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Article definition:Computationalneuroscienceinvolvestheconstructionof explicit computational
modelsthat implementneuralmechanismsto simulatecognitive functionssuchas perception,
learningandmemory, motorfunction,andlanguage.
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Introduction

Thisarticledescribescomputermodelsthatsimulatetheneuralnetworksof thebrain,with the
goalof understandinghow cognitivefunctions(perception,memory, thinking, language,etc)arise
from theirneuralbasis.Many neuralnetwork modelshavebeendevelopedover theyears,focused
at many differentlevelsof analysisfrom engineeringto relatively low-level biology to cognition.
Here,we considermodelsthat try to spanthegapbetweenbiology andcognition,suchthat they
dealwith realcognitivedata,usingmechanismsthatarerelatedto theunderlyingbiology.

Therelationshipbetweencognitiveandneuraltheories

Computationalmodelsprovideanimportanttool for linking dataacrossmultiple levelsof anal-
ysis. The cognitive implicationsof cellular andnetwork propertiesof neuronsareoften not im-
mediatelyapparent— therearesimply too many factorsat many different levels interactingin
complex ways.As a result,trying to developbehavioral predictionsthatcapturethecomplexity of
theneurallevel canbelike trying to predicttheweatherfrom anumberof satellitemeasurements.
A computationalmodel,of theweatheror of thebrain,canhelpby formalizinginformationandre-
lating it throughcomplex, emergentdynamics.Cognitivepropertiescanthusbeunderstoodasthe
productof a numberof lower-level interactions,andneuralpropertiescanbeunderstoodin terms
of their functionalrole in cognitiveprocesses.Further, theeffectsof manipulationsto lower-level
interactions(e.g.,throughgeneticknockoutsor lesions)canbesimulatedandreconciledwith the
observedbehavioral effects. Importantly, thesesimulationscanmake senseof muchmoresubtle
behavioral effectsthanthegenericimpairmentof behavior on acognitive task.

Althoughmodelsthushave thepotentialto inform brain-behavior relations,they donotalways
do so. Modelscanbe underconstrainedby neuralandbehavioral data,andthusof questionable
valuein understandinghow thebrain actuallysubservesbehavior. Moreover, modelscanbe put
forth asmeredemonstrationsthat a behavior canbe simulated,but this is insufficient for under-
standingwhy themodelsbehaveasthey do. Thus,modelsmustbeevaluatedin abalancedwayfor
whetherthey advanceunderstandingof specificphenomena,providegeneralprinciples,andmake
usefullinks betweenbrainandbehavior.

In this chapter, we review a numberof neuroscience-basedcomputationalmodelsof various
cognitive phenomena,with anemphasison thegeneralprinciplesembodiedby thesemodelsand
their implicationsfor understandingthe generalnatureof cognition. Specifically, we examine
modelsof: vision, including topographyandreceptive fields in primaryvisual cortex andspatial
attentionemergingfrom interactionsbetweenparietalandtemporalstreamsof processing;episodic
memorysubserved by the hippocampus;conditioningandskill learningsubserved by the basal
gangliaandcerebellum;workingmemoryandcognitivecontrolsubservedby theprefrontalcortex;
andlanguageprocessingguidedbyneuropsychologicalcases.Foramorecomprehensivetreatment
of many of thesemodelsandtheideasbehindthem,seeO’Reilly andMunakata(2000).
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Figure1: Structureof a cortical hypercolumn,that representsa full rangeof orientations(in layers2–
3), ocular dominancecolumns(in layer 4, one for eacheye), and surfacefeatures(in the blobs). Each
suchhypercolumnis focusedwithin oneregion of retinal space,andneighboringhypercolumnsrepresent
neighboringregions.

Computationalmodelsof visionguidedby neuroscience

Vision is oneof thebeststudieddomainsin cognitiveneuroscience,having a long traditionof
integratingbiologicalandpsychophysicallevelsof analysis.Computationalmodelsof visionhave
beeninfluentialin boththevision andcomputationalcommunities.We review two areasof visual
modelinghere:topographyandreceptivefieldsin primaryvisualcortex (V1) andspatialattention
and the effectsof parietallobe damage.Othermajor areasof visual processingthat have been
modeledincludeobjectrecognition,motionprocessing,andfigure-groundsegmentation.

