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Article definition: Computationaheurosciencewvolvesthe constructiorof explicit computational
modelsthat implementneuralmechanismgo simulate cognitive functions suchas perception,
learningandmemory motorfunction,andlanguage.
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Introduction

This article describesomputemodelsthatsimulatethe neuralnetworks of the brain, with the
goalof understandingpow cognitive functions(perceptionmemory thinking, languageetc) arise
from their neuralbasis.Many neuralnetwork modelshave beendevelopedovertheyears focused
at mary differentlevels of analysisfrom engineeringo relatively low-level biology to cognition.
Here,we considermodelsthattry to spanthe gapbetweenbiology andcognition,suchthatthey
dealwith realcognitive data,usingmechanismshatarerelatedto the underlyingbiology.

Therelationshipbetweercognitve andneuraltheories

Computationamodelsprovide animportanttool for linking dataacrossnultiple levelsof anal-
ysis. The cognitive implicationsof cellular and network propertiesof neuronsare often not im-
mediatelyapparent— thereare simply too mary factorsat mary differentlevels interactingin
complex ways.As aresult,trying to developbehaioral predictionghatcapturethe compleity of
theneurallevel canbelik e trying to predictthe weatherfrom a numberof satellitemeasurements.
A computationaimodel,of theweatheror of thebrain,canhelpby formalizinginformationandre-
lating it throughcomple, emegentdynamics.Cognitive propertiescanthusbe understoodsthe
productof a numberof lower-level interactionsandneuralpropertiescanbe understoodn terms
of their functionalrole in cognitive processeskurther the effectsof manipulationgo lower-level
interactionge.g.,throughgeneticknockoutsor lesions)canbe simulatedandreconciledwith the
obsenedbehaioral effects. Importantly thesesimulationscanmake senseof muchmoresubtle
behaioral effectsthanthe genericimpairmentof behaior on a cognitive task.

Althoughmodelsthushave the potentialto inform brain-behaior relations they do notalways
do so. Modelscanbe underconstrainetly neuraland behaioral data,andthusof questionable
valuein understandindnow the brain actually subseresbehaior. Moreover, modelscanbe put
forth asmeredemonstrationshat a behaior canbe simulated,but this is insufficient for under
standingwhy themodelsbehae asthey do. Thus,modelsmustbeevaluatedn abalancedvay for
whetherthey advanceunderstandin@f specificohenomenaprovide generabprinciples,andmake
usefullinks betweerbrainandbehaior.

In this chapter we review a numberof neuroscience-basemmputationamodelsof various
cognitve phenomenawith anemphasin the generalprinciplesembodiedby thesemodelsand
their implicationsfor understandinghe generalnatureof cognition. Specifically we examine
modelsof: vision, including topographyandreceptve fieldsin primary visual cortex and spatial
attentioremepgingfrominteractiondetweerparietalandtemporaktream®f processingepisodic
memorysubsered by the hippocampusgonditioningand skill learningsubsered by the basal
gangliaandcerebellumworkingmemoryandcognitive controlsubseredby the prefrontalcortex;
andlanguagerocessingyuidedby neuropsychologicalasesForamorecomprehensietreatment
of mary of thesemodelsandtheideasbehindthem,seeO’Reilly andMunakata(2000).



O'Reilly & Munakata 3
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Figure 1: Structureof a cortical hypercolumn that represents full rangeof orientations(in layers2—
3), oculardominancecolumns(in layer 4, onefor eacheye), and surface features(in the blobs). Each
suchhypercolumrnis focusedwithin oneregion of retinal space andneighboringhypercolumngepresent
neighboringregions.

Computationamodelsof vision guidedby neuroscience

Visionis oneof the beststudieddomainsin cognitive neurosciencehaving a long tradition of
integratingbiologicalandpsychophysicdevelsof analysis.Computationamodelsof vision have
beeninfluentialin boththevision andcomputationatommunities We review two areasof visual
modelinghere:topographyandreceptve fieldsin primaryvisualcortex (V1) andspatialattention
andthe effects of parietallobe damage.Other major areasof visual processinghat have been
modeledncludeobjectrecognitionmotion processingandfigure-groundsegmentation.

