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Introduction

The overarchinggoal of cognitive neuroscienceis
to understandhow the brain givesrise to thought. To-
ward this goal, researchersemploy variousmethodsto
measureneuralvariableswhile peopleandotheranimals
think. A complementarymethod,computermodelsof
neural networks, allows unparalleledlevels of control
and supportsthe further understandingof the relation
betweenbrain andmind. Using thesemodels,onecan
simulatea network of interactingneurons,andmeasure
cognitive function in thesenetworks at the sametime.
Furthermore,many variablesin thesenetworks can be
manipulated,sothat their effectson cognitive processes
canbeobserved.

In this chapter, we provide an up-to-datereview of
someof thecoreprinciplesandprominentapplicationsof
computationalmodelsin cognitive neuroscience,based
on our recenttextbook on this topic (O’Reilly & Mu-
nakata,2000). We begin with a summaryof someof
thebasicquestionsconfrontingcomputationalmodelers
in cognitive neuroscience.We thendiscussprovisional
answersto thesequestions,showing how they applyto a
rangeof empiricaldata.Throughout,andin closing,we
discusschallengesto neuralnetwork models. We will
seehow somenetwork modelscanhave possiblyprob-
lematicproperties,oftendrivenby constraintsfrom biol-
ogy or cognition,but themodelscannonethelesshelpto
advancethefield of cognitiveneuroscience.

BasicMechanisticQuestionsFacing
ComputationalModels

Assoonasoneis facedwith thetaskof constructinga
neuralnetwork from scratch,severalimportantquestions
immediatelyarise:

� How do the neuronstalk to eachother? We know
a lot abouttheanswersto this questionfrom neuro-
science,but therearesomemorespecificquestions
thatmodelsraise,including:

– Whatkind of informationdospikescontain—
is it just the rateof spiking, or aremorede-
tailedsignalsbeingconveyedin thetiming of
individualspikes?

– How arespike inputsfrom otherneuronsinte-
gratedtogetherwithin theneuron— doeseach
input just addinto an overall sum,or aredif-
ferentinputstreateddifferently?

– Are therebasicnetwork-level patternsof in-
teractionbetweenneuronsthatapplyacrossa
wide rangeof cognitivefunctions?

� How donetworkslearnfrom experience?Networks
with even a few tensof neuronscanexhibit com-
plex andvariedpatternsof behavior dependingon
how the neuronsare interconnected.Brain sized
networks with billions of neuronsare thus almost
incomprehensiblycomplex. The brain requiresa
powerfulwayof settingall of thesepatternsof inter-
connectivity to achieve usefulbehaviors in theface
of all theotherrandompossibilities.

� How doesthemyriadof complex perceptualinputs
getorganizedinto acoherentinternalrepresentation
of theenvironment?

� How are memoriesof previous experiencestored,
organized,andretrieved?

� How doeshigher level cognition arise from net-
worksof neurons?

Therearemany othersuchquestionsthatonecouldask,
but we’ll focus on relatively brief treatmentsof these
dueto spacelimitations(seeO’Reilly & Munakata,2000
for a comprehensivetreatmentof a wide rangeof cogni-
tive phenomena).In the processof addressingeachof
thesequestions,we develop a setof basicmechanisms
for computationalcognitiveneurosciencemodeling.

TheNeuralActivationFunction

Thefirst two questionswe raisedabove(“What kind
of informationdo spikescontain?” and“How arespike
inputsfrom otherneuronsintegratedtogetherwithin the
neuron?”)canbeaddressedby developingwhat is com-
monly calledanactivationfunctionfor a simulatedneu-
ron. This activation function provides a mathematical
formalism (i.e., an algorithm) for describinghow neu-
rons talk to eachother. The “currency” of this neu-
ral communicationis referredto as“activation” — neu-
ronscommunicateby activatingeachother. Fortunately,
neurosciencehasdevelopedarelatively advancedunder-
standingthe basicoperationof a neuron(reviewed in
Chapter?? of this volume??). We summarizethe key
factshere.

A neuronreceivesinput from otherneuronsthrough
synapseslocated on branchingprocessescalled den-
drites. Theseinputsaresomehow integratedtogetheras
anelectricalvoltage(referredto asthemembranepoten-
tial) in the cell body. If this voltageexceedsa certain
value(calledthe threshold), thentheneuronwill trigger
a spike of electricalactivity down its axon, which is an-
otherbranchingprocessthat terminateson thesynapses
of otherneurons.This input to otherneuronsthuscon-
tinuesthepropagationof informationthroughthebrain.
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Figure1: The detectormodelcanbe usedto understandthe
functionof correspondingneuralcomponents.

All of thesepropertiesare central to the simulated
neuronsin neuralnetwork models.Onecanframethese
propertiesin termsof a detector— this detectormodel
providesaclearfunctionalrole for thebiologicalproper-
tiesof theneuron(O’Reilly & Munakata,2000).Specifi-
cally, wecanthink of aneuronasdetectingtheexistence
of somesetof conditions,andrespondingwith a signal
that communicatesthe extent to which thoseconditions
havebeenmet.Think of asmokedetector, which is con-
stantlysamplingtheair looking for conditionsthat indi-
catethepresenceof afire. In thebrain,thereareneurons
in theearlystagesof thevisualsystemthatareconstantly
samplingthevisual input looking for conditionsthat in-
dicatethe presenceof very simplevisual featuressuch
asbarsof light at a givenpositionandorientationin the
visual scene.Higher up in the visual system,thereare
neuronsthatdetectdifferentsetsof objects.Onecanin-
terpretvirtually any neuralactivation in thebrain in the
generallanguageof detectingsomekind of patternof ac-
tivity in theinputs.

The matchbetweenthe detectormodelandthe bio-
logical featuresof the neuronis shown in figure1. The
dendritesprovide detectorinputs, which get integrated
into an overall signal in the cell body that the neuron
can useto determineif what it is detectingis actually
there. The firing thresholdactsjust like a smoke detec-
tor threshold— thereneedsto besufficient evidenceof
a fire beforeanalarmshouldbetriggered,andsimilarly
theneuronmustaccumulateasufficientvoltagebeforeit
cansendinformationto otherneurons.

A critical aspectof simulatedneurons(also called
units) is that they have adjustableparameterscalled
weightsthatdeterminehow muchinfluencethedifferent
inputshave on them.In theneuron,theseweightscorre-
spondto thestrengthof theindividualsynapsesconnect-
ing neurons— somesynapsesproducemore electrical
voltageinput than others. Thus, someinputs “weigh”
moreheavily into thedetectiondecisionthando others.
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Figure2: Basicequationsfor simplemodelsof neurons.In-
put activation from other neurons � is multiplied times the
weight value � , and summedtogetherto get the net input
( 	�

����� ). The output activation � is then computedas
a function ����	�� of the net input. In the simplestkind linear
model, thereis no output function, ��
�	 . A morecomplex
modelhasa threshold, below which activationdoesnot occur:
��
�	 if 	���� �"! otherwise.A saturationpointcanalsobeim-
posed,sothatactivation � hasa maximallimit. Thesigmoidal
function ����	��#
 $$&%('*),+ producesa graded,continuous-valued
functionthathasboththreshold-like andsaturatingproperties.

Theseweightsprovide thecritical parametersfor speci-
fying whattheneurondetects— essentially, neuronscan
detectpatternsof activityovertheir inputs,with thosein-
putpatternsthatbestfit thepatternof weightsproducing
the largestdetectionresponse.A perhapsmoretangible
exampleof this kind of operationwould beobtainedby
looking througha pieceof paperwith a shapecut out of
it (e.g.,anL shape).If you look throughthis “mask” at
a blackcomputerscreenwith differentshapesbeingdis-
playedon it in a bright color, you’ll seethe most light
if thedisplayedshapeexactly matchesthecutoutshape.
Similarly, aneurongetsthemost“activation” if its inputs
matchits patternof weights.

Thereis aprogressionof increasinglymorecomplex
waysof simulatingthebasicactivationfunctionof aneu-
ron(figure2). In thesimplestkindof neuralmodel,aunit
simply addsup the weightedinputsfrom otherneurons
(calledthe net input to a unit), andsendstheresultsdi-
rectly on to otherneurons.This is a linear unit. It turns
out that linear units, like linear equations,arenot very
powerful in a computationalsense— theeffectsof lay-
ersandlayersof linear units canall be summarizedby
just onesuchlayer. Thenext mostcomplex kind of unit
is a thresholdlinear unit, which is just like a linearunit
except it hasa threshold(much like a real neuron),so
thatif its netinput is below thethreshold,it doesnotsend
any activation to otherunits. Becauseneuronscanonly
fire sofast,it alsomakessenseto think of therebeinga
saturation point in theactivation function,above which
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the
-

activationcannotgo. Thewidely-usedsigmoidalunit
(figure 2) providesa moregradedfunction thatexhibits
boththreshold-likeandsaturatingproperties.

