = NULL



applyFUN 17

Arguments

mult.portfolio amult.portfolio.spec object

portfolio aportfolio object to add as a sub portfolio.
optimize_method
optimization method for the sub portfolio

search_size integer, how many portfolios to test, default 20,000

rp matrix of random portfolio weights, default NULL, mostly for automated use
by rebalancing optimization or repeated tests on same portfolios
rebalance_on haracter string of period to rebalance on. See endpoints for valid names.
training_period
an integer of the number of periods to use as a training data in the front of the
returns data
trailing_periods
an integer with the number of periods to roll over (i.e. width of the moving

or rolling window), the default is NULL will run using the returns data from
inception

additonal passthrough parameters to optimize.portfolio.rebalancing

indexnum the index number of the sub portfolio. If indexnum=NULL (the default), then the
sub portfolio object is appended to the list of sub portfolios in the mult.portfolio
object. If indexnum is specified, the portfolio in that index number is overwrit-
ten.

Author(s)

Ross Bennett

See Also

mult.portfolio.specportfolio.specoptimize.portfoliooptimize.portfolio.rebalancing

applyFUN Apply a risk or return function to a set of weights

Description

This function is used to calculate risk or return metrics given a matrix of weights and is primarily
used as a convenience function used in chart.Scatter functions

Usage

applyFUN(R, weights, FUN = "mean", arguments)



18 backtest.plot
Arguments

R xts object of asset returns

weights a matrix of weights generated from random_portfolios or optimize.portfolio

FUN name of a function

arguments named list of arguments to FUN
Author(s)

Ross Bennett

backtest.plot generate plots of the cumulative returns and drawdown for back-

testing

Description

generate plots of the cumulative returns and drawdown for back-testing

Usage

backtest.plot(

R,

log_return = FALSE,
drawdown_on = 1,
plotType = "both",
main = NULL,
colorSet = NULL,
ltySet = NULL,
lwdSet = NULL

)
Arguments

R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns

log_return arithmetic return or log return, the default is arithmetic return

drawdown_on the plot will shadow the full time period of the maximum drawdown and recov-
ery of the first portfolio. Use number (e.g. 1, 2, 3) to indicate which portfolio
drawdown interval you wish to track, or NULL to not shadow any period.

plotType "cumRet", "drawdown", or the default is both

main users can design title by providing a character of main

colorSet users can design the color by providing a vector of color

ltySet users can design Ity by providing a vector of Ity

lwdSet users can design Ilwd by providing a vector of lwd



barplotGroupWeights

Author(s)

19

Peter Carl, Xinran Zhao, Yifu Kang

barplotGroupWeights barplot of group weights by group or category

Description

This function is called by chart.GroupWeights function if chart.type="barplot"

Usage

barplotGroupWeights(

object,

L

grouping = c("groups”, "category”),
main = "Group Weights",

las = 3,
xlab = NULL,

cex.lab = 0.8,
element.color = "darkgray"”,
cex.axis = 0.8

Arguments

object

grouping

main

las

xlab
cex.lab

element.color
cex.axis

Author(s)

Ross Bennett

object of class optimize.portfolio
passthrough parameters to plot

groups: group the weights by group constraints
category_labels: group the weights by category_labels in portfolio object
an overall title for the plot: see title

numeric in {0,1,2,3}; the style of axis labels

0: always parallel to the axis [default],

1: always horizontal,

2: always perpendicular to the axis,

3: always vertical.

a title for the x axis: see title

The magnification to be used for x and y labels relative to the current setting of
cex

color for the default border and axis

The magnification to be used for x and y axis relative to the current setting of
cex



20 black litterman

black.litterman Black Litterman Estimates

Description

Compute the Black Litterman estimate of moments for the posterior normal.

Usage

black.litterman(R, P, Mu = NULL, Sigma = NULL, Views = NULL)

Arguments
R returns
P a K x N pick matrix
Mu vector of length N of the prior expected values. The sample mean is used if
Mu=NULL.
Sigma an N x N matrix of the prior covariance matrix. The sample covariance is used
if Sigma=NULL.
Views a vector of length K of the views
Value

BLMu: posterior expected values

BLSigma: posterior covariance matrix

Note

This function is largely based on the work of Xavier Valls to port the matlab code of Attilio Meucci
to R as documented in the Meucci package.

Author(s)

Ross Bennett, Xavier Valls

References

A. Meucci - "Exercises in Advanced Risk and Portfolio Management" https://www.arpm.co/
articles/exercises-in-advanced-risk-and-portfolio-management/.

See Also

BlackLittermanFormula


https://www.arpm.co/articles/exercises-in-advanced-risk-and-portfolio-management/
https://www.arpm.co/articles/exercises-in-advanced-risk-and-portfolio-management/

BlackLittermanFormula 21

BlackLittermanFormula Computes the Black-Litterman formula for the moments of the poste-
rior normal.

Description

This function computes the Black-Litterman formula for the moments of the posterior normal, as
described in A. Meucci, "Risk and Asset Allocation", Springer, 2005.

Usage

BlackLittermanFormula(Mu, Sigma, P, v, Omega)

Arguments
Mu [vector] (N x 1) prior expected values.
Sigma [matrix] (N x N) prior covariance matrix.
P [matrix] (K x N) pick matrix.
v [vector] (K x 1) vector of views.
Omega [matrix] (K x K) matrix of confidence.
Value

BLMu [vector] (N x 1) posterior expected values.

BLSigma [matrix] (N x N) posterior covariance matrix.

Author(s)

Xavier Valls <flamejat@gmail.com>

References

A. Meucci - "Exercises in Advanced Risk and Portfolio Management" https://www.arpm.co/
articles/exercises-in-advanced-risk-and-portfolio-management/.

See Meucci’s script for "BlackLittermanFormula.m"


https://www.arpm.co/articles/exercises-in-advanced-risk-and-portfolio-management/
https://www.arpm.co/articles/exercises-in-advanced-risk-and-portfolio-management/

22 box_constraint

box_constraint constructor for box_constraint.

Description

Box constraints specify the upper and lower bounds on the weights of the assets. This function is
called by add.constraint when type="box" is specified. See add.constraint.

Usage

box_constraint(
type = "box",
assets,
min,
max,
min_mult,
max_mult,
enabled = TRUE,
message = FALSE,

)
Arguments
type character type of the constraint
assets number of assets, or optionally a named vector of assets specifying initial weights
min numeric or named vector specifying minimum weight box constraints
max numeric or named vector specifying minimum weight box constraints
min_mult numeric or named vector specifying minimum multiplier box constraint from
initial weight in assets
max_mult numeric or named vector specifying maximum multiplier box constraint from
initial weight in assets
enabled TRUE/FALSE
message TRUE/FALSE. The default is message=FALSE. Display messages if TRUE.
any other passthru parameters to specify box constraints
Value

an object of class "box_constraint’

Author(s)

Ross Bennett



CCCgarch.MM 23

See Also

add.constraint

Examples

data(edhec)
ret <- edhec[, 1:4]

pspec <- portfolio.spec(assets=colnames(ret))

# defaults to min=0 and max=1
pspec <- add.constraint(pspec, type="box")

# specify box constraints as a scalar
pspec <- add.constraint(pspec, type="box", min=0.05, max=0.45)

# specify box constraints per asset

pspec <- add.constraint(pspec,
type="box",
min=c(0.05, 0.10, 0.08, 0.06),
max=c(0.45, 0.55, 0.35, 0.65))

CCCgarch.MM compute comoments for use by lower level optimization functions
when the conditional covariance matrix is a CCC GARCH model

Description

it first estimates the conditional GARCH variances, then filters out the time-varying volatility and
estimates the higher order comoments on the innovations rescaled such that their unconditional
covariance matrix is the conditional covariance matrix forecast

Usage
CCCgarch.MM(R, momentargs = NULL, ...)

Arguments
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
momentargs list containing arguments to be passed down to lower level functions, default

NULL

any other passthru parameters



24 centroid.buckets

center Center

Description

Center a matrix

Usage

center(x)

Arguments

X matrix

Details

This function is used primarily to center a time series of asset returns or factors. Each column
should represent the returns of an asset or factor realizations. The expected value is taken as the
sample mean.

x.centered = X - mean(X)

Value

matrix of centered data

centroid.buckets Buckets Centroid

Description

Compute the centroid for buckets of assets

Usage

centroid.buckets(buckets, simulations = 1000)

Arguments

buckets a list where each element contains the index of the assets in the respective
bucket. The assets within each bucket have no order. The bucket elements are
in ascending order such that R_bucket_1 < ... < R_bucket_n

simulations number of simulations



centroid.complete.mc 25

Details

A common use of buckets is to divide the assets into quartiles or deciles, but is generalized here for
an arbitrary number of buckets and arbitrary number of assets in each bucket.

Value

the centroid vector

Author(s)

Ross Bennett

centroid.complete.mc  Complete Cases Centroid

Description

Numerical method to estimate complete cases centroid

Usage

centroid.complete.mc(order, simulations = 1000)

Arguments
order a vector of indexes of the relative ranking of expected asset returns in ascending
order. For example, order =c(2, 3, 1, 4) expresses a view on the expected
returns suchthat R 2<R 3<R_1<R 4
simulations number of simulations
Value

the centroid vector

Author(s)

Ross Bennett

Examples

# Express a view on the assets such that
# R_2 <R_1 <R_3<R_4
centroid.complete.mc(c(2, 1, 3, 4))



26 centroid.sign

centroid.sectors Multiple Sectors Centroid

Description

Compute the centroid for expressing views on the relative ranking of assets within sectors.

Usage

centroid.sectors(sectors, simulations = 1000)

Arguments
sectors a list where each list element contains the order of each asset in the given sector
simulations number of simulations

Value

the centroid vector

Author(s)

Ross Bennett

Examples

# Express a view on the assets in two sectors
# Sector 1 View: R_2 < R_1 < R_3

# Sector 2 View: R_5 < R_4

x <= list()

x[[11] <= c(2, 1, 3)

x[[2]1] <- c(5, 4)

centroid.sectors(x)

centroid.sign Positive and Negative View Centroid

Description

Compute the centroid for expressing a view on assets with positive or negative expected returns

Usage

centroid.sign(positive, negative, simulations = 1000)



chart.Concentration 27

Arguments
positive a vector of the index of assets with positive expected return in ascending order
negative a vector of the index of assets with negative expected return in ascending order.
simulations number of simulations

Value

the centroid vector

Author(s)

Ross Bennett

Examples

# Express a view that
# R_1T <R_2<0@<R_3<R_4
centroid.sign(c(1, 2), c(4, 3))

chart.Concentration Classic risk reward scatter and concentration

Description

This function charts the optimize.portfolio object in risk-return space and the degree of con-
centration based on the weights or percentage component contribution to risk.

Usage
chart.Concentration(
object,
return.col = "mean”,

risk.col = "ES",

chart.assets = FALSE,

conc.type = c("weights"”, "pct_contrib"”),
col = heat.colors(20),

element.color = "darkgray"”,

cex.axis = 0.8,

xlim = NULL,

ylim = NULL



28

Arguments

object

return.col
risk.col
chart.assets

conc. type

col
element.color

cex.axis

x1lim

ylim

Author(s)

chart.EF. Weights

optimal portfolio created by optimize.portfolio.

any other passthru parameters.

string matching the objective of a 'return’ objective, on vertical axis.
string matching the objective of a ’risk’ objective, on horizontal axis.
TRUE/FALSE. Includes a risk reward scatter of the assets in the chart.

concentration type can be based on the concentration of weights or concentra-
tion of percentage component contribution to risk (only works with risk budget
objective for the optimization).

color palette or vector of colors to use.
color for the border and axes.

The magnification to be used for axis annotation relative to the current setting
of cex.

set the x-axis limit, same as in plot.

set the y-axis limit, same as in plot.

Peter Carl and Ross Bennett

See Also

optimize.portfolio

chart.EF.Weights

Chart weights along an efficient frontier

Description

This function produces a stacked barplot of weights along an efficient frontier.

Usage

chart.EF.Weights(object, ...)

## S3 method for class 'efficient.frontier'
chart.EF.Weights(

object,

L

colorset = NULL,
n.portfolios = 25,

by.groups =

FALSE,

match.col = "ES",

nn

main = R



chart. EF. Weights

cex.lab = 0.
cex.axis = 0
cex.legend =
legend.label
element.colo
legend.loc =

)

29

87
.8,
0.8,
S NULL,
r = "darkgray"”,
"topright”

## S3 method for class 'optimize.portfolio'

chart.EF.Weigh
object,
colorset = N
n.portfolios
by.groups
match.col =
main = "",
cex.lab = 0.
cex.axis = 0@
cex.legend =
legend.label

element.colo
legend.loc =
)
Arguments
object
colorset

n.portfolios
by.groups
match.col

main

cex.lab

cex.axis

cex.legend

legend. labels
element.color

legend. loc

ts(

ULL,
25,
FALSE,
"ES",

87
.8,
0.8,
S NULL,
r = "darkgray"”,
"topright”

object of class efficient.frontier or optimize.portfolio.
passthru parameters to barplot.

color palette or vector of colors to use.

number of portfolios to extract along the efficient frontier.
TRUE/FALSE. If TRUE, the group weights are charted.

string name of column to use for risk (horizontal axis). Must match the name of
an objective.

title used in the plot.

the magnification to be used for x-axis and y-axis labels relative to the current
setting of ’cex’.

the magnification to be used for sizing the axis text relative to the current setting
of "cex’, similar to plot.

the magnification to be used for sizing the legend relative to the current setting
of "cex’, similar to plot.

character vector to use for the legend labels.

provides the color for drawing less-important chart elements, such as the box
lines, axis lines, etc.

NULL, "topright", "right", or "bottomright". If legend.loc is NULL, the legend
will not be plotted.



30 chart.EfficientFrontier

Author(s)

Ross Bennett

chart.EfficientFrontier
Chart the efficient frontier and risk-return scatter

Description
Chart the efficient frontier and risk-return scatter of the assets for optimize.portfolioorefficient.frontier
objects

Usage

chart.EfficientFrontier(object, ...)

## S3 method for class 'optimize.portfolio.CVXR'
chart.EfficientFrontier(
object,

optimize_method = "CVXR",
match.col = "ES",
n.portfolios = 25,

xlim = NULL,

ylim = NULL,

cex.axis = 0.8,
element.color = "darkgray”,
main = "Efficient Frontier”,
RAR.text = "SR",

rf = 0,

tangent.line = TRUE,
cex.legend = 0.8,
chart.assets = TRUE,
labels.assets = TRUE,

pch.assets = 21,
cex.assets = 0.8

)

## S3 method for class 'optimize.portfolio.ROI'
chart.EfficientFrontier(
object,

optimize_method = "ROI",
match.col = "ES",
n.portfolios = 25,

xlim = NULL,



chart.EfficientFrontier

ylim = NULL,
cex.axis = 0.8,
element.color = "darkgray”,
main = "Efficient Frontier”,
RAR.text = "SR",

rf = o,
tangent.line
cex.legend = 0.8,
chart.assets = TRUE,
labels.assets = TRUE,
pch.assets = 21
cex.assets = 0.

)

TRUE,

N o 1

8

## S3 method for class 'optimize.portfolio'
chart.EfficientFrontier(
object,

match.col = "ES",
n.portfolios = 25,

xlim = NULL,

ylim = NULL,

cex.axis = 0.8,
element.color = "darkgray”,
main = "Efficient Frontier”,
RAR.text = "SR",
rf = o,
tangent.line = T
cex.legend = 0.8
chart.assets = T
labels.assets =
pch.assets = 21,
cex.assets = 0.8

)

RUE,

RUE,
TRUE,

## S3 method for class 'efficient.frontier'
chart.EfficientFrontier(
object,

match.col = "ES",
n.portfolios = NULL,

xlim = NULL,

ylim = NULL,

cex.axis = 0.8,
element.color = "darkgray"”,
main = "Efficient Frontier”,

RAR.text = "SR",
rf = 0,

31



32

tangent.line
cex.legend =
chart.assets

chart.EfficientFrontier

TRUE,
.8,
TRUE,

N o 1

labels.assets = TRUE,

pch.assets =
cex.assets =

Arguments

object

optimize_method

match.col

n.portfolios
x1lim
ylim

cex.axis
element.color
main

RAR. text

rf

tangent.line

cex.legend

chart.assets

labels.assets

pch.assets

cex.assets

Details

1,
0.8

object to chart.

passthru parameters to plot

the optimize method to get the efficient frontier

string name of column to use for risk (horizontal axis). match.col must match
the name of an objective measure in the objective_measures or opt_values
slot in the object created by optimize.portfolio.

number of portfolios to use to plot the efficient frontier.
set the x-axis limit, same as in plot.
set the y-axis limit, same as in plot.

numerical value giving the amount by which the axis should be magnified rela-
tive to the default.

provides the color for drawing less-important chart elements, such as the box
lines, axis lines, etc.

a main title for the plot.
string name for risk adjusted return text to plot in the legend.

risk free rate. If rf is not null, the maximum Sharpe Ratio or modified Sharpe
Ratio tangency portfolio will be plotted.

TRUE/FALSE to plot the tangent line.

numerical value giving the amount by which the legend should be magnified
relative to the default.

TRUE/FALSE to include the assets.

TRUE/FALSE to include the asset names in the plot. chart.assets must be
TRUE to plot asset names.

plotting character of the assets, same as in plot.

numerical value giving the amount by which the asset points and labels should
be magnified relative to the default.

For objects created by optimize.portfolio with "DEoptim’, 'random’, or ’pso’ specified as the opti-

mize_method:

* The efficient frontier plotted is based on the the trace information (sets of portfolios tested by
the solver at each iteration) in objects created by optimize.portfolio.



chart.EfficientFrontierCompare 33

For objects created by optimize.portfolio with "ROI” specified as the optimize_method:
* The mean-StdDev or mean-ETL efficient frontier can be plotted for optimal portfolio objects
created by optimize.portfolio.
e If match.col="StdDev", the mean-StdDeyv efficient frontier is plotted.
e If match.col="ETL" (also "ES" or "CVaR"), the mean-ETL efficient frontier is plotted.

Note that trace=TRUE must be specified in optimize.portfolio

GenSA does not return any useable trace information for portfolios tested at each iteration, therfore
we cannot extract and chart an efficient frontier.

By default, the tangency portfolio (maximum Sharpe Ratio or modified Sharpe Ratio) will be plotted
using a risk free rate of 0. Set rf=NULL to omit this from the plot.

Author(s)

Ross Bennett, Xinran Zhao

chart.EfficientFrontierCompare
Overlay the efficient frontiers of different minRisk portfolio objects on
a single plot.

Description

Overlay the efficient frontiers of different minRisk portfolio objects on a single plot.

Usage

chart.EfficientFrontierCompare(
R,
portfolio,
risk_type,
n.portfolios = 25,
match.col = c("StdDev"”, "ES"),
guideline = NULL,
main = "Efficient Frontiers”,
plot_type = "1",
cex.axis = 0.5,
element.color = "darkgray”,
legend.loc = NULL,
legend.labels = NULL,
cex.legend = 0.8,
xlim = NULL,
ylim = NULL,

L

chart.assets = TRUE,



34

chart.EfficientFrontierCompare

labels.assets = TRUE,

pch.assets
cex.assets
col = NULL,
1ty = NULL,
lwd = NULL

Arguments

R
portfolio
risk_type

n.portfolios
match.col
guideline
main
plot_type
cex.axis
element.color

legend. loc

legend. labels

cex.legend

x1lim

ylim

chart.assets
labels.assets
pch.assets

cex.assets

col

1ty

Iwd

21,
0.8,

an xts object of asset returns
same constrained portfolio created by portfolio.spec
type of risk that you want to compare

number of portfolios to extract along the efficient frontier. This is only used for
objects of class optimize.portfolio

string name of column to use for portfolio object. Must match the name of an
objective.

show the risk difference and mean difference between efficient frontiers
title used in the plot.
define the plot_type, default is "1"

the magnification to be used for sizing the axis text relative to the current setting
of "cex’, similar to plot.

provides the color for drawing less-important chart elements, such as the box
lines, axis lines, etc.

location of the legend; NULL, "bottomright", "bottom", "bottomleft", "left",

"topleft", "top", " right" and "center".