Topagraphyandreceptivdieldsin primary visual cortex

Theprimaryvisualcorte, V1, providesaninterestingargetfor computationamodels because
it hasa complex but relatively well-understoodrganizationof visual featuredetectorqa repre-
sentationaktructuie) subjectto considerablexperience-basedevelopmentaplasticity (Hubel &
Wiesel,1962;Gilbert, 1996). Thus,the overarchingguestionbehindmary of the V1 modelshas
been:Canwereproducethe comple representationaktructure of V1 throughprincipledlearning
medanismsaxposedo realisticvisualinputs?

First,we summarizéhecomple representationatructureof V1. V1 neuronsaregenerallyde-
scribedasedge detectos, whereanedgeis simply aroughlylinearseparatiorbetweera region of
relative light anddark. Thesedetectordiffer in their orientation,size,position,andpolarity (i.e.,
going from light-to-dark or dark-to-light, or dark-light-darkand light-dark-light). The different
typesof edgedetectorqtogetherwith otherneuronghatappearo encodevisual surfaceproper
ties) are pacled into the two-dimensionakheetof the visual cortex accordingto a topagraphic
organization. The large-scaleorganizationis a retinotopicmapthat preseresthe topographyof
theretinalimagein the cortical sheet. At the smallerscaleare hypecolumns(figure 1) contain-
ing smoothlyvarying progressionsf orientededgedetectorsamongotherthings(Livingstone&
Hubel, 1988). The hypercolumnalso containsocular dominancecolumns in which V1 neurons
respondpreferentiallyto input from oneeye or the othet

Many computationamodelshave emphasizedneor afew aspect®f themary detailedproper
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Figure2: The receptve fields of modelV1 neurons(from O’'Reilly & Munakata,2000). Lighter shades
indicateareasof on-centeresponseand darler shadesndicateareasof off-centerresponse.Individual
unitsareshavn by smallergrids (shaving weightsinto thoseunitsfrom differentlocationsin theretinally-
organizedinput) organizednto alargergrid representinghelocationof eachunit within the simulatedv1
hypercolumn.

tiesof V1 representationdor reviews, seeSwindale 1996;Erwin, Obermayer& Schulten1995).
For example,modelshave demonstratethow oculardominancecolumnscandevelop basedon a
Hebbian learning mechanismwith greaterlocal correlationsin the neuralfiring coming from
within oneeye thanfrom acrosseyes(Miller, Keller, & Stryker, 1989).Hebbianlearningencodes
correlationalstructureby strengtheninghe weightsbetweenneuronsthat fire together and de-
creasingthe weightsbetweenthosethat do not (seeQja, 1982; Linsker, 1988 for mathematical
analyse®f Hebbiancorrelationalearning).

Severalmodelshave demonstratetiow arealisticsetof orientededge-detectarepresentations
candevelopin networkspresentedvith naturalvisualscenespreprocesseth a mannerconsistent
with the contrast-enhancemeptopertieof theretina(e.g.,Olshauser& Field, 1996;Bell & Se-
jnowski, 1997;vanHateren% van derSchaaf, 1997;0’Reilly & Munakata2000).TheOlshausen
andField (1996) modeldemonstratethat sparserepresentation@with relatively few active neu-
rons)provide ausefulbasisfor encodingreal-world (visual) environments but this modelwasnot
basedon known biological principles. Subsequentvork hasshovn how biologically-basednod-
elscandevelop orientedreceptve fields, througha Hebbianlearningmechanisnwith sparseness
constraintsan the form of inhibitory competitionbetweenneurons(a known propertyof cortex)
(O'Reillly & Munakata,2000). Furthermore lateral excitatory connectionswithin this network
(anotherknown propertyof cortex) produceda topographicorganizationconsistentvith several
aspect®f thehypercolumrstructurg(e.g.,gradientsof orientation size,polarity, andphaseuning
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Figure 3: The Posnerspatialattentiontask. The cueis a brighteningor highlighting of one of the boxes
thatfocusesattentionto thatregion of space.Reactiontimesto detectthe tagetarefasterwhenthis cueis
valid (thetargetappearsn thatsameregion) thanwhenit is invalid (thetargetappear&lsavhere).

andpinwheeldiscontinuitiesfigure 2).

To summarizetheseV1l modelsdemonstratdhow Hebbianlearningmechanism®xposedto
naturalisticstimuli, with certainkinds of biological prestructuringe.g.,connectvity patternsand
inhibition), canproduceaspect®f the obsenedrepresentationadtructureof V1. However, mary
comple aspectof earlyvisual processingemainto be addressedncluding motion, texture,and
color sensitvity of differentpopulationsof V1 neurons.