These simplified models of the neural activation
function are at the heartof a controversy surrounding
the natureof the “neural code”. Specifically, in map-
ping thesemodelsonto the brain, the simulatedneural
activationsare real-valuednumbers,so we have to as-
sumethat they representsomethinglike theaverage fir-
ing rateof neurons,not theindividualspikesthemselves.
Thus,a major questionis: Doesthe firing ratecapture
theessenceof theinformationthatrealneuronscommu-
nicate to eachother, or doesthe precisetiming of the
spikescontainmoreinformationthatwouldbelostwith a
ratecode?Thedebateover thenatureof theinformation
encodedin the neuralspike train hasinspireda number
of empiricalstudiesacrossa rangeof differentanimals,
with somedemonstrationsthatdetailedspiketiming mat-
tersin somepartsof thebrain(e.g.,Reike,Warland,van
Steveninck,& Bialek,1996).However, recordingsin the
cortex of primates,which is the most relevant for un-
derstandinghumancognition,have beenlargely consis-
tentwith theratecodesimplificationin neuralnetworks
(Tovee,Rolls,Treves,& Bellis, 1993).

Moving beyond thesehighly simplified modelneu-
rons, one can incorporateequationsthat simulate the
electrical behavior of biological neurons. It has long
beenknown that theelectricalpropertiesof neuronscan
be understoodin termsof the familiar conceptsof re-
sistorsand capacitors,the so-calledequivalentcircuit
modelof theneuron.A key issuethatariseshereis the
extent to which a neuronbehaveslike a singlecoherent
electricalsystem,or whetheroneneedsto keeptrackof
electricalpotentialsatmany differentlocationsalongthe
neuron.At thesimplestextremeis apointneuron, which
hasthe entiregeometryof the neuronreducedto a sin-
gle point in space,suchthatonly oneelectricalpotential
needsto be computed. Thesebiologically-basedunits
arenotmuchmorecomplex thantheunitsjustdescribed,
and yet they do a better job of capturingthe behavior
of real neurons— for this reason,we usedthe point
neuronmodelin O’Reilly andMunakata(2000). Much
morecomplex neuralmodelshavealsobeenexploredus-
ing many differentelectricalcompartments(e.g.,Koch&
Segev, 1998).

The debateover how many compartmentsto usein
a neuralmodelcenterson the issueof how realneurons
integrateall of their inputs. If neuronsare effectively
electricallyunitary (asin a point neuron),thenthey es-
sentiallyaddtheir inputstogether, just asin the simpli-
fied models. If, however, differentpartsof the neuron
haveverydifferentelectricalpotentials,theninputscom-
ing into thesedifferentpartscanhave very differentef-

fects,andthereforea simpleadditive integrationwould
underestimatetherealcomplexity of neurons(e.g.,Shep-
herd& Brayton,1987). Although it is by no meansthe
final word on theseissues,a recentanalysis(Jaffe &
Carnevale,1999)supportstheideathat thepoint neuron
modelcapturesmuchof theintegrationpropertiesof real
corticalneurons.Specifically, they foundthataslong as
therewasnot a long primarydendrite(asin mostcorti-
cal pyramidalneurons),the impactof inputsat various
placeson the dendritictreewasroughly the samewhen
measuredat thesoma.

One important biological constraintthat the point
neuroncapturesbut thesimplersigmoidal-styleunitsdo
not is that excitationandinhibition areseparatedin the
brain. Thus,a given neuronwill eithersendan excita-
tory or aninhibitory outputto otherneurons.Excitatory
outputsresultin theexcitationof otherneurons,while in-
hibitory outputscounteractthis excitationandmake the
receiving neuronlesslikely to becomeactivated. In the
simplersigmoidalunit, weightsaretypically allowedto
beeitherpositiveor negative,whichviolatesthisbiolog-
ical constraint.

In summary, one could argue that the point neu-
ron modelcapturestheessentialpropertiesof individual
neuralcomputations.Although this modelundoubtedly
commitserrorsof omissionby not capturingmany de-
tails of real neurons,in somecasesthe functional rele-
vanceof suchdetailsmaybeapproximatedby thepoint
neuronmodel(e.g.,thefunctionalrelevanceof asynapse
mayboil down to its efficacy, whichcanbeapproximated
by a weightparameter, without capturingall of thebio-
logical detailsof actualsynapses).In othercases,such
detailsmaynot beall thatfunctionallyimportant.At the
least,sucha simplemodeldoesnot commitobviouser-
rorsof commission;thatis, it doesnotattributeany com-
putationalpowersto themodelneuronsthatareunlikely
to betrueof realneurons.

Network Interactions

In this section,we move beyondthe individual neu-
ron and considerthe propertiesof networks of inter-
connectedneurons,with the next of our overarching
questionsin mind: “Are therebasicnetwork-level pat-
ternsof interactionbetweenneuronsthatapplyacrossa
widerangeof cognitivefunctions?”By identifyingbasic
network-level interactions,we candevelopa vocabulary
of mechanistically-groundedconceptsfor understanding
how neuralnetworksbehave.

Beforeidentifyingthesenetwork properties,weneed
to know what the cortical network looks like. Figure3
shows how the 6-layeredstructureof the cortex varies
in differentareasof the brain. Basedon this informa-
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Figure3: Differentlaminarstructureof cortex from different
areas.A) shows specializationfor the input layer4 in thepri-
mary visual input area. B) shows emphasison hiddenlayers
2/3 in a hiddenarea(extrastriatecortex) higherup in thevisual
processingstream.C) shows emphasison outputlayers5/6 in
a motoroutputarea.D) shows a relatively evenblendof layers
in a prefrontalarea.Reproducedfrom Shepherd(1990).
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Figure4: A simple,three-layerinterpretationof corticalstruc-
ture that is consistentwith generalconnectivity patternsand
providesausefulstartingpoint for modeling.Directexcitatory
connectivity is shown by the opentriangularconnections.In-
hibitory interneuronsareindicatedby thefilled circularconnec-
tions; theseoperatewithin eachcortical layer andreceive the
sametypesof excitatoryconnectionsastheexcitatoryneurons
do. Dotted lines indicateconnectionsthat may exist but are
not consistentwith the feedforward flow of informationfrom
input to hiddento output(with feedbackprojectionsalongthe
samepathways). Limited datamake it difficult to determine
how prevalentandimportanttheseconnectionsare.

tion andanatomicalstudiesof connectivity, onecansum-
marize the roles of the 6-layeredcortical structurein
termsof thefollowingasthreefunctionallayers(figure4;
O’Reilly & Munakata,2000):

� The input layer correspondsto cortical layer 4,
which usuallyreceivesthesensoryinput by way of
a subcorticalbrainareacalledthe thalamus, which
receivesinformationfrom theretinaandothersense
organs.

� The output layer correspondsto the deepcortical
layers5 and 6, which sendmotor commandsand
otheroutputsto a wide rangeof subcorticalareas,
includingthebasalganglia.

� The hidden layer (so called becauseit is not di-
rectly “visible” via eithertheinputsor outputs)cor-
respondsto thesuperficial(upper)cortical layers2
and3 (cortical layer1 is largely just axons).These
layersreceive inputs locally from the other corti-
cal layersandalso from othermoredistantsuper-
ficial cortical layers. Thesuperficiallayersusually
projectoutputsbackto thesesamemoredistantcor-
tical areas,andto thedeep(output)layerslocally.

Thus, at a very coarselevel, sensoryinformation
flows into theinput layer, gets“processed”in someway
by the hidden layer, and the resultsof this processing
give rise to motor outputsin the output layer. As fig-
ure 3 shows, this trajectoryof informationflow is actu-
ally spreadacrossmany differentcorticalareas,eachof
which hasthe same6-layeredstructure. However, in-
putareastendto haveamorepronouncedlayer4, output
areashave morepronouncedlayers5 and6, andhidden
(association)areashavemorepronouncedlayers2 and3.
Figure 5 summarizestheselayer-level specializationsin
differentbrainareas,asthey contributeto the“big loop”
of informationflow throughthebrain.

