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ABSTRACT

The hippocampus and related structures are thought to be capable of 1) representing cortical
activity in a way that minimizes overlap of the representations assigned to different cortical patterns
(pattern separation); and 2) modifying synaptic connections so that these representations can later
be reinstated from partial or noisy versions of the cortical activity pattern that was present at the
time of storage (pattern completion). We point out that there is a trade-off between pattern
separation and completion and propose that the unique anatomical and physiological properties of
the hippocampus might serve to minimize this trade-off. We use analytical methods to determine
quantitative estimates of both separation and completion for specified parameterized models of the
hippocampus. These estimates are then used to evaluate the role of various properties and of the
hippocampus, such as the activity levels seen in different hippocampal regions, synaptic potentiation
and depression, the multi-layer connectivity of the system, and the relatively focused and strong
mossy fiber projections. This analysis is focused on the feedforward pathways from the entorhinal
cortex (EC) to the dentate gyrus (DG) and region CA3. Among our results are the following: 1)
Hebbian synaptic modification (LTP) facilitates completion but reduces separation, unless the
strengths of synapses from inactive presynaptic units to active postsynaptic units are reduced
(LTD). 2) Multiple layers, as in EC to DG to CA3, allow the compounding of pattern separation,
but not pattern completion. 3) The variance of the input signal carried by the mossy fibers is
important for separation, not the raw strength, which may explain why the mossy fiber inputs are
few and relatively strong, rather than many and relatively weak like the other hippocampal path-
ways. 4) The EC projects to CA3 both directly and indirectly via the DG, which suggests that the
two-stage pathway may dominate during pattern separation and the one-stage pathway may domi-
nate during completion; methods the hippocampus may use to enhance this effect are discussed.
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INTRODUCTION

It is well accepted that the hippocampus and related struc-
tures are critically involved in memory. However, it is not
yet well understood exactly what role they play. We follow
Marr (1969, 1970, 1971) and many others (Wickelgren, 1979;
Teyler and Discenna, 1986; Sutherland and Rudy, 1989;
Rolls, 1990; Squire, 1992; Schmajuk and DiCarlo, 1992; Gluck
and Myers, 1993; Humphreys et al., 1989; Damasio, 1989) in
proposing that the hippocampus can be understood as part
of a dual memory system consisting of cortical and hippo-
campal components (McClelland et al., 1992, 1994; McClel-
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land, in press). In brief, we propose that the cortex is re-
sponsible for developing stable, efficient, and general repre-
sentations of the world, while the hippocampus is responsible
for storing the contents of specific episodes or events (i.e.,
particular states of the world). The critical distinctions be-
tween these two tasks are the temporal duration underlying
the formation of the representations, and the relationship be-
tween other representations in the system. The hippocampus
must form and store its representations rapidly (in order to
bind together temporally coincident events), while the cortex
must form and store its representations very slowly in order
to capture the relevant general structure common to different
samples of the environment. Representations in the hippo-
campus must be kept distinct, since very similar episodes
often need to be distinguished (e.g., where one parked one’s
car today is not necessarily the same place as yesterday). In
contrast, for the cortex to exploit the shared structure present
in ensembles of events and experiences, it must assign similar
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internal representations to similar events, and to do so it must
make the representations overlap.

Thus, the role in our theory of the hippocampus as a mem-
ory system can be stated quite simply: In addition to the rapid
storage of similar patterns without undue interference, the
hippocampus must be capable of using partial or possibly
noisy cues to retrieve previously stored patterns, so that
memories may be later accessed. Thus, the hippocampus must
perform pattern separation at the time of storage, which makes
the stored patterns more distinct from each other, and pattern
completion at the time of recall in order to recover the full
stored pattern from a partial retrieval cue.

The motivation for the present work comes from the reali-
zation that pattern separation and completion are at odds with
each other. To the extent that the system takes similar input
patterns and separates them, it will form distinct new memo-
ries. However, this will work against the completion process,
which requires that an overlapping input pattern trigger the
recall of an existing memory instead of the creation of a dis-
tinct new one. Thus, to be useful, a memory system like the
hippocampus must have ways of dealing with this trade-off
between pattern separation and completion. Our hypothesis is
that some of the unique anatomical and physiological proper-
ties of the hippocampus can be understood as ways of mini-
mizing this trade-off.