"non

topright",
character vector to use for the legend labels.

The magnification to be used for sizing the legend relative to the current setting
of cex’, similar to plot.

set the x-axis limit, same as in plot.

set the y-axis limit, same as in plot.

passthrough parameters to plot.

TRUE/FALSE to include the assets.

TRUE/FALSE to include the asset names in the plot.
plotting character of the assets, same as in plot.

A numerical value giving the amount by which the asset points and labels should
be magnified relative to the default.

vector of colors with length equal to the number of portfolios in portfolio_list.
Add two more to customize guideline color.

vector of line types with length equal to the number of portfolios in portfolio_list.
Add two more to customize guideline type.

vector of line widths with length equal to the number of portfolios in portfolio_list.
Add two more to customize guideline width.



chart.EfficientFrontierOverlay 35

Author(s)

Xinran Zhao

chart.EfficientFrontierOverlay
Plot multiple efficient frontiers

Description

Overlay the efficient frontiers of multiple portfolio objects on a single plot.

Usage

chart.EfficientFrontierOverlay(
R,
portfolio_list,
type,
n.portfolios = 25,
match.col = "ES",
search_size = 2000,

main = "Efficient Frontiers”,
cex.axis = 0.8,
element.color = "darkgray"”,

legend.loc = NULL,
legend.labels = NULL,
cex.legend = 0.8,
xlim = NULL,

ylim = NULL,

chart.assets = TRUE,
labels.assets = TRUE,

pch.assets = 21,
cex.assets = 0.8,
col = NULL,
Ity = NULL,
lwd = NULL

)

Arguments
R an xts object of asset returns

portfolio_list listof portfolio objects created by portfolio.spec and combined with combine.portfolios
type type of efficient frontier, see create.EfficientFrontier

n.portfolios  number of portfolios to extract along the efficient frontier. This is only used for
objects of class optimize.portfolio



36

match.col

search_size
main

cex.axis

element.color

legend. loc

legend. labels

cex.legend

x1lim

ylim

chart.assets
labels.assets
pch.assets

cex.assets

col
1ty
Iwd

Author(s)

Ross Bennett

chart.GroupWeights

string name of column to use for risk (horizontal axis). Must match the name of
an objective.

passed to optimize.portfolio for type="DEoptim" or type="random".
title used in the plot.

the magnification to be used for sizing the axis text relative to the current setting
of cex’, similar to plot.

provides the color for drawing less-important chart elements, such as the box
lines, axis lines, etc.

location of the legend; NULL, "bottomright", "bottom", "bottomleft", "left",

"topleft", "top", " right" and "center".

"non

topright",
character vector to use for the legend labels.

The magnification to be used for sizing the legend relative to the current setting
of cex’, similar to plot.

set the x-axis limit, same as in plot.

set the y-axis limit, same as in plot.

passthrough parameters to plot.

TRUE/FALSE to include the assets.

TRUE/FALSE to include the asset names in the plot.
plotting character of the assets, same as in plot.

A numerical value giving the amount by which the asset points and labels should
be magnified relative to the default.

vector of colors with length equal to the number of portfolios in portfolio_list.
vector of line types with length equal to the number of portfolios in portfolio_list.

vector of line widths with length equal to the number of portfolios in portfolio_list.

chart.GroupWeights

Chart weights by group or category

Description

Chart weights by group or category



chart.Group Weights 37

Usage
chart.GroupWeights(
object,
grouping = c("groups”, "category”),
plot.type = "line",
main = "Group Weights”,
las = 3,
xlab = NULL,
cex.lab = 0.8,
element.color = "darkgray”,
cex.axis = 0.8
)
Arguments
object object of class optimize.portfolio.
passthrough parameters to plot.
grouping groups: group the weights by group constraints.
category_labels: group the weights by category_labels in the portfolio ob-
ject.
plot.type "line" or "barplot".
main an overall title for the plot: see title.
las numeric in {0,1,2,3}; the style of axis labels
0: always parallel to the axis,
1: always horizontal,
2: always perpendicular to the axis,
3: always vertical[default].
xlab a title for the x axis: see title.
cex.lab the magnification to be used for x and y labels relative to the current setting of

cex.
element.color color for the default border and axis.

cex.axis the magnification to be used for x and y axis relative to the current setting of
cex.

Author(s)

Ross Bennett



38 chart.RiskBudget

chart.RiskBudget Generic method to chart risk contribution

Description

This function is the generic method to chart risk budget objectives for optimize.portfolio,
optimize.portfolio.rebalancing, and opt.list objects. This function charts the contribu-
tion or percent contribution of the resulting objective measures of a risk_budget_objective. The
risk contributions for optimize.portfolio.rebalancing objects are plotted through time with
chart.StackedBar.

Usage
chart.RiskBudget(object, ...)

## S3 method for class 'optimize.portfolio'
chart.RiskBudget(

object,

neighbors = NULL,

risk.type = "absolute”,
main = "Risk Contribution”,
ylab = "",

xlab = NULL,

cex.axis = 0.8,
cex.lab = 0.8,

element.color = "darkgray"”,
las = 3,
ylim = NULL

)

## S3 method for class 'optimize.portfolio.rebalancing'
chart.RiskBudget(

object,

match.col = "ES",

risk.type = "absolute”,

regime = NULL,

main = "Risk Contribution”

)

## S3 method for class 'opt.list'
chart.RiskBudget(

object,

match.col "ES",

risk.type = "absolute”,



chart.RiskBudget

39

main = "Risk Budget",
plot.type = "line",
cex.axis = 0.8,
cex.lab = 0.8,

element.color = "darkgray"”,
las = 3,
ylim = NULL,
colorset = NULL,
legend.loc = NULL,
cex.legend = 0.8
)
Arguments
object optimal portfolio object created by optimize.portfoliooroptimize.portfolio.rebalancing
any other passthru parameters to plot
neighbors risk contribution or pct_contrib of neighbor portfolios to be plotted, see Details.
risk.type "absolute" or "percentage" to plot risk contribution in absolute terms or percent-
age contribution.
main main title for the chart.
ylab label for the y-axis.
xlab label for the x-axis.
cex.axis the magnification to be used for axis annotation relative to the current setting of
cex.
cex.lab the magnification to be used for axis annotation relative to the current setting of

element.color

las

ylim

match.col

regime

plot.type
colorset

legend. loc

cex.legend

cex.

provides the color for drawing less-important chart elements, such as the box
lines, axis lines, etc.

numeric in {0,1,2,3}; the style of axis labels
0: always parallel to the axis [default],

1: always horizontal,

2: always perpendicular to the axis,

3: always vertical.

set the y-axis limit, same as in plot

string of risk column to match. The opt.1list object may contain risk budgets
for ES or StdDev and this will match the proper column names of the objectives
list outp (e.g. ES.contribution).

integer of the regime number. For use with optimize.portfolio.rebalancing
run with regime switching portfolios.

"line" or "barplot".
color palette or vector of colors to use

legend.loc NULL, "topright", "right", or "bottomright". If legend.loc is NULL,
the legend will not be plotted

The magnification to be used for the legend relative to the current setting of cex



40

Details

chart.RiskReward

neighbors may be specified in three ways. The first is as a single number of neighbors. This will
extract the neighbors closest to the portfolios in terms of the out numerical statistic. The second
method consists of a numeric vector for neighbors. This will extract the neighbors with portfolio
index numbers that correspond to the vector contents. The third method for specifying neighbors
is to pass in a matrix. This matrix should look like the output of extractStats, and should contain

properly named contribution and pct_contrib columns.

See Also

optimize.portfolio optimize.portfolio.rebalancing chart.StackedBar

chart.RiskReward classic risk reward scatter

Description

This function charts the optimize.portfolio object in risk-return space.

Usage

chart.RiskReward(object, ...)

## S3 method for class 'optimize.portfolio.DEoptim'
chart.RiskReward(
object,
neighbors = NULL,
return.col = "mean”,
risk.col = "ES",
chart.assets = FALSE,
element.color = "darkgray"”,
cex.axis = 0.8,
xlim = NULL,
ylim = NULL
)

## S3 method for class 'optimize.portfolio.GenSA'
chart.RiskReward(

object,

neighbors = NULL,

return.col = "mean”,

risk.col = "ES",

chart.assets = FALSE,

element.color = "darkgray"”,

cex.axis = 0.8,



chart.RiskReward

ylim = NULL,
xlim = NULL,
rp = FALSE

)

## S3 method for class 'optimize.portfolio.pso'

chart.RiskReward(
object,
neighbors = NULL,
return.col = "mean”,
risk.col = "ES",
chart.assets = FALSE,
element.color = "darkgray”,
cex.axis = 0.8,
xlim = NULL,
ylim = NULL

)

## S3 method for class 'optimize.portfolio
chart.RiskReward(
object,
neighbors = NULL,
return.col = "mean”,
risk.col = "ES",
chart.assets = FALSE,
element.color = "darkgray"”,
cex.axis = 0.8,
x1im = NULL,
ylim = NULL,
rp = FALSE
)

## S3 method for class 'optimize.portfolio
chart.RiskReward(
object,
neighbors = NULL,
return.col = "mean”,
risk.col = "ES",
chart.assets = FALSE,
element.color = "darkgray"”,
cex.axis = 0.8,
xlim = NULL,
ylim = NULL

.ROT"'

.random'

41



42

chart.RiskReward

## S3 method for class 'opt.list'
chart.RiskReward(

object,

risk.col = "ES",

return.col = "mean”,
main = H”,
ylim = NULL,
xlim = NULL,
labels.assets = TRUE,
chart.assets = FALSE,
pch.assets = 1,
cex.assets = 0.8,
cex.axis = 0.8,
cex.lab = 0.8,
colorset = NULL,
element.color = "darkgray"”

)

Arguments
object optimal portfolio created by optimize.portfolio.
any other passthru parameters.
neighbors set of "neighbor’ portfolios to overplot, see Details.

return.col
risk.col
chart.assets
element.color

cex.axis

x1lim

ylim

rp

main
labels.assets
pch.assets

cex.assets

cex.lab

colorset

string matching the objective of a 'return’ objective, on vertical axis.
string matching the objective of a ’risk’ objective, on horizontal axis.
TRUE/FALSE. Includes a risk reward scatter of the assets in the chart.
color for the default plot scatter points.

The magnification to be used for axis annotation relative to the current setting
of cex.

set the x-axis limit, same as in plot.

set the y-axis limit, same as in plot.

TRUE/FALSE to generate random portfolios to plot the feasible space
a main title for the plot.

TRUE/FALSE to include the names in the plot.

plotting character of the assets, same as in plot

numerical value giving the amount by which the asset points should be magni-
fied relative to the default.

numerical value giving the amount by which the labels should be magnified
relative to the default.

color palette or vector of colors to use.



chart. Weights 43

Details

neighbors may be specified in three ways. The first is as a single number of neighbors. This will
extract the neighbors closest portfolios in terms of the out numerical statistic. The second method
consists of a numeric vector for neighbors. This will extract the neighbors with portfolio index
numbers that correspond to the vector contents. The third method for specifying neighbors is to
pass in a matrix. This matrix should look like the output of extractStats, and should contain
risk.col,return.col, and weights columns all properly named.

See Also

optimize.portfolio

chart.Weights boxplot of the weights of the optimal portfolios

Description

This function charts the optimal weights of a portfolio run via optimize.portfoliooroptimize.portfolio.rebalancing
The upper and lower bounds on weights can be plotted for single period optimizations. The opti-

mal weights will be charted through time for optimize.portfolio.rebalancing objects. For
optimize.portfolio.rebalancing objects, the weights are plotted with chart.StackedBar.

Usage
chart.Weights(object, ...)

## S3 method for class 'optimize.portfolio.rebalancing'
chart.Weights(object, ..., main = "Weights")

## S3 method for class 'optimize.portfolio.DEoptim'
chart.Weights(
object,
neighbors = NULL,
main = "Weights",
las = 3,
xlab = NULL,
cex.lab =1,
element.color = "darkgray”,
cex.axis = 0.8,
colorset = NULL,
legend.loc = "topright”,
cex.legend = 0.8,
plot.type = "line"
)

## S3 method for class 'optimize.portfolio.GenSA'



44

chart.Weights(
object,
neighbors = NULL,
main = "Weights",
las = 3,
xlab = NULL,
cex.lab = 1,
element.color = "darkgray"”,
cex.axis = 0.8,
colorset = NULL,
legend.loc = "topright”,
cex.legend = 0.8,
plot.type = "line"

)

## S3 method for class 'optimize.portfolio.pso
chart.Weights(
object,

L

neighbors = NULL,

main = "Weights",

las = 3,

xlab = NULL,

cex.lab = 1,

element.color = "darkgray"”,
cex.axis = 0.8,

colorset = NULL,

legend.loc = "topright”,
cex.legend = 0.8,
plot.type = "line"

)

## S3 method for class 'optimize.portfolio.ROI'
chart.Weights(
object,

L

neighbors = NULL,

main = "Weights”,

las = 3,

xlab = NULL,

cex.lab =1,

element.color = "darkgray"”,
cex.axis = 0.8,

colorset = NULL,

legend.loc = "topright”,
cex.legend = 0.8,
plot.type = "line"

chart. Weights



chart. Weights

)

## S3 method for class 'optimize.portfolio.random'
chart.Weights(
object,
neighbors = NULL,
main = "Weights”,
las = 3,
xlab = NULL,
cex.lab =1,
element.color = "darkgray"”,
cex.axis = 0.8,
colorset = NULL,
legend.loc = "topright”,
cex.legend = 0.8,
plot.type = "line"
)

## S3 method for class 'opt.list'
chart.Weights(

object,

neighbors = NULL,

main = "Weights",

las = 3,

xlab = NULL,

cex.lab =1,

element.color = "darkgray”,

cex.axis = 0.8,

colorset = NULL,

legend.loc = "topright”,

cex.legend = 0.8,

plot.type = "line"

)
Arguments
object optimal portfolio object created by optimize.portfolio.
any other passthru parameters .
main an overall title for the plot: see title
neighbors set of "neighbor’ portfolios to overplot. See Details.
las numeric in {0,1,2,3}; the style of axis labels

0: always parallel to the axis,

1: always horizontal,

2: always perpendicular to the axis,
3: always vertical [default].



46 check_constraints

xlab a title for the x axis: see title
cex.lab The magnification to be used for x and y labels relative to the current setting of
cex

element.color provides the color for drawing less-important chart elements, such as the box
lines, axis lines, etc.

cex.axis The magnification to be used for axis annotation relative to the current setting
of cex.

colorset color palette or vector of colors to use.

legend. loc location of the legend. If NULL, the legend will not be plotted.

cex.legend The magnification to be used for legend annotation relative to the current setting
of cex.

plot.type "line" or "barplot" to plot.

See Also

optimize.portfolio optimize.portfolio.rebalancing chart.StackedBar

check_constraints check if a set of weights satisfies the constraints

Description

This function checks if a set of weights satisfies all constraints. This is used as a helper function for
random portfolios created with rp_simplex and rp_grid to eliminate portfolios that do not satisfy
the constraints.

Usage

check_constraints(weights, portfolio)

Arguments
weights vector of weights
portfolio object of class *portfolio’
Value

TRUE if all constraints are satisfied, FALSE if any constraint is violated

Author(s)

Ross Bennett



cokurtosisMF 47

cokurtosisMF Cokurtosis Matrix Estimate

Description

Estimate cokurtosis matrix using a statistical factor model

Usage

cokurtosisMF (beta, stockM2, stockM4, factorM2, factorM4)

Arguments
beta (N x k) matrix of factor loadings (i.e. the betas) from a statistical factor model
stockM2 vector of length N of the 2nd moment of the model residuals
stockM4 vector of length N of the 4th moment of the model residuals
factorM2 (k x k) matrix of the 2nd moment of the factor realizations from a statistical
factor model
factorM4 (k x k*3) matrix of the 4th moment of the factor realizations from a statistical
factor model
Details

This function estimates an (N x N/3) cokurtosis matrix from a statistical factor model with k factors,
where N is the number of assets.

Value

(N x N”3) cokurtosis matrix

cokurtosisSF Cokurtosis Matrix Estimate

Description

Estimate cokurtosis matrix using a single factor statistical factor model

Usage

cokurtosisSF(beta, stockM2, stockM4, factorM2, factorM4)



48 combine.optimizations

Arguments
beta vector of length N or (N x 1) matrix of factor loadings (i.e. the betas) from a
single factor statistical factor model
stockM2 vector of length N of the 2nd moment of the model residuals
stockM4 vector of length N of the 4th moment of the model residuals
factorM2 scalar of the 2nd moment of the factor realizations from a single factor statistical
factor model
factorM4 scalar of the 4th moment of the factor realizations from a single factor statistical
factor model
Details

This function estimates an (N x N”*3) cokurtosis matrix from a statistical factor model with k factors,
where N is the number of assets.

Value

(N x N”3) cokurtosis matrix

combine.optimizations Combine objects created by optimize.portfolio

Description
This function takes a list of objects created by optimize.portfolio and sets the class name at-
tribute to “opt.list” for use in generic functions

Usage

combine.optimizations(x)

Arguments

X a list of objects created by optimize.portfolio

Value

an opt.list object



combine.portfolios 49

combine.portfolios Combine a list of portfolio objects

Description
This function takes a list of objects created by portfolio. spec and sets the class name attribute to
*portfolio.list’ for use in generic functions

Usage

combine.portfolios(x)

Arguments

X a list of objects created by portfolio.spec

Value

aportfolio.list object

constrained_objective calculate a numeric return value for a portfolio based on a set of con-
straints and objectives

Description

Function to calculate a numeric return value for a portfolio based on a set of constraints and objec-
tives. We’ll try to make as few assumptions as possible and only run objectives that are enabled by
the user.

Usage

constrained_objective_v1(
W,
R,
constraints,
trace = FALSE,
normalize = TRUE,
storage = FALSE

constrained_objective(
W)
R,
portfolio,



50 constrained_objective

trace = FALSE,
normalize = TRUE,
storage = FALSE,

env = NULL
)
Arguments
w a vector of weights to test.
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns.
constraints a v1_constraint object for backwards compatibility with constrained_objective_v1.
any other passthru parameters.
trace TRUE/FALSE whether to include debugging and additional detail in the output
list. The default is FALSE. Several charting functions require that trace=TRUE.
normalize TRUE/FALSE whether to normalize results to min/max sum (TRUE), or let the
optimizer penalize portfolios that do not conform (FALSE)
storage TRUE/FALSE default TRUE for DEoptim with trace, otherwise FALSE. not
typically user-called.
portfolio an object of class portfolio specifying the constraints and objectives for the
optimization, see portfolio.
env environment of moments calculated in optimize.portfolio
Details

If the user has passed in either min_sum or max_sum constraints for the portfolio, or both, and
are using a numerical optimization method like DEoptim, and normalize=TRUE, we’ll normalize
the weights passed in to whichever boundary condition has been violated. If using random portfo-
lios, all the portfolios generated will meet the constraints by construction. NOTE: this means that
the weights produced by a numeric optimization algorithm like DEoptim, pso, or GenSA might
violate constraints, and will need to be renormalized after optimizing. We apply the same normal-
ization in optimize.portfolio so that the weights you see have been normalized to min_sum if
the generated portfolio is smaller than min_sum or max_sum if the generated portfolio is larger
than max_sum. This normalization increases the speed of optimization and convergence by several
orders of magnitude in many cases.

