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Abstract
The cylindrical algebraic decomposition (CAD) is the only complete method used in practice for solving problems

like quantifier elimination or SMT solving related to real algebra, despite its doubly exponential complexity.

Recent exploration-guided algorithms like NLSAT, NuCAD, and CAlC rely on CAD technology but reduce the

computational effort heuristically. Single cell construction is a paradigm that is used in each of these algorithms.

The central property on which the CAD algorithm is based is called delineability. Recently, we introduced a

weaker notion called projective delineability which can require fewer computations to guarantee, but needs to be

applied carefully. This paper adapts the single cell construction for exploiting projective delineability and reports

on experimental results.
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1. Introduction

The cylindrical algebraic decomposition (CAD) method enables reasoning about formulas in real al-
gebra and is implemented in various tools for quantifier elimination like QEPCAD [5], Redlog [23],

Mathematica [24], and Maple [9], and satisfiability-modulo-theories (SMT) solving, like z3 [12],

cvc5 [2], yices2 [14], and SMT-RAT [11]. Despite its doubly exponential complexity, it is the most

widely used complete method for these problems.

The CAD method decomposes the real space into a finite number of connected sets (called cells) such

that the input set of polynomials have invariant sign in each cell. Although such a decomposition allows

for reasoning about the formula, it is usually finer than needed for the task at hand. Algorithms like

NLSAT [15], NuCAD [7], and CAlC [1] reduce the computational effort by computing only a set of cells

where the input formula is truth-invariant that together cover the real space rather than decompose it.

These savings are achieved by using the Boolean structure and relation symbols to determine which

polynomials are relevant in a certain part (determined by some sample point) of the space, and using
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the shape of the varieties to reduce the computation steps. This leads to cells that are faster to compute

and which are usually larger than the cells from the CAD.

More specifically, the CAD algorithm iteratively computes projection polynomials to eliminate variable

by variable. These consist of resultants, discriminants, and (leading) coefficients which are selected to

maintain the delineability of the polynomials, a property which allows for work at a sample point to

be generalized to a wider cell. The single cell construction [6, 8, 21] paradigm is the foundation of the

above algorithms and is able to reduce the amount of resultants and discriminants needed to maintain

delineability.

This paper investigates when we can go further and leave out leading coefficients from the projection.

Towards this goal, in prior theoretical work, we proposed to relax delineability to projective delineabil-
ity [19]: a property that does not require leading coefficients to be maintained. We now report on the

embedding of projective delineability within single cell construction, and its impact in experimental

results. We continue by recalling the single cell construction in Section 2 and projective delineability in

Section 3. Then in Section 4 we present the modification of the single cell construction to use projective

delineability, in Section 5 we report an experimental evaluation from our implementation, and finally

we conclude in Section 6.

2. Preliminaries

We introduce key background following [20] (full details in preliminaries of [21]).

Let N, N>0, Q, and R denote the sets of all natural (incl. 0), positive integer, rational, and real numbers

respectively. For 𝑖, 𝑗 ∈ N with 𝑖 < 𝑗, we define [𝑖..𝑗] = {𝑖, . . . , 𝑗} and [𝑖] = [1..𝑖]. For 𝑖, 𝑗 ∈ N>0, 𝑗 ≤ 𝑖
and 𝑟 ∈ R𝑖

, we denote by 𝑟𝑗 the 𝑗-th component of 𝑟 and by 𝑟[𝑗] the vector (𝑟1, . . . , 𝑟𝑗). Let 𝑓, 𝑔 : 𝐷 → 𝐸
and let < be a total order on 𝐸 and ∼∈ {<,=, ̸=}. We write 𝑓 ∼ 𝑔 on 𝐷 if 𝑓(𝑑) ∼ 𝑔(𝑑) for all 𝑑 ∈ 𝐷.

Note that 𝑓 ̸= 𝑔 on 𝐷 is not “not 𝑓 = 𝑔 on 𝐷”.

We work with the variables 𝑥1, . . . , 𝑥𝑛 with 𝑛 ∈ N>0 under a fixed ordering 𝑥1 ≺ 𝑥2 ≺ ... ≺ 𝑥𝑛. A

polynomial is built from a set of variables and numbers from Q using addition and multiplication. We

use Q[𝑥1, . . . , 𝑥𝑖] to denote multivariate polynomials in those variables. A polynomial 𝑝 is of level 𝑗 if

𝑥𝑗 is the largest variable in 𝑝 with non-zero coefficient.

Let 𝑖 ∈ [𝑛] and 𝑝, 𝑞 ∈ Q[𝑥1, . . . , 𝑥𝑖] of level 𝑖. For 𝑗 ∈ [𝑖] and 𝑟 = (𝑟1, . . . , 𝑟𝑗) ∈ R𝑗
we write

𝑝(𝑟, 𝑥𝑗+1, . . . , 𝑥𝑖) for the polynomial 𝑝 after substituting 𝑟1, . . . , 𝑟𝑗 for 𝑥1, . . . , 𝑥𝑗 in 𝑝 and indicating

the remaining free variables in 𝑝. We use rroots(𝑝) ⊆ R𝑖
to denote the set of real roots of 𝑝, deg𝑥𝑗

(𝑝)
to denote the degree of 𝑝 in 𝑥𝑗 , coeff𝑥𝑗 (𝑝) for the set of coefficients of 𝑝 in 𝑥𝑗 , ldcf𝑥𝑗 (𝑝) for the leading
coefficient of 𝑝 in 𝑥𝑗 , disc𝑥𝑗 (𝑝) to denote the discriminant of 𝑝 with respect to 𝑥𝑗 , and res𝑥𝑗 (𝑝, 𝑞) to

denote the resultant of 𝑝 and 𝑞 with respect to 𝑥𝑗 . Let 𝑟 ∈ R𝑖−1
, then 𝑝 is nullified on 𝑟 if 𝑝(𝑟, 𝑥𝑖) = 0.

A constraint 𝑝 ∼ 0 compares a polynomial 𝑝 ∈ Q[𝑥1, . . . , 𝑥𝑖] to zero using a relation symbol

∼∈ {=, ̸=, <,>,≤,≥}, and has solution set {𝑟 ∈ R𝑖 | 𝑝(𝑟) ∼ 0}. A subset of R𝑖
for some 𝑖 ∈ [𝑛] is

called semi-algebraic if it is the solution set of a Boolean combination of polynomial constraints. A cell
is a non-empty connected subset of R𝑖

for some 𝑖 ∈ [𝑛]. A cell 𝑅 is called simply connected if any loop

in 𝑅 can be continuously contracted to a point. A polynomial 𝑝 ∈ Q[𝑥1, . . . , 𝑥𝑖] is sign-invariant on a
set 𝑅 ⊆ R𝑖

if the sign of 𝑝(𝑟) is the same for all 𝑟 ∈ 𝑅.