Our investigation follows in the tradition of what
McNaughton has termed the “Hebb-Marr” model (Hebb,
1949; Marr, 1969, 1970, 1971; McNaughton and Morris, 1987;
McNaughton and Nadel, 1990). This model provides a frame-
work for associating functional properties of memory with the
mechanisms of pattern separation, learning {synaptic modifi-
cation), and pattern completion. Further, it relates these
mechanisms to underlying anatomical and physiological prop-
erties of the hippocampal formation. Under this model, the
two basic computational structures in the hippocampus are the
feedforward pathway from the entorhinal cortex (EC) to area
CA3, which is important for pattern separation and pattern
completion, and the recurrent connectivity within CA3, which
is primarily important for pattern completion. The model re-
lies on the sparse, random projections in the feedforward
pathway from the EC to the dentate and CA3, coupled with
strong inhibitory interactions within the dentate gyrus (DG)
and CA3, to form sparse, random, and conjunctive repre-
sentations (i.e., each active unit reflects the influence of a
conjunction of active units in the input). These representations
overlap less than the EC input patterns that give rise to
them—in some cases, as we shall see, this pattern separation
effect can be very dramatic.

We develop a set of analytical models that build upon the
principles of the feedforward component of the Hebb-Marr
model and include several important and previously unex-
plored features of the hippocampus. Other researchers have
developed analytical and simulation models that have ex-
plored some aspects of pattern separation (e.g., Torioka, 1978,
1979; Gibson et al., 1991). The key features that these ap-
proaches share with our own are the explicit consideration of
input pattern overlap as an independent variable in the evalu-
ation of pattern separation and the use of networks that com-
bine the assumption of sparse, random projections with an
idealization of the combined effects of feedforward and lateral

inhibition called the “k-Winners-Take-All” (kWTA) assump-
tion. According to this assumption, feedforward and lateral
inhibition work together so that only a roughly constant num-
ber (k) of neurons in a given region which receive the strong-
est excitatory input become active. These features lead to
pattern separation, which we give an intuitive as well as formal
treatment of based on hypergeometric probability distribu-
tions.

Pattern completion occurs in both the feedforward and re-
current components of the Hebb-Marr model. In the feedfor-
ward case, completion can occur by way of a variable
inhibitory threshold that depends on the total amount of activ-
ity in the input pattern. This threshold allows the full activity
pattern to be active upon presentation of a partial input cue
because the threshold is lower for partial input patterns
(McNaughton and Nadel, 1990). While this mechanism will
work perfectly for orthogonal stored patterns, it breaks down
with increasing overlap, causing erroneous units to become
active. Pattern completion via the recurrent connectivity oc-
curs through a settling process, which results in the progressive
cleanup of a partial cue pattern to a stored attractor pattern.
As many authors have noted, this recurrent projection is prob-
ably used for auto-associating activity patterns within CA3
(e.g., McNaughton and Morris, 1987; Rolls, 1989). Many use-
ful results have already been obtained through analytic studies
of recurrent auto-associative networks (e.g., Treves and Rolls,
1991, 1992; Gibson and Robinson, in press; Amit et al., 1987:
Hopfield, 1982, 1984).

In the context of the extensive literature on recurrent pat-
tern completion, our strategy has been to focus on the rela-
tively neglected feedforward pathway and to relate the
findings we obtain to relevant findings in that literature. To
summarize briefly, the recurrent auto-associative completion
depends on how close the probe pattern is to the stored mem-
ory; therefore, it is useful to do as much pattern completion as
possible in the feedforward system, to maximize retrieval from
the system as a whole. At the same time, maximal separation
of different patterns is necessary to avoid spurious blending of
attractors in the recurrent pathway. Thus, we conclude that it
is useful for the feedforward pathway to do as much of both
completion and separation as is possible, to optimize the over-
all performance of the pattern retrieval system.

Having a concrete computational framework for examining
the influence of various anatomically and physiologically re-
lated variables on both pattern separation and pattern com-
pletion, we are able to quantitatively evaluate the ways in
which the hippocampus might avoid or minimize the effects of
the separation/completion trade-off. Our results indicate that
certain properties of the hippocampus make sense when
viewed in terms of improving the characteristics of this trade-
off.

HIPPOCAMPAL ANATOMY AND
PHYSIOLOGY

In this section, we review aspects of the hippocampal anat-
omy and physiology relevant for our model. First, we present
a functional account of what the different regions of the hip-
pocampus and related structures are doing during storage
and recall of memories. Then, we discuss some anatomical
and physiological properties that motivate the subsequent
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modeling. For the functional account, we briefly review the
relevant features of the hippocampus. The hippocampus
proper consists of a set of interconnected regions known as
the dentate gyrus (DG) and the fields of Ammon’s horn,
which are principally the CA3 and CA1l (see Fig. 1). Both
the DG and the CA3 receive input from the entorhinal cortex
(EC) via the perforant path projections. CAl also receives
input from the EC, but via a different projection arising from
a different layer of the EC (Tamamaki, 1991). CA3 receives
mossy fiber inputs from the DG, and it also has recurrent
collaterals that interconnect neurons within the CA3. CAl
receives projections from the CA3 via the Schaffer collateral
pathway.

