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Abstract

We present a neural network model that shows how the prefrontal
cortex, interacting with the basal ganglia, can maintain a sequence
of phonological information in activation-based working memory
(i-e., the phonological loop). The primary function of this phono-
logical loop may be to transiently encode arbitrary bindings of
information necessary for tasks — the combinatorial expressive
power of language enables very flexible binding of essentially ar-
bitrary pieces of information. Our model takes advantage of the
closed-class nature of phonemes, which allows different neural rep-
resentations of all possible phonemes at each sequential position to
be encoded. To make this work, we suggest that the basal ganglia
provide a region-specific update signal that allocates phonemes to
the appropriate sequential coding slot. To demonstrate that flexi-
ble, arbitrary binding of novel sequences can be supported by this
mechanism, we show that the model can generalize to novel se-
quences after moderate amounts of training.

1 Introduction

Sequential binding is a version of the binding problem requiring that the identity
of an item and its position within a sequence be bound. For example, to encode a
phone number (e.g., 492-0054), one must remember not only the digits, but their
order within the sequence. It has been suggested that the brain may have devel-
oped a specialized system for this form of binding in the domain of phonological
sequences, in the form of the phonological loop (Baddeley, 1986; Baddeley, Gather-
cole, & Papagno, 1998; Burgess & Hitch, 1999). The phonological loop is generally
conceived of as a system that can quickly encode a sequence of phonemes and then
repeat this sequence back repeatedly. Standard estimates place the capacity of
this loop at about 2.5 seconds of “inner speech,” and it is widely regarded as de-
pending on the prefrontal cortex (e.g., Paulesu, Frith, & Frackowiak, 1993). We
have developed a model of the phonological loop based on our existing framework
for understanding how the prefrontal cortex and basal ganglia interact to support



activation-based working memory (Frank, Loughry, & O’Reilly, 2001). This model
performs binding by using different neural substrates for the different sequential
positions of phonemes. This is a viable solution for a small, closed-class set of
items like phonemes. However, through the combinatorial power of language, these
phonological sequences can represent a huge number of distinct combinations of
concepts. Therefore, this basic maintenance mechanism can be leveraged in many
different circumstances to bind information needed for immediate use (e.g., in work-
ing memory tasks).

A good example of this form of transient, phonologically-dependent binding comes
from a task studied by Miyake and Soto (in preparation). In this task, participants
saw sequentially-presented colored letters one at a time on a computer display, and
had to respond to targets of a red X or a green Y, but not to any other color-letter
combination (e.g., green X’s and red Y’s, which were also presented). After an initial
series of trials with this set of targets, the targets were switched to be a green X
and a red Y. Thus, the task clearly requires binding of color and letter information,
and updating of these bindings after the switch condition. Miyake and Soto (in
preparation) found that if they simply had participants repeat the word “the” over
and over during the task (i.e., articulatory suppression), it interfered significantly
with performance. In contrast, performing a similar repeated motor response that
did not involve the phonological system (repeated foot tapping) did not interfere
(but this task did interfere at the same level as articulatory suppression in a control
visual search task, so one cannot argue that the interference was simply a matter of
differential task difficulty). Miyake and Soto (in preparation) interpret this pattern
of results as showing that the phonological loop supports the binding of stimulus
features (e.g., participants repeatedly say to themselves “red X, green Y...”, which
is supported by debriefing reports), and that the use of this phonological system
for unrelated information during articulatory suppression leads to the observed
performance deficits.

This form of phonological binding can be contrasted with other forms of binding
that can be used in other situations and subserved by other brain areas besides the
prefrontal cortex. O’Reilly, Busby, and Soto (in press) identify two other important
binding mechanisms and their neural substrates in addition to the phonological loop
mechanism:

o Cortical coarse-coded conjunctive binding: This is where each neural unit
codes in a graded fashion for a large number of relatively low-order con-
junctions, and many such units are used to represent any given input (e.g.,
Wickelgren, 1969; Mel & Fiser, 2000; O’Reilly & Busby, 2002). This form
of binding takes place within the basic representations in the network that
are shaped by gradual learning processes and provides a long-lasting (non-
transient) form of binding. In short, these kinds of distributed represen-
tations avoid the binding problem in the first place by ensuring that rel-
evant conjunctions are encoded, instead of representing different features
using entirely separate, localist units (which is what gives rise to binding
problems in the first place). However, this form of binding cannot rapidly
encode novel bindings required for specific tasks — the phonological loop
mechanism can thus complement the basic cortical mechanism by providing
flexible, transient bindings on an ad-hoc basis.

e Hippocampal episodic conjunctive binding: Many theories of hippocampal
function converge on the idea that it binds together individual elements of
an experience into a unitary representation, which can for example be later
recalled from partial cues (see O’Reilly & Rudy, 2001 for a review). These
hippocampal conjunctive representations are higher-order and more spe-



cific than the lower-order coarse-coded cortical conjunctive representations
(i-e., a hippocampal conjunction encodes the combination of many feature
elements, while a cortical conjunction encodes relatively few). Thus, the
hippocampus can be seen as a specialized system for doing long-term bind-
ing of specific episodes, complementing the more generalized conjunctive
binding performed by the cortex. Importantly, the hippocampus can also
encode these conjunctions rapidly, and therefore it shares some of the same
functionality as the phonological loop mechanism (i.e., rapidly encoding
arbitrary conjunctions required for tasks). Thus, it is likely that the hip-
pocampus and the prefrontal-mediated working memory system (including
the phonological loop) are partially redundant with each other, and work
together in many tasks (Cohen & O’Reilly, 1996).