Given 𝑖, 𝑗 ∈ N>0 with 𝑗 < 𝑖, we define the projection of a set 𝑅 ⊆ R𝑖 onto R𝑗
by 𝑅[𝑗] =

{(𝑟1, . . . , 𝑟𝑗) | ∃𝑟𝑗+1, . . . , 𝑟𝑖. (𝑟1, . . . , 𝑟𝑖) ∈ 𝑅}. Given a cell 𝑅 ⊆ R𝑖
, 𝑖 ∈ [𝑛] and continu-

ous functions 𝑓, 𝑔 : 𝑅 → R, we define the sets 𝑅 × 𝑓 = {(𝑟, 𝑓(𝑟)) | 𝑟 ∈ 𝑅} and 𝑅× (𝑓, 𝑔) =
{(𝑟, 𝑟𝑖+1) | 𝑟 ∈ 𝑅, 𝑟𝑖+1 ∈ (𝑓(𝑟), 𝑔(𝑟))} (𝑅× (−∞, 𝑔), 𝑅× (𝑓,+∞) analogously).

If 𝑈 ⊆ R𝑖
is open, a function 𝑓 : 𝑈 → R𝑛

is analytic if each component of 𝑓 has a multiple power

series representation around each point of 𝑈 . An 𝑖-dimensional analytic submanifold of R𝑛
is a non-

empty subset𝑅 ⊆ R𝑛
locally parametrized by coordinates through analytic functions 𝑓 : 𝑈 ⊆ R𝑖 → R𝑛

.

A function 𝑓 between analytic manifolds 𝑅 and 𝑅′
is analytic if locally it has an expression in (analytic)

coordinates which is analytic (see also [16]). Let 𝑝 ∈ Q[𝑥1, . . . , 𝑥𝑛] be a polynomial and 𝑟 ∈ R𝑛
be a

point. Then the order of 𝑝 at 𝑟, ord𝑟(𝑝), is defined as the minimum 𝑘 such that some partial derivative



of total order 𝑘 of 𝑝 does not vanish at 𝑟 (and +∞ if 𝑝 = 0). We call 𝑝 order-invariant on 𝑅 ⊆ R𝑛
if

ord𝑟(𝑝) = ord𝑟′(𝑝) for all 𝑟, 𝑟′ ∈ 𝑅 (for details see [17]).

2.1. CAD and Single Cell Construction

A cylindrical algebraic decomposition (CAD) [10, 17, 18] is a decomposition 𝒞 of R𝑛
such that each cell

𝑅 ∈ 𝒞 is semi-algebraic and locally cylindrical (i.e. can be described as the solution set of 𝜓1(𝑥1) ∧
𝜓2(𝑥1, 𝑥2) ∧ 𝜓𝑛(𝑥1, . . . , 𝑥𝑛) where 𝜓𝑖 is one of 𝑥𝑖 = 𝜃(𝑥1, . . . , 𝑥𝑖−1) or 𝜃𝑙(𝑥1, . . . , 𝑥𝑖−1) < 𝑥𝑖 <
𝜃𝑢(𝑥1, . . . , 𝑥𝑖−1) or 𝜃𝑙(𝑥1, . . . , 𝑥𝑖−1) < 𝑥𝑖 or 𝑥𝑖 < 𝜃𝑢(𝑥1, . . . , 𝑥𝑖−1) for some continuous functions

𝜃, 𝜃𝑙, 𝜃𝑢), and 𝒞 is cylindrically arranged (i.e. either 𝑛 = 1 or {𝑅[𝑛−1] | 𝑅 ∈ 𝒞} is a cylindrically

arranged decomposition of R𝑛−1
). The shape of such a CAD allows reasoning about properties of

(sets of) polynomials computationally. In particular, it is called sign-invariant for a set of polynomials
𝑃 ⊆ Q[𝑥1, . . . , 𝑥𝑛] if each 𝑝 ∈ 𝑃 is sign-invariant on each 𝑅 ∈ 𝒞. A sign-invariant CAD for 𝑃
is computed recursively: to describe the cells’ boundaries for 𝑥𝑛, we first compute the underlying

decomposition by a projection operation resulting in a set 𝑃 ′ ⊆ Q[𝑥1, . . . , 𝑥𝑛−1] whose sign-invariant

CAD will describe the first 𝑛− 1 levels of the cells of the sign-invariant CAD of 𝑃 .

The single cell construction [8, 21] computes, given a set of polynomials 𝑃 ⊆ Q[𝑥1, . . . , 𝑥𝑛] and a

sample point 𝑠 ∈ R𝑛
, a locally cylindrical cell𝑅 ⊆ R𝑛

such that 𝑠 ∈ 𝑅 and such that 𝑃 is sign-invariant

on 𝑅. In the rest of this section, we introduce the levelwise method [21] for single cell construction.

Delineability. Delineability of a polynomial on some cell means that its variety can be described

by continuous functions which are nicely ordered over that cell. This allows us to reason about the

polynomial’s roots using these functions.

Definition 2.1 (Delineability [18]). Let 𝑖 ∈ N, 𝑅 ⊆ R𝑖 be a cell, and 𝑝 ∈ Q[𝑥1, . . . , 𝑥𝑖+1] ∖ {0}.
Polynomial 𝑝 is delineable on 𝑅 if there exist continuous functions 𝜃1, . . . , 𝜃𝑘 : 𝑅→ R, 𝑘 ∈ N, such that:

• 𝜃1 < · · · < 𝜃𝑘;
• the set of real roots of 𝑝(𝑟, 𝑥𝑖+1) is {𝜃1(𝑟), . . . , 𝜃𝑘(𝑟)} for all 𝑟 ∈ 𝑅; and
• there exist constants 𝑚1, . . . ,𝑚𝑘 ∈ N>0 such that for all 𝑟 ∈ 𝑅 and all 𝑗 ∈ [𝑘], the multiplicity of

the root 𝜃𝑗(𝑟) of 𝑝(𝑟, 𝑥𝑖+1) is 𝑚𝑗 .

The 𝜃𝑗 are called real root functions of 𝑝 on 𝑅. The sets 𝑅× 𝜃𝑗 are called sections of 𝑝 over 𝑅.
Analytic delineability is similar, but 𝑅 is a connected analytic submanifold of R𝑖 and the real root

functions are analytic.