Functionally, we think of the hippocampal system as per-
forming the task of an auto-association network that is capable
of recalling from partial cues prior activity patterns over both
the EC and the subiculum. These regions provide both input
into the hippocampus proper and output from the hippocam-
pus to the rest of the brain via extensive bi-directional connec-
tivity with wide areas of the neocortex! (Van Hoesen and
Pandya, 1975a,b; Van Hoesen et al., 1975; Insausti et al., 1978;
Van Hoesen, 1982). Thus, memory retrieval in the hippocam-
pus amounts to performing pattern completion over the EC
and subiculum, which in turn trigger the reinstatement of ac-
tivity patterns in the neocortex that reflect the content of the
original memory. For the remainder of the paper, we consider
only the EC, but assume that some of what is said applies to
the subiculum as well.

The auto-associative function of the hippocampus as a
whole could theoretically have been implemented directly in
the EC via recurrent collaterals similar to those in the CA3,
without the need for any of the “additional” circuitry of the
hippocampus proper. However, since this is not the case, it is
likely that the circuitry of the hippocampus provides some
advantages over a more direct auto-associator. The hypothesis
that we explore in this paper is that this “additional” circuitry
is needed to perform the pattern separation function. In par-
ticular, we analyze the role of the DG and area CA3 in sepa-
rating activity patterns coming from the EC. We consider CA3
to be the locus of storage for the pattern-separated hippocam-
pal representations, while the DG is thought to assist in the
encoding and recall of these representations.

The use of a memory representation in the CA3 that is
different from that in the EC introduces a new problem: How
can the CA3 representation be used to re-activate the original
EC representation in order to perform pattern completion
during recall? This is particularly problematic because the
CA3 representation, by virtue of the pattern separation proc-
ess, should have little direct correlation with the EC pattern
that it represents. Thus, we view the CA1 as being a “transla-
tor” that forms an association between the CA3 repre-
sentation and the EC representation. For this purpose, the
CA1 representations are thought to be stable, relatively
sparse (but not as sparse as the CA3), and most importantly,
invertible.

'"The subiculum is apparently more of an output system than an input
system, although it does provide inputs into area CAl.

Dontate
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Fig. 1. Schematic diagram of the regions of the hippocampus.
In this paper, we focus on the feedforward pathway from the
entorhinal cortex to the dentate and the CA3.

The overall scenario for how memories are encoded in the
hippocampus under this account is as follows:

e An EC representation of the patterns of activity through-
out many regions of the neocortex is formed via projections
from these areas.

* A distinct, pattern-separated representation of the EC ac-
tivity pattern is formed in area CA3, with the help of the
DG.

» Simultaneously, another representation of the EC activity
pattern is formed in the CA1 via direct projections from the
EC. This CA1 representation is invertible, in that it can
reproduce the corresponding EC representation.

e The link between the CA3 and CAl representations is
forged via learning that occurs on the projections from
CA3 to CA1l. This allows the CA3 activity pattern to later
be able to activate the corresponding CA1 activity pattern,
which can in turn activate the original EC representation.

¢ Learning also occurs both in the feedforward pathways to
CA3 from the EC, and in the recurrent collaterals within
the CA3 itself. This learning enables partial input patterns
to trigger pattern completion of the CA3 representation
during recall.

There are several particular features of the hippocampus
which we find to be important for understanding how it carries
out its function. We describe these features in the context of
the rat hippocampus:

¢ In addition to the principal excitatory neurons within each
region of the hippocampal system, there are also inhibitory
interneurons. Both of these neuron types typically receive
excitatory projections from the other regions, but only the
excitatory neurons project out of the region. Thus, the
inhibitory neurons form local feedback circuits that prob-
ably serve to regulate activity levels in the system
(McNaughton and Morris, 1987).

e There are distinct differences in activity levels in the vari-
ous regions of the hippocampus (Fig. 2 shows data from
Barnes et al., 1990). In particular, the DG seems to have an
unusually sparse level of activity, but CA3 and CA1 are
also less active than the input/output layers, EC, and
subiculum.

o The perforant path is a broad, diffuse projection originat-
ing in layer II of the EC. Each DG granule cell receives
roughly 5,000 synaptic inputs (Squire et al., 1989), and each
CA3 cell receives from 3,750 to 4,500 synaptic inputs from
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Fig. 2. Activity levels in the various regions of the hippocam-
pus, computed as mean firing rate divided by maximum firing
rate, which gives percentage of neurons firing at maximum
rate. In general, the inputs to the hippocampus (EC, DG) are
more active, while the layers inside the hippocampus (DG,
CA3, CA1) are less active. The DG figure, which is an esti-
mate (B.L. McNaughton, personal communication), indicates
a much sparser activity level than any of the other areas. Data
for other regions from Barnes et al. (1990).

the EC (Amaral et al., 1990; Brown and Zador, 1990). This
amounts to approximately 2% of the roughly 200,000 layer
11 EC neurons in the rat (Squire et al., 1989).