Spatialattentionandthe effectsof parietal lobe damage

Many computationalmodelsof higherlevel vision have explored object recognition (e.g.,
Mozer, 1991;Fukushima1988;LeCun,Boser Denker, HendersonHoward, Hubbard,& Jaclel,
1989)andspatialprocessinde.g.,Pouget& Sejnavski, 1997;Mozer & Sitton, 1998; Vecera&
O'Reilly, 1998).Herewe describea modelof spatialattention(CohenRomero Farah,& Senan-
Schreiber1994)thatdemonstratebow biologically-basedomputationamodelscanprovide al-
ternatve interpretationsof cognitive phenomena. Spatial attentionhas classicallybeenopera-
tionalizedaccordingto the Posnerspatialcuing task (PosnerWalker, Friedrich,& Rafal, 1984,
figure 3). Whenattentionis dravn or cuedto oneregion of space participantsarethenfasterto
detectatamgetin thatregion (a validly cuedtrial) thanatametelsavhere(aninvalidly cuedtrial).
Patientswith damageo the parietallobe have particulardifficulty with invalidly cuedtrials.

Accordingto the standardaccountof thesedata, spatialattentioninvolvesa disengageanod-
ule associatedvith the parietallobe (Posneret al., 1984). This moduletypically allows oneto
disengagdrom anattendedocationto attendelsavhere. This procesof disengagingakestime,
leadingto the slower detectionof targetsin unattendedocations. Further the disengagenodule
is impairedwith parietaldamageeadingpatientsto have difficulty disengagingrom attention
drawvn to onesideof space.

Biologically-baseccomputationamodels basedon recurrentexcitatory connection@ndcom-
petitive inhibitory connectionsprovide an alternatve explanationfor thesephenomengCohen
et al., 1994; O'Reilly & Munakata,2000). In this framework, the facilitory effects of drawing
attentionto oneregion of spaceresultfrom excitatory connectiondetweenspatialandotherrep-
resentationsf thatregion — this excitatory supportmakesit easierto processnformationin that
region. The slowing that comeson the invalid trials resultsfrom inhibitory competitionbetween
differentspatialregions. Underthis model,damageo the parietallobe simply impairsthe ability
of the correspondingegion in spaceto have sufficient excitatory supportto competeeffectively
with otherregions.

The two modelsmake distinct predictions(Cohenet al., 1994; O’'Reilly & Munakata,2000).
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For example following bilateral parietaldamagethe disengagenodelpredictsdisengageleficits
on both sidesof space(Posneret al., 1984), but the competitve inhibition model predictsre-
ducedattentionaleffects (smallervalid andinvalid trial effects). Data supportthe latter model
(e.g.,Coslett& Safran,1991;Verfaellie,Rapcsak& Heilman,1990),demonstratinghe utility of
biologically-basedomputationamodelsfor alternatve theoriesof cognitive phenomena.

Computationaimodelsof episodicmemoryandthe hippocampus

Damagdo abrainstructurecalledthe hippocampu# themedialtemporalobecanproducese-
verememorydeficits,while alsoleavzing unimpairedcertainkinds of learningandmemory(Scov-
ille & Milner, 1957;Squire,1992). The hippocampu$asthusbeena populartarget of computa-
tional modelingto exploreits exactcontritution, andthesemodelshave hada largeimpacton the
field (e.g.,Marr, 1971; Treves& Rolls, 1994; Hasselmo& Wyble, 1997;Moll & Miikkulainen,
1997; Alvarez& Squire,1994;Levy, 1989;Burgess,Recce,& O’'Keefe,1994; Samsonwuich &
McNaughton 1997).

Oneframavork hascombinedknown biological featuresof the hippocampaformationwith
computationallymotivated principles aboutlearningand memoryto further clarify the unique
contributions of the hippocampusn memory (McClelland, McNaughton,& O’Reilly, 1995;
O'Reilly & Rudy, 2000,2001;0O’'Reilly & McClelland,1994;O’Reilly, Norman,& McClelland,
1998). Thecentralideais thattherearetwo basictypesof learningthatan organismmustengage
in — learningaboutspecificsversudearningaboutgeneralities— andthatbecausehe computa-
tionalmechanism$or achieving thesetypesof learningarein directconflict, thebrainhasevolved
two separatérain structuredo achiere thesetypesof learning. The hippocampusppeardo be
specializedor learningaboutspecificswhile the neocort& is goodat extractinggeneralities.