The following gives a projection to obtain a cell where a polynomial is delineable.

Theorem 2.1 (Delineability of a Polynomial [18, Thm. 2], [4, Thm. 3.1]). Let 𝑖 ∈ N, 𝑅 ⊆ R𝑖 be a
connected analytic submanifold, 𝑝 ∈ Q[𝑥1, . . . , 𝑥𝑖+1] of level 𝑖 + 1. Assume that 𝑝 is not nullified at
any point in 𝑅, disc𝑥𝑖+1(𝑝) is not the zero polynomial and is order-invariant on 𝑅, and ldcf𝑥𝑖+1(𝑝) is
sign-invariant on 𝑅. Then 𝑝 is analytically delineable on 𝑅 and is order-invariant on its sections over 𝑅.

Note that the discriminant of an irreducible polynomial is not the zero polynomial; in our algorithm,

we replace each polynomial by its irreducible factors.

Root Orderings. Once we can describe the roots of individual polynomials by ordered root functions

on the underlying cell, we can reason about intersections of graphs of root functions from different

polynomials, e.g. ensure that two root functions remain in the same order on the underlying cell.

Theorem 2.2 (Lifting of Pairs of Polynomials [21, Thm. A.1]). Let 𝑖 ∈ N, 𝑅 ⊆ R𝑖 be a connected
analytic submanifold, 𝑠 ∈ 𝑅, and 𝑝1, 𝑝2 ∈ Q[𝑥1, . . . , 𝑥𝑖+1] of level 𝑖 + 1. Assume 𝑝1 and 𝑝2 are
analytically delineable on 𝑅 and res𝑥𝑖+1(𝑝1, 𝑝2) is not the zero polynomial and is order-invariant on 𝑅.
Let 𝜃1, 𝜃2 : 𝑅 → R be real root functions of 𝑝1 and 𝑝2 on 𝑅 respectively, and ∼∈ {<,=} such that
𝜃1(𝑠) ∼ 𝜃2(𝑠). Then 𝜃1 ∼ 𝜃2 on 𝑅.



Note that the resultant of two coprime (and irreducible) polynomials is not the zero polynomial.

To maintain that two real root functions 𝜃1 and 𝜃2 stay in the same order on 𝑅, we could also exploit

transitivity using another root function 𝜃3, e.g. 𝜃1 < 𝜃3 on 𝑅 and 𝜃3 < 𝜃2 on 𝑅 implies 𝜃1 < 𝜃2 on 𝑅.

The work in [21] generalizes this idea to orderings on a set of root functions. This allows for flexibility

in the choice of resultants which we compute to maintain certain invariance properties, potentially

avoiding the computation of expensive resultants.

Single Cell Construction. Given a set of polynomials 𝑃 ⊆ Q[𝑥1, . . . , 𝑥𝑖] and a sample 𝑠 ∈ R𝑖
, we

compute and sort the real roots of 𝑝(𝑠[𝑖−1], 𝑥𝑖), 𝑝 ∈ 𝑃 . We determine the greatest root 𝜉ℓ ∈ R below

(or equal to) 𝑠𝑖 and the smallest root 𝜉𝑢 ∈ R above (or equal to) 𝑠𝑖. If they do not exist, we use −∞
and +∞ respectively. We now aim to describe the bounds of the cell 𝑅′ ⊆ R𝑖

to be constructed by

root functions of some polynomials in 𝑃 ; for that, we assume that all polynomials in 𝑃 are delineable

on the underlying cell 𝑅 = 𝑅′
[𝑖−1]. Let 𝜃ℓ and 𝜃𝑢 be real root functions of polynomials in 𝑃 such that

𝜃ℓ(𝑠[𝑖−1]) = 𝜉ℓ and 𝜃𝑢(𝑠[𝑖−1]) = 𝜉𝑢. The bounds on 𝑥𝑖 are described by the symbolic interval (𝜃ℓ, 𝜃𝑢)
(whose bounds depend on 𝑥1, . . . , 𝑥𝑖−1) if 𝜃ℓ(𝑠[𝑖−1]) < 𝜃𝑢(𝑠[𝑖−1]) or 𝜃ℓ if 𝑠𝑖 = 𝜉ℓ = 𝜉𝑢. Now, we use

root orderings to make sure that 𝜃ℓ < 𝜃𝑢 on 𝑅 (if applicable) and each 𝑝 ∈ 𝑃 is sign-invariant in

𝑅× (𝜃ℓ, 𝜃𝑢) resp. 𝑅× 𝜃ℓ:

Theorem 2.3 (Root Ordering for Sign Invariance [21]). Let 𝑖 ∈ N, 𝑅 ⊆ R𝑖 be connected, and 𝑝, 𝑝ℓ, 𝑝𝑢 ∈
Q[𝑥1, . . . , 𝑥𝑖+1] of level 𝑖+ 1. Assume that 𝑝, 𝑝ℓ, 𝑝𝑢 are delineable on 𝑅. Let 𝜃ℓ, 𝜃𝑢 : 𝑅→ R be real root
functions of 𝑝ℓ and 𝑝𝑢 on 𝑅 respectively.

• If 𝜃ℓ < 𝜃𝑢 on𝑅, and for each real root function 𝜃 of 𝑝 on𝑅 it holds 𝜃 ∼ 𝜃ℓ on𝑅 for some ∼∈ {<,=}
or 𝜃𝑢 ∼ 𝜃 on 𝑅 for some ∼∈ {<,=}; then 𝑝 is sign-invariant on 𝑅× (𝜃ℓ, 𝜃𝑢).

• If for each real root function 𝜃 of 𝑝 on 𝑅 it holds 𝜃𝑢 ∼ 𝜃 on 𝑅 for some ∼∈ {<,=}; then 𝑝 is
sign-invariant on 𝑅× (−∞, 𝜃𝑢).

• If for each real root function 𝜃 of 𝑝 on 𝑅 it holds 𝜃 ∼ 𝜃ℓ on 𝑅 for some ∼∈ {<,=}; then 𝑝 is
sign-invariant on 𝑅× (𝜃ℓ,+∞).

• If for each real root function 𝜃 of 𝑝 on 𝑅 it holds either 𝜃 < 𝜃ℓ on 𝑅, or 𝜃ℓ < 𝜃 on 𝑅, or 𝜃 = 𝜃ℓ on
𝑅; then 𝑝 is sign-invariant on 𝑅× 𝜃ℓ.

• If there is no real root function 𝜃 of 𝑝 on 𝑅; then 𝑝 is sign-invariant on 𝑅× R.