You may find that for some portfolios, normalization is not desirable, if the algorithm cannot find
a direction in which to move to head towards an optimal portfolio. In these cases, it may be best
to set normalize=FALSE, and penalize the portfolios if the sum of the weighting vector lies outside
the min_sum and/or max_sum.

Whether or not we normalize the weights using min_sum and max_sum, and are using a numerical
optimization engine like DEoptim, we will penalize portfolios that violate weight constraints in
much the same way we penalize other constraints. If a min_sum/max_sum normalization has not
occurred, convergence can take a very long time. We currently do not allow for a non-normalized
full investment constraint. Future version of this function could include this additional constraint
penalty.



constraint ROI 51

When you are optimizing a return objective, you must specify a negative multiplier for the return
objective so that the function will maximize return. If you specify a target return, any return that
deviates from your target will be penalized. If you do not specify a target return, you may need
to specify a negative VTR (value to reach) , or the function will not converge. Try the maximum
expected return times the multiplier (e.g. -1 or -10). Adding a return objective defaults the multiplier
to -1.

Additional parameters for other solvers (e.g. random portfolios or DEoptim.control or pso or
GenSA may be passed in via ...

Author(s)

Kris Boudt, Peter Carl, Brian G. Peterson, Ross Bennett

See Also

constraint, objective, DEoptim.control

constraint_ROI constructor for class constraint_ROI

Description

constructor for class constraint_ROI

Usage

constraint_ROI(
assets = NULL,
op.problem,
solver = c("glpk"”, "quadprog”),
weight_seq = NULL

)
Arguments
assets number of assets, or optionally a named vector of assets specifying seed weights
op.problem an object of type "OP" (optimization problem, of ROI) specifying the complete
optimization problem, see ROI help pages for proper construction of OP object.
solver string argument for what solver package to use, must have ROI plugin installed
for that solver. Currently support is for glpk and quadprog.
weight_seq seed sequence of weights, see generatesequence
Author(s)

Hezky Varon



52

constraint_vl

constraint_v1

constructors for class constraint

Description

See main documentation entry in add. constraint.

Usage

constraint_v1(

assets = NULL,

L

min,
max,
min_mult,
max_mult,
min_sum = 0.99,
max_sum = 1.01,
weight_seq = NULL
)
constraint(type, enabled = TRUE, ..., constrclass = "v2_constraint”)
Arguments
assets number of assets, or optionally a named vector of assets specifying initial weights
any other passthru parameters
min numeric or named vector specifying minimum weight box constraints
max numeric or named vector specifying minimum weight box constraints
min_mult numeric or named vector specifying minimum multiplier box constraint from
initial weight in assets
max_mult numeric or named vector specifying maximum multiplier box constraint from
initial weight in assets
min_sum minimum sum of all asset weights, default .99
max_sum maximum sum of all asset weights, default 1.01
weight_seq seed sequence of weights, see generatesequence
type character type of the constraint to add or update
enabled TRUE/FALSE to enabled the constraint
constrclass name of class for the constraint
Details

This includes the deprecated constructor for the v1_constraint object for backwards compatibil-

ity.



coskewnessMF 53

Author(s)

Peter Carl, Brian G. Peterson, Ross Bennett

See Also

add.constraint

coskewnessMF Coskewness Matrix Estimate

Description

Estimate coskewness matrix using a statistical factor model

Usage

coskewnessMF (beta, stockM3, factorM3)

Arguments
beta (N x k) matrix of factor loadings (i.e. the betas) from a statistical factor model
stockM3 vector of length N of the 3rd moment of the model residuals
factorM3 (k x k*2) matrix of the 3rd moment of the factor realizations from a statistical
factor model
Details

This function estimates an (N x N”2) coskewness matrix from a statistical factor model with k
factors, where N is the number of assets.

Value

(N x N”2) coskewness matrix



54 covarianceMF

coskewnessSF Coskewness Matrix Estimate

Description

Estimate coskewness matrix using a single factor statistical factor model

Usage

coskewnessSF(beta, stockM3, factorM3)

Arguments
beta vector of length N or (N x 1) matrix of factor loadings (i.e. the betas) from a
single factor statistical factor model
stockM3 vector of length N of the 3rd moment of the model residuals
factorM3 scalar of the 3rd moment of the factor realizations from a single factor statistical
factor model
Details

This function estimates an (N x N”*2) coskewness matrix from a single factor statistical factor model
with k=1 factors, where N is the number of assets.

Value

(N x N*2) coskewness matrix

covarianceMF Covariance Matrix Estimate

Description

Estimate covariance matrix using a statistical factor model

Usage

covarianceMF (beta, stockM2, factorM2)

Arguments
beta (N x k) matrix of factor loadings (i.e. the betas) from a statistical factor model
stockM2 vector of length N of the variance (2nd moment) of the model residuals (i.e.
idiosyncratic variance of the stock)
factorM2 (k x k) matrix of the covariance (2nd moment) of the factor realizations from a

statistical factor model



covarianceSF 55

Details
This function estimates an (N x N) covariance matrix from a statistical factor model with k factors,
where N is the number of assets.

Value

(N x N) covariance matrix

covarianceSF Covariance Matrix Estimate

Description

Estimate covariance matrix using a single factor statistical factor model

Usage

covarianceSF(beta, stockM2, factorM2)

Arguments
beta vector of length N or (N x 1) matrix of factor loadings (i.e. the betas) from a
single factor statistical factor model
stockM2 vector of length N of the variance (2nd moment) of the model residuals (i.e.
idiosyncratic variance of the stock)
factorM2 scalar value of the 2nd moment of the factor realizations from a single factor
statistical factor model
Details

This function estimates an (N x N) covariance matrix from a single factor statistical factor model
with k=1 factors, where N is the number of assets.

Value

(N x N) covariance matrix



56 create.EfficientFrontier

create.EfficientFrontier
create an efficient frontier

Description

create an efficient frontier

Usage

create.EfficientFrontier(
R,
portfolio,
type,
optimize_method = "CVXR",
n.portfolios = 25,
risk_aversion = NULL,
match.col = "ES",
search_size = 2000,

)
Arguments
R xts object of asset returns
portfolio object of class *portfolio’ specifying the constraints and objectives, see portfolio. spec.
type type of efficient frontier, see Details.

optimize_method
the optimize method to get the efficient frontier, default is CVXR

n.portfolios  number of portfolios to calculate along the efficient frontier

risk_aversion vector of risk_aversion values to construct the efficient frontier. n.portfolios
is ignored if risk_aversion is specified and the number of points along the
efficient frontier will be equal to the length of risk_aversion.

match.col column to match when extracting the efficient frontier from an objected created
by optimize.portfolio.

search_size passed to optimize.portfolio for type="DEoptim" or type="random".

passthrough parameters to optimize.portfolio.

Details

Currently there are 4 "types’ supported to create an efficient frontier:

" on

""mean-var', '""'mean-sd'', or "'mean-StdDev'': This is a special case for an efficient frontier that
can be created by a QP solver. The portfolio object should have two objectives: 1) mean
and 2) var. If the portfolio object does not contain these objectives, they will be added using
default parameters. The efficient frontier will be created via meanvar.efficient.frontier.



custom.covRob.Mcd 57

"mean-ETL", "mean-ES", "mean-CVaR", ""mean-etl'': This is a special case for an efficient
frontier that can be created by an LP solver. The portfolio object should have two ob-
jectives: 1) mean and 2) ETL/ES/CVaR. If the portfolio object does not contain these ob-
jectives, they will be added using default parameters. The efficient frontier is created via
meanetl.efficient.frontier.

""mean-CSM'"': This is a special case for an efficient frontier that can be created by CVXR solvers.
The portfolio object should have two objectives: 1) mean and 2) CSM. If the portfolio object
does not contain these objectives, they will be added using default parameters. The efficient
frontier is created via meanrisk.efficient.frontier.

""mean-risk'': This is a special case for multiple efficient frontiers. The efficient frontier is created
viameanrisk.efficient.frontier.

"DEoptim'': This can handle more complex constraints and objectives than the simple mean-var
and mean-ETL cases. For this type, we actually call optimize.portfolio with optimize_method="DEoptim"
and then extract the efficient frontier with extract.efficient.frontier.

"random'': This can handle more complex constraints and objectives than the simple mean-var
and mean-ETL cases. For this type, we actually call optimize.portfolio with optimize_method="random’
and then extract the efficient frontier with extract.efficient.frontier.

I

Value

an object of class ’efficient.frontier’ with the objective measures and weights of portfolios along the
efficient frontier.

Author(s)

Ross Bennett, Xinran Zhao

See Also

optimize.portfolio, portfolio.spec, meanvar.efficient.frontier,meanetl.efficient.frontier

custom.covRob.Mcd Compute returns mean vector and covariance matrix with cus-
tom.covRob.Mcd

Description

custom.covRob.Mcd uses the robustbase package function covMcd to compute a robust mean vector
and robust covariance matrix for a portfolio’s asset returns

Usage
custom.covRob.Mcd(R, ...)
Arguments
R xts object of asset returns

parameters for covRob.Mcd



58 custom.covRob.MM

Details
For parameter details, see covMcd in the robustbase Reference Manual at https: //CRAN.R-project.
org/package=robustbase

Value

a list containing covariance matrix sigma and mean vector mu

custom. covRob .MM Compute returns mean vector and covariance matrix with cus-
tom.covRob.MM

Description

custom.covRob.MM uses the RobStatTM package function covRobMM to compute a robust mean
vector and robust covariance matrix for a portfolio’s asset returns

Usage
custom.covRob.MM(R, ...)
Arguments
R xts object of asset returns
parameters for covRob.MM
Value

a list containing covariance matrix sigma and mean vector mu

Author(s)

Yifu Kang, Xinran Zhao

References

For parameter details, see covRobMM in the RobStatTM Reference Manual at https://CRAN.
R-project.org/package=RobStatTM


https://CRAN.R-project.org/package=robustbase
https://CRAN.R-project.org/package=robustbase
https://CRAN.R-project.org/package=RobStatTM
https://CRAN.R-project.org/package=RobStatTM

custom.covRob.Rocke 59

custom.covRob.Rocke Compute returns mean vector and covariance matrix with cus-
tom.covRob.Rocke

Description

custom.covRob.Rocke uses the RobStatTM package function covRobRocke to compute a robust
mean vector and robust covariance matrix for a portfolio’s asset returns

Usage
custom.covRob.Rocke(R, ...)
Arguments
R Xts object of asset returns
parameters for covRob.Rocke
Details

For parameter details, see covRobRocke in the RobStatTM Reference Manual at https://CRAN.
R-project.org/package=RobStatTM

Value

a list containing covariance matrix sigma and mean vector mu

Author(s)
Yifu Kang
custom.covRob.TSGS Compute returns mean vector and covariance matrix with cus-
tom.covRob.TSGS
Description

This is a function uses the TSGS function from GSE package to compute the Two-Step Gener-
alized S-Estimate, a robust estimate of location and scatter for data with cell-wise and case-wise
contamination.

Usage

custom.covRob.TSGS(R, ...)


https://CRAN.R-project.org/package=RobStatTM
https://CRAN.R-project.org/package=RobStatTM

60 diversification

Arguments
R xts object of asset returns
parameters for covRob.TSGS
Value

a list contains mean and covariance matrix of the stock return matrix

References

Claudio Agostinelli, Andy Leung, "Robust estimation of multivariate location and scatter in the
presence of cellwise and casewise contamination", 2014.

diversification Function to compute diversification as a constraint

Description

Diversification is defined as 1 minus the sum of the squared weights

diversification = 1 — sum(w?)

Usage

diversification(weights)

Arguments

weights vector of asset weights

Author(s)

Ross Bennett



diversification_constraint 61

diversification_constraint
constructor for diversification_constraint

Description

The diversification constraint specifies a target diversification value. This function is called by
add.constraint when type="diversification" is specified, see add.constraint. Diversification is
computed as 1 - sum(weights*2).

Usage

diversification_constraint(
type = "diversification”,
div_target = NULL,
enabled = TRUE,
message = FALSE,

)
Arguments
type character type of the constraint
div_target diversification target value
enabled TRUE/FALSE
message TRUE/FALSE. The default is message=FALSE. Display messages if TRUE.
any other passthru parameters to specify diversification constraint an object of
class ’diversification_constraint’
Author(s)

Ross Bennett

See Also

add.constraint

Examples

data(edhec)
ret <- edhec[, 1:4]

pspec <- portfolio.spec(assets=colnames(ret))

pspec <- add.constraint(portfolio=pspec, type="diversification”, div_target=0.7)



62 EntropyProg

EntropyProg Entropy pooling program for blending views on scenarios with a prior
scenario-probability distribution

Description

Entropy program will change the initial predictive distribution 'p’ to a new set 'p_’ that satisfies
specified moment conditions but changes other propoerties of the new distribution the least by
minimizing the relative entropy between the two distributions. Theoretical note: Relative Entropy
(Kullback-Leibler information criterion KLIC) is an asymmetric measure.

Usage

EntropyProg(p, A = NULL, b = NULL, Aeq, beq, verbose = FALSE)

Arguments
p a vector of initial probabilities based on prior (reference model, empirical distri-
bution, etc.). Sum of 'p’ must be 1
A matrix consisting of inequality constraints (paired with argument ’b’). Denoted
as 'F’ in the Meucci paper
b vector consisting of inequality constraints (paired with matrix A). Denoted as
’f” in the Meucci paper
Aeq matrix consisting of equality constraints (paired with argument "beq’). Denoted
as "H’ in the Meucci paper. (denoted as 'H’ in the "Meucci - Flexible Views
Theory & Practice" paper formlua 86 on page 22)
beq vector corresponding to the matrix of equality constraints (paired with argument
’Aeq’). Denoted as "h’ in the Meucci paper
verbose If TRUE, prints out additional information. Default FALSE.
J
P = argminpe<y mo=n{ Z zj(In(z;)—=In(p;)) }(z, A, v) = &' (In(x)—In(p))+ N (Fz—f)+v/ (H
1
Details

We retrieve a new set of probabilities for the joint-scenarios using the Entropy pooling method Of
the many choices of ’p’ that satisfy the views, we choose 'p’ that minimize the entropy or distance
of the new probability distribution to the prior joint-scenario probabilities.

We use Kullback-Leibler divergence or relative entropy dist(p,q): Sum across all scenarios [ p-
t * In( p-t / g-t ) ] Therefore we define solution as p* = argmin (choice of p ) [ sum across all
scenarios: p-t * In( p-t/ g-t) ], such that ’p’ satisfies views. The views modify the prior in a cohrent
manner (minimizing distortion) We forumulate the stress tests of the baseline scenarios as linear
constraints on yet-to-be defined probabilities Note that the numerical optimization acts on a very
limited number of variables equal to the number of views. It does not act directly on the very large



equal. weight 63

number of variables of interest, namely the probabilities of the Monte Carlo scenarios. This feature
guarantees the numerical feasability of entropy optimization.

Note that new probabilities are generated in much the same way that the state-price density modifies
objective probabilities of pay-offs to risk-neutral probabilities in contingent-claims asset pricing

Compute posterior (=change of measure) with Entropy Pooling, as described in

Value

a list with

p_: revised probabilities based on entropy pooling

optimizationPerformance: a list with status of optimization, value, number of iterations, and
sum of probabilities

Author(s)

Ram Ahluwalia <ram@wingedfootcapital.com>

References

A. Meucci - "Fully Flexible Views: Theory and Practice". See page 22 for illustration of nu-
merical implementation Symmys site containing original MATLAB source code https://www.
arpm.co/ NLOPT open-source optimization site containing background on algorithms https:
//nlopt.readthedocs.io/en/latest/ We use the information-theoretic estimator of Kitamur
and Stutzer (1997). Reversing "p’ and ’p_’ leads to the empirical likelihood" estimator of Qin and
Lawless (1994). See Robertson et al, "Forecasting Using Relative Entropy" (2002) for more theory

equal.weight Create an equal weight portfolio

Description

This function calculates objective measures for an equal weight portfolio.

Usage
equal.weight(R, portfolio, ...)

Arguments
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
portfolio an object of type "portfolio" specifying the constraints and objectives for the

optimization

any other passthru parameters to constrained_objective


https://www.arpm.co/
https://www.arpm.co/
https://nlopt.readthedocs.io/en/latest/
https://nlopt.readthedocs.io/en/latest/

64 etl_milp_opt

Details

This function is simply a wrapper around constrained_objective to calculate the objective mea-
sures in the given portfolio object of an equal weight portfolio. The portfolio object should
include all objectives to be calculated.

Value

a list containing the returns, weights, objective measures, call, and portfolio object

Author(s)

Ross Bennett

etl_milp_opt Minimum ETL MILP Optimization

Description

This function is called by optimize.portfolio to solve minimum ETL problems via mixed integer
linear programming.

Usage

etl_milp_opt(
R,
constraints,
moments,
target,
alpha,
solver = "glpk",
control = NULL

)
Arguments
R xts object of asset returns
constraints object of constraints in the portfolio object extracted with get_constraints
moments object of moments computed based on objective functions
target target return value
alpha alpha value for ETL/ES/CVaR
solver solver to use
control list of solver control parameters
Author(s)

Ross Bennett



etl_opt 65
etl_opt Minimum ETL LP Optimization
Description
This function is called by optimize.portfolio to solve minimum ETL problems.
Usage
etl_opt(
R,
constraints,
moments,
target,
alpha,
solver = "glpk"”,
control = NULL
)
Arguments
R Xts object of asset returns
constraints object of constraints in the portfolio object extracted with get_constraints
moments object of moments computed based on objective functions
target target return value
alpha alpha value for ETL/ES/CVaR
solver solver to use
control list of solver control parameters
Author(s)

Ross Bennett

extractCokurtosis Cokurtosis Estimate

Description

Extract the cokurtosis matrix estimate from a statistical factor model

Usage

extractCokurtosis(model, ...)



66 extractCoskewness

Arguments
model statistical factor model estimated via statistical.factor.model
not currently used
Value

cokurtosis matrix estimate

Author(s)

Ross Bennett

See Also

statistical.factor.model

extractCoskewness Coskewness Estimate

Description

Extract the coskewness matrix estimate from a statistical factor model

Usage
extractCoskewness(model, ...)
Arguments
model statistical factor model estimated via statistical.factor.model
not currently used
Value

coskewness matrix estimate

Author(s)

Ross Bennett

See Also

statistical.factor.model



extractCovariance

67

extractCovariance Covariance Estimate

Description

Extract the covariance matrix estimate from a statistical factor model

Usage
extractCovariance(model, ...)
Arguments
model statistical factor model estimated via statistical.factor.model
not currently used
Value

covariance matrix estimate

Author(s)

Ross Bennett

See Also

statistical.factor.model

extractEfficientFrontier
Extract the efficient frontier data points

Description

This function extracts the efficient frontier from an object created by optimize.portfolio.

Usage

extractEfficientFrontier(
object,
match.col = "ES",
n.portfolios = 25,
risk_aversion = NULL



68 extractGroups

Arguments
object an optimal portfolio object created by optimize.portfolio
match.col string name of column to use for risk (horizontal axis). match.col must match

the name of an objective measure in the objective_measures or opt_values
slot in the object created by optimize.portfolio.

n.portfolios number of portfolios to use to plot the efficient frontier

risk_aversion vector of risk_aversion values to construct the efficient frontier. n.portfolios
is ignored if risk_aversion is specified and the number of points along the
efficient frontier is equal to the length of risk_aversion.

