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Introduction

The overarchinggoal of cognitive neurosciences
to understanchow the brain givesrise to thought. To-
ward this goal, researchergmploy variousmethodsto
measureneuralvariableswhile peopleandotheranimals
think. A complementarymethod,computermodelsof
neural networks, allows unparalleledlevels of control
and supportsthe further understandingof the relation
betweenbrain and mind. Using thesemodels,one can
simulatea network of interactingneuronsandmeasure
cognitive function in thesenetworks at the sametime.
Furthermoremary variablesin thesenetworks canbe
manipulatedsothattheir effectson cognitive processes
canbeobsened.

In this chapter we provide an up-to-datereview of
someof thecoreprinciplesandprominentapplicationf
computationaimodelsin cognitive neurosciencebased
on our recenttextbook on this topic (O'Reilly & Mu-
nakata,2000). We begin with a summaryof some of
the basicquestionsconfrontingcomputationamodelers
in cognitive neuroscienceWe thendiscussprovisional
answergo thesequestionsshaving how they applyto a
rangeof empiricaldata. Throughoutandin closing,we
discusschallengeso neuralnetwork models. We will
seehow somenetwork modelscanhave possiblyprob-
lematicpropertiespftendrivenby constraint§rom biol-
ogy or cognition,but the modelscannonetheleskelpto
adwancethefield of cognitive neuroscience.

BasicMechanisticQuestiong=acing
ComputationaModels

As soonasoneis facedwith thetaskof constructinga
neuralnetwork from scratch severalimportantquestions
immediatelyarise:

e How do the neuronstalk to eachother? We know
alot aboutthe answergo this questionfrom neuro-
scienceput therearesomemorespecificquestions
thatmodelsraise,including:

— Whatkind of informationdo spikescontain—
is it just the rate of spiking, or are more de-
tailed signalsbeingcorveyedin the timing of
individual spikes?

— How arespike inputsfrom otherneuronsnte-
gratedtogethemithin theneuron— doeseach
input just addinto anoverall sum,or aredif-
ferentinputstreateddifferently?

— Are therebasic network-level patternsof in-
teractionbetweemeuronghat apply acrossa
wide rangeof cognitive functions?
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¢ How donetworkslearnfrom experienceNetworks
with even a few tensof neuronscan exhibit com-
plex andvaried patternsof behaior dependingon
how the neuronsare interconnected. Brain sized
networks with billions of neuronsare thus almost
incomprehensiblycomplex. The brain requiresa
powerfulway of settingall of thesepatternof inter-
connectvity to achieve usefulbehaiorsin theface
of all the otherrandompossibilities.

e How doesthe myriad of complex perceptualnputs
getorganizednto acoherentnternalrepresentation
of theervironment?

¢ How are memoriesof previous experiencestored,
organizedandretrieved?

e How doeshigher level cognition arise from net-
worksof neurons?

Therearemary othersuchquestionghatonecould ask,
but we’ll focus on relatively brief treatmentsof these
dueto spacdimitations(seeO’Reilly & Munakata2000
for acomprehensie treatmenif a wide rangeof cogni-
tive phenomena).In the processof addressingachof
thesequestionswe develop a set of basicmechanisms
for computationatognitive neurosciencenodeling.

TheNeuralActivation Function

Thefirst two questionsve raisedabove (“What kind
of informationdo spikescontain?” and“How arespike
inputsfrom otherneuronsntegratedtogethemwithin the
neuron?”)canbe addressethy developingwhatis com-
monly calledan activationfunctionfor a simulatedneu-
ron. This activation function provides a mathematical
formalism (i.e., an algorithm) for describinghow neu-
rons talk to eachother The “curreng/” of this neu-
ral communicatioris referredto as“activation” — neu-
ronscommunicateby activatingeachother Fortunately
neurosciencbasdevelopedarelatively advancedunder
standingthe basic operationof a neuron (reviewed in
Chapter?? of this volume??). We summarizethe key
factshere.

A neuronrecevesinput from otherneuronshrough
synapsedocated on branchingprocessesalled den-
drites Theseinputsaresomehav integratedtogetheras
anelectricalvoltage(referredto asthe membanepoten-
tial) in the cell body. If this voltageexceedsa certain
value(calledthe threshold, thenthe neuronwill trigger
a spike of electricalactiity down its axon whichis an-
otherbranchingprocesghatterminateson the synapses
of otherneurons.This input to otherneuronsthuscon-
tinuesthe propagatiorof informationthroughthe brain.
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Figure 1: The detectormodelcanbe usedto understandhe
functionof correspondingneuralcomponents.

All of thesepropertiesare centralto the simulated
neuronsn neuralnetwork models.Onecanframethese
propertiesin termsof a detector— this detectormodel
providesaclearfunctionalrole for the biologicalproper
tiesof theneuron(O’Reilly & Munakata2000). Specifi-
cally, we canthink of aneuronasdetectingheexistence
of somesetof conditions,andrespondingwith a signal
that communicateshe extent to which thoseconditions
have beenmet. Think of asmole detectorwhichis con-
stantlysamplingthe air looking for conditionsthatindi-
catethepresencef afire. In thebrain,thereareneurons
in theearlystage®f thevisualsystenthatareconstantly
samplingthe visualinput looking for conditionsthatin-
dicatethe presenceof very simple visual featuressuch
asbarsof light at a givenpositionandorientationin the
visual scene. Higher up in the visual system,thereare
neuronghatdetectdifferentsetsof objects.Onecanin-
terpretvirtually any neuralactivationin the brainin the
generalanguagef detectingsomekind of patternof ac-
tivity in theinputs.

The matchbetweenthe detectormodelandthe bio-
logical featuresof the neuronis shown in figure 1. The
dendritesprovide detectorinputs, which get integrated
into an overall signalin the cell body that the neuron
canuseto determineif whatit is detectingis actually
there. The firing thresholdactsjust like a smole detec-
tor threshold— thereneedso be sufficient evidenceof
afire beforeanalarmshouldbetriggered,andsimilarly
theneuronmustaccumulate sufficient voltagebeforeit
cansendinformationto otherneurons.

A critical aspectof simulatedneurons(also called
units) is that they have adjustableparameterscalled
weightsthatdeterminenow muchinfluencethe different
inputshave onthem. In the neuron theseweightscorre-
spondto the strengthof theindividual synapsesonnect-
ing neurons— somesynapseproducemore electrical
voltage input than others. Thus, someinputs “weigh”
more heavily into the detectiondecisionthando others.

y=f(n) | sigmoidal function
(output 1.0
activation) c 08
n= > xw. = 0.6
(net input) =04
® 0.2
0.0

weights -4 -2 0 2 4

net input

x (input
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Figure2: Basicequationgor simple modelsof neurons.In-
put activation from other neuronsz is multiplied times the
weight value w, and summedtogetherto get the net input
(n = > zw). The outputactivation y is then computedas
a function f(n) of the netinput. In the simplestkind linear
model, thereis no outputfunction,y = 7. A morecomple
modelhasa threshold belov which activation doesnot occur:
y = nif n > ©;0 otherwise A saturatiorpointcanalsobeim-
posedsothatactivationy hasa maximallimit. The sigmoidal

function f(n) = H; produces graded continuous-alued

e— "

functionthathasboththreshold-lile andsaturatingoroperties.

Theseweightsprovide the critical parametergor speci-
fying whattheneurondetects— essentiallyneuronscan
detectpatternsof activity overtheirinputs,with thosein-

put patternghatbestfit the patternof weightsproducing
thelargestdetectionresponse A perhapamoretangible
exampleof this kind of operationwould be obtainedby

looking througha pieceof paperwith a shapecut out of

it (e.g.,anL shape).If youlook throughthis “mask” at

ablackcomputerscreerwith differentshapedeingdis-

playedon it in a bright color, you'll seethe mostlight

if the displayedshapeexactly matcheghe cutoutshape.
Similarly, aneurongetsthemost“activation”if its inputs
matchits patternof weights.