The single cell construction is given in Algorithm 1. In Algorithm 1, we determine witnesses for the

real root functions of a polynomial 𝑝 of level 𝑖 on 𝑅 (the underlying cell to be constructed). Given some

𝑗 ∈ N>0, an indexed root is a partial function root𝑝,𝑗𝑥𝑖 : R𝑖 → R that maps 𝑠 ∈ R𝑖−1
to the 𝑗-th real root

of 𝑝(𝑠, 𝑥𝑖) if it exists. Given a cell 𝑅 ⊆ R𝑖−1
where 𝑝 is delineable, then root𝑝,𝑗𝑥𝑖 coincides with the root

function 𝜃𝑗 from the above definition on 𝑅. We thus can evaluate the function computationally by real

root isolation. Beginning from Algorithm 1, we compute projection polynomials whose order-invariance

on the underlying cell 𝑅 = I1 × · · · × I𝑖−1 (computed in the following iterations) maintain the desired

properties of the polynomials in 𝑃𝑖. In Algorithm 1 the algorithm might fail, as McCallum’s projection

operator cannot reason about cells where a polynomial is nullified [18]. In Algorithm 1, we prevent

polynomials from nullifying on any point in the constructed underlying cell by ensuring that at least

one coefficient remains non-zero to meet the requirements of the stated theorems (see [21]). Algorithm 1

maintains delineability of each 𝑝 ∈ 𝑃𝑖 on 𝑅, and order-invariance in each of its sections over 𝑅. The

ordering determined in Algorithm 1 defines a set of resultants to maintain sign-invariance of each

𝑝 ∈ 𝑃𝑖 in 𝑅× I𝑖; for this, we analyse 𝜃1, . . . , 𝜃𝑘 to choose a “good” set, possibly exploiting transitivity.

Further, we recall that the cell I1 × · · · × I𝑛 is an analytic submanifold of R𝑛
as it is bounded by root

functions which are analytic by Theorem 2.1.

Example 2.1. Consider the polynomials 𝑝1 = 0.5𝑥1+0.5−𝑥2, 𝑝2 = 𝑥21+𝑥
2
2−1, 𝑝3 = 0.5𝑥1−0.5−𝑥2,

𝑝4 = −𝑥1𝑥2 − 0.75 as depicted in Figure 1, along with the sample point 𝑠 = (0.25,−0.7) and a cell as
constructed using Algorithm 1.



Algorithm 1: single_cell_construction(𝑃,𝑠)
Input :finite 𝑃 ⊆ Q[𝑥1, . . . , 𝑥𝑛], 𝑠 ∈ R𝑛

Output :Symbolic intervals I1, . . . , I𝑛 for 𝑥1, . . . , 𝑥𝑛 describing a sign-invariant cell for 𝑃 containing 𝑠
1 foreach 𝑖 = 𝑛, . . . , 1 do
2 𝑃𝑖 := {𝑝 ∈ 𝑃 | 𝑝 is of level 𝑖}, 𝑃 := 𝑃 ∖ 𝑃𝑖

3 determine the set of indexed roots Θ = {𝜃1, . . . , 𝜃𝑘} of all 𝑝 ∈ 𝑃𝑖 that are defined at 𝑠[𝑖−1] such that

𝜃1(𝑠[𝑖−1]) ≤ . . . ≤ 𝜃𝑘(𝑠[𝑖−1])
// Determine symbolic interval I𝑖

4 if 𝑠𝑖 = 𝜃𝑗(𝑠[𝑖−1]) for some 𝑗 then I𝑖 := 𝜃𝑗
5 else if 𝜃𝑗(𝑠[𝑖−1]) < 𝑠𝑖 < 𝜃𝑗+1(𝑠[𝑖−1]) for some 𝑗 then I𝑖 := (𝜃𝑗 , 𝜃𝑗+1)
6 else if 𝑠𝑖 < 𝜃1(𝑠[𝑖−1]) then I𝑖 := (−∞, 𝜃1)
7 else if 𝜃𝑘(𝑠[𝑖−1]) < 𝑠𝑖 then I𝑖 := (𝜃𝑘,+∞)
8 else I𝑖 := (−∞,+∞)
9 foreach 𝑝 ∈ 𝑃𝑖 do

// Ensure order invariance for each polynomial
10 if 𝑝(𝑠[𝑖−1], 𝑥𝑖) = 0 then return FAIL

11 𝑃 := 𝑃 ∪ {𝑐} for some 𝑐 ∈ coeff𝑥𝑖(𝑝) such that 𝑐(𝑠) ̸= 0
12 𝑃 := 𝑃 ∪ {disc𝑥𝑖(𝑝), ldcf𝑥𝑖(𝑝)} // delineability, Theorem 2.1

13 choose ⪯ ⊆ Θ2
s.t. its reflexive and transitive closure ⪯𝑟𝑡

is a partial order on Θ with 𝜃ℓ ⪯𝑟𝑡 𝜃𝑢 (if

I𝑖 = (𝜃ℓ, 𝜃𝑢)) and ensures sign-invariance of each 𝑝 ∈ 𝑃𝑖 by Theorem 2.3

14 𝑃 := 𝑃 ∪ {res𝑥𝑖(𝑝, 𝑝
′) | (root𝑝,𝑗𝑥𝑖

, root𝑝
′,𝑗′

𝑥𝑖
) ∈ ⪯} // Theorem 2.2

15 return I1, . . . , I𝑛
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x
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Figure 1: The single cell construction for Example 2.1.

The algorithm adds coefficients and discriminants to guarantee delineability of these polynomials; in this
case, we add 𝑝5 = disc𝑥2(𝑝2) and 𝑝6 = ldcf𝑥2(𝑝4) (the others are trivial). Further, as the cell is described
by I2 = (root𝑝2,1𝑥2 , root𝑝3,1𝑥2 ) on level 2 we aim to maintain root𝑝4,1𝑥2 < root𝑝2,1𝑥2 on 𝑅, root𝑝2,1𝑥2 < root𝑝3,1𝑥2

on 𝑅, root𝑝3,1𝑥2 < root𝑝1,1𝑥2 on 𝑅, and root𝑝3,1𝑥2 < root𝑝2,2𝑥2 on 𝑅. We thus add the corresponding resultants,
of which only 𝑝7 = res𝑥2(𝑝2, 𝑝3) is non-trivial. On level 1, we determine I1 = (root𝑝6,1𝑥1 , root𝑝5,2𝑥1 ) as
describing the interval.

3. Projective Delineability

We now summarize the theory of projective delineability introduced in [19].

