StackWarp: Breaking AMD SEV-SNP Integrity via Deterministic
Stack-Pointer Manipulation through the CPU’s Stack Engine

Ruiyi Zhang, Tristan Hornetz, Daniel Weber, Fabian Thomas, Michael Schwarz
CISPA Helmholtz Center for Information Security

Abstract

Confidential Virtual Machines (CVMs), such as AMD SEV-
SNP, aim to protect guest operating systems from an untrusted
host by encrypting state and constraining privileged control.
These platforms promise isolation even in multi-tenant cloud
setups where simultaneous multithreading (SMT) remains
enabled. While prior attacks focus on the memory hierarchy
or execution units, they largely ignore frontend configurations.

In this paper, we present StackWarp, a software-based archi-
tectural attack exploiting the stack engine on AMD Zen CPUs
to modify the stack pointer within an SEV-SNP guest, fully
breaking integrity. StackWarp relies on an undocumented
bit within a shared model-specific register (MSR) available
on AMD Zen 1-5 CPUs that enables or disables the stack
engine. Our reverse engineering shows that the state of the
stack engine is not correctly synchronized across the logical
cores, allowing an attacker to deterministically adjust the stack
pointer on the sibling logical core across Zen generations, in-
cluding fully patched Zen 5. We discover StackWarp via a
systematic exploration of the MSR space, including undocu-
mented MSRs. By flipping MSR bits, we discover bits that
affect SEV-SNP guests running on a sibling logical core. To
demonstrate the security impact, we show StackWarp in four
end-to-end attacks on SEV-SNP guests: RSA-CRT private-
key recovery, OpenSSH password-authentication bypass, and
privilege escalations using either sudo or a kernel-mode ROP
chain. We conclude with software hardening guidance and
argue for a microcode or hardware change that prevents cross-
core control of the stack engine when CVMs are active. Our
results show that leaving SMT enabled undermines SEV-SNP
integrity guarantees today.

1 Introduction

Cloud providers increasingly market Confidential Virtual Ma-
chines (CVMs)—notably AMD SEV-SNP and Intel TDX—as
a drop-in way to run unmodified guest operating systems on
untrusted hosts. These systems promise that an untrusted hy-
pervisor can neither read plaintext guest memory nor alter a

guest’s execution, while still supporting cloud multiplexing
practices such as simultaneous multithreading (SMT). AMD’s
implementation of CVMs is called SEV (Secure Encrypted
Virtualization). SEV evolved in stages: SEV introduced mem-
ory encryption without protecting saved VM state. SEV-ES
extended confidentiality to guest register state. The current
version, SEV-SNP, added integrity by hardening nested pag-
ing so a host cannot freely rewrite a guest’s address space. For
current CPU generations, i.e., Zen 4 and Zen 5, only SEV-SNP
is relevant, as the previous variants are considered broken and
thus insecure [1].

Despite the increased security guarantees of SEV-SNP,
recent papers show that CVMs can still be influenced in
ways that bypass the intended isolation guarantees [2-6].
CacheWarp [4] broke the integrity guarantees by demonstrat-
ing that a malicious host can roll back selected dirty cache
lines so the guest continues with architecturally stale values,
enabling end-to-end exploits on SEV-SNP without plaintext
access. This vulnerability has been mitigated with microcode
updates on Zen 3, and was fixed on Zen 4 CPUs. Similarly,
interrupt-based integrity attacks on CVMs [5, 6] that allow
attackers to divert the control flow and corrupt register val-
ues have also been mitigated. Concurrently, a separate line
of work exploits that SEV-SNP allows the host to observe
ciphertext and manage encrypted pages, leading to chosen-
plaintext [7, 8] and ciphertext-side-channel attacks [2, 3] that
break confidentiality. While these attacks, and traditional
cache-based [9, 10] and contention-based [11-13] attacks,
are not mitigated, they only impact confidentiality and can be
mitigated by the guest in software [14, 15].

In this paper, we introduce StackWarp, a software-only
architectural attack that breaks SEV-SNP integrity by abus-
ing the stack engine on AMD Zen CPUs. StackWarp differs
significantly from previous vulnerabilities, as it originates in
the core frontend, not in the memory hierarchy or encryp-
tion interface. Across Zen 1-5, we exploit an undocumented,
core-scoped MSR bit that enables or disables the stack engine.
Crucially, its state is not correctly synchronized across sibling
logical cores. When a sibling logical core toggles this bit

while the victim executes a stack instruction, that instruction
retires (i.e., commits its results to the architectural state) with
a mismatch between the memory access and the architectural
update of the stack pointer. This results in a deterministic,
attacker-chosen shift of the victim’s stack pointer. The primi-
tive requires no access to guest plaintext, gadget placement,
or injected interrupts visible inside the guest.

At a high level, the stack engine tracks a running stack-
pointer delta so common stack operations complete effi-
ciently [16, 17]. Our measurements show that disabling the
engine while stack operations are in flight “freezes” the accu-
mulated delta such that stores commit, but the architectural
stack-pointer update is withheld. Re-enabling later “releases’
the deferred delta in one step.As logical cores are not correctly
synchronized, an attacker can use this behavior to modify the
stack pointer on the sibling hyperthread in a deterministic
way, even if the sibling hyperthread executes an SEV-SNP
guest. Only stack-pointer operations are affected, while other
operations are unaffected. The injected offset is repeatable,
bidirectional, and large enough for practical exploitation, as
we observe single-shot shifts up to 640 bytes. Consequently,
StackWarp can (i) redirect control flow to an earlier frame
without corrupting architectural state or (ii) overwrite or skip
arbitrary stack slots while preserving the overall stack depth.

Our attacker model follows SEV-SNP’s: the attacker con-
trols the hypervisor but has no control over the guest OS or
guest applications. The attacker can pin vCPUs, issue priv-
ileged MSR writes, inject interrupts, and step execution us-
ing standard host capabilities, but cannot read guest plaintext
memory or registers protected in the encrypted save area, nor
run code inside the guest. This is in line with prior SEV-SNP
integrity attacks [4—6] and stepping setups [18].

We demonstrate the real-world impact of StackWarp on
fully patched Zen 4 and Zen 5 CPUs with SMT enabled
via 4 case studies. First, we recover an RSA-2048 private
key from Intel IPP using a single faulty RSA-CRT signature:
our controlled stack shift corrupts exactly one CRT branch
while the other remains correct, enabling classical Bellcore
factorization [19,20]. Second, we bypass OpenSSH password
authentication by unwinding the nested call chain and substi-
tuting the return value from the inner call. Third, we bypass
sudo password authentication by tampering with the epilogue
of the getuid () system call to misdirect the return value load
to the root UID. Finally, we obtain ring 0 code execution by
placing attacker-controlled bytes onto the kernel stack via
a syscall’s in-stack buffer (e.g., used in the select syscall)
and pivoting the stack pointer to that buffer right before ret.
Across all four, the hypervisor mounts the attack without guest
gadgets or plaintext and without relying on weaknesses in the
memory-encryption mode.

These findings indicate that keeping SMT enabled today
undermines SEV-SNP’s integrity goals: a sibling core can
change a guest’s control and data flow through a shared fron-
tend switch with instruction-level precision. The immediate

il

stopgap is to run CVMs with SMT disabled on affected hard-
ware. Longer-term, a microcode or hardware change should
prevent cross-hyperthread control of the stack engine in CVM
contexts. Such fixes could scope the bit to the issuing thread,
clear the hidden delta on context switches, or lock the control
when a CVM is active.

Contributions. In summary, our paper makes the following
contributions:

1. We uncover cross-hyperthread control of the Zen stack
engine via an undocumented MSR bit and show that
its desynchronized state enables deterministic, attacker-
chosen stack-pointer shifts inside SEV-SNP guests.

2. We introduce StackWarp, a software-only primitive that
operates on all tested Zen generations, including fully
patched Zen 5, and we quantify its determinism, direction-
ality, and offset bounds with targeted microbenchmarks
and performance counters.

3. We develop exploitation techniques that (a) redirect return-
based control flow to earlier frames without perturbing
other architectural state and (b) manipulate on-stack data
while preserving stack depth, and we validate them in
four end-to-end case studies (RSA-CRT key recovery,
OpenSSH authentication bypass, Sudo authentication by-
pass, kernel-mode ROP).

4. We provide hardening guidance and argue for a mi-
crocode/hardware fix that locks or scopes the offending
control when CVMs are active. Disabling SMT is an im-
mediate, effective stopgap.

Outline. Section 2 provides the necessary background. Sec-
tion 3 describes the threat model and our automated approach
that discovered StackWarp. Section 4 attributes the fault to
the stack engine and presents our measurement-based root-
cause analysis. Section 5 introduces attack overview and the
control-flow and data-flow primitives, and Section 6 evaluates
the four case studies. We discuss mitigations in Section 7 and
related work in Section 8. Section 9 concludes.

Availability. We will release proof-of-concept code and
measurement scripts upon publication.

Responsible Disclosure. We responsibly disclosed our
findings to AMD on March 24, 2025, and received acknowl-
edgment on March 25. AMD planned to issue a CVE and em-
bargoed the findings until January 15, 2026. Prior to the pub-
lic disclosure, AMD confirmed that hot-loadable microcode
patches have already been released to their customers.

2 Background
This section covers the background information relevant to

the paper.

2.1 Trusted Execution Environment

Trusted Execution Environments (TEEs) are hardware-based
mechanisms that provide isolated execution contexts to pro-

tect sensitive code and data from higher-privileged software,
such as operating systems and hypervisors. TEEs ensure
confidentiality and integrity by restricting access to specific
memory regions and preventing interference from external
components during execution within the secure context. Rep-
resentative implementations include Intel Software Guard
Extensions (SGX), which isolates user-level enclaves, and
ARM TrustZone, which partitions system resources into se-
cure and non-secure worlds. These technologies are widely
used to safeguard cryptographic operations, digital rights man-
agement, and secure key storage.

Confidential Virtual Machines (CVMs) extend the TEE
concept to entire virtual machines, enabling secure execution
of complete operating systems on potentially untrusted plat-
forms. Technologies such as AMD Secure Encrypted Virtual-
ization with Secure Nested Paging (SEV-SNP) and Intel Trust
Domain Extensions (TDX) provide hardware-enforced iso-
lation by encrypting guest memory and performing integrity
checks to prevent tampering by the host. CVMs require mini-
mal modification to guest software and are particularly suited
to cloud computing environments, where tenants must protect
workloads from the underlying infrastructure. By securing the
full virtual machine context, CVMs offer a scalable solution
for confidential computing in multi-tenant systems.