¢ The DG has roughly four to six times the number of excita-
tory neurons as the other regions of the hippocampus, with
roughly 1 X 10% granule cells in the rat (Boss et al., 1985), as
compared to an estimated 160,000 pyramidal neurons in
CA3 and 250,000 in CA1 (Squire et al., 1989; Boss et al,,
1987).

o The projection between the DG and CA3, known as the
mossy fiber pathway, is distinctive in several ways. It is a
sparse, focused, and topographic (“lamellar”) projection
(Squire et al., 1989). Each CA3 neuron receives only
around 52-87 synapses from this projection (Claiborne et
al., 1986), but each synapse is widely believed to be signifi-
cantly stronger than the perforant path inputs to CA3
{McNaughton and Nadel, 1990) since they terminate close
to the soma, and are relatively large synapses (Brown and
Johnston, 1983; Yamamoto, 1982; Brown et al., 1979).
However, the exact magnitude of the mossy fiber strength
is not known.

o The projections from the EC to the DG and CA3 are
strictly feedforward—no direct feedback from these re-
gions to the EC are known to exist (McNaughton and
Nadel, 1990).

e Associative, N-methyl-D-aspartate (NMDA)-dependent
long-term potentiation (LTP) has been demonstrated in
both the perforant pathway and the Schaffer collateral
pathways (McNaughton, 1983; Brown et al., 1990). LTP has

also been demonstrated in the mossy fiber pathway (Bar-
rionuevo et al., 1986), but it is not NMDA dependent (Har-
ris and Cotman, 1986). It is not known if the LTP in the
mossy fibers is associative (i.e., that both pre- and postsy-
naptic activity is necessary), but many think it is not
(Brown et al., 1990).

¢ In addition, evidence indicates that an associative long-
term depression (LTD) phenomenon might be taking place
in these pathways as well (Levy and Desmond, 1985; Levy
et al., 1990).

Assumptions of the model

The present paper focuses on the feedforward perforant
and mossy fiber pathways and the areas they connect, includ-
ing the EC, DG, and CA3. As such, we base our analytical
model primarily on an abstraction of the perforant path con-
nectivity. The basic building blocks in our model consist of two
layers of units, an input layer and an output layer, and the
connectivity between them (see Fig. 3). Each output unit has a
fixed number, F, of incoming synapses from the input layer,
where F is smaller than the number of units in the input layer,
N, Thus, each output unit is partially connected to the input
layer. The pattern of connectivity is assumed to be completely
random, which is an approximation to the diffuse pattern of
connectivity in the perforant path.?

The activity regulation that appears to be operative in the
hippocampus, which is attributable to the action of inhibitory
interneurons as described above, is captured in our analytical
model by introducing a competitive k-Winners-Take-All
(kWTA) type of activation function. If the kWTA approxima-
tion is correct, then approximately k neurons (out of the entire
output-layer population) will be active at any given point.
These k neurons can be thought of as those that have a level of
excitatory input exceeding the inhibitory input from the in-
terneurons. Thus, one can think of the inhibitory input as a
floating threshold for activation. This kWTA approximation
can be relaxed by allowing fewer than k units to become active
when the input to the system is weak, resulting in a k-or-less
WTA function. This corresponds to using an inhibitory thresh-
old that has a fixed lower bound, but can float above this lower
bound when the input is strong enough. The implications of
this will be explored later in the paper.

The basic two-layer model is specified by four essential
parameters: V;, which is the total number of excitatory input
neurons; k;, which is the number of those input neurons that
are active at any one time (we treat k; as a constant for com-
plete input patterns, which assumes a k€WTA activation func-
tion on the input layer); a,,, which is the percent activity in the
output layer {equivalent to k,/N,, but expressed as a percent-
age for reasons that will become clear later); and the fan-in F.
Given this parameterization, the excitatory input to an output

“This approximation is essential for the analytical model, but simula-
tion models without this constraint, and analyses of the relatively
focused mossy fiber pathway, indicate that some level of ordering of
the connections (i.e., connectivity density determined by a Gaussian
distribution with a o of .25 in units of a half-width of the input layer)
does not affect our results significantly.