Real Projective Line. Roughly speaking, the real projective line P is defined by adding a single point

∞ to the real line, so P = R ∪ {∞}. We can add more structure to P or visualize it by using alternative

definitions: identifying the real number 𝑚 with the line 𝑥 = 𝑚𝑦 and ∞ with 𝑦 = 0, we see that the

real projective line P is the set of lines of R2
passing through the origin. Such a line is determined by
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Figure 2: Embedding of R into P, and an identification with a circle. (𝑎 : 𝑏) is identified with the dashed green
line, the real number 𝑚 (consider the intersection with 𝑦 = 1), and a point on the unit circle at (0,−1). 𝑡1, 𝑡2,
and 𝑡3 are elements of P.

any of its non-zero vectors (𝑎, 𝑏) ∈ R2
or by any of its non-zero multiples, so if we denote by (𝑎 : 𝑏)

the set (equivalence class) of such vectors, we have P = {(𝑎 : 𝑏) : (𝑎, 𝑏) ∈ R2 ∖ {(0, 0)}}. This set

identifies with R ∪ {∞} by mapping (𝑎 : 𝑏) to
𝑎
𝑏 if 𝑏 ̸= 0 and to ∞ otherwise. Finally, P identifies with

a circle (as an analytic manifold). Possible identifications are visualized in Figure 2.

As P identifies with a circle, we cannot use a linear order on P; however, P has a cyclic ordering that

extends the usual order on R, as intuitively given in Figure 2. For distinct 𝑡1, 𝑡2, 𝑡3 ∈ P, we use [𝑡1, 𝑡2, 𝑡3]
to denote that “after 𝑡1, one reaches 𝑡2 before 𝑡3” in that cyclic ordering on P. We use [𝑡1, . . . , 𝑡𝑘] for

𝑘 > 3 to denote ∀𝑗 < 𝑗′ < 𝑗′′ ∈ [𝑘]. [𝑡𝑗 , 𝑡𝑗′ , 𝑡𝑗′′ ].

Projective Roots. The introduction of the projective line enables us to handle roots at infinity of

(univariate) polynomials, and their multiplicities (see [19, Defn. 2, 3 and 5]): if 𝑝 ∈ Q[𝑥] has degree less

than or equal to 𝑑 ∈ N, we associate with 𝑝 the homogeneous bivariate polynomial 𝐻𝑑(𝑝) (also called

a binary form of degree 𝑑) defined by 𝐻𝑑(𝑝)(𝑥, 𝑦) = 𝑦𝑑𝑝(𝑥𝑦 ). The concepts of roots and multiplicities

are well-defined for binary forms, and we thus import them for polynomials: (𝑎 : 𝑏) ∈ P is a projective

root of multiplicity 𝑘 of 𝑝 with respect to 𝑑 if (𝑎, 𝑏) is a root of 𝐻𝑑(𝑝) with multiplicity 𝑘.

The set of projective roots of 𝑝 (with respect to 𝑑) splits into the real roots on the one hand and the

root at infinity on the other hand (see [19, Lemmas 2 and 3]): (𝑎 : 𝑏) ∈ P is a projective root of 𝑝 of

multiplicity 𝑘 w.r.t. 𝑑 if and only if either 𝑏 ̸= 0 and
𝑎
𝑏 is a real root 𝑝 of multiplicity 𝑘 or 𝑏 = 0 and

𝑘 = 𝑑− deg(𝑝).

Projective Delineability. We finally formalize the notion of projective delineability, by transferring

the concept of projective roots to multivariate polynomials.

Definition 3.1 (Projective Delineability [19, Defn. 11]). Let 𝑖 ∈ N, 𝑅 ⊆ R𝑖 be a cell, and 𝑝 ∈
Q[𝑥1, . . . , 𝑥𝑖+1] ∖ {0}. The polynomial 𝑝 is called projectively delineable on 𝑅 if there exist contin-
uous functions 𝜃1, . . . , 𝜃𝑘 : 𝑅→ P (for 𝑘 ∈ N) such that:

• for any point in 𝑅, the values of 𝜃1, . . . , 𝜃𝑘 are distinct;
• the projective roots of the univariate polynomial 𝑝(𝑟, 𝑥𝑖+1) with respect to deg𝑥𝑖+1

(𝑝) are
𝜃1(𝑟), . . . , 𝜃𝑘(𝑟) for all 𝑟 ∈ 𝑅; and

• there exist constants 𝑚1, . . . ,𝑚𝑘 ∈ N>0 such that for all 𝑟 ∈ 𝑅 and all 𝑗 ∈ [𝑘], the multiplicity of
the root 𝜃𝑗(𝑟) of 𝑝(𝑟, 𝑥𝑖+1) w.r.t. deg𝑥𝑖+1

(𝑝) is 𝑚𝑗 .

The 𝜃𝑗 are called projective root functions of 𝑝 on 𝑅. The cells 𝑅 × 𝜃𝑗 , 𝑗 ∈ [𝑘] are called projective

𝑝-sections over 𝑅.
Analytic projective delineability is similar, but 𝑅 is a connected analytic submanifold of R𝑖 and the

projective root functions are analytic.
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(b) Variety of 𝑝 in R×P. The black line marks the points

at ∞.

Figure 3: 𝑝 = (𝑥1𝑥2− 1)((𝑥1− 1)𝑥2− 1) is projectively delineable on R, described by two root functions which
cross ∞.

In particular, the first condition means the function values as points around the unit circle maintain a

cyclic ordering. Figure 3 illustrates an example of a polynomial that is projectively delineable.

The central theorem for this work states that order-invariance of the discriminant plus non-

nullification is enough to guarantee projective delineability, with no need to maintain the sign-invariance

of the leading coefficient. Note that the theorem requires the underlying cell to be simply connected,

which is stronger than connectedness. This assumption is always met for locally cylindrical cells,

since they are homeomorphic to open cubes of Euclidean spaces [3, Proposition 5.3] (which are simply

connected).

Theorem 3.1 (Projective Delineability [19, Thm. 2]). Let 𝑖 ∈ N, 𝑅 ⊆ R𝑖 be a simply connected analytic
submanifold, and 𝑝 ∈ 𝑄[𝑥1, . . . , 𝑥𝑖+1] of level 𝑖+1. If 𝑝 is not nullified on any point in 𝑅 and disc𝑥𝑖+1(𝑝)
is not the zero polynomial and is order-invariant on 𝑅, then 𝑝 is analytically projectively delineable on 𝑅
and 𝑝 is order-invariant in each projective 𝑝-section over 𝑅.

