- 2.27.0 (latest)
 - 2.26.0
 - 2.25.0
 - 2.24.0
 - 2.23.0
 - 2.22.0
 - 2.21.0
 - 2.20.0
 - 2.19.0
 - 2.18.0
 - 2.17.0
 - 2.16.0
 - 2.15.0
 - 2.14.0
 - 2.13.0
 - 2.12.0
 - 2.11.0
 - 2.10.0
 - 2.9.0
 - 2.8.0
 - 2.7.0
 - 2.6.0
 - 2.5.0
 - 2.4.0
 - 2.3.0
 - 2.2.0
 - 1.36.0
 - 1.35.0
 - 1.34.0
 - 1.33.0
 - 1.32.0
 - 1.31.0
 - 1.30.0
 - 1.29.0
 - 1.28.0
 - 1.27.0
 - 1.26.0
 - 1.25.0
 - 1.24.0
 - 1.22.0
 - 1.21.0
 - 1.20.0
 - 1.19.0
 - 1.18.0
 - 1.17.0
 - 1.16.0
 - 1.15.0
 - 1.14.0
 - 1.13.0
 - 1.12.0
 - 1.11.1
 - 1.10.0
 - 1.9.0
 - 1.8.0
 - 1.7.0
 - 1.6.0
 - 1.5.0
 - 1.4.0
 - 1.3.0
 - 1.2.0
 - 1.1.0
 - 1.0.0
 - 0.26.0
 - 0.25.0
 - 0.24.0
 - 0.23.0
 - 0.22.0
 - 0.21.0
 - 0.20.1
 - 0.19.2
 - 0.18.0
 - 0.17.0
 - 0.16.0
 - 0.15.0
 - 0.14.1
 - 0.13.0
 - 0.12.0
 - 0.11.0
 - 0.10.0
 - 0.9.0
 - 0.8.0
 - 0.7.0
 - 0.6.0
 - 0.5.0
 - 0.4.0
 - 0.3.0
 - 0.2.0
 
LabelEncoder(
    min_frequency: typing.Optional[int] = None,
    max_categories: typing.Optional[int] = None,
)Encode target labels with value between 0 and n_classes-1.
This transformer should be used to encode target values, i.e. y, and
not the input X.
Parameters | 
      |
|---|---|
| Name | Description | 
min_frequency | 
        
  	Optional[int], default None
  	Specifies the minimum frequency below which a category will be considered infrequent. Default None. int: categories with a smaller cardinality will be considered infrequent as ßindex 0.  | 
      
max_categories | 
        
  	Optional[int], default None
  	Specifies an upper limit to the number of output features for each input feature when considering infrequent categories. If there are infrequent categories, max_categories includes the category representing the infrequent categories along with the frequent categories. Default None. Set limit to 1,000,000.  | 
      
Methods
__repr__
__repr__()Print the estimator's constructor with all non-default parameter values.
fit
fit(
    y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.ml.preprocessing.LabelEncoderFit label encoder.
| Parameter | |
|---|---|
| Name | Description | 
y | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series
          The DataFrame or Series with training data.  | 
      
| Returns | |
|---|---|
| Type | Description | 
LabelEncoder | 
        Fitted encoder. | 
fit_transform
fit_transform(
    y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrameAPI documentation for fit_transform method.
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]Get parameters for this estimator.
| Parameter | |
|---|---|
| Name | Description | 
deep | 
        
          bool, default True
          Default   | 
      
| Returns | |
|---|---|
| Type | Description | 
Dictionary | 
        A dictionary of parameter names mapped to their values. | 
to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._TSave the transformer as a BigQuery model.
| Parameters | |
|---|---|
| Name | Description | 
model_name | 
        
          str
          The name of the model.  | 
      
replace | 
        
          bool, default False
          Determine whether to replace if the model already exists. Default to False.  | 
      
transform
transform(
    y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrameTransform y using label encoding.
| Parameter | |
|---|---|
| Name | Description | 
y | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series
          The DataFrame or Series to be transformed.  | 
      
| Returns | |
|---|---|
| Type | Description | 
bigframes.dataframe.DataFrame | 
        The result is an array-like of values. |