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From both functional and biological considerations, it is widely believed that action pro-
duction, planning, and goal-oriented behaviors supported by the frontal cortex are orga-
nized hierarchically [Fuster (1991); Koechlin, E., Ody, C., & Kouneiher, F. (2003).
Neuroscience: The architecture of cognitive control in the human prefrontal cortex. Science,
424, 1181–1184; Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of
behavior. New York: Holt]. However, the nature of the different levels of the hierarchy
remains unclear, and little attention has been paid to the origins of such a hierarchy. We
address these issues through biologically-inspired computational models that develop rep-
resentations through reinforcement learning. We explore several different factors in these
models that might plausibly give rise to a hierarchical organization of representations
within the PFC, including an initial connectivity hierarchy within PFC, a hierarchical set
of connections between PFC and subcortical structures controlling it, and differential syn-
aptic plasticity schedules. Simulation results indicate that architectural constraints con-
tribute to the segregation of different types of representations, and that this segregation
facilitates learning. These findings are consistent with the idea that there is a functional
hierarchy in PFC, as captured in our earlier computational models of PFC function and a
growing body of empirical data.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The prefrontal cortex (PFC) plays a critical role in the
execution of controlled behavior (Miller & Cohen, 2001).
Many theories exist regarding the function of PFC (for re-
views, see Stuss & Knight, 2002; Wood & Grafman, 2003),
and this plethora of theories in part reflects our lack of
understanding concerning the functional organization of
the multiple anatomical areas that compose PFC (Duncan
& Owen, 2000; Miller, 2000). This lack of understanding
is not for a lack of trying; there have been a number of ap-
proaches to investigating this critical question. One ap-
proach has been to focus on various stimulus dimensions
that have produced reliable dissociations in posterior
areas. For example, researchers have hypothesized that
the dorsal and ventral visual processing streams project
. All rights reserved.
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into PFC, and cause a spatial vs. object dissociation along
a dorsal and ventral gradient (Goldman-Rakic, 1987; Hax-
by, Petit, Ungerleider, & Courtney, 2000; Wilson, Scalaidhe,
& Goldman-Rakic, 1993). Although there appears to be
some evidence suggesting that areas of PFC may be disso-
ciated along these stimulus dimensions (Johnson, Raye,
Mitchell, Greene, & Anderson, 2003), there are also studies
that have not been able to identify such distinctions (i.e.
Nystrom et al., 2000).

A second approach has focused on investigating
whether different processes determine the functional orga-
nization of the PFC. In particular, a common distinction in
the literature has suggested that ventrolateral PFC (BA 44/
45) is responsible for maintaining and rehearsing informa-
tion in working memory (WM) whereas dorsolateral PFC
(BA 9/46) is responsible for the manipulation and monitor-
ing of such information (D’Esposito, Postle, Ballard, &
Lease, 1999; Haxby et al., 2000; Petrides, 2000). Although
there have been studies supporting this claim, there have
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Fig. 1. The 1–2 AX-CPT task. Stimuli are presented one at a time in
sequence. The participant responds by pressing the right key (R) to the
target sequence; otherwise, a left key (L) is pressed. If the participant last
saw a 1, then the target sequence is an A followed by an X. If a 2 was last
seen, then the target is a B followed by a Y. The maintenance of the task
stimuli (1 or 2) constitutes a temporal outer loop around multiple inner-
loop memory updates required to detect the target sequence.
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been numerous studies demonstrating areas of dorsolat-
eral PFC active under situations that do not require manip-
ulation prima face (Braver & Bongiolatti, 2002; Braver,
Cohen, & Barch, 2002; Raye, Johnson, Mitchell, Reeder, &
Greene, 2002). In addition to the hypothesis regarding dor-
solateral and ventrolateral PFC, studies have also suggested
that there is an additional gradient dissociating anterior
PFC (BA 10) from more posterior areas of lateral PFC based
on process, although the nature of that process is unclear.
For example, data suggest that anterior PFC may process
internally generated information (Christoff & Gabrieli,
2000; Christoff, Ream, Geddes, & Gabrieli, 2003), or that
it may be associated with multi-tasking aspects of main-
taining one goal in an active state while executing or
scheduling a different one (Braver & Bongiolatti, 2002;
Braver, Reynolds, & Donaldson, 2003; Koechlin, Basso, Pie-
trini, Panzer, & Grafman, 1999; Reynolds, West, & Braver,
2008). Finally, recent evidence has suggested that PFC
may be hierarchically organized, such that more posterior,
dorsal regions are intimately tied to determining the
appropriate response, and more anterior regions process
more abstract aspects of the task that are summed to in-
form the response (Koechlin, Ody, & Kouneiher, 2003;
Koechlin & Summerfield, 2007). Future research will be
needed to determine whether these distinctions are iso-
morphic, or whether they capture something fundamen-
tally different about cognition and PFC function.

Despite the large number of theories and studies inves-
tigating the functional organization of PFC, there is not a
satisfactory set of theories that is strongly supported by
the available data. As mentioned above, one problem, par-
ticularly in the approach analyzing organization according
to different processes, is that there do not appear to be
general, grounded definitions of each proposed process.
For example, What constitutes a manipulation in the con-
text of the maintenance/manipulation distinction? Does
simply updating the contents of working memory consti-
tute a manipulation? Likewise, what does it mean to inter-
nally generate information? Any transformation upon
externally presented information could be considered
internally generated; where does one draw the line?
Which specific computations are being performed that
facilitate multi-task and sub-goal performance? Finally,
what are the specific computations/dimensions that deter-
mine the aspect of the task that is being represented; (e.g.
in Koechlin et al. (2003) tasks, what causes something to
represent task context vs. episode context)?