2.2 Software-based Fault Attacks

Software-based fault attacks induce errors through software-
accessible mechanisms, without physical access, to break in-
tegrity guarantees. Well-known generic software-based fault
attacks include DRAM disturbance (Rowhammer [21]) and
CPU undervolting [22-24]. In Rowhammer attacks, an at-
tacker repeatedly accesses a DRAM location, leading to bit
flips in adjacent non-attacker-controlled memory locations.
In contrast, undervolting affects the CPU, leading to incorrect
computations, e.g., bit flips in multiplication results. In CVMs,
recent work shows that faults can be injected architecturally
from the host [4-6]. CacheWarp [4] allows a malicious hy-
pervisor to revert selected dirty cache lines to an older value
at attacker-chosen points, causing the guest to continue with
architecturally stale data. Related to software-based fault at-
tacks are Ahoi attacks [5, 6]. These attacks inject interrupts
into confidential VMs to cause a state change.

2.3 Hyperthreading

Hyperthreading, also known as Simultaneous Multithreading
(SMT), enables a single physical CPU core to execute multi-
ple threads simultaneously. Throughout this paper, we unify
Intel’s Hyper-Threading Technology (HT) [25] and AMD’s
Simultaneous Multithreading (SMT) [26] under the term hy-
perthreading for the remainder of this paper.

In hyperthreaded CPUs, each physical core is exposed as
two logical sibling cores to the operating system, allowing

two concurrent sibling threads to share a single physical
core. While each sibling core maintains distinct architectural
contexts, such as register files and instruction pointers, they
share essential execution resources, including arithmetic logic
units (ALUs), floating-point units (FPUs), caches, and mem-
ory bandwidth. This resource-sharing model can increase
resource utilization by enabling threads to use execution units
that would otherwise be idle due to pipeline stalls or waiting
periods. However, shared resources can also lead to contention
among threads, potentially degrading performance and intro-
ducing security risks, notably through side channels [12,27].

2.4 Stack Engine

Modern x86 CPUs rely on a deeply pipelined architecture.
The pipeline’s frontend, which decomposes instructions into
simpler micro-operations (uops), plays a crucial role in this. It
consists of several tightly integrated components, e.g., instruc-
tion fetch unit, branch predictor, decoders, and pop queue,
all orchestrated to supply a continuous stream of pops to the
out-of-order (OoO) execution engine. A notable optimization
within the frontend is the stack engine, which first appeared
in Intel Pentium M CPUs. The stack engine handles stack-
related instructions like push, pop, call, and ret, which fre-
quently modify the stack pointer (esp or rsp). Without the
stack engine, these instructions would typically break down
into multiple pops, burdening general-purpose ALUs and the
scheduler.

To avoid this overhead, the stack engine simplifies stack
operations early in the pipeline. During decoding, it tracks
an 8-bit delta corresponding to stack pointer changes, main-
taining an offset that helps dependent instructions proceed
without delay [28]. This mechanism enables stack instruc-
tions to execute with zero apparent latency and only in a
single uop. AMD CPUs have adopted similar techniques fol-
lowing cross-licensing agreements, resulting in a convergence
of stack engine behavior across major x86 vendors [17].

3 StackWarp: Manipulating the Stack Pointer
via the Stack Engine

In this section, we introduce StackWarp, a software-
exploitable vulnerability in the stack engine that enables at-
tackers to manipulate the stack pointer inside an SEV-SNP
guest, fully breaking the integrity guarantees. In Section 3.1,
we present an overview of StackWarp. Section 3.3 describes
the automated approach that discovered StackWarp.

3.1 Overview

StackWarp is a software-only integrity breach against AMD
SEV-SNP guests that exploits a cross-hyperthread control
of the stack engine on Zen CPUs. At a high level, a mali-
cious hypervisor running on one logical thread of a physical

Core A

]

]

ATK-Profiling | 1

:

]

]

Disable SE :
| Schedule

:

]

]

]

Enable SE 0 RSP =16

Figure 1: Illustration of StackWarp

core toggles an undocumented, core-scoped MSR bit that
enables/disables the stack engine. The stack engine tracks a
hidden running delta for rsp so that stack instructions retire
efficiently. We find that its enable state is not properly synchro-
nized across sibling threads (Figure 1). If this toggle occurs
while the sibling thread (the victim SEV-SNP vCPU) has
stack operations in flight (push/pop/call/ret), the memory
side of the stack instruction completes but the architectural
update of rsp is deferred and later “released” in one step. This
mis-synchronization yields a deterministic, attacker-chosen
shift of the victim’s stack pointer by A, without injecting
interrupts, observing plaintext, or modifying guest code. A
single injection can: (i) redirect control flow by returning to an
earlier frame or ROP-style, to attacker-controlled addresses,
and (ii) manipulate on-stack variables while preserving over-
all stack depth (e.g., drop writes or read stale data).

The attack proceeds in two short phases as we detail in
Section 5: In the profiling phase on the host thread, Stack-
Warp creates a desired A using controlled push/pop sequences
while the sibling flips the MSR. In the injection phase, the
sibling issues a single wrmsr while the guest executes a tar-
geted snippet so the stack engine state change lands between
the guest’s VM-entry load and its next retirement, shifting
rsp by £A at instruction-level precision.

3.2 Threat Model

We consider a cloud setting in which a victim-controlled work-
load executes inside a Confidential Virtual Machine (CVM)
launched with AMD SEV-SNP. All guest memory pages, CPU
registers saved in the VMSA STATE, and attestation reports
are protected by the respective hardware so that a correct host
cannot observe plaintext or tamper with the state.Importantly,
hyperthreading is enabled, so each physical core exposes two
sibling cores that may be scheduled for unrelated tenants.
Attacker. In line with the threat model of SEV-SNP, the
attacker controls the hypervisor. The attacker can execute
privileged instructions, including wrmsr, rdmsr, and other
ring-0 operations that affect core configuration. The attacker
is further in control of when and where each virtual CPU runs,
can pin a victim vCPU to a logical thread of their choice,

& egoz’z) & @“’&

QQ @QQ 's“‘ @0 &~ ‘)&
9 o » R ot S
AMD Ryzen 5 2500U 0 0x810100b Zen t
AMD Ryzen 5 3550H 1 0x8108102 Zen+ t
AMD EPYC 7252 0 0x830107c Zen2
AMD Ryzen 7 5700G 0 0xa50000d Zen3 t
AMD Ryzen 9 6900HX 1 0xa404102 Zen 3+ t
AMD Ryzen 7 PRO 7840U 1 0xa704107 Zen4 t
AMD EPYC 9124 1 0xal01148 Zen4
AMD Ryzen 9 9950X 0 0xb404006 Zen S t

Table 1: Tested CPUs affected by StackWarp. Sync Bug con-
firms the stack engine synchronization issue. StackWarp in-
dicates SEV support (required for exploitation); T denotes
non-applicability.

and may offline or idle the sibling thread of any core. Fi-
nally, the attacker can trigger VM exits, inject interrupts, read
performance counters, and manipulate nested page—table en-
tries.However, the attacker cannot read or write guest memory,
alter guest register contents in the encrypted save area, or in-
sert code into the guest. We do not assume knowledge of
guest virtual or guest physical addresses for specific variables
or functions. Any information the attack requires must be
inferred at run time through architectural events that remain
visible to the host.

Attack surface. The only shared resources between at-
tacker and victim are those inherently exposed by simultane-
ous multithreading: model-specific registers (MSRs), certain
microarchitectural units, and parts of the cache hierarchy. We
use StackWarp to refer to the synchronization issue between
two SMT threads. We further clarify that due to MSR writes
requiring a privileged attacker, StackWarp only becomes a se-
curity vulnerability in the context of a TEE/SEV scenario. All
other cross-VM communication channels (e.g., DMA, shared
memory, paravirtual devices) are outside our scope and may
be disabled or passed-through as usual.

We do not consider physical attacks, such as voltage or
clock glitching [29,30], exploiting DRAM modules [21,31] in-
scope. Also, side-channel attacks that merely observe victim
activity (e.g., cache timing) are orthogonal to our work.

3.3 StackWarp Discovery

Our search for StackWarp is inspired by MSR templating as
introduced by Kogler et al. [32]: systematically flipping MSR
bits while observing how instruction behavior changes. We
build on the approach described by Kogler et al. [32] and
adapt it to a hyperthreaded setting with an SEV-SNP guest
on the sibling thread. Our key twist is that all writes to can-
didate MSRs happen on one hyperthread in the host, while
the measurements run inside an SEV-SNP VM pinned to the
sibling hyperthread. We then watch for architectural devia-
tions inside the guest. Hard crashes are treated as noise, as it
is trivial to crash machines with invalid MSRs configurations.

In such a case, the harness restarts and continues the scan. We
still provide a collection of crashing MSRs in Section A for
future work to investigate if such crashes might be relevant in
a cloud scenario, e.g., to cause denial of service.

3.3.1 Templating

We pin the victim SEV-SNP vCPU to logical thread Cy,,, of a
physical core, and run a privileged host templating agent on
the sibling thread C,. The agent iterates over the MSR space
and enumerates writable MSR bits as done by MSRevelio [32].
To avoid immediate system crashes, we exclude documented
bits known to cause system instability, previously verified as
crash-inducing [33]. Additionally, we exclude bits that are
write-once after boot, i.e., bits that cannot be reset to their
original state once modified.

Host Agent We use a kernel module for modifying MSRs
on the host, i.e., hypervisor. In the kernel module, a kernel
thread is started on logical thread C, to flip all bits in a given
MSR according to a user-provided bitmask. Depending on
the test configuration, the module either flips the bits once
or continuously in a tight loop. Before flipping an MSR, the
guest state is reset to a clean state. The host receives the
info whether the guest crashed or continued execution, and
additionally, whether any of the test cases inside the guest
return an unexpected result. If a flip causes a guest crash or
host hang, we log the MSR/bit and immediately restart. Such
events are not considered exploitable for our purposes.

