Min Abs Sum C@dllltg

with help of Peng Cao WE TEST CODERS

We show how the Codility Challenge codenamed Delta-2011|can be solved. You can still give
it a try, but no certificate will be granted. The problem asks you to find the lowest absolute
sum of elements of the given array or their negatives.

Since we can arbitrarily choose to take the element or its negative, we can simplify the
problem and replace each number with its absolute value. Then the problem becomes dividing
the numbers into two groups and making the difference between the sums of the two groups
as small as possible. It is a classic dynamic programming problem.

Assume the sum of absolute values of all the numbers is .S. We want to choose some of
the numbers (absolute values) to make their sum as large as possible without exceeding g
Why? Let P be the sum of the first group, @ be the sum of the other group and P < Q. We
have P < g < Q and @+ P = S. The larger is P, the smaller is () and the difference ) — P.
Hence, the largest possible P < % gives the optimal result. Let M be the maximal element
in the given array A. We create an array dp of size S.

Slow solution O(N? - M)

Let dp; equal 1 if it is possible to achieve the sum of i using elements of A, and 0 otherwise.
Initially dp; = 0 for all of ¢ (except dpg = 1). For every successive element in A we update the
array taking this element into account. We simply go through all the cells, starting from the
top, and if dp; = 1 then we also set dp;4 4, to 1. The direction in which array dp is processed
is important, since each element of A can be used only once. After computing the array dp,
P is the largest index such that P < % and dpp = 1.

1: Slow solution.

1 def slow_min_abs_sum(A) :

2 N = len (A)

3 M =0

4 for i in xrange (N) :

5 A[i] = abs(A[i])

6 M = max(A[i1], M)

7 S = sum(A)

8 dp = [0] * (S + 1)

9 dp[0] =1

10 for j in xrange (N):

11 for i in xrange(S, -1, -1):
12 if (dpli] == 1) and (i + A[]J] <= S):
13 dpli + A[]j]] =1

14 result = S

© Copyright 2017 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.


http://codility.com/train

15 for i in xrange(S // 2 + 1):

16 if dpli] ==
17 result = min(result, S - 2 * 1)
18 return result

The time complexity of the above solution is O(N? - M), since S = O(N - M).

Golden solution O(N - M?)

Notice that the range of numbers is quite small (maximum 100). Hence, there must be a lot
of duplicated numbers. Let count; denote the number of occurrences of the value i. We can
improve the previous solution by processing all occurrences of the same value at once. First
we calculate values count;. Then we create array dp such that:

e dp; = —1 if we cannot get the sum j,
e dp; > 0 if we can get sum j.

Initially, dp; = —1 for all of j (except dpy = 0). Then we scan through all the values appearing
in A; we consider all a such that count, > 0.

For every such a we update dp that dp; denotes how many values a remain (maximally)
after achieving sum j. Note that if the previous value at dp; > 0 then we can set dp; = count,
as no value a is needed to obtain the sum j. Otherwise we must obtain sum j — a first and
then use a number a to get sum j. In such a situation dp; = dp;_, — 1.

Using this algorithm, we can mark all the sum values and choose the best one (closest to

half of .5).

2: Golden solution.

1 def golden_min_abs_sum(A) :
2 N = len(A)

3 M =0

4 for i in xrange(N):

5 A[i] = abs(A[il])
6 M = max (A[i], M)
7 S = sum(A)

8 count = [0] * (M + 1)
9 for i in xrange(N):
10 count [A[i]] += 1
11 dp = [-1] = (S + 1)
12 dp[0] = O

for a in xrange(l, M + 1):
if countl[a] > O:

for j in xrange(S):

if dpl[j] >= 0:

e e
D s W

17 dp[j] = count[a]
18 elif (j >= a and dp[j - a] > 0):
19 dpl[j] = dplj - a] - 1

result = S
for i in xrange(S // 2 + 1):
if dpl[i] >= 0:
result = min(result, S - 2 * 1)
return result

NONN NN
= W N = O

The time complexity of the above solution is O(N - M?), where M is the maximal element,
since S = O(N - M) and there are at most M different values in A.