One approach that can help address the ambiguity over
the functional definition of various processes is computa-
tional modeling. To this end, the current simulations inves-
tigated the extent to which a biologically-based
computational modeling framework can provide insight
into the development of specialized neural representations
in different PFC areas, with a focus on the hierarchical
structuring of such representations (Fuster, 1991; Koechlin
et al., 2003; Miller, Galanter, & Pribram, 1960). In particu-
lar, there are substantial gains to be had by hierarchically
organized systems; systems organized in such a way fre-
quently learn faster than systems that contain no such
organization (Botvinick, 2008), and display substantially
greater generalization (Botvinick, 2008; Lashley, 1951;
Miller et al., 1960). Effectively, a hierarchically organized
system allows individuals to form abstractions (e.g. a plan
to traverse a room to the opposite door) that can be applied
in a variety of different contexts. Once discovered, these
abstractions, or chunks, can then be applied to novel
situations.

We explore these issues in the context of a relatively
sophisticated task that has a hierarchical structure: the
1–2 AX-continuous performance task (Frank, Loughry, &
O’Reilly, 2001). In this task, letters and numbers are pre-
sented sequentially over time, and participants must de-
tect specific target sequences. The appropriate response
to a particular sequence (such as A–X) is dependent on
the most recently viewed number; thus, the cues (A’s)
and probes (X’s) are nested hierarchically within an out-
er-loop of number information (see Fig. 1). For example,
if a 1 was last seen, the target is A–X, but if a 2 was last
seen, the target is B–Y (see Table 1). The computational
model we employ here can successfully learn to perform
this task (O’Reilly & Frank, 2006) using a reinforcement
learning algorithm called PVLV (O’Reilly, Frank, Hazy, &
Watz, 2007), coupled to a biologically-based model of the
Basal Ganglia (BG) and PFC circuitry, all of which are de-
tailed in Supplementary material.

Specifically, we build on previous work suggesting that
the BG can dynamically and selectively gate the contents of
PFC, and thus permit task-relevant information to be main-
tained in PFC while preventing extraneous information
from interfering with performance (Frank et al., 2001;
O’Reilly & Frank, 2006). A key property of this approach
is that it allows for selective updating via the inclusion of
parallel loops of connectivity between the BG and PFC,
such that a particular set of neurons within the BG can con-
trol the updating of a particular set of neurons within the
PFC (which we refer to as a stripe). This ability to selec-
tively update some contents of WM while leaving other
content intact is a process that is fundamental to hierarchi-
cal behavior, because the nature of the task representa-
tions have, by definition, different temporal dynamics.
Larger goals are relevant over longer periods of time, and
thus should not be updated once one sub-goal is com-



Table 1
The task paradigm performed by the model. The first row indicates each of the 4 outer-loop contexts (i.e. tasks). The second row indicates the inner-loop
context cue nested within that task. For example, A and B in the last 2 columns appear in the context of the ‘‘2” outer-loop context, whereas R and S in the first
two columns appear in the context of the ‘‘3” outer-loop context. The first column refers to the probes that may appear within each task. Within the table,
empty fields mean those stimulus pairings do not appear, whereas T means that a target response is required on that combination of outer-loop, inner-loop, and
probe and NT means that a non-target response is required. Numbers within parentheses refer to the relative percentage of the sequences within that particular
outer-loop context (1, 2, 3 or 4). As can be seen from the table, the outer context is unnecessary in the 3 and 4 contexts, as an appropriate response can be
determined purely from the inner cue and the probe.

3 4 1 2

R S M N A B A B

O T (30%) NT (20%)
P NT (20%) NT (30%)
Q NT (30%) NT (20%)
T NT (20%) T (30%)
X T (30%) NT (20%) NT (30%) NT(20%)
Y NT (20%) NT (30%) NT(20%) T (30%)
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pleted and another is begun. The current framework pro-
vides an ideal avenue for exploring hierarchical behavior,
because this ability to perform asynchronous updating
has been established across several tasks, including the
one explored in the current manuscript (O’Reilly & Frank,
2006).

While previous explorations have interrogated the abil-
ity of this type of network to learn and perform these tasks
(O’Reilly & Frank, 2006), there has been little attention to
the types of representations that are developed. Within
the context of the task we investigated, outer-loop infor-
mation (number) is available at the time at which the net-
work processes inner-loop information (letter cues and
probes). Thus, outer-loop information has the opportunity
to guide and shape the developing inner-loop representa-
tions. We investigated the extent to which various manip-
ulations of the network connectivity and other parameters
would influence the degree to which the representation of
these two types of information (inner-loop vs. outer-loop)
were segregated or interdigitated.

The first simulation investigated whether a natural con-
nectivity hierarchy would be sufficient to constrain the
development of representations within PFC. This type of
hierarchy has been associated with neuroanatomical data
(Fuster, 1991, 2004; Petrides & Pandya, 2007), and has
been shown to encourage the representation of stable con-
text representations in previous computational models
(Botvinick, 2007).

Additionally, we investigated the idea that a hierarchi-
cal structure allows for more generalized, flexible behavior
by having higher-level areas dynamically contextualize
and modulate the input/output mappings represented in
lower-level systems (Botvinick, 2008; Lashley, 1951; Miller
et al., 1960).