Guest Probe The guest SEV-SNP VM is pinned to core
C;ev- Inside the guest, we execute short, deterministic snippets
that (i) stress specific instruction groups and (ii) record both
register and memory state.If a test case produces a different
program state with changed MSR settings or while flipping
MSR bits in the hyperthread, we flag the corresponding MSR
bitmask and include it in our test report. We also record faults
in the user-mode program and crashes of the host system.

To achieve broad coverage over the x86 ISA, we run test
cases for every non-privileged instruction, excluding non-
deterministic instructions such as rdrand. Furthermore, we
create test cases to check the integrity of both data and control
flow structures. For data flow, we test memory accesses on
data residing in the L.1d, L2, and L3 caches, or DRAM, using
mov instructions, stack instructions like push and pop, and
string moves like rep movsb. For control flow, we test direct
and indirect branches, as well as unconventional control flow
structures like deeply nested function calls, self-modifying
code, and direct manipulation of return pointers on the stack.

We run all these test cases with various MSR settings, cover-
ing all previously-identified MSR bits. This includes settings
where all bits in an MSR are set to ‘0’ or ‘1°, and settings
with the MSR in its default state, with individual bits flipped.
Additionally, we run the tests while continuously flipping all
or individual MSR bits in the hyperthread.

3.3.2 Results

We use a Zen 4 CPU (AMD EPYC 9124; microcode
0xal01148) running a 6.11.0 host kernel and a v6.10.0 guest
kernel for the VMs. We use QEMU version 9.0.92, provided
by AMD. Running the templating on this machine with hy-
perthreading enabled results in a single undocumented, core-
scoped bit in MSR 0xC0011029 whose transitions on C, re-
peatedly caused architectural deviations in stack-centric snip-
pets running on Cj,,. We consistently observe wrong returns
on the guest, indicating a corruption of the stack pointer. As
these effects vanish when the sibling thread idles or the guest
avoids stack-modifying instructions, we flagged the bit as a
cross-hyperthread control for the frontend stack machinery.
As flipping the bit allows modifying the stack pointer, we
refer to this primitive as StackWarp. We further confirm that
this bit has the same effect on all Zen 1-5 generation CPUs, as
listed in Table |. Section 4 attributes the phenomenon to the
stack engine and quantifies the induced, deterministic shift of
the guest rsp. In contrast, on Intel processors, the scan results
only in crashes without exploitable findings (Section &.1).

Crashes Some flips (across unrelated MSRs) stall the core
or raise a machine error check. We provide a list of such
MSR bits in Section A. In such cases, we reboot the machine
and continue scanning. We explicitly ignore such cases in
the discovery pipeline, as they are not directly exploitable
under our threat model and would only distort the signal of
guest-visible architectural changes we seek.

4 Root Cause Analysis

In this section, we analyze the root cause of StackWarp. We
attribute StackWarp to a frontend bug in the Zen stack en-
gine that can be toggled via an undocumented, per-core MSR
control. We present the positive findings that establish a deter-
ministic, controllable shift of rsp, characterize its behavior
on the uop level, show cross-hyperthread controllability, and
bound the offset. We also report the negative results that rule
out alternative explanations and scope the effect.

4.1 Deterministic Shift and Freeze—Release
Model

We observe that transitions of the per-core control in
MSR (0xC0011029) cause a repeatable, attacker-chosen shift
of the victim’s rsp. If flipping the bit from 0—1 causes a
stack corruption, flipping it back from 1—0 produces a cor-
ruption of the same magnitude with the opposite sign (Sec-
tion B). This behavior matches a simple model. While en-
abled, the stack engine tracks a hidden running delta A for
rsp. In contrast, when the stack engine is disabled, every
stack-manipulating instruction has to adjust the rsp. How-
ever, due to the incorrect synchronization, stack-manipulating

Table 2: Performance counter analysis on selected instruc-
tions. The table records the counter values when bit 19 of
MSR (0xc0011029) is set to O vs. 1. The experiment is con-
ducted on an AMD EPYC 9124 CPU.

Ops from Decoder Retired Ops
Instructions Bit=0 Bit=1 Bit=0 Bit=1

~ push REG 1 2 1 2
£ pop REG 1 2 1 2
¥ call+ret 5 11 5 11
% nmfence 6 5 6 5
';; mov rsp, REG 3 1 2 1
< add rsp, IMM8 3 1 2 1
§ sub rsp, IMM8 3 1 2 1
% sub rbp, IMMS 1 1 1 1
S sub rdi, IMM8 1 1 1 1

instructions that are already decoded assume that they do not
have to adjust the rsp. Thus, disabling the stack engine while
stack instructions are in flight freezes A so memory updates
commit but the architectural rsp is not advanced. Re-enabling
releases the accumulated A in one step:

rsp’ = rsp+A,

with sign and magnitude determined by the in-flight mix of
stack-manipulating instructions (i.e., push/pop/call/ret) at
the transition. This freeze—release effect lets us prepare A
on the host, then deterministically inject it into the guest as
in Section 5.1. The behavior reproduces across all CPUs in
Table |, including fully patched Zen 5. While microarchitec-
tural details may vary by stepping, the freeze-release model
consistently explains the observed direction, magnitude, and
determinism required for exploitation.

4.2 Instruction-Level Evidence via Perfor-
mance Counters

To verify that stack-manipulating instructions do not correctly
update the stack pointer, we analyze the number of pops with
the pop cache [34] disabled. Disabling the uop cache ensures
the CPU re-decodes instructions, preventing the observation
of cached (stale) results. This serves primarily as a de-noising
measure and does not fundamentally alter the experimental
outcome. We use two performance counter events, issued pops
from the decoder and retired pops, to analyze instructions that
interact with the stack, including both explicit and implicit
stack operations. We monitor these events while toggling
bit 19 of MSR (0xC0011029).

Table summarizes the results. When the bit in-
dicates “‘stack engine enabled”, i.e., the default setting,
stack instructions use fewer pops and explicit rsp arith-

metic (add/sub/mov rsp, *) incurs additional synchro-
nization pops, consistent with periodically committing a
hidden delta [17]. When disabling the stack engine,
push/pop/call/ret expand to multiple uops reflecting their
true complexity, i.e., they require additional pops to update
the stack pointer.

For verification, we analyze the pops for unrelated arith-
metic on other registers (e.g., sub rdi, imms8),including the
base pointer. In all of the tested cases, the number of uops
does not change, indicating that this MSR bit indeed controls
the stack engine. These effects are expected if the stack en-
gine injects a sync pop that behaves like an ALU add to rsp
and is dispatched at the frontend.

4.3 Cross-Hyperthread Control from a Per-
Core MSR

The control in MSR (0xC0011029) is per-core. When we idle
the sibling logical thread, effects disappear. When the sibling
flips the bit while the victim executes stack instructions, the
victim’s rsp shifts according to our model.This establishes
a cross-hyperthread control path: the enable state is not cor-
rectly synchronized across logical threads sharing the core
frontend. That a stack-engine sync is essentially an ALU
pop also clarifies why cross-thread influence is observable in
principle, ALU resources are shared across hyperthreads [35].

4.4 Bounds and Accumulation of A

Two factors bound |A|: the maximum value of the hidden
delta tracked by the stack engine, and the number of stack-
modifying instructions decoded but not yet retired at the tran-
sition. Prior work on Pentium M documents an 8-bit signed
counter with periodic sync [28]. On AMD EPYC 9124, we
measure single-shot |A| up to 640 B in either direction using
sequences of push or pop. While this offset seemingly ex-
ceeds the range of an 8-bit signed counter, we expect that the
stack engine tracks the A in multiples of the stack-pointer
alignment, i.e., 8 bytes. Thus, we expect the theoretical maxi-
mum shift to be 1016 B, which seems to be practically limited
by number of in-flight stack operations in the speculation win-
dow. Fences and explicit rsp arithmetic introduce backend
synchronization (Table 2) and thus cap |A|. Still, the effective
limit can be extended by relying on multiple injections. Sev-
eral small, precisely placed shifts are often easier to achieve
than a single large one and are sufficient for our exploits in
Sections 5 and

4.5 Rejecting Alternative Hypotheses

To further validate that StackWarp exploits the stack engine’s
optimization for the stack-pointer offset, we disprove alterna-
tive hypotheses.

Instruction Skipping. We design a test program that first
pushes eight zeros, resets rsp, and then pushes eight non-zero
values with mfence padding. For all executions, we find all
eight non-zero values in memory, even after a crash. Thus,
push reaches memory, and only the architectural rsp update
is dropped. Hence, there is no instruction skipping.

Decode Failure. The decoder and retire counts change
exactly for stack instructions and explicit rsp arithmetic when
toggling bit 19. Unrelated GPR arithmetic remains stable
(Table 2), which is inconsistent with general decoding failure.
Moreover, when using this control with an idle hyperthread,
programs work as expected.

Generic Register Optimization. We observe no hidden-
delta behavior for rbp or other GPRs. Arithmetic on rbp
(e.g., sub rbp, imm8) shows identical yop counts regardless
of the control state (Table 2). Moreover, in our tests, flipping
the control caused crashes only in code containing stack-
manipulation operations.

5 Attack Primitives

In this section, we detail what an attacker can do with Stack-
Warp, and how the resulting attack primitives can be used for
end-to-end exploits. First, we show how a malicious hypervi-
sor prepares and triggers a precise stack-pointer shift against
a victim vCPU (Section 5.1). Second, we present control-flow
and data-flow manipulation primitives that enable attacks,
such as the examples given in Section 6. Eventually, we eval-
uate StackWarp’s stability and reliability by a series of exper-
iments with fine-granular synchronization between attacker
and victim in Section

5.1 Attack Flow

Figure 2 summarizes the attack, which proceeds in two phases
on two sibling logical threads Cs,, (victim vCPU) and C, (at-
tacker host thread) that share one physical core. The profiling
phase disables the stack engine while concurrently execut-
ing stack instructions to configure an attacker-chosen A. The
injection phase injects that exact A into the victim so it deter-
ministically shifts the guest rsp, leading to a controlled stack
manipulation of the victim application.

