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Abstract

B Appetitive goal-directed behavior can be associated with a
cue-triggered expectancy that it will lead to a particular reward,
a process thought to depend on the OFC and basolateral amyg-
dala complex. We developed a biologically informed neural net-
work model of this system to investigate the separable and
complementary roles of these areas as the main components
of a flexible expectancy system. These areas of interest are part
of a neural network with additional subcortical areas, including
the central nucleus of amygdala, ventral (limbic) and dorsome-
dial (associative) striatum. Our simulations are consistent with
the view that the amygdala maintains Pavlovian associations
through incremental updating of synaptic strength and that

INTRODUCTION

Deciding on which course of action to take critically de-
pends on which rewards are expected to be available in
the current situation. A reward may be expected because
of the presence of a sensory stimulus that has reliably pre-
ceded reward delivery before or because reward was recently
received in the current context. Existing data suggest that
the amygdala learns which conditioned stimuli (CSs) and
unconditioned stimuli (USs) are associated (Schoenbaum,
Chiba, & Gallagher, 1999; Kita, Nishijo, Eifuku, Terasawa, &
Ono, 1995) and that the orbital frontal cortex (OFC) can
keep track of recent reward history in the current context
(Wallis, 2007; Frank & Claus, 2006). We propose a model in
which learning (and memory) in amygdala (specifically its
basolateral complex, BLA) is solely weight-based, but mem-
ory in OFC is activation-based, and therefore does not de-
pend on synaptic plasticity over relatively short time scales
(O’Reilly & Munakata, 2000; see O’Reilly, Mozer, Munakata,
& Miyake, 1999, for a theoretical discussion). Hence, OFC
is capable of dynamically updating to new reward expec-
tancy representations very quickly (despite no weight
changes), but the amygdala changes more slowly because
it is dependent on adapting its synaptic weights. As a result
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the OFC supports flexibility by maintaining an activation-based
working memory of the recent reward history. Our model pro-
vides a mechanistic explanation for electrophysiological evidence
that cue-related firing in OFC neurons is nonselectively early after
a contingency change and why this nonselective firing is critical
for promoting plasticity in the amygdala. This ambiguous acti-
vation results from the simultaneous maintenance of recent out-
comes and obsolete Pavlovian contingencies in working memory.
Furthermore, at the beginning of reversal, the OFC is critical
for supporting responses that are no longer inappropriate. This
result is inconsistent with an exclusive inhibitory account of
OFC function. H

of this dynamic, OFC supports flexible decision-making
when and if environmental contingencies change.

To investigate the separable contributions of these dif-
ferent brain areas to reinforcement expectancies, we devel-
oped a biologically informed neural network model. This
model captures empirical data on the effects of lesions of
OFC, BIA, and simultaneous lesions of both areas on the
ability to acquire the initial Pavlovian contingencies and the
ability to adapt to a reversal of the Pavlovian contingencies.

Our simulations provide a mechanistic account for how
OFC supports behavioral flexibility when Pavlovian contin-
gencies change: Associations in BLA only change relatively
slowly, but OFC can actively maintain a working memory
of the recent reward history (Wallis, 2007; Frank & Claus,
2006). Thus, at the beginning of reversal, OFC can promote
flexibility by biasing approach behavior associated with a
recently experienced and now maintained US, even in
the face of a CS that had previously predicted an aversive
US. This role in Pavlovian reversal is in contrast with per-
spectives that have proposed that the primary role of
OFC is the inhibition of inappropriate behavior (e.g.,
Elliott, Dolan, & Frith, 2000; Dias, Robbins, & Roberts,
1996; Damasio, 1994; Mishkin, 1964; Ferrier, 1886).

In addition to accounting for behavioral effects of le-
sions, the model provides an explicit mechanistic explana-
tion for electrophysiological data that suggest that, when
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Pavlovian contingencies change, OFC promotes behavioral
flexibility by providing an ambiguous reinforcement expec-
tancy. Under these circumstances, OFC shows nonselec-
tive cue-evoked activity (Schoenbaum, Roesch, Stalnaker,
& Takahashi, 2009). The results of our simulations suggest
that this nonselective activity could be because of the OFC
simultaneously maintaining a working memory of the re-
cent reward history, as well as the now-obsolete reinforce-
ment expectancies being driven by the lagging BLA.
Furthermore, consistent with empirical data, the speed at
which the BLA can acquire and update Pavlovian asso-
ciations is severely impaired if the OFC is lesioned data
(Saddoris, Gallagher, & Schoenbaum, 2005). The model
provides an explicit mechanistic explanation for this phe-
nomenon as well, and it makes several related predictions.

METHODS

In our model, acquisition and performance of a Pavlovian
approach/avoid task is the result of a division of labor
among an expectancy system, an actor, and a critic. Differ-
ent groups of layers in our model contribute to these three
systems. The expectancy system produces a CS-evoked
expectation for future reinforcement. It comprises the
OFC, BLA, and ventral (limbic) striatum (VS). The actor
system executes approach behavior toward appetitive re-
inforcers and avoidance behavior away from aversive re-
inforcers and comprises dorsomedial striatum (DMS) and
motor cortices. The midbrain dopamine system and the
central nucleus of amygdala (CNA) cause a phasic modula-
tion of striatal dopamine and act as a critic that mediates
feedback about the success of behavior (see Figure 1).

As a part of the expectancy system, the BLA has pre-
existing representations of USs and learns which CSs
and USs are associated with each other (LeDoux, 2000;
Schoenbaum et al., 1999; Kita et al., 1995; Quirk, Repa,
& LeDoux, 1995). It is believed that this learning depends
on synaptic plasticity (Fanselow & LeDoux, 1999) and is
simulated by incremental updates of synaptic weights of
projections from the CS to the BLA layer of the model. As
in the Rescorla—Wagner model, learning in the BLA occurs
when the US received at the end of a trial does not match
the expectation developed at the time of the presentation
of the CS (Rescorla & Wagner, 1972). Activation in BLA
at CS onset is a combination of the result of this learning
process and, to a limited extent, also the result of a top—
down bias from the OFC (Corbit, Muir, & Balleine, 2003),
which maintains a working memory of the recent reward
history (Wallis, 2007; Frank & Claus, 20006).

The OFC of the model also has preexisting represen-
tations of USs (Ongiir & Price, 2000). In contrast to the
BLA, however, activation of US representations in the
OFC is not a result of CS-US associations by neurons in
this area (Holland & Gallagher, 2004). Instead this area is
specialized for representing objects as USs and can also
act as “working memory for USs,” including which US was
predicted by the BLA at CS onset (Wallis, 2007). It receives
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this information over ascending projections from the BLA
(Corbit et al., 2003). In addition, the OFC of the model
can maintain a working memory of which USs have re-
cently been received (Wallis, 2007; Frank & Claus, 20006).
That is, if, for example, sucrose is presented to the model
at the end of a trial, OFC can maintain this in working mem-
ory. Thus, active maintenance of USs can get into OFC
working memory in two ways: (1) recent experience of a
US, particularly if unexpected, and (2) expected USs based
on BLA-driven inputs. Finally, there is no passive decay of
working memory representations considered over the time
scale of the tasks modeled nor an integration with previous
reward history as in previous models on OFC function
(e.g., Frank & Claus, 20006).