The third simulation is motivated by developmental
data suggesting that (a) cognitive development seems to
proceed in a hierarchical fashion, where lower-levels of
cognitive processing are established prior to the develop-
ment of more complex processing (Bunge & Zelazo, 2006;
Halford, Wilson, & Phillips, 1999) and (b) that this behav-
ioral timecourse could be mediated by developments in
corresponding areas of PFC (Bunge & Zelazo, 2006; Gogtay
et al., 2004; O’Donnell, Noseworth, Levine, & Dennis, 2005).
In order to model this type of developmental trajectory, we
included additional tasks in the training regimen. These
tasks (called the 3–4 tasks) had exactly the same structure
as the 1–2 AX task, but the stimulus contents of each inner
loop were unique to each task (e.g. in the three task, R–P
might be a target sequence, and those stimuli would never
occur in any other outer-loop context, see Table 1). As
such, the cue-probe pair uniquely determines the re-
sponse, and there is no need to maintain or process the
outer-loop information. In the context of these tasks, a
developmental trajectory would suggest that one learns
the easier, less complex tasks first, the representational
content of which occupies resources. As one begins to learn
more complicated tasks, the resources that were previ-
ously available are now occupied, and additional resources
need to be utilized in order to solve the problem. The
implementation of each approach is detailed in Section 2
below.

To foreshadow the results, we found that (a) anatomical
constraints provide a strong constraint in the learning of
such representations, and resulting hierarchical segregated
representations facilitate learning, (b) outer-loop informa-
tion is represented both in the form of stable representa-
tions across trials as well as conjunctive representations
that dynamically update each trial, and (c) differential
plasticity schedules have little influence on the develop-
ment of segregated or hierarchical representations within
the context of the various models implemented here.

2. Methods

2.1. Tasks

The model was trained to perform four different
versions of the AX-CPT. In each of the versions of the
AX-CPT modeled, the model was asked to make a target
response to a particular probe (e.g. ‘‘X”) that follows a par-
ticular cue (e.g. ‘‘A”), and to make a non-target response
after all other cue-probe combinations. Two of the versions
followed this exact format; the only difference was the set
of stimuli used for each task (see Table 1, columns 1–5). In
the other two versions of the task, the exact same stimuli
were used across the tasks, but the appropriate response
mappings changed as a function of the task-level (hence-
forth called outer-loop) context (the number; see Table 1,
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columns 6–9). Specifically, if the most recent task cue was
a ‘‘1,” then the appropriate target sequence would be A-X,
but if the most recent task cue was a ‘‘2,” then the appro-
priate target sequence would be B–Y (see Fig. 1). The prob-
ability of the cue-probe pairs was adjusted from the typical
expectancy versions of the AX-CPT Braver et al., 2001 by
decreasing the relative probability of the target sequences
and increasing the relative probability of non-target trials
that have no stimulus overlap with the target sequence
(e.g. BY trials when AX is the target). The primary reason
behind this change was so that the network would not
be able to identify the current task by keeping track of
the relative frequency of the AX and BY sequences. In this
way, the stimulus frequencies provide no diagnostic infor-
mation with respect to what task the model is supposed to
be doing. Each task was equally likely to appear, and once
the model encountered a task cue, the model would be
asked to perform between 1 and 5 trials associated with
that task prior to seeing a new task cue.

Each input and output was represented by its own
localist representation. All other layers had distributed
representations that were learned over the course of train-
ing (including the PFC, see below).

2.2. Modeling and training

The implemented models use the Leabra framework de-
scribed in Appendix (O’Reilly, 1998, 2001; O’Reilly &
Munakata, 2000), with the additional specialized prefron-
tal-cortex basal ganglia working memory (PBWM) mecha-
nisms described in O’Reilly and Frank (2006). As a brief
summary, the Leabra framework uses point neurons with
excitatory, inhibitory, and leak conductances contributing
to an integrated membrane potential, which is then thres-
holded and transformed via an x/(x + 1) sigmoidal function
to produce a rate code output. Each layer uses a k-winners-
take all (kWTA) function that computes an inhibitory con-
ductance that keeps roughly the k most active units above
firing threshold and keeps the rest below threshold. Units
learn according to a combination of Hebbian, error-driven,
and reinforcement learning, with the error-driven compo-
nent computed using the generalized recirculation algo-
rithm (GeneRec; O’Reilly, 1996), which computes
backpropagation derivatives using two phases of activation
settling. The cortical layers in the model use standard Lea-
bra parameters and functionality, while the PBWM systems
require some additional mechanisms to implement the DA
modulation of Go/NoGo units, and toggling of PFC mainte-
nance currents, as detailed in Supplementary material.

The base network architecture followed the organiza-
tion depicted in Fig. 2, and it was largely consistent across
simulation. The input, hidden, and output layers consisted
of 16, 49, and 2 units, respectively. The PFC layer consisted
of four stripes of 36 units each, while the Matrix layer con-
sisted of four stripes of 28 units each (14 Go and 14 NoGo
units). Implementation of the primary value-learned value
(PVLV) system is detailed in Supplementary material. If
two layers were connected, all units in one layer were con-
nected with all units in the other, except for those con-
nected to the PFC. Th set of projections to the PFC was a
target of manipulation within the Simulations, and the de-
tails regarding its various connectivity patterns are enu-
merated below.

2.3. Training procedure

The networks were trained to a similar criterion as in
previous models using this task (O’Reilly & Frank, 2006;
O’Reilly et al., 2007). Specifically, the networks had to com-
plete 80 sequences of 1–5 trials with 0 errors (i.e. one
epoch). Each epoch was constrained to include at least four
trials of each type defined in Table 1. Although the stop-
ping criterion is defined differently from previous pub-
lished work with this task, the current criterion
corresponds to approximately the same number of correct
trials per outer-loop context as previously used criteria
(current = 60 per outer-loop context, previous = mean of
62.5 per outer-loop context). Each network was trained
100 different times, with each training run initialized with
different random seeds.

In order to collect behavioral and PFC activity data,
learning was turned off after training, and each network
was run through the tasks for an additional 240 sequences.

2.4. Data and analysis

2.4.1. Behavior/performance
The behavior and performance of the networks were

tested in two different ways. First, the rate of successful
training and the time to criterion (number of epochs)
was recorded for each replication, so that any manipula-
tions could be tested to determine whether they influence
learning. Second, we analyzed performance over the test-
ing session in order to confirm that the networks were
using active maintenance rather than weight-based mem-
ory. If weight-based memory were being utilized, then per-
formance would greatly degrade during testing, as the only
mechanism for memory is through active maintenance.
Performance is reported for each type of task [i.e. low com-
plexity (3–4) vs. high complexity (1–2)].