Thereis aprogressiorof increasinglymorecomplex
waysof simulatingthebasicactivationfunctionof aneu-
ron(figure2). In thesimpleskind of neuralmodel,aunit
simply addsup the weightedinputs from otherneurons
(calledthe netinput to a unit), and sendsthe resultsdi-
rectly onto otherneurons.This s alinear unit. It turns
out thatlinear units, like linear equations are not very
powerful in a computationabense— the effectsof lay-
ersandlayersof linear units canall be summarizedy
justonesuchlayer. The next mostcomplec kind of unit
is athresholdlinear unit, whichis justlike a linear unit
exceptit hasa threshold(muchlike a real neuron),so
thatif its netinputis belaw thethresholdjt doesnotsend
ary activationto otherunits. Becauseneuronscanonly
fire sofast,it alsomakessenseo think of therebeinga
satumtion pointin the activation function, above which



theactivationcannotgo. Thewidely-usedsigmoidalunit
(figure 2) providesa more gradedfunction that exhibits
boththreshold-lile andsaturatingproperties.

These simplified models of the neural activation
function are at the heartof a controversy surrounding
the natureof the “neural code”. Specifically in map-
ping thesemodelsonto the brain, the simulatedneural
activationsare real-valuednumbers,so we have to as-
sumethatthey represensomethindik e the average fir-
ing rateof neuronsnottheindividual spikesthemseles.
Thus, a major questionis: Doesthe firing rate capture
the essencef theinformationthatrealneuronscommu-
nicateto eachother or doesthe precisetiming of the
spikescontainmoreinformationthatwouldbelostwith a
ratecode?The debateoverthe natureof theinformation
encodedn the neuralspike train hasinspireda number
of empirical studiesacrossa rangeof differentanimals,
with somedemonstrationthatdetailedspike timing mat-
tersin somepartsof thebrain(e.g.,Reike, Warland,van
Steveninck,& Bialek,1996).However, recordingsn the
cortex of primates,which is the most relevant for un-
derstandinghumancognition, have beenlargely consis-
tentwith the ratecodesimplificationin neuralnetworks
(Tovee,Rolls, Treves,& Bellis, 1993).

Moving beyond thesehighly simplified model neu-
rons, one can incorporateequationsthat simulate the
electrical behaior of biological neurons. It haslong
beenknown thatthe electricalpropertiesof neuronscan
be understoodn termsof the familiar conceptsof re-
sistorsand capacitors,the so-calledequivalentcircuit
modelof the neuron. A key issuethatariseshereis the
extentto which a neuronbehaeslik e a single coherent
electricalsystem,or whetheroneneedso keeptrack of
electricalpotentialsat mary differentlocationsalongthe
neuron.At thesimplestextremeis a pointneuion, which
hasthe entire geometryof the neuronreducedto a sin-
gle pointin spacesuchthatonly oneelectricalpotential
needsto be computed. Thesebiologically-basedunits
arenotmuchmorecomple thantheunitsjustdescribed,
andyet they do a betterjob of capturingthe behaior
of real neurons— for this reason,we usedthe point
neuronmodelin O'Reilly andMunakata(2000). Much
morecomplex neuralmodelshave alsobeenexploredus-
ing mary differentelectricalcompartmentg¢e.g.,Koch&
Sgyev, 1998).

The debateover how mary compartmentgo usein
a neuralmodelcenterson the issueof how realneurons
integrateall of their inputs. If neuronsare effectively
electricallyunitary (asin a point neuron),thenthey es-
sentiallyaddtheir inputstogether just asin the simpli-
fied models. If, however, differentpartsof the neuron
have very differentelectricalpotentialstheninputscom-
ing into thesedifferentpartscanhave very differentef-
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fects,andthereforea simple additive integrationwould
underestimateherealcompleity of neuronge.g.,Shep-
herd& Brayton,1987). Althoughit is by no meansthe
final word on theseissues,a recentanalysis(Jafe &

Carnevale, 1999)supportsheideathatthe point neuron
modelcapturesnuchof theintegrationpropertiesof real
corticalneurons.Specifically they foundthataslong as
therewasnot a long primary dendrite(asin mostcorti-
cal pyramidal neurons) the impactof inputsat various
placeson the dendritictree wasroughly the samewhen
measuredtthesoma.

One important biological constraintthat the point
neuroncapturesut the simplersigmoidal-styleunitsdo
not is that excitation andinhibition are separatedn the
brain. Thus,a given neuronwill eithersendan excita-
tory or aninhibitory outputto otherneurons.Excitatory
outputsresultin theexcitationof otherneuronsyhile in-
hibitory outputscounteracthis excitation andmake the
receving neuronlesslikely to becomeactivated. In the
simplersigmoidalunit, weightsaretypically allowedto
be eitherpositive or negative, which violatesthis biolog-
ical constraint.

In summary one could argue that the point neu-
ron modelcaptureghe essentiapropertiesof individual
neuralcomputations.Although this modelundoubtedly
commitserrorsof omissionby not capturingmary de-
tails of real neurons,in somecaseghe functionalrele-
vanceof suchdetailsmay be approximatedy the point
neuronmodel(e.g.,thefunctionalrelevanceof asynapse
mayboil down toits efficacy, which canbeapproximated
by a weight parameterwithout capturingall of the bio-
logical detailsof actualsynapses)ln othercasessuch
detailsmaynot beall thatfunctionallyimportant.At the
least,sucha simplemodeldoesnot commit obvious er-
rorsof commissionthatis, it doesnotattributearny com-
putationalpowersto the modelneuronghatareunlikely
to betrueof realneurons.

Network Interactions

In this section,we move beyond the individual neu-
ron and considerthe propertiesof networks of inter-
connectedneurons,with the next of our overarching
questionsn mind: “Are therebasicnetwork-level pat-
ternsof interactionbetweemneuronghatapply acrossa
widerangeof cognitive functions?”"By identifying basic
network-level interactionswe candevelopa vocahulary
of mechanistically-groundecbnceptdor understanding
how neuralnetworksbehave.

Beforeidentifying thesenetwork propertiesye need
to know what the cortical network looks like. Figure3
shavs how the 6-layeredstructureof the cortex varies
in differentareasof the brain. Basedon this informa-
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Figure 3: Differentlaminarstructureof cortex from different
areas.A) shows specializatiorfor the input layer 4 in the pri-
mary visual input area. B) shavs emphasison hiddenlayers
2/3in ahiddenarea(extrastriatecortex) higherupin thevisual
processingtream.C) shavs emphasin outputlayers5/6 in
amotoroutputarea.D) shavs arelatively evenblendof layers
in aprefrontalarea.Reproducedrom Shepherd1990).

Hidden
(Layers 2,3)

Output
(Layers 5,6)

Sensation Subcortex
(Thalamus) Motor/BG

Figure4: A simple,three-layeinterpretatiorof corticalstruc-
ture that is consistentwith generalconnecwity patternsand
providesa usefulstartingpoint for modeling.Direct excitatory
connectiity is shavn by the opentriangularconnections.In-

hibitory interneuronsireindicatedby thefilled circularconnec-
tions; theseoperatewithin eachcortical layer andreceve the

sametypesof excitatory connectionssthe excitatoryneurons
do. Dotted lines indicate connectionghat may exist but are
not consistenwith the feedforward flow of informationfrom

input to hiddento output(with feedbackprojectionsalongthe

samepathways). Limited datamale it difficult to determine
how prevalentandimportanttheseconnectionsre.

tion andanatomicabtudiesof connectvity, onecansum-
marize the roles of the 6-layeredcortical structurein
termsof thefollowing asthreefunctionallayers(figure4;
O’Reilly & Munakata2000):

e The input layer correspondgsto cortical layer 4,
which usuallyrecevesthe sensoryinput by way of
a subcorticalbrain areacalledthe thalamus which
recevesinformationfrom theretinaandothersense
organs.

e The output layer correspondgo the deepcortical
layers5 and 6, which sendmotor commandsand
otheroutputsto a wide rangeof subcorticalareas,
includingthe basalganglia.

e The hiddenlayer (so called becauseit is not di-
rectly “visible” via eithertheinputsor outputs)cor-
responddo the superficial(upper)cortical layers2
and3 (corticallayer1 is largely just axons). These
layersreceve inputs locally from the other corti-
cal layersandalso from other more distantsuper
ficial corticallayers. The superficiallayersusually
projectoutputsbackto thesesamemoredistantcor-
tical areasandto thedeep(output)layerslocally.

Thus, at a very coarselevel, sensoryinformation
flows into theinput layer, gets“processed’in someway
by the hiddenlayer, and the resultsof this processing
give rise to motor outputsin the outputlayer. As fig-
ure 3 shaws, this trajectoryof informationflow is actu-
ally spreadacrossmary differentcortical areasgachof
which hasthe same6-layeredstructure. However, in-
putareagendto have amorepronouncedayer4, output
areashave morepronouncedayers5 and6, andhidden
(associationpreaave morepronouncedayers2 and3.
Figure 5 summarizesheselayerlevel specializationsn
differentbrainareasasthey contributeto the“big loop”
of informationflow throughthebrain.