85US217 SUOLLILUOD BAIER.D edtdde au Ag paupA0b e Sao1LE VO 88N 0 S3|N. 40J AiqiT UIIUO AB|IM UO (SUORIPLOD-PUe-SWBI WD A8 | 1M Afelq 1 [pU1|UO//SANL) SUORIPUOD PUe SWB | 34} 835 *[€202/70/7T] Uo ARigiaunuo Ao|im ‘sineq -eiuioyied JO AiseAun Ag 50907005 0dIL/Z00T OT/I0p/wWod A5 | 1M Aseiq Ul uoy//Sany wo.y papeoiumoa ‘9 ‘v66T ‘€90T860T



PATTERN SEPARATION AND COMPLETION / O'Reilly and McClelland 665
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Fig. 3. Elements of the two-layer analytical model with ran-
dom connectivity and k-Winners-Take-All (kWTA) activity.
Excitatory input comes into the output layer units from the
active input layer units via sparse random connections. The &
output layer units with the most input (i.e., greatest number of
“hits,” where a weight connects from an active input unit)
actually become active, and their activity suppresses the less
active units (e.g., via lateral inhibitory connections mediated
by inhibitory interneurons, although these are not imple-
mented in the model).

unit will be a function of the number (out of F) of “hits”
(active units) on its input connections. For our purposes, we
assume that the number of hits, denoted H, (where x indicates
which input pattern generated the hits), sufficiently deter-
mines which output units will be active in the kWTA competi-
tion, so there is no need to introduce into the model an
activation function that transforms raw input (H,) into an
equivalent of neural membrane potential.

Our analytical framework centers around the computation
of the conditional probability of an output unit being active
for a particular input pattern (e.g., pattern B) given that it
was previously active for an input pattern (A) that over-
lapped to some degree with B. This framework is then ex-
tended to account for various conditions such as learning that
took place on the active and/or inactive input lines for the
previous pattern; partial input patterns; the presence of mul-
tiple layers of processing; and variable activation thresholds.
In modeling the multi-layer input to CA3 that comes via the
DG, we introduce the problem that the connectivity between
the DG and CA3, the mossy fiber pathway, is focused, and
not diffuse. It happens that this does not affect our model
significantly, for reasons which are discussed in a later section
of this report.

The patterns of activity in area CA3 are the main focus of
our investigation. Even though the CA3 has two sources of
input, the direct perforant path inputs from EC and the mossy
fiber inputs from DG, we can begin by analyzing a simplified
system involving a CA3 having only perforant path inputs and
no mossy fiber inputs. Such a system is useful for determining
the relative effect of the mossy fiber inputs, and the computa-
tions are much simpler and easier to understand. We refer to
such a system as a “monosynaptically connected CA3” or
more simply, a “monosynaptic CA3.” Subsequently, we ex-
tend the model to incorporate both the indirect dentate pro-
jection as well as the monosynaptic EC projection.

Finally, to represent the general order of the anatomical
properties of the hippocampus, we have listed a set of nu-

merical values corresponding to the activity levels, numbers
of excitatory neurons, and numbers of synaptic inputs per
neuron (fan-in) by hippocampal region for the rat in Table
1. We refer to these numbers as the “rat-sized” hippocampus.
The choice of numbers reflects a balance between values
cited in the section on hippocampal anatomy and physiology
and several computational constraints, including avoiding
round-off problems caused by the use of an integer-valued
activity threshold, avoiding future round-off problems when
scaling these values down for simulations, and minimizing
computation time (i.e., there was a bias toward the smaller
end of the range). The effects of the parameters on the
model’s behavior are well understood, and are discussed in
what follows where relevant.

PATTERN SEPARATION

Pattern separation is studied by evaluating the effect of
input pattern overlap on output pattern overlap. This can be
reduced to its simplest form by using two probe stimuli, A and
B, which overlap with each other by a specified amount (i.e.,
they share some percentage of active input units). If A is
presented to the network and the active output units are re-
corded (the o, units), and then B is presented and the corre-
sponding active units are recorded as well (the o, units), then
one can compute the output overlap as the intersection be-
tween the o, and o, sets of units. Pattern separation is the
degree to which this output overlap, denoted Q, is less than
the input overlap §2,.