Topographyandreceptivefieldsin primaryvisualcortex

Theprimaryvisualcortex, V1, providesaninterestingtargetfor computationalmodels,because
it hasa complex but relatively well-understoodorganizationof visual featuredetectors(a repre-
sentationalstructure) subjectto considerableexperience-baseddevelopmentalplasticity(Hubel&
Wiesel,1962;Gilbert, 1996). Thus,theoverarchingquestionbehindmany of theV1 modelshas
been:Canwereproducethecomplex representationalstructureof V1 throughprincipledlearning
mechanismsexposedto realisticvisualinputs?

First,wesummarizethecomplex representationalstructureof V1. V1 neuronsaregenerallyde-
scribedasedgedetectors, whereanedgeis simplya roughlylinearseparationbetweena regionof
relative light anddark. Thesedetectorsdiffer in their orientation,size,position,andpolarity (i.e.,
going from light-to-darkor dark-to-light,or dark-light-darkand light-dark-light). The different
typesof edgedetectors(togetherwith otherneuronsthatappearto encodevisual surfaceproper-
ties) arepacked into the two-dimensionalsheetof the visual cortex accordingto a topographic
organization.The large-scaleorganizationis a retinotopicmap that preservesthe topographyof
the retinal imagein the cortical sheet.At the smallerscalearehypercolumns(figure1) contain-
ing smoothlyvaryingprogressionsof orientededgedetectors,amongotherthings(Livingstone&
Hubel,1988). The hypercolumnalsocontainsocular dominancecolumns, in which V1 neurons
respondpreferentiallyto input from oneeyeor theother.

Many computationalmodelshaveemphasizedoneor afew aspectsof themany detailedproper-
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Figure2: The receptive fields of modelV1 neurons(from O’Reilly & Munakata,2000). Lighter shades
indicateareasof on-centerresponse,anddarker shadesindicateareasof off-centerresponse.Individual
unitsareshown by smallergrids(showing weightsinto thoseunitsfrom differentlocationsin theretinally-
organizedinput) organizedinto a largergrid representingthelocationof eachunit within thesimulatedV1
hypercolumn.

tiesof V1 representations(for reviews,seeSwindale,1996;Erwin,Obermayer, & Schulten,1995).
For example,modelshave demonstratedhow oculardominancecolumnscandevelopbasedon a
Hebbian learningmechanism,with greaterlocal correlationsin the neuralfiring coming from
within oneeye thanfrom acrosseyes(Miller, Keller, & Stryker, 1989).Hebbianlearningencodes
correlationalstructureby strengtheningthe weightsbetweenneuronsthat fire together, andde-
creasingthe weightsbetweenthosethat do not (seeOja, 1982;Linsker, 1988 for mathematical
analysesof Hebbiancorrelationallearning).

Severalmodelshavedemonstratedhow arealisticsetof orientededge-detectorrepresentations
candevelopin networkspresentedwith naturalvisualscenes,preprocessedin amannerconsistent
with thecontrast-enhancementpropertiesof theretina(e.g.,Olshausen& Field,1996;Bell & Se-
jnowski,1997;vanHateren& van derSchaaff, 1997;O’Reilly & Munakata,2000).TheOlshausen
andField (1996)modeldemonstratedthatsparserepresentations(with relatively few active neu-
rons)provideausefulbasisfor encodingreal-world (visual)environments,but this modelwasnot
basedon known biologicalprinciples.Subsequentwork hasshown how biologically-basedmod-
elscandeveloporientedreceptive fields,througha Hebbianlearningmechanismwith sparseness
constraintsin the form of inhibitory competitionbetweenneurons(a known propertyof cortex)
(O’Reilly & Munakata,2000). Furthermore,lateral excitatory connectionswithin this network
(anotherknown propertyof cortex) produceda topographicorganizationconsistentwith several
aspectsof thehypercolumnstructure(e.g.,gradientsof orientation,size,polarity, andphasetuning
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Figure3: ThePosnerspatialattentiontask. Thecueis a brighteningor highlighting of oneof theboxes
that focusesattentionto thatregion of space.Reactiontimesto detectthetargetarefasterwhenthis cueis
valid (thetargetappearsin thatsameregion) thanwhenit is invalid (thetargetappearselsewhere).

andpinwheeldiscontinuities;figure2).
To summarize,theseV1 modelsdemonstratehow Hebbianlearningmechanismsexposedto

naturalisticstimuli, with certainkindsof biologicalprestructuring(e.g.,connectivity patternsand
inhibition), canproduceaspectsof theobservedrepresentationalstructureof V1. However, many
complex aspectsof earlyvisualprocessingremainto beaddressed,includingmotion,texture,and
color sensitivity of differentpopulationsof V1 neurons.