2 Prefrontal Cortex and Basal Ganglia in Working Memory

Our model of the phonological loop takes advantage of recent work showing how the
prefrontal cortex and basal ganglia can interact to support activation-based working
memory (Frank et al., 2001). The critical principles behind this work are as follows:

o Prefrontal cortex (PFC) is specialized relative to the posterior cortex for
robust and rapidly updatable maintenance of information in an active state
(i.e., via persistent firing of neurons). Thus, PFC can quickly update to
maintain new information (in this case, the one exposure to a sequence of
phonemes), while being able to also protect maintained information from
interference from ongoing processing (see O’Reilly, Braver, & Cohen, 1999;
Cohen, Braver, & O’Reilly, 1996; Miller & Cohen, 2001 for elaborations and
reviews of relevant data).

e Robust maintenance and rapid updating are in fundamental conflict, and
require a dynamic gating mechanism that can switch between these two
modes of operation (O’Reilly et al., 1999; Cohen et al., 1996).

e The basal ganglia (BG) can provide this dynamic gating mechanism via
modulatory, disinhibitory connectivity with the PFC. Furthermore, this
BG-based gating mechanism provides selectivity, such that separate re-
gions of the PFC can be independently updated or allowed to perform
robust maintenance. A possible anatomical substrate for these separably
updatable PFC regions are the stripe structures identified by Levitt, Lewis,
Yoshioka, and Lund (1993).

e Active maintenance in the PFC is implemented via a combination of recur-
rent excitatory connections and intracellular excitatory ionic conductances.
This allows the PFC units to generally reflect the current inputs, except
when these units have their intracellular maintenance currents activated,
which causes them to reflect previously maintained information. See Frank
et al. (2001) for more details on the importance of this mechanism.

3 Phonological Loop Model

The above mechanisms motivated our modeling of the phonological loop as fol-
lows (see Figure 1). First, separate PFC stripes are used to encode each step in
the sequence. Thus, binding of phoneme identity and sequential order occurs in
this model by using distinct neural substrates to represent the sequential informa-
tion. This is entirely feasible because each stripe can represent all of the possible
phonemes, given that they represent a closed class of items. Second, the storage of a
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Figure 1: Phonological loop model. Ten different input symbols are possible at each time
step (one unit out of ten activated in the Input layer). A sequence is encoded in one pass
by presenting the Input together with the sequential location in the Time input layer for
each step in the sequence. The simulated basal ganglia gating mechanism (implemented
by fiat in script code) uses the time input to trigger intracellular maintenance currents
in the corresponding stripe region of the context (PFC) layer (stripes are shown as the
three separate groups of units within the Context layer; individual context units also
had an excitatory self-connection for maintenance). Thus, the first stripe must learn to
encode the first input, etc. Immediately after encoding, the network is then trained to
produce the correct output in response to the time input, without any Input activation
(the activation state shown is the network correctly recalling the third item in a sequence).
The hidden layer must therefore learn to decode the context representations for this recall
phase. Generalization testing involved presenting untrained sequences.

new sequence involves the basal ganglia gating mechanism triggering updates of the
different PFC stripes in the appropriate order. We assume this can be learned over
experience, and we are currently working on developing powerful learning mecha-
nisms for adapting the basal ganglia gating mechanism in this way. This kind of
gating control would also likely require some kind of temporal /sequential input that
indicates the location within the sequence — such information might come from the
cerebellum (e.g., Ivry, 1996).

In advance of having developed realistic and computationally powerful mechanisms
for both the learning and the temporal/sequential control aspects of the model,
we simply implemented these by fiat in the simulator. For the temporal signal
indicating location within the sequence, we simply activated a different individual
time unit for each point in the sequence (the Time input layer in Figure 1). This
signal was then used by a simulated gating mechanism (implemented in script code
in the simulator) to update the corresponding stripe in prefrontal cortex. Although
the resulting model was therefore simplified, it nevertheless still had a challenging
learning task to perform. Specifically, the stripe context layers had to learn to
encode and maintain the current input value properly, and the Hidden layer had to
be able to decode the context layer information as a function of the time input value.
The model was implemented using the Leabra algorithm with standard parameters
(O’Reilly, 1998; O'Reilly & Munakata, 2000).
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Figure 2: Generalization results for the phonological loop model as a function of number
training patterns. Generalization is over 90% correct with training on less than 20% of
the possible input patterns. N = 5.