Thus, basedon the structureof the corte, it is rea-
sonabldor neuralnetwork modelsto becomposeaf the
threefunctional layers(input, one or more hiddenlay-
ers,andan outputlayer). The biology alsotells us that
theprimaryneurontype(thepyramidalneuion) thatcon-
nectsbetweenayersandbetweenbrain areass excita-
tory, while therearea numberof inhibitory interneupns
thathave morelocal patternsof connectvity. Theexcita-
tory connectvity is generallybidirectional meaninghat
excitation flows from input to hiddento output, and at
thesametime backwardsfrom outputto hiddento input.

Usingthesefeatureof thebiology, we canframethe
basicnetwork-level interactionsin termsof threediffer-
entkinds of neuralconnectvity betweerfunctionallay-
ersof neurongO’'Reilly & Munakata2000):
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Figure5: Largerscaleversionof cortical circuitry, shaving the threedifferenttypesof corticalareas:1) is aninput area which
hasawell-developedayer4 receving sensoryinput from thethalamusput not producingmotoroutputdirectly. 2) is ahiddenarea
(often calleda higherlevel associatiorarea),which recevesinput from input areas(or otherhiddenareas)and sendsoutputsto
outputareaqor otherhiddenareas)It hasreducednputandoutputlayers,andcommunicateprimarily via layer2—3connectity.
3) isanoutputarea(motorcontrolarea) projectingto subcorticabrainareasghatdrive the motorsystemwhich hasnoreallayer4
(andalargerlayer5). Dashedinesindicatelayersandconnectionshatarereducedn importancefor agivenarea,anddottedlines
againrepresentonnectionsvhich mayexist but arenot consistentvith theinput-hidden-outpumodelof feedforwardinformation
flow. In all casesreciprocalbackvardsprojectionscomplementhe feedforward projections,enablingbidirectional,interactive

processing.

¢ Unidirectional(feedforward) excitation: whenone
layer of neuronssendsactivation to anotherlayer,
the patternsof actvation in the sending layer
gettransformedby emphasizinggomedistinctions
while collapsingacrossthers.Eachneuraldetector
contributesto the transformatiorby its own selec-
tivitiesin whatit detectsandwhatit ignores.These
transformationsare the basicinformation process-
ing operationsn the brain, creatingever more ab-
stractand powerful categoriesof informationover
subsequeniyersof processing.

Bidirectional (feedback)excitation: whentwo lay-
ers eachsendactivation to the other (also called
interactivity or recurrence, the layerscanamplify
each other's activations, giving rise to a variety
of phenomenancluding pattern completion res-
onance mutual support and attractor dynamics
This alsoallows for the feedforward-styletransfor
mationsto proceedn bothdirections.

Inhibitory competition: feedforward communica-
tion of inhibition acrosslayersand feedbackinhi-

bition within a layer combineto producea compe-
tition amongneuronswithin a layer— only those
neuronsreceving the strongestamountof excita-

tion will remainactive in the faceof this competi-
tion.

The overall pictureis this: Sensoryinformationgets
processeddy a cascadeof hidden layers, where each
hiddenlayer extracts someparticularkind of informa-
tion, while discardingothers. For example, it is well
known that different partsof the visual systemextract
color, motion, objectidentity, and objectlocationinfor-
mation. Extractingthis information requirescarefully-
tunedpatternsof weightsthatemphasizeherelevantin-
formation while ignoring the irrelevant. For example,
wherethe visual image of an objectappearson retina
is irrelevantfor identifying whatthe objectis, but differ-
encesdn the shapeof theimagearecritical. Corversely
shapeinformation is irrelevant for locating that object
in space put retinal position (alongwith eye, head,and
bodypositions)is relevant. Essentiallythebrainextracts
evermoreabstractexecutve summariesof theerviron-
ment,andthenusesthis informationto formulateplans
of action,whicharethenexecutedhroughprojectionso
theoutputlayers.

Superimposedipon this input-outputflow of infor-
mation are the complex dynamicsthat arisefrom bidi-
rectionalconnectvity andinhibition. Bidirectionalcon-
nectvity enableghe brainto “fill in” missinginput in-
formationusing“higher level” knowledge.For example,
ahiddenareathatencodesvordsat anabstractevel can
fill in the missingpiecesof a garbledphonemessagédy
relying on knowledgeof who is speakingandwhatthey
arelikely to be saying. In combinationwith inhibitory
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competition,bidirectionalconnectvity alsoensureghat
all thedifferentbrainareafocusonthesamethingatthe
sametime — neuronsprocessingnformation relevant
to otherbrain areaswill be reinforcedthroughthe bidi-
rectionalexcitation,andthis extra excitationwill leadto
greaterinhibition on otherneuronghatarent relevantto
otherbrain areastherebyshuttingthemoff. At a cogni-
tive level, we canthink of this interplayof bidirectional
excitation and inhibition as giving rise to attention—
we'll explorethisideain a subsequergection.

LearningMechanisms

In mary psychologicaltheories,learningassumes
relatively tangentiakole — peopleassumehatthebrain
systemsthey hypothesizearisethrough somecomplex
interactionbetweengenetic structuresand experience,
but the detailsof exactly how the systemscameto be
areoftentoo difficult to confrontwhile trying to provide
a theoryaboutthe maturesystem. In contrast,learning
plays an essentiakole in most neuralnetwork models,
becausgenerallythebestwayto getaneuralnetwork to
do somethingusefulis to have it learnbasednits expe-
rienceqdi.e.,to changets weightsaccordingo alearning
mechanismbasedn patternsof activationsthatgetpre-
sentedto the input layer of the network). To seewhy,
you mustfirst appreciatehata network’s behavior is de-
terminedby the patternsof weightsover its units. Even
relatively small networks have threelayers (input, hid-
den, output), of say 20 units each,with full connectv-
ity betweenlayers, meaningthat thereare a minimum
of 800 connectionweights (400 for input-hiddencon-
nectionsandanotherd00for hidden-outputonnections,
with moreif you includebidirectionalconnectvity back
from the outputto the hidden,andary kind of inhibitory
connectvity that might be used). It is virtually impos-
sible to setsucha large numberof weightsby hand,so
learningtakes centerstage.For the samereasonneural
networks have provento be a usefultool for exploring a
rangeof developmentalissues(Elman, Bates,Johnson,
Karmiloff-Smith, Parisi, & Plunkett, 1996; Munakata&
Stedronjn press).

A considerableamountof researchhas beencon-
ducted on neural mechanismsof synaptic modifica-
tion, which is the biological equivalentof changingthe
weightsbetweenneuralunits, aswould be requiredby
a learningmechanism. The overall finding from these
studiesis that connectionstrengthsbetweenneurons
(weights)canbemadeto eithergoup or down depending
on the relationshipbetweenthe activationsof the send-
ing andreceving neurons.Whenthe weightgoesup, it
is referredto aslong term potentiation(LTP), andwhen
it goesdown it is calledlong termdepession(LTD).

LTP

LTD
e}
SJJ'\
—H

Figure6: RelationshipbetweerL TPandLTD, whereamoder
ateamountof increasedntracellularcalciumion concentration
leadsto LTD, but atalargeramounteadsto LTP.