Spatialattentionandtheeffectsof parietal lobedamage

Many computationalmodelsof higher-level vision have explored object recognition(e.g.,
Mozer, 1991;Fukushima,1988;LeCun,Boser, Denker, Henderson,Howard,Hubbard,& Jackel,
1989)andspatialprocessing(e.g.,Pouget& Sejnowski, 1997;Mozer & Sitton,1998;Vecera&
O’Reilly, 1998).Herewedescribeamodelof spatialattention(Cohen,Romero,Farah,& Servan-
Schreiber, 1994)thatdemonstrateshow biologically-basedcomputationalmodelscanprovide al-
ternative interpretationsof cognitive phenomena.Spatialattentionhasclassicallybeenopera-
tionalizedaccordingto the Posnerspatialcuing task(Posner, Walker, Friedrich,& Rafal, 1984,
figure3). Whenattentionis drawn or cuedto oneregion of space,participantsarethenfasterto
detecta target in thatregion (a validly cuedtrial) thana targetelsewhere(aninvalidly cuedtrial).
Patientswith damageto theparietallobehaveparticulardifficulty with invalidly cuedtrials.

Accordingto the standardaccountof thesedata,spatialattentioninvolvesa disengagemod-
ule associatedwith the parietallobe (Posneret al., 1984). This moduletypically allows oneto
disengagefrom anattendedlocationto attendelsewhere.This processof disengagingtakestime,
leadingto theslower detectionof targetsin unattendedlocations.Further, thedisengagemodule
is impairedwith parietaldamage,leadingpatientsto have difficulty disengagingfrom attention
drawn to onesideof space.

Biologically-basedcomputationalmodels,basedon recurrentexcitatoryconnectionsandcom-
petitive inhibitory connections,provide an alternative explanationfor thesephenomena(Cohen
et al., 1994;O’Reilly & Munakata,2000). In this framework, the facilitory effectsof drawing
attentionto oneregion of spaceresultfrom excitatoryconnectionsbetweenspatialandotherrep-
resentationsof thatregion — this excitatorysupportmakesit easierto processinformationin that
region. Theslowing that comeson the invalid trials resultsfrom inhibitory competitionbetween
differentspatialregions.Underthis model,damageto theparietallobesimply impairstheability
of the correspondingregion in spaceto have sufficient excitatory supportto competeeffectively
with otherregions.

The two modelsmake distinct predictions(Cohenet al., 1994;O’Reilly & Munakata,2000).
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or example,following bilateral parietaldamage,thedisengagemodelpredictsdisengagedeficits
on both sidesof space(Posneret al., 1984), but the competitive inhibition model predictsre-
ducedattentionaleffects (smallervalid and invalid trial effects). Datasupportthe latter model
(e.g.,Coslett& Saffran,1991;Verfaellie,Rapcsak,& Heilman,1990),demonstratingtheutility of
biologically-basedcomputationalmodelsfor alternative theoriesof cognitivephenomena.

Computationalmodelsof episodicmemoryandthehippocampus

Damageto abrainstructurecalledthehippocampusin themedialtemporallobecanproducese-
verememorydeficits,while alsoleaving unimpairedcertainkindsof learningandmemory(Scov-
ille & Milner, 1957;Squire,1992).Thehippocampushasthusbeena populartargetof computa-
tional modelingto exploreits exactcontribution,andthesemodelshavehada largeimpacton the
field (e.g.,Marr, 1971;Treves& Rolls, 1994;Hasselmo& Wyble, 1997;Moll & Miikkulainen,
1997;Alvarez& Squire,1994;Levy, 1989;Burgess,Recce,& O’Keefe,1994;Samsonovich &
McNaughton,1997).

Oneframework hascombinedknown biological featuresof the hippocampalformationwith
computationallymotivatedprinciplesabout learningand memory to further clarify the unique
contributions of the hippocampusin memory (McClelland, McNaughton,& O’Reilly, 1995;
O’Reilly & Rudy, 2000,2001;O’Reilly & McClelland,1994;O’Reilly, Norman,& McClelland,
1998).Thecentralideais thattherearetwo basictypesof learningthatanorganismmustengage
in — learningaboutspecificsversuslearningaboutgeneralities— andthatbecausethecomputa-
tionalmechanismsfor achieving thesetypesof learningarein directconflict, thebrainhasevolved
two separatebrainstructuresto achieve thesetypesof learning. Thehippocampusappearsto be
specializedfor learningaboutspecifics,while theneocortex is goodat extractinggeneralities.