The OFC working memory mechanisms were devel-
oped using the PFC BG Working Memory framework
(PBWM; Hazy, Frank, & O’Reilly, 2006, O’Reilly & Frank,
20006). The central tenet of the PBWM model is that the
BG provides an adaptive, dynamic gating signal for control-
ling the active maintenance and updating, and the output of,
information in frontal cortex (O’Reilly, 2006). The layers are
interconnected with frontal cortex through a series of
parallel loops (Postuma & Dagher, 2006; Middleton &
Strick, 2000; Alexander, Delong, & Strick, 1986). These
loops enable the BG to exert a gating-like modulation of
representations in frontal areas (see Figure 2). This kind
of gating mechanism is consistent with a wide range of

(LHA, CNA, VTA/SNc, VSp)

Figure 1. The model as implemented in the neural network simulator
Emergent. LHA = lateral hypothalamus; VSp = patch-like neurons in VS.
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Figure 2. The BGs are
interconnected with frontal
cortex. Working backward
from the thalamus, which is
bidirectionally excitatory with
frontal cortex, the SNr is
tonically active and inhibiting
this excitatory circuit. When
direct go pathway neurons in
the striatum fire, they inhibit
the SNr and thus disinhibit
frontal cortex producing a
gating-like modulation

that we argue triggers the
update of working memory
representations in PFC. The
indirect no-go pathway neurons
of striatum counteract this
effect by inhibiting the
inhibitory GPe (globus
pallidus, external segment;
Hazy et al., 2007).
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empirical data, and similar implementations of dynamic
gating were included in previous computational models
(e.g., Cisek, 2007; Houk et al., 2007; Humphries, Stewart,
& Gurney, 2006; Frank, 2005; Brown, Bullock, & Grossberg,
2004; Gurney, Prescott, & Redgrave, 2001; Berns &
Sejnowski, 1998; Mink, 1996; Dominey, Arbib, & Joseph,
1995; Houk, Adams, & Barto, 1995; Houk & Wise, 1995;
Wickens, Kotter, & Alexander, 1995).

In our model, the VS layer provides a dynamic gating
mechanism for the OFC (Frank & Claus, 2006). The VS
learns to update memory in OFC based on excitatory
input from the BLA and input from the CS layer (Cardinal,
Parkinson, Hall, & Everitt, 2002; Gray, 1999). Learning when
to update OFC depends on phasic dopamine release in
VS by neurons in ventral tegmental area (VTA)/substantia
nigra pars compacta (SNc; see below). Although OFC and
BLA both receive sensory information from higher-level
sensory areas of the temporal lobe (Ghashghaei & Barbas,
2002), the OFC of the model does not receive direct sen-
sory input from the CS layer. Our model does not include
these projections, because we believe that the extremely
slow learning rate at OFC synapses precludes the forma-
tion of CS-US associations within the timescale of the ex-
periments we simulated (Holland & Gallagher, 2004).
That is, if the expectation for a particular reward is acti-
vated in OFC when a CS is presented, this is because
BIA is sending its US prediction to OFC, but not because
OFC itself learned the CS-US association (Schoenbaum,
Setlow, Saddoris, & Gallagher, 2003).

With sufficient training, we do believe that OFC can
eventually acquire multisensory feature-US associations,
so that a US representation in OFC will include informa-
tion about all the features reliably associated with the core
sensory experience (Holland & Gallagher, 2004), which

may be the core process underlying stimulus substitution.
Thus, the OFC can come to represent all of the multi-
sensory aspects associated with a reward, such as its size,
shape, texture, and flavor (Rolls & Grabenhorst, 2008;
Schoenbaum & Roesch, 2005), and in our view, when it
pairs sensory features with USs, it does so as unitary US rep-
resentations and not as CS-US pairings per se. We do not
address these aspects of OFC function in our simulations.

In our simulations of the function of the OFC, we focus
on a lateral region for which there are strong anatomical
and functional parallels between rodents and primates
(see also Schoenbaum et al., 2009). This region encom-
passes lateral orbital regions, anterior parts of the agranular
insular cortex and the dorsal bank of the rhinal sulcus
in rodents. These areas are heavily interconnected with
the BLA, VS, mediodorsal thalamus, and sensory cortices.
These areas in rodent OFC correspond to Areas 11, 12,
and 13 in the primate OFC (Schoenbaum & Roesch,
2005; Ongtur, Ferry, & Price, 2003; Ongtr & Price, 2000;
Preuss, 1995). The role of this area in decision-making is
to determine which stimulus outcomes are possible in
the current context, but not what is necessary to achieve
that outcome. More medial aspects of ventral frontal cortex
are involved in learning and representing action—outcome
values, including costs (Rushworth, Behrens, Rudebeck, &
Walton, 2007). The division of labor among regions of OFC
has been discussed elsewhere (Noonan et al., 2010; Hare,
O’Doherty, Camerer, Schultz, & Rangel, 2008; Ongiir et al.,
2003; Ongtlr & Price, 2000).

The actor system of the model consists a simulated
DMS and motor cortices. It is well accepted that the DMS
is involved in the initiation of the motor gating of behavior
in motor cortices (Mink, 1996; Wickens, 1993). The DMS is
believed to guide goal-directed behavior according to the
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expectancy information it receives from the BLA and OFC
(Pauli, Atallah, & O’Reilly, 2010; Pauli, Hazy, & O’Reilly,
2009; Balleine, Delgado, & Hikosaka, 2007). Lesions of this
region have been found to lead to similar reversal deficits
as lesions of the OFC itself (Clarke, Robbins, & Roberts,
2008). In our model, OFC and BLA can independently pro-
mote a go response (e.g., approach the food well) if they
predict an appetitive US (Frank, Seeberger, & O’Reilly,
2004). If OFC and BLA expect an aversive US, they bias
the DMS medium spiny neurons of the indirect (no-go)
pathway to prevent approaching the food well. The DMS
also receives sensory input from the CS layer (McGeorge
& Faull, 1989). Because of this connection, the DMS can
acquire CS-response associations (Everitt & Robbins,
2005), so that the conditioned response is spared even if
both BLA and OFC are lesioned (Stalnaker, Franz, Singh,
& Schoenbaum, 2007), and there is most likely no acqui-
sition of Pavlovian CS-US associations.