Learning about specificsrequireskeepingrepresentationseparatedto avoid interference),
whereadearningaboutgeneralitiegequiresoverlappingrepresentationthatencodesharedstruc-
ture acrossmary differentexperiences.Furthermoreearningaboutgeneralitiegequiresa slow
learningrateto graduallyintegratenew informationwith existing knowledge while learningabout
specificscan occur rapidly. This rapid learningis particularly importantfor episodicmemory
wherethe goalis to encodethe detailsof specificeventsasthey unfold.

Thesecomputationaprinciplesprovide a satisfyingandprecisecharacterizatioof thedivision
of labor betweenthe hippocampusand neocort&. The modelsthat implementtheseprinciples
have beenshownn to accountfor awide rangeof specificlearningandmemoryfindings,including
nonlineardiscrimination,incidentalconjunctve encoding fear conditioning,andtransitve infer-
encein rats (O'Reilly & Rudy 2001) and humanrecognitionmemory (O’Reilly et al., 1998).
However, thesemodelsfail to incorporatemportantaspectf the hippocampaformation (e.g.,
thesubiculumandthe mossycellsin the hilus), andmary morecomplex behaiors thatdependn
the hippocampugandits interactionswith otherbrainareasyemainto beaddressed.
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Computationamodelsof conditioningandskill learningin the basalgangliaand
cerebellum

A corvergencebetweerbiological/behaioral andcomputationaapproachebasbeenachiered
in thedomainof conditioning(learningto associatestimuli/actionswith rewards). In the compu-
tationaldomain,reinforcementearningmechanismsanadaptthe behaior of asimulatedanimal
accordingto reward contingenciesn the ernvironment (Sutton& Barto, 1998). Suchlearning
mechanismsncludingthetempoal differencesalgorithm(Sutton,1988),have beenprovento not
only work well mathematicallye.g.,Dayan,1992),but to alsocorrespondvith aspectof neural
recordingsnadein thereward-processingreaof thebrain(Montague Dayan,& Sejnavski, 1996;
Schultz,Dayan,& Montague 1997).

Specifically a straightforvard neuralimplementatiorof thetemporaldifferencesalgorithmin-
volvesa systematidransitionof reward-relatecheuralfiring similar to thatobsenedin dopamine
neuronsn themidbrain.During a simpleconditioningtaskwherea sensorystimulus(e.g.,atone)
reliably predictsa subsequenteward (e.g.,juice), theseneuronsinitially fire in responseo the
reward, but thenafter sometrials of learning,they respondto the sensorystimulusthat predicts
therewardandno longerfire to the rewarditself (Schultz,Apicella, & Ljungben, 1993;Schultz,
Apicella,Romo,& Scarnati,1995). This transferof reward-relatediring from theactualrewardto
predictorsof therewardis a key propertyof thetemporal-diferencesnechanismasimplemented
by Montagueetal. (1996),which thusprovidesa principled, provably-efective explanationfor
why the brainappeardo learnin thismanner

Modelsof motor performanceandskill learninghave beendevelopedbasedon the biological
propertieof therelevantunderlyingbrainareasncludingthebasalganglia(includingthestriatum,
globus pallidus, substantianigra, subthalamiaucleus,andthe nucleusaccumbensandthe cere-
bellum(e.g.,Beiser Hua,& Houk, 1997;Wickens,1997;Houk, Davis, & Beiser 1995;Berns&
Sejnavski, 1996; SchweighoferArbib, & Kawato,1998a,1998b;Contreras-Wal, Grossbey, &
Bullock, 1997). Thesemodelsmalke closecontactwith detailedneuralpropertiesof theseareas,
but tendto focuson simpleraspectof motor performance— complex motor skills remainto be
addressed.