Details

If the object is an optimize.portfolio.ROI object and match.col is "ES", "ETL", or "CVaR",
then the mean-ETL efficient frontier will be created via meanetl.efficient.frontier.

If the object is an optimize.portfolio.ROI object and match.col is "StdDev", then the mean-
StdDeyv efficient frontier will be created via meanvar.efficient.frontier. Note that if ’var’ is
specified as the name of an objective, the value returned will be *StdDev’.

For objects created by optimize.portfolo with the DEoptim, random, or pso solvers, the efficient
frontier will be extracted from the object via extract.efficient.frontier. This means that
optimize.portfolio must be run with trace=TRUE.

Value

an efficient. frontier object with weights and other metrics along the efficient frontier

Author(s)

Ross Bennett

extractGroups Extract the group and/or category weights

Description

This function extracts the weights by group and/or category from an object of class optimize.portfolio.
Group constraints or category_labels must be specified for this to return group constraints.

Usage
extractGroups(object, ...)
Arguments
object object of class optimize.portfolio

passthrough parameters. Not currently used



extractObjectiveMeasures 69

Value
a list with two elements
weights: Optimal set of weights from the optimize.portfolio object

category_weights: Weights by category if category_labels are supplied in the portfolio object

group_weights: Weights by group if group is a constraint type

Author(s)

Ross Bennett

extractObjectiveMeasures
Extract the objective measures

Description

This function will extract the objective measures from the optimal portfolio run via optimize.portfolio

Usage

extractObjectiveMeasures(object)

Arguments

object list returned by optimize.portfolio

Value

list of objective measures

Author(s)

Ross Bennett

See Also

optimize.portfolio



70

extractStats

extractStats extract some stats and weights from a portfolio run via
optimize.portfolio

Description

This function will dispatch to the appropriate class handler based on the input class of the opti-
mize.portfolio output object.

Usage
extractStats(object, prefix = NULL, ...)
Arguments
object list returned by optimize.portfolio
prefix prefix to add to output row names
any other passthru parameters
Details

For optimize.portfolio objects:

In general, extractStats will extract the values objective measures and weights at each iteration
of a set of weights. This is the case for the DEoptim, random portfolios, and pso solvers that return
trace information. Note that trace=TRUE must be specified in optimize.portfolio to return the
trace information.

For optimize.portfolio.pso objects, this function will extract the weights (swarm positions)
from the PSO output and the out values (swarm fitness values) for each iteration of the optimiza-
tion. This function can be slow because we need to run constrained_objective to calculate the
objective measures on the transformed weights.

For optimize.portfolio.rebalancing objects:

The extractStats function will return a list of the objective measures and weights at each rebal-
ance date for optimize.portfolio.rebalancing objects. The objective measures and weights of
each iteration or permutation will be returned if the optimization was done with DEoptim, random
portfolios, or pso. This could potentially result in a very large list object where each list element
has thousands of rows of at each rebalance period.

The output from the GenSA solver does not store weights evaluated at each iteration The GenSA
output for trace.mat contains nb.steps, temperature, function.value, and current.minimum

See Also

optimize.portfolio



extractWeights 71

extractWeights Extract weights from a portfolio run via optimize.portfolio or
optimize.portfolio.rebalancing

Description

This function will dispatch to the appropriate class handler based on the input class of the opti-
mize.portfolio or optimize.portfolio.rebalancing output object

Usage
extractWeights(object, ...)
Arguments
object list returned by optimize.portfolio
any other passthru parameters
See Also

optimize.portfolio, optimize.portfolio.rebalancing

extract_risk extract the risk value when knowing the weights

Description

extract the risk value when knowing the weights

Usage

extract_risk(R, w, ES_alpha = 0.05, CSM_alpha = 0.05, moment_setting = NULL)

Arguments
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
w the weight of the portfolio
ES_alpha the default value is 0.05, but could be specified as any value between 0 and 1
CSM_alpha the default value is 0.05, but could be specified as any value between O and 1

moment_setting the default is NULL, should provide moment_setting=list(mu=, sigma=) if cus-
tomize momentFUN



72 factor_exposure_constraint

factor_exposure_constraint
Constructor for factor exposure constraint

Description

The factor exposure constraint sets upper and lower bounds on exposures to risk factors. This
function is called by add.constraint when type="factor_exposure" is specified, see add.constraint

Usage

factor_exposure_constraint(
type = "factor_exposure”,
assets,
B,
lower,
upper,
enabled = TRUE,
message = FALSE,

)
Arguments

type character type of the constraint

assets named vector of assets specifying initial weights

B vector or matrix of risk factor exposures

lower vector of lower bounds of constraints for risk factor exposures

upper vector of upper bounds of constraints for risk factor exposures

enabled TRUE/FALSE

message TRUE/FALSE. The default is message=FALSE. Display messages if TRUE.

any other passthru parameters to specify risk factor exposure constraints

Details

B can be either a vector or matrix of risk factor exposures (i.e. betas). If B is a vector, the length of
B must be equal to the number of assets and lower and upper must be scalars. If B is passed in as a
vector, it will be converted to a matrix with one column.

If B is a matrix, the number of rows must be equal to the number of assets and the number of
columns represent the number of factors. The length of lower and upper must be equal to the
number of factors. The B matrix should have column names specifying the factors and row names
specifying the assets. Default column names and row names will be assigned if the user passes in a
B matrix without column names or row names.



fn_map 73

Value

an object of class "factor_exposure_constraint’

Author(s)

Ross Bennett

See Also

add.constraint

fn_map mapping function to transform or penalize weights that violate con-
straints

Description

The purpose of the mapping function is to transform a weights vector that does not meet all the
constraints into a weights vector that does meet the constraints, if one exists, hopefully with a
minimum of transformation.

Usage

fn_map(weights, portfolio, relax = FALSE, verbose = FALSE, ...)
Arguments

weights vector of weights

portfolio object of class portfolio

relax TRUE/FALSE, default FALSE. Enable constraints to be relaxed.

verbose print error messages for debuggin purposes

any other passthru parameters

Details

The first step is to test for violation of the constraint. If the constraint is violated, we will apply a
transformation such that the weights vector satisfies the constraints. The following constraint types
are tested in the mapping function: leverage, box, group, and position limit. The transformation
logic is based on code from the random portfolio sample method.

If relax=TRUE, we will attempt to relax the constraints if a feasible portfolio could not be formed
with an initial call to rp_transform. We will attempt to relax the constraints up to 5 times. If
we do not have a feasible portfolio after attempting to relax the constraints, then we will default to
returning the weights vector that violates the constraints.



74 generatesequence

Value

weights: vector of transformed weights meeting constraints.

min: vector of min box constraints that may have been modified if relax=TRUE.

max: vector of max box constraints that may have been modified if relax=TRUE.

cLO: vector of lower bound group constraints that may have been modified if relax=TRUE.

cUP: vector of upper bound group constraints that may have been modified if relax=TRUE.

Author(s)

Ross Bennett

generatesequence create a sequence of possible weights for random or brute force port-
folios

Description

This function creates the sequence of min<->max weights for use by random or brute force opti-
mization engines.

Usage

generatesequence(min = 0.01, max = 1, by = min/max, rounding = 3)

Arguments

min minimum value of the sequence

max maximum value of the sequence

by number to increment the sequence by

rounding integrer how many decimals should we round to
Details

The sequence created is not constrained by asset.

Author(s)

Peter Carl, Brian G. Peterson

See Also

constraint, objective



get_constraints 75

get_constraints Helper function to get the enabled constraints out of the portfo-
lio object When the vI_constraint object is instantiated via con-
straint, the arguments min_sum, max_sum, min, and max are ei-
ther specified by the user or default values are assigned. These
are required by other functions such as optimize.portfolio and
constrained_objective . This function will check that these vari-
ables are in the portfolio object in the constraints list. We will default
to min_sum=1 and max_sum=1 if leverage constraints are not specified.
We will default to min=-Inf and max=Inf if box constraints are not
specified. This function is used at the beginning of optimize.portfolio
and other functions to extract the constraints from the portfolio object.
We Use the same naming as the vI_constraint object.

Description

Helper function to get the enabled constraints out of the portfolio object

When the v1_constraint object is instantiated via constraint, the arguments min_sum, max_sum,
min, and max are either specified by the user or default values are assigned. These are required
by other functions such as optimize.portfolio and constrained_objective . This function
will check that these variables are in the portfolio object in the constraints list. We will default to
min_sum=1 and max_sum=1 if leverage constraints are not specified. We will default to min=-Inf
and max=Inf if box constraints are not specified. This function is used at the beginning of opti-
mize.portfolio and other functions to extract the constraints from the portfolio object. We Use the
same naming as the v1_constraint object.

Usage

get_constraints(portfolio)

Arguments

portfolio an object of class "portfolio’

Value

an object of class "constraint’ which is a flattened list of enabled constraints

Author(s)

Ross Bennett

See Also

portfolio.spec



76 gmv_opt

gmv_opt GMV/QU QP Optimization

Description

This function is called by optimize.portfolio to solve minimum variance or maximum quadratic
utility problems

Usage
gmv_opt(
R,
constraints,
moments,
lambda,
target,
lambda_hhi,
conc_groups,
solver = "quadprog”,
control = NULL
)
Arguments
R xts object of asset returns
constraints object of constraints in the portfolio object extracted with get_constraints
moments object of moments computed based on objective functions
lambda risk_aversion parameter
target target return value
lambda_hhi concentration aversion parameter
conc_groups list of vectors specifying the groups of the assets.
solver solver to use
control list of solver control parameters
Author(s)

Ross Bennett



gmv_opt_leverage 77

gmv_opt_leverage GMV/QU QP Optimization with Turnover Constraint

Description

This function is called by optimize.portfolio to solve minimum variance or maximum quadratic
utility problems with a leverage constraint

Usage
gmv_opt_leverage(
R,
constraints,
moments,
lambda,
target,
solver = "quadprog”,
control = NULL
)
Arguments
R xts object of asset returns
constraints object of constraints in the portfolio object extracted with get_constraints
moments object of moments computed based on objective functions
lambda risk_aversion parameter
target target return value
solver solver to use
control list of solver control parameters
Author(s)

Ross Bennett

gmv_opt_ptc GMV/QU QP Optimization with Proportional Transaction Cost Con-
straint

Description

This function is called by optimize.portfolio to solve minimum variance or maximum quadratic
utility problems with proportional transaction cost constraint



78 gmv_opt_toc

Usage
gmv_opt_ptc(
R,
constraints,
moments,
lambda,
target,
init_weights,
solver = "quadprog”,
control = NULL
)
Arguments
R Xts object of asset returns
constraints object of constraints in the portfolio object extracted with get_constraints
moments object of moments computed based on objective functions
lambda risk_aversion parameter
target target return value
init_weights initial weights to compute turnover
solver solver to use
control list of solver control parameters
Author(s)

Ross Bennett

gmv_opt_toc GMV/QU QP Optimization with Turnover Constraint

Description

This function is called by optimize.portfolio to solve minimum variance or maximum quadratic
utility problems with turnover constraint

Usage

gmv_opt_toc(
R,
constraints,
moments,
lambda,
target,
init_weights,
solver = "quadprog”,
control = NULL



group_constraint

Arguments

R
constraints
moments
lambda
target
init_weights
solver

control

Author(s)

Ross Bennett

79

xts object of asset returns

object of constraints in the portfolio object extracted with get_constraints
object of moments computed based on objective functions

risk_aversion parameter

target return value

initial weights to compute turnover

solver to use

list of solver control parameters

group_constraint

constructor for group_constraint

Description

Group constraints specify the grouping of the assets, weights of the groups, and number of postions
(i.e. non-zero weights) iof the groups. This function is called by add.constraint when type="group"
is specified. see add. constraint

Usage

group_constraint(
type = "group”,

assets,
groups,

group_labels

group_min,
group_max,

= NULL,

group_pos = NULL,
enabled = TRUE,
message = FALSE,

Arguments
type
assets
groups

group_labels

character type of the constraint
number of assets, or optionally a named vector of assets specifying initial weights
list of vectors specifying the groups of the assets

character vector to label the groups (e.g. size, asset class, style, etc.)



80

group_min
group_max
group_pos
enabled

message

Value

group_constraint

numeric or vector specifying minimum weight group constraints

numeric or vector specifying minimum weight group constraints

vector specifying the number of non-zero weights per group

TRUE/FALSE

TRUE/FALSE. The default is message=FALSE. Display messages if TRUE.

any other passthru parameters to specify group constraints

an object of class ’group_constraint’

Author(s)

Ross Bennett

See Also

add.constraint

Examples

data(edhec)

ret <- edhec[, 1:4]

pspec <- portfolio.spec(assets=colnames(ret))

# Assets 1 and 3 are groupA
# Assets 2 and 4 are groupB
pspec <- add.constraint(portfolio=pspec,

type="group”,
groups=list(groupA=c(1, 3),
groupB=c(2, 4)),
group_min=c(0.15, 0.25),
group_max=c(0.65, @.55))

# 2 levels of grouping (e.g. by sector and geography)
pspec <- portfolio.spec(assets=5)

# Assets 1, 3, and 5 are Tech

# Assets 2 and 4 are 0il

# Assets 2, 4, and 5 are UK

# Assets 1 and are are US

group_list <- list(groupl=c(1, 3, 5),

group2=c(2, 4),
groupA=c(2, 4, 5),
groupB=c(1, 3))

pspec <- add.constraint(portfolio=pspec,

type="group”,
groups=group_list,
group_min=c(@.15, 0.25, 0.2, 0.1),



group_fail 81

group_max=c(@.65, 0.55, 0.5, 0.4))

group_fail Test if group constraints have been violated

Description
The function loops through each group and tests if cLO or cUP have been violated for the given
group. This is a helper function for rp_transform.

Usage
group_fail(weights, groups, cLO, cUP, group_pos = NULL)

Arguments
weights weights vector to test
groups list of vectors specifying the groups of the assets
cLO numeric or vector specifying minimum weight group constraints
cUP numeric or vector specifying minimum weight group constraints
group_pos vector specifying the number of non-zero weights per group
Value

logical vector: TRUE if group constraints are violated for a given group

Author(s)

Ross Bennett

HHI Concentration of weights

Description

This function computes the concentration of weights using the Herfindahl Hirschman Index

Usage
HHI (weights, groups = NULL)

Arguments

weights set of portfolio weights

groups list of vectors of grouping



82 insert_constraints

Author(s)

Ross Bennett

indexes Six Major Economic Indexes

Description
Monthly data of five indexes beginning on 1980-01-31 and ending 2009-12-31. The indexes are:
US Bonds, US Equities, International Equities, Commodities, US T-Bills, and Inflation

Usage

data(indexes)

Format

CSV converted into xts object with montly observations
Examples
data(indexes)

#preview the data
head(indexes)

#summary period statistics
summary (indexes)

insert_constraints Insert a list of constraints into the constraints slot of a portfolio object

Description
This is a helper function primarily for backwards compatibility to insert constraints from a ’v1_constraint’
object into the v2 ’portfolio’ object.

Usage

insert_constraints(portfolio, constraints)

Arguments
portfolio object of class ’portfolio’
constraints list of constraint objects
Author(s)

Ross Bennett



insert_objectives

83

insert_objectives

Insert a list of objectives into the objectives slot of a portfolio object

Description

This is a helper function primarily for backwards compatibility to insert objectives from a ’v1_constraint’

object into the v2 ’portfolio’ object.

Usage

insert_objectives(portfolio, objectives)

Arguments

portfolio

objectives

Author(s)

Ross Bennett

object of class *portfolio’

list of objective objects

inverse.volatilit

y.weight
Create an inverse volatility weighted portfolio

Description

This function calcu

lates objective measures for an equal weight portfolio.

Usage
inverse.volatility.weight(R, portfolio, ...)
Arguments
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
portfolio an object of type "portfolio" specifying the constraints and objectives for the
optimization
any other passthru parameters to constrained_objective
Details

This function is simply a wrapper around constrained_objective to calculate the objective mea-
sures in the given portfolio object of an inverse volatility weight portfolio. The portfolio object
should include all objectives to be calculated.



84

Value

a list containing the returns, weights, objective measures, call, and portfolio object

Author(s)

Peter Carl

is.objective

is.constraint check function for constraints

Description

check function for constraints

Usage

is.constraint(x)

Arguments

X object to test for type constraint

Author(s)

Brian G. Peterson

is.objective check class of an objective object

Description

check class of an objective object

Usage

is.objective(x)

Arguments

X an object potentially of type ’objective’ to test

Author(s)

Brian G. Peterson



is.portfolio 85

is.portfolio check function for portfolio

Description

check function for portfolio

Usage
is.portfolio(x)

Arguments

X object to test for type portfolio

Author(s)

Ross Bennett

leverage_exposure_constraint
constructor for leverage_exposure_constraint

Description

The leverage_exposure constraint specifies a maximum leverage where leverage is defined as the
sum of the absolute value of the weights. Leverage exposure is computed as the sum of the absolute
value of the weights, sum(abs(weights)).

Usage

leverage_exposure_constraint(
type = "leverage_exposure”,
leverage = NULL,
enabled = TRUE,
message = FALSE,

)
Arguments
type character type of the constraint
leverage maximum leverage value
enabled TRUE/FALSE
message TRUE/FALSE. The default is message=FALSE. Display messages if TRUE.

any other passthru parameters to specify diversification constraint an object of
class ’diversification_constraint’



86 maxret_milp_opt

Details

This should be used for constructing, for example, 130/30 portfolios or dollar neutral portfolios
with 2:1 leverage. For the ROI solvers, this is implemented as a MILP problem and is not supported
for problems formulated as a quadratic programming problem. This may change in the future if a
MIQP solver is added.

This function is called by add.constraint when type="leverage_exposure" is specified, see add. constraint.

Author(s)

Ross Bennett

See Also

add.constraint

Examples

data(edhec)
ret <- edhec[, 1:4]

pspec <- portfolio.spec(assets=colnames(ret))

pspec <- add.constraint(portfolio=pspec, type="leverage_exposure”, leverage=1.6)

maxret_milp_opt Maximum Return MILP Optimization

Description

This function is called by optimize.portfolio to solve maximum return problems via mixed integer
linear programming.

Usage

maxret_milp_opt(
R,
constraints,
moments,
target,
solver = "glpk",
control = NULL



maxret_opt

Arguments
R
constraints
moments
target
solver

control

Author(s)

Ross Bennett

87

xts object of asset returns

object of constraints in the portfolio object extracted with get_constraints
object of moments computed based on objective functions

target return value

solver to use

list of solver control parameters

maxret_opt

Maximum Return LP Optimization

Description

This function is called by optimize.portfolio to solve maximum return

Usage
maxret_opt(R, moments, constraints, target, solver = "glpk”, control = NULL)
Arguments
R xts object of asset returns
moments object of moments computed based on objective functions
constraints object of constraints in the portfolio object extracted with get_constraints
target target return value
solver solver to use
control list of solver control parameters
Author(s)

Ross Bennett



88 meancsm.efficient.frontier

meancsm.efficient.frontier
Generate the efficient frontier for a mean-CSM portfolio

Description

This function generates the mean-CSM efficient frontier of a portfolio specifying the constraints
and objectives. The portfolio object should have two objectives: 1) mean and 2) CSM. If the
portfolio object does not contain these objectives, they will be added using default parameters.

Usage

meancsm.efficient.frontier(
portfolio,
R,
optimize_method = "CVXR",
n.portfolios = 25,

)

Arguments
portfolio a portfolio object with constraints and objectives created via portfolio.spec
R an xts or matrix of asset returns

optimize_method
the optimize method to get the efficient frontier, default is CVXR

n.portfolios  number of portfolios to generate the efficient frontier

passthru parameters to optimize.portfolio

Value

a matrix of objective measure values and weights along the efficient frontier

Author(s)

Xinran Zhao



meanetl.efficient.frontier 89

meanetl.efficient.frontier
Generate the efficient frontier for a mean-etl portfolio

Description

This function generates the mean-ETL efficient frontier of a portfolio specifying the constraints
and objectives. The portfolio object should have two objectives: 1) mean and 2) ES (or ETL or
cVaR). If the portfolio object does not contain these objectives, they will be added using default
parameters.