Onewell-supportechiccounipf whatcaused TP ver-
susLTD is basedon the concentratiorof calciumions
in the receving neurons dendritein the vicinity of the
synapsgLisman,1989,1994; Bear& Malenka,1994).
Calcium ions can enter the dendrite through various
means put the dominantcontributor in cortical neurons
is probablythe openingof NMDA channeldocatedat
excitatorysynapsesinterestinglyNMDA channel®pen
(to allow calciumionsto enter)only if two thingshap-
pen: (a) the sendingneuronfires and releaseseuro-
transmitterthatbindsto the NMDA channeland(b) the
receving neurons electrical potential increasesabove
a critical level. Thus, calciumion concentratiortends
to reflectthe extent to which both sendingand recev-
ing neuronsare active. The calciumion modelfurther
stipulatesthat LTP (weight increasesWwill occurwhen
calcium ion concentrationis very high, whereasLTD
(weightdecreases)ccurif calciumion concentrations
elevated,but not sohigh (figure 6). If thereis no change
in calciumion concentrationno weight changeoccurs.
Putting this calcium mechanismtogetherwith the re-
quirementsfor openingthe NMDA channel,it is clear
thatweightincreaseshouldoccurwhenboth the send-
ing and receving neuronsare strongly active together
ConditionswhereLTD will occurarelessclear

The biological mechanismgust describedare re-
markably consistentwith Hebb’s (1949) postulatethat
groupsof neuronghatareactivetogetheshouldincrease
thestrengthof theirinterconnectrity — thebrainshould
learnaboutthingsthatgotogetherIn otherwords,under
theHebbianlearningprinciple,which appearso be sup-
portedby biological synapticmodificationmechanisms,
the brain encode<orrelatedevents. Thesecorrelations
aremeaningfubecauseorrelationis agood(thoughim-
perfect)clue for causationand co-occurringitems can
be more efficiently representedogetherwithin a com-
monrepresentationatructureg(e.g.,theconcept'college
dormroom” evokesa whole slew of co-occurringitems
like pizzaboxes,postersphoomboxes,etc.).

Many computationalmodels of Hebbian learning
have beendeveloped(e.g., Kohonen,1984; Grossbey,
1976;0ja, 1982;BienenstockCooper & Munro, 1982;



Rumelhart& Zipser 1986; Carpenter& Grossbey,
1987; Linsker, 1988; Miller, Keller, & Stryker, 1989),
with applicationsto a rangeof different cognitive and
neuralphenomenaDespitethe successesf thesemod-
els, Hebbianlearning has somesignificantlimitations.
Specifically Hebbian learning cannot learn arbitrary
input-outputtransformationgMcClelland& Rumelhart,
1988; O'Reilly & Munakata,2000). To seewhy this is
animportantlimitation, we canrefer backto the input-
hidden-outpunhetwork structurediscussedn the previ-
oussection.In generalthe organismslearningtaskcan
be construedaslearninga setof hiddenrepresentations
basedon sensoryinputsthat produceuseful output pat-
terns(behavioral responses).Importantly, the relation-
ship betweensensoryinputs and motor outputscan be
highly complex andessentiallyarbitrary

The limitations of Hebbianlearning are most evi-
dentwhencomparedvith the othermajorform of neural
network learningmechanismerror drivenlearning. In
errordrivenlearning,the network’s weightsareadjusted
accordingto the differencesdbetweenthe outputpattern
the network actually producedandthe output patternit
shouldhave produced(.e., theerror). So, if the network
executesa pulling motion whenit getsa “push” com-
mand it canadjusttheconnectionso specificallycorrect
this error. Error-driven learningmechanisméave been
aroundfor alongtimein oneform or anotherWidrow &
Hoff, 1960),and have beenappliedto a wide rangeof
animal learning phenomende.g., Rescorla& Wagner
1972). However, theseearlier versionswere limited to
learningconnectiondbetweenan input and outputlayer
only — they could not handlethe training of interme-
diate hiddenlayer representationsThis limitation was
seizeduponby Minsky andPapert(1969)in their devas-
tating critique shawing that theseneuralnetworks were
very limited in the kinds of input-outputmappingsthey
could learn, which had the effect of significantly cur-
tailing researchin this field. However, the extension
of errordriven learning mechanismdo networks with
(multiple) hiddenlayersvia the error-badkpropagation
learningprocedure and the concomitantdemonstration
thatthesenetworkscouldlearnvirtually ary input-output
mapping,revived interestsome15 yearslater (Rumel-
hart, Hinton, & Williams, 1986; the ideahadalsobeen
developedseveraltimesbeforeBryson& Ho, 1969;Wer-
bos,1974;Parker, 1985).

Error-driven mechanismscan learn mary input-
outputmappingproblemsthat Hebbianlearningsimply
failsto learn(O’Reilly & Munakata,2000). Thereason
is clear— Hebbianlearningis designedo encodecor-
relations,not to learn arbitrary input-outputmappings.
However, insteadof arguing for the exclusive superiof
ity of onelearningmechanisnover the other one can
obtain complementarybenefitsby using both kinds of

O'Reilly & Munakata 7

learningmechanismgHebbianand errordriven). This
combinationof bothtypesof learning,togethemwith an
inhibitory competitionmechanismis the definingchar
acteristicof the Leabra framewvork (O’Reilly, 1996b,
1998; O'Reilly & Munakata,2000). In short, error
driven learning provides the ability to learn arbitrary
input-outputmappingswhile Hebbianlearningprovides
ausefultendeng to encodecorrelatednformation. Fur-
thermore,Hebbianlearningactslocally at eachneuron,
and is thereforea relatively fast and reliable form of
learning,whereaserrordrivenlearningdependon dis-
tanterrorsignalsthatcanbecomeweakanunreliableas
they propagatehroughmultiple hiddenlayers.

One potential problemwith the Leabraframework
andall othernetwork modelsthatrely uponerrordriven
learningis apossibleerrorof commissiorwith respecto
theknown neurobiology Indeed muchhasbeenmadein
the literature aboutthe biological implausibility of the
errorbackpropagatiolearning mechanismwhich ap-
peargo requireatypeof signalthathasneverbeenmea-
suredin neurongo propagaten the reversedirectionof
mostneuralsignals(e.g.,Crick, 1989; Zipser& Ander
sen,1988). Furthermore,it hasnot beenclear where
the necessarydesiredoutputs”for generatingerror sig-
nalscouldplausiblycomefrom. However, it hasrecently
beenshawn thatbidirectionalactivation propagatiorn(as
discussedh the previoussection)canbeusedto perform
essentiallythe sameerrordrivenlearningasbackpropa-
gation(O’Reilly, 1996a),usingary of anumberof read-
ily available teachingsignals. The resultingalgorithm
generalizesherecirculationalgorithmof Hinton & Mc-
Clelland(Hinton& McClelland,1988),andis thuscalled
GeneRecGeneRe@rovidestheerrordrivencomponent
of the Leabraalgorithm.

The basic idea behind GeneReds that instead of
propagatingan error signal, which is a differencebe-
tweentwo terms,onecanpropagatehe two termssepa-
ratelyasactivationsignals,andthentake their difference
locally at eachunit. This worksby having two phaseof
activationsfor computingthe two terms. In the expec-
tation phasethe bidirectionally-connectedetwork pro-
cessesninputactivation patterninto a statethatreflects
theexpectedconsequenceas correlate®f thatinput pat-
tern. Then,in the outcomephase the network experi-
encesactualconsequencear correlates.The difference
betweerbutcomeandexpectationis theerrorsignal,and
thebidirectionalconnectvity propagatethis errorsignal
throughouthe network via local activationsignals.

The GeneRea@nalysisalso shoved that Boltzmann
machinelearning and its deterministicversions(Ack-
ley, Hinton, & Sejnavski, 1985; Hinton, 1989; Peter
son & Anderson,1987; Movellan, 1990) can be seen
as variantsof this more biologically plausibleversion
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of the backpropagatiorlgorithm. This meansthat all
of the existing approacheto error-drivenlearningusing
activation-basedignalscorvergeonessentiallthesame
basicmechanismmakingit more plausiblethat this is
the way the brain doeserror driven learning. Further
more,theform of synapticmodificationnecessaryo im-
plementthis algorithmis consistentvith (thoughnot di-
rectly validatedby) the calcium-ionbasedsynapticmod-
ification mechanisnmdescribeckarlier Finally, thereare
mary sourcesn the naturalervironmentfor the neces-
sary outcomephasesignalsin the form of actualenvi-
ronmentaloutcomeghat canbe comparedvith internal
expectationgo provide errorsignals(McClelland,1994;
O'Reilly, 1996a). Thus, one doesnot needto have an
explicit “teacher”to performerrordrivenlearning.

To summarizelearningmechanismareat oncethe
mostimportantand most controversial aspectsof neu-
ral network models. In this discussion,we have seen
that Hebbianlearningmechanismsnake close contact
with biologicalmechanismsyhereagrrordrivenmech-
anismshave beenmotivatedlargely from top-dowvn con-
straintsfrom cognition— they aretheonly known mech-
anismscapableof learningthe kinds of thingsthat we
know peoplecanlearn. The two kinds of mechanisms
may be combinedn abiologically plausibleandpower-
ful way.