Learningabout specificsrequireskeepingrepresentationsseparated(to avoid interference),
whereaslearningaboutgeneralitiesrequiresoverlappingrepresentationsthatencodesharedstruc-
ture acrossmany differentexperiences.Furthermore,learningaboutgeneralitiesrequiresa slow
learningrateto graduallyintegratenew informationwith existingknowledge,while learningabout
specificscan occur rapidly. This rapid learningis particularly importantfor episodicmemory,
wherethegoalis to encodethedetailsof specificeventsasthey unfold.

Thesecomputationalprinciplesprovideasatisfyingandprecisecharacterizationof thedivision
of labor betweenthe hippocampusandneocortex. The modelsthat implementtheseprinciples
have beenshown to accountfor a wide rangeof specificlearningandmemoryfindings,including
nonlineardiscrimination,incidentalconjunctive encoding,fearconditioning,andtransitive infer-
encein rats (O’Reilly & Rudy, 2001) and humanrecognitionmemory(O’Reilly et al., 1998).
However, thesemodelsfail to incorporateimportantaspectsof the hippocampalformation(e.g.,
thesubiculumandthemossycellsin thehilus),andmany morecomplex behaviors thatdependon
thehippocampus(andits interactionswith otherbrainareas)remainto beaddressed.
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Computationalmodelsof conditioningandskill learningin thebasalgangliaand
cerebellum

A convergencebetweenbiological/behavioral andcomputationalapproacheshasbeenachieved
in thedomainof conditioning(learningto associatestimuli/actionswith rewards).In thecompu-
tationaldomain,reinforcementlearningmechanismscanadaptthebehavior of asimulatedanimal
accordingto reward contingenciesin the environment (Sutton& Barto, 1998). Such learning
mechanisms,includingthetemporal differencesalgorithm(Sutton,1988),havebeenprovento not
only work well mathematically(e.g.,Dayan,1992),but to alsocorrespondwith aspectsof neural
recordingsmadein thereward-processingareaof thebrain(Montague,Dayan,& Sejnowski,1996;
Schultz,Dayan,& Montague,1997).

Specifically, a straightforwardneuralimplementationof thetemporaldifferencesalgorithmin-
volvesa systematictransitionof reward-relatedneuralfiring similar to thatobservedin dopamine
neuronsin themidbrain.Duringasimpleconditioningtaskwhereasensorystimulus(e.g.,a tone)
reliably predictsa subsequentreward (e.g., juice), theseneuronsinitially fire in responseto the
reward, but thenafter sometrials of learning,they respondto the sensorystimulusthat predicts
therewardandno longerfire to thereward itself (Schultz,Apicella,& Ljungberg, 1993;Schultz,
Apicella,Romo,& Scarnati,1995).This transferof reward-relatedfiring from theactualrewardto
predictorsof therewardis a key propertyof thetemporal-differencesmechanismasimplemented
by Montague,et al. (1996),which thusprovidesa principled,provably-effective explanationfor
why thebrainappearsto learnin this manner.

Modelsof motorperformanceandskill learninghave beendevelopedbasedon thebiological
propertiesof therelevantunderlyingbrainareasincludingthebasalganglia(includingthestriatum,
globuspallidus,substantianigra,subthalamicnucleus,andthenucleusaccumbens)andthecere-
bellum(e.g.,Beiser, Hua,& Houk,1997;Wickens,1997;Houk,Davis, & Beiser, 1995;Berns&
Sejnowski, 1996;Schweighofer, Arbib, & Kawato,1998a,1998b;Contreras-Vidal, Grossberg, &
Bullock, 1997). Thesemodelsmake closecontactwith detailedneuralpropertiesof theseareas,
but tendto focuson simpleraspectsof motorperformance— complex motorskills remainto be
addressed.