Delineability is guaranteed by projective delineability plus sign-invariance of the leading coefficient.

Lemma 3.1 (Delineability and Projective Delineability [19, Cor. 1]). Let 𝑖 ∈ N>0, 𝑅 ⊆ R𝑖 be connected,
and 𝑝 ∈ Q[𝑥1, . . . , 𝑥𝑖+1] of level 𝑖+ 1. Assume that 𝑝 is projectively delineable on 𝑅, and ldcf𝑥𝑖+1(𝑝) is
sign-invariant on 𝑅. Then 𝑝 is delineable on 𝑅.

The definition of projective delineability is equivalent to delineability over cells where the polynomial

does not have any roots. In those cases, we can guarantee delineability without sign-invariance of the

leading coefficient.

Lemma 3.2. Let 𝑖 ∈ N>0, 𝑅 ⊆ R𝑖, 𝑠 ∈ 𝑅, and 𝑝 ∈ Q[𝑥1, . . . , 𝑥𝑖+1] of level 𝑖 + 1. If 𝑝 is projectively
delineable on 𝑅, ldcf𝑥𝑖+1(𝑝)(𝑠) ̸= 0, and rroots(𝑝(𝑠, 𝑥𝑖+1)) = ∅, then 𝑝 is delineable on 𝑅.

Proof. Let 𝜃1, . . . , 𝜃𝑘 be the projective 𝑝-sections over 𝑅. If ldcf𝑥𝑖+1(𝑝)(𝑠) ̸= 0, then it

holds deg𝑥𝑖+1
(𝑝(𝑠, 𝑥𝑖+1)) = deg𝑥𝑖+1

(𝑝), thus the projective roots 𝑝(𝑠, 𝑥𝑖+1) are all real. Thus

{𝜃1(𝑠), . . . , 𝜃𝑘(𝑠)} = rroots(𝑝(𝑠, 𝑥𝑖+1)) = ∅, and it follows 𝑘 = 0. It follows that 𝑝(𝑟, 𝑥𝑖+1) ̸= 0
for all 𝑟 ∈ 𝑅, and thus 𝑝 is delineable on 𝑅.

Root Orderings. As single cell construction relies on root orderings, we give the analogous statement

for projective delineability. Note that in contrast to Theorem 2.2, we can only ensure that two root

functions are disjoint or equal.

Theorem 3.2 (Lifting of Pairs of Polynomials [19, Theorem 3]). Let 𝑖 ∈ N,𝑅 ⊆ R𝑖 be a connected analytic
submanifold, 𝑠 ∈ 𝑅, and 𝑝1, 𝑝2 ∈ Q[𝑥1, . . . , 𝑥𝑖+1] of level 𝑖+ 1. Assume 𝑝1 and 𝑝2 are analytically



x
2

x1

(a) The cell which we aim to construct.

𝑥1

𝑥2

(b) The varieties in R× P. The 𝑥2 axis is thus cyclically

ordered.

Figure 4: Motivational example for projective delineability.

projectively delineable on 𝑅 and res𝑥𝑖+1(𝑝1, 𝑝2) is not the zero polynomial and is order-invariant on 𝑅.
Let 𝜃1, 𝜃2 : 𝑅→ P be real projective root functions of 𝑝1 and 𝑝2 respectively, and ∼∈ {=, ̸=} such that
𝜃1(𝑠) ∼ 𝜃2(𝑠). Then 𝜃1 ∼ 𝜃2 on 𝑅.

4. Projective Delineability in Single Cell Construction

We motivate the use of projective delineability by considering Example 2.1 again.

Example 4.1. The singularity of 𝑝4 (witnessed by its leading coefficient) was a boundary to the cell in
Figure 1, but crossing that boundary does not change the sign of any input polynomial. Figure 4a shows the
cell that we aim to construct instead: if we detect that the singularity of 𝑝4 does not affect the cell, we can
omit the leading coefficient of 𝑝4 and build the enlarged version.

For this reasoning, we view the roots of the polynomials in the projective real line, as depicted in Figure 4b,
where intuitively −∞ and +∞ are identified with the same point ∞. Above the singularity of 𝑝4, the two
distinct root functions of 𝑝4 coincide at the point ∞, and thus can be described as a unique real projective
root function of 𝑝4. The order-invariance of the discriminant of 𝑝4 ensures that the variety of 𝑝4 can be
described using such projective root functions (Theorem 3.1). Now, by adding the resultant of 𝑝2 and 𝑝4,
we ensure that the mentioned root function does not intersect the circle, and thus does not enter the cell
(Theorem 3.2). By projective delineability of 𝑝4, we know that there are no other roots (Definition 3.1), and
we thus can omit the leading coefficient from our projection polynomials.

We modify the single cell construction algorithm as follows. We still describe the cell boundaries

using real root functions, as we can encode them using indexed roots which we can evaluate in a

straightforward way. Thus, their defining polynomials are still required to be delineable. For the other

polynomials, however, we only maintain projective delineability, and hence allow their roots to go

through the point at ∞. We thus need to adapt Theorem 2.3, as a root function may not stay below

(above) the lower (upper) bound even if it does not cross it by going through ∞.

Theorem 4.1 (Projective Root “Ordering” for Sign Invariance). Let 𝑖 ∈ N, 𝑅 ⊆ R𝑖 be connected, 𝑠 ∈ 𝑅,
and 𝑝, 𝑝ℓ, 𝑝𝑢 ∈ Q[𝑥1, . . . , 𝑥𝑖+1] of level 𝑖+ 1. Assume that 𝑝 is projectively delineable on 𝑅, 𝑝ℓ, 𝑝𝑢 are
delineable on 𝑅. Let 𝜃ℓ, 𝜃𝑢 : 𝑅→ R be real root functions of 𝑝ℓ and 𝑝𝑢 on 𝑅 respectively.

• If 𝜃ℓ < 𝜃𝑢 on 𝑅, and for each projective root function 𝜃 of 𝑝 on 𝑅 either 𝜃 = 𝜃ℓ on 𝑅, 𝜃 = 𝜃𝑢 on 𝑅,
or 𝜃ℓ ̸= 𝜃 ̸= 𝜃𝑢 on 𝑅 and [𝜃ℓ(𝑠), 𝜃𝑢(𝑠), 𝜃(𝑠)]; then 𝑝 is sign-invariant on 𝑅× (𝜃ℓ, 𝜃𝑢).

• If for each projective root function 𝜃 of 𝑝 on 𝑅 either 𝜃 = 𝜃𝑢 on 𝑅, or ∞ ̸= 𝜃 ̸= 𝜃𝑢 on 𝑅 and
[∞, 𝜃𝑢(𝑠), 𝜃(𝑠)]; then 𝑝 is sign-invariant on 𝑅× (−∞, 𝜃𝑢).