2.4.2. Representations
Due to the nature of our manipulations, we collapsed

the four PFC stripes into two groups of two stripes. Within
these two groups of stripes, a neurophysiology approach
was taken to probe the types of representations the net-
work was using to perform the task. This procedure in-
volved using the activity patterns at the time of each
probe in order to identify units demonstrating a significant
response relative to baseline in any one of the four tasks
(p < 0.001), and then probing further to determine whether
that response was selective to the task. This selectivity was
determined by t-tests comparing the response to that par-
ticular task to each of the other tasks; if the response was
different across all comparisons, it was said to be selective.

In order to interrogate differences between the two
groups of units, an index was used to compare the propor-
tion of each type of selective unit, controlling for the over-
all proportion of selective units:

pðExpÞ � pðControlÞ
pðExpÞ þ pðControlÞ ð1Þ
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Fig. 2. Network architectures for the simulations explored. Panel A reflects the overall structure of the network and its connections. The dashed box is
expanded in panels B–D. Panel B reflects the structure of a typical network in this framework, with each PFC stripe governing the updating of itself. Panel C
reflects the implementation of the first hypothesis. In this architecture, there is a different connectivity pattern associated with PFC; a subset of PFC units
receive direct input from and provide direct output to hidden and output layers, while the rest of PFC only receives information from other areas of PFC.
Panel D reflects the second hypothesis, in which the updating of one set of PFC units is governed both by its own activity as well as the activity of the other
PFC units. ‘‘Control” and ‘‘Exp.” in panels B–D refer to the groups associated with the values in Eq. (1).
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where p(Control) is the proportion of selective units in the
set of stripes with normal connectivity from the hidden
layer and BG, and p(Exp) is the proportion of selective units
in the set of stripes with the experimental manipulation
(see Fig. 2B–D). As reflected in Fig. 2B–D, the experimental
group was defined for each simulation by either (a) replac-
ing the projections between it and the hidden layer with
projections to and from the other PFC group, (b) adding
an additional projection to the BG stripes responsible for
updating the control group of PFC units, or (c) delaying
their learning. The experimental group always corresponds
to the group of units that would be predicted to have more
frequent outer-loop representations. The index places all
measures on a �1 to 1 scale in which �1 means all selec-
tive units occur in the control group, 1 means all selective
units occur in the experimental group, and 0 is an equal
distribution of selective units across the groups. These ra-
tios were then analyzed across multiple training runs to
determine whether there were systematic differences in
the type of representations that develop.

2.5. Simulations

The first two simulations investigate whether two
similar, but distinct, computational constraints could
potentially lead to the development of segregated repre-
sentations: the ability of one set of units to directly influ-
ence the content of other units via direct biasing and the
ability of one set of units to directly influence the timing
of the updating signal associated with other units. The first
simulation investigated whether a natural connectivity
hierarchy would be sufficient to constrain the develop-
ment of representations within PFC. This type of hierarchy
has been associated with neuroanatomical data (Fuster,
1991, 2004; Petrides & Pandya, 2007), and has been shown
to encourage the development of stable context represen-
tations in previous computational models (Botvinick,
2007; Paine & Tani, 2005). This hypothesis was imple-
mented as shown in Fig. 2C, and is characterized by having
bidirectional connections between the hidden layer and a
group of stripes in the PFC layer, and bidirectional connec-
tivity between these PFC stripes and the remaining PFC
stripes. This is an explicit hierarchical structure similar to
that used by Botvinick (2007) and Paine and Tani (2005),
in which the stripes of PFC connected directly to the hid-
den layer are considered proximal the processing pathway,
and as such, should come to represent information that is
closer to the output pathway. Conversely, the PFC stripes
connected only via the intermediate processing of PFC
should reflect the apex of the processing pathway, and is
predicted to represent the most abstract/temporally ex-
tended information. This network is labeled the PFC-hid-
den network. The representations developed by this
network can then be compared to the representations
developed in the context of a standard network in which
all of PFC has access to information from the hidden layer,
and does not direct connect with other areas of PFC (see
Fig. 2B).

The second simulation investigated whether architec-
tural changes allowing for higher-level areas to dynami-
cally contextualize and modulate the input/output
mappings represented in lower-level systems would
encourage the development of segregated representations.
This hypothesis was implemented as displayed in Fig. 2D;
the experimental group of PFC units (see Fig. 2D), in addi-
tion to projecting to their corresponding BG stripes, also
projected to the BG stripes associated with the group of
control PFC units (labeled the PFC-BG network). This struc-
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ture of projections was chosen for one primary reason. This
projection formalizes the idea that anterior PFC has a
strong direct influence over the timing of the updating pro-
cess within lateral PFC. By influencing when lateral PFC is
updated, the alternate area of PFC could likely shape the
type of representations used by lateral PFC.