Usage

meanetl.efficient.frontier(
portfolio,
R,
optimize_method = "CVXR",
n.portfolios = 25,

)

Arguments
portfolio a portfolio object with constraints and objectives created via portfolio.spec
R an xts or matrix of asset returns

optimize_method
the optimize method to get the efficient frontier, default is CVXR

n.portfolios  number of portfolios to generate the efficient frontier

passthru parameters to optimize.portfolio

Value

a matrix of objective measure values and weights along the efficient frontier

Author(s)

Ross Bennett



90 meanrisk.efficient.frontier

meanrisk.efficient.frontier
Generate multiple efficient frontiers for the same portfolio

Description

This function generates the mean-risk efficient frontier of a portfolio specifying the constraints
and objectives. The risk_type object is for the basic mean-risk efficient frontier, other efficient
frontiers will be generated with the same target returns. All mean-StdDev, mean-ES and mean-CSM
efficient frontiers will be generated.

Usage

meanrisk.efficient.frontier(
portfolio,
R,
optimize_method = "CVXR",
n.portfolios = 25,
risk_type = "StdDev”,
compare_port = c("StdDev"”, "ES"),

)

Arguments
portfolio a portfolio object with constraints and objectives created via portfolio.spec
R an xts or matrix of asset returns

optimize_method
the optimize method to get the efficient frontier, default is CVXR

n.portfolios  number of portfolios to generate the efficient frontier

risk_type one of "StdDev", "ES" and "CSM", which determines the type of basic efficient
frontier.

compare_port vector composed of any risk "StdDev", "ES", "CSM", for example, compare_port=c("StdDev",
VIES")

passthru parameters to optimize.portfolio

Value

a matrix of objective measure values and weights along the efficient frontier

Author(s)

Xinran Zhao



meanvar.efficient.frontier 91

meanvar.efficient.frontier
Generate the efficient frontier for a mean-variance portfolio

Description

This function generates the mean-variance efficient frontier of a portfolio specifying the constraints
and objectives. The portfolio object should have two objectives: 1) mean and 2) var (or sd or
StdDev). If the portfolio object does not contain these objectives, they will be added using default
parameters.

Usage

meanvar.efficient.frontier(
portfolio,
R,
optimize_method = "CVXR",
n.portfolios = 25,
risk_aversion = NULL,

)

Arguments
portfolio a portfolio object with constraints created via portfolio.spec
R an xts or matrix of asset returns

optimize_method
the optimize method to get the efficient frontier, default is CVXR

n.portfolios number of portfolios to plot along the efficient frontier

risk_aversion vector of risk_aversion values to construct the efficient frontier. n.portfolios
is ignored if risk_aversion is specified and the number of points along the
efficient frontier is equal to the length of risk_aversion.

passthru parameters to optimize.portfolio

Value

a matrix of objective measure values and weights along the efficient frontier

Author(s)

Ross Bennett



92 meucci.ranking

meucci.moments Compute moments

Description

Compute the first and second moments using the Fully Flexible Views framework as described in
A. Meucci - "Fully Flexible Views: Theory and Practice".

Usage

meucci.moments(R, posterior_p)

Arguments
R Xts object of asset returns
posterior_p vector of posterior probabilities
Value

a list with the first and second moments

mu: vector of expected returns

sigma: covariance matrix

Author(s)

Ross Bennett

References

A. Meucci - "Fully Flexible Views: Theory and Practice".

meucci.ranking Asset Ranking

Description
Express views on the relative expected asset returns as in A. Meucci, "Fully Flexible Views: Theory
and Practice" and compute the first and second moments.

Usage

meucci.ranking(R, p, order)



minmax_objective 93

Arguments
R Xts object of asset returns
p a vector of the prior probability values
order a vector of indexes of the relative ranking of expected asset returns in ascending
order. For example, order = c(2, 3, 1, 4) means that the expected returns of
R[,21<RL[,31, <RL[,11<RL,41.
Value

The estimated moments based on ranking views

Note
This function is based on the ViewRanking function written by Ram Ahluwalia in the Meucci
package.
References
A. Meucci, "Fully Flexible Views: Theory and Practice" https://www.arpm.co/articles/fully-flexible-views-theo
See Meucci script for "RankingInformation/ViewRanking.m"
See Also

meucci.moments

Examples

data(edhec)

R <- edhec[,1:4]

p <- rep(1 / nrow(R), nrow(R))
meucci.ranking(R, p, c(2, 3, 1, 4))

minmax_objective constructor for class tmp_minmax_objective

Description

This objective allows for min and max targets to be specified.

Usage

minmax_objective(
name,
target = NULL,
arguments = NULL,
multiplier = 1,
enabled = TRUE,


https://www.arpm.co/articles/fully-flexible-views-theory-and-practice/

94 mult.portfolio.spec

max
)
Arguments
name name of the objective, should correspond to a function, though we will try to
make allowances
target univariate target for the objective
arguments default arguments to be passed to an objective function when executed
multiplier multiplier to apply to the objective, usually 1 or -1
enabled TRUE/FALSE
any other passthru parameters
min minimum value
max maximum value
Details

If target is set, we’ll try to meet the metric
If target is NULL and min and max are specified, then do the following:

If max is violated to the upside, penalize the metric. If min is violated to the downside, penalize the
metric. The purpose of this objective is to try to meet the range between min and max

Value

object of class 'minmax_objective’

Author(s)

Ross Bennett

mult.portfolio.spec Multple Layer Portfolio Specification

Description

Create and specify a multiple layer portfolio

Usage

mult.portfolio.spec(portfolio, levels = 2, ...)



MycovRobMcd 95

Arguments
portfolio the "top level" portfolio
levels number of levels of sub-portfolios
any additional parameters
Details

The sub.portfolios slot is a list where each element contains the portfolio object and rebalancing
parameters for the optimization of the sub portfolio. This allows, for example, each sub portfolio to
have different rebalancing frequencies (i.e. monthly or quarterly), optimization methods, etc.

Each sub portfolio is optimized with optimize.portfolio.rebalancing to create a time series of
proxy returns.

The "top level" portfolio is used to specify the constraints and objectives to control the optimization
given the proxy returns of each sub portfolio.
Value

amult.portfolio.spec object with the top level portfolio and sub portfolios with optimization
parameters for each sub portfolio

Author(s)

Ross Bennett

MycovRobMcd Control settings for custom.covRob.Mcd

Description

Auxiliary function for passing the estimation options as parameters to the estimation function
MCD.robust.moment

Usage

MycovRobMcd(
alpha = 1/2,
nsamp = 500,
nmini = 300,
kmini = 5,
scalefn = "hrv2012",
maxcsteps = 200,
seed = NULL,

tolSolve = 1e-14,
wgtFUN = "@1.original”,
beta,

use.correction = TRUE



96

Arguments

alpha

nsamp

nmini, kmini

scalefn

maxcsteps
seed
tolSolve

wgtFUN

beta

MycovRobTSGS

numeric parameter controlling the size of the subsets over which the determinant
is minimized. Allowed values are between 0.5 and 1 and the default is 0.5.

number of subsets used for initial estimates or "best", "exact", or "determinis-
tic". Default is nsamp = 500. For nsamp = "best" exhaustive enumeration is
done, as long as the number of trials does not exceed 100’000, which is the
value of nlarge. For "exact", exhaustive enumeration will be attempted however
many samples are needed. In this case a warning message may be displayed
saying that the computation can take a very long time. For "deterministic", the
deterministic MCD is computed; as proposed by Hubert et al. (2012) it starts

from the h most central observations of six (deterministic) estimators.

for n >= 2*n0, n0 := nmini, the algorithm splits the data into maximally kmini
(by default 5) subsets, of size approximately, but at least nmini. When nmini*kmini
< n, the initial search uses only a subsample of size nmini*kmini. The original
algorithm had nmini = 300 and kmini = 5 hard coded.

function to compute a robust scale estimate or character string specifying a
rule determining such a function for the deterministic MCD. The default is
"hrv2012". Another option value is "v2014".

maximal number of concentration steps in the deterministic MCD
initial seed for random generator
numeric tolerance to be used for inversion of the covariance matrix

a character string or function, specifying how the weights for the reweighting
step should be computed. Default is "0O1.originalz".

a quantile, experimentally used for some of the prespecified wgtFUNs. For our
MCD method, the default is 0.975.

use.correction whether to use finite sample correction factors; defaults to TRUE.

Value

a list of passed parameters

MycovRobTSGS

Control settings for custom.covRob.TSGS

Description

Auxiliary function for passing the estimation options as parameters to the estimation function cus-

tom. TSGS



name.replace 97

Usage

MycovRobTSGS (
filter = c("UBF-DDC", "UBF", "DDC", "UF"),
partial.impute = FALSE,

tol = 1e-04,
maxiter = 150,
loss = c("bisquare”, "rocke"),
init = c("emve”, "qc", "huber”, "imputed”, "emve_c")
)
Arguments
filter the filter to be used in the first step. Available choices are "UBF-DDC","UBF","DDC","UF".

The default one is "UBF-DDC".

partial.impute whether partial imputation is used prior to estimation. The default is FALSE.

tol tolerance for the convergence criterion. Default is 1e-4.

maxiter maximum number of iterations. Default is 150.

loss loss function to use, "bisquare" or "rocke". Default is "bisquare"

init type of initial estimator. Options include "emve", "qc", "huber","imputed","emve_c"

Value

a list of passed parameters

name.replace utility function to replace awkward named from unlist

Description

utility function to replace awkward named from unlist

Usage

name.replace(rnames)

Arguments

rnames character vector of names to check for cleanup



98 objective

objective constructor for class ’objective’

Description

Typically called as a sub-function by the user function add.objective. See main documentation
there.

Usage

objective(
name,
target = NULL,
arguments,
enabled = TRUE,

L

multiplier = 1,

objclass = "objective”
)
Arguments
name name of the objective which will be used to call a function, like "ES’, *VaR’,
’mean’
target univariate target for the objective, default NULL
arguments default arguments to be passed to an objective function when executed
enabled TRUE/FALSE

any other passthrough parameters

multiplier multiplier to apply to the objective, usually 1 or -1
objclass string class to apply, default ’objective’
Author(s)

Brian G. Peterson

See Also

add.objective, portfolio.spec



opt.outputMvo 99

opt.outputMvo Optimal Portfolio Weights and Performance Values

Description

Converts output of ‘optimize.portfolio® to a list of the portfolio weights, mean, volatility and Sharpe
Ratio.

Usage

opt.outputMvo(
opt,
returns,
digits = NULL,
annualize = TRUE,
frequency = "monthly”,

rf =0
)
Arguments
opt List output of ‘optimize.portfolio*
returns Multivariate xts object of portfolio assets returns
digits Integer number of significant digits with default NULL
annualize Logical with default TRUE
frequency Returns frequency: "monthly", "weekly" or "daily"
rf Numeric value with default 0.0
Details

This function uses the weights returned by optimize.portfolio, along with the portfolio assets re-
turns, and a risk-free rate, to to compute the portfolio mean return, volatility, and Sharpe Ratio.

Value

A list containing the portfolio numeric weights, mean value, volatility and Sharpe Ratio.

Author(s)
R. Douglas Martin

Examples

args(opt.outputMvo)



100

optimize.portfolio

optimize.portfolio Constrained optimization of portfolios

Description

This function aims to provide a wrapper for constrained optimization of portfolios that specify

constraints and objectives.

Usage

optimize.portfolio_v1(
R,
constraints,

optimize_method = c("DEoptim”, "random”, "ROI", "ROI_old”, "pso", "GenSA"),

search_size = 20000,
trace = FALSE,

rp = NULL,
momentFUN = "set.portfolio.moments_v1"

optimize.portfolio(
R,
portfolio = NULL,
constraints = NULL,
objectives = NULL,

optimize_method = c("DEoptim”, "random”, "ROI", "pso”, "GenSA", "Rglpk"”, "osgp”", "mco

"CVXR", "cvxr", ...),
search_size = 20000,
trace = FALSE,

rp = NULL,

momentFUN = "set.portfolio.moments”,
message = FALSE
)
Arguments
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
constraints default=NULL, a list of constraint objects. An object of class 'v1_constraint’

can be passed in here.
optimize_method

one of "DEoptim", "random", "ROI", "pso", "GenSA", "osqp", "Rglpk", "mco",
"CVXR", or a vector to specify CVXR solver. A solver of ROI or CVXR can
also be specified and will be solved via ROI or CVXR. See details.

search_size integer, how many portfolios to test, default 20,000

n

’



optimize.portfolio 101

trace TRUE/FALSE if TRUE will attempt to return additional information on the path
or portfolios searched

any other passthru parameters

rp matrix of random portfolio weights, default NULL, mostly for automated use
by rebalancing optimization or repeated tests on same portfolios

momentFUN the name of a function to call to set portfolio moments, default set.portfolio.moments_v2

portfolio an object of type "portfolio" specifying the constraints and objectives for the
optimization

objectives default=NULL, a list of objective objects.

message TRUE/FALSE. The default is message=FALSE. Display messages if TRUE.

Details

This function currently supports DEoptim, random portfolios, pso, GenSA, ROI, osqp, Rglpk, mco,
and CVXR solvers as back ends. Additional back end contributions for Rmetrics, ghyp, etc. would
be welcome.

When using random portfolios, search_size is precisely that, how many portfolios to test. You need
to make sure to set your feasible weights in generatesequence to make sure you have search_size
unique portfolios to test, typically by manipulating the by’ parameter to select something smaller
than .01 (I often use .002, as .001 seems like overkill)

When using DE, search_size is decomposed into two other parameters which it interacts with, NP
and itermax.

NP, the number of members in each population, is set to cap at 2000 in DEoptim, and by default is
the number of parameters (assets/weights) * 10.

itermax, if not passed in dots, defaults to the number of parameters (assets/weights) * 50.
When using GenSA and want to set verbose=TRUE, instead use trace.

If optimize_method="ROI" is specified, a default solver will be selected based on the optimiza-
tion problem. The glpk solver is the default solver for LP and MILP optimization problems. The
quadprog solver is the default solver for QP optimization problems. For example, optimize_method
= "quadprog” can be specified and the optimization problem will be solved via ROI using the quad-
prog solver.

The extension to ROI solves a limited type of convex optimization problems:
* Maxmimize portfolio return subject leverage, box, group, position limit, target mean return,
and/or factor exposure constraints on weights.

* Minimize portfolio variance subject to leverage, box, group, turnover, and/or factor exposure
constraints (otherwise known as global minimum variance portfolio).

* Minimize portfolio variance subject to leverage, box, group, and/or factor exposure constraints
and a desired portfolio return.

» Maximize quadratic utility subject to leverage, box, group, target mean return, turnover, and/or
factor exposure constraints and risk aversion parameter. (The risk aversion parameter is passed
into optimize.portfolio as an added argument to the portfolio object).



102 optimize.portfolio

* Maximize portfolio mean return per unit standard deviation (i.e. the Sharpe Ratio) can be done
by specifying maxSR=TRUE in optimize.portfolio. If both mean and StdDev are specified
as objective names, the default action is to maximize quadratic utility, therefore maxSR=TRUE
must be specified to maximize Sharpe Ratio.

* Minimize portfolio ES/ETL/CVaR optimization subject to leverage, box, group, position limit,
target mean return, and/or factor exposure constraints and target portfolio return.

* Maximize portfolio mean return per unit ES/ETL/CVaR (i.e. the STARR Ratio) can be done
by specifying maxSTARR=TRUE in optimize.portfolio. If both mean and ES/ETL/CVaR
are specified as objective names, the default action is to maximize mean return per unit
ES/ETL/CVaR.

These problems also support a weight_concentration objective where concentration of weights as
measured by HHI is added as a penalty term to the quadratic objective.

Because these convex optimization problem are standardized, there is no need for a penalty term.
The multiplier argument in add.objective passed into the complete constraint object are ig-
nored by the ROI solver.

If optimize_method="CVXR" is specified, a default solver will be selected based on the optimiza-
tion problem. The default solver for Quadratic Programming will be 0SQP, and the default solver for
Linear Problem and Second-Order Cone Programming will be SCS. Specified CVXR solver can be
given by using optimize_method=c("CVXR", "CVXRsolver"). CVXR supports some commercial
solvers, including CBC, CPLEX, GUROBI and MOSEK, and some open source solvers, including
GLPK, GLPK_MI, OSQP, SCS and ECOS. For example, optimize_method = c("CVXR", "ECOS")
can be specified and the optimization problem will be solved via CVXR using the ECOS solver.

The extension to CVXR solves a limited type of convex optimization problems:

* Maxmimize portfolio mean return subject leverage, box, group, and/or target mean return
constraints

* Minimize portfolio variance subject to leverage, box, group, and/or target mean return con-
straints (otherwise known as global minimum variance portfolio).

* Maximize quadratic utility subject to leverage, box, group, and/or target mean return con-
straints and risk aversion parameter. (The default risk aversion is 1, and specified risk aversion
could be given by risk_aversion = 1. The risk aversion parameter is passed into optimize.portfolio
as an added argument to the portfolio object.)

* Minimize portfolio ES/ETL/CVaR optimization subject to leverage, box, group, and/or target
mean return constraints and tail probability parameter. (The default tail probability is 0.05,
and specified tail probability could be given by arguments = 1ist(p=0.95). The tail proba-
bility parameter is passed into optimize.portfolio as an added argument to the portfolio
object.)

* Minimize portfolio CSM optimization subject to leverage, box, group, and/or target mean
return constraints and tail probability parameter. (The default tail probability is 0.05, and
specified tail probability could be given by arguments = 1list(p=0.95). The tail probabil-
ity parameter is passed into optimize.portfolio as an added argument to the portfolio
object.)

* Maximize portfolio mean return per unit standard deviation (i.e. the Sharpe Ratio) subject
to leverage, box, group, and/or target mean return constraints. It should be specified by
maxSR=TRUE in optimize.portfolio with both mean and var/StdDev objectives. Otherwise,
the default action is to maximize quadratic utility.



optimize.portfolio 103

* Maximize portfolio mean return per unit ES (i.e. the ES ratio/STARR) subject to leverage,
box, group, and/or target mean return constraints. It could be specified by maxSTARR=TRUE
or ESratio=TRUE in optimize.portfolio with both mean and ES objectives. The default
action is to maximize ES ratio. If maxSTARR=FALSE or ESratio=FALSE is given, the action
will be minimizing ES.

* Maximize portfolio mean return per unit CSM (i.e. the CSM ratio) subject to leverage, box,
group, and/or target mean return constraints. It could be specified by CSMratio=TRUE in
optimize.portfolio with both mean and CSM objectives. The default action is to maximize
CSM ratio. If CSMratio=FALSE is given, the action will be minimizing CSM.

Because these convex optimization problem are standardized, there is no need for a penalty term.
The multiplier argument in add.objective passed into the complete constraint object are ig-
nored by the CVXR solver.

Value
a list containing the following elements

weights: The optimal set weights.

objective_measures: A list containing the value of each objective corresponding to the optimal
weights.

opt_values: A list containing the value of each objective corresponding to the optimal weights.
out: The output of the solver.

call: The function call.

portfolio: The portfolio object.

R: The asset returns.

data summary: The first row and last row of R.

elapsed_time: The amount of time that elapses while the optimization is run.

end_t: The date and time the optimization completed.