Thus,basedon the structureof the cortex, it is rea-
sonablefor neuralnetwork modelsto becomposedof the
threefunctional layers(input, oneor morehiddenlay-
ers,andan outputlayer). The biology alsotells us that
theprimaryneurontype(thepyramidalneuron) thatcon-
nectsbetweenlayersandbetweenbrain areasis excita-
tory, while therearea numberof inhibitory interneurons
thathavemorelocalpatternsof connectivity. Theexcita-
tory connectivity is generallybidirectional, meaningthat
excitation flows from input to hiddento output,andat
thesametimebackwardsfrom outputto hiddento input.

Usingthesefeaturesof thebiology, wecanframethe
basicnetwork-level interactionsin termsof threediffer-
entkindsof neuralconnectivity betweenfunctionallay-
ersof neurons(O’Reilly & Munakata,2000):
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Figure5: Largerscaleversionof corticalcircuitry, showing thethreedifferenttypesof corticalareas:1) is an input area, which
hasawell-developedlayer4 receiving sensoryinput from thethalamus,but notproducingmotoroutputdirectly. 2) is ahiddenarea
(often calleda higher-level associationarea),which receives input from input areas(or otherhiddenareas)andsendsoutputsto
outputareas(or otherhiddenareas).It hasreducedinputandoutputlayers,andcommunicatesprimarily via layer2–3connectivity.
3) is anoutputarea(motorcontrolarea),projectingto subcorticalbrainareasthatdrivethemotorsystem,whichhasnoreallayer4
(anda largerlayer5). Dashedlinesindicatelayersandconnectionsthatarereducedin importancefor agivenarea,anddottedlines
againrepresentconnectionswhichmayexist but arenotconsistentwith theinput-hidden-outputmodelof feedforwardinformation
flow. In all cases,reciprocalbackwardsprojectionscomplementthe feedforward projections,enablingbidirectional,interactive
processing.

� Unidirectional(feedforward)excitation: whenone
layer of neuronssendsactivation to anotherlayer,
the patterns of activation in the sending layer
get transformed, by emphasizingsomedistinctions
while collapsingacrossothers.Eachneuraldetector
contributesto the transformationby its own selec-
tivities in whatit detectsandwhatit ignores.These
transformationsare the basicinformationprocess-
ing operationsin the brain, creatingever moreab-
stractandpowerful categoriesof informationover
subsequentlayersof processing.

� Bidirectional(feedback)excitation: whentwo lay-
ers eachsendactivation to the other (also called
interactivity or recurrence), the layerscanamplify
each other’s activations, giving rise to a variety
of phenomenaincluding pattern completion, res-
onance, mutual support, and attractor dynamics.
This alsoallows for thefeedforward-styletransfor-
mationsto proceedin bothdirections.

� Inhibitory competition: feedforward communica-
tion of inhibition acrosslayersand feedbackinhi-
bition within a layercombineto producea compe-
tition amongneuronswithin a layer — only those
neuronsreceiving the strongestamountof excita-
tion will remainactive in the faceof this competi-
tion.

Theoverall pictureis this: Sensoryinformationgets
processedby a cascadeof hidden layers, where each
hiddenlayer extractssomeparticularkind of informa-
tion, while discardingothers. For example, it is well
known that different partsof the visual systemextract
color, motion,objectidentity, andobjectlocationinfor-
mation. Extractingthis information requirescarefully-
tunedpatternsof weightsthatemphasizetherelevantin-
formation while ignoring the irrelevant. For example,
wherethe visual imageof an object appearson retina
is irrelevantfor identifying whattheobjectis, but differ-
encesin theshapeof the imagearecritical. Conversely,
shapeinformation is irrelevant for locating that object
in space,but retinalposition(alongwith eye, head,and
bodypositions)is relevant.Essentially, thebrainextracts
evermoreabstract“executivesummaries”of theenviron-
ment,andthenusesthis informationto formulateplans
of action,whicharethenexecutedthroughprojectionsto
theoutputlayers.

Superimposedupon this input-outputflow of infor-
mation are the complex dynamicsthat arisefrom bidi-
rectionalconnectivity andinhibition. Bidirectionalcon-
nectivity enablesthe brain to “fill in” missinginput in-
formationusing“higher level” knowledge.For example,
a hiddenareathatencodeswordsat anabstractlevel can
fill in themissingpiecesof a garbledphonemessageby
relyingon knowledgeof who is speaking,andwhatthey
are likely to be saying. In combinationwith inhibitory
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competition,3 bidirectionalconnectivity alsoensuresthat
all thedifferentbrainareasfocusonthesamethingat the
sametime — neuronsprocessinginformation relevant
to otherbrain areaswill be reinforcedthroughthe bidi-
rectionalexcitation,andthis extra excitationwill leadto
greaterinhibition onotherneuronsthataren’t relevantto
otherbrainareas,therebyshuttingthemoff. At a cogni-
tive level, we canthink of this interplayof bidirectional
excitation and inhibition as giving rise to attention—
we’ll explorethis ideain a subsequentsection.

LearningMechanisms

In many psychologicaltheories,learningassumesa
relatively tangentialrole — peopleassumethatthebrain
systemsthey hypothesizearise throughsomecomplex
interactionbetweengeneticstructuresand experience,
but the detailsof exactly how the systemscameto be
areoftentoo difficult to confrontwhile trying to provide
a theoryaboutthe maturesystem.In contrast,learning
playsan essentialrole in mostneuralnetwork models,
becausegenerallythebestwayto getaneuralnetwork to
dosomethingusefulis to have it learnbasedon its expe-
riences(i.e.,to changeits weightsaccordingto alearning
mechanism,basedonpatternsof activationsthatgetpre-
sentedto the input layer of the network). To seewhy,
youmustfirst appreciatethatanetwork’sbehavior is de-
terminedby thepatternsof weightsover its units. Even
relatively small networks have threelayers(input, hid-
den,output),of say20 units each,with full connectiv-
ity betweenlayers,meaningthat thereare a minimum
of 800 connectionweights (400 for input-hiddencon-
nectionsandanother400for hidden-outputconnections,
with moreif you includebidirectionalconnectivity back
from theoutputto thehidden,andany kind of inhibitory
connectivity that might be used). It is virtually impos-
sible to setsucha largenumberof weightsby hand,so
learningtakescenterstage.For thesamereason,neural
networkshave provento bea usefultool for exploring a
rangeof developmentalissues(Elman,Bates,Johnson,
Karmiloff-Smith,Parisi, & Plunkett,1996;Munakata&
Stedron,in press).

A considerableamountof researchhas beencon-
ducted on neural mechanismsof synaptic modifica-
tion, which is the biological equivalentof changingthe
weightsbetweenneuralunits, aswould be requiredby
a learningmechanism.The overall finding from these
studies is that connectionstrengthsbetweenneurons
(weights)canbemadeto eithergoupor downdepending
on the relationshipbetweenthe activationsof the send-
ing andreceiving neurons.Whentheweightgoesup, it
is referredto aslong termpotentiation(LTP),andwhen
it goesdown it is calledlong termdepression(LTD).
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Figure6: RelationshipbetweenLTPandLTD, whereamoder-
ateamountof increasedintracellularcalciumion concentration
leadsto LTD, but at a largeramountleadsto LTP.

Onewell-supportedaccountof whatcausesLTPver-
susLTD is basedon the concentrationof calcium ions
in the receiving neuron’s dendritein the vicinity of the
synapse(Lisman,1989,1994;Bear& Malenka,1994).
Calcium ions can enter the dendrite through various
means,but the dominantcontributor in corticalneurons
is probablythe openingof NMDA channelslocatedat
excitatorysynapses.Interestingly, NMDA channelsopen
(to allow calciumions to enter)only if two thingshap-
pen: (a) the sendingneuronfires and releasesneuro-
transmitterthatbindsto theNMDA channel,and(b) the
receiving neuron’s electrical potential increasesabove
a critical level. Thus, calcium ion concentrationtends
to reflect the extent to which both sendingand receiv-
ing neuronsareactive. The calcium ion model further
stipulatesthat LTP (weight increases)will occur when
calcium ion concentrationis very high, whereasLTD
(weightdecreases)occurif calciumion concentrationis
elevated,but not sohigh (figure6). If thereis no change
in calciumion concentration,no weight changeoccurs.
Putting this calcium mechanismtogetherwith the re-
quirementsfor openingthe NMDA channel,it is clear
thatweight increasesshouldoccurwhenboth the send-
ing and receiving neuronsare strongly active together.
ConditionswhereLTD will occurarelessclear.