Computationamodelsof working memory cognitive controlandprefrontal
cortex

The prefrontalcortex is importantfor arangeof cognitive functionsthatcanbe describedyen-
erally ashigherlevel cognition, in thatthey go beyondbasicperceptualmotor, andmemoryfunc-
tions. For example,frontal cortex hasbeenimplicatedin problemsolving taskslik e the Tower
of Hanoi/London(e.g.,Shallice,1982; Baker, Rogers,Owen, Frith, Dolan, Fraclowiak, & Rob-
bins, 1996;Goel & Grafman,1995),which requiresexecutinga sequenc®f movesto achieve a
subsequergoal. Many theoreticalperspectiessummarizehe functionof frontal cortex in terms
of “executve control; “controlled processing, or a “central executve” (e.g., Baddelg, 1986;
Shallice,1982;Gathercole1994;Shiffrin & Schneiderl977)without explainingatamechanistic
level how suchfunctionality could be achiezed. Computationamodelsprovide animportanttool
for exploring specificmechanismshatmight achieve executie-like functionality.
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Working memoryandactivemaintenance

One proposalalong theselines is that the fundamentaimechanismunderlying frontal func-
tion is active maintenancewhich thenenablesall the otherexecutve-like functionality ascribed
to the frontal cortex (Cohen,Braver, & O’Reilly, 1996;Goldman-Rakic,1987; Munakata,1998;
O'Reilly, Braver, & Cohen,1999; O'Reilly & Munakata,2000; Roberts& Pennington,1996).
For example,a flexible, adaptve active maintenanceystemcanenablean entirely differentkind
of solutionto informationprocessinghallenges— onethatinvolvesthe strategic activationand
de-actvation of representationfactivation-basegbrocessinginsteadof weightchangegweight-
basedprocessiny (O’'Reilly & Munakata2000). Therearetradeofs betweerthesetypesof pro-
cessing(e.g.,activationscanbe morerapidly switchedthanweights,but they arealsotransient),
sobothkindsof processingirebetterthaneitheralone.

Thereis considerablalirect biological evidencethat the frontal cortex subseres the active
maintenanc®f informationover time (i.e., asencodedn the persistenfiring of frontal neurons)
(e.g.,Fuster 1989; Goldman-Rakic,1987;Miller, Erickson,& Desimone,1996). Many compu-
tationalmodelsof this basicactve maintenancéunction have beendeveloped(Braver, Cohen,&
Senan-Schreiberl995; Dehaene& Changeux1989;Zipser Kehoe Littlewort, & Fuster 1993;
Seung,1998; Durstavitz, Seamans& Sejnavski, 2000;Camperi& Wang,1997). As elaborated
below, a numberof modelshave further demonstratedhat active maintenancecan accountfor
frontalinvolvementin arangeof differenttasksthatmight otherwiseappeato have nothingto do
with simply maintaininginformationovertime.

Inhibition, flexibility, and perseveration

For example,severalmodelshave demonstratethat frontal contributionsto “inhibitory” tasks
canbeexplainedin termsof actve maintenancensteadf anexplicit inhibitory function. Actively-
maintained-epresentationsansupport(via bidirectionalexcitatory connectvity) correctchoices,
which will thereforeindirectly inhibit incorrectonesvia standardateralinhibition mechanisms
within thecortex. A modelof the Strooptaskprovidedanearlydemonstratiof this point(Cohen,
Dunbar & McClelland,1990). In this task, color words (e.g., “red”) are presentedn different
colors,and peopleareinstructedto eitherreadthe word or namethe color of ink that the word
is written in. In the conflict condition,the ink color andword aredifferent. Becauseve have so
muchexperiencereading,we naturallytendto readthe word, evenif instructecto namethecolor,
suchthatresponseareslowerandmoreerrorpronein the color-namingconflictconditionthanthe
word-readingone. Thesecolor-namingproblemsare selectvely magnifiedwith frontal damage.
Thisfrontal deficithastypically beeninterpretedn termsof thefrontal cortex helpingto inhibit the
dominantword-readingpathway. However, Cohenetal. (1990)shavedthatthey couldaccountor
bothnormalandfrontal-damagelataby assuminghatthefrontal cortex insteadsupportghecolor-
namingpathway, which thencollaterallyinhibits the word-readingpathway. Similar modelshave
demonstratedhatin infants,the ability to inhibit perseverative reaching(searchingor a hidden
toy at a previous hiding locationratherthanat its currentlocation) candevelop simply through
increasingabilitiesto actively maintainarepresentationf the correcthiding location(Dehaené&
Changeux1989;Munakata 1998).Again, suchfindingschallengethe standardnterpretatiorthat
inhibitory abilities per semustdevelopfor improvedperformancen this task(Diamond,1991).