When Trace=TRUE is specified, the following elements will be returned in addition to the elements

above. The output depends on the optimization method and is specific to each solver. Refer to the
documentation of the desired solver for more information.

optimize_method="random"

random_portfolios: A matrix of the random portfolios.

random_portfolio_objective_results: A list of the following elements for each random port-
folio.

out: The output value of the solver corresponding to the random portfolio weights.
weights: The weights of the random portfolio.

objective_measures: A list of each objective measure corresponding to the random portfo-
lio weights.

optimize_method="DEoptim”

DEoutput: A list (of length 2) containing the following elements:



104 optimize.portfolio

e optim
* member
DEoptim_objective_results: A list containing the following elements for each intermediate
population.
* out: The output of the solver.
* weights: Population weights.
e init_weights: Initial population weights.

* objective_measures: A list of each objective measure corresponding to the weights
optimize_method="pso"

* PSOoutput: A list containing the following elements:
— par
— value
— counts
— convergence
— message

— stats
optimize_method="GenSA"

* GenSAoutput: A list containing the following elements:

— value
— par
— trace.mat

counts

Note

An object of class v1_constraint can be passed in for the constraints argument. The v1_constraint
object was used in the previous 'v1’ specification to specify the constraints and objectives for the
optimization problem, see constraint. We will attempt to detect if the object passed into the
constraints argument is a vl_constraint object and update to the v2’ specification by adding the
constraints and objectives to the portfolio object.

Author(s)

Kris Boudt, Peter Carl, Brian G. Peterson, Ross Bennett, Xiaokang Feng, Xinran Zhao

See Also

portfolio.spec



optimize.portfolio.parallel 105

optimize.portfolio.parallel
Execute multiple optimize.portfolio calls, presumably in parallel

Description

This function will not speed up optimization!

Usage

optimize.portfolio.parallel(
R,
portfolio,
optimize_method = c("DEoptim”, "random"”, "ROI", "pso"”, "GenSA", "CVXR"),
search_size = 20000,
trace = FALSE,

rp = NULL,

momentFUN = "set.portfolio.moments”,
message = FALSE,
nodes = 4
)
Arguments
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
portfolio an object of type "portfolio" specifying the constraints and objectives for the

optimization

optimize_method
one of "DEoptim", "random", "pso"”, "GenSA".

search_size integer, how many portfolios to test, default 20,000

trace TRUE/FALSE if TRUE will attempt to return additional information on the path
or portfolios searched

any other passthru parameters

rp matrix of random portfolio weights, default NULL, mostly for automated use
by rebalancing optimization or repeated tests on same portfolios

momentFUN the name of a function to call to set portfolio moments, default set.portfolio.moments_v2
message TRUE/FALSE. The default is message=FALSE. Display messages if TRUE.

nodes how many processes to run in the foreach loop, default 4



106 optimize.portfolio.rebalancing

Details

This function exists to run multiple copies of optimize.portfolio, presumabley in parallel using
foreach.

This is typically done to test your parameter settings, specifically total population size, but also
possibly to help tune your convergence settings, number of generations, stopping criteria, etc.

If you want to use all the cores on your multi-core computer, use the parallel version of the apppro-
priate optimization engine, not this function.

Value
a list containing the optimal weights, some summary statistics, the function call, and optionally
trace information

Author(s)

Kris Boudt, Peter Carl, Brian G. Peterson

optimize.portfolio.rebalancing
Portfolio Optimization with Rebalancing Periods

Description

Portfolio optimization with support for rebalancing periods for out-of-sample testing (i.e. backtest-
ing)

Usage

optimize.portfolio.rebalancing_v1(
R,
constraints,
optimize_method = c("DEoptim”, "random"”, "ROI"),
search_size = 20000,
trace = FALSE,

rp = NULL,

rebalance_on = NULL,

training_period = NULL,

rolling_window = NULL
)

optimize.portfolio.rebalancing(
R,
portfolio = NULL,
constraints = NULL,
objectives = NULL,



optimize.portfolio.rebalancing 107

optimize_method = c("DEoptim”, "random"”, "ROI", "CVXR"),
search_size = 20000,
trace = FALSE,

rp = NULL,

rebalance_on = NULL,
training_period = NULL,
rolling_window = NULL

)

Arguments
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
constraints default NULL, a list of constraint objects

optimize_method
one of "DEoptim", "random", "pso", "GenSA", or "ROI"
search_size integer, how many portfolios to test, default 20,000

trace TRUE/FALSE if TRUE will attempt to return additional information on the path
or portfolios searched

any other passthru parameters to optimize.portfolio
rp a set of random portfolios passed into the function to prevent recalculation

rebalance_on character string of period to rebalance on. See endpoints for valid names.

training_period
an integer of the number of periods to use as a training data in the front of the
returns data

rolling_window an integer of the width (i.e. number of periods) of the rolling window, the default
of NULL will run the optimization using the data from inception.

portfolio an object of type "portfolio" specifying the constraints and objectives for the
optimization
objectives default NULL, a list of objective objects
Details

Run portfolio optimization with periodic rebalancing at specified time periods. Running the portfo-
lio optimization with periodic rebalancing can help refine the constraints and objectives by evaluat-
ing the out of sample performance of the portfolio based on historical data.

If both training_period and rolling_window are NULL, then training_period is set to a default
value of 36.

If training_period is NULL and a rolling_window is specified, then training_period is set to
the value of rolling_window.

The user should be aware of the following behavior when both training_period and rolling_window
are specified and have different values

training_period <rolling_window: Forexample,if youhave rolling_window=60, training_period=>50,
and the periodicity of the data is the same as the rebalance frequency (i.e. monthly data with
rebalance_on="months") then the returns data used in the optimization at each iteration are
as follows:



108 optimize.portfolio.rebalancing

1: R[1:50,]
e 2: R[1:51,]

11: R[1:60,]
12: R[1:61,]
13: R[2:62,]

This results in a growing window for several optimizations initially while the endpoint iterator
(i.e. [50, 51, ...1])1is less than the rolling window width.

training_period > rolling_window: The dataused in the initial optimizationis R[(training_period
-rolling_window):training_period,]. This results in some of the data being "thrown
away", i.e. periods 1 to (training_period - rolling_window - 1) are not used in the opti-
mization.

This function is a essentially a wrapper around optimize.portfolio and thus the discussion in the
Details section of the optimize.portfolio help file is valid here as well.

This function is massively parallel and requires the ’foreach’ package. It is suggested to register a
parallel backend.

Value
a list containing the following elements

portfolio: The portfolio object.

R: The asset returns.

call: The function call.

elapsed_time: The amount of time that elapses while the optimization is run.

opt_rebalancing: A list of optimize.portfolio objects computed at each rebalancing period.

Author(s)

Kris Boudt, Peter Carl, Brian G. Peterson

See Also

portfolio.spec optimize.portfolio

Examples

## Not run:
data(edhec)

R <- edhec[,1:4]
funds <- colnames(R)

portf <- portfolio.spec(funds)

portf <- add.constraint(portf, type="full_investment")
portf <- add.constraint(portf, type="long_only")

portf <- add.objective(portf, type="risk"”, name="StdDev")



pHist 109

# Quarterly rebalancing with 5 year training period
bt.optl <- optimize.portfolio.rebalancing(R, portf,
optimize_method="ROI",

rebalance_on="quarters",

training_period=60)

# Monthly rebalancing with 5 year training period and 4 year rolling window
bt.opt2 <- optimize.portfolio.rebalancing(R, portf,

optimize_method="ROI",

rebalance_on="months",

training_period=60,

rolling_window=48)

## End(Not run)

pHist Generates histogram

Description

Generates histogram

Usage

pHist(X, p, nBins, freq = FALSE)

Arguments
X a vector containing the data points
p a vector containing the probabilities for each of the data points in X
nBins expected number of Bins the data set is to be broken down into
freq a boolean variable to indicate whether the graphic is a representation of frequen-
cies
Value

a list with f the frequency for each midpoint x the midpoints of the nBins intervals

Author(s)

Ram Ahluwalia <ram@wingedfootcapital.com> and Xavier Valls <flamejat@gmail.com>

References

https://www.arpm.co/ See Meucci script pHist.m used for plotting


https://www.arpm.co/

110

plot.optimize.portfolio.DEoptim

plot.optimize.portfolio.DEoptim

plot method for objects of class optimize.portfolio

Description

Scatter and weights chart for portfolio optimizations run with trace=TRUE

Usage
## S3 method for class 'optimize.portfolio.DEoptim'
plot(
X,
return.col = "mean",

risk.col = "ES",
chart.assets = FALSE,
neighbors = NULL,

main = "optimized portfolio plot”,

xlim = NULL,

ylim = NULL
)
## S3 method for class 'optimize.portfolio.GenSA'
plot(

X,

rp = FALSE,

return.col = "mean”,

risk.col = "ES",
chart.assets = FALSE,
cex.axis = 0.8,

element.color = "darkgray"”,

neighbors = NULL,

main = "GenSA.Portfolios”,

xlim = NULL,

ylim = NULL
)
## S3 method for class 'optimize.portfolio.pso'
plot(

X,

return.col = "mean”,

risk.col = "ES",
chart.assets = FALSE,
cex.axis = 0.8,



plot.optimize.portfolio. DEoptim

element.color = "darkgray"”,
neighbors = NULL,
main = "PSO.Portfolios”,
xlim = NULL,
ylim = NULL

)

## S3 method for class 'optimize.portfolio.ROI'
plot(

X,

rp = FALSE,

risk.col = "ES",

return.col = "mean”,

chart.assets = FALSE,

element.color = "darkgray"”,

neighbors = NULL,

main = "ROI.Portfolios”,

xlim = NULL,

ylim = NULL
)
## S3 method for class 'optimize.portfolio.random'
plot(

X’

return.col = "mean",

risk.col = "ES",
chart.assets = FALSE,
neighbors = NULL,

xlim = NULL,

ylim = NULL,

main = "optimized portfolio plot”
)
## S3 method for class 'optimize.portfolio'
plot(

X)

return.col = "mean”,

risk.col = "ES",
chart.assets = FALSE,
neighbors = NULL,

xlim = NULL,
ylim = NULL,
main = "optimized portfolio plot”



112 plotFrontiers

Arguments
X set of portfolios created by optimize.portfolio
any other passthru parameters
return.col string name of column to use for returns (vertical axis)
risk.col string name of column to use for risk (horizontal axis)

chart.assets TRUE/FALSE to include risk-return scatter of assets

neighbors set of "neighbor portfolios to overplot

main an overall title for the plot: see title

x1lim set the limit on coordinates for the x-axis

ylim set the limit on coordinates for the y-axis

rp TRUE/FALSE to plot feasible portfolios generated by random_portfolios

cex.axis the magnification to be used for axis annotation relative to the current setting of
cex.

element.color provides the color for drawing less-important chart elements, such as the box
lines, axis lines, etc.

Details

return.col must be the name of a function used to compute the return metric on the random
portfolio weights risk.col must be the name of a function used to compute the risk metric on the
random portfolio weights

neighbors may be specified in three ways. The first is as a single number of neighbors. This will
extract the neighbors closest portfolios in terms of the out numerical statistic. The second method
consists of a numeric vector for neighbors. This will extract the neighbors with portfolio index
numbers that correspond to the vector contents. The third method for specifying neighbors is to
pass in a matrix. This matrix should look like the output of extractStats, and should contain
risk.col,return.col, and weights columns all properly named.

The ROI and GenSA solvers do not store the portfolio weights like DEoptim or random portfolios,
random portfolios can be generated for the scatter plot with the rp argument.

plotFrontiers Generate efficient frontiers plot by providing frontiers.

Description

Generate efficient frontiers plot by providing frontiers.



plotFrontiers 113

Usage

plotFrontiers(
R,
frontiers,
risk,
ES_alpha = 0.05,
CSM_alpha = 0.05,
moment_setting = NULL,
main = "Efficient Frontiers”,
plot_type = "1",
cex.axis = 0.5,
element.color = "darkgray"”,
legend.loc = NULL,
legend.labels = NULL,
cex.legend = 0.8,
xlim = NULL,
ylim = NULL,
labels.assets = TRUE,
pch.assets = 21,
cex.assets = 0.8,

col = NULL,
Ity = NULL,
lwd = NULL
)
Arguments
R an xts object of asset returns
frontiers a list of frontiers, for example, list(ef1=meanvar.efficient.frontier(), ef2=meanvar.efficient.frontier())
risk type of risk that you want to compare, could be ’StdDev’, ’ES’, "CSM’
ES_alpha the default value is 0.05, but could be specified as any value between 0 and 1
CSM_alpha the default value is 0.05, but could be specified as any value between 0 and 1
moment_setting the defaultis NULL, if customize momentFUN please provide moment_setting=list(mu=,
sigma=)
main title used in the plot.
plot_type define the plot_type, default is "1"
cex.axis the magnification to be used for sizing the axis text relative to the current setting

of "cex’, similar to plot.

element.color provides the color for drawing less-important chart elements, such as the box
lines, axis lines, etc.

legend. loc location of the legend; NULL, "bottomright”, "bottom", "bottomleft", "left",

"topleft", "top", "topright", "right" and "center".

legend.labels character vector to use for the legend labels.



114 portfolio.moments.bl

cex.legend The magnification to be used for sizing the legend relative to the current setting
of cex’, similar to plot.

xlim set the x-axis limit, same as in plot.
ylim set the y-axis limit, same as in plot.
passthrough parameters to plot.
labels.assets TRUE/FALSE to include the asset names in the plot.
pch.assets plotting character of the assets, same as in plot.

cex.assets A numerical value giving the amount by which the asset points and labels should
be magnified relative to the default.

col vector of colors with length equal to the number of portfolios in frontiers.

1ty vector of line types with length equal to the number of portfolios in frontiers.

lwd vector of line widths with length equal to the number of portfolios in frontiers.
Details

This function provides the ability to plot frontiers based on the result of ‘meanvar.efficient.frontier®,
‘meanetl.efficient.frontier‘ or ‘meancsm.efficient.frontier.

When using meanvar.efficient.frontier, meanetl.efficient.frontier and meancsm.efficient.frontier,
the result will be frontiers data, including the weights for each point on the mean-risk efficient fron-

tiers. Before using this function, user should declare which risk that they want to compare, and

what parameters that they want to use to calculate the risk, e.g. ES_alpha for ES, moment_setting

for var. Then this function will calculate back mean and risk based on the weight, and draw a plot.

Default settings use colors and line types to differentiate portfolios, and set the portfolio name as
"Portfolio 1’ and so on. Users could customize col, Ity, Iwd and legend.labels to better the plot.

Author(s)

Xinran Zhao

portfolio.moments.bl  Portfolio Moments

Description

Set portfolio moments for use by lower level optimization functions using a basic Black Litterman
model.



portfolio.moments.boudt 115

Usage

portfolio.moments.bl(

R,

portfolio,
momentargs

P,

Mu = NULL,

Sigma =

Arguments

R
portfolio

momentargs

Mu

Sigma

Note

NULL,

an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns

an object of type portfolio specifying the constraints and objectives for the
optimization, see portfolio.spec

list containing arguments to be passed down to lower level functions, default
NULL

a K x N pick matrix representing views

vector of length N of the prior expected values. The sample mean is used if
Mu=NULL.

an N x N matrix of the prior covariance matrix. The sample covariance is used
if Sigma=NULL.

any other passthru parameters

If any of the objectives in the portfolio object have clean as an argument, the cleaned returns are
used to fit the model.

portfolio.moments.boudt

Portfolio Moments

Description

Set portfolio moments for use by lower level optimization functions using a statistical factor model
based on the work of Kris Boudt.

Usage

portfolio.moments.boudt(R, portfolio, momentargs = NULL, k =1, ...)



116 portfolio.spec

Arguments
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
portfolio an object of type portfolio specifying the constraints and objectives for the
optimization, see portfolio.spec
momentargs list containing arguments to be passed down to lower level functions, default
NULL
k number of factors used for fitting statistical factor model
any other passthru parameters
Note

If any of the objectives in the portfolio object have clean as an argument, the cleaned returns are
used to fit the model.

portfolio.spec constructor for class portfolio

Description

The portfolio object is created with portfolio.spec. The portfolio object is an S3 object of class
*portfolio’ used to hold the initial asset weights, constraints, objectives, and other information about
the portfolio. The only required argument to portfolio. spec is assets.

Usage

portfolio.spec(
assets = NULL,
name = "portfolio”,
category_labels = NULL,
weight_seq = NULL,
message = FALSE

)
Arguments
assets number of assets, or optionally a named vector of assets specifying seed weights.
If seed weights are not specified, an equal weight portfolio will be assumed.
name give the portfolio a name, the default name will be ’portfolio’

category_labels
character vector to categorize assets by sector, industry, geography, market-cap,
currency, etc. Default NULL

weight_seq seed sequence of weights, see generatesequence Default NULL
message TRUE/FALSE. The default is message=FALSE. Display messages if TRUE.



portfolio_risk_objective 117

Details
The portfolio object contains the following elements:

assets named vector of the seed weights

category_labels character vector to categorize the assets by sector, geography, etc.
weight_seq sequence of weights used by random_portfolios. See generatesequence
constraints a list of constraints added to the portfolio object with add. constraint
objectives alist of objectives added to the portfolio object with add.objective

call the call to portfolio.spec with all of the specified arguments

Value

an object of class portfolio

Author(s)

Ross Bennett, Brian G. Peterson

See Also

add.constraint, add.objective, optimize.portfolio

Examples

data(edhec)
pspec <- portfolio.spec(assets=colnames(edhec))
pspec <- portfolio.spec(assets=10, weight_seg=generatesequence())

portfolio_risk_objective
constructor for class portfolio_risk_objective

Description

if target is null, we’ll try to minimize the risk metric

Usage

portfolio_risk_objective(
name,
target = NULL,
arguments = NULL,
multiplier = 1,
enabled = TRUE,



118 position_limit_constraint

Arguments
name name of the objective, should correspond to a function, though we will try to
make allowances
target univariate target for the objective
arguments default arguments to be passed to an objective function when executed
multiplier multiplier to apply to the objective, usually 1 or -1
enabled TRUE/FALSE
any other passthru parameters
Value

object of class "portfolio_risk_objective’

Author(s)

Brian G. Peterson

position_limit_constraint
constructor for filter_constraint

Description

This function is called by add.constraint when type="filter" is specified, add.constraint

Usage

position_limit_constraint(
type = "position_limit",
filter_name = NULL,
enabled = TRUE,
message = FALSE,

Arguments
type character type of the constraint
filter_name either a function to apply, or a name of a function to apply
enabled TRUE/FALSE
message TRUE/FALSE. The default is message=FALSE. Display messages if TRUE.

any other passthru parameters to specify position limit constraints



pos_limit_fail 119

Details

Allows the user to specify a filter function which will take returns, weights, and constraints as
inputs, and can return a modified weights vector as output.

Fundamentally, it could be used to filter out certain assets, or to ensure that they must be long or
short.

Typically, filter functions will be called by the random portfolio simulation function or via the
fn_map function.