The biological mechanismsjust describedare re-
markablyconsistentwith Hebb’s (1949) postulatethat
groupsof neuronsthatareactivetogethershouldincrease
thestrengthof their interconnectivity — thebrainshould
learnaboutthingsthatgotogether. In otherwords,under
theHebbianlearningprinciple,whichappearsto besup-
portedby biologicalsynapticmodificationmechanisms,
the brainencodescorrelatedevents. Thesecorrelations
aremeaningfulbecausecorrelationis agood(thoughim-
perfect)clue for causation,andco-occurringitems can
be more efficiently representedtogetherwithin a com-
monrepresentationalstructure(e.g.,theconcept“college
dormroom” evokesa wholeslew of co-occurringitems
likepizzaboxes,posters,boomboxes,etc.).

Many computationalmodels of Hebbian learning
have beendeveloped(e.g.,Kohonen,1984; Grossberg,
1976;Oja, 1982;Bienenstock,Cooper, & Munro, 1982;
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Rumelhart
5

& Zipser, 1986; Carpenter& Grossberg,
1987; Linsker, 1988; Miller, Keller, & Stryker, 1989),
with applicationsto a rangeof different cognitive and
neuralphenomena.Despitethesuccessesof thesemod-
els, Hebbianlearninghassomesignificant limitations.
Specifically, Hebbian learning cannot learn arbitrary
input-outputtransformations(McClelland& Rumelhart,
1988;O’Reilly & Munakata,2000). To seewhy this is
an importantlimitation, we canrefer backto the input-
hidden-outputnetwork structurediscussedin the previ-
oussection.In general,theorganism’s learningtaskcan
be construedaslearninga setof hiddenrepresentations
basedon sensoryinputsthat produceusefuloutputpat-
terns(behavioral responses).Importantly, the relation-
ship betweensensoryinputs and motor outputscan be
highly complex andessentiallyarbitrary.

The limitations of Hebbianlearning are most evi-
dentwhencomparedwith theothermajorform of neural
network learningmechanism,error driven learning. In
error-drivenlearning,thenetwork’sweightsareadjusted
accordingto the differencesbetweenthe outputpattern
the network actuallyproducedandthe outputpatternit
shouldhaveproduced(i.e., theerror).So,if thenetwork
executesa pulling motion when it getsa “push” com-
mand,it canadjusttheconnectionsto specificallycorrect
this error. Error-driven learningmechanismshave been
aroundfor a longtimein oneform or another(Widrow &
Hoff, 1960),andhave beenappliedto a wide rangeof
animal learningphenomena(e.g., Rescorla& Wagner,
1972). However, theseearlierversionswere limited to
learningconnectionsbetweenan input andoutputlayer
only — they could not handlethe training of interme-
diatehiddenlayer representations.This limitation was
seizeduponby Minsky andPapert(1969)in theirdevas-
tating critique showing that theseneuralnetworks were
very limited in the kinds of input-outputmappingsthey
could learn, which had the effect of significantly cur-
tailing researchin this field. However, the extension
of error-driven learning mechanismsto networks with
(multiple) hiddenlayersvia the error-backpropagation
learningprocedure,andthe concomitantdemonstration
thatthesenetworkscouldlearnvirtually any input-output
mapping,revived interestsome15 yearslater (Rumel-
hart,Hinton, & Williams, 1986; the ideahadalsobeen
developedseveraltimesbeforeBryson& Ho,1969;Wer-
bos,1974;Parker, 1985).

Error-driven mechanismscan learn many input-
outputmappingproblemsthat Hebbianlearningsimply
fails to learn(O’Reilly & Munakata,2000). Thereason
is clear— Hebbianlearningis designedto encodecor-
relations,not to learn arbitrary input-outputmappings.
However, insteadof arguing for the exclusive superior-
ity of one learningmechanismover the other, one can
obtain complementarybenefitsby using both kinds of

learningmechanisms(Hebbiananderror-driven). This
combinationof both typesof learning,togetherwith an
inhibitory competitionmechanism,is the definingchar-
acteristic of the Leabra framework (O’Reilly, 1996b,
1998; O’Reilly & Munakata,2000). In short, error-
driven learning provides the ability to learn arbitrary
input-outputmappings,while Hebbianlearningprovides
a usefultendency to encodecorrelatedinformation.Fur-
thermore,Hebbianlearningactslocally at eachneuron,
and is thereforea relatively fast and reliable form of
learning,whereaserror-driven learningdependson dis-
tanterror-signalsthatcanbecomeweakanunreliableas
they propagatethroughmultiple hiddenlayers.

One potentialproblemwith the Leabraframework
andall othernetwork modelsthatrely uponerror-driven
learningis apossibleerrorof commissionwith respectto
theknown neurobiology. Indeed,muchhasbeenmadein
the literatureabout the biological implausibility of the
error-backpropagationlearning mechanism,which ap-
pearsto requirea typeof signalthathasneverbeenmea-
suredin neuronsto propagatein thereversedirectionof
mostneuralsignals(e.g.,Crick, 1989;Zipser& Ander-
sen,1988). Furthermore,it hasnot beenclear where
thenecessary“desiredoutputs”for generatingerrorsig-
nalscouldplausiblycomefrom. However, it hasrecently
beenshown thatbidirectionalactivationpropagation(as
discussedin theprevioussection)canbeusedto perform
essentiallythesameerror-drivenlearningasbackpropa-
gation(O’Reilly, 1996a),usingany of a numberof read-
ily available teachingsignals. The resultingalgorithm
generalizestherecirculationalgorithmof Hinton & Mc-
Clelland(Hinton& McClelland,1988),andis thuscalled
GeneRec. GeneRecprovidestheerror-drivencomponent
of theLeabraalgorithm.

The basic idea behind GeneRecis that insteadof
propagatingan error signal, which is a differencebe-
tweentwo terms,onecanpropagatethetwo termssepa-
ratelyasactivationsignals,andthentaketheirdifference
locally at eachunit. Thisworksby having two phasesof
activationsfor computingthe two terms. In the expec-
tation phase,thebidirectionally-connectednetwork pro-
cessesaninputactivationpatterninto astatethatreflects
theexpectedconsequencesor correlatesof thatinputpat-
tern. Then, in the outcomephase,the network experi-
encesactualconsequencesor correlates.Thedifference
betweenoutcomeandexpectationis theerrorsignal,and
thebidirectionalconnectivity propagatesthiserrorsignal
throughoutthenetwork via localactivationsignals.

The GeneRecanalysisalsoshowed that Boltzmann
machinelearning and its deterministicversions(Ack-
ley, Hinton, & Sejnowski, 1985; Hinton, 1989; Peter-
son & Anderson,1987; Movellan, 1990) can be seen
as variantsof this more biologically plausibleversion
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of6 the backpropagationalgorithm. This meansthat all
of theexisting approachesto error-drivenlearningusing
activation-basedsignalsconvergeonessentiallythesame
basicmechanism,making it moreplausiblethat this is
the way the brain doeserror driven learning. Further-
more,theform of synapticmodificationnecessaryto im-
plementthis algorithmis consistentwith (thoughnot di-
rectlyvalidatedby) thecalcium-ionbasedsynapticmod-
ification mechanismdescribedearlier. Finally, thereare
many sourcesin the naturalenvironmentfor the neces-
saryoutcomephasesignalsin the form of actualenvi-
ronmentaloutcomesthat canbecomparedwith internal
expectationsto provideerrorsignals(McClelland,1994;
O’Reilly, 1996a). Thus,one doesnot needto have an
explicit “teacher”to performerror-drivenlearning.

To summarize,learningmechanismsareat oncethe
most importantand most controversialaspectsof neu-
ral network models. In this discussion,we have seen
that Hebbianlearningmechanismsmake closecontact
with biologicalmechanisms,whereaserror-drivenmech-
anismshave beenmotivatedlargely from top-down con-
straintsfrom cognition— they aretheonly knownmech-
anismscapableof learningthe kinds of things that we
know peoplecan learn. The two kinds of mechanisms
maybecombinedin a biologically plausibleandpower-
ful way.