The third set of simulations interrogated whether
different plasticity schedules could influence the develop-
ment of segregated representations. This set of simulations
was based on the observation that children learn to per-
form more simple tasks prior to learning more complex
tasks (Halford, 1984, 1993; Robin & Holyoak, 1995), and
further, that different areas of PFC tend to have different
schedules of development (Shaw et al., 2008; Sowell,
Thompson, Holmes, Jernigan, & Toga, 1999). The hypothe-
sis is that if particular sets of PFC units are learning early,
while the model is learning simple tasks, then those units
would be pre-disposed to learn about the simple relation-
ships in such tasks (e.g. between inner-loop cue-probe
pairs). Once these tasks are learned, then if there are addi-
tional, non-committed units/stripes, then these non-com-
mitted units could be allocated to learning about
additional sequential structure, namely about outer-loop
task representations. In order to introduce this dynamic,
the connections to and from the experimental group of
PFC units did not learn until the less complex tasks
achieved perfect performance for an epoch. Critically, the
environment was constant over time, such the network
was always attempting to learn all four tasks, but early in
training, only half of its PFC resources were available to
learn (a subsequent investigation investigated the role that
a dynamic environment may play, but did not influence the
results). While this procedure is not particularly realistic, it
serves as a proxy for the natural development of the brain
and cognition, in which it appears that young children
learn to solve relatively simple problems prior to solving
more complex problems (Halford, 1984, 1993), and that
this cognitive development somewhat tracks the develop-
ment of the cerebral cortex (Bunge & Zelazo, 2006).

2.6. Simulation results

2.6.1. Training
The only network that influenced the training success

or training time was the PFC-hidden architecture (see Ta-
ble 2). However, this difference in time to criterion ap-
peared to be due largely to the number of stripes with
access to hidden information, as a non-hierarchical net-
Table 2
Training information. The only network that produced different training
statistics from the others was the network with constrained projections
between the PFC and hidden layers (C). This network converged less
frequently, v2(1) = 18, p < 0.001, and took longer to train when it success-
fully reached criterion, W = 1818, p < 0.001. Letters in parentheses corre-
spond to their component structure in Fig. 2.

Proportion trained Median time to criterion

Base (B) 100 66
PFC-hidden (C) 82*** 296***

PFC-BG (D) 99 92
Plasticity 100 77.5

*** p < 0.001.
work with only two stripes demonstrated similar time to
criterion (325 epochs, p = 0.9).

2.6.2. Behavior
Across all networks, error rates during the testing phase

were low, with the error rates in the 3 and 4 tasks being
significantly lower than the error rates in the 1 and 2 tasks,
Fð1;377Þ ¼ 877; p < 0:001; g2

p ¼ 0:7. This behavior did not
fluctuate much as a function of the network architecture
or plasticity schedule, as mean error rates in the 3–4 tasks
were between 0.4% and 2.4%, and error rates in the 1–2
tasks were between 9.4% and 11.3%.

2.6.3. Selective representations
As expected, the selectivity index in the baseline net-

work was not significantly different from 0 for either the
complex 1–2 tasks or the less complex 3–4 tasks (col-
lapsed: t(99) = 0.02), indicating that there was no bias to
develop representational specialization.

2.6.4. Constrained PFC-hidden layer projections
In contrast to baseline, the PFC-hidden network pro-

duced more segregated representations, such that the
experimental group of units tended to code for outer-loop
context more frequently than the control unit group,
specifically when coding for information about the more
complex, outer-loop tasks t(81) = 2.56, p = 0.01, see Fig. 3.
When compared directly to the control network, this
network demonstrated a dissociation, such that the exper-
imental group of units had a greater likelihood of repre-
Control
(B)

PFC−
Hidden(C)

PFC−BG
 (D)

Plast. PFC−Hid.
& BG (C+D)

−0.03

Fig. 3. Representational segregation for each type of task (low complex-
ity = 3–4 tasks, high complexity = 1–2 tasks). Each set of bars corresponds
to the difference between the control stripes and the experimental stripes
for a different architecture or training regime. Dark bars correspond to the
differences in type of representation for the less complex 3–4 tasks,
whereas light bars correspond to differences in representation for the
more complex 1–2 tasks. The first 3 groups correspond to the three
different architectures presented in Fig. 2. The fourth set of bars
correspond to the results when the control network is placed under a
condition with developmental plasticity, such that the experimental
stripes of PFC have a later onset of plasticity, and the fifth set of bars
correspond to the results when both architectural constraints are
included in the same model.
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senting outer context in the more complex tasks
F(1,162) = 4.84, p = 0.03.

Additionally, regression analyses indicated that there
was a negative relationship between training time and
the degree of representational segregation, specifically for
the tasks requiring outer context (t(79) = �2.6, p = 0.01,
DR2 = 0.08). This relationship was different than that ob-
served in the baseline network, where the degree of repre-
sentational segregation was not related to training time
(significant network x index interaction t(177) = 3.6,
p < 0.001).

2.6.5. Hierarchical PFC-BG projections
Similar to the constrained PFC model, there was a rela-

tively high degree of representational segregation within
the model with hierarchical projections between the PFC
and the BG, particularly for the complex tasks t(98) = 3.0,
p = 0.003, see Fig. 3. When compared directly to the control
network, this network demonstrated a dissociation in
developed responses, with the areas of PFC capable of di-
rectly influencing the updating of other areas of PFC having
a greater likelihood of representing outer context
F(1,197) = 4.5, p = 0.03. Similar to Simulation I, there was
a negative relationship between time to train and the de-
gree of representational segregation in the complex tasks,
t(96) = �2.8, p = 0.006, R2 = 0.07, see Fig. 4. Visual inspec-
tion and diagnostic measures revealed heteroscedasticity
in the model (see Fig. 4; significant Breusch–Pagan test:
v2(1) = 38, p < 0.001), but the use of a heteroscedasticity
consistent error term (Long & Ervin, 2000) revealed the
relationship was still reliable, even after taking this viola-
tion into consideration (t(96) = �2.5, p = 0.01). No qua-
dratic trends were significant. Similar to Simulation I,
this negative relationship was significantly different from
the relationship identified in the control network (condi-
tion x selectivity index interaction: t(194) = 3.8,
p < 0.001), DR2 = 0.07. In this particular example, there
was no overall increase in training time relative to the con-
trol network (see Table 2), so this is a pure benefit associ-
ated with segregated representation.
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Fig. 4. Relationship between representational specialization and training
time for the PFC-BG network. An increased selectivity index was
associated with faster training times. A similar pattern existed for the
PFC-hidden network, but did not exist for the baseline or development
networks.
2.6.6. Plasticity manipulation
Contrary to the earlier simulations, the simulation

interrogating the role of plasticity did not produce a differ-
ence in representational structure (p = 0.12), nor was the
representational structure measure associated with train-
ing time (p = 0.8).