Computationalmodelsof workingmemory, cognitivecontrolandprefrontal
cortex

Theprefrontalcortex is importantfor a rangeof cognitive functionsthatcanbedescribedgen-
erallyashigherlevelcognition, in thatthey gobeyondbasicperceptual,motor, andmemoryfunc-
tions. For example,frontal cortex hasbeenimplicatedin problemsolving taskslike the Tower
of Hanoi/London(e.g.,Shallice,1982;Baker, Rogers,Owen,Frith, Dolan,Frackowiak, & Rob-
bins,1996;Goel& Grafman,1995),which requiresexecutinga sequenceof movesto achieve a
subsequentgoal. Many theoreticalperspectivessummarizethefunctionof frontal cortex in terms
of “executive control,” “controlled processing,” or a “central executive” (e.g., Baddeley, 1986;
Shallice,1982;Gathercole,1994;Shiffrin & Schneider, 1977)withoutexplainingatamechanistic
level how suchfunctionalitycouldbeachieved. Computationalmodelsprovide animportanttool
for exploringspecificmechanismsthatmight achieveexecutive-likefunctionality.
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Workingmemoryandactivemaintenance

One proposalalong theselines is that the fundamentalmechanismunderlyingfrontal func-
tion is activemaintenance, which thenenablesall the otherexecutive-like functionality ascribed
to the frontal cortex (Cohen,Braver, & O’Reilly, 1996;Goldman-Rakic,1987;Munakata,1998;
O’Reilly, Braver, & Cohen,1999; O’Reilly & Munakata,2000; Roberts& Pennington,1996).
For example,a flexible, adaptive active maintenancesystemcanenableanentirelydifferentkind
of solutionto informationprocessingchallenges— onethat involvesthestrategic activationand
de-activationof representations(activation-basedprocessing) insteadof weightchanges(weight-
basedprocessing) (O’Reilly & Munakata,2000).Therearetradeoffs betweenthesetypesof pro-
cessing(e.g.,activationscanbemorerapidly switchedthanweights,but they arealsotransient),
sobothkindsof processingarebetterthaneitheralone.

Thereis considerabledirect biological evidencethat the frontal cortex subserves the active
maintenanceof informationover time (i.e., asencodedin thepersistentfiring of frontal neurons)
(e.g.,Fuster, 1989;Goldman-Rakic,1987;Miller, Erickson,& Desimone,1996). Many compu-
tationalmodelsof this basicactive maintenancefunctionhave beendeveloped(Braver, Cohen,&
Servan-Schreiber, 1995;Dehaene& Changeux,1989;Zipser, Kehoe,Littlewort, & Fuster, 1993;
Seung,1998;Durstewitz, Seamans,& Sejnowski, 2000;Camperi& Wang,1997). As elaborated
below, a numberof modelshave further demonstratedthat active maintenancecanaccountfor
frontal involvementin a rangeof differenttasksthatmight otherwiseappearto havenothingto do
with simplymaintaininginformationover time.

Inhibition, flexibility, andperseveration

For example,severalmodelshave demonstratedthatfrontal contributionsto “inhibitory” tasks
canbeexplainedin termsof activemaintenanceinsteadof anexplicit inhibitory function.Actively-
maintainedrepresentationscansupport(via bidirectionalexcitatoryconnectivity) correctchoices,
which will thereforeindirectly inhibit incorrectonesvia standardlateral inhibition mechanisms
within thecortex. A modelof theStrooptaskprovidedanearlydemonstrationof thispoint(Cohen,
Dunbar, & McClelland,1990). In this task,color words(e.g., “red”) arepresentedin different
colors,andpeopleareinstructedto eitherreadthe word or namethe color of ink that the word
is written in. In theconflict condition,the ink color andword aredifferent. Becausewe have so
muchexperiencereading,we naturallytendto readtheword,evenif instructedto namethecolor,
suchthatresponsesareslowerandmoreerror-pronein thecolor-namingconflictconditionthanthe
word-readingone. Thesecolor-namingproblemsareselectively magnifiedwith frontal damage.
Thisfrontaldeficithastypically beeninterpretedin termsof thefrontalcortex helpingto inhibit the
dominantword-readingpathway. However, Cohenetal. (1990)showedthatthey couldaccountfor
bothnormalandfrontal-damagedataby assumingthatthefrontalcortex insteadsupportsthecolor-
namingpathway, which thencollaterallyinhibits theword-readingpathway. Similar modelshave
demonstratedthat in infants,the ability to inhibit perseverative reaching(searchingfor a hidden
toy at a previous hiding locationratherthanat its currentlocation)candevelop simply through
increasingabilitiesto actively maintaina representationof thecorrecthiding location(Dehaene&
Changeux,1989;Munakata,1998).Again,suchfindingschallengethestandardinterpretationthat
inhibitory abilitiesper semustdevelopfor improvedperformanceon this task(Diamond,1991).