PerceptualProcessingandAttention

Having presentedsomeof themostcentralideasbe-
hind thebasicmechanismsusedin neuralnetwork mod-
els,wenow turn to applicationsof thesemechanismsfor
understandingcognitivephenomena.Thesesamemech-
anismshave beenappliedto a wide variety of phenom-
ena;wefocushereonperception,attention,memory, and
higherlevel cognition.Thefirst questionweaddresswas
statedin theintroduction:“How doesthemyriadof com-
plex perceptualinputsget organizedinto a coherentin-
ternalrepresentationof theenvironment?”

We describetwo differentwaysthat neuralnetwork
modelshaveprovidedinsightinto thisquestion.Thefirst
is by addressingthe representationalproblem— what
kinds of representationsprovide an efficient, computa-
tionally useful encodingof the perceptualworld for a
neuralnetwork, anddo theserepresentationslook any-
thing like thoseactually found in the brain? We will
seethattheinteractionbetweenHebbianlearningmecha-
nismsandinhibitory competitioncanproducevisualrep-
resentationsverymuchlikethosefoundin thebrain.The
secondis by addressingtheattentionalproblem— given
that thereis a hugeoverloadof perceptualinformation
impinging uponusat every moment(e.g.,asyou try to
readthischapter),how doesourbrainfocusonandselect

out the most relevant information(hopefully this chap-
ter!) for further processing?We will seethat the inter-
actionbetweeninhibitory competitionandbidirectional
activationflow canproduceemergentattentionaldynam-
ics that simulatethe behavior of both intact and brain
lesionedpeopleona visualattentiontask.

TheStructureof Representationsin PrimaryVi-
sualCortex

One way of understandingwhat representationsin
primaryvisualcortex (V1) shouldlook like from acom-
putationalperspective is to simply presenta rangeof vi-
sual imagesto a model network andallow its learning
mechanismsto developrepresentationsthatencodethese
images.This is indeedwhata numberof modelershave
done,usingnaturalvisualscenesthatwerepreprocessed
in a mannerconsistentwith the contrast-enhancement
propertiesof the retina(e.g.,Olshausen& Field, 1996;
Bell & Sejnowski,1997;vanHateren& van derSchaaff,
1997;O’Reilly & Munakata,2000). TheOlshausenand
Field (1996) modeldemonstratedthat sparse represen-
tations (with relatively few active neurons)provide a
useful basis for encodingreal-world (visual) environ-
ments,but thismodelwasnotbasedonknown biological
principles. Subsequentwork replicatedthe samegen-
eral resultsusingmorebiologically-basedprinciplesof
Hebbianlearningandsparsenessconstraintsin theform
of inhibitory competitionbetweenneurons(O’Reilly &
Munakata,2000). Furthermore,lateral excitatory con-
nectionswithin this network produceda topographicor-
ganizationof representations,whereneighboringunits
hadsimilar representations.

Figure7 showstheresultsfrom theO’Reilly andMu-
nakata(2000)modelof 14x14hiddenunits (represent-
ing V1 neurons)receiving inputs from a 12x12 simu-
lated“retina.” This figureshows that thesimulatedneu-
rons have developedorientededge detectors; the neu-
ronsaremaximally activatedby visual inputsthat have
transitionsbetweendark andlight regionsseparatedby
edgesat various angles. We can understandwhy the
network developsthesereceptive fields in termsof the
proclivity of Hebbianlearning to encodecorrelational
structure. Natural objectstend to have piecewise lin-
earedges,so thatstrongcorrelationsexist amongpixels
of light alongtheseedges.However, Hebbianlearning
aloneis not enoughto producethesereceptive field pat-
terns.As emphasizedby OlshausenandField (1996),a
constraintof only having a relatively few unitsactive at
any time (implementedby inhibitory competitionin our
model)is alsoimportant. This constraintis appropriate
becauseonly arelatively smallnumberof orientededges
arepresentin any givenimage.Furthermore,in thepro-
cessof learning, inhibition ensuresthat units compete
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Figure 7: The receptive fields of model V1 neurons(from
O’Reilly & Munakata,2000).Thebroader14x14grid contains
individual unit receptive fields,within which thereis a smaller
12x12 grid representingweights from a simulated“retina”.
Lightershadesindicateareasof on-centerresponse,anddarker
shadesindicateareasof off-centerresponseto retinalinputs.

andspecializeto representdifferentaspectsof theinput.
At an intuitive level, this learningprocessis analogous
to theeffectsof competitionandnaturalselectionin bio-
logical evolution (e.g.,Edelman,1987). Thus,eachunit
carvesout a different“niche” in thespaceof all possible
reliablecorrelationsin the input images— theseniches
areorientededgedetectors.

This analysisshows thatwe canunderstandthegen-
eral principles of why computationalmodelsdevelop
their representations,andwhy theseareappropriatefor a
givendomainof input patterns.However, do theseprin-
ciples help us understandhow the brain works? They
can if the representationsdevelopedby the model look
like thosein the brain. It turnsout that they do — V1
neuronshave long beenknown to encodeorientededges
of light (Hubel & Wiesel,1962;Marr, 1982). Further-
more,onecanfind systematicvariationsin orientation,
size, position, and polarity (i.e., going from light-to-
dark or dark-to-light,or dark-light-darkandlight-dark-
light) in both thesimulatedandrealV1 receptive fields.
In the brain, the different typesof edgedetectors(to-
getherwith other neuronsthat appearto encodevisual
surfaceproperties)arepacked into the two-dimensional
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Figure8: Structureof a corticalhypercolumn,thatrepresents
a full rangeof orientations(in layers2–3), oculardominance
columns(in layer4, onefor eacheye),andsurfacefeatures(in
the blobs). Eachsuchhypercolumnis focusedwithin onere-
gion of retinalspace,andneighboringhypercolumnsrepresent
neighboringregions.

sheetof the visual cortex accordingto a topographic
organization. The large-scaleorganizationis a retino-
topic map that preserves the topographyof the retinal
imagein the cortical sheet.At thesmallerscalearehy-
percolumns(figure 8) containingsmoothlyvaryingpro-
gressionsof orientededgedetectors,amongotherthings
(Livingstone& Hubel,1988).Thetopographyshown in
figure7 is consistentwith thiswithin-hypercolumnstruc-
ture. Thehypercolumnalsocontainsocular dominance
columns, in which V1 neuronsrespondpreferentiallyto
input from oneeye or the other(seeMiller et al., 1989
for a Hebbian-basedmodel). For reviews of the many
computationalmodelsof variousof theseV1 structures,
seeSwindale(1996)andErwin, Obermayer, andSchul-
ten(1995).

To summarize,computationalmodelsincorporating
thebasicmechanismsof Hebbianlearningandinhibitory
competitioncanhelpusunderstandwhyV1 hastherep-
resentationsit does.

Spatial Attention and the Effects of Parietal
LobeDamage

Thedynamicsof activationflow throughthenetwork
are as importantas the weight patternsof the neurons
in the network. Oneof the mostwidely-studiedmani-
festationsof thesedynamicsis attentionto differentre-
gions of visual space. Spatialattentionhasclassically
beenoperationalizedaccordingto thePosnerspatialcu-
ing task(Posner, Walker, Friedrich,& Rafal, 1984,fig-
ure9). Whenattentionis drawn or cuedto oneregionof
space,participantsarethenfasterto detectatargetin that
region (a validly cuedtrial) thana target elsewhere(an
invalidly cuedtrial). Patientswith damageto theparietal
lobehaveparticulardifficulty with invalidly cuedtrials.
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Figure 9: The Posnerspatial attentiontask. The cue is a
brighteningor highlightingof oneof theboxesthatfocusesat-
tention to that region of space. Reactiontimes to detectthe
target are fasterwhen this cue is valid (the target appearsin
that sameregion) than when it is invalid (the target appears
elsewhere).
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Figure10: The informationprocessingmodelfor attentional
processingaccordingto Posnerandcolleagues.

The traditionalaccountof the spatialattentiondata
involvesasequenceof modularprocessesthathavebeen
associatedwith differentbrainareas(Posneretal.,1984;
figure10). Specifically, theparietalbraindamagedatais
accountedfor in termsof adisengagemoduleassociated
with theparietallobe(Posneret al., 1984).This module
typically allows one to disengagefrom an attendedlo-
cationto attendelsewhere. This processof disengaging
takestime, leadingto the slower detectionof targetsin
unattendedlocations. Further, the disengagemoduleis
impairedwith parietaldamage,leadingpatientsto have
difficulty disengagingfrom attentiondrawn to oneside
of space.