2.6.7. Additional simulations
Each of the three experimental manipulations could be

considered orthogonal to one another; one can perform the
plasticity manipulation on the network with constrained
PFC connections or the network with hierarchical projec-
tions to the BG. When all of the possible models were
run and included in a 2 (PFC-hidden connectivity: either
full or constrained) � 2 (PFC-BG connectivity: stripe spe-
cific vs. hierarchical) � 2 (plasticity: all learning vs. 1 de-
layed group) � 2 (complexity: low vs. high) ANOVA, the
effects were additive and consistent with the simulations
above (e.g. there was a complexity � PFC-hidden connec-
tivity interaction, and there was a complexity � PFC-BG
connectivity interaction, but no three-way interaction,
see Fig. 3). The additive nature of the two significant effects
indicates that both types of constraints may produce a sim-
ilar tendency to segregate the nature of the representations
learned, albeit by different underlying mechanisms. How-
ever, we only tested the additive nature of these effects
when the organizational structure was completely over-
lapping. That is, we only interrogated the situation in
which the most removed groups of PFC units are also the
exact same units that can govern the updating of the inter-
mediately located units. Future anatomical, empirical, and
computational study will be needed to discern whether
these effects occur when the overlap may not be quite so
clear-cut.

2.6.8. Stable representations
In addition to coding selective outer-loop representa-

tions, we also differentiated between selective, stable rep-
resentations and selective, dynamic representations.
Representations were considered stable if they were selec-
tive for a particular outer-loop context, and also did NOT
vary as a function of the inner-loop cues and probes that
occurred within that outer-loop context. Representations
were considered dynamic if they did fluctuate as a function
of the inner-loop information.

The first thing to note regarding this distinction is that
it highlights two distinct encoding strategies the network
could adopt. In one case, it could simply learn to encode di-
rect mappings of the stimuli, and to maintain some repre-
sentation of that stimulus information in a constant state
while updating other, independent pieces of information.
This strategy would be characterized by stable units. On
the other hand, the network could adopt a more dynamic
updating policy in which it encodes and updates each
cue it encounters based on the outer-loop information that
is currently in memory. In this way, it could store a con-
junction of the information regarding the cue and probe,
and as such, would not necessarily need to maintain the
outer-loop information in an isolated format. All networks
predominantly utilized the later pattern. For example, gi-
ven a particular outer-level context within the baseline
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network, 85–95% of active units were task selective,
depending on the task, which is consistent with values
across other networks. However, less than 1% of these
task-selective units were also stable. The percentage of sta-
ble units went up to approximately 3% for the hierarchical
network if we specifically probe the tasks requiring outer
loop contexts, but despite this increase, the predominant
pattern of task encoding was that of a dynamic attractor,
where outer-loop information was maintained across mul-
tiple patterns of activity that also reflected the task cue.
3. Discussion

The simulations presented here provide us with novel
data that illustrate several points regarding PFC function
and its role in the performance of sequential working
memory tasks. Consistent with neuroanatomical data (Pet-
rides & Pandya, 2007) and recent computational modeling
work (Botvinick, 2007; Paine & Tani, 2005), anatomical
constraints that impose a hierarchical structure within
PFC resulted in segregated representational structure, with
the most distal areas of PFC having higher likelihoods of
representing outer-loop information. Additionally, ana-
tomical constraints on the interactions between PFC and
BG also produced such representational structure. While
we also investigated the hypothesis regarding the utility
of differential learning schedules, these manipulations re-
sulted in minimal impact on the representational structure
of the network. For those networks that promoted segre-
gated representations, there was a unique benefit to train-
ing time, as those networks that had the strongest
representational structure were also those that trained
the fastest. Additionally, we probed the nature of the rep-
resentations within these tasks, and demonstrated that
all networks predominantly represented the task demands
in a dynamic attractor in which each state was coded in
terms of conjunctions between the outer-loop context
and most recent inner-loop cue.

3.1. Behavior

Each of the networks learned to perform the relevant
tasks, and to perform such tasks, they relied upon the use
of active maintenance processes subserved by interactions
between the PFC and BG. Behavior during test was well
above chance. However, there were clear differences in
the ability of the networks to perform the two different
types of tasks, as the networks were better at performing
the tasks not requiring additional outer-loop information.
This is not surprising given behavioral data from other par-
adigms, as there is substantial evidence that performance
degrades as the number of dimensions an individual has
to integrate increases (Christoff et al., 2001; Halford
et al., 1999; Kroger et al., 2002).

3.1.1. Architectural constraints
Imposing an architectural constraint on the connectiv-

ity of PFC clearly had an effect on the types of representa-
tions that were developed and the degree to which the
different types of representations were segregated across
different tasks. The experimental networks produced sta-
ble representations of the outer-loop information more
frequently (albeit, still a very small overall proportion),
and tended to place such representations in the more re-
mote areas of PFC. Further, it appeared as though such seg-
regation was associated with faster learning within the
context of the manipulated networks. This finding is simi-
lar to findings in the hierarchical reinforcement learning
domain, particularly the options framework discussed be-
low (Botvinick, Niv, & Barto, 2008; Sutton, Precup, & Singh,
1999).