It has been known since Marr (1969) that circuitry like that
in the hippocampus could lead to pattern separation effects,
and pattern separation has been studied with more sophisti-
cated analytical techniques since then (Torioka, 1978, 1979;
Gibson et al., 1991). Since we use a different analytical frame-
work for exploring pattern separation than was used in pre-
vious approaches, we present our model in detail below.
However, before doing so, we present the central intuition
behind the pattern separation effect. In the kWTA function,
the active (or “winning”) output units for any given pattern x
are those that have a number of hits in the upper tail of the hit
probability distribution (P(H,)), above the inhibitory thresh-
old (H7). Note that this threshold is like the 8 parameter in
Marr’s (1969) “codon” model. Thus, the units that have a
potential to be active for both patterns must first come from
the tail of the hit distribution for pattern A (i.e., P(H,) >=

Table 1. Parameters used in the analytical models*

Area o N Fee Foc
EC 6.25% 200,000 — —
DG 0.39% 850,000 4,006 —
CA3 2.42% 160,000 4,003 64

*Frc is the fan-in from the EC, and likewise Fp; is the fan-in from
the DG. The particular fan-in sizes reflect an attempt to achieve a
consistent output activity level given the round-off errors associated
with the use of an integer threshold. The estimated DG activity level is
from B.L. McNaughton (personal communication), whereas the other
values are referenced in the section on hippocampal anatomy and
physiology.
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H¢,). For these units to be active for pattern B, they have to
again be in the tail for the distribution of hits in pattern B.
However, since this second distribution is derived from the tail
of the first, it differs systematically from it based on the degree
to which A and B overlap. We give this second distribution,
P(H,P(H,) > H?, the shorthand label P(H,,,).

One difference between the P(H,) and P(H, »a) distributions
is that, as overlap increases, the mean of the P(H,,) distribu-
tion moves roughly proportionally from the mean for the
P(H,) distribution (for low overlap equivalent to the activity
level of the input layer) to slightly above the threshold H¢ for
the P(H,) distribution (for fully overlapping patterns).> This
upward shift reflects the increased probability of the output
unit getting hits from the units active in pattern B owing to the
increasing likelihood of the same units that were hits in A
being hits again in B as B overlaps more with A.

In addition, the P(H,,) distribution becomes narrower as
overlap increases. Again, this derives from the fact that the
source of the P(H,,) distribution is the tail of the P(H,) distri-
bution, which is obviously narrower than the entire P(H,)
distribution. Increasing overlap moves P(H,,) from some-
thing that looks like P(H,) for low overlap to something that
looks like the tail of P(H,) for high overlap, resulting in a
narrowing of the distribution. Both the mean-shift and nar-
rowing effects are illustrated in Figure 4, which shows the
original P(H,) distribution and three sample P(H,,) distribu-
tions corresponding to low, medium, and high overlap of B
with A.

Both the mean-shift and narrowing effects contribute to the
increasingly non-linear relationship between output pattern
overlap and input pattern overlap. For all but very high levels
of overlap, the threshold is in the tail of the P(H},) distribu-
tion. Since this has a concave shape, an upward shift of this
distribution increases the area above the threshold dispropor-
tionately less than the shift of the mean. Since this shift of the
mean is roughly proportional to the overlap of the input pat-
terns, the output overlap increases at a slower rate than the
input overlap. Also, the P(H,,) distribution narrows with in-
creasing input overlap so that even less area of the distribution
is abave the threshold until quite high levels of input overlap
are reached.

Given that the mean-shift and narrowing distribution ef-
fects are consequences of the activity threshold being in the
concave tail of the hit distribution, the critical network pa-
rameters that would affect pattern separation are the level of
output activity, which determines how far out in the tail of the
distribution the threshold is set, and factors which determine
the overall shape of the probability distribution, such as fan-in
and number of units. Given that the regions of the hippocam-
pus seem to vary systematically along the dimensions of out-
put activity levels, numbers of units, and fan-in size, we would
expect that different areas have different pattern separation
properties. In particular, we would expect that the DG, with its

3Since the distributions for the fully overlapping input patterns are the
same, the distribution of P(Hpls) for 100% overlap is just the tail of the
P(H,) distribution, and its mean is the mean of the tail.

P(H,)

Input Overlap

Fig. 4. Representation of the effect of increasing input over-
lap on the probability distribution P(H,,), which is derived
from the tail of the distribution P(H,). As input overlap in-
creases, the distributions get narrower and the mean shifts
upward toward the threshold. These changes interact with the
concave shape of the distribution to produce a level of output
overlap that is lower than the input overlap, resulting in pat-
tern separation. Actual distributions shown are based on the
hypergeometric model described in the text.

very low output activity levels, would have very good pattern
separation, relative to the CA3 or CAL1, but these areas would
in turn be better than the EC or the subiculum.