5.1.1 Profiling Phase: Generate and Verify A

The goal of this phase is to create and freeze a desired offset
A in the stack engine before injecting it into the guest. For
this phase (cf. Figure 22), the victim is paused, i.e., not run-
ning, and the attacker runs code on both sibling cores, i.e.,
C, and Cj,,. On sibling core Cy,,, the host executes a fenced
sequence of push or pop to accumulate a hidden offset in
the stack engine while it is enabled. Concurrently, on C,, the
host issues a wrmsr to the undocumented, per-core control in

MSR (0xC0011029) to disable the stack engine. If the tran-
sition hits while the stack sequence on Cy,, is decoded but
not yet retired, memory updates commit but the architectural
update of rsp is withheld, i.e., the hidden offset A is frozen
(Section 4.1). The sign of A is controlled by using push or
pop instructions, for a negative and positive sign, respectively.
The absolute value of A depends on the exact number of push
and pop instructions. We verify the freeze locally on Cy,,: if
rsp remains unchanged after the sequence, the accumulated
value equals the generated A, as the expected stack change
is withheld. If rsp does not contain the expected value, we
restore rsp, re-enable the stack engine from C,, and repeat.
This closed-loop procedure yields a A with known sign and
value and leaves it frozen in the core frontend until released.
To reduce noise, we fence the sequence, pin threads, and keep
the pipeline clean when re-enabling the stack engine. If the
desired A is successfully frozen in the stack engine, the attack
moves to the injection phase. This phase is deterministic and
completes within tens of thousands of cycles (cf. Section 5.4).

5.1.2 Injection Phase: Inject A into the Victim

With a verified A frozen, we schedule the victim on Cs,, at a
chosen snippet and release A by re-enabling the stack engine
from C,. The goal is for the wrmsr on C, to take effect after
VM-entry loads the guest state on Cj,, but before the next
retirement, so the guest observes rsp <— rsp A at the next
instruction. We achieve this with a short, calibrated padding
loop on Cs,, followed by an inter-processor interrupt (IPI) to
C, that performs the wrmsr. The calibration of the padding
sequence is required only once. As illustrated in Figure 2b, the
CPU loads the guest state before resuming the VM and saves it
upon exiting. The attacker synchronizes the wrmsr instruction
on C, to execute precisely within this window, ensuring it
targets the guest rsp. Calibration relies on checking the host
rsp before and after the context switch. These checks indicate
whether the padding is too short or too long, namely if the A
is injected to the host rsp.

To reduce jitter, we take several measures. We fix the core
frequency. Additionally, a userspace thread is pinned to C,
to keep it in the PO (active) state, thus preventing the core
from entering the idle state. As the IPI has the highest priority
except for NMI or SMI, C, immediately executes the function
specified by the IPI. The attacker also flushes the cache using
wbinvd before resuming the VM, extending the duration of
each state in the context switch and thus widening the timing
window. Lastly, to further reduce noise in the IPI routine, the
attacker sends an IPI from Cs,, to C, tasking C, to execute
a warm-up function and bringing the relevant code path into
the cache. This warm-up step is performed before resuming
the VM and issuing the IPI that triggers the wrmsr on C,.
As also shown in previous work [4], single-stepping yields
consistent interruption points where we can manipulate the
stack pointer. The same process supports multi-shot injections

Csev C,
s
ﬁb instr j=»| Interrupt IPI :
instr Handler 1 Disable SE
% instr Save RSP :
Loop: wrmsr
RSP stays unchanged pusi...
- Profiling complete pusAh.. Affect
- mfence.. [€77"%""1
RSP changes Check RSP -
- Repeat profiling

Enable SE |wrmsr

(a) Profiling phase. The attacker disables the stack engine on C,
while executing a fenced push/pop sequence on Cs, to freeze
a chosen A.

C |l C

sev : a
.@ Interrupt IPL; ,
Handler Enable SE
[2 :
Save RSP i | NOPs
RSP changes Padding
Y Check RSP
Int | instr |e-——aea-Tooo v é_f{e_c_t_:__ wrmsT
—|
tnstr [Check RSP,]
instr

Resume host RSP if the padding 1) is too long 2-) is too short

(b) Injection phase. The attacker re-enables the stack engine
from C, so the release lands the next retirement on Cg,,,. The
green region marks the effective injection window.

Figure 2: Overview of StackWarp. Freeze—release of the stack-engine delta yields a deterministic shift of the victim’s rsp

(Section 4).

Function Call Flow

R

Figure 3: Function call flow. By shifting rsp to a previous
stack frame before a ret, an attacker can skip function epi-
logues or entire functions.

by regenerating and reusing additional A values as needed for
larger effective shifts.

5.2 Control-Flow Primitives

We describe two control-flow building blocks allowing to hi-
jack the control flow using StackWarp. These building blocks
do not rely on gadgets as in traditional exploits.

(C1) Frame Rewind. As return addresses are placed right
at the beginning of each function’s stack frame, moving rsp
to a the beginning of a previous instead of the current stack
frame, right before a ret instruction causes a return to an
older call site without altering any other architectural state.
This lets an attacker skip epilogues or entire functions and
is effective even without attacker-controlled stack data. This
primitive is illustrated in Figure 3. For example, an attacker

int check_password(const char* user_input) {

if (strcmp (user_input, correct_passwd) == 0)
return 1; // Password match

return 0; // Password mismatch

void authenticate_user() {
const char* user_pwd = read_user_input();

1
2
3
4
51
6
;
8
9 if (check_password(user_pwd))

10 allow_access();
1 else
12 deny_access () ;

Listing 1: Return-value tunneling: an attacker can shift
rsp by +8 just before strcmp returns so control hops
over check_password’s boolean wrapper and resumes in
authenticate_user with a non-zero RAX, which is treated
as true.

exploiting StackWarp right before the end of the execution
of func_E can skip the remaining execution of func_D and
instead directly return to func_C, func_B, or func_A. As-
suming that the attacker aims to skip the remaining code of
func_D and instead return to func_C directly, the attacker
mounts StackWarp right before the return from func_E. The
attacker then shifts the stack pointer to point to the stored
return address of func_C, instead of the saved return address
within func_D. The attacker resumes the victim application,
which skips the remaining code of func_D, while returning
the value produced by func_E.

This building block can also be used to “tunnel” return
values. Consider a simple string comparison as shown in List-
ing |. It uses C’s st rcmp function to compare a user-provided

password against the actual password. The C standard defines
strcmp to return 0 on equality and non-zero on mismatch [36].
Glibc’s implementation internally calls one of many different
implementations of strcmp, e.g., __strcmp_avx2. By inject-
ing A right before __strcmp_avx?2 returns and rewinding by
one frame, control returns directly to authenticate_user,
bypassing check_password’s wrapper that translates st rcmp
== 0 to a boolean true. Since C treats any non-zero as
true [36], a mismatching st rcmp result in RAX is interpreted
as success by authenticate_user, granting access without
modifying code or data in the guest.

(C2) Stack Pivot to Attacker-controlled Data. If the victim
has an in-stack buffer that the attacker can influence (e.g.,
via syscalls that copy user data onto the kernel stack, see
Section 6.4 for an example), moving rsp to that buffer imme-
diately before a ret pivots control flow to an attacker-chosen
address. This can be exploited ROP-style for arbitrary code ex-
ecution in the victim. Unlike classical overflows, no memory
corruption is required. The stack pointer alone is redirected,
and stack depth can later be restored with a second injection.

5.3 Data-Flow Primitives

As StackWarp allows for controlled bidirectional stack pointer
manipulation, an attacker can use it to manipulate a victim
application’s data flow. More precisely, an attacker gains the
ability to manipulate memory accesses to stack-based vari-
ables. We describe two generic building blocks that leverage
StackWarp for data-flow attacks.
(D1) Balanced Two-shot Manipulation within a Frame.
With small |A| that stays inside the current frame, we can tran-
siently relocate rsp to change which slots are read or written
between two injections. This enables targeted corruption of
security-critical metadata such as stack canaries, potentially
altering control flow without triggering immediate faults.
Figure 4 shows a toy example with a stack-based buffer
overflow, and the compiler-inserted stack-canary protection.
During the time window marked by the red rectangle, the
attacker uses StackWarp to shift the stack pointer upward by
0x18 bytes, allowing input to overwrite the original return
address. After the canary value is read from the stack, during
the time window marked by the blue rectangle, the attacker
shifts the rsp back to its original position to maintain stack
balance. This sequence enables overwriting the return address
with attacker-controlled data while still passing the canary
check, demonstrating that compiler-inserted mitigations can
be bypassed without disrupting normal control flow. Note that
this serves as an illustration and the access to other stack-
based variables can be manipulated as well.
(D2) Drop Writes / Read Stale. With a larger |A|, stores
intended for the current frame can land in an unused stack
region, and the resulting memory accesses target addresses
outside any active stack frame. In this case, writes are effec-
tively discarded, and reads return stale or uninitialized values.

00000000000010a0 <main>:

10a4: sub $0x28, $rsp
10a8: lea 0x£55 (%rip), $rdi
Stack Canary
int main() 10af: mov 5fs:0x28, Srax
{ 10b8: mov $rax,0x18 (%rsp)
char buf[16]; 10bd: xor Seax, Yeax
scanf ("\%s",
buf) ; # Check stack smashing
10dc: mov 0x18 (%rsp), %rax
1f (!strcmp(10el: sub $£s:0x28, Srax
buf, "AAA")) 10ea: Jjne 10f3 <main+0x53>
puts ("Win"); 10ec: xor Seax, $eax
10ee: add $0x28, 5rsp
return 0; 10£2: ret
} # goto stack_chk_fail
canary
ret_addr [ret_addr (filled by buf) |
buf
canary buf
buf
buf — ISp

Figure 4: Bypassing stack canary via data flow manipulation.
The attacker shifts the stack pointer upward to overwrite the
return address, then restores it after the canary check, preserv-
ing stack balance while bypassing the protection.

Once the stack pointer is restored, the program resumes exe-
cution with this stale state, enabling stealthy state injection
into subsequent computation. To demonstrate the drop-write
capability, we provide a toy example Listing 5 in Appendix.

5.4 Evaluation

We use three practical ways to time the injection window.
First, single-stepping via VM exits results in the highest pre-
cision. Second, if single-stepping is not feasible or necessary,
we rely on a controlled-channel attack [37]. We simply un-
map a code page that is close to the point at which we want
to manipulate the stack pointer. This coarse-grained synchro-
nization is easy to use and in many cases sufficient. Third, as
a fallback when neither controlled-channel attacks nor single
stepping is possible, we rely on coarse-grained timing with
retries. This is sufficient if the point of the injection is not crit-
ical, as e.g., in our RSA key-recovery attack (cf. Section 6.1).