It should be pointed out that the relationship between
training time and selectivity index was not symmetric
around 0 for either of the networks that demonstrated
such a relationship. If the key to fast training was represen-
tation segregation (meaning that outer context representa-
tions tended to be represented in one particular group
while not being represented in the other), then the rela-
tionship between this score and time to criterion should
be symmetric around 0. However, it is very clear that this
is not the case (adding an additional squared-term to the
linear model accounted for no additional variance,
F(1,95) < 1). In these networks, it clearly matters what rep-
resentation is placed in what set of stripes. It is useful for
the network to place outer-loop context in the remote
areas of PFC because the extra step of processing insulates
it from updating signals originating from the input, and
thus makes it less likely to update (and see this in that
these networks have a higher chance of producing stable
representations). It is useful for the network to place the
outer context information in the areas of PFC that provide
direct input to the updating mechanism of the other
stripes, because it can then provide more direct input on
the updating of the other stripes, and in such a way, mirror
the demands of the task. Alternately, if outer context is
placed in the areas that are being modulated by other
areas, then the gain from the ability to scope the updating
signal is somewhat lost, as these are relatively stable rep-
resentations (as far as the task demands are concerned).
Likewise, if outer-loop information is placed in the proxi-
mal areas of PFC, then the remote areas of PFC are unable
to be updated with the relevant, dynamically changing in-
ner-loop information, because they only have access to the
static outer-loop information.

3.1.2. Plasticity manipulation
This plasticity manipulation did not result in segre-

gated, hierarchical representations. However, there are a
number of potential reasons for this null effect. Based on
our previous control simulations, it is not entirely surpris-
ing that there was no bias to segregate representations, as
within that particular architecture, there is no computa-
tional pressure to form such types of representations. For
the architecture used, it provides no additional benefit in
terms of learning or performance, particularly when com-
pared to the alternate networks. That being said, the addi-
tional models run were not influenced by the
developmental training procedure, suggesting that what
computational pressure may exist in the other model
architectures did not provide the developmental procedure
a way to bootstrap stronger segregated representations.
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3.2. Relationship to hierarchical reinforcement learning
approaches and other computational models of hierarchy

Other researchers have utilized reinforcement learning
to approach the question of hierarchy (for reviews, see Bot-
vinick, 2007; Botvinick et al., 2008). We focus on the rela-
tionship between our approach and an alternate approach
in which temporally abstracted actions, referred to as op-
tions, facilitate learning by providing subgoals that can be
attained prior to the achievement of some more distant re-
ward (Sutton et al., 1999). At first glance, the approaches
are quite similar in that they both use reinforcement learn-
ing techniques in order to accomplish temporally distant
goals. As such, the current set of simulations, and the
PBWM framework more generally, could be recast in the
options framework, such that maintained outer-loop con-
text could be considered an identifier of a particular option
in that it has a relatively long-term outcome, and is being
used to make more myopic decisions on a trial-by-trial ba-
sis. The maintenance of such information and its influence
on ongoing processing would then be analogous to the uti-
lization of such an option’s policy (Botvinick et al., 2008).

However, a very clear difference between the two ap-
proaches arises when investigating the nature and discov-
ery of component actions (also called subgoals). One
problem that the options approach encounters is that the
subgoals need to be identified and compiled, typically prior
to task learning. A number of mechanisms for doing such
identification have been suggested, ranging from analyzing
paths through problem space for relevant statistical struc-
ture (Pickett & Barto, 2002), to using intrinsic motivation
as a possible mechanism (Singh, Barto, & Chentanez,
2005). This is a problem that, in many ways, the PBWM
system has been able to solve (at least in the restricted
environments that it has been placed). Within the PBWM
framework, the appropriate options and subgoal states
are learned via the mechanism that governs the updating
system of PFC (O’Reilly & Frank, 2006); to the extent that
the network discovers and segregates the types of informa-
tion relevant for long-term performance, then it could be
said that appropriate subgoals and options are acquired.
Without segregation of the long-term information, it is
analogous to a model attempting to solve a complex, tem-
porally extended problem with RL, without the benefit of
the options framework. This interpretation is consistent
with the identified relationship between training time
and degree of representational segregation.

Previous models exploring how hierarchical representa-
tions may develop (Botvinick, 2007; Paine & Tani, 2005)
have produced consistent results with those produced
here. Namely, architectural constraints tend to be suffi-
cient to bias the network into developing representations
that segregated as a function of content and temporal
abstraction. This consistency is in spite of huge differences
in the actual tasks and algorithms used to investigate the
question. Whereas previous approaches have varied be-
tween the purely computational approach of using genetic
algorithms (Paine & Tani, 2005) and recurrent backpropa-
gation (Botvinick, 2007), the current approach is an ad-
vance in that it uses a biologically-inspired algorithm to
ask similar questions, and demonstrates that hierarchical
representations can be selected using such an algorithm.
In addition to these models, other models have been used
to interrogate hierarchy without regards to the develop-
ment or origin of the representations. Specifically, previous
models have focused on understanding and distinguishing
the potential computational roles of various areas of PFC
(Koechlin et al., 2003; Koechlin & Hyafil, 2007; Koechlin
& Summerfield, 2007; Reynolds & Mozer, 2009). The ap-
proach utilized by Koechlin argues that different areas of
PFC are governed by different types of information con-
veyed by stimuli, and that such information may be under-
stood in the context of a hierarchy, whereas the approach
taken by Dayan (2008) and Reynolds and Mozer (2009) ar-
gues that no explicit hierarchy is needed to elicit hierarchi-
cal behavior. Although these approaches do not focus on
how such representations may develop, they provide con-
straints for future models – the ability to develop represen-
tations consistent with one or another framework could
prove to be a powerful tool in discriminating between
the various models.