PerceptuaProcessingndAttention

Having presentedomeof the mostcentralideasbe-
hind the basicmechanismsisedin neuralnetwork mod-
els,we now turnto applicationsof thesemechanismsor
understandingognitve phenomenaThesesamemech-
anismshave beenappliedto a wide variety of phenom-
ena;wefocushereon perceptionattentionmemoryand
higherlevel cognition. Thefirst questionve addressvas
statedn theintroduction:“How doesthemyriadof com-
plex perceptuainputsgetorganizedinto a coherentin-
ternalrepresentationf the ervironment?”

We describetwo differentwaysthat neuralnetwork
modelshave providedinsightinto this question. Thefirst
is by addressinghe representationalproblem— what
kinds of representationgrovide an efficient, computa-
tionally useful encodingof the perceptualworld for a
neuralnetwork, and do theserepresentationtook any-
thing like thoseactually found in the brain? We will
seethattheinteractiorbetweerHebbianearningmecha-
nismsandinhibitory competitioncanproducevisualrep-
resentationgery muchlik e thosefoundin thebrain. The
seconds by addressingheattentionalproblem— given
that thereis a hugeoverloadof perceptuainformation
impinging uponus at every moment(e.g.,asyou try to
readthis chapter)how doesourbrainfocusonandselect

out the mostrelevantinformation (hopefully this chap-
ter!) for further processingVe will seethatthe inter-
actionbetweeninhibitory competitionandbidirectional
activationflow canproduceemegentattentionaldynam-
ics that simulatethe behavior of both intact and brain
lesionedpeopleon a visualattentiontask.

TheStructue of Repesentationsn Primary Vi-
sualCortex

One way of understandingvhat representationn
primaryvisualcortex (V1) shouldlook like from acom-
putationalperspeciie is to simply presenta rangeof vi-
sualimagesto a model network and allow its learning
mechanism$o developrepresentationthatencodehese
images.This is indeedwhata numberof modelershave
done,usingnaturalvisualsceneghatwerepreprocessed
in a mannerconsistentwith the contrast-enhancement
propertiesof the retina(e.g.,Olshauser& Field, 1996;
Bell & Sejnavski, 1997;vanHateren& van derSchadf,
1997;0'Reilly & Munakata,2000). The Olshauserand
Field (1996) model demonstratedhat spaise represen-
tations (with relatively few active neurons)provide a
useful basisfor encodingreal-world (visual) environ-
ments but this modelwasnotbasednknown biological
principles. Subsequentvork replicatedthe samegen-
eral resultsusing more biologically-basedorinciplesof
Hebbianlearningand sparsenessonstraintsn the form
of inhibitory competitionbetweenneurons(O’'Reilly &
Munakata,2000). Furthermore Jateral excitatory con-
nectionswithin this network producedatopagraphicor-
ganizationof representationsyhere neighboringunits
hadsimilar representations.

Figure7 shavstheresultsfrom the O’Reilly andMu-
nakata(2000) model of 14x14 hiddenunits (represent-
ing V1 neurons)receving inputs from a 12x12 simu-
lated“retina’” This figure shows thatthe simulatedneu-
rons have developedoriented edge detectos, the neu-
ronsare maximally activatedby visual inputsthat have
transitionsbetweendark andlight regions separatedy
edgesat various angles. We can understandvhy the
network developsthesereceptve fields in termsof the
proclivity of Hebbianlearningto encodecorrelational
structure. Natural objectstend to have piecewise lin-
earedgessothatstrongcorrelationsexist amongpixels
of light alongtheseedges. However, Hebbianlearning
aloneis not enoughto producethesereceptve field pat-
terns. As emphasizedby OlshauserandField (1996),a
constraintof only having a relatively few units active at
ary time (implementedy inhibitory competitionin our
model)is alsoimportant. This constraintis appropriate
becaus®nly arelatively smallnumberof orientededges
arepresenin ary givenimage.Furthermorejn the pro-
cessof learning, inhibition ensureghat units compete
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Figure 7: The receptve fields of model V1 neurons(from

O'Reilly & Munakata2000). Thebroaderl4x14grid contains
individual unit receptve fields, within which thereis a smaller
12x12 grid representingweights from a simulated“retina”.

Lighter shadesndicateareasf on-centeresponseanddarker
shadesndicateareasof off-centerresponséo retinalinputs.

andspecializeto representlifferentaspectof theinput.
At anintuitive level, this learningprocesss analogous
to the effectsof competitionandnaturalselectionin bio-
logical evolution (e.g.,Edelman,1987). Thus,eachunit
carwesoutadifferent“niche” in the spaceof all possible
reliablecorrelationsn the inputimages— theseniches
areorientededgedetectors.

This analysisshavs thatwe canunderstandhe gen-
eral principles of why computationalmodels develop
theirrepresentationgndwhy theseareappropriatdor a
givendomainof input patterns.However, do theseprin-
ciples help us understanchow the brain works? They
canif the representationdevelopedby the modellook
like thosein the brain. It turnsout thatthey do — V1
neuronshave long beenknown to encodeorientededges
of light (Hubel & Wiesel,1962; Marr, 1982). Further
more, one canfind systematicvariationsin orientation,
size, position, and polarity (i.e., going from light-to-
dark or dark-to-light, or dark-light-darkand light-dark-
light) in boththe simulatedandreal V1 receptve fields.
In the brain, the differenttypesof edgedetectors(to-
getherwith other neuronsthat appearto encodevisual
surfaceproperties)are packed into the two-dimensional
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hypercolumns

occularity

Figure8: Structureof a cortical hypercolumnthatrepresents
a full rangeof orientations(in layers2-3), oculardominance
columns(in layer4, onefor eacheye), andsurfacefeaturegin
the blobs). Eachsuchhypercolumnis focusedwithin onere-
gion of retinalspaceandneighboringhypercolumnsepresent
neighboringregions.

sheetof the visual cortex accordingto a topographic
organization. The large-scaleorganizationis a retino-
topic map that preseresthe topographyof the retinal
imagein the cortical sheet.At the smallerscaleare hy-
percolumns(figure 8) containingsmoothlyvarying pro-
gression®f orientededgedetectorsamongotherthings
(Livingstone& Hubel,1988). Thetopographyshown in
figure7 is consistentith thiswithin-hypercolumrstruc-
ture. The hypercolumnalsocontainsocular dominance
columnsin which V1 neurongespondpreferentiallyto
input from one eye or the other (seeMiller etal., 1989
for a Hebbian-basednodel). For reviews of the mary
computationamodelsof variousof theseV1 structures,
seeSwindale(1996)and Erwin, Obermayerand Schul-
ten(1995).

To summarize computationaimodelsincorporating
thebasicmechanismsf Hebbianlearningandinhibitory
competitioncanhelpusunderstandvhy V1 hastherep-
resentation#t does.

Spatial Attention and the Effects of Parietal
LobeDamage

Thedynamicsof activationflow throughthe network
are as importantas the weight patternsof the neurons
in the network. One of the mostwidely-studiedmani-
festationsof thesedynamicsis attentionto differentre-
gions of visual space. Spatialattentionhas classically
beenoperationalizegccordingto the Posnerspatialcu-
ing task (PosnerWalker, Friedrich,& Rafal, 1984, fig-
ure9). Whenattentionis dravn or cuedto oneregion of
spacepatrticipantsarethenfasterto detectatargetin that
region (a validly cuedtrial) thana target elsevhere(an
invalidly cuedtrial). Patientswith damageo the parietal
lobe have particulardifficulty with invalidly cuedtrials.
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Valid Trial Invalid Trial

Cue + D D + D
Target m + D D + m

Figure 9: The Posnerspatial attentiontask. The cueis a

brighteningor highlighting of oneof the boxesthatfocusesat-

tention to that region of space. Reactiontimesto detectthe

target are fasterwhen this cueis valid (the target appearsn

that sameregion) than whenit is invalid (the target appears
elsavhere).

Interrupt

u Localize

Disengage

Move

Engage

- Inhibit

1t

Figure 10: Theinformationprocessingnodelfor attentional
processingaccordingto Posnemandcolleagues.

The traditional accountof the spatialattentiondata
involvesa sequencef modularprocessethathave been
associatedvith differentbrainareagPosneetal., 1984;
figure 10). Specifically the parietalbraindamagedatais
accountedor in termsof a disengagenoduleassociated
with the parietallobe (Posneret al., 1984). This module
typically allows oneto disengagdrom an attendedo-
cationto attendelsavhere. This processof disengaging
takestime, leadingto the slower detectionof targetsin
unattendedocations. Further the disengagenoduleis
impairedwith parietaldamage)eadingpatientsto have
difficulty disengagingrom attentiondrawn to oneside
of space.