(a) Resultant with bounds. (b) Resultants computed anyway.

(c) Cell defined by single polynomial. (d) Exploiting transitivity.

(e) Adding the leading coefficient. (f) Combining the previous two ideas.

Figure 5: Projective root “orderings” that guarantee sign-invariance. The grey line indicates the first coordinate
of the sample point. We aim to describe the cell bounded by the green and red polynomials. The black lines
indicate the resulting cell boundaries on the first dimension.

• If for each projective root function 𝜃 of 𝑝 on 𝑅 either 𝜃 = 𝜃ℓ on 𝑅, or 𝜃ℓ ̸= 𝜃 ̸= ∞ on 𝑅 and
[𝜃(𝑠), 𝜃ℓ(𝑠),∞]; then 𝑝 is sign-invariant on 𝑅× (𝜃ℓ,+∞).

• If for each projective root function 𝜃 of 𝑝 on 𝑅 either 𝜃 ̸= 𝜃ℓ on 𝑅, or 𝜃 = 𝜃ℓ on 𝑅; then 𝑝 is
sign-invariant on 𝑅× 𝜃ℓ.

• If there is no projective root function 𝜃 of 𝑝 on 𝑅; then 𝑝 is sign-invariant on 𝑅× R.

Example 4.2. This theorem only allows to omit leading coefficients if the interval is bounded in both
directions (otherwise we need the leading coefficient for preventing crossing ∞) and the resultant of the
polynomial with the polynomials defining the lower and upper bound are computed: e.g. we can omit the
leading coefficient of blue polynomial in Figure 5a (which we would add for its delineability in the classical
setting) by additionally adding the resultant of the blue and red polynomial (which is not added in the
classical setting). The trade-off may not be attractive; but if the polynomial has a root below and above the
cell at the current sample point (e.g. Figure 5b), or if both bounds are defined by the same polynomial (e.g.
Figure 5c), this would not require additional resultants.

The single cell construction allows for flexibility for different sets of resultants to maintain sign-

invariance by exploiting the transitivity of root orderings. In the projective real line, there is only a

cyclic ordering. The following insight transfers the idea to the new setting.

Lemma 4.1 (Transitive Projective Root “Ordering”). Let 𝑖 ∈ N, 𝑅 ⊆ R𝑖 be connected, 𝑠 ∈ 𝑅,
𝜃1, 𝜃2, 𝜃3, 𝜃4 : 𝑅→ P be continuous. Assume that [𝜃1(𝑠), 𝜃2(𝑠), 𝜃3(𝑠), 𝜃4(𝑠)] and 𝜃1 ̸= 𝜃2 ̸= 𝜃3 ̸= 𝜃4 ̸=
𝜃1 on 𝑅. Then 𝜃1 ̸= 𝜃3 on 𝑅.

Example 4.3. Consider a projective root (as depicted in blue in Figures 5d to 5f) that is below the symbolic
interval at the current sample point. Preventing the root from crossing the lower bound is analogous to the
case of regular delineability. However, we now also need to prevent it to cross the upper bound; for that,
we now have three options. (1) We compute a chain of resultants that maintain a cyclic ordering of the
given root, the upper bound and some roots in between (in the cyclic sense), exploiting Theorem 3.2 (in
Figure 5d, by adding the resultants of the blue with the purple and magenta polynomials respectively, its
root is trapped between the other; additionally, we add the resultant of the purple with the red one, and of



the magenta with the green). (2) We add the leading coefficient of the defining polynomial to the projection,
avoiding the intersection of the root with ∞, thus making it delineable using Lemma 3.1 (see Figure 5e).
(3) We mix the two approaches, e.g. for some polynomial in the chain maintaining the cyclic ordering,
we add its leading coefficient to avoid crossing ∞ (in Figure 5f, like (1) the blue root is trapped between
the magenta and purple, however, instead of the resultant of the purple and red polynomials, we add the
leading coefficient of the purple).

To summarize, we replace Lines 9 to 14 of Algorithm 1 by Algorithm 2. We maintain projective

delineability for each polynomial (Algorithm 2) using Theorem 3.1, and delineability using Lemma 3.1

for polynomials defining the bounds (Algorithm 2) and for polynomials without roots (Algorithm 2)

where we make use of the optimization by Lemma 3.2 to omit leading coefficients. In Algorithm 2, we

determine a relation for maintaining sign-invariance of polynomials (Theorem 4.1), where we may

exploit transitivity (using Lemma 4.1), now maintaining a cyclic ordering. The relation involves ∞ to

enable the choice of adding leading coefficients (Algorithm 2) using Lemma 3.1 instead of resultants

(Algorithm 2) using Theorem 3.2.

We now elaborate how me make determine the ordering in Algorithm 2, exploiting the options

elaborated in Example 4.3. [21] describes some heuristics for choosing root orderings (in the non-cyclic

setting). The biggest cell heuristic is the straightforward ordering that fulfils the minimal requirement

from Theorem 2.3, and the lowest degree barrier heuristic greedily minimizes the degrees of the

computed resultants using transitivity. In our modification, our aim is - compared to the classical setting

- to avoid additional resultants but omit leading coefficients whenever possible. We thus compute the

ordering according to the biggest cell or lowest degree barrier heuristic as in the classical setting (as

if every polynomial would be delineable). To transfer this ordering to the projective delineability setting,

for each root 𝜃 above (below) the cell, we either add (𝜃,∞) (effectively adding a leading coefficient) or

(𝜃, 𝜃′) for some root 𝜃′ below (above) the cell (effectively adding a resultant with a polynomial that has

roots on the “other” side). As we do not want to add additional resultants, we do the latter only if the

corresponding resultant would have been added in the non-projective case.

5. Experiments

We implemented our single cell construction algorithm based on the proof system described in [21]

in our solver SMT-RAT, which uses it for generating explanations for the NLSAT algorithm. For this

paper, we test the following variants: BC and LDB are the baseline variants using the biggest cell and

lowest degree barriers heuristic respectively. BC-PD and LDB-PD are the modified versions using

projective delineability as described above. Although we use the incomplete McCallum’s projection

operator, the implementation of our proof system is complete: in case a polynomial is nullified, we add

some of its partial derivatives to ensure its order invariance, as suggested in [17, Section 5.2].