For the above gating mechanism to work successfully,
the striatum has to learn when to update representations
in frontal areas. This learning is dopamine-based and allows
each striatal projection neuron (medium spiny neuron) to
develop its own unique pattern of input weights that deter-
mine its actions. Dopamine release in the striatum of our
model is determined by projections from the dopaminergic
neurons of the SN¢/VTA, captured by the PVLV model
(primary value, learned value; Hazy, Frank, & O’Reilly,
2010; Hazy et al., 2007; O’Reilly, Frank, Hazy, & Watz,
2007; O’Reilly & Frank, 2006).

It is well established that the midbrain dopamine neu-
rons in the SN¢/VTA of the mammalian brain are driven
by inputs from the CNA, the lateral hypothalamus, and
the patch-like neurons of the VS (Ahn & Phillips, 2003;
Floresco, West, Ash, Moore, & Grace, 2003; Fudge &
Haber, 2000; Joel & Weiner, 2000; Rouillard & Freeman,
1995; Semba & Fibiger, 1992). The contributions of these
inputs are described by the PVLV model as follows (Hazy
et al., 2007, 2010; O’Reilly et al., 2007; O’Reilly & Frank,
20006). The lateral hypothalamus delivers primary reward
information and contributes to the phasic dopamine re-
lease in response to unexpected reward delivery. The
patch-like neurons in the VS learn to expect such rewards
and thereby block the dopamine spike that would other-
wise occur to them. This is the PV system of PVLV. The
LV system, involving the CNA, is important for learning re-
ward associations for CSs, which can then drive dopamine
firing at the time of CS onset. These two interacting sys-
tems provide a good account of the extant neural recording
data from the SNc (Schultz, 1998; Schultz, Apicella, &
Ljungberg, 1993). In many learning paradigms, the PVLV
algorithm can be considered as a biologically informed
version of the temporal differences algorithm (Sutton &
Barto, 1998; Sutton, 1988), although there are also impor-
tant differences between these two models in some spe-
cific learning paradigms (Hazy et al., 2010).

The functional contribution of the PVLV system is to
provide positive dopamine bursts for successful behavior
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and CSs associated therewith and negative dopamine
dips for unsuccessful behavior and associated CSs. The
positive dopamine bursts cause go pathway neurons in
the striatum to become more active (because of a pre-
ponderance of dopamine D1 receptors, which are excit-
atory) and no-go pathway neurons to become less active
(from D2 receptors, which are inhibitory; Shen, Flajolet,
Greengard, & Surmeier, 2008; Frank, 2005; Frank et al.,
2004). The opposite case holds for negative dopamine dips.
This shapes the gating firing in ways that lead to successful
learning of complex working memory tasks in the PBWM
model (Hazy et al., 2006, 2007; O’Reilly & Frank, 2006).

Because the main focus of our model was on the acqui-
sition and reversal of Pavlovian contingencies, we only
simulated the effect of phasic dopamine on plasticity in
striatal areas but did not simulate modulations of tonic
dopamine levels in the BLA and frontal cortex. Modula-
tion of tonic dopamine levels in BLA is thought to be crit-
ical for motivation tone (Niv, Daw, Joel, & Dayan, 2007)
and the generalized form of Pavlovian-to-instrumental
transfer (Hazy et al., 2010). In PFC, dopamine has been
proposed to affect the amount of information held in
working memory buffers in PFC networks (Seamans &
Yang, 2004).

Separable Functional Roles of BLA and CNA

The amygdala has long been recognized for its critical role
in emotional processing (e.g., LeDoux, 2000; Adolphs,
Tranel, Damasio, & Damasio, 1995; Quirk et al., 1995).
Despite the dominant interest in the role of amygdala in
fear and anxiety (Fanselow & Gale, 2003; Fanselow &
LeDoux, 1999; Davis, 1992), its role in representing posi-
tive affect has started to receive more attention as well
(Murray, 2007; Paton, Belova, Morrison, & Salzman,
2006; Gottfried, O’Doherty, & Dolan, 2003). The CNA
and BLA of the amygdala have been shown to be highly
dissociable across many experimental paradigms and, in
our model, make separable contributions to goal-directed
behavior. As a key component of the PVLV reinforcement
learning system, the CNA (LV, in PVLV) learns to control
the release of dopamine in striatal layers at the onset of
the CS (Hazy et al., 2007, 2010; O’Reilly et al., 2007,
O’Reilly & Frank, 2006). The BLA, on the other hand, does
not have direct access to the dopamine cells but does
project very densely to the VS and associative striatum
(i.e., DMS), which CNA does not. Thus, the BLA is in a
position to influence the learning and performance of
goal-directed behaviors by signaling its expectancies
about particular USs to downstream areas (Hatfield, Han,
Conley, & Holland, 1996).

Trial Structure

Each experimental trial corresponds to three discrete
steps in our simulations. Each simulation step consists of
one minus phase and one plus phase (O’Reilly, 1996b).
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The first step is for “stimulus sampling,” the CS is pre-
sented to the network until settling finishes. During this
step, working memory in OFC can be updated. In the
second “response” step, the model decides whether to
approach or avoid the food well and receives simulated
dopamine feedback for its choice. In the third “feedback”
step, USs are presented according to which response the
model chose in the “response” step. Working memory in
OFC is updated to maintain the history for recent rewards.
The distinction between “response” and “feedback” trials
in the model is required to accommodate computational
constraints associated with the PBWM mechanisms.

Training Parameters

The model first had to learn to associate one conditioned
(CS1+) stimulus with an appetitive US and another CS
(CS2—) with an aversive US. The model was trained until
it had correctly performed 95 trials of each type without
any errors. After the model had acquired the initial asso-
ciations, contingencies were reversed so that the first CS
was now associated with a negative US (CS1—) and the
other with a positive US (CS2+). The model was trained
on the reversed contingencies until it had performed
100 trials of each type without an error. The model was
run with either set of lesions (BLA only, BLA+OFC lesion,
and no lesion) for 50 runs to acquire a good estimate of
the average performance.

Parameter Fitting

No systematic attempt was made to fit the exact quanti-
tative pattern of the rat behavioral data. To capture the
effects of lesions on acquisition on reversal performance,
we adjusted the following parameters:

* The weight scale between the US and BLA layer so
that BLA would learn more slowly which CSs and
USs are associated if the OFC was lesioned. The
value was reduced such that an US representation
in the BLA was less active at the time of the US pre-
sentation without the additional excitatory input
from the OFC.

* We increased the amount of Hebbian learning to
make sure that the CS-US associations in BLA would
strengthen further even when there was no error in
the US expectation.

* We increased the learning rate of the CS layer to DMS
projections so that the model would acquire the initial
contingencies at the same rate if it was intact or if BLA
and OFC were lesioned simultaneously.

* We increased the weight scale between the BLA, DMS,
and OFC to DMS, so that expectations about USs of
these two areas were able to exert a strong bias onto
the DMS and overcome net input from the CS layer.