Biologically-basedcomputationaimodels,basedon
reinforcing excitatory connectionsand competitve in-
hibitory connectionsprovide an alternatve explanation
for thesephenomen&Cohen Romero Farah,& Senan-
Schreiber 1994; O'Reilly & Munakata,2000). In this
frameawork, the facilitory effectsof drawing attentionto
oneregion of spaceresultfrom bidirectionalexcitatory
connectiondetweerspatialandotherrepresentationsf
thatregion — this excitatory supportmakesit easierto
processnformationin that region becauseneuronsare
already receving supportingexcitation. The slowing

that comeson the invalid trials resultsfrom inhibitory
competitionbetweendifferent spatialregions— to ac-
tivate a differentspatiallocation requiresinhibiting the
previously-active region. Underthis model, damageto
the parietallobe simply impairs the ability of the cor
respondingegion in spaceto have sufficient excitatory
supportto competeeffectively with otherregions.

The two models make distinct predictions(Cohen
et al., 1994; O'Reilly & Munakata,2000). For exam-
ple, following bilateral parietaldamage the disengage
modelpredictsdisengageleficitson both sidesof space,
but the competitveinhibition modelpredictsreducedt-
tentionaleffects (smallervalid andinvalid trial effects).
Datasupportthe latter model (Coslett& Safran, 1991;
Verfaellie, Rapcsak& Heilman, 1990), demonstrating
the utility of biologically-basedcomputationalmodels
for alternatve theoriesof cognitive phenomena.

Mechanism®f Memory

In a computey there are several different kinds of
memory systems, each specializedto optimize some
characteristicat the cost of others. For example,the
RAM in a systemis much fasterthan hard disk mem-
ory, but it alsohasa muchsmallercapacity Thereare
basictradeofs betweenspeedand capacitythat are re-
solved by having differentsystemoptimizedseparately
for each. Interestingly humanmemorycanalsobe un-
derstoodn termsof a setof tradeofs betweendifferent
incompatiblecapacities. Thesebasictradeofs are dif-
ferentthanthosebehindthe computercomponentgal-
thoughone canseesomesimilarities)— they aremoti-
vatedinsteadby a consideratiorof conflictingcapacities
of neuralnetworks. We discusstwo differentkinds of
tradeofs here,onethatcanhelpusunderstandhe com-
plementaryolesof the hippocampusndcortex in learn-
ing, andanotherthatrelatesto the specialization®f the
frontal cortex in working memory

ComplementaryHippocampal and Cortical
LearningSystems

One important set of tradeofs involves two basic
typesof learningthat an organismmust engagein —
learningabout specificsversuslearning aboutgeneral-
ities (figure 11). Becausethe neural mechanismdor
achieving thesetypes of learning are in direct con-
flict, the brain has evolved two separatebrain struc-
turesto achiesethesetypesof learning(McClelland,Mc-
Naughton& O’Reilly, 1995;0'Reilly & Rudy; in press,
2000). The hippocampusappeardo be specializedfor
learningaboutspecifics,while the neocorte is goodat
extractinggeneralities.
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Two IncompatibleGoals

RemembeBpecifics ExtractGeneralities
Example:| Whereis carparked? Bestparkingstratayy?
Needto: | Avoidinterference Accumulateexperience

Solution:
1. | Separateeps Overlappingreps

(keepdaysseparate) (integrateover days)

glele o

strategy)
2. | Fastlearning Slow learning
(encodeémmediately) (integrateover days)
3. | Learnautomatically Task-drvenlearning

(encodeeverything)

(extractrelevantstuff)

Theseare incompatible needtwo differentsystems:

System:

Hippocampus
| Hipp p

| Neocorte

11

Figure 11: Computationamotivation for two complementaryearning& memorysystemsin the brain, becausehereare two
incompatiblegoalsthat suchsystemseedto solve. Onegoal is to remembeispecificinformation, in this examplewhereone’s
caris parked on a specificday The othergoalis to extract generalitiesacrossmary experiencesfor examplein developingthe
bestparkingstratgyy over a numberof differentexperiences.The neuralsolutionsto thesegoalsareincompatible:onerequires
representation® be kept separatelearnedquickly, and automatically while the otherrequiresoverlappingrepresentationand
slow learningto integrateover experiencesandis driven by task-specificconstraints.Thus, it makessensdo have two separate
neuralsystemsseparatelyptimizedfor eachof thesegoals.
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Specifically learningaboutspecificsrequireskeep-
ing representationseparated(to avoid interference),
whereadearningaboutgeneralitiesequiresoverlapping
representationthatencodesharedstructureacrosamary
differentexperiences.Furthermorejearningaboutgen-
eralitiesrequiresa slow learningrateto graduallyinte-
grate new information with existing knowledge, while
learningabout specificscan occur rapidly. This rapid
learningis particularlyimportantfor episodicmemory
wherethe goalis to encodethe detailsof specificevents
asthey unfold.

In theexamplein figure 11, onecanencoddifferent
kinds of information from experienceselatedto park-
ing ones car If onewantsto remembethe specificsof
wherethe car is parked on a given day; it is important
to encodethis information using representationgpop-
ulations of neurons)that are separatéfrom representa-
tionsfor othersuchevents,to minimizetheinterference
that leadsto forgetting. In a neuralnetwork, interfer
enceresultsfrom weightssharedacrossmultiple repre-
sentationshecausehedifferentrepresentationsill pull
theseweightsin differentdirections. Furthermoreone
hasonly a short period of time to encodethe parking
location (unlessyou want to sit there and study it for
hours),sorapidlearningis required.

In contrastjf onewantsto learnaboutthe beststrat-
egy for parking (e.g., bestlocationfor a giventime of
day), oneneeddo integrateover mary differentexperi-
encesbecauseary givenday’s experiencedoesnot pro-
vide a statisticallyreliable picture of the averagesitua-
tion. To accumulatenformation over individual expe-
riences,one needsto ensurethat thesedifferentexperi-
encesaffect atleastsomeof the sameunderlyingneural
representations- if youwantto addthingsup,youneed
to putthemall in thesameplace.Furthermoregiventhat
the goal is computingsomethinglike an average,each
event needsto make a relatively small contribution. In
computinganaverage you multiply eachnumberby %
where N is the total numberof items (events)to aver
ageover — asthis becomedarger, eacheventmakesa
smallercontribution. In neuralterms,this meansusinga
small learningrate so that weightschangeonly a small
amountfor eachexperience.

Thus,it is clearthatthesetwo kindsof learningarein
directconflict,andthereforethatit would make senseo
have two different neural systemsspecializedfor each
of thesetypes of learning. This conclusioncoincides
nicely with a large body of dataconcerningthe prop-
ertiesof the hippocampusand the cortex. It hasbeen
known for sometime that damageto the hippocampus
in the medialtemporallobe canproduceseverememory
deficits, while alsoleaving unimpairedcertainkinds of
learningandmemory(Scoville & Milner, 1957;Squire,

1992). Althoughthe precisecharacterizatioof the con-
tributions of the hippocampuwersussurroundingcorti-

cal areashasbeena topic of considerablalebate,it is

possibleto reconcilemuchof the datawith the compu-
tational principlesjust described(O'Reilly & Rudy; in

press).Furthermoredetailedbiological propertiesof the
hippocampusireideally suitedfor maximizingthesepa-
rationbetweemeuralrepresentationsf differentevents,
enablingrapid episodiclearningwith minimal interfer

ence(O'Reilly & McClelland,1994).

In the domainof humanmemory the dual mecha-
nismsof neocort& and hippocampusgrovide a natural
fit with dual-processnodelsof recognitionmemory(Ja-
coby, Yonelinas,& Jennings1997; Aggleton& Shaw,
1996; Aggleton & Brown, 1999; Vargha-KhademGa-
dian, Watkins, Connelly Van Paesschen& Mishkin,
1997; Holdstock, Mayes, Roberts, Cezayirli, Isaac,
O'Reilly, & Norman,in press;Curran,2000; O'Reilly,
Norman,& McClelland,1998). Thesemodelshold that
recognitioncanbe subseredby two differentprocesses,
a recollectionprocessand a familiarity process. Rec-
ollection involvesthe recall of specificepisodicdetails
aboutthe item, andthusfits well with the hippocampal
principlesdevelopedhere. Indeed,we have simulated
distinctive aspectf recollectionusing a model based
on mary of the detailedbiological propertiesof the hip-
pocampugO’Reilly etal., 1998). Familiarity is a non-
specific sensethat the item hasbeenseenrecently —
we arguethatthis canbe subseredby the smallweight
changesproducedby slow cortical learning. Current
simulationwork hasshawn thata simple cortical model
canaccounffor a numberof distinctive propertiesof the
familiarity signal(Norman,O’'Reilly, & Huber 2000).