In this section, we use the single-stepping approach, as it
provides the finest granularity and best illustrates the stability
of each fault injection and their reliability with our attack
primitives. For each injection, the profiling phase takes less
than 100 000 CPU cycles to obtain the attacker-chosen offset.

In the attack phase, our experiments show that a padding range
of 4000 to 10000 iterations on C, allows the wrmsr to reli-
ably affect the guest VM state. For our evaluation on an AMD
EPYC 9124, we use 7000 iterations and apply single-stepping
to interrupt the VM, ensuring that the injection occurred at a
precise location. To confirm that fault injection works with
single-stepping, we inspect the VM exit reason and the num-
ber of guest-retired instructions using performance counters.
Across 100 trials, the attack successfully injects faults in 92
cases with single-stepping and in 3 cases with multi-stepping,
all within the current guest code page. Only 4 trials result in a
stack shift on the host, which resumes without any effect, and
no trial causes a crash on either the host or the guest. Inter-
estingly, we are not able to inject a fault with zero-stepping.
However, this is not a limitation, as an attacker can simply
repeat the profiling and retry the attack.

Next, we evaluate our attack primitives with single-
stepping. Using the primitive of C1, we bypass the strcmp
check in 44 out of 50 trials, yielding in a success rate of 88 %.
With the toy example of D2, we shift the stack twice to balance
it, and the offset is -0x80 to an unused frame. The distance
between two injections is only one single step. Out of 45 out
of 50 trials, the injection successfully points the password
to NULL and bypasses the check, yielding a success rate of
90 %. While all failing attempts lead to segmentation faults,
they do not destabilize the guest VM or host system, thus
enabling retries for an attacker.

6 Case Studies

In this section, we demonstrate StackWarp in 4 case studies.
Section 6.1 demonstrates an RSA key-recovery attack. Sec-
tion 6.2 leverages StackWarp to log into a guest VM via SSH
without requiring a password. Section uses sudo to gain
root privileges. Similarly, Section 6.4 shows how StackWarp
can be used on the kernel stack to escalate user privileges to
kernel-mode arbitrary code execution.

6.1 RSA Key Recovery

In this case study, we demonstrate how an attacker can use
StackWarp to recover the private key of an RSA-CRT im-
plementation. Specifically, we use StackWarp to mount a
Bellcore attack on an RSA signature [19,20].

Background An RSA signatures compute § = x?

(mod N), with x the (hash of the) message, d the private ex-
ponent, and N the public modulus. As the involved numbers
are large, the operation is costly. An optimization, RSA-CRT,
speeds up the computation using the Chinese Remainder The-
orem (CRT) [38]. It splits the exponentiation into §; = x?
(mod p) and S = x? (mod q), where N = p - ¢, and then
recombines them into S.

However, this optimization creates an attack surface if any
of the computations can be corrupted, and the same message
can be signed twice. For example, if an attacker corrupts only
Sy while S, stays correct, the faulty signature S leaks the
factors of N. Given S, i.e., the non-corrupted signature, and S
on the same message, the attacker computes g = ged(S — SN)
and consequently also p = N/g. Thus, with a single fault, an
attacker can trivially reconstruct the private key.

Threat Model We adopt the AMD SEV model: the vic-
tim is a protected VM guest on a malicious hypervisor. The
VM offers a signing API that allows an attacker to sign mes-
sages with the private key inaccessible to the attacker. We
assume only that the same message can be signed twice. The
attacker neither chooses nor knows the data. The attacker
only relies on StackWarp, and no other hardware or software
vulnerability, or any side channel. The victim uses Intel’s [PP
RSA-CRT implementation, which is the same implementation
that has previously been used in fault attacks [22,39,40]. The
attacker’s goal is to recover the private signing key.

Attack Flow The attacker first collects a correct signature
S. After that, the attacker triggers another signing run and
injects a fault using StackWarp during the computation of Sy,
producing $. We induce this fault by shifting the stack during
the CRT step via StackWarp. While the type of fault does not
matter much, it must affect only Sy, and the victim must not
crash. Both are achievable by injecting at a calibrated cycle
offset, requiring only coarse timer-based synchronization.

As the attacker runs on the same system and knows the
library in use, the attacker can benchmark the victim’s code
and pick the right injection point. The Bellcore attack is ro-
bust enough to handle noise from cache activity or frequency
scaling, so timing jitter does not break the exploit.

Results We successfully mount the Bellcore attack against
an AMD SEV-SNP-protected VM using Intel’s IPP RSA-CRT
implementation. Our evaluation follows the ‘blind’ fault injec-
tion primitive described by Zhang et al. [4] where any faulted
signature can lead to key recovery, regardless of the specific
fault. We add the offset +0x18 to the rsp after a randomly
chosen 1111 single-steps. Out of 100 trials, 49 attempts pro-
duced a usable faulty signature, whereas 51 attempts result
in a segmentation fault or no observable effect. None of the
attempts crash the VM or the host system. Note that, the re-
liability could be improved with program analysis to find a
stable gadget, but the blind attack itself is a valid threat.

Each of the faulted signatures enables full recovery of the
RSA private key, yielding an effective success rate of 100 %.
The average time per attempt is below 0.1 s, making this a real-
istic attack. In all successful cases, key recovery is immediate,
0.1 s once a faulty signature is obtained.

1 // return 0 on failture,

2 // else authentication succeeds

3 int sys auth passwd(struct ssh* state,

4 const char* password) ({

pw_ptr = retrieve_user_pw_entry(state)

char *hash_real_pw = shadow_pw (pw_entry_ptr);
if (hash_real_pw == NULL) return 0;

salt = hash_real pw; // salt from stored hash
hashed_provided_pw = xcrypt (password, salt);

10 return strcmp (hash_real_pw, hash_provided_pw) == 0;
1n}

© ® 9 o W

Listing 2: Simplified version of OpenSSH’s
sys_auth_passwd. The function is used to authenti-
cate users using their password

These experiments confirm that the Bellcore attack remains
practical in modern SEV-SNP environments. The robust-
ness of the attack model—requiring only a single exploitable
fault—means that even imprecise injections are sufficient.
Compared to other software-based fault mechanisms (e.g.,
undervolting [22] or Rowhammer), our primitive does not
rely on hardware-specific behavior and works reliably across
different test systems, including Zen 4 and Zen 5 CPUs.

6.2 OpenSSH

In this case study, we demonstrate how StackWarp can be
used to gain remote code execution on an AMD SEV-SNP
protected VM running an OpenSSH server. We use StackWarp
to bypass the password authentication check in OpenSSH
8.9pl, allowing an attacker to log into an account without
knowing the password. The attack is based on the Frame
Rewind primitive introduced in Section

Attack Flow. When a user connects to an OpenSSH server,
the user’s client is prompted for an authentication method,
such as a password or a public key. Passwords are verified in
OpenSSH’s function sys_auth_passwd (illustrated in List-
ing 2), which we manipulate using StackWarp to always re-
turn success. The function sys_auth_passwd gets the ses-
sion state and user-provided password as arguments and re-
turns 0 on failure. Note that due to how C handles boolean
values, any non-zero return value is treated as true, thus
indicating successful authentication, as the return value of
sys_auth_passwd is only used in boolean contexts.

We redirect the control flow by changing the stack dur-
ing the call to shadow_pw, the function responsible for
retrieving the entry of the user in Linux’s shadow pass-
word file. Right before the end of the function, between
the last stack-accessing instruction and the final ret, we
use StackWarp to shift the stack pointer to the frame of
sys_auth_passwd. For this, a RSP modification of 32 bytes
is sufficient. This causes shadow_pw to return directly to the
caller of sys_auth_passwd. As shadow_pw returns with a

non-zero value, it indicates success to sys_auth_passwd’s
caller, effectively bypassing the password check.

Results. To evaluate the attack, we mount it against OpenSSH
8.9p1 running on an AMD SEV-SNP-protected VM on AMD
EPYC 9124 running Linux kernel 6.11.0. We use page-fault
sequences and PMCs to identify the target page, followed
by single-stepping to pinpoint the instruction within that
page [41]. The attack works to successfully bypass the pass-
word check in 70 % of the attempts (n = 10), with each com-
pleting within 8 seconds. In all other attempts, the OpenSSH
server rejected the password due to occasional inaccuracies
in PMC, which leads to pattern mismatches. None of the at-
tempts crashed the system, as the attacker deliberately avoid
injecting faults. This allows an attacker to retry until success,
after, an expected amount of 2 attempts. We conclude that
StackWarp can be used to exploit OpenSSH and thus, allow-
ing malicious hypervisors to gain arbitrary code execution in
AMD SEV-SNP VMs running OpenSSH servers.

6.3 Privilege Escalation with sudo

Finally, we use StackWarp to manipulate the return value of
the getuid system call in Linux, allowing for privilege esca-
lation with sudo. In contrast to the previous case studies, this
attack does not manipulate control flow directly, targeting data
in the stack frame of Linux’s low-level system call handler
function instead.

We assume unprivileged code execution in the AMD SEV
VM (cf. Section 6.2). They can invoke sudo, but do not pos-
sess the privileges to execute commands as root (i.e., sudo
denies these privileges). The attack does not require a vulner-
ability in either Linux or sudo.

Attack Flow. As a usability feature, sudo does not query
for credentials when invoked by the root user, as root does
not gain additional privileges with sudo. To determine this,
it invokes the getuid system call. If the return value in rax
is 0 (i.e., root’s user ID), sudo immediately grants elevated
privileges; If it is not, it queries the user for credentials or
denies privileges. Hence, by manipulating the return value of
getuid with StackWarp, we can escalate our privilege level.

We achieve this with a two-shot stack pointer manipulation
(cf. D1 in Section 5.3) within Linux’s system call handler.
Before returning control to the user again, this handler restores
the user’s register state with a series of pop instructions. This
includes the return value in the rax register, which the kernel
injects by manipulating the register state in memory. We
apply StackWarp to inject a stack offset of —8 before pop
rax executes, and then resume stack balance with another
injection on the next single step. This causes the instruction
to restore the value of the previously restored register for a
second time, which for sudo fills rax with 0. When resuming
user-mode execution, the getuid system call’s return value
is 0, regardless of the actual user ID. By mounting this attack
on a command like sudo -1, we can obtain a root shell.