* We increased the random go firing in the DMS so
that the model would start exploring faster at the

beginning of reversal after not receiving reward in
either trial type for several trials in a row.

The emergent project file can be downloaded at http://
grey.colorado.edu/CompCogNeuro/index.php/whip_ofc.
Further details of the equations used, based on the Leabra
unified framework for neural modeling (O’Reilly &
Munakata, 2000), can be found in the Appendix.

RESULTS

We developed a biologically informed neural network
model to investigate the role of the OFC and BLA in
Pavlovian acquisition and reversal. To test the contribu-
tions of the two areas to the acquisition and reversal of
Pavlovian contingencies, we trained the model to asso-
ciate two CSs with two different USs. The model first had
to learn to associate one CS with a positive US and another
CS with a negative US. After the model had acquired the
initial associations, contingencies were reversed so that
the first CS was now associated with a negative US and
the other with a positive US.

Reversal Deficit after OFC Lesions

OFC lesions have been repeatedly found to cause learn-
ing impairments if contingencies are reversed after acqui-
sition in Pavlovian conditioning studies. As displayed in
Figure 3, the model also exhibited a reversal deficit after
inactivation of the OFC. Reversal deficits seem to be caused
by perseverative encoding of the original Pavlovian CS-US
associations in the BLA, which would normally be com-
pensated for by activation-based working memory for re-
cent outcomes in the OFC, as described earlier. Stalnaker
et al. (2007) were able to confirm this idea by abolishing
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Figure 3. Trials to criterion until acquisition and reversal for the
different lesion groups for the model. Paralleling empirical data
(Stalnaker et al., 2007, Figure 2) neither of the lesion groups showed
a deficit for the acquisition of the initial associations, and simultaneous
lesions of OFC and BLA abolished the reversal deficit found after
OFC lesions alone.
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Figure 4. Selectivity of
neuronal firing of neurons in
OFC and BIA as a function

of epoch since the beginning
of acquisition and reversal,
respectively. This value is
positive if neurons of a
particular US are more active

if the CS that is associated

with this US is presented

(see Appendix for details).

Line represents mean selectivity
over the 50 runs of the model,
area represents standard

error. Progress refers to percent
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the reversal deficit by simultaneously ablating the OFC and
the BLA in rats. Simultaneous lesions of BLA and OFC in
our model also abolished the reversal deficits found after
OFC lesions (Figure 3). In the case of simultaneous inacti-
vation of OFC and BLA, phasic dopamine release in re-
sponse to unexpected delivery of the positive US and
phasic reductions of dopamine in response to the delivery
of a negative US support the acquisition of CS-response
associations in the DMS. With simultaneous OFC and
BIA lesions, the model produces approach and avoid be-
havior without the expectancy for a particular US.

Ambiguous CS-evoked Activity in OFC

How does the OFC support behavioral flexibility? Rolls
(1996) originally suggested that the OFC was fast and
flexible at encoding CS—US associations and was therefore
particularly critical when Pavlovian contingencies changed.
Although Rolls (1996) originally attributed this flexibility to
rapid weight-based learning, we have reframed this flex-
ibility in terms of activation-based memory, as described
earlier. According to either general framework, the OFC
provides this updated associative information to other
brain areas to guide appropriate behavior. Several single-
unit studies provided evidence in support of this hypoth-
esis (Schoenbaum et al., 1999; Rolls, Critchley, & Treves,
1997; Thorpe, Rolls, & Madison, 1983).

However, although the OFC learns to fire selectively
in anticipation of a particular US (Schoenbaum, Chiba, &
Gallagher, 1998), selective firing of OFC neurons neither
develops particularly rapidly in comparison with other
brain areas nor is it very pervasive (Paton et al., 2006;
Stalnaker, Roesch, Franz, Burke, & Schoenbaum, 2006;
Schoenbaum et al., 1999). The OFC and BLA layers in
our model exhibit this same behavior. As shown in Figure 4,
selective cue-related firing occurred earlier during acqui-
sition and reversal in the BLA than in the OFC. Activation
in the OFC layer represents a combination of both the cur-
rent expectation by the BLA, but also recent reward history.
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That is, as long as performance is low and unexpected
USs will periodically be received, the OFC will maintain
both received US as well as the (now incorrect) expected
US in working memory, signaling that both of these USs are
possible in the current context. In contrast to the slow
development of selective anticipatory OFC activity, OFC
already fires selectively at the moment a US is received
early during acquisition and reversal (Figure 5).

OFC Modulates Plasticity in BLA

Acquisition of Pavlovian associations by the BLA has been
found to depend on a functioning OFC (Saddoris et al.,
2005). In particular, the lateral OFC seems to be more crit-
ical for learning than for decision-making directly (Noonan
et al., 2010). If we lesioned the OFC in the model, anticipa-
tory firing would only develop slowly, if at all, in the BLA of

CS related

US related

Selectivity of encoding
0.0
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! I I I I
First Last First Last

Epoch of Acquisition

Figure 5. Selectivity of neuronal firing of OFC neurons at the
beginning and end of acquisition of the initial Pavlovian contingencies.
Even early in acquisition, OFC neurons fire selectively in response to
the delivery of a US. This is the result of preexisting orbito-frontal
representations of USs. In contrast, neurons do not fire in expectation
of a particular US when a CS is presented early in acquisition but
acquires this selectivity toward the end of the acquisition.
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Figure 6. OFC lesions impair acquisition and reversal of Pavlovian
associations by the BLA. Graphs show selectivity of cue-evoked
activity in BLA with lesion to the OFC (solid) and no lesion to the
OFC (dashed). Areas indicate standard error; SSE refers to sum of
squared errors.

the model because of a reduced excitatory input to BLA
neurons representing the delivered US (Figure 6). On
the other hand, the Pavlovian associations in BLA devel-
oped more strongly if OFC activity at CS onset was ambig-
uous or incorrect (Figure 7). If OFC represents an incorrect
US outcome expectation or that both US outcomes are
possible, when a CS is presented, the top—down bias from
OFC onto the BLA will also cause BLA to have this incorrect
expectation. When the actual US is presented at the end of
the trial, the difference between the US expectation and
the actual US will increase the amount of plasticity in
BLA. That is, the expectancy error in the OFC activation
is not only proportional to the amount of learning in
BLA, it actually causes a modulation of plasticity in BLA.
This is consistent with the finding that animals are better
at adapting to a reversal of Pavlovian contingencies if selec-
tive firing in response to a CS in OFC is slow at reversing
(Stalnaker et al., 2000).

This modulation of plasticity by the expectancy error is
similar to the finding that the phasic changes in dopamine
release proportional to reward prediction error modulate
plasticity in striatal areas. However, unlike the activity in
midbrain dopamine neurons, activity in OFC in response
to the delivery of a US is not modulated by how much
this US had been expected (Schoenbaum et al., 2003;
Takahashi et al., 2009, Figure 5).