The activation-basegrocessingnodelof frontal function canalsoexplain why frontal cortex
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Figure4: For the purposef reading,wordsarerepresenteéh a distributed fashionacrossorthographic
(visualword recognition) phonologicalspeecloutput),andsemanticareas.

facilitatesrapidswitchingbetweerdifferentcateyorizationrulesin the Wisconsincardsortingtask
andrelatedtasks. In thesetasks,subjectslearnto cateyorize stimuli accordingto one rule via

feedbackrom the experimenterandthentherule is switched.With frontal damagepatientstend

to pers@eratein usingthe previousrule. A computationamodelof arelatedD/ED cateyorization
taskdemonstratethatthe ability to rapidly updateactive memoriesn frontal cortex canaccount
for detailedpatternsof datain monkeys with frontal damaggO’Reilly, Noelle,Braver, & Cohen,
submitted;,O’Reilly & Munakata2000).

In short,computationalmodelsof frontal function can provide mechanisticexplanationsthat
unify the disparateroles of the frontal cortex, from working memoryto cognitive control and
planning/problensolving. However, it remainsto be shovn whethertruly comple “intelligent”
behaior canbe capturedusingthesebasicmechanisms.

Computationamodelsof languagaiseguidedby neuropsychologicatases

Damageto language-relatetirain areascauses wide variety of impairments.One subsetof
suchimpairmentsthedysleias(alsoknown asalexias) have beenthesubjectof aseriesof influen-
tial computationamodelsof the normalandimpairedreadingprocesgSeidenbeg & McClelland,
1989; Plaut& Shallice,1993; Plaut,McClelland, Seidenbeg, & Patterson,1996). Thesemod-
els simulatethe pathwaysbetweenvisual word inputs (orthography), word semanticsandverbal
word outputs(phonolay), andcanaccountfor differentkinds of dyslexiasin termsof differential
patternsof damageo thesepathways(figure4).

Thesemodelshave beeninfluentialin partbecauséhey suggesanalternatve, someavhatcoun-
terintuitive interpretatiorof how wordsarerepresente@andhow languageprocessingvorks. Tra-
ditional modelshave assumedhat the brain containsa lexicon with distinct representationfor
differentwords. Furthermorethesemodelsassumehatreadinga word aloud(i.e., mappingbe-
tweenorthographyandphonology)canoccurvia two differentroutes pronunciatiorrules(for reg-
ular wordslik e “make”) or a lookup-tablekind of mechanisn(for exceptionwordslike “yacht”)
(Pinker, 1991;Coltheart,Curtis, Atkins, & Haller, 1993;Coltheart& Rastle,1994).In contrasto
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thesedual-routemodels theneuralnetwork modelsallow for asinglepathwayto proces$othreg-

ular andexceptionwords,andthey employ a distributedlexicon without arny centralizeddiscrete
lexical representationdnsteadjexical processingpccursin pathwaysthatmapbetweerdifferent
aspectof word representationdigure 4).

In generalneuralnetworkscanlearnall kinds of differentmappings— fully regularoneslike
thespelling-sounanappingof the“a” in wordslike “make; “bake; andsoon,aswell asirregular
mappingghatoccurin exceptiong(e.g.,“yacht”). Neverthelessnetworksaresensitve to boththe
degreeof regularity andthe frequeng of differentmappings.Specifically neuralnetwork models
predictfrequeng-by-regularity interactionghatwould not be expectedin dual-routemodels,and
thatareobseredin behaioral tests(Plautet al., 1996). Furthermorethesenetwork modelscan
accountfor patternsof deficit with brain damagethat would seemimprobableunderdual-route
models. For example, peoplewith surfacedysleia canreadnonwords (e.g., “nust”), but they
areimpairedatretrieving semantianformationfrom written words,andhave difficulty in reading
exceptionwords. Thus,it would benaturalin neuralnetwork modelsto interpretthis asdamagen
the pathway betweerorthographyandsemanticsCritically however, surfacedyslexics’ difficulty
with exceptionwordsis generallylimited to low-frequeny exceptionge.g.,“yacht”; they canread
high-frequeng exceptionse.g.,“are”). This patternsuggestshattheremaining‘direct” pathway
betweenorthographyand phonologycanhandleboth regularsandhigh-frequeng exceptions,as
is true of the network models.This patternof datais not easilyexplainedin the dual-routemodels
— with two pathways,eitherregularsor exceptionsshouldbe affected,but not both,andnot asa
functionof frequeng.