1 ud->cred.uid = getuid(); // mov rax, <NR>
2 ud->cred.euid = geteuid(); // syscall

3 ud->cred.gid = getgid(); // ret

4 ud->cred.egid = getegid(); // mov [MEM], rax

Listing 3: Target code of sudo. The four assignment have the
same pattern of fingerprints of performance counter.

To locate the exact point at runtime, we combine single-
stepping, controlled channel, and performance counter finger-
prints. Listing 3 shows the target code of getuid inside sudo,
followed with three additional syscalls. We select the Retired
Instruction, and Retired Far Control Transfers performance
counter events to track syscall and sysret, i.e., the return
from a syscall. Once the syscall returns, the subsequent ret
executes as a single retired instruction on the next code page.
With the controlled channel, the following instruction triggers
a data access page fault. We identify the target by detecting
this distinctive pattern, which appears four times in the trace.
Results. We mount this attack on an AMD SEV-SNP-
protected VM on AMD EPYC 9124 running Linux kernel
6.11.0. The guest is running Linux kernel 6.10.0 and uses
sudo 1.9.9. The attack succeeds in 16 out of 20 attempts, each
completing within 8 seconds. None of these instances crashes
the host or the VM, thus making the attack highly practical, as
an attacker can repeat the attack until it eventually succeeds.

6.4 Ring 0 Code Execution

Prior case studies show how to achieve unprivileged code
execution, and privilege escalation with data-flow primitive
in a AMD SEV guest. In this section we demonstrate priv-
ilege escalation to ring O (guest kernel) using the second
control-flow primitive to pivot control flow via stack injection.
We use return-oriented programming (ROP) techniques [42]
to execute arbitrary code in the kernel. We assume that
the attacker can break KASLR as demonstrated in previous
work [5,43-45]. We do not rely on any vulnerability in the
Linux kernel nor a specific version.

Attack Flow. The attack flow is similar to classical ROP
attacks [42] exploiting a stack buffer overflow. However, in
contrast to these classical attacks, we do not overflow a data
structure overwriting the return address. Instead, we use Stack-
Warp to directly move the stack pointer to attacker-controlled
stack data right before a ret instruction, thus redirecting con-
trol flow to an attacker-controlled address.

To mount this attack we need to bring attacker-controlled
data onto the kernel stack. We manually inspect common
Linux syscalls for stack data structures and buffers that are
copied to by copy_to_user. We find the select syscall to
be a good candidate as it allows for arbitrary 120 B to be
copied directly to the kernel stack.

The Linux kernel select implementation uses a small
buffer on the stack. This buffer holds 6 file descriptor sets, 3
of which are attacker-controlled and can contain arbitrary data.
The buffer is 256 B in size by default which gives a maximum
size of 40 B per set, as the used set size is rounded down to
multiples of 8§ B. Above that set size, kvmalloc is used, as
the sets are too large for the limited stack buffer. To allow for
40 B sets, totalling 320 file descriptors, the userspace attacker
process actually has to own more than 320 file descriptors,
which we achieve by copying the stdin file descriptor 512
times using the fcntl syscall. Finally, we call select with
120 B of payload data split over the 3 input sets which are
continuously copied to the stack.

Before returning to userspace from the select syscall, we

use StackWarp to offset the stack pointer to the stack buffer
holding the attacker data. Note that this offset is fixed in the
compiled kernel and can therefore be probed offline. Shift-
ing the stack pointer results in the kernel using the attacker-
controlled bytes as return address. We craft a classical ROP
chain that executes the kernel_halt guest kernel function.
We shift the stack pointer by the correct offset within the
kernel select function and observe a kernel guest halt on
return.
Results. We evaluate the attack on an AMD Ryzen 7 PRO
7840U. In all of our experiments (10 out of 10 runs), the
attack completed successfully without failure. We conclude
that StackWarp allows for escalating privileges to ring 0 in
the guest kernel, allowing an unprivileged attacker in the VM
to arbitrarily take over the VM.

7 Mitigations

In this section, we discuss potential mitigations for StackWarp
on the hardware, software, hypervisor, and firmware level.

7.1 Hardware and Microcode and Fixes

The clean solution is to ensure in firmware or hardware that
the MSR exploited by StackWarp cannot be used. CPUs
should either (i) remove software write access to bit 19 of
MSR 0xC0011029, or (ii) clear the stack-engine delta on ev-
ery context switch even if the stack engine is disabled. Both
strategies are low-risk firmware updates: the bit is undoc-
umented, so no ABI breakage is expected. Moreover, this
should be easily doable, as AMD also used such a microcode
update that prevents modifying a specific bit inside an MSR
for mitigating CacheWarp [4]. An even more conservative
approach would be to introduce an additional lock bit for the
MSR bit. Then, the UEFI could configure the bit and lock it
to prevent further modifications. Additionally, it should only
be possible to start SEV-SNP guests if the lock bit is set. All
these mitigation would result in no performance overhead.

7.2 Hypervisor

AMD announces an SEV feature called SMT protection,
which forces the sibling thread to remain idle while an SEV-
SNP VM is running [46].This feature is enabled by setting a
specific bit in the Virtual Machine Save Area (VMSA) before
launching the SEV-SNP VM. Its status is included in the at-
testation report, allowing an SEV-SNP user to verify whether
the feature is enabled. In principle, SMT protection could
mitigate our attack, as the MSR write has to be executed on
the sibling thread. However, the feature is not yet supported
in the upstream Linux KVM hypervisor by AMD, and we
were therefore unable to test it.

7.3 Guest Software

While software countermeasures cannot stop the stack-pointer
fault, they can turn it into a non-exploitable crash instead of
an exploitable vulnerability:

Shadow Stack / CET. AMD Shadow Stack [47] is an ISA
extension available on Zen CPUs that helps protecting against
control-flow attacks. With Shadow Stack, the hardware com-
pares the return address stored on the normal stack against
a copy stored in the hardware. On a mismatch, an excep-
tion is raised and the application is stopped. While this does
not prevent StackWarp, it prevents exploitation techniques
where StackWarp is used to change the control flow. Thus,
Shadow Stack would be effective against the ROP chain we
demonstrate in Section 6.4. Unfortunately, Shadow Stack is
ineffective against any other modification, such as the case
studies in Section 5.3 and Section

Frame-pointer Checks. As a heuristic countermeasure, a
compiler pass can randomly insert checks that the difference
between stack pointer and base pointer is not bigger than
expected for the current function. This is similar to mitigations
against undervolting-based mitigations [48], for which such a
mitigation has been shown to be effective. Future work can
investigate whether such a mitigation is also practical for such
stack-based attacks, regardless of whether the stack pointer is
modified via StackWarp or via memory corruption.

8 Discussion

In this section, we discuss the applicability of our system-
atic core-scoped MSR analysis approach Section 3 to other
registers, and related work.

8.1 Intel TDX

To check whether an analogue of StackWarp exists under Intel
TDX, we use our setup from Section 3 on an Intel Xeon Gold
6526Y. We observe no cross-hyperthread effects on the TD’s
architectural state.

Still, we observe faults and system crashes in several test
cases. However, most are trivial. For instance, we observe
system crashes when disabling the syscall instruction via
IA32_EFER. In all cases, we expect that crashing behavior
is not security relevant, given that access to these MSRs is
restricted to privileged users. Crucially, we find no unexpected
effects on the architectural state of the hyperthread.

8.2 Control Registers

Control registers (CRn) are another type of system register,
similar to MSRs, used to configure the CPU. For example, set-
ting bit 30 in CRO disables the CPU cache, and modifying the
extended control register (XCRO) can disable ISA extensions.

An SEV-SNP VM stores its own guest control registers in
the VMSA, protected by integrity checks. We attempted to
modify the host XCRO to disable ISA extensions, such as x87
and AVX, and injected faults into a running SEV-SNP VM.
However, this did not appear to affect the guest XCRO, and
the VM continued to operate normally.

8.3 Related Work

Hardware-related Integrity Attacks on AMD SEV.
CacheWarp [4] demonstrates that the invd instruction can
be turned into a precise software fault primitive. A malicious
hypervisor interrupts a confidential VM (AMD SEV, SEV-ES,
or SEV-SNP), lets it keep only the cache lines it wants, then in-
validates the rest so the guest continues with deliberately stale
memory, i.e., cache-line content before the write. CacheWarp
is, therefore, the first pure software technique that subverts
SEV-SNP integrity without needing to read encrypted mem-
ory or know guest-physical addresses.

In contrast, StackWarp never touches the cache state. In-
stead, it relies on an MSR write that shifts the guest stack
pointer. This means that the primitive acts immediately inside
the running guest rather than between two VM exits, and the
attacker gets more control for exploitation as the modification
of the stack pointer can be controlled. Moreover, StackWarp
affects SEV-SNP on Zen 5, where CacheWarp is fixed.
Software-related Integrity Attacks on AMD SEV. Heck-
ler [6] exploits the hypervisor’s ability to inject any external
interrupt. This leads to unexpected control flow, e.g., when
injecting a legacy syscall (int 0x80), that modifies regis-
ter values inside the guest VM. WeSee [5] generalises this
idea to the SEV-SNP-specific #VC vector 29: by forging the
exit_reason field, the attacker convinces the guest’s VC
handler to copy arbitrary data between the GHCB and guest
context, achieving register leaks, register clobbers, and code
injection. Both attacks group such techniques under Ahoi at-
tacks, meaning notifications that directly change architectural
state instead of merely exposing a side channel.

Both Heckler and WeSee rely on injected interrupts whose
delivery path is visible in the guest’s control flow and can

be filtered by future interrupt-filter hardware. StackWarp, in
comparison, requires no interrupt or VM exit: the sibling core
writes to an undocumented MSR bit, immediately relocating
the victim’s stack without any guest-visible event.
Side-channel Attacks. There is a long line of research on
AMD SEV that abuses page-table remapping [49], encryption
oracles [50], or fault oracles [51] to read or modify mem-
ory contents. Most of these attacks have been mitigated with
SEV-SNP, leaving only microarchitectural side-channel at-
tacks, such as Prime+Probe [52] as a known attack surface.
Such microarchitectural side channels are limited to leaking
meta data, and have strong assumptions on the victim, i.e.,
the victim requires secret-dependent memory accesses. In
contrast, StackWarp makes no such assumptions and exploita-
tion cannot be prevented with constant-time programming
techniques [53]. Concurrent work [54] presents side-channel
attacks on the stack engine and identifies the same MSR bit as
a mitigation by disabling the stack engine. Their findings are
complementary and can assist in adapting StackWarp to other
microarchitectures. Notably, their discovery of immediate-
based operations on Zen 5 simplifies the profiling of the de-
sired shift offset required for our attack.