Value

an object of class ’position_limit_constraint’

Author(s)

Ross Bennett

See Also

add.constraint

Examples

data(edhec)
ret <- edhec[, 1:4]

pspec <- portfolio.spec(assets=colnames(ret))

pspec <- add.constraint(portfolio=pspec, type="position_limit"”, max_pos=3)
pspec <- add.constraint(portfolio=pspec, type="position_limit"”, max_pos_long=3, max_pos_short=1)

pos_limit_fail function to check for violation of position limits constraints

Description
This is used as a helper function for rp_transform to check for violation of position limit con-
straints. The position limit constraints checked are max_pos, max_pos_long, and max_pos_short.
Usage

pos_limit_fail(weights, max_pos, max_pos_long, max_pos_short)

Arguments
weights vector of weights to test
max_pos maximum number of assets with non-zero weights

max_pos_long maximum number of assets with long (i.e. buy) positions

max_pos_short maximum number of assets with short (i.e. sell) positions



120 print.efficient.frontier

Value

TRUE if any position_limit is violated. FALSE if all position limits are satisfied

print.constraint print method for constraint objects

Description

print method for constraint objects

Usage
## S3 method for class 'constraint'
print(x, ...)
Arguments
X object of class constraint
any other passthru parameters
Author(s)

Ross Bennett

print.efficient.frontier
Print an efficient frontier object

Description

Print method for efficient frontier objects. Display the call to create or extract the efficient frontier
object and the portfolio from which the efficient frontier was created or extracted.

Usage
## S3 method for class 'efficient.frontier'
print(x, ...)
Arguments
X objective of class efficient.frontier
any other passthru parameters
Author(s)

Ross Bennett



print.optimize.portfolio.rebalancing

See Also

create.EfficientFrontier

121

print.optimize.portfolio.rebalancing

Printing output of optimize.portfolio.rebalancing

Description
print method for optimize.portfolio.rebalancing objects
Usage

## S3 method for class 'optimize.portfolio.rebalancing'
print(x, ..., digits = 4)

Arguments
X an object used to select a method
any other passthru parameters
digits the number of significant digits to use when printing.
Author(s)

Ross Bennett

See Also

optimize.portfolio.rebalancing

print.optimize.portfolio.ROI

Printing output of optimize.portfolio

Description

print method for optimize.portfolio objects



122 print.portfolio

Usage

## S3 method for class 'optimize.portfolio.ROI'
print(x, ..., digits = 4)

## S3 method for class 'optimize.portfolio.CVXR'
print(x, ..., digits = 4)

## S3 method for class 'optimize.portfolio.random'
print(x, ..., digits = 4)

## S3 method for class 'optimize.portfolio.DEoptim
print(x, ..., digits = 4)

## S3 method for class 'optimize.portfolio.GenSA'
print(x, ..., digits = 4)

## S3 method for class 'optimize.portfolio.pso'

print(x, ..., digits = 4)
Arguments
X an object used to select a method

any other passthru parameters

digits the number of significant digits to use when printing.

Author(s)

Ross Bennett

See Also

optimize.portfolio

print.portfolio Printing Portfolio Specification Objects

Description

Print method for objects of class portfolio created with portfolio.spec

Usage

## S3 method for class 'portfolio'
print(x, ...)



print.summary.optimize.portfolio

Arguments
X an object of class portfolio
any other passthru parameters
Author(s)

Ross Bennett

See Also

portfolio.spec

123

print.summary.optimize.portfolio

Printing summary output of optimize.portfolio

Description

print method for objects of class summary.optimize.portfolio

Usage
## S3 method for class 'summary.optimize.portfolio'
print(x, ...)
Arguments
X an object of class summary.optimize.portfolio.
any other passthru parameters. Currently not used.
Author(s)

Ross Bennett

See Also

summary.optimize.portfolio



124 quadratic_utility_objective

print.summary.optimize.portfolio.rebalancing
Printing summary output of optimize.portfolio.rebalancing

Description

print method for objects of class summary.optimize.portfolio.rebalancing

Usage

## S3 method for class 'summary.optimize.portfolio.rebalancing'
print(x, ..., digits = 4)

Arguments
X an object of class summary.optimize.portfolio.rebalancing.
any other passthru parameters
digits number of digits used for printing
Author(s)

Ross Bennett

See Also

summary.optimize.portfolio.rebalancing

quadratic_utility_objective
constructor for quadratic utility objective

Description
This function calls return_objective and portfolio_risk_objective to create a list of the
objectives to be added to the portfolio.

Usage

quadratic_utility_objective(risk_aversion = 1, target = NULL, enabled = TRUE)

Arguments

risk_aversion risk_aversion (i.e. lambda) parameter to penalize variance
target target mean return value
enabled TRUE/FALSE, default enabled=TRUE



randomize_portfolio 125
Value
a list of two elements
e return_objective

e portfolio_risk_objective

Author(s)

Ross Bennett

randomize_portfolio version 2 generate random permutations of a portfolio seed meeting
your constraints on the weights of each asset

Description

version 2 generate random permutations of a portfolio seed meeting your constraints on the weights
of each asset

Usage

randomize_portfolio(portfolio, max_permutations = 200)

Arguments

portfolio an object of type "portfolio" specifying the constraints for the optimization, see
portfolio.spec

max_permutations
integer: maximum number of iterations to try for a valid portfolio, default 200

Value

named weighting vector

Author(s)

Peter Carl, Brian G. Peterson, (based on an idea by Pat Burns)



126 random_portfolios

randomize_portfolio_v1

Random portfolio sample method

Description

This function generates random permutations of a portfolio seed meeting leverage and box con-
straints. The final step is to run fn_map on the random portfolio weights to transform the weights
so they satisfy other constraints such as group or position limit constraints. This is the ’sample’
method for random portfolios and is based on an idea by Pat Burns.

Usage

randomize_portfolio_v1(rpconstraints, max_permutations = 200, rounding = 3)

Arguments

rpconstraints an object of type "constraints" specifying the constraints for the optimization,
see constraint
max_permutations

integer: maximum number of iterations to try for a valid portfolio, default 200
rounding integer how many decimals should we round to

Value

named weights vector

Author(s)

Peter Carl, Brian G. Peterson, (based on an idea by Pat Burns)

random_portfolios version 2 generate an arbitary number of constrained random portfo-
lios

Description

Generate random portfolios using the sample’, ’simplex’, or ’grid’ method. See details.

Usage

random_portfolios(
portfolio,
permutations = 100,
rp_method = "sample”,
eliminate = TRUE,



random_portfolios 127

Arguments

portfolio an object of class "portfolio’ specifying the constraints for the optimization, see
portfolio.spec

permutations  integer: number of unique constrained random portfolios to generate

rp_method method to generate random portfolios. Currently "sample", "simplex", or "grid".
See Details.

eliminate TRUE/FALSE, eliminate portfolios that do not satisfy constraints

any other passthru parameters

Details
Random portfolios can be generate using one of three methods.

sample: The ’sample’ method to generate random portfolios is based on an idea pioneerd by Pat
Burns. This is the most flexible method, but also the slowest, and can generate portfolios to
satisfy leverage, box, group, position limit, and leverage exposure constraints.

simplex: The ’simplex’ method to generate random portfolios is based on a paper by W. T. Shaw.
The simplex method is useful to generate random portfolios with the full investment constraint,
where the sum of the weights is equal to 1, and min box constraints. Values for min_sum and
max_sum of the leverage constraint will be ignored, the sum of weights will equal 1. All other
constraints such as group and position limit constraints will be handled by elimination. If the
constraints are very restrictive, this may result in very few feasible portfolios remaining.

grid: The ’grid’ method to generate random portfolios is based on the gridSearch function in
package "NMOF’. The grid search method only satisfies the min and max box constraints.
The min_sum and max_sum leverage constraints will likely be violated and the weights in the
random portfolios should be normalized. Normalization may cause the box constraints to be
violated and will be penalized in constrained_objective.

The constraint types checked are leverage, box, group, position limit, and leverage exposure. Any
portfolio that does not satisfy all these constraints will be eliminated. This function is particularly
sensitive to min_sum and max_sum leverage constraints. For the sample method, there should be
some "wiggle room" between min_sum and max_sum in order to generate a sufficient number of
feasible portfolios. For example, min_sum=0.99 and max_sum=1.01 is recommended instead of
min_sum=1 and max_sum=1. If min_sum=1 and max_sum=1, the number of feasible portfolios may
be 1/3 or less depending on the other constraints.
Value

matrix of random portfolio weights

Author(s)

Peter Carl, Brian G. Peterson, Ross Bennett

See Also

portfolio.spec, objective, rp_sample, rp_simplex, rp_grid



128 random_portfolios_v1

random_portfolios_v1 generate an arbitary number of constrained random portfolios

Description

repeatedly calls randomize_portfolio to generate an arbitrary number of constrained random
portfolios.

Usage

random_portfolios_v1(rpconstraints, permutations = 100, ...)

Arguments

rpconstraints an object of type "constraints" specifying the constraints for the optimization,
see constraint

permutations integer: number of unique constrained random portfolios to generate

any other passthru parameters

Value

matrix of random portfolio weights

Author(s)

Peter Carl, Brian G. Peterson, (based on an idea by Pat Burns)

See Also

constraint, objective, randomize_portfolio

Examples

rpconstraint<-constraint_v1(assets=10,
min_mult=-Inf,
max_mult=Inf,
min_sum=.99,
max_sum=1.01,
min=.01,
max=.4,
weight_seg=generatesequence())

rp<- random_portfolios_v1(rpconstraints=rpconstraint,permutations=1000)
head(rp)



random_walk_portfolios 129

random_walk_portfolios
deprecated random portfolios wrapper until we write a random trades
function

Description

deprecated random portfolios wrapper until we write a random trades function

Usage

random_walk_portfolios(...)

Arguments
any other passthru parameters
Author(s)
bpeterson
regime.portfolios Regime Portfolios
Description

Construct a regime.portfolios object that contains a time series of regimes and portfolios corre-
sponding to the regimes.

Usage

regime.portfolios(regime, portfolios)

Arguments

regime Xts or zoo object specifying the regime

portfolios list of portfolios created by combine.portfolios with corresponding regimes
Details

Create a regime.portfolios object to support regime switching optimization. This object is then
passed in as the portfolio argument in optimize.portfolio. The regime is detected and the
corresponding portfolio is selected. For example, if the current regime is 1, then portfolio 1 will be
selected and used in the optimization.



130 return_constraint

Value
aregime.portfolios object with the following elements

regime: An xts object of the regime

portfolio: List of portfolios corresponding to the regime

Author(s)

Ross Bennett

return_constraint constructor for return_constraint

Description

The return constraint specifes a target mean return value. This function is called by add.constraint
when type="return" is specified, add. constraint

Usage

return_constraint(
type = "return”,
return_target,
enabled = TRUE,
message = FALSE,

Arguments

type character type of the constraint

return_target return target value

enabled TRUE/FALSE

message TRUE/FALSE. The default is message=FALSE. Display messages if TRUE.

any other passthru parameters

Value

an object of class 'return_constraint’

Author(s)

Ross Bennett

See Also

add.constraint



return_objective

Examples

data(edhec)
ret <- edhec[, 1:4]

pspec <- portfolio.spec(assets=colnames(ret))

131

pspec <- add.constraint(portfolio=pspec, type="return”, return_target=mean(colMeans(ret)))

return_objective constructor for class return_objective

Description

if target is null, we’ll try to maximize the return metric

Usage

return_objective(
name,
target = NULL,
arguments = NULL,
multiplier = -1,
enabled = TRUE,

)
Arguments
name name of the objective, should correspond to a function, though we will try to
make allowances
target univariate target for the objective
arguments default arguments to be passed to an objective function when executed
multiplier multiplier to apply to the objective, usually 1 or -1
enabled TRUE/FALSE
any other passthru parameters
Details

if target is set, we’ll try to meet or exceed the metric, penalizing a shortfall

Value

object of class ’return_objective’

Author(s)

Brian G. Peterson



132 risk_budget_objective

risk_budget_objective constructor for class risk_budget_objective

Description

constructor for class risk_budget_objective

Usage

risk_budget_objective(
assets,
name,
target = NULL,
arguments = NULL,
multiplier = 1,
enabled = TRUE,
min_prisk,
max_prisk,
min_concentration = FALSE,
min_difference = FALSE

)
Arguments

assets vector of assets to use, should come from constraints object

name name of the objective, should correspond to a function, though we will try to
make allowances

target univariate target for the objective

arguments default arguments to be passed to an objective function when executed

multiplier multiplier to apply to the objective, usually 1 or -1

enabled TRUE/FALSE
any other passthru parameters

min_prisk minimum percentage contribution to risk

max_prisk maximum percentage contribution to risk

min_concentration
TRUE/FALSE whether to minimize concentration, default FALSE, always TRUE
if min_prisk and max_prisk are NULL

min_difference TRUE/FALSE whether to minimize difference between concentration, default
FALSE

Value

object of class 'risk_budget_objective’



rp_grid 133

Author(s)

Brian G. Peterson

rp_grid Generate random portfolios based on grid search method

Description

This function generates random portfolios based on the gridSearch function from the 'NMOF’
package.

Usage

rp_grid(portfolio, permutations = 2000, normalize = TRUE)

Arguments

portfolio an object of class "portfolio’ specifying the constraints for the optimization, see
portfolio.spec

permutations  integer: number of unique constrained random portfolios to generate

normalize TRUE/FALSE to normalize the weghts to satisfy min_sum or max_sum

Details

The number of levels is calculated based on permutations and number of assets. The number of
levels must be an integer and may not result in the exact number of permutations. We round up to
the nearest integer for the levels so the number of portfolios generated will be greater than or equal
to permutations.

The grid search method only satisfies the min and max box constraints. The min_sum and max_sum
leverage constraints will likely be violated and the weights in the random portfolios should be
normalized. Normalization may cause the box constraints to be violated and will be penalized in
constrained_objective.

Value

matrix of random portfolio weights



134 rp_simplex

rp_sample Generate random portfolios using the sample method

Description

This function generates random portfolios based on an idea by Pat Burns.

Usage

rp_sample(portfolio, permutations, max_permutations = 200)

Arguments

portfolio an object of type "portfolio" specifying the constraints for the optimization, see
portfolio.spec

permutations integer: number of unique constrained random portfolios to generate
max_permutations
integer: maximum number of iterations to try for a valid portfolio, default 200

Details
The ’sample’ method to generate random portfolios is based on an idea pioneerd by Pat Burns. This
is the most flexible method, but also the slowest, and can generate portfolios to satisfy leverage,
box, group, and position limit constraints.

Value

a matrix of random portfolio weights

rp_simplex Generate random portfolios using the simplex method

Description

This function generates random portfolios based on the method outlined in the Shaw paper. Need
to add reference.

Usage

rp_simplex(portfolio, permutations, fev = 0:5)

Arguments
portfolio an object of class "portfolio’ specifying the constraints for the optimization, see
portfolio.spec
permutations  integer: number of unique constrained random portfolios to generate

fev scalar or vector for FEV biasing



rp_transform 135

Details

The simplex method is useful to generate random portfolios with the full investment constraint
where the sum of the weights is equal to 1 and min box constraints with no upper bound on max
constraints. Values for min_sum and max_sum will be ignored, the sum of weights will equal 1.
All other constraints such as group and position limit constraints will be handled by elimination. If
the constraints are very restrictive, this may result in very few feasible portfolios remaining.

The random portfolios are created by first generating a set of uniform random numbers.
U~ [0,1]

The portfolio weights are then transformed to satisfy the min of the box constraints.

log(U/
w; = min; + (1 — Zm in;) og( p
j=1 Zk 1 Llog(U},

fev controls the Face-Edge-Vertex (FEV) biasing where
qg= 2 fev

As g approaches infinity, the set of weights will be concentrated in a single asset. To sample the inte-
rior and exterior, fev can be passed in as a vector. The number of portfolios, permutations, and the
length of fev affect how the random portfolios are generated. For example, if permutations=10000
and fev=0:4, 2000 portfolios will be generated for each value of fev.

Value

a matrix of random portfolio weights

rp_transform Transform a weights vector to satisfy constraints

Description

This function uses a block of code from randomize_portfolio to transform the weight vector
if either the weight_sum (leverage) constraints, box constraints, group constraints, position_limit
constraints, or leverage exposure constraints are violated. The logic from randomize_portfolio
is heavily utilized here with extensions to handle more complex constraints. The resulting weights
vector might be quite different from the original weights vector.

Usage

rp_transform(
w,
min_sum,
max_sum,
min_box,
max_box,



136

rp_transform

groups = NULL,

cLO = NULL,
cUP = NULL,

max_pos = NULL,
group_pos = NULL,
max_pos_long = NULL,
max_pos_short = NULL,

leverage =

NULL,

weight_seq = NULL,
max_permutations = 200

Arguments

w
min_sum
max_sum
min_box
max_box
groups

cLO

cUP

max_pos
group_pos
max_pos_long
max_pos_short
leverage

weight_seq

weights vector to be transformed

minimum sum of all asset weights, default 0.99

maximum sum of all asset weights, default 1.01

numeric or named vector specifying minimum weight box constraints
numeric or named vector specifying maximum weight box constraints
vector specifying the groups of the assets

numeric or vector specifying minimum weight group constraints

numeric or vector specifying minimum weight group constraints

maximum assets with non-zero weights

vector specifying maximum number assets with non-zero weights per group
maximum number of assets with long (i.e. buy) positions

maximum number of assets with short (i.e. sell) positions

maximum leverage exposure where leverage is defined as sum(abs(weights))

vector of seed sequence of weights

max_permutations

Value

integer: maximum number of iterations to try for a valid portfolio, default 200

named weighting vector

Author(s)

Peter Carl, Brian G. Peterson, Ross Bennett (based on an idea by Pat Burns)



scatterFUN 137

scatterFUN Apply a risk or return function to asset returns

Description

This function is used to calculate risk or return metrics given a matrix of asset returns and will be
used for a risk-reward scatter plot of the assets

Usage

scatterFUN(R, FUN, arguments = NULL)

Arguments

R Xts object of asset returns

FUN name of function

arguments named list of arguments to FUN
Author(s)

Ross Bennett

set.portfolio.moments Portfolio Moments

Description

Set portfolio moments for use by lower level optimization functions. Currently three methods for
setting the moments are available

Usage

set.portfolio.moments(
R,
portfolio,
momentargs = NULL,
method = c("sample”, "boudt”, "black_litterman”, "meucci),



138 set.portfolio.moments_v1

Arguments
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
portfolio an object of type "portfolio" specifying the constraints and objectives for the
optimization, see portfolio.spec
momentargs list containing arguments to be passed down to lower level functions, default
NULL
method the method used to estimate portfolio moments. Valid choices include "sample",
"boudt", and "black_litterman".
any other passthru parameters
Details

sample: sample estimates are used for the moments

boudt: estimate the second, third, and fourth moments using a statistical factor model based on
the work of Kris Boudt. See statistical.factor.model

black_litterman: estimate the first and second moments using the Black Litterman Formula. See
black.litterman.

set.portfolio.moments_v1
set portfolio moments for use by lower level optimization functions

Description

set portfolio moments for use by lower level optimization functions

Usage
set.portfolio.moments_v1(R, constraints, momentargs = NULL, ...)
Arguments
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
constraints an object of type "constraints" specifying the constraints for the optimization,
see constraint
momentargs list containing arguments to be passed down to lower level functions, default

NULL

any other passthru parameters FIXME NOTE: this isn’t perfect as it overwrites
the moments for all objectives, not just one with clean="boudt’



statistical.factor.model 139

statistical.factor.model
Statistical Factor Model

Description

Fit a statistical factor model using Principal Component Analysis (PCA)

Usage
statistical.factor.model(R, k = 1, ...)
Arguments
R xts of asset returns
k number of factors to use
additional arguments passed to prcomp
Details

The statistical factor model is fitted using prcomp. The factor loadings, factor realizations, and
residuals are computed and returned given the number of factors used for the model.
Value
#7
factor_loadings N x k matrix of factor loadings (i.e. betas)

factor_realizations m x k matrix of factor realizations

residuals m x N matrix of model residuals representing idiosyncratic risk factors

Where N is the number of assets, k is the number of factors, and m is the number of observations.

summary.efficient.frontier
Summarize an efficient frontier object

Description
Summary method for efficient frontier objects. Display the call to create or extract the efficient
frontier object as well as the weights and risk and return metrics along the efficient frontier.