DISCUSSION

We were able to develop a computational model that cap-
tures various findings of studies that looked at electro-
physiological changes in the BLA and the OFC and the
effects of lesions to either area on the ability to acquire
and adapt to the reversal of Pavlovian contingencies. These
simulations were based on two simple assumptions. The
first assumption was that the BLA learns CS-US associa-
tions via purely weight-based learning and, thus, predict
USs on the basis of CS cues; the second was that the OFC

acts as “working memory for USs” based on activation-
based memory—and US representations can get loaded
into OFC in two ways: (1) when USs occur and (2) when
BLA predicts them.

We were able to account for the finding that neither
lesions of the OFC or the BLA nor simultaneous lesions
of both areas would impair initial performance in this
catergory of tasks (Stalnaker et al., 2007). Furthermore,
our simulations captured the empirical finding that lesions
of the OFC alone would greatly impair reversal perfor-
mance whereas simultaneous lesions of both areas would
abolish this reversal deficit (Stalnaker et al., 2007).
Although neither lesion affected behavior during the ac-
quisition phase, the BLA only acquired the initial Pavlovian
contingencies very slowly, if the OFC was lesioned in the
model. At the beginning of the reversal phase, the BLA
then contributed a bias to behavior according to the initial
contingencies, which were no longer appropriate. The
OFC supported rapid reversal in two different ways. First,
it supported rapid reversal of associative weights in the
BLA. Secondly, it maintained recent trial USs in working
memory and, therefore, biased responding in DMS against
the no-longer-appropriate Pavlovian associations stored in
the BLA.

The model could solve Pavlovian acquisition and rever-
sal without any contributions from the expectancy system
when OFC and BLA were lesioned simultaneously, which
is consistent with empirical data (Stalnaker et al., 2007).
With simultaneous lesions, the model solved the task
because the DMS would acquire stimulus—-response asso-
ciations through reinforcement learning. In a sense, the
model was producing the correct behavior without an-
ticipating a particular US to result from it, that is, without
acquiring Pavlovian CS-US associations. Although the ex-
pectancy system would normally be involved in this task,
this demonstrates the task can be solved without the
acquisition of CS-US associations. That the simultaneous
lesions did not affect the speed of acquisition or reversal
appears to be rather perplexing, because it implies that
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Figure 7. The speed of learning BIA is directly proportional to the
error in the US expectation of the OFC during acquisition (left) and
reversal of Pavlovian contingencies (right). The OFC expectancy

error refers to the sum squared error between OFC activation at the
time of the CS and the time of the US. Solid line represents prediction
of the linear model, dashed line represents prediction interval, and
dotted line represents confidence interval.
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the expectancy system is not really very useful. However,
we interpret this to be because of the extremely impov-
erished environment, in which there are only two things
to do (avoid and approach). This is similar to findings that
simple instrumental tasks (e.g., f maze) can be learned
without the DMS, because the task is so simple that the
dorsal striatum can just acquire S—R associations (Palencia
& Ragozzino, 2005; Featherstone & McDonald, 2004). We
believe that the expectancy system becomes more critical
when there are multiple options to choose from within the
same valence category (e.g., R1-sugar, R2—food pellet).
Animals cannot learn those tasks without, for example,
the DMS, as the actor of the expectancy system (Yin,
Ostlund, Knowlton, & Balleine, 2005). More generally,
the expectancy system is critical for modulating behavior
as a function of changing needs and goals, as explored, for
example, in devaluation and related paradigms (Ostlund &
Balleine, 2007).

In addition to capturing these behavioral findings, our
model also accounted for various electrophysiological
findings. Consistent with empirical data, BLA acquired
and reversed Pavlovian associations more slowly, if the
OFC layer was lesioned in the model (Saddoris et al.,
2005). Furthermore, if OFC was slow to adapt to the con-
tingency reversal or failed to do so altogether, the BLA
would acquire the reversed Pavlovian associations more
readily (Stalnaker et al., 2000).

It has previously been proposed that the OFC inhibits
inappropriate responses (Elliott et al., 2000; Dias et al.,
1996; Damasio, 1994; Mishkin, 1964; Ferrier, 1886). This
inhibitory role of the OFC is consistent with deficits in
detour reaching tasks (Wallis, Dias, Robbins, & Roberts,
2001) and stop signal tasks (Eagle et al., 2008). However,
other studies have also produced results inconsistent with
an inhibitory role of OFC. For example, rhesus monkeys
with orbito-frontal lesions were still capable of inhibiting a
prepotent response to pick up a small reward to receive a
larger reward later (Chudasama, Kralik, & Murray, 2007).
The contribution of the OFC in our model is also incon-
sistent with an exclusive role of OFC in response inhibi-
tion. At the beginning of reversal, the model continues
to approach in response to the presentation of one CS
(CS1), because it learned to associate it with the positive
US during acquisition. Every time it approaches the food
well in response to the CS1, the model receives the aver-
sive US and finally stops responding to CS1. Because it
had also previously learned that CS2 is associated with
an aversive US, it never approaches the food well in re-
sponse to CS2 and, in fact, stops behaving completely.
Thus, it never gets an opportunity to experience the
new contingencies—until the model eventually starts to
explore again after not receiving any positive US for sev-
eral trails. As soon as this happens, OFC holds on to the
positive US and exerts a bias onto the DMS that makes
this approach behavior more likely to be expressed again.
Taken together, therefore, we believe that converging
evidence supports the “working memory for USs” model
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of OFC function. Although our simulations focused on the
role of lateral OFC in Pavlovian, we believe that they pro-
vide a more general and comprehensive description of the
OFC’s role in supporting flexible behavior that goes be-
yond inhibition of inappropriate behaviors (Schoenbaum
et al.,, 2009).

Predictions from the Model
The model makes several testable predictions:

» Stalnaker et al. (2007) found that simultaneous le-
sions of the BLA and the OFC would abolish the re-
versal deficits associated with OFC lesions alone. If
both layers were inactivated in our model, it would
solve the task according to stimulus-response asso-
ciations in the DMS. We predict that, if plasticity is
blocked in the DMS throughout the reversal period,
animals with simultaneous lesions to OFC and BLA
should be significantly impaired because the DMS
would be unable to reverse the stimulus-response
associations.

* The second prediction is based on the fact that the
model was able to account for the above-discussed
empirical findings without requiring any synaptic
plasticity in OFC. Thus, blocking plasticity in OFC
at any point during the experiments without block-
ing neuronal activity, for example, by injecting the
selective PKM.,,,, inhibitor ZIP (see Sacktor, 2011),
should not affect the results, in particular, the speed
of reversal learning.

e If we lesioned the OFC of the model, the BLA would
very slowly acquire the initial Pavlovian contingen-
cies and provide an inappropriate response bias onto
the DMS at the beginning of the reversal period that
would impair the ability to adapt to the changed con-
tingencies. Because lesions to the BLA did not affect
the ability of rats and the model to acquire the initial
Pavlovian contingencies (because of CNA being
intact), blocking plasticity in the BLA should not
affect the ability of animals to acquire Pavlovian con-
tingencies either (as already shown for BLA lesions)
and may actually facilitate the adaptation to a reversal
of Pavlovian contingencies because the BLA would
not contribute the now-inappropriate Pavlovian
contingencies.