Biologically-basedcomputationalmodels,basedon
reinforcing excitatory connectionsand competitive in-
hibitory connections,provide an alternative explanation
for thesephenomena(Cohen,Romero,Farah,& Servan-
Schreiber, 1994; O’Reilly & Munakata,2000). In this
framework, the facilitory effectsof drawing attentionto
oneregion of spaceresult from bidirectionalexcitatory
connectionsbetweenspatialandotherrepresentationsof
that region — this excitatory supportmakesit easierto
processinformation in that region becauseneuronsare
already receiving supportingexcitation. The slowing

that comeson the invalid trials resultsfrom inhibitory
competitionbetweendifferentspatialregions— to ac-
tivatea differentspatiallocationrequiresinhibiting the
previously-active region. Under this model,damageto
the parietal lobe simply impairs the ability of the cor-
respondingregion in spaceto have sufficient excitatory
supportto competeeffectively with otherregions.

The two modelsmake distinct predictions(Cohen
et al., 1994; O’Reilly & Munakata,2000). For exam-
ple, following bilateral parietaldamage,the disengage
modelpredictsdisengagedeficitsonbothsidesof space,
but thecompetitiveinhibition modelpredictsreducedat-
tentionaleffects(smallervalid andinvalid trial effects).
Datasupportthe latter model(Coslett& Saffran, 1991;
Verfaellie, Rapcsak,& Heilman, 1990), demonstrating
the utility of biologically-basedcomputationalmodels
for alternativetheoriesof cognitivephenomena.

Mechanismsof Memory

In a computer, there are several different kinds of
memory systems,each specializedto optimize some
characteristicsat the cost of others. For example, the
RAM in a systemis much fasterthan hard disk mem-
ory, but it alsohasa muchsmallercapacity. Thereare
basictradeoffs betweenspeedandcapacitythat arere-
solvedby having differentsystemsoptimizedseparately
for each. Interestingly, humanmemorycanalsobe un-
derstoodin termsof a setof tradeoffs betweendifferent
incompatiblecapacities. Thesebasictradeoffs are dif-
ferent than thosebehindthe computercomponents(al-
thoughonecanseesomesimilarities)— they aremoti-
vatedinsteadby a considerationof conflictingcapacities
of neuralnetworks. We discusstwo differentkinds of
tradeoffs here,onethatcanhelpusunderstandthecom-
plementaryrolesof thehippocampusandcortex in learn-
ing, andanotherthat relatesto thespecializationsof the
frontal cortex in working memory.

ComplementaryHippocampal and Cortical
LearningSystems

One important set of tradeoffs involves two basic
typesof learning that an organismmust engagein —
learningaboutspecificsversuslearningaboutgeneral-
ities (figure 11). Becausethe neural mechanismsfor
achieving these types of learning are in direct con-
flict, the brain has evolved two separatebrain struc-
turesto achievethesetypesof learning(McClelland,Mc-
Naughton,& O’Reilly, 1995;O’Reilly & Rudy, in press,
2000). The hippocampusappearsto be specializedfor
learningaboutspecifics,while the neocortex is goodat
extractinggeneralities.
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Two IncompatibleGoals
RememberSpecifics ExtractGeneralities

Example: Whereis carparked? Bestparkingstrategy?
Needto: Avoid interference Accumulateexperience

Solution:
1. Separatereps Overlappingreps

(keepdaysseparate) (integrateoverdays)

D1

D1

D2

D2 D3

D3 ... D1 D2 D3

PS (parking
 strategy)

...
2. Fastlearning Slow learning

(encodeimmediately) (integrateoverdays)
3. Learnautomatically Task-drivenlearning

(encodeeverything) (extractrelevantstuff)
Theseare incompatible, needtwo differentsystems:

System: Hippocampus Neocortex

Figure11: Computationalmotivation for two complementarylearning& memorysystemsin the brain, becausethereare two
incompatiblegoalsthat suchsystemsneedto solve. Onegoal is to rememberspecificinformation,in this examplewhereone’s
car is parked on a specificday. The othergoal is to extract generalitiesacrossmany experiences,for examplein developingthe
bestparkingstrategy over a numberof differentexperiences.Theneuralsolutionsto thesegoalsareincompatible:onerequires
representationsto be kept separate,learnedquickly, andautomatically, while the otherrequiresoverlappingrepresentationsand
slow learningto integrateover experiences,andis drivenby task-specificconstraints.Thus,it makessenseto have two separate
neuralsystemsseparatelyoptimizedfor eachof thesegoals.
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Specifically, learningaboutspecificsrequireskeep-
ing representationsseparated(to avoid interference),
whereaslearningaboutgeneralitiesrequiresoverlapping
representationsthatencodesharedstructureacrossmany
differentexperiences.Furthermore,learningaboutgen-
eralitiesrequiresa slow learningrate to graduallyinte-
gratenew information with existing knowledge,while
learningaboutspecificscan occur rapidly. This rapid
learningis particularly importantfor episodicmemory,
wherethegoal is to encodethedetailsof specificevents
asthey unfold.

In theexamplein figure11,onecanencodedifferent
kinds of information from experiencesrelatedto park-
ing one’s car. If onewantsto rememberthespecificsof
wherethe car is parked on a given day, it is important
to encodethis information using representations(pop-
ulationsof neurons)that are separatefrom representa-
tions for othersuchevents,to minimizethe interference
that leadsto forgetting. In a neuralnetwork, interfer-
enceresultsfrom weightssharedacrossmultiple repre-
sentations,becausethedifferentrepresentationswill pull
theseweightsin differentdirections. Furthermore,one
hasonly a short period of time to encodethe parking
location (unlessyou want to sit thereand study it for
hours),sorapidlearningis required.

In contrast,if onewantsto learnaboutthebeststrat-
egy for parking (e.g., bestlocation for a given time of
day),oneneedsto integrateover many differentexperi-
encesbecauseany givenday’s experiencedoesnot pro-
vide a statisticallyreliablepictureof the averagesitua-
tion. To accumulateinformationover individual expe-
riences,oneneedsto ensurethat thesedifferentexperi-
encesaffect at leastsomeof thesameunderlyingneural
representations— if youwantto addthingsup,youneed
to putthemall in thesameplace.Furthermore,giventhat
the goal is computingsomethinglike an average,each
event needsto make a relatively small contribution. In
computinganaverage,you multiply eachnumberby CD ,
where E is the total numberof items(events)to aver-
ageover — asthis becomeslarger, eachevent makesa
smallercontribution. In neuralterms,this meansusinga
small learningrateso that weightschangeonly a small
amountfor eachexperience.

Thus,it is clearthatthesetwo kindsof learningarein
directconflict,andthereforethatit would make senseto
have two different neuralsystemsspecializedfor each
of thesetypes of learning. This conclusioncoincides
nicely with a large body of dataconcerningthe prop-
ertiesof the hippocampusand the cortex. It hasbeen
known for sometime that damageto the hippocampus
in themedialtemporallobecanproduceseverememory
deficits,while also leaving unimpairedcertainkinds of
learningandmemory(Scoville & Milner, 1957;Squire,

1992).Althoughtheprecisecharacterizationof thecon-
tributionsof the hippocampusversussurroundingcorti-
cal areashasbeena topic of considerabledebate,it is
possibleto reconcilemuchof the datawith the compu-
tational principlesjust described(O’Reilly & Rudy, in
press).Furthermore,detailedbiologicalpropertiesof the
hippocampusareideallysuitedfor maximizingthesepa-
rationbetweenneuralrepresentationsof differentevents,
enablingrapid episodiclearningwith minimal interfer-
ence(O’Reilly & McClelland,1994).

In the domainof humanmemory, the dual mecha-
nismsof neocortex andhippocampusprovide a natural
fit with dual-processmodelsof recognitionmemory(Ja-
coby, Yonelinas,& Jennings,1997;Aggleton& Shaw,
1996; Aggleton & Brown, 1999; Vargha-Khadem,Ga-
dian, Watkins, Connelly, Van Paesschen,& Mishkin,
1997; Holdstock, Mayes, Roberts, Cezayirli, Isaac,
O’Reilly, & Norman,in press;Curran,2000;O’Reilly,
Norman,& McClelland,1998). Thesemodelshold that
recognitioncanbesubservedby two differentprocesses,
a recollectionprocessand a familiarity process. Rec-
ollection involvesthe recall of specificepisodicdetails
aboutthe item, andthusfits well with the hippocampal
principlesdevelopedhere. Indeed,we have simulated
distinctive aspectsof recollectionusing a model based
on many of thedetailedbiologicalpropertiesof thehip-
pocampus(O’Reilly et al., 1998). Familiarity is a non-
specificsensethat the item hasbeenseenrecently—
we arguethat this canbesubservedby thesmallweight
changesproducedby slow cortical learning. Current
simulationwork hasshown thata simplecorticalmodel
canaccountfor a numberof distinctive propertiesof the
familiarity signal(Norman,O’Reilly, & Huber, 2000).