We conduct our experiments on Intel®Xeon®8468 Sapphire CPUs with 2.1 GHz per core, testing

upon the SMT-LIB QF_NRA benchmark set [22] which contains 12 154 instances. We use a time limit of

Algorithm 2: Modifications of single_cell_construction

9 foreach 𝑝 ∈ 𝑃𝑖 do
10 if 𝑝(𝑠[𝑖−1], 𝑥𝑖) = 0 then return FAIL

11 𝑃 := 𝑃 ∪ {𝑐} for some 𝑐 ∈ coeff𝑥𝑖(𝑝) such that 𝑐(𝑠) ̸= 0
12 𝑃 := 𝑃 ∪ {disc𝑥𝑖(𝑝)} // proj. delineability, Theorem 3.1

13 𝑃 := 𝑃 ∪ {ldcf𝑥𝑖(𝑝ℓ), ldcf𝑥𝑖(𝑝𝑢)} where 𝑝ℓ,𝑝𝑢 define I𝑖 // del., Lemma 3.1
14 foreach 𝑝 ∈ 𝑃𝑖 s.t. rroots(𝑝(𝑠[𝑖−1], 𝑥𝑖)) = ∅ and ldcf𝑥𝑖(𝑝) ̸= 0 do // Lemma 3.2
15 𝑃 := 𝑃 ∪ {ldcf𝑥𝑖(𝑝)} // delineability, Lemma 3.1

16 choose symmetric ̸≈ ⊆ (Θ ∪ {∞})2 that ensures 𝜃ℓ ̸= 𝜃𝑢 (if I𝑖 = (𝜃ℓ, 𝜃𝑢)) and sign-invariance of each 𝑝 ∈ 𝑃𝑖 by

Theorem 4.1, using “transitivity” by Lemma 4.1

17 𝑃 := 𝑃 ∪ {res𝑥𝑖(𝑝, 𝑝
′) | (root𝑝,𝑗𝑥𝑖

, root𝑝
′,𝑗′

𝑥𝑖
) ∈ ̸≈} // Theorem 3.2

18 𝑃 := 𝑃 ∪ {ldcf𝑥𝑖(𝑝) | (root𝑝,𝑗𝑥𝑖
,∞) ∈ ̸≈} // Lemma 3.1



60 seconds and a memory limit of 4 gigabytes. The code, instructions for reproducing and raw results

are available at: https://doi.org/10.5281/zenodo.14900915.

Overall Results. The number of solved instances is reported in Table 1, showing that the use of

projective delineability does not greatly affect which problems are tractable within the time limit. The

actual running times are depicted in Figure 6a: they show similar performance of the modified and

baseline versions on the majority of instances, but significantly different behaviour on some instances.

The differences largely even out over the whole benchmark set (a typical picture for changes to the

projection heuristics in our experience). Nevertheless, it is clear that many instances do benefit from

projective delineability. Identifying a criterion to predict whether the optimization pays off a priori is

desirable (a machine learning based approach may be possible [13]), but that is not in the scope of this

paper.

In the remainder of this section we compare the behaviour of BC and BC-PD variants to better

understand these results.

Number of Applications. The results may suggest that the optimization from projective delineability

is only applied in very rare cases, but this is not the case. Considering the instances solved by BC-PD: in

total, the leading coefficient can be omitted for 307 822 polynomials, while for 826 795 polynomials, the

optimization cannot be applied as the cell is unbounded in some direction, and for 4 089 polynomials,

the optimization cannot be applied as it does not have a root on both sides of the bounds, or we did not

find an appropriate resultant that may replace the leading coefficient. The optimization is thus applied

in a substantial 37% of the cases. However, we also need to add a coefficient for each polynomial to

ensure its non-nullification: if we add the leading coefficient, this suffices in most of the cases. Still, if it

is omitted, we may choose another coefficient which is potentially simpler (e.g. of lower degree, fewer

variables, etc) that the leading coefficient. We thus investigate whether this choice has an impact on

another metric.

Quality of Cells. A good indicator for the quality of the generated cells is their size, which may be

indirectly measured by the number of cells constructed (Figure 6b). By leaving out leading coefficients,

we also hope to decrease the number of projection polynomials (Figure 6c). By choosing “simpler”

coefficients than the leading coefficients (in terms of a lower degree), we aim to reduce the degree of the

computed polynomials (not depicted in Figure 6 as there is no visible difference between the variants)

and indirectly the number of computed roots (Figure 6d). However, all these measures do not seem to

differ significantly in aggregate between the baseline and modified variants. An explanation could be

that the (degree of the) leading coefficients do not carry much weight, or that the alternative coefficients

are not much simpler.

Role of Projection Polynomials. To address the latter hypothesis, we compare the impact of the

different projection polynomials (resultants, discriminants, and (leading) coefficients). On the 10 157
instances solved by BC-PD, of the time spent on algebraic computations, 55% is spent on computing

discriminants and 5% is spent on computing resultants, and almost no time is spent on computing

coefficients. Regarding the polynomials with a maximum total degree of the ones occurring in an

Table 1
Number of instances solved by BC resp. LDB.

BC LDB

solved by no variant 1977 1978
solved by BC/LDB but not by BC-PD/LDB-PB 20 16
solved by BC-PD/LDB-PB but not by BC/LDB 16 18
solved by both variants 10 141 10 142

https://doi.org/10.5281/zenodo.14900915
https://doi.org/10.5281/zenodo.14900915
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Figure 6: Comparison of different metrics. Each point indicates an instance. ⊥ indicates a timeout of the
corresponding solver.

instance, in 15% of the instances, that polynomial is a discriminant, in 30% of the instances, that

polynomial is a resultant, and in only 3% of the instances, that polynomial is a coefficient. Both

measures show that the coefficients have a minor impact on the complexity of the projection.

6. Conclusion

We provided a first application for the notion of projective delineability recently introduced in [19],

that formally describes the role of the leading coefficients in the projection. We modified the single cell

construction algorithm accordingly and evaluated the result in the context of the NLSAT algorithm for

SMT solving. The results offer a variety of possibilities for modifying the projection, and thus fit nicely

as an extension of the proof system introduced in [21].

Our experimental evaluation shows the resulting optimization is applied in many cases, however,

these do not translate to significant improvements in terms of running times or quality of intermediate

results, as other projection polynomials play a greater role for the computational effort. That is the case

when viewing the dataset as a whole: we have found many individual instances that benefit from the

optimisation bringing further the future research question of how to recognise this in advance. Also in

future work, further symbiotic optimizations may lead to practical improvements, such as reducing the

amount of coefficients required for maintaining non-nullification of polynomials.

Declaration on Generative AI

No generative AI was used.
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