* Finally, blocking plasticity in BLA should prevent se-
lective firing in the OFC at the CS onset, because the
OFC would then be lacking the CS-US associations
normally acquired by the BLA and the OFC does not
learn fast enough on its own.

Conclusions

Our simulations suggest a division of labor within an expec-
tancy system between the OFC and the BLA. The BLA ac-
quires Pavlovian associations based on long-term synaptic
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plasticity. The OFC supports flexibility by maintaining
activation-based memories for USs, including the recent
reward history. This memory does not require synaptic
plasticity. Therefore, the OFC is a source of flexibility,
and the BLA is a source of continuity. Ambiguous reward
expectancies in OFC at the time of the CS presentation pro-
motes behavioral flexibility and synaptic plasticity in the
BLA. When contingencies change, OFC supports responses
that are no longer inappropriate, which is inconsistent
with an exclusive inhibitory role of OFC function.

APPENDIX: IMPLEMENTATIONAL DETAILS

The model was implemented using the Leabra frame-
work, which is described in detail in O’Reilly (2001) and
O’Reilly and Munakata (2000) and summarized here. See
Table 1 for a listing of parameter values; nearly all of which
are at their default settings. These same parameters and
equations have been used to simulate over 40 different
models in O’Reilly and Munakata (2000) and a number
of other research models. Thus, the model can be viewed

Table 1. Parameters for the Simulation

Parameter Value
E 0.15
E; 0.15
E. 1.00
Viewt 0.15

T .02

k In/Out 1

k PFC 4

k PVLV 8
Khebb 01
to PFC kpnepb .001*
a 0.10
@ 1.0

o 1.0

©] 0.25

Y 600

k Hidden 7

k Striatum 1

€ .01
to PFC € .001*

See equations in text for explanations of parameters. All are standard
default parameter values except for those with an asterisk. The slower
learning rate of PFC connections produced better results and is consis-
tent with a variety of converging evidence, suggesting that PFC learns
more slowly than the rest of cortex (Morton & Munakata, 2002).

as an instantiation of a systematic modeling framework
using standardized mechanisms instead of constructing
new mechanisms for each model. The model can be
obtained by emailing the first author at oreilly@psych.
colorado.edu.

Pseudocode

The pseudocode for Leabra is given here, showing exactly
how the pieces of the algorithm described in more detail
in the subsequent sections fit together.

Outer loop: Iterate over events (trials) within an epoch.
For each event:

1. Iterate over minus (—), plus (+), and update (++)
phases of settling for each event.

(a) At start of settling:

i. For non-PFC/BG units, initialize state variables
(activation, v_m, €etc.).

ii. Apply external patterns (clamp input in minus,
input and output, external reward based on
minus-phase outputs).

(b) During each cycle of settling, for all nonclamped
units:

i. Compute excitatory netinput (g.(?) or n;,
Equation 2; Equation 21 for SNr/Thal units).

ii. For striatum go/no-go units in ++ phase,
compute additional excitatory and inhibitory
currents based on dopamine inputs from
SNc (Equation 20).

iii. Compute kWTA inhibition for each layer,
based on g (Equation 6):

A. Sort units into two groups based on g5:
top # and remaining & + 1 to 7.

B. If basic, find & and & + 1-th highest; if
average based, compute average of 1 — &
andk +1—n.

C. Set inhibitory conductance g; from gf, and
g,?ﬂ (Equation 5).

iv. Compute point neuron activation combining
excitatory input and inhibition (Equation 1).

() After settling, for all units:

i. Record final settling activations by phase (y; ,
+ .+
yj 73/ )
ii. At end of + and ++ phases, toggle PFC main-
tenance currents for stripes with SNr/Thal act >
threshold (.1).

2. After these phases, update the weights (based on
linear current weight values):

(a) For all non-BG connections, compute error-driven
weight changes (Equation 8) with soft weight
bounding (Equation 9), Hebbian weight changes
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from plus-phase activations (Equation 7), and
overall net weight change as weighted sum of
error-driven and Hebbian (Equation 10).

(b) For PV units, weight changes are given by delta
rule computed as difference between plus phase
external reward value and minus phase expected
rewards (Equation 11).

(c) For LV units, only change weights (using Equa-
tion 13) if PV expectation > 6,,, or external re-
ward/punishment actually delivered.

(d) For striatum units, weight change is the delta rule
on dopamine-modulated second-plus phase activa-
tions minus unmodulated plus phase acts (Equa-
tion 19).

(e) Increment the weights according to net weight
change.

Point Neuron Activation Function

Leabra uses a point neuron activation function that mod-
els the electrophysiological properties of real neurons
while simplifying their geometry to a single point. The
membrane potential V,,, is updated as a function of ionic
conductances g with reversal (driving) potentials E as
follows,

AV (2) = TZS’C(O@(EC — Vin(?)) (1)

with three channels (¢) corresponding to e as excitatory
input, 1 as leak current, and I as inhibitory input. Following
electrophysiological convention, the overall conductance
is decomposed into a time-varying component g.(¢) com-
puted as a function of the dynamic state of the network
and a constant g. that controls the relative influence of
the different conductances.

The excitatory net input/conductance ge(¢) or 1 is
computed as the proportion of open excitatory channels
as a function of sending activations times the weight
values,

N =ge(t) = (xiwy) = %szwz/ (2)

The inhibitory conductance is computed via the &-winners-
take-all (kWTA) function described in the next section, and
leak is a constant.

Activation communicated to other cells ()) is a thresh-
olded (®) Sigmoidal function of the membrane potential
with gain parameter vy:

() = —) (3)
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where [x] 4 is a threshold function that returns 0 if x < 0
and x if X > 0. Note that if it returns 0, we assume y;() =
0, to avoid dividing by 0. To produce a less discontinuous
deterministic function with a softer threshold, the func-
tion is convolved with a Gaussian noise kernel (u = 0, 0 =
.005), which reflects the intrinsic processing noise of bio-
logical neurons,

. ® 1 _ZZ 0.2
pe = [ ey e @

where x represents the [V,,(#) — O], value and yj(x) is
the noise-convolved activation for that value. In the simu-
lation, this function is implemented using a numerical
lookup table.

kKWTA

Leabra uses a kWTA function to achieve inhibitory com-
petition among units within a layer (area). The kWTA
function computes a uniform level of inhibitory current
g; for all units in the layer, such that the £ + 1-th most
excited unit within a layer is generally below its firing
threshold whereas the kth is typically above threshold,

8i :g;?ﬂ + q(gg - ggﬂ) (5)

where 0 < g < 1 (.25 default used here) is a parameter for
setting the inhibition between the upper bound of gf
and the lower bound of g, 1. These boundary inhibition
values are computed as a function of the level of inhibi-
tion necessary to keep a unit right at threshold,

o _8&8.(Ec — O) + &gk — O) 6
8 = o - K (6)
where g# is the excitatory net input without the bias
weight contribution—this allows the bias weights to over-
ride the kKWTA constraint.