3.1 Network Training

The network was trained as follows. Sequences (of length 3 for our initial work)
were presented by sequentially activating an input “phoneme” and a corresponding
sequential location input (in the Time input layer). We only used 10 different
phonemes, each of which was encoded locally with a different unit in the Input layer.
For example, the network could get Time = 0, Input = 2, then Time = 1, Input =
7, then Time = 2, Input = 3 to encode the sequence 2,7,3. During this encoding
phase, the network was trained to activate the current Input on the Output layer,
and the simulated gating function simply activated the intracellular maintenance
currents for the units in the stripe in the Context (PFC) layer that corresponded
to the Time input (i.e., stripe 0 for Time=0, etc). Then, the network was trained
to recall this sequence, during which time no Input activation was present. The
network received the sequence of Time inputs (0,1,2), and was trained to produce
the corresponding Qutput for that location in the sequence (e.g., 2,7,3). The PFC
context layers just maintained their activation states based on the intracellular ion
currents activated during encoding (and recurrent activation) — once the network
has been trained, the active PFC state represents the entire sequence.

3.2 Generalization Results

A critical test of the model is to determine whether it can perform systematically
with novel sequences — only if it demonstrates this capacity can it serve as a mech-
anism for rapidly binding arbitrary information (such as the task demands studied
by Miyake & Soto, in preparation). With 10 input phonemes and sequences of
length three, there were 1,000 different sequences possible (we allowed phonemes
to repeat). We trained on 100, 200, 300, and 800 of these sequences, and tested
generalization on the remaining sequences. The generalization results are shown
in Figure 2, which clearly shows that the network learned these sequences in a
systematic manner and could transfer its training knowledge to novel sequences.
Interestingly, there appears to be a critical transition between 100 and 200 training
sequences — 100 sequences corresponds to each item within each slot being pre-
sented roughly 10 times, which appears to provide sufficient statistical information
regarding the independence of individual slots.
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Figure 3: Hidden unit representations (values are weights into a hidden unit from all other
layers). Unit in a) encodes the conjunction of a subset of input/output items at time 2.
(b) encodes a different subset of items at time 2. (c) encodes items over times 2 and 3.
(d) has no selectivity in the input, but does project to the output and likely participates
in recall of items at time step 3.

3.3 Analysis of Representations

To understand how the hidden units encode and retrieve information in the main-
tained context layer in a systematic fashion that supports the good generalization
observed, we examined the patterns of learned weights. Some representative exam-
ples are shown in Figure 3. Here, we see evidence of coarse-coded representations
that encode a subset of items in either one time point in the sequence or a couple
of time points. Also we found units that were more clearly associated with retrieval
and not encoding. These types of representations are consistent with our other
work showing how these kinds of representations can support good generalization
(O’Reilly & Busby, 2002).

4 Discussion

We have presented a model of sequential encoding of phonemes, based on
independently-motivated computational and biological considerations, focused on
the neural substrates of the prefrontal cortex and basal ganglia (Frank et al., 2001).
Viewed in more abstract, functional terms, however, our model is just another in
a long line of computational models of how people might encode sequential order
information. There are two classic models: (a) associative chaining, where the acti-



vation of a given item triggers the activation of the next item via associative links,
and (b) item-position association models where items are associated with their se-
quential positions and recalled from position cues (e.g., Lee & Estes, 1977). The
basic associative chaining model has been decisively ruled out based on error pat-
terns (Henson, Norris, Page, & Baddeley, 1996), but modified versions of it may
avoid these problems (e.g., Lewandowsky & Murdock, 1989). Probably the most
accomplished current model, Burgess and Hitch (1999), is a version of the item-
position association model with a competitive queuing mechanism where the most
active item is output first and is then suppressed to allow other items to be output.

Compared to these existing models, our model is unique in not requiring fast as-
sociational links to encode items within the sequence. For example, the Burgess
and Hitch (1999) model uses rapid weight changes to associate items with a context
representation that functions much like the time input in our model. In contrast,
items are maintained strictly via persistent activation in our model, and the basal-
ganglia based gating mechanism provides a means of encoding items into separate
neural slots that implicitly represent sequential order. Thus, the time inputs act
independently on the basal ganglia, which then operates generically on whatever
phoneme information is presently activated in the auditory input, obviating the
need for specific item-context links.

The clear benefit of not requiring associational links is that it makes the model much
more flexible and capable of generalization to novel sequences as we have demon-
strated here (see O’Reilly & Munakata, 2000 for extended discussion of this general
issue). Thus, we believe our model is uniquely well suited for explaining the role
of the phonological loop in rapid binding of novel task information. Nevertheless,
the present implementation of the model has numerous shortcomings and simplifi-
cations, and does not begin to approach the work of Burgess and Hitch (1999) in
accounting for relevant psychological data. Thus, future work will be focused on
remedying these limitations. One important issue that we plan to address is the
interplay between the present model based on the prefrontal cortex and the bind-
ing that the hippocampus can provide — we suspect that the hippocampus will
contribute item-position associations and their associated error patterns and other
phenomena as discussed in Burgess and Hitch (1999).
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