Hypergeometric model

Our apalytical model of pattern separation is based on hy-
pergeometric probability distributions, which is to say that we
explicitly count the various ways of producing different num-
bers of input hits in order to compute their probabilities.
There are two stages of calculation for the basic model of
pattern overlap in a two-layer system. The first is to determine
the appropriate threshold corresponding to a desired level of
output activity given parameters such as the input activity
level, the fan-in for each output unit, etc. The second is to
compute the conditional probability that an output unit will be
active (above threshoid) for input pattern B given that the unit
was active for input pattern A, when B overlaps with A by a
specified proportion. This conditional probability is equivalent
to the expected level of output pattern overlap for the speci-
tied amount of input pattern overlap.

The hypergeometric model can be illustrated with a Venn-
diagram representation, as shown in Figure 5. This figure
shows the space of input units with two subsets, one repre-
senting the input units active for pattern A and the other
representing those input units that a given output unit receives
projections from (i.e., its fan-in). The input set is of size N,
whereas the activity subset is of size k; and the fan-in subset is
of size F. Initially, before any learning takes place, each input
weight to the output unit has a value of 1. The hits for the
output unit are at the intersection of the two subsets, the size
of which is indicated by the variable H,. The probability of an
output unit receiving a particular number of hits is given by the
hypergeometric distribution.
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Fig. 5. Venn-diagram representation of the hypergeometric
model showing the units in the input layer. The overall space
indicated by the rectangular box represents the set of input
units, of size N,. A subset of these units of size k; are activated
by pattern A. In addition, a given output unit with fan-in of
size F is connected to a second subset of input units. The hits
for the output unit are at the intersection of the fan-in and the
activity subsets. The size of this intersection is given by the
variable H,. Note that this representation is not intended to be
topological, as it merely represents the set-wise division of
input units.

The hypergeometric is based on the idea of sampling (with-
out replacement) from an environment containing two Kinds
of things, for example a barrel with red and blue balls. Given a
certain sample size, and a specified number of red and blue
balls in the barrel, the hypergeometric gives the probability of
getting a specific number of red and blue balls in the sample.
Thus, we can think of the fan-in F from a unit being a “sample”
of the input space having both active and inactive units. There
are k; active units, and N; — k; inactive units, and we want the
probability of getting exactly H, active units in the fan-in
sample.

The logic of the expression for the hypergeometric is rela-
tively simple, and we will be generalizing this logic to deal with
more than one distinction in the environment for subsequent
expressions, so we review it here. If one did happen to get H,
of the active inputs in the fan-in “sample,” then there must
have been F — H, of the inactive inputs in the sample. The
hypergeometric computes the number of ways of getting a
specific configuration of active and inactive inputs using the
product of the number of ways of independently choosing H,
items from a population of size k;, and F — H, items from a
population of N; — k;. This total number of configurations that
would lead to H, hits and F — H, inactive inputs is then
divided by the (larger) number of ways of picking any F items
out of a population size N; without regard to which are active
and inactive. This results in an overall probability for getting
H_ hits:

1
@J

where each term in the expression (§) gives the number of
ways of choosing m items from a population of N. Thus, the
expression for the probability of getting H, input hits is P(H,)
= H(Havki’EvNi)'

H(Ho ki, F, Ny =

Determining the kWTA threshold

Using the hypergeometric, it is possible to describe the
probability distribution over the range of possible number of
hits for a given size network. In order to use the probability
distribution to derive a threshold number of hits H, for the
kWTA function, we simply sum over the upper tail of the
distribution until the total probability is equal to the desired
output activity level:

MIN (k, F)
a= D, P(H) )
Hy=H,

where a,, represents the proportion of output units active, not
the number. The value of H? as defined in this equation can be
calculated from a given a, by computing the sum backward
starting from the maximum number of hits (which is the
smaller of k; and F) and stopping when the sum equals or
exceeds the desired a,, with the H, value at that point becon:-
ing Hf. The threshold is qualified by the pattern because its
value will change when learning is introduced later.

Computing output pattern overlap

Output pattern overlap is measured by presenting a pattern
B that overlaps with A. Thus, we think in terms of constructing
B by choosing bits of it from each of the different possible
regions in the input space (shown in Fig. 6a) as defined by a
pattern A presented previously, where the output unit in ques-
tion had H, hits on A. Any randomly selected pattern B will
have a particular number (possibly 0) of units active in each of
these regions. The variables used to represent these numbers
are shown in Figure 6b, with pattern B constrained to have (),
overlap with A. The regions are as follows:

Region 1: Those units which were active in pattern A, but not
among those that were hits. The size of this region is k; —
H,, and any pattern B will have ; — H,, units in this region.