9 Conclusion

We discovered StackWarp, a frontend-based stack synchro-
nization vulnerability enabling attacks to fully compromise
AMD SEV-SNP VMs. Our templating-based sytematic anal-
ysis of undocumented MSR bits on AMD CPUs discovered
stack corruptions leading to the discovery of StackWarp. Our
root-cause analysis showed that StackWarp enables an at-
tacker to deterministically shift the stack pointer on the sib-
ling logical core. We demonstrated the security impact of
StackWarp by mounting several attacks against AMD SEV-
SNP running on fully patched Zen 5 hardware. Using Stack-
Warp, we demonstrated RSA key recovery and fully bypass
OpenSSH authentication. Furthermore, we showed two ways
to achieve privilege escalation via sudo and using a kernel-
level ROP chain, leading to a full system compromise. We
discussed potential mitigations for StackWarp. We conclude
that StackWarp shows that SMT undermines the security SEV-
SNP integrity guarantees.

Acknowledgment

We want to thank our shepherd and the anonymous reviewers
for their guidance, comments and valuable suggestions, as
well as Lukas Gerlach and Youheng Lii for helpful feedback
on this work. This work was partly supported by the Semi-
conductor Research Corporation (SRC) Hardware Security
Program (HWS).

Ethical Considerations

This work exposes a previously unknown vulnerability in
AMD Zen CPUs that undermines the integrity guarantees
of SEV-SNP, a technology widely deployed in confidential
virtual machines. Such findings inherently carry ethical im-
plications, as they demonstrate practical attacks that could be
misused by malicious actors if prematurely disclosed. To miti-
gate these risks, we followed responsible disclosure practices.
We reported our findings to AMD on March 24, 2025, received
acknowledgment on March 25, 2025, and coordinated with
the vendor regarding CVE assignment and embargo timelines.
AMD has confirmed that hot-loadable microcode patches have
already been released to their customers. No details beyond
what is described in this paper were shared publicly prior to
vendor acknowledgment, and proof-of-concept code will only
be released publicly after vendor patches or mitigations are
available.

Our experiments were conducted exclusively on hardware
owned and controlled by the authors in a laboratory environ-
ment. No experiments involved third-party systems, produc-
tion cloud infrastructure, or workloads belonging to others.
The attack demonstrations targeted only test virtual machines
we deployed ourselves, ensuring that no external users or data
were put at risk. Furthermore, the study does not involve hu-
man subjects, nor does it collect or process personal data, so
no institutional ethics board review was required.

We are aware that publishing attack techniques may en-
able adversaries to replicate them. To balance scientific trans-
parency with security concerns, we limited technical detail
in ways that ensure reproducibility for the research commu-
nity while avoiding step-by-step exploit recipes that could
facilitate immediate misuse. The released artifacts will in-
clude microbenchmarks and measurement scripts sufficient
for validation, but will not include weaponized exploits. By
coordinating disclosure, restricting experiments to safe envi-
ronments, and carefully controlling publication of supporting
materials, we aim to maximize the positive impact of our
work for improving hardware security while minimizing the
potential for abuse.

Stakeholder Analysis

* Cloud Tenants: This group is the primary party at risk, as
the vulnerability directly breaks the TEE security promise.
The main positive impact of our paper is to protect these
users by discovering the Stack Warp vulnerability and
working together with the vendor to provide a long-term
fix.

¢ Cloud Service Providers (CSPs): While a malicious in-
sider is the threat actor, benign CSPs benefit from our
work. It allows them to understand the true security pos-
ture of their services and apply vendor patches to protect
their customers.

¢ CPU Vendor (AMD): As the hardware vendor, AMD is
responsible for the fix, and our findings contribute directly
to their product security.

Open Science

The preliminary version of our artifacts can be
viewed at: https://anonymous.4open.science/r/
StackWarp-B478/. We provide the experiment code for
the proof-of-concept, the performance counter analysis, the
profiling and injection phase in the KVM, and the case
studies.

» simple-poc: A poc to verify if StackWarp works on the
machine.

* ucode_instr_num: pops PMC analysis (Section 4.2).

* architectural_tests: Architectural behavior testing for
StackWarp discovery (Section 3).

* kvim: Modified KVM for profiling and injecting phase
(Section 5.1).

* rsa_crt: Artifacts of the RSA Key Recovery case study
(Section 6.1).

* openssh-exploit: Artifacts of the Openssh case study (Sec-
tion 6.2).

 getuid-exploit: Artifacts of the Sudo case study (Sec-
tion 6.3).

» kernel_rce: Artifacts of the Ring 0 Code Execution case
study (Section 6.4).

https://anonymous.4open.science/r/StackWarp-B478/
https://anonymous.4open.science/r/StackWarp-B478/

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

AMD, “Amd invd instruction security vulnerability,”
2023. [Online]. Available: https://www.amd.com/en/
resources/product-security/bulletin/amd-sb-3005.html

M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng, “Cipher-
leaks: Breaking constant-time cryptography on amd sev
via the ciphertext side channel,” in USENIX Security,
2021.

M. Li, L. Wilke, J. Wichelmann, T. Eisenbarth,
R. Teodorescu, and Y. Zhang, “A systematic look at ci-
phertext side channels on amd sev-snp,” in S&P, 2022.

R. Zhang, L. Gerlach, D. Weber, L. Hetterich, Y. Lii,
A. Kogler, and M. Schwarz, “CacheWarp: Software-
based Fault Injection using Selective State Reset,” in
USENIX Security, 2024.

B. Schliiter, S. Sridhara, A. Bertschi, and S. Shinde, “We-
see: Using malicious# vc interrupts to break amd sev-
snp,” in S&P, 2024.

B. Schliiter, S. Sridhara, M. Kuhne, A. Bertschi, and
S. Shinde, “HECKLER: Breaking confidential vms with
malicious interrupts,” in USENIX Security, 2024.

B. Schliiter, C. Wech, and S. Shinde, “Heracles: Chosen
plaintext attack on amd sev-snp,” in CCS, 2025.

Y. Yan, W. Huang, 1. Grishchenko, G. Saileshwar,
A. Mehta, and D. Lie, “Relocate-vote: Using sparsity
information to exploit ciphertext side-channels,” in
USENIX Security, 2025.

L.-C. Chiang and S.-W. Li, “Reload+Reload: Exploiting
Cache and Memory Contention Side Channel on AMD
SEV,” in ASPLOS, 2025.

L. Giner, S. R. Neela, and D. Gruss, “Cohere+Reload:
Re-enabling High-Resolution Cache Attacks on AMD
SEV-SNP,” in DIMVA, 2025.

A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcia,
and N. Tuveri, ‘“Port contention for fun and profit,” in
S&P, 2019.

T. Rokicki, C. Maurice, M. Botvinnik, and Y. Oren, “Port
contention goes portable: Port contention side channels
in web browsers,” in AsiaCCS, 2022.

T. Hornetz and M. Schwarz, “PortPrint: Identifying In-
accessible Code with Port Contention,” in uASC, 2025.

S. Deng, M. Li, Y. Tang, S. Wang, S. Yan, and Y. Zhang,
“CipherH: Automated Detection of Ciphertext Side-
channel Vulnerabilities in Cryptographic Implementa-
tions,” in USENIX Security Symposium, 2023.

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

J. Wichelmann, A. Pitschke, L. Wilke, and T. Eisenbarth,
“Cipherfix: Mitigating ciphertext side-channel attacks in
software,” in USENIX Security, 2023.

M. Bekerman, A. Yoaz, F. Gabbay, S. Jourdan,
M. Kalaev, and R. Ronen, “Early load address resolu-
tion via register tracking,” ACM SIGARCH Computer
Architecture News, vol. 28, no. 2, 2000.

A. Fog, “The microarchitecture of Intel, AMD and VIA
CPUs: An optimization guide for assembly program-
mers and compiler makers,” 2024.

L. Wilke, J. Wichelmann, A. Rabich, and T. Eisenbarth,
“Sev-step: A single-stepping framework for amd-sev,”
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2024.

C. Aumiiller, P. Bier, W. Fischer, P. Hofreiter, and J.-
P. Seifert, “Fault attacks on RSA with CRT: Concrete
results and practical countermeasures,” in CHES, 2002.

D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the
importance of eliminating errors in cryptographic com-
putations,” 2001.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu, “Flipping Bits in
Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck,
D. Gruss, and F. Piessens, “Plundervolt: Software-based
Fault Injection Attacks against Intel SGX,” in S&P,
2020.

P. Qiu, D. Wang, Y. Lyu, and G. Qu, “VoltJockey:
Breaching TrustZone by Software-Controlled Voltage
Manipulation over Multi-core Frequencies,” in CCS,
2019.

Z. Kenjar, T. Frassetto, D. Gens, M. Franz, and
A. Sadeghi, “VOLTpwn: Attacking x86 Processor In-
tegrity from Software,” in USENIX Security Symposium,
2020.

Intel Corporation, “Hyper-Threading Technology: Ar-
chitecture and Microarchitecture,” 2002.

AMD, “Technology Brief: AMD EPYC and SMT,”
2025.

M. Taram, X. Ren, A. Venkat, and D. Tullsen, “Sec-
SMT: Securing SMT processors against Contention-
Based covert channels,” in USENIX Security, 2022.

S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts,
A. Naveh, A. Saeed, Z. Sperber, and R. D. Valentine,
“The intel pentium m processor: Microarchitecture
and performance,” 2003. [Online]. Available: https:
/lapi.semanticscholar.org/CorpusID:51799543

https://www.amd.com/en/resources/product-security/bulletin/amd-sb-3005.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-3005.html
https://api.semanticscholar.org/CorpusID:51799543
https://api.semanticscholar.org/CorpusID:51799543

[29] Z. Chen, G. Vasilakis, K. Murdock, E. Dean, D. Oswald,
and F. D. Garcia, “VoltPillager: Hardware-based fault
injection attacks against intel SGX enclaves using the
SVID voltage scaling interface,” in USENIX Security,
2021.