In the basic version of the KWTA function, which is re-
latively rigid about the kWTA constraint and is therefore
used for output layers, gg and ggﬂ are set to the thresh-
old inhibition value for the &th and & + 1-th most excited
units, respectively. In the average-based kWTA version, g
is the average g;’ value for the top k& most excited units,
and g;?H is the average of g,o for the remaining 7z — £ units.
This version allows for more flexibility in the actual num-
ber of active units, depending on the nature of the activa-
tion distribution in the layer.

Hebbian and Error-driven Learning

For learning, Leabra uses a combination of error-driven
and Hebbian learning. The error-driven component is the
symmetric midpoint version of the GeneRec algorithm
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(O’Reilly, 1996a), which is functionally equivalent to the de-
terministic Boltzmann machine and contrastive Hebbian
learning. The network settles in two phases, an expectation
(minus) phase where the network’s actual output is pro-
duced and an outcome (plus) phase where the target out-
put is experienced, and then computes a simple difference
of a pre- and postsynaptic activation product across these
two phases. For Hebbian learning, Leabra uses essentially
the same learning rule used in competitive learning or mix-
tures of Gaussians, which can be seen as a variant of the Oja
normalization (Oja, 1983). The error-driven and Hebbian
learning components are combined additively at each
connection to produce a net weight change.
The equation for the Hebbian weight change is

Ahebbu)l'j :x;ry;r - y;rwf/ :yjr (szr - wz‘/) (7)

and for error-driven learning using contrastive Hebbian
learning,

Seaty = (797 ) = (w707 (®)

which is subject to a soft weight bounding to keep within
the 0-1 range,

Asberrwij = [Aerr]+(1 - wlj) + [Aerr]—wl'f (9)

The two terms are then combined additively with a normal-
ized mixing constant Ry,epp:

Aw;; = €[Rnebb (Anebb) + (1 = Riebb ) (Asberr)] (10)

PVLV Equations

See O’Reilly et al. (2007) for further details on the PVLV
system. We assume that time is discretized into steps that
correspond to environmental events (e.g., the presentation
of a CS or US). All of the following equations operate on
variables that are a function of the current time step /—
we omit the ¢ in the notation because it would be redun-
dant. PVLV is composed of two systems, PV and LV, each of
which in turn are composed of two subsystems (excitatory
and inhibitory). Thus, there are four main value represen-
tation layers in PVLV (PV,, PV, LV, LV)), which then drive
the dopamine layers (VITA/SNc).

Value Representations

The PVLV value layers use standard Leabra activation and
kWTA dynamics, as described above, with the following
modifications. They have a three-unit distributed repre-
sentation of the scalar values they encode, where the
units have preferred values of (0, .5, 1). The overall value
represented by the layer is the weighted average of the

unit’s activation times its preferred value, and this de-
coded average is displayed visually in the first unit in
the layer. The activation function of these units is a
“noisy” linear function (i.e., without the x/(x + 1) non-
linearity to produce a linear value representation, but still
convolved with Gaussian noise to soften the threshold, as
for the standard units, Equation 4), with gain y = 220,
noise variance o = .01, and a lower threshold © = .17.
The £ for KWTA (average based) is 1, and the g value is .9
(instead of the default of .6). These values were obtained
by optimizing the match for value represented with vary-
ing frequencies of 0-1 reinforcement (e.g., the value
should be close to .4 when the layer is trained with
40% of 1 values and 60% of 0 values). Note that having
different units for different values, instead of the typical
use of a single unit with linear activations, allows much
more complex mappings to be learned. For example,
units representing high values can have completely differ-
ent patterns of weights than those encoding low values,
whereas a single unit is constrained by virtue of having
one set of weights to have a monotonic mapping onto
scalar values.

Learning Rules

The PV, layer does not learn and is always just clamped to
reflect any received reward value (7). By default, we use a
value of 0 to reflect negative feedback, .50 for no feed-
back, and 1 for positive feedback (the scale is arbitrary).
The PV; layer units () are trained at every point in time
to produce an expectation for the amount of reward that
will be received at that time. In the minus phase of a given
trial, the units settle to a distributed value representation
based on sensory inputs. This results in unit activations
¥; , and an overall weighted average value across these
units denoted PV;. In the plus phase, the unit activations
( yjr) are clamped to represent the actual reward r (a.k.a,,
PV,.). The weights (w;) into each PV; unit from sending
units with plus-phase activations x; are updated using
the delta rule between the two phases of PV; unit activation
states

Ny = e(y; = y;7)x] (11)

This is equivalent to saying that the US/reward drives a
pattern of activation over the PV; units, which then learn
to activate this pattern based on sensory inputs. In addi-
tion to the PV, and PV, layers, there is an additional PV,
layer that is associated with learning about reward detec-
tion. This system learns in the same way as the PV, system
but has a slower learning rate for weight decreases rela-
tive to increases.

The LV, and LV; layers learn in much the same way as
the PV; layer (Equation 11), except that the PV system fil-
ters the training of the LV values, such that they only
learn from actual reward outcomes or when reward is
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expected by the PV, system and not when no rewards are
present or expected. This condition is as follows,

PVﬁlter = min(PVn PVi) < 9min \ maX(PVra PVi) > em%lx
(12)

if Pvﬁlter
otherwise

(13)

+ = ot
sz’ = {6()/]» y] )'xi
0

where O, is a lower threshold (0.20 by default), below
which negative feedback is indicated and O, is an upper
threshold (0.80), above which positive feedback is indi-
cated (otherwise, no feedback is indicated). Biologically,
this filtering requires that the LV systems be driven di-
rectly by primary rewards (which is reasonable and is re-
quired by the basic learning rule anyway) and that they
learn from dopamine dips driven by high PV, expectations
of reward that are not met. The only difference between
the LV, and LV; systems is the learning rate €, which is .05
for LV, and .001 for LV;. Thus, the inhibitory LV; system
serves as a slowly integrating inhibitory cancellation mech-
anism for the rapidly adapting excitatory LV, system.