Models implementingthe specializedhippocampal
and cortical systemshave also beenshown to account
for awiderangeof learningandmemoryfindingsin rats,
including nonlineardiscrimination,incidentalconjunc-
tiveencoding,fearconditioning,andtransitive inference
(O’Reilly & Rudy, in press).Also, therearea largenum-
berof importantmodelsof thehippocampusand/orcor-
tical learningsystemsin the literature,many of which
shareimportantfeatureswith thosedescribedhere(e.g.,
Marr, 1971;Treves& Rolls, 1994;Hasselmo& Wyble,
1997; Moll & Miikkulainen, 1997; Alvarez& Squire,
1994; Levy, 1989; Burgess,Recce,& O’Keefe,1994;
Samsonovich & McNaughton,1997).

ComplementaryPosterior and Prefrontal Cor-
tical Systems

Another importantset of tradeoffs involves the ex-
tent to which a representationactivatesrelatedrepresen-
tations,for example,theextent to which a neuralrepre-
sentationof “smoke” activatestheassociatedrepresenta-
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Figure 12: Attractor states(small squares)and their basins
of attraction(surroundingregions), where nearbyactivation
statesare attractedto the central attractorstate. Each sta-
ble attractorstatecouldbe usedto actively maintaininforma-
tion over time. Notethat thetwo-dimensionalactivationspace
representedhereis a considerablesimplificationof the high-
dimensionalactivationstateover all theunitsin thenetwork.

tion of “fire.” In somecases,suchaswhenyou want to
rememberthat it wasactuallyonly smoke that you saw
comingfrom the forestandnot fire (e.g., to provide an
accuratereport about the situationto others),it would
bebestto actively maintainonly smoke without activat-
ing fire. In othercases,suchaswhenyou want to form
inferencesbasedon seeingthe smoke (e.g., to evaluate
possiblecoursesof actionto take, suchasbringing wa-
ter), it would be bestfor smoke to activatefire. These
goalsof activatingversusnotactivatingrelatedrepresen-
tationsareobviously in conflict (and this problemgets
much worsewhen the inferencesare lesscertain than
smoke F fire); this tradeoff provides a potential way
to understandthespecializationsbetweenposteriorcor-
tex andprefrontalcortex. Specifically, prefrontalcortex
maybespecializedfor activemaintenance(acomponent
of workingmemory)withoutactivatingassociatedrepre-
sentations,whereasposteriorcortex may be specialized
for inferencebasedon activating associatedrepresenta-
tions.

The most obvious neural network mechanismfor
achieving active maintenanceis recurrentbidirectional
excitatory connectivity, whereactivation constantlycir-
culatesamong active units, refreshingand maintain-
ing their activation(Braver, Cohen,& Servan-Schreiber,
1995; Dehaene& Changeux,1989; Munakata,1998;
Zipser, Kehoe,Littlewort, & Fuster, 1993). One can
think of the effects of theserecurrentconnectionsin
termsof anattractor, wheretheactivationpatternof the
network is attractedtoward a stablestatethat persists
over time (figure 12). An attractoris useful for mem-
ory becauseany perturbationaway from that activation
stateis pulledbackinto theattractor, allowing in princi-
ple for relatively robustactivemaintenancein thefaceof
noiseandinterferencefrom ongoingprocessing.

Theareaaroundtheattractorwhereperturbationsare

pulledbackis calledthe basinof attraction. For robust
active maintenance,one needsto have attractorswith
widebasinsof attraction,sothatnoiseandothersources
of interferencewill notpull thenetwork out of its attrac-
tor. Whentherearemany closelyrelatedrepresentations
linkedby distributedconnections,thebasinof attraction
aroundeachrepresentationis relatively narrow (i.e., the
network caneasilyslip from onerepresentationinto the
next). Thus,denselyinterconnecteddistributedrepresen-
tationswill tendto conflict with theability to maintaina
specificrepresentationactively over time.

The prefrontal cortex appearsto have the relevant
specializationsfor active maintenance. There is con-
siderablephysiologicalevidencethat the prefrontalcor-
tex subserves the active maintenanceof information
over time (i.e., as encodedin the persistentfiring of
frontal neurons)(e.g., Fuster, 1989; Goldman-Rakic,
1987; Miller, Erickson, & Desimone,1996). Many
computationalmodelsof this basicactive maintenance
function have beendeveloped(Braver et al., 1995;De-
haene & Changeux,1989; Zipser et al., 1993; Se-
ung, 1998; Durstewitz, Seamans,& Sejnowski, 2000;
Camperi& Wang, 1997). Further, the prefrontal cor-
tex may have moreisolatedpatternsof connectivity —
neuronsthereappearto be interconnectedwithin self-
contained“stripe” patterns(Levitt, Lewis, Yoshioka,&
Lund, 1993), and iso-codingmicrocolumnsof neurons
have beenrecorded(Rao,Williams, & Goldman-Rakic,
1999). Computationalmodelshave explored the im-
pactof suchconnectivity andattractordynamicson ac-
tive maintenance(O’Reilly, Braver, & Cohen,1999a;
O’Reilly, Mozer, Munakata,& Miyake, 1999b). Mod-
els in which there there are featuresthat can partici-
pateequallyin differentdistributedrepresentationseffec-
tively have no attractors,andcannotmaintaininforma-
tion over time in theabsenceof externalinputs.Theac-
tivationinsteadspreadsacrossthedistributedrepresenta-
tions,resultingin alossof theoriginal information.With
distributedrepresentationsthat sustainattractors,active
maintenancesucceeds,but not in thepresenceof signifi-
cantamountsof noise— wider attractorbasinsarenec-
essary. With suchwider attractorbasins,aswhenunits
arecompletelyisolatedfrom eachother, this completely
preventsactivation spreadandyields very robust active
maintenance,but at the lossof theability to performin-
ferencevia activationspread.

Thus,computationalmodelsandconsiderationshave
helpedto understandthespecializationsof posteriorand
prefrontalcortex, and how the prefrontalcortex might
play a role in subservingworking memory.
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ThePrefrontalCortex andHigherLevel
Cognition

Theprefrontalcortex is alsoimportantfor a rangeof
complex cognitivefunctions,suchasplanningandprob-
lemsolving,describedgenerallyasfalling undertheum-
brellaof higher level cognition. Many theoriessumma-
rize thefunctionof frontal cortex in termsof “executive
control,” “controlled processing,” or a “central execu-
tive” (e.g.,Baddeley, 1986;Shallice,1982;Gathercole,
1994; Shiffrin & Schneider, 1977), without explaining
at a mechanisticlevel how suchfunctionality could be
achievedor why theprefrontalcortex would bespecial-
izedfor suchfunctionality. We saw in theprecedingsec-
tion how a considerationof computationaltradeoffs has
helpedto understandthe issueof specialization.In this
section,weseehow computationalmodelshaveprovided
animportanttool for exploringspecificmechanismsthat
might achieveexecutive-likefunctionality.

One proposalalong theselines is that the funda-
mentalmechanismof active maintenanceenablesall the
otherexecutive-like functionality ascribedto the frontal
cortex (Cohen, Braver, & O’Reilly, 1996; Goldman-
Rakic, 1987; Munakata,1998; O’Reilly et al., 1999a;
O’Reilly & Munakata,2000; Roberts& Pennington,
1996). As elaboratedbelow, a numberof modelshave
demonstratedthat active maintenancecan accountfor
frontal involvement in a range of different tasks that
might otherwiseappearto have nothingto do with sim-
ply maintaininginformationover time.