[30] R. Buhren, H.-N. Jacob, T. Krachenfels, and J.-P. Seifert,
“One glitch to rule them all: Fault injection attacks
against amd’s secure encrypted virtualization,” in CCS,
2021.

[31] J. De Meulemeester, L. Wilke, D. Oswald, T. Eisenbarth,
I. Verbauwhede, and J. Van Bulck, “BadRAM: Practical
memory aliasing attacks on trusted execution environ-
ments,” in S&P, 2025.

[32] A. Kogler, D. Weber, M. Haubenwallner, M. Lipp,
D. Gruss, and M. Schwarz, “Finding and Exploiting
CPU Features using MSR Templating,” in S&P, 2022.

[33] Google, “Msrscan,” 2024. [Online]. Avail-
able: https://github.com/google/security-research/tree/
master/pocs/cpus/misc/msrscan

[34] C. Lam, “Turning off zen 4’s op cache
for curiosity and giggles,” 2024. [On-
line]. Available: https://chipsandcheese.com/p/
turning- off-zen-4s-op-cache-for-curiosity

[35] S. Gast, J. Juffinger, M. Schwarzl, G. Saileshwar,
A. Kogler, S. Franza, M. Kostl, and D. Gruss, “Squip:
Exploiting the scheduler queue contention side channel,”
in S&P, 2023.

[36] ISO, ISO/IEC 9899:2011 Information technology —
Programming languages — C. International Orga-
nization for Standardization, 2011.

[37] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Op-
erating Systems,” in S&P, 2015.

[38] D. Pei, A. Salomaa, and C. Ding, “Chinese remainder
theorem: applications in computing, coding, cryptogra-
phy,” in World Scientific, 1996.

[39] J. Wichelmann, A. Moghimi, T. Eisenbarth, and
B. Sunar, “MicroWalk: A Framework for Finding Side
Channels in Binaries,” in ACSAC, 2018.

[40] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon,
C. Canella, and D. Gruss, “PLATYPUS: Software-based
Power Side-Channel Attacks on x86,” in S&P, 2020.

[41] R. Zhang, A. Cheu, A. Gascon, D. Moghimi, P. Schopp-
mann, M. Schwarz, and O. Suciu, “SNPeek: Side-
Channel Analysis for Privacy Applications on Confi-
dential VMs,” in NDSS, 2026.

[42] R. Roemer, E. Buchanan, H. Shacham, and S. Savage,
“Return-oriented programming: Systems, languages, and
applications,” in ACM Transactions on Information and
System Security (TISSEC), 2012.

[43] C. Canella, M. Schwarz, M. Haubenwallner,
M. Schwarzl, and D. Gruss, “KASLR: Break It,
Fix It, Repeat,” in AsiaCCS, 2020.

[44] D. Weber, A. Ibrahim, H. Nemati, M. Schwarz, and
C. Rossow, “Osiris: Automated Discovery of Microar-
chitectural Side Channels,” in USENIX Security, 2021.

[45] M. Schwarz, C. Canella, L. Giner, and D. Gruss,
“Store-to-Leak Forwarding: Leaking Data on Meltdown-
resistant CPUSs,” arXiv:1905.05725, 2019.

[46] “AMD64 Architecture Programmer’s Manual,” Ad-
vanced Micro Devices Inc., 2025.

[47] AMD, “AMD PRO Technologies Secu-
rity White Paper,” 2025. [Online]. Avail-
able: https://www.amd.com/content/dam/amd/

en/documents/products/processors/technologies/
amd-pro-technologies-security-white-paper.pdf

[48] A. Kogler, D. Gruss, and M. Schwarz, “Minefield: A
Software-only Protection for SGX Enclaves against
DVES Attacks,” in USENIX Security, 2022.

[49] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel, “Sev-
ered: Subverting amd’s virtual machine encryption,” in
EuroSec, 2018.

[50] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisen-
barth, “Sevurity: No security without integrity—breaking
integrity-free memory encryption with minimal assump-
tions,” in S&P, 2020.

[51] M. Li, Y. Zhang, and Z. Lin, “CrossLine: Breaking
“Security-by-Crash” based Memory Isolation in AMD
SEV,” in SIGSAC, 2021.

[52] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-
Level Cache Side-Channel Attacks are Practical,” in
S&P, 2015.

[53] Cauligi, Sunjay and Disselkoen, Craig and Gleissenthall,
Klaus v and Tullsen, Dean and Stefan, Deian and Rezk,
Tamara and Barthe, Gilles, “Constant-time foundations
for the new spectre era,” in SIGPLAN, 2020.

[54] S. Niederer, S. Riiegge, A. Hajiabadi, and K. Razavi,
“One Flew over the Stack Engine’s Nest: Practical Mi-
croarchitectural Attacks on the Stack Engine,” in MI-
CRO, 2025.

[55] O. C. Company, “illumos,” 2025. [Online]. Avail-
able: https://github.com/oxidecomputer/illumos-gate/
blob/stlouis/usr/src/uts/intel/sys/amdzen/ccx.h

https://github.com/google/security-research/tree/master/pocs/cpus/misc/msrscan
https://github.com/google/security-research/tree/master/pocs/cpus/misc/msrscan
https://chipsandcheese.com/p/turning-off-zen-4s-op-cache-for-curiosity
https://chipsandcheese.com/p/turning-off-zen-4s-op-cache-for-curiosity
https://www.amd.com/content/dam/amd/en/documents/products/processors/technologies/amd-pro-technologies-security-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/products/processors/technologies/amd-pro-technologies-security-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/products/processors/technologies/amd-pro-technologies-security-white-paper.pdf
https://github.com/oxidecomputer/illumos-gate/blob/stlouis/usr/src/uts/intel/sys/amdzen/ccx.h
https://github.com/oxidecomputer/illumos-gate/blob/stlouis/usr/src/uts/intel/sys/amdzen/ccx.h

A Crashing MSR Bits

MSR 0xC0011092 and 0xC0011093 are partially documented
as L3 cache controller configuration registers on Zen 3
and Zen 4 [55]. We find that repeatedly flipping bit 1 of
0xC0011092 triggers a Machine Check Error (MCE) classi-
fied as a microarchitectural error. Similarly, repeatedly flip-
ping bit 24 of 0xC0011093 triggers another MCE. The re-
ported MCE indicates a parity check error in the L1 cache.
However, we are not able to find an exploitable use for these
behaviors.

MSR 0xC0011097 is not officially documented but is ref-
erenced as part of the L3 XI complex interface by Oxide [55].
Notably, bit 15 is only allowed to be set once. Once set, the
hypervisor can no longer launch a new SEV-SNP VM, as it
fails to create an encryption context according to the error
log. If an SEV-SNP VM is already running, the hypervisor
can still set this bit. The VM times out on shutdown, the CPU
disables the PSP, and the hypervisor is unable to resume the
VM or launch a new one.

B Stack Pointer Analysis

We use the code in Listing 4 (eight push with mfence be-
tween them) to analyze the effect of toggling bit 19 of
MSR (0xC0011029). Setting the bit 0—1 yields a negative
offset (missed increments of rsp). Resetting 1—0 yields the
same magnitude but positive. Conversely, with sequences of
pop, the signs invert.

C Toy Example of Dropping Write

Listing 5 illustrates a toy checker for a root login. The function
stores the password pointer from pw—>pw_passwd in the local
variable correct. If getuid() == 0, or correct is NULL,
or correct [0] == "\0’, the function returns success. An
attacker can shift rsp immediately before the assignment to

correct, causing the store to miss its intended stack slot.

Consequently, the password variable remains uninitialized,
and the subsequent check may observe correct == NULL,
thereby granting access.

1 void ufl() {
2 printf ("Unreachable 1!!!\n");
3}
4 void uf2() {

printf ("Unreachable 2!!!\n");
}

__attribute_ ((naked)) woid push_stack(wvoid *p) {
asm volatile(

10 ".rept 8\n\t"

1 "push %0\n\tmfence\n\t" // address of uf2()

12 ".endr\n\t"

5
6
7
8
9

13 "add rsp, 0x40\n\t" // stack balance
14 "ret\n\t"
15 :: "r"(p) : "memory");

16}

18 int main() {
19 void (*fp[8]) (void) = {

20 ufl, ufl, ufl, ufl, // address of ufl()

21 ufl, ufl, ufl, ufl, // on the stack

22 bi

23 for (;;) {

24 push_stack ((void *)uf2); // save ret address

25 }
26 }

Listing 4: Program of stack pointer analysis.

bool correct password(const struct passwd *pw) {
// addressed from RSP
char *correct;
// shift RSP so this store misses
correct = pw->pw_passwd;
// observed as NULL -> success
if (getuid() == 0 || !correct || correct[0] == "\0'
return true;

© % 9 U AW o —

Listing 5: Drop-write primitive: a large |A| moves the target
slot out of the active frame, such that the store is “lost”. On
restore of the stack pointer, later reads see a stale/uninitialized
value.

	Introduction
	Background
	Trusted Execution Environment
	Software-based Fault Attacks
	Hyperthreading
	Stack Engine

	StackWarp: Manipulating the Stack Pointer via the Stack Engine
	Overview
	Threat Model
	StackWarp Discovery
	Templating
	Results

	Root Cause Analysis
	Deterministic Shift and Freeze–Release Model
	Instruction-Level Evidence via Performance Counters
	Cross-Hyperthread Control from a Per-Core MSR
	Bounds and Accumulation of Δ
	Rejecting Alternative Hypotheses

	Attack Primitives
	Attack Flow
	Profiling Phase: Generate and Verify
	Injection Phase: Inject into the Victim

	Control-Flow Primitives
	Data-Flow Primitives
	Evaluation

	Case Studies
	RSA Key Recovery
	OpenSSH
	Privilege Escalation with sudo
	Ring 0 Code Execution

	Mitigations
	Hardware and Microcode and Fixes
	Hypervisor
	Guest Software

	Discussion
	Intel TDX
	Control Registers
	Related Work

	Conclusion
	Crashing MSR Bits
	Stack Pointer Analysis
	Toy Example of Dropping Write