Theactivation-basedprocessingmodelof frontal functioncanalsoexplain why frontal cortex
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Figure4: For thepurposesof reading,wordsarerepresentedin a distributedfashionacrossorthographic
(visualword recognition),phonological(speechoutput),andsemanticareas.

facilitatesrapidswitchingbetweendifferentcategorizationrulesin theWisconsincardsortingtask
and relatedtasks. In thesetasks,subjectslearn to categorizestimuli accordingto one rule via
feedbackfrom theexperimenter, andthentherule is switched.With frontal damage,patientstend
to perseveratein usingthepreviousrule. A computationalmodelof arelatedID/ED categorization
taskdemonstratedthat theability to rapidly updateactive memoriesin frontal cortex canaccount
for detailedpatternsof datain monkeys with frontal damage(O’Reilly, Noelle,Braver, & Cohen,
submitted;O’Reilly & Munakata,2000).

In short,computationalmodelsof frontal function canprovide mechanisticexplanationsthat
unify the disparateroles of the frontal cortex, from working memoryto cognitive control and
planning/problemsolving. However, it remainsto beshown whethertruly complex “intelligent”
behavior canbecapturedusingthesebasicmechanisms.

Computationalmodelsof languageuseguidedby neuropsychologicalcases

Damageto language-relatedbrainareascausesa wide varietyof impairments.Onesubsetof
suchimpairments,thedyslexias(alsoknownasalexias) havebeenthesubjectof aseriesof influen-
tial computationalmodelsof thenormalandimpairedreadingprocess(Seidenberg & McClelland,
1989;Plaut& Shallice,1993;Plaut,McClelland,Seidenberg, & Patterson,1996). Thesemod-
elssimulatethepathwaysbetweenvisualword inputs(orthography), word semantics,andverbal
word outputs(phonology), andcanaccountfor differentkindsof dyslexiasin termsof differential
patternsof damageto thesepathways(figure4).

Thesemodelshavebeeninfluentialin partbecausethey suggestanalternative,somewhatcoun-
terintuitive interpretationof how wordsarerepresentedandhow languageprocessingworks. Tra-
ditional modelshave assumedthat the brain containsa lexicon with distinct representationsfor
differentwords. Furthermore,thesemodelsassumethat readinga word aloud(i.e., mappingbe-
tweenorthographyandphonology)canoccurvia two differentroutes: pronunciationrules(for reg-
ular wordslike “make”) or a lookup-tablekind of mechanism(for exceptionwordslike “yacht”)
(Pinker, 1991;Coltheart,Curtis,Atkins, & Haller, 1993;Coltheart& Rastle,1994). In contrastto
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these
	

dual-routemodels,theneuralnetwork modelsallow for asinglepathwayto processbothreg-
ular andexceptionwords,andthey employ a distributedlexicon without any centralized,discrete
lexical representations.Instead,lexical processingoccursin pathwaysthatmapbetweendifferent
aspectsof word representations(figure4).

In general,neuralnetworkscanlearnall kindsof differentmappings— fully regularones,like
thespelling-soundmappingof the“a” in wordslike“make,” “bake,” andsoon,aswell asirregular
mappingsthatoccurin exceptions(e.g.,“yacht”). Nevertheless,networksaresensitiveto boththe
degreeof regularityandthefrequency of differentmappings.Specifically, neuralnetwork models
predictfrequency-by-regularity interactionsthatwould not beexpectedin dual-routemodels,and
thatareobserved in behavioral tests(Plautet al., 1996). Furthermore,thesenetwork modelscan
accountfor patternsof deficit with brain damagethat would seemimprobableunderdual-route
models. For example,peoplewith surfacedyslexia can readnonwords (e.g., “nust”), but they
areimpairedat retrieving semanticinformationfrom writtenwords,andhavedifficulty in reading
exceptionwords.Thus,it wouldbenaturalin neuralnetwork modelsto interpretthisasdamagein
thepathway betweenorthographyandsemantics.Critically however, surfacedyslexics’ difficulty
with exceptionwordsis generallylimited to low-frequency exceptions(e.g.,“yacht”; they canread
high-frequency exceptions,e.g.,“are”). This patternsuggeststhattheremaining“direct” pathway
betweenorthographyandphonologycanhandleboth regularsandhigh-frequency exceptions,as
is trueof thenetwork models.Thispatternof datais noteasilyexplainedin thedual-routemodels
— with two pathways,eitherregularsor exceptionsshouldbeaffected,but not both,andnot asa
functionof frequency.