Usage

## S3 method for class 'efficient.frontier'
summary(object, ..., digits = 3)



140

Arguments
object object of class efficient.frontier
passthrough parameters
digits number of digits to round to
Author(s)

Ross Bennett

summary.optimize.portfolio

summary.optimize.portfolio
Summarizing output of optimize.portfolio

Description

summary method for class optimize.portfolio

Usage
## S3 method for class 'optimize.portfolio'
summary (object, ...)

Arguments
object an object of class optimize.portfolio.

any other passthru parameters. Currently not used.

Author(s)

Ross Bennett

See Also

optimize.portfolio



summary.optimize.portfolio.rebalancing 141

summary.optimize.portfolio.rebalancing
summary method for optimize.portfolio.rebalancing

Description

summary method for optimize.portfolio.rebalancing

Usage
## S3 method for class 'optimize.portfolio.rebalancing'
summary (object, ...)

Arguments
object object of type optimize.portfolio.rebalancing

any other passthru parameters

summary .portfolio Summarize Portfolio Specification Objects

Description

summary method for class portfolio created with portfolio.spec

Usage
## S3 method for class 'portfolio'
summary (object, ...)

Arguments
object an object of class portfolio

any other passthru parameters

Author(s)

Ross Bennett

See Also

portfolio.spec



142 transaction_cost_constraint

trailingFUN apply a function over a configurable trailing period

Description

this function is primarily designed for use with portfolio functions passing ’x’ or 'R’ and weights,
but may be usable for other things as well, see Example for a vector example.

Usage
trailingFUN(R, weights, n = @, FUN, FUNargs = NULL, ...)
Arguments
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
weights a vector of weights to test
n numeric number of trailing periods
FUN string describing the function to be called
FUNargs list describing any additional arguments
any other passthru parameters
Details

called with e.g.
trailingFUN(seq(1:100), weights=NULL, n=12, FUN="mean’ ,FUNargs=list())

transaction_cost_constraint
constructor for transaction_cost_constraint

Description

The transaction cost constraint specifies a proportional cost value. This function is called by
add.constraint when type="transaction_cost" is specified, see add.constraint.

Usage
transaction_cost_constraint(
type = "transaction_cost”,
assets,
ptc,
enabled = TRUE,
message = FALSE,



turnover

Arguments
type
assets
ptc
enabled

message

Details

143

character type of the constraint

number of assets, or optionally a named vector of assets specifying initial weights
proportional transaction cost value

TRUE/FALSE

TRUE/FALSE. The default is message=FALSE. Display messages if TRUE.

any other passthru parameters to specify box and/or group constraints

Note that with the ROI solvers, proportional transaction cost constraint is currently only supported
for the global minimum variance and quadratic utility problems with ROI quadprog plugin.

Value

an object of class ’transaction_cost_constraint’

Author(s)

Ross Bennett

See Also

add.constraint

Examples

data(edhec)

ret <- edhec[, 1:4]

pspec <- portfolio.spec(assets=colnames(ret))

pspec <- add.constraint(portfolio=pspec, type="transaction_cost"”, ptc=0.01)

turnover Calculates turnover given two vectors of weights. This is used as an
objective function and is called when the user adds an objective of type
turnover with add.objective
Description

Calculates turnover given two vectors of weights. This is used as an objective function and is called
when the user adds an objective of type turnover with add.objective

Usage

turnover (weights, wts.init = NULL)



144 turnover_constraint

Arguments

weights vector of weights from optimization

wts.init vector of initial weights used to calculate turnover from
Author(s)

Ross Bennett

turnover_constraint constructor for turnover_constraint

Description

The turnover constraint specifies a target turnover value. This function is called by add.constraint
when type="turnover" is specified, see add. constraint. Turnover is calculated from a set of initial
weights. Turnover is computed as sum(abs(initial_weights - weights)) / N where N is the
number of assets.

Usage

turnover_constraint(
type = "turnover”,
turnover_target,
turnover_penalty = NULL,
weight_initial = NULL,
enabled = TRUE,
message = FALSE,

Arguments

type character type of the constraint
turnover_target

target turnover value
turnover_penalty

optional penalty parameter for turnover constraint

weight_initial optional initial weights vector to compute turnover from
enabled TRUE/FALSE
message TRUE/FALSE. The default is message=FALSE. Display messages if TRUE.

any other passthru parameters to specify box and/or group constraints

Details

Note that with the ROI solvers, turnover constraint is currently only supported for the global mini-
mum variance and quadratic utility problems with ROI quadprog plugin.



turnover_objective 145

Value

an object of class ’turnover_constraint’

Author(s)

Ross Bennett

See Also

add.constraint

Examples

data(edhec)
ret <- edhec[, 1:4]

pspec <- portfolio.spec(assets=colnames(ret))

pspec <- add.constraint(portfolio=pspec, type="turnover"”, turnover_target=0.6)

turnover_objective constructor for class turnover_objective

Description

if target is null, we’ll try to minimize the turnover metric

Usage

turnover_objective(
name,
target = NULL,
arguments = NULL,
multiplier = 1,
enabled = TRUE,

)
Arguments
name name of the objective, should correspond to a function, though we will try to
make allowances
target univariate target for the objective
arguments default arguments to be passed to an objective function when executed
multiplier multiplier to apply to the objective, usually 1 or -1
enabled TRUE/FALSE

any other passthru parameters



146 update_constraint_v1tov2

Details

if target is set, we’ll try to meet the metric

Value

an objective of class 'turnover_objective’

Author(s)

Ross Bennett

update.constraint function for updating constrints, not well tested, may be broken

Description

can we use the generic update.default function?

Usage
## S3 method for class 'constraint'
update(object, ...)

Arguments
object object of type constraint to update

any other passthru parameters, used to call constraint

Author(s)

bpeterson

update_constraint_vitov2
Helper function to update vI_constraint objects to v2 specification in
the portfolio object

Description

The function takes the constraints and objectives specified in the v1_constraint object and up-
dates the portfolio object with those constraints and objectives. This function is used inside op-
timize.portfolio to maintain backwards compatibility if the user passes in a v1_constraint object for
the constraint arg in optimize.portfolio.



var.portfolio 147

Usage

update_constraint_vitov2(portfolio, vi_constraint)

Arguments

portfolio portfolio object passed into optimize.portfolio

vl_constraint object of type v1_constraint passed into optimize.portfolio

Value

portfolio object containing constraints and objectives from v1_constraint

Author(s)

Ross Bennett

See Also

portfolio.spec, add.constraint

var.portfolio Calculate portfolio variance

Description

This function is used to calculate the portfolio variance via a call to constrained_objective when var
is an object for mean variance or quadratic utility optimization.

Usage

var.portfolio(R, weights)

Arguments
R Xts object of asset returns
weights vector of asset weights
Value

numeric value of the portfolio variance

Author(s)

Ross Bennett



148 weight_concentration_objective

weight_concentration_objective
Constructor for weight concentration objective

Description

This function penalizes weight concentration using the Herfindahl-Hirschman Index as a measure
of concentration.

Usage

weight_concentration_objective(
name,
conc_aversion,
conc_groups = NULL,
arguments = NULL,
enabled = TRUE,

Arguments

name name of concentration measure, currently only "HHI" is supported.

conc_aversion concentration aversion value(s)

conc_groups list of vectors specifying the groups of the assets. Similar to groups in group_constraint
arguments default arguments to be passed to an objective function when executed
enabled TRUE/FALSE

any other passthru parameters

Details

The conc_aversion argument can be a scalar or vector of concentration aversion values. If conc_aversion
is a scalar and conc_groups is NULL, then the concentration aversion value will be applied to the
overall weights.

If conc_groups is specified as an argument, then the concentration aversion value(s) will be applied
to each group.

Value

an object of class *weight_concentration_objective’

Author(s)

Ross Bennett



weight_sum_constraint 149

weight_sum_constraint constructor for weight _sum_constraint

Description

The constraint specifies the upper and lower bound on the sum of the weights. This function is
called by add.constraint when "weight_sum", "leverage", "full_investment", "dollar_neutral", or
"active" is specified as the type. see add. constraint

Usage

weight_sum_constraint(
type = "weight_sum”,
min_sum = 0.99,
max_sum = 1.01,
enabled = TRUE,

)
Arguments

type character type of the constraint

min_sum minimum sum of all asset weights, default 0.99

max_sum maximum sum of all asset weights, default 1.01

enabled TRUE/FALSE

any other passthru parameters to specify weight_sum constraints

Details

Special cases for the weight_sum constraint are "full_investment" and "dollar_nuetral" or "active"
If type="full_investment”, min_sum=1 and max_sum=1

If type="dollar_neutral” or type="active"”, min_sum=0, and max_sum=0

Value

an object of class "weight_sum_constraint’

Author(s)

Ross Bennett

See Also

add.constraint



150 weight_sum_constraint

Examples
data(edhec)
ret <- edhec[, 1:4]

pspec <- portfolio.spec(assets=colnames(ret))

# min_sum and max_sum can be specified with type="weight_sum” or type="leverage"
pspec <- add.constraint(pspec, type="weight_sum”, min_sum=1, max_sum=1)

# Specify type="full_investment” to set min_sum=1 and max_sum=1
pspec <- add.constraint(pspec, type="full_investment")

# Specify type="dollar_neutral” or type="active"” to set min_sum=0 and max_sum=0
pspec <- add.constraint(pspec, type="dollar_neutral”)
pspec <- add.constraint(pspec, type="active")



Index

x datasets
indexes, 82

ac.ranking, 10

add.constraint, 7, 11, 22, 23, 52, 53,61, 72,

73,79, 80, 86, 117-119, 130,
142-145, 147, 149
add.objective, 6, 7, 14, 98, 102, 103, 117,
143
add.objective_v1 (add.objective), 14
add.objective_v2 (add.objective), 14
add.sub.portfolio, 16
applyFUN, 17

backtest.plot, 18
barplotGroupWeights, 19
black.litterman, 20, 138
BlackLittermanFormula, 20, 21
box_constraint, 12,22

CCCgarch.MM, 23

center, 24

centroid.buckets, /7,24
centroid.complete.mc, 11, 25
centroid.sectors, 11,26
centroid.sign, 11,26
chart.Concentration, 27
chart.EF.Weights, 8, 28
chart.EfficientFrontier, 8, 30
chart.EfficientFrontierCompare, 33
chart.EfficientFrontierOverlay, 35
chart.GroupWeights, 36
chart.RiskBudget, 8, 38
chart.RiskReward, 8, 40
chart.StackedBar, 38, 40, 43, 46
chart.Weights, 8, 43
check_constraints, 46
cokurtosisMF, 47

cokurtosisSF, 47
combine.optimizations, 8, 48

151

combine.portfolios, 35, 49

constrained_objective, 49, 64, 83

constrained_objective_v1
(constrained_objective), 49

constrained_objective_v2
(constrained_objective), 49

constraint, 14, 51,74, 104, 126, 128, 138,
146

constraint (constraint_v1), 52

constraint_ROI, 51

constraint_v1, 52

constraint_v2 (constraint_v1), 52

coskewnessMF, 53

coskewnessSF, 54

covarianceMF, 54

covarianceSF, 55

create.EfficientFrontier, 9, 35, 56, 121

custom. covRob.Mcd, 57

custom.covRob.MM, 58

custom. covRob.Rocke, 59

custom. covRob.TSGS, 59

DEoptim.control, 51
diversification, 60
diversification_constraint, /2, 61

endpoints, 17, 107
EntropyProg, 62
equal.weight, 63

ES, 9
etl_milp_opt, 64
etl_opt, 65

extract_risk, 71
extractCokurtosis, 65
extractCoskewness, 66
extractCovariance, 67
extractEfficientFrontier, 67
extractGroups, 68
extractObjectiveMeasures, 69
extractStats, 40, 43,70, 112



152

extractWeights, 71

factor_exposure_constraint, 12, 72
fn_map, 73, 126

generatesequence, 51, 52,74, 116, 117
get_constraints, 75

gmv_opt, 76

gmv_opt_leverage, 77
gmv_opt_ptc, 77

gmv_opt_toc, 78
group_constraint, 12,79, 148
group_fail, 81

HHI, 81

indexes, 82
insert_constraints, 82
insert_objectives, 83
inverse.volatility.weight, 83
is.constraint, 84
is.objective, 84
is.portfolio, 85

leverage_exposure_constraint, 12, 85

maxret_milp_opt, 86

maxret_opt, 87
meancsm.efficient.frontier, 88
meanetl.efficient.frontier, 57, 89
meanrisk.efficient.frontier, 57, 90
meanvar.efficient.frontier, 56, 57, 91
meucci.moments, 92, 93
meucci.ranking, 92
minmax_objective, 93
mult.portfolio.spec, 17,94
MycovRobMcd, 95

MycovRobTSGS, 96

name.replace, 97

objective, 15,51, 74,98, 127, 128

opt.outputMvo, 99

optimize.portfolio, 7-9, 17, 28, 32, 33, 39,
40,42, 43, 45, 46, 48, 50, 56, 57,
67-71,88-91, 100, 107, 108, 112,
117,122, 140

optimize.portfolio.parallel, 105

optimize.portfolio.rebalancing, 7,9, 17,
39, 40,43,46, 71,106, 121

INDEX

optimize.portfolio.rebalancing_v1
(optimize.portfolio.rebalancing),
106

optimize.portfolio_vi
(optimize.portfolio), 100

optimize.portfolio_v2
(optimize.portfolio), 100

pHist, 109
plot, 19, 28, 29, 32, 34, 36, 37, 39,42, 113,
114
plot.optimize.portfolio
(plot.optimize.portfolio.DEoptim),
110
plot.optimize.portfolio.DEoptim, 110
plotFrontiers, 112
portfolio, 15, 50
portfolio (portfolio.spec), 116
portfolio.moments.bl, 114
portfolio.moments.boudt, 115
portfolio.spec, 7,11, 12,14, 15,17, 34, 35,
49, 56, 57,75, 88-91, 98, 104, 108,
115,116,116, 122, 123, 125, 127,
133, 134, 138, 141, 147
portfolio_risk_objective, 117, 124
PortfolioAnalytics
(PortfolioAnalytics-package), 5
PortfolioAnalytics-package, 5
pos_limit_fail, 119
position_limit_constraint, /2,118
print.constraint, 120
print.efficient.frontier, 120
print.optimize.portfolio.CVXR
(print.optimize.portfolio.ROI),
121
print.optimize.portfolio.DEoptim
(print.optimize.portfolio.ROI),
121
print.optimize.portfolio.GenSA
(print.optimize.portfolio.ROI),
121
print.optimize.portfolio.pso
(print.optimize.portfolio.ROI),
121
print.optimize.portfolio.random
(print.optimize.portfolio.ROI),
121
print.optimize.portfolio.rebalancing,
121



INDEX 153

print.optimize.portfolio.ROI, 121 update_constraint_v1tov2, 146
print.portfolio, 122
print.summary.optimize.portfolio, 123 VaR, 9
print.summary.optimize.portfolio.rebalancing,var.portfolio, 147

124

weight_concentration_objective, 148

quadratic_utility_objective, 124 weight_sum_constraint, /2, 149

random_portfolios, 112, 117, 126 xts, 9
random_portfolios_v1, 128
random_portfolios_v2
(random_portfolios), 126
random_walk_portfolios, 129
randomize_portfolio, 125, 128, 135
randomize_portfolio_v1, 126
randomize_portfolio_v2
(randomize_portfolio), 125
regime.portfolios, 129
return_constraint, /2, 130
return_objective, 124, 131
risk_budget_objective, 132
rp_grid, 127,133
rp_sample, 127, 134
rp_simplex, 127, 134
rp_transform, 81, 119, 135

scatterFUN, 137
set.portfolio.moments, 137
set.portfolio.moments_v1, 138
set.portfolio.moments_v2, 101, 105
set.portfolio.moments_v2
(set.portfolio.moments), 137
statistical.factor.model, 66, 67, 138,
139
StdDev, 9
summary.efficient.frontier, 139
summary.optimize.portfolio, 123, 140
summary.optimize.portfolio.rebalancing,
124, 141
summary.portfolio, 141

title, 19, 37,45, 46,112
trailingFUN, 142
transaction_cost_constraint, 142
turnover, 143
turnover_constraint, /2, 144
turnover_objective, 145

update.constraint, 146



	PortfolioAnalytics-package
	ac.ranking
	add.constraint
	add.objective
	add.sub.portfolio
	applyFUN
	backtest.plot
	barplotGroupWeights
	black.litterman
	BlackLittermanFormula
	box_constraint
	CCCgarch.MM
	center
	centroid.buckets
	centroid.complete.mc
	centroid.sectors
	centroid.sign
	chart.Concentration
	chart.EF.Weights
	chart.EfficientFrontier
	chart.EfficientFrontierCompare
	chart.EfficientFrontierOverlay
	chart.GroupWeights
	chart.RiskBudget
	chart.RiskReward
	chart.Weights
	check_constraints
	cokurtosisMF
	cokurtosisSF
	combine.optimizations
	combine.portfolios
	constrained_objective
	constraint_ROI
	constraint_v1
	coskewnessMF
	coskewnessSF
	covarianceMF
	covarianceSF
	create.EfficientFrontier
	custom.covRob.Mcd
	custom.covRob.MM
	custom.covRob.Rocke
	custom.covRob.TSGS
	diversification
	diversification_constraint
	EntropyProg
	equal.weight
	etl_milp_opt
	etl_opt
	extractCokurtosis
	extractCoskewness
	extractCovariance
	extractEfficientFrontier
	extractGroups
	extractObjectiveMeasures
	extractStats
	extractWeights
	extract_risk
	factor_exposure_constraint
	fn_map
	generatesequence
	get_constraints
	gmv_opt
	gmv_opt_leverage
	gmv_opt_ptc
	gmv_opt_toc
	group_constraint
	group_fail
	HHI
	indexes
	insert_constraints
	insert_objectives
	inverse.volatility.weight
	is.constraint
	is.objective
	is.portfolio
	leverage_exposure_constraint
	maxret_milp_opt
	maxret_opt
	meancsm.efficient.frontier
	meanetl.efficient.frontier
	meanrisk.efficient.frontier
	meanvar.efficient.frontier
	meucci.moments
	meucci.ranking
	minmax_objective
	mult.portfolio.spec
	MycovRobMcd
	MycovRobTSGS
	name.replace
	objective
	opt.outputMvo
	optimize.portfolio
	optimize.portfolio.parallel
	optimize.portfolio.rebalancing
	pHist
	plot.optimize.portfolio.DEoptim
	plotFrontiers
	portfolio.moments.bl
	portfolio.moments.boudt
	portfolio.spec
	portfolio_risk_objective
	position_limit_constraint
	pos_limit_fail
	print.constraint
	print.efficient.frontier
	print.optimize.portfolio.rebalancing
	print.optimize.portfolio.ROI
	print.portfolio
	print.summary.optimize.portfolio
	print.summary.optimize.portfolio.rebalancing
	quadratic_utility_objective
	randomize_portfolio
	randomize_portfolio_v1
	random_portfolios
	random_portfolios_v1
	random_walk_portfolios
	regime.portfolios
	return_constraint
	return_objective
	risk_budget_objective
	rp_grid
	rp_sample
	rp_simplex
	rp_transform
	scatterFUN
	set.portfolio.moments
	set.portfolio.moments_v1
	statistical.factor.model
	summary.efficient.frontier
	summary.optimize.portfolio
	summary.optimize.portfolio.rebalancing
	summary.portfolio
	trailingFUN
	transaction_cost_constraint
	turnover
	turnover_constraint
	turnover_objective
	update.constraint
	update_constraint_v1tov2
	var.portfolio
	weight_concentration_objective
	weight_sum_constraint
	Index