Models implementingthe specializedhippocampal
and cortical systemshave also beenshowvn to account
for awide rangeof learningandmemoryfindingsin rats,
including nonlineardiscrimination,incidental conjunc-
tive encoding fearconditioning,andtransitve inference
(O'Reilly & Rudy, in press).Also, therearealargenum-
berof importantmodelsof the hippocampusnd/orcor-
tical learningsystemsin the literature, mary of which
shareimportantfeatureswith thosedescribechere(e.qg.,
Marr, 1971; Treves& Rolls, 1994;Hasselma& Wyble,
1997; Moll & Miikkulainen, 1997; Alvarez& Squire,
1994; Levy, 1989; Burgess,Recce,& O’Keefe,1994;
Samsonwvich & McNaughton 1997).

Complementaryrosterior and Prefrontal Cor-
tical Systems

Anotherimportantset of tradeofs involvesthe ex-
tentto which arepresentatioactivatesrelatedrepresen-
tations,for example,the extentto which a neuralrepre-
sentatiorof “smoke” activatesthe associatedepresenta-



Figure 12: Attractor states(small squares)nd their basins
of attraction (surroundingregions), where nearby activation

statesare attractedto the central attractor state. Each sta-
ble attractorstatecould be usedto actively maintaininforma-

tion overtime. Note thatthe two-dimensionabctivation space
representedhereis a considerablesimplification of the high-

dimensionakctivation stateover all theunitsin the network.

tion of “fire.” In somecasessuchaswhenyou wantto
remembetthatit wasactually only smole thatyou sav
comingfrom the forestandnot fire (e.g.,to provide an
accuratereport aboutthe situationto others),it would
be bestto actively maintainonly smole without activat-
ing fire. In othercasessuchaswhenyou wantto form
inferencesbasedon seeingthe smole (e.g.,to evaluate
possiblecoursesof actionto take, suchasbringing wa-
ter), it would be bestfor smole to activatefire. These
goalsof activatingversusot activatingrelatedrepresen-
tationsare obviously in conflict (andthis problemgets
much worse when the inferencesare less certainthan
smolke — fire); this tradeof provides a potential way
to understandhe specializationdetweenposteriorcor-
tex andprefrontalcortex. Specifically prefrontalcortex
maybespecializedor active maintenancéa component
of working memory)without activatingassociatedepre-
sentationsywhereagosteriorcortex may be specialized
for inferencebasedon activating associatedepresenta-
tions.

The most obvious neural network mechanismfor
achieving active maintenancas recurrentbidirectional
excitatory connectvity, whereactivation constantlycir-
culatesamong active units, refreshingand maintain-
ing their activation (Braver, Cohen,& Senan-Schreiber
1995; Dehaene& Changeux,1989; Munakata,1998;
Zipser, Kehoe, Littlewort, & Fuster 1993). One can
think of the effects of theserecurrentconnectionsin
termsof anattractor, wherethe activation patternof the
network is attractedtoward a stable statethat persists
over time (figure 12). An attractoris useful for mem-
ory becauseary perturbationaway from that activation
stateis pulled backinto the attractor allowing in princi-
plefor relatively robustactive maintenancén thefaceof
noiseandinterferencdérom ongoingprocessing.

Theareaaroundtheattractorwhereperturbationsre
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pulled backis calledthe basinof attraction For robust
active maintenancepne needsto have attractorswith
wide basinsof attraction,sothatnoiseandothersources
of interferencewill not pull thenetwork out of its attrac-
tor. Whentherearemary closelyrelatedrepresentations
linked by distributedconnectionsthe basinof attraction
aroundeachrepresentatiois relatively narraw (i.e., the
network caneasilyslip from onerepresentatiomto the
next). Thus,denselyinterconnectedistributedrepresen-
tationswill tendto conflictwith the ability to maintaina
specificrepresentatioactively overtime.

The prefrontal cortex appearsto have the relevant
specializationdfor active maintenance. Thereis con-
siderablephysiologicalevidencethatthe prefrontalcor-
tex subseres the actve maintenanceof information
over time (i.e., as encodedin the persistentfiring of
frontal neurons)(e.g., Fuster 1989; Goldman-Rakic,
1987; Miller, Erickson, & Desimone,1996). Many
computationaimodelsof this basicactive maintenance
function have beendeveloped(Braver et al., 1995; De-
haene & Changeux,1989; Zipser et al., 1993; Se-
ung, 1998; Durstevitz, Seamans& Sejnavski, 2000;
Camperi& Wang, 1997). Further the prefrontal cor-
tex may have moreisolatedpatternsof connectvity —
neuronsthere appearto be interconnectedvithin self-
contained'stripe” patterns(Levitt, Lewis, Yoshioka,&
Lund, 1993), and iso-codingmicrocolumnsof neurons
have beenrecorded(Rao, Williams, & Goldman-Rakic,
1999). Computationalmodels have explored the im-
pactof suchconnectvity andattractordynamicson ac-
tive maintenancgO’Reilly, Braver, & Cohen,1999a;
O’Reilly, Mozer, Munakata,& Miyake, 1999b). Mod-
els in which there there are featuresthat can partici-
pateequallyin differentdistributedrepresentationsffec-
tively have no attractors,and cannotmaintaininforma-
tion overtime in the absencef externalinputs. The ac-
tivationinsteadspreadscrosshedistributedrepresenta-
tions, resultingin alossof theoriginalinformation. With
distributed representationthat sustainattractors,active
maintenancsucceeddyut notin the presencef signifi-
cantamountsof noise— wider attractorbasinsarenec-
essary With suchwider attractorbasins,aswhen units
arecompletelyisolatedfrom eachother, this completely
preventsactivation spreadandyields very robust active
maintenancehut at the lossof the ability to performin-
ferencevia activationspread.

Thus,computationamodelsandconsiderationbave
helpedto understandhe specialization®f posteriorand
prefrontal cortex, and how the prefrontal cortex might
play arole in subservingvorking memory
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ThePrefrontalCortex andHigherLevel
Cognition

The prefrontalcortex is alsoimportantfor arangeof
complex cognitive functions,suchasplanningandprob-
lem solving,describedyenerallyasfalling undertheum-
brellaof higherlevel cognition. Many theoriessumma-
rize the function of frontal cortex in termsof “executve
control; “controlled processing, or a “central execu-
tive” (e.g.,Baddelg, 1986; Shallice,1982; Gathercole,
1994; Shiffrin & Schneider1977), without explaining
at a mechanistidevel how suchfunctionality could be
achieved or why the prefrontalcortex would be special-
izedfor suchfunctionality. We saw in theprecedingsec-
tion how a consideratiorof computationatradeofs has
helpedto understandhe issueof specialization.In this
sectionwe seehow computationamodelshave provided
animportanttool for exploring specificmechanismshat
might achieve executive-like functionality.

One proposalalong theselines is that the funda-
mentalmechanisnof active maintenancenablesll the
otherexecutive-like functionality ascribedto the frontal
cortex (Cohen, Braver, & O'Reilly, 1996; Goldman-
Rakic, 1987; Munakata,1998; O'Reilly et al., 1999a;
O'Reilly & Munakata,2000; Roberts& Pennington,
1996). As elaboratedbelown, a numberof modelshave
demonstratedhat active maintenancecan accountfor
frontal involvementin a range of different tasksthat
might otherwiseappeatto have nothingto do with sim-
ply maintaininginformationovertime.