In summary, neuralnetwork modelsof languagecanprovide alternative,counterintuitiveways
of explaining complex patternsof deficitsthat occurwith brain damage.Nevertheless,this area
remainshighly controversial as neuralnetwork accountsare challengedby revised versionsof
dual-routemodels,andby thecomplexity of differentneuropsychologicalprofilesassociatedwith
damageto differentlanguageareas.

Summary

Theabove examplesillustratethat computationalmodelsbasedon theneuralnetworksof the
brain canprovide importantinsights,insightsthat might otherwisebe difficult to obtain. Many
modelshave applieda setof basicprinciplesto a rangeof phenomena,andarrivedat completely
different explanationsthan thosebasedon purely verbal cognitive theories. As a result, these
modelshaveplayedanimportantrolein guidingempiricalresearchandtheorizingacrossanumber
of domains.

Despitethesesuccesses,many peopleremainskepticalof models.A commonconcernis that
differentmodelsmayemploy differentsetsof mechanismsto explain the samedata,suchthat it
may not be that interestingwhena given modelcansimulatea setof data. Several pointshave
beenmadein responseto this concern.First, this concernappliesnot only to computationalmod-
els, but to scientific theorizingmoregenerally(multiple competingtheoriescanaccountfor the
samedata),andthe responseis similar in eachcase(Munakata& Stedron,in press). Compet-
ing theoriesandmodelscanbeevaluatedby many othercriteria thansimply accountingfor a set
of data,suchastheaccuracy of predictions,thecoherenceof the theoreticalframework, andthe
easeof accountingfor new data. Second,mechanismsdevelopedindependentlycanturn out to
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be



equivalent(e.g.,O’Reilly, 1996),providing convergingevidencefor theirutility, andindicating
morecoherenceto principlesthanmight otherwisebe evident. Third, a commonsetof mecha-
nismsappearsto be emerging as the field continuesto mature. For example,over 40 different
phenomena(including mostof what wasdescribedabove) have beenmodeledusinga common
setof mechanisms(O’Reilly & Munakata,2000). This setof mechanismswasdevelopedover
many yearsby many differentresearchers,andhasnow beenconsolidatedandintegratedinto one
coherentframework (O’Reilly, 1998). Therefore,thereis increasinglya largely consistentsetof
ideasunderlyingmany neuralnetwork models,andthis framework providesoneimportantwayof
understandingthelinkagebetweencognitionandunderlyingneuralsystems.
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Glossary

Neural network models: Thesearemodelsthatsimulateneurons,typically usingsimplifiedap-
proximations( units) thatcapturetheintegrationof synapticinputsvia weights,andproduc-
tion of anactivationoutputthatrepresentssomethinglike therateof neuralfiring. Learning
mechanismsadaptthesynapticweightsto modify thenetwork s function.

Hebbian learning: A learningmechanismthatincreasestheweightsbetweenneuralunitsin pro-
portion to the sendingandreceiving activation (the units that fire togetherwire together).
Provisions for decreasingweightsfor units that do not fire togetherare typically usedas
well. This is typically unsupervisedlearning,in that it worksdirectly from theinputswith-
out targetpatterns(seeerror-drivenlearning).

Err or-dri ven learning: Learningthat adaptsweightsto minimize overall error as recordedon
outputlayersof thenetwork. The error is oftendefinedby comparingoutputsto specified
targetpatterns(calledsupervisedlearning),but other

Inhibitory competition: Whereneuronsinhibit eachotherandthereforecompetefor activation
— themoststronglyactivatedneuronswill inhibit moreweaklyactivatedones.

Interacti ve/recurrent activations: This is wheretwo setsof neuralactivationsinteractby pro-
viding mutualinput to eachother(e.g.,unit A activatesunit B, andB activatesA in turn).

Receptive field: Thesetof stimuli thatactivatea neuron,asdeterminedby its patternof synaptic
connectionsor by recordingits actualresponses.

Word processingpackage

Originally written in LaTeX underLinux, translatedinto RTF andtheninto Word underOffice
2000on aPC(Windows ’98).