3.3. Stable representations and conjunctive representations

The number of units that coded for conjunctions of var-
ious stimuli (e.g. A in the context of a 1) was quite large,
and it was interesting that there was such a strong bias
for the network to develop such representations. Although
somewhat surprising, it is consistent with a range of neu-
rophysiology data in which conjunctive codes have been
identified in a number of paradigms, including working
memory (Barone & Joseph, 1990; Rao, Rainer, & Miller,
1997), and task-switching paradigms (Wallis, Anderson,
& Miller, 2001). It is possible that the development of more
stable, abstract representations requires more extensive
training of a particular sort (Rougier, Noelle, Braver, Cohen,
& O’Reilly, 2005), and that such training allows for task-
independent representations that can be utilized when
learning about more complex tasks. It is quite possible that
the tasks used in the current set of simulations is not ideal
for generating or creating hierarchical representations;
specifically, there is not notion of a particular sequence
of behaviors that can be learned, ‘‘chunked,” and then ap-
plied in a novel situation (see Botvinick & Plaut (2004);
Reynolds, Zacks, & Braver (2007) for alternate paradigms
with exactly such a structure). As such, it is somewhat sur-
prising that these tasks and constraints produced a mea-
surable difference in the representational structure of the
network at all. Further investigation will have to be per-
formed in order to determine whether such true abstrac-
tions (either in the form of sequences or in the form of
dimensional extractions) produce more stable or more spe-
cialized representations.

Despite this endeavor being in its infancy, it makes a
strong prediction regarding the role of different areas of
PFC in the performance of this sequential working memory
task and novel variants. First, it suggests that this task may
differ substantially from other empirical tasks used to
prove the hierarchical organization of behavior (Badre &
D’Esposito, 2008; Koechlin et al., 2003). The relatively
small number of units that were statically coding for out-
er-loop context, combined with the large number of units



290 J.R. Reynolds, R.C. O’Reilly / Cognition 113 (2009) 281–292
that were multiplexing outer-loop information and inner-
loop information suggests that one may find much stron-
ger dynamics on trial-by-trial effects, rather than in sus-
tained maintenance across trials (Reynolds, 2005).
Second, this bias towards dynamic attractors begs the
question of what could increase the probability of forming
a more static attractor? Although there are many possibil-
ities, it seems like one potentially important and relevant
variable is the timing between the inner-loop cue and
probe information. Counter-intuitively, if you reduce this
delay, there may not be enough time to re-encode the in-
ner-loop cue as a conjunction with the outer-loop context.
As such, manipulating this timing parameter may be suffi-
cient to increase the maintenance of the outer-loop stimu-
lus, and may account for differences in empirical
investigations of this task (Reynolds, 2005) and other tasks
where the outer-most piece of information is the only item
presented prior to a multi-dimensional imperative
stimulus (Badre & D’Esposito, 2008; Koechlin et al.,
2003). Ongoing simulations and experiments are currently
investigating this question.

Although the developmental plasticity hypothesis did
not play out as predicted, there is still growing evidence
that different regions of PFC mature at different rates
(Brown et al., 2005; Shaw et al., 2008; Sowell et al.,
1999), and there is likely some functional consequence of
this (Bunge & Zelazo, 2006). While previous experimental
approaches have suggested that there is a posterior–ante-
rior gradient in terms of either rule complexity or rule
abstraction (Badre & D’Esposito, 2008), recent data have
suggested that the PFC may not develop in a strict poster-
ior-to-anterior gradient. Specifically, it appears that pos-
terior and anterior areas of PFC are the first to develop,
with the areas in between developing later (Gogtay et al.,
2004; Shaw et al., 2008). Additional investigation will be
needed to understand how the differences in maturation
schedule influence the nature of representation, and how
these developmental trajectories may relate to current the-
ories of the organization of PFC.

Despite our best intentions to concretely define what is
meant by the maintenance of outer-loop information,
there are several different variables that may influence
whether information is considered outer-loop by the cog-
nitive and neural system. For example, there are at least
two differences between outer-loop information and in-
ner-loop information in the current model, both of which
are consistent with the notion of anterior PFC playing a
high-level role within a hierarchy of goals. The first is that
outer-loop information must be maintained while some-
thing else is updated. The second is that outer-loop infor-
mation must be maintained for longer periods of time
than inner-loop information. Finally, it is very possible that
the cognitive system considers information to be outer-
loop only when both of these constraints are met. The nat-
ure of the distinction between outer- and inner-loop infor-
mation is a key question that is being investigated
currently. Despite the potential concerns and limitations,
the current set of simulations has allowed for a concrete,
implemented definition regarding one particular dimen-
sion across which PFC may be organized, and provided a
biologically-inspired mechanism by which such an organi-
zation could develop.

The current set of simulations did not interrogate all of
the potential dimensions of PFC organization. Rather, the
current set of simulations should be viewed as an early
step at using computational modeling techniques in order
to probe the nature of such representations and differences
between them. The current models could be extended in
numerous ways to capture other potential dimensions.
For example, there is growing evidence suggesting that left
inferior PFC can be subdivided in to regions that are differ-
entially sensitive to semantic or phonological properties of
stimuli (with more anterior areas of left inferior PFC being
more closely associated with semantics; Poldrack et al.,
1999). This could be viewed along a similar axis of abstrac-
tion as that investigated here, such that the fine grained
muscle movements necessary to create utterances are re-
quired before verbal communication can develop. These
muscle representations are likely used in the perception
and comprehension of language (e.g. phonology; Rizzolatti
& Arbib, 1998; Rizzolatti, Fadiga, Gallese, & Fogassi, 1996).
Once such a basis of movements is learned and used to, no-
vel combinations of such movements can be generated and
associated with an abstraction that represents the seman-
tics of such a motion in a many-to-many mapping.

3.4. Conclusions

The current set of simulations provides convergent evi-
dence that different types of representations within PFC
can be developed by having specific kinds of architectural
constraints. The segregation of these representations leads
to faster learning, and as such, may provide some evidence
for the computational pressures that govern the organiza-
tion of PFC.
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