Finally, the NV layer signals stimulus novelty and pro-
duces dopamine bursts for novel stimuli, which slowly
decay in magnitude as a stimulus becomes familiar. The
habituation for this system is simply:

Aw; = —NVx; (14)

The PV, LV, and NV distributed value representations
drive the dopamine layer (VTA/SNc) activations in terms
of the difference between the excitatory and inhibitory
terms for each. Thus, there is a PV delta, an LV delta, and
an NV delta,

dpv = PVe — PV; (15)
by = LVe — LV, (16)
Sy = NV (17)

The dopamine system integrates each of these inputs,
using a temporal derivative computation to only produce
brief bursts or dips relative to a baseline level of activation
(this is the primary difference from the synaptic depression
mechanism used in the earlier published version). The key
issue is when to use each of the above values: If primary
rewards are present or expected but not present, then the
PV system dominates, and otherwise, LV + NV drive it.
With the differences in learning rate between LV, (fast)
and LV; (slow), the LV delta signal reflects recent devia-
tions from expectations and not the raw expectations
themselves, just as the PV delta reflects deviations from
expectations about primary reward values. This is essen-
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tial for learning to converge and stabilize when the net-
work has mastered the task (as the results presented in
this article show). These two delta signals need to be
combined to provide an overall dopamine delta value,
as reflected in the firing of the VTA and SNc units. One
sensible way of doing so is to have the PV system dominate
at the time of primary rewards, whereas the LV system
dominates otherwise, by using the same PV-based filtering
as holds in the LV learning rule:

. (a;w - 6{);1)

(va — oy 1) + (ﬁfw - 5@;1) otherwise.

if P Vfilter
(18)

Special Basal Ganglia Mechanisms
Striatal Learning Function

Each stripe (group of units) in the striatum layer is divided
into go versus no-go in an alternating fashion. The dopa-
mine input from the SN¢ modulates these unit activations
in the update phase by providing an extra excitatory current
to go and an extra inhibitory current to the no-go units in
proportion to the positive magnitude of the dopamine signal
and vice versa for negative dopamine magnitude. This re-
flects the opposing influences of dopamine on these neu-
rons (Frank, 2005; Gerfen, 2001). This updated phase of
dopamine signal reflects the PVLV system’s evaluation of
PFC updates produced by gating signals in the plus phase.
Learning on weights into the go/no-go units is based on the
activation delta between the update (++) and plus phases,

Aw; = ex; (T = y7) (19)

To reflect the finding that dopamine modulation has a
contrast-enhancing function in the striatum (Frank, 2005;
Nicola, Surmeier, & Malenka, 2000; Hernandez-Lopez,
Bargas, Surmeier, Reyes, & Galarraga, 1997) and to pro-
duce more of a credit assignment effect in learning, the
dopamine modulation is partially a function of the previous
plus phase activation state,

8e = 'Y[da]+y+ + (1 - 'Y)[da]+ (20)

where 0 < vy < 1 controls the degree of contrast
enhancement (.5 is used in all simulations), [da]+ is the
positive magnitude of the dopamine signal (0 if negative),
y+ is the plus-phase unit activation, and g. is the extra
excitatory current produced by the da (for go units). A sim-
ilar equation is used for extra inhibition (g;) from negative
da ([da]-) for go units and vice versa for no-go units.

SNr and Thalamus Units

The SNr and thalamus (SNrThal) units provide a simpli-
fied version of the SNr/GPe/thalamus layers. They receive
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a net input that reflects the normalized go/no-go activa-
tions in the corresponding striatum stripe,

= {Z go — > no-go] (21)
= 2=
> g0+ > no-goj

(where [];+ indicates that only the positive part is taken;
when there is more no-go than go, the net input is 0).
This net input then drives standard Leabra point neuron
activation dynamics, with kWTA inhibitory competition
dynamics that cause stripes to compete to update PFC. This
dynamic is consistent with the notion that competition/
selection takes place primarily in the smaller GP/SNr areas
and not much in the much larger striatum (e.g., Mink,
1996; Jaeger, Kita, & Wilson, 1994). The resulting SNrThal
activation then provides the gating update signal to PFC:
If the corresponding SNrThal unit is active (above a mini-
mum threshold; .1), then active maintenance currents in
PFC are toggled.

This SNrThal activation also multiplies the per-stripe
dopamine signal from the SN,

6; = snr;d (22)

where snt; is the snr unit’s activation for stripe j and 8 is
the global dopamine signal (18).

Random Go Firing

The PBWM system only learns after go firing, so if it never
fires go, it can never learn to improve performance. One
simple solution is to induce go firing if a go has not fired
after some threshold number of trials. However, this
threshold would have to be either task specific or set very
high, because it would effectively limit the maximum
maintenance duration of PFC (because by updating PFC,
the go firing results in loss of currently maintained infor-
mation). Therefore, we have adopted a somewhat more
sophisticated mechanism that keeps track of the average
dopamine value present when each stripe fires a go,

da, = dag, + €(da, — dag) (23)

If this value is <0 and a stripe has not fired go within
10 trials, a random go firing is triggered with some probability
(.1). We also compare the relative per-stripe dopamine
averages, if the per-stripe dopamine average is low but is
above zero and one stripe’s day, is .05, below the average
of that of the other stripe’s,

if(da, < .1) and (da, — (da) < —.05);go (24)

a random go is triggered again with some probability (.1).
Finally, we also fire random go in all stripes with some very
low baseline probability (.0001) to encourage exploration.

When a random go fires, we set the SNrThal unit acti-
vation to be above go threshold, and we apply a positive
dopamine signal to the corresponding striatal stripe so
that it has an opportunity to learn to fire for this input
pattern on its own in the future.

PFC Maintenance

PFC active maintenance is supported in part by excitatory
ionic conductances that are toggled by go firing from the
SNrThal layers. This is implemented with an extra excitatory
ion channel in the basic V,,, update equation (Equation 1).
This channel has a conductance value of .5 when active.
See Frank, Loughry, and O’Reilly (2001) for further dis-
cussion of this kind of maintenance mechanism, which
has been proposed by several researchers, for example,
Durstewitz, Seamans, and Sejnowski (2000), Gorelova and
Yang (2000), Lewis and O’Donnell (2000), Dilmore, Gutkin,
and Ermentrout (1999), Lisman, Fellous, and Wang (1999),
and Wang (1999). The first opportunity to toggle PFC main-
tenance occurs at the end of the first plus phase and then
again at the end of the second plus phase (third phase of
settling). Thus, a complete update can be triggered by two
gos in a row, and it is almost always the case that if a go
fires for the first time, it will fire the next, because Striatum
firing is primarily driven by sensory inputs, which remain
constant.

Assessment of Selective Firing in BLA and OFC

We assessed whether a neuron in OFC or BLA that repre-
sented a particular US was more active after the presen-
tation of the associated CS, relative to the presentation of
the other CS.

The selectivity of firing in layer w equals the sum over
the units & in layer w of the difference of activations x of
a unit representing the US & in response to the associated
CS 7 minus activation in response to nonassociated stim-
ulus /, divided by the number of neurons in this layer:
sely, = 1/n,, X Xppl — Xpf).
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