In summaryneuralnetwork modelsof languagecanprovide alternatve, counterintuitve ways
of explaining complex patternsof deficitsthat occurwith brain damage.Neverthelessthis area
remainshighly controversial as neuralnetwork accountsare challengedby revised versionsof
dual-routemodels,andby the complexity of differentneuropsychologicgrofilesassociatedvith
damageo differentlanguageareas.

Summary

The abore examplesillustrate that computationamodelsbasedon the neuralnetworks of the
brain can provide importantinsights, insightsthat might otherwisebe difficult to obtain. Many
modelshave applieda setof basicprinciplesto a rangeof phenomenaandarrived at completely
different explanationsthan thosebasedon purely verbal cognitive theories. As a result, these
modelshave playedanimportantrole in guidingempiricalresearckandtheorizingacrossanumber
of domains.

Despitethesesuccessesnary peopleremainskepticalof models.A commonconcernis that
differentmodelsmay employ differentsetsof mechanismso explain the samedata,suchthat it
may not be that interestingwhen a given model can simulatea setof data. Several points have
beenmadein responséo this concern.First, this concernappliesnot only to computationamod-
els, but to scientifictheorizingmore generally(multiple competingtheoriescan accountfor the
samedata),andthe responsas similar in eachcase(Munakata& Stedron,in press). Compet-
ing theoriesand modelscanbe evaluatedby mary othercriteriathansimply accountingfor a set
of data,suchasthe accurag of predictionsthe coherencef the theoreticalframeavork, andthe
easeof accountingfor new data. Second,mechanismslevelopedindependentlycanturn out to



O’Reilly & Munakata 11

beequvalent(e.g.,O’Reilly, 1996),providing cornverging evidencefor their utility, andindicating
more coherencdo principlesthan might otherwisebe evident. Third, a commonsetof mecha-
nismsappeardo be emeging asthe field continuesto mature. For example,over 40 different
phenomendincluding mostof what was describedabore) have beenmodeledusinga common
setof mechanismgO’Reilly & Munakata,2000). This setof mechanismsvas developedover
mary yearsby mary differentresearchergndhasnow beenconsolidategndintegratedinto one
coherentframeavork (O’Reilly, 1998). Therefore thereis increasinglya largely consistensetof
ideasunderlyingmary neuralnetwork modelsandthis framework providesoneimportantway of
understandinghe linkagebetweercognitionandunderlyingneuralsystems.
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Glossary

Neural network models: Thesearemodelsthatsimulateneuronstypically usingsimplified ap-
proximationg units) thatcapturetheintegrationof synapticnputsvia weights,andproduc-
tion of anactivationoutputthatrepresentsomethindik e therateof neuralfiring. Learning
mechanismadaptthe synapticweightsto modify the network s function.

Hebbian learning: A learningmechanisnthatincreasesheweightsbetweemeuralunitsin pro-
portion to the sendingandreceving activation (the units that fire togetherwire together).
Provisionsfor decreasingveightsfor units that do not fire togetherare typically usedas
well. Thisis typically unsupervisedearning,in thatit worksdirectly from the inputswith-
outtametpatterngseeerrordrivenlearning).

Error-drivenlearning: Learningthat adaptsweightsto minimize overall error as recordedon
outputlayersof the network. The erroris often definedby comparingoutputsto specified
targetpatterngcalledsupervisedearning),but other

Inhibitory competition: Whereneuronsinhibit eachotherandthereforecompetefor activation
— themaoststronglyactivatedneuronswill inhibit moreweaklyactivatedones.

Interacti ve/recurrent activations: This is wheretwo setsof neuralactivationsinteractby pro-
viding mutualinputto eachother(e.g.,unit A activatesunit B, andB activatesA in turn).

Receptvefield: Thesetof stimuli thatactvatea neuron,asdeterminedy its patternof synaptic
connection®r by recordingits actualresponses.

Word processingackage

Originally written in LaTeX underLinux, translatednto RTF andtheninto Word underOffice
20000onaPC(Windows’98).