For example,severalmodelshave demonstratedthat
frontal contributions to “inhibitory” tasks can be ex-
plainedin termsof active maintenanceinsteadof anex-
plicit inhibitory function.Actively-maintainedrepresen-
tationscansupport(via bidirectionalexcitatoryconnec-
tivity) correctchoices,whichwill thereforeindirectly in-
hibit incorrectonesvia standardlateralinhibition mech-
anismswithin the cortex. A model of the Strooptask
provided an early demonstrationof this point (Cohen,
Dunbar, & McClelland,1990). In this task,color words
(e.g., “red”) arepresentedin differentcolors,andpeo-
ple are instructedto either readthe word or namethe
color of ink that the word is written in. In the conflict
condition,theink color andword aredifferent.Because
we have somuchexperiencereading,we naturallytend
to readthe word, even if instructedto namethe color,
such that responsesare slower and more error-prone
in the color-naming conflict condition than the word-
readingone. Thesecolor-namingproblemsare selec-
tively magnifiedwith frontaldamage.Thisfrontaldeficit
hastypically beeninterpretedin termsof thefrontal cor-
tex helping to inhibit the dominantword-readingpath-
way. However, Cohenet al. (1990) showed that they

could accountfor both normalandfrontal-damagedata
by assumingthat the frontal cortex insteadsupportsthe
color-namingpathway, which then collaterally inhibits
theword-readingpathway. Similar modelshavedemon-
stratedthat in infants,theability to inhibit perseverative
reaching(searchingfor a hiddentoy at aprevioushiding
locationratherthanat its currentlocation)candevelop
simply throughincreasingabilitiesto actively maintaina
representationof thecorrecthiding location(Dehaene&
Changeux,1989;Munakata,1998).Again,suchfindings
challengethestandardinterpretationthatinhibitory abil-
ities per semustdevelop for improvedperformanceon
this task(Diamond,1991).

The activation-basedprocessingmodel of frontal
function can also explain why frontal cortex facilitates
rapidswitchingbetweendifferentcategorizationrulesin
the Wisconsincard sorting task and relatedtasks. In
thesetasks,subjectslearnto categorizestimuli accord-
ing to onerule via feedbackfrom theexperimenter, and
thentherule is switched.With frontal damage,patients
tend to perseveratein using the previous rule. A com-
putationalmodelof a relatedID/ED categorizationtask
demonstratedthat the ability to rapidly updateactive
memoriesin frontal cortex canaccountfor detailedpat-
ternsof datain monkeys with frontal damage(O’Reilly,
Noelle, Braver, & Cohen,submitted;O’Reilly & Mu-
nakata,2000).

In short, computationalmodelsof frontal function
canprovide mechanisticexplanationsthatunify thedis-
paraterolesof thefrontal cortex, from working memory
to cognitivecontrolandplanning/problemsolving.How-
ever, a major remainingchallengeis to explorewhether
truly complex “intelligent” behavior canbecapturedus-
ing thesebasicmechanisms.

Challenges

Most researchersagreethat if a network modelcap-
turesin sufficient detail the essentialneuralprocesses,
then it can provide a truly valuable tool for advanc-
ing our understandingof the relationbetweenbrainand
mind. However, thereis skepticismregardingwhether
(a) enoughis known abouttheneurobiologyat this time
to sufficiently constrainmodels,and(b) currentmodels
violateor fail to includeimportantaspectsof theknown
neurobiology.

We contrastederrorsof omission(aspectsof the bi-
ology thataremissingor simplified in themodels)with
errorsof commission(aspectsof themodelsthatareun-
likely to be true given what we alreadyknow aboutthe
brain). We saw that in many cases,network models
make errorsof omission,but not errorsof commission.
For example,it is possibleto make network modelsthat
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makG e no errorsof commissionat the level of network
interactions,in that they follow the generalexcitatory
and inhibitory connectivity patternsof the cortex (e.g.,
O’Reilly & Munakata,2000; Somers,Nelson,& Sur,
1995;Lumer, Edelman,& Tononi,1997andmany oth-
ers). However, thesenetworksundoubtedlymake many
errorsof omission,giventhatthereis considerablecom-
plexity in thewiring structuresof thehumancortex. As
in othercasesdiscussedabove, it is not yet clearwhat
functional significance(if any) theseomissionsmight
have.

In the few caseswheretheremay be errorsof com-
mission(e.g.,in error-drivenlearningalgorithms),strong
top-down constraintsfrom cognition (e.g., the fact that
people can learn difficult tasks) drive thesepossibly
problematicproperties.Considerableprogresshasbeen
madein developingerror-drivenlearningalgorithmsthat
aremoreconsistentwith known biology (while retaining
thepowerful capabilities),but thereareseveralassump-
tionsthatremainuntested.

Insteadof denyingoutrightthevalueof any givenap-
proach,we arguethat sciencewill beadvancedthrough
the contestof different theoriesas they attemptto ex-
plain increasingamountsof data,andthatcomputational
modelsprovide a valuablesourceof theorizingthat can
provide novel insightsandapproachesto understanding
complex, cognitive neurosciencephenomena. This is
true even if the modelsare simplified andeven if they
containsomeaspectsthat violate what we know about
the brain — verbal theoriesare equally (if not more)
likely to containthe sameflaws. Often,however, these
flawsarehiddenby thevaguenessof theverbaltheories,
while computationalmodelshave the virtue/viceof ex-
posingall the gory detailsandassumptionsrequiredto
actuallyimplementaworking simulation.

In short,wethink thatamajorvalueof computational
modelingis engagingin the processof working out ex-
plicit, mechanistictheoriesof how the brain gives rise
to cognitive function. This processis iterative, cumula-
tive, andnot without controversy. However, its primary
advantageis in directly confrontingthemajorquestions
that needto be answeredto understandhow the brain
doeswhatit does.

GeneralDiscussion

In thisarticle,wehavetouchedonmostof thecentral
aspectsof computationalneuralnetwork modelsfor psy-
chologicalmodeling. Building from individual neurons
to networksthereof,we haveshown how thesenetworks
incorporatemany detailedaspectsof the known neuro-
biology, while still remainingsomewhat abstract. We
emphasizedthat therearemodelingformalismsthat do

not make any obviouserrorsof commission— they do
not violateany well known propertiesof theneuralnet-
worksof thebrain. Nevertheless,it remainsto betested
how importantthe many errorsof omissionare for the
biologicalfidelity of thesemodels.Wethenshowedhow
thesemodelscanspeakto importantissuesin cognitive
neuroscience,including issuesin perception,attention,
memory, andhigherlevel cognition.

In the domainof perception,we showed how basic
learningmechanismsandformsof neuralinteraction(in-
hibitory competition)canleadto thedevelopmentof ef-
ficient representationsfor encodingthe visual environ-
ment. We further summarizedhow attentionaleffects,
which areneededto managethe overflow of perceptual
input,fall naturallyoutof thecombinedneuraldynamics
of bidirectionalconnectivity andinhibitory competition.
Whentheseneuralmechanismsareusedto simulatespa-
tial attentiontaskswidely usedin cognitive psychology,
they provide novel explanationsof both intactandbrain
damagedperformance,whichaccordbetterwith thedata
thanothertheoriesbasedonamoreabstractinformation-
processingapproach.

In the domainof learningandmemory, we showed
how an understandingof the capacitiesof fundamen-
tal neuralmechanismscanleadto insightsinto how the
brain has divided up the overall function of memory.
Specifically, computationaltradeoffs — betweenlearn-
ing specificsversuslearninggeneralitiesandbetweenin-
terconnectedandisolatedrepresentations— suggestthat
different brain areasshould be specializedto perform
thesedifferentfunctions.Thisfits well with awiderange
of data. Thus,the computationalmodelshelp us to un-
derstandnot only how thebrain is organizedto perform
cognitive functions,but alsowhy it might be organized
this way in thefirst place.

In the domainof higherlevel cognition,we showed
how modelshave helpedto begin addressingthe mech-
anismsthat might underliecomplex behaviors, suchas
thosethat requiremoving beyond habitualor prepotent
responses.Specifically, active maintenancesubserved
by prefrontalcortex maysupportalternative choices,al-
lowing habitualbehaviors to be inhibited via lateral in-
hibitory mechanismswithin the cortex. The ability to
rapidly updateactivation-basedrepresentationsin pre-
frontal cortex may be a critical componentof flexible
behavior.

In conclusion,we hope theseexamplesprovide a
sufficient basisto understandboth the strengthsof neu-
ral network modelsandthecriticismssurroundingthem.
Even thoughthereare undoubtedlymany missingfea-
turesof thesemodels,we think they captureenoughof
themostimportantpropertiesto provide satisfyingsim-
ulationsof cognitive phenomena.Furthermore,thevery
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endeaH vor of creatingthesemodelsraisesa largenumber
of importantquestionsthatareonly beginningto bean-
swered.Modelsshouldthusserve asan importantpart
of theprocessof scientificprogressin understandinghu-
mancognition.
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