For example,several modelshave demonstratethat
frontal contributions to “inhibitory” taskscan be ex-
plainedin termsof active maintenancénsteadof anex-
plicit inhibitory function. Actively-maintainedepresen-
tationscansupport(via bidirectionalexcitatory connec-
tivity) correctchoiceswhichwill thereforeindirectlyin-
hibit incorrectonesvia standardateralinhibition mech-
anismswithin the cortex. A model of the Strooptask
provided an early demonstratiorof this point (Cohen,
Dunbar & McClelland,1990). In this task,color words
(e.g.,“red”) arepresentedn differentcolors, and peo-
ple are instructedto either readthe word or namethe
color of ink that the word is written in. In the conflict
condition,theink color andword aredifferent. Because
we have so muchexperiencereading,we naturallytend
to readthe word, evenif instructedto namethe color,
such that responsesare slover and more errorprone
in the color-naming conflict condition than the word-
readingone. Thesecolor-naming problemsare selec-
tively magnifiedwith frontaldamageThis frontal deficit
hastypically beeninterpretedn termsof the frontal cor-
tex helpingto inhibit the dominantword-readingpath-
way. However, Cohenet al. (1990) shaved that they

could accountfor both normaland frontal-damagelata
by assuminghatthe frontal cortex insteadsupportsthe
color-naming pathway, which then collaterally inhibits
theword-readingpathway. Similar modelshave demon-
stratecthatin infants,the ability to inhibit perseverative
reaching(searchindor a hiddentoy ata previoushiding
locationratherthanat its currentlocation) candevelop
simply throughincreasingabilitiesto actively maintaina
representatioof the correcthiding location(Dehaene

Changeux1989;Munakata,1998).Again, suchfindings
challengethe standardnterpretatiorthatinhibitory abil-
ities per se mustdevelop for improved performanceon
thistask(Diamond,1991).

The activation-basedprocessingmodel of frontal
function can also explain why frontal cortex facilitates
rapid switchingbetweerdifferentcategorizationrulesin
the Wisconsincard sorting task and relatedtasks. In
thesetasks,subjectslearnto catayorize stimuli accord-
ing to onerule via feedbackirom the experimenterand
thentherule is switched. With frontal damagepatients
tendto perseeratein usingthe previousrule. A com-
putationalmodelof arelatedID/ED catayorizationtask
demonstratedhat the ability to rapidly updateactive
memoriesin frontal cortex canaccountfor detailedpat-
ternsof datain monkeys with frontal damaggO’Reilly,
Noelle, Braver, & Cohen,submitted;O’'Reilly & Mu-
nakata2000).

In short, computationalmodelsof frontal function
canprovide mechanistiexplanationghat unify the dis-
paraterolesof the frontal cortex, from working memory
to cognitivecontrolandplanning/problensolving. How-
ever, a major remainingchallengeis to explore whether
truly comple “intelligent” behavior canbe capturedus-
ing thesebasicmechanisms.

Challenges

Most researcheragreethatif a network modelcap-
turesin sufficient detail the essentialneural processes,
then it can provide a truly valuabletool for adwanc-
ing our understanding@f the relationbetweerbrainand
mind. However, thereis skepticismregardingwhether
(a) enoughis known aboutthe neurobiologyat this time
to sufficiently constrainmodels,and (b) currentmodels
violate or fail to includeimportantaspect®f the known
neurobiology

We contrastecerrorsof omission(aspectf the bi-
ology thataremissingor simplified in the models)with
errorsof commissionaspectof the modelsthatareun-
likely to be true given whatwe alreadyknow aboutthe
brain). We sav that in mary cases,network models
make errorsof omission,but not errorsof commission.
For example,it is possibleto make network modelsthat



malke no errorsof commissionat the level of network
interactions,in that they follow the generalexcitatory
and inhibitory connectvity patternsof the cortex (e.g.,
O'Reilly & Munakata,2000; Somers,Nelson, & Sur,
1995; Lumer, Edelman,& Tononi, 1997 andmary oth-
ers). However, thesenetworks undoubtedlymake mary
errorsof omission giventhatthereis considerableom-
plexity in thewiring structuresof the humancortex. As
in other casesdiscussedbove, it is not yet clearwhat
functional significance(if ary) theseomissionsmight
have.

In the few caseswheretheremay be errorsof com-
mission(e.g.,in errordrivenlearningalgorithms) strong
top-donvn constraintsfrom cognition (e.g., the fact that
people can learn difficult tasks) drive these possibly
problematicproperties.Considerablgrogresshasbeen
madein developingerrordrivenlearningalgorithmsthat
aremoreconsistentvith known biology (while retaining
the powerful capabilities) but thereare several assump-
tionsthatremainuntested.

Insteadbf derying outrightthevalueof ary givenap-
proach,we arguethat sciencewill be advancedthrough
the contestof differenttheoriesas they attemptto ex-
plainincreasingamountsf data,andthatcomputational
modelsprovide a valuablesourceof theorizingthatcan
provide novel insightsandapproacheso understanding
comple, cognitive neurosciencgghenomena. This is
true even if the modelsare simplified and even if they
containsomeaspectghat violate what we know about
the brain — verbal theoriesare equally (if not more)
likely to containthe sameflaws. Often, however, these
flaws arehiddenby thevaguenessf theverbaltheories,
while computationamodelshave the virtue/vice of ex-
posingall the gory detailsand assumptionsequiredto
actuallyimplementaworking simulation.

In short,wethink thatamajorvalueof computational
modelingis engagingn the processof working out ex-
plicit, mechanisticheoriesof how the brain givesrise
to cognitive function. This processs iterative, cumula-
tive, andnot without controversy However, its primary
adwantageis in directly confrontingthe major questions
that needto be answeredo understanchow the brain
doeswhatit does.

GeneraDiscussion

In this article,we have touchedon mostof thecentral
aspect®f computationaheuralnetwork modelsfor psy-
chologicalmodeling. Building from individual neurons
to networksthereof,we have shovn how thesenetworks
incorporatemary detailedaspectf the known neuro-
biology, while still remainingsomavhat abstract. We
emphasizedhat thereare modelingformalismsthat do
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not make ary obvious errorsof commission— they do
not violate any well known propertiesof the neuralnet-
works of the brain. Neverthelessit remainsto betested
how importantthe mary errorsof omissionarefor the
biologicalfidelity of thesemodels.We thenshovedhow
thesemodelscanspeakto importantissuesin cognitive
neuroscienceincluding issuesin perception,attention,
memory andhigherlevel cognition.

In the domainof perceptionwe shoved how basic
learningmechanismandformsof neuralinteraction(in-
hibitory competition)canleadto the developmentof ef-
ficient representationfor encodingthe visual environ-
ment. We further summarizechow attentionaleffects,
which areneededo managethe overflow of perceptual
input, fall naturallyout of thecombinednheuraldynamics
of bidirectionalconnectvity andinhibitory competition.
Whentheseneuralmechanismareusedto simulatespa-
tial attentiontaskswidely usedin cognitive psychology
they provide novel explanationsof bothintactandbrain
damagegerformancewhich accordbetterwith thedata
thanothertheoriesbasecdnamoreabstractnformation-
processingpproach.

In the domainof learningand memory we shoved
how an understandingf the capacitiesof fundamen-
tal neuralmechanismganleadto insightsinto how the
brain has divided up the overall function of memory
Specifically computationatradeofs — betweenlearn-
ing specificsversudearninggeneralitiesandbetweerin-
terconnectedndisolatedrepresentations- suggesthat
different brain areasshould be specializedto perform
thesddifferentfunctions. Thisfits well with awiderange
of data. Thus,the computationamodelshelp usto un-
derstanchot only howthe brainis organizedto perform
cognitive functions, but alsowhy it might be organized
thisway in thefirst place.

In the domainof higherlevel cognition,we shoved
how modelshave helpedto begin addressinghe mech-
anismsthat might underliecomplex behaiors, suchas
thosethat requiremoving beyond habitualor prepotent
responses. Specifically active maintenancesubsered
by prefrontalcortex may supportalternatve choices al-
lowing habitualbehaiors to be inhibited via lateralin-
hibitory mechanismawithin the cortex. The ability to
rapidly updateactivation-basedepresentationsn pre-
frontal cortex may be a critical componentof flexible
behaior.

In conclusion,we hope theseexamplesprovide a
sufficient basisto understandoth the strengthof neu-
ral network modelsandthecriticismssurroundinghem.
Even thoughthere are undoubtedlymary missingfea-
turesof thesemodels,we think they captureenoughof
the mostimportantpropertieso provide satisfyingsim-
ulationsof cognitive phenomenaFurthermorethe very
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endeaor of creatingthesemodelsraisesa large number
of importantquestionghatare only beginningto be an-
swered. Models shouldthus sene asanimportantpart
of theprocesof scientificprogressn understandingu-
mancognition.
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