Region 2: Those units which were hits for pattern A, size H,. B
will have H,;, units from this region.

Region 3: Those units which were in the fan-in 7 but not in
pattern A, size F — H,. B will have H;, units from this
region (in B but not A).

Region 4: Those units not in any of the above regions, size N,
— (k; — H,) — H, — (F — H,), which simplifies to N; — k; ~
F + H,. B will have the remaining k; — (; — H,,) — H,, —
H;,, which simplifies to k; — , — H;, units from this
region.
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Reg 4
(not Reg 1,2,3)

Regl (A not H)

Reg 3 (Fnot H)

F

Fig. 6. a: The four regions of the input-unit space where pat-
tern B could intersect, with the input space defined as in the
previous figure for input pattern A and a given output unit. bz
Quantification of the numbers of units in activity pattern B
from each of the four regions shown in part a. There are Q;
units in common with A, and H, hits from the same H, inputs
that were active in A, and Hy, hits unique to pattern B.

Following the logic of the hypergeometric function as de-
scribed previously, we can express the probability of obtaining
any particular pattern B as the product of the number of ways
of getting the specified number of units of B independently
from each of the four regions divided by the number of ways of
choosing any pattern B having {}; overlapping units with pat-
tern A (which can be expressed in terms of choosing ); units
out of A, and k, ~ €}, units out of N; — A):

Py (H, O, Hyp,, Hpp=
ki~ H, ) (Hoy(F~ H\(N—k—F+H) ()
O — Hy | |Ho' | Hz k;— ;= Hgy
ki) [N; —k;
0 k-

Equation 3 can be used to compute the probability distribu-
tion for hits on pattern B by noting that these hits come from
both H,, and H;,, so that the sum of these two numbers from
a particular configuration of B gives the total hits on B, H,.
This summing process can be used both to compute a thresh-
old for pattern B, H?, which may not be the same as H? if
learning has occurred, and to compute pattern overlap in the
output layer. To compute overlap, we must restrict the sum-
mation of probabilities to those configurations of B having a
level of hits on A such that H, >= H? The details of this
process are given in Appendix A, the result of which is an
expression for output pattern overlap proportion (w,) as a
function of input pattern overlap ().

The properties of the P(H},) distribution as given by this
hypergeometric formulation were illustrated in Figure 4. The
distributions shown in the figure were generated using the
monosynaptically connected CA3, rat-sized parameters given
in Table 1. To see more clearly the pattern separation effects
that result from the shape of the P(H,,) distribution as input
pattern overlap increases, we graph the output overlap (given
by equation 8 in Appendix A) as a function of input overlap

using the same rat-sized parameters in Figure 7. The crucial
feature of this graph is that the output overlap falls well below
the diagonal line that represents a linear relationship between
input and output overlap. This “sublinear” output pattern
overlap with respect to input pattern overlap amounts to pat-
tern separation.

While Figure 7 gives a sense of the approximate pattern
separation capabilities of a CA3-like layer receiving only per-
forant path inputs, these results are of most value in their
comparison with those from other parameters and network
configurations, rather than for the actual magnitude of pattern
separation at any given point on the curve, since it is difficult
to estimate the level of input pattern overlap in the rat’s EC
representations. Also, it should be noted that similar results to
those shown in Figure 7 have been obtained by Torioka
(1979), and subsequently by Gibson et al. (1991), with a model
based on the binomial distribution. However, our ability to
extend these results to model several important features of the
hippocampus depends critically upon the hypergeometric for-
mulation.

THE ROLE OF OUTPUT ACTIVITY AND
FAN-IN IN PATTERN SEPARATION

One principal dimension along which the different layers of
the hippocampus vary is the mean level of activity (see Fig. 2),
with the layers within the hippocampus proper (DG, CA3,
CAT1) being more sparsely active than the input/output areas
(EC, subiculum), and the DG having the lowest activity levels.
Using the pattern separation formalism developed above, we
can evaluate the quantitative impact of output activity levels

Pattern Separation
Rat-Sized Monasynaptic CA3

1.0 T T =T L T T —T T T T

09
2 08

e
-~
T T T YT

T T YT

Output Pattern Overla
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60 01 02 03 04 05 06 07 08 09 10
Input Pattern Overlap

Fig. 7. Pattern separation in a rat-sized monosynaptically
connected CA3 (see Table 1 for parameters). Pattern separa-
tion is revealed by the fact that the output pattern overlap falls
well below the diagonal line that corresponds to output pat-
terns having the same level of overlap as the input patterns.
We refer to this as “sublinear” output pattern overlap for a
given level of input pattern overlap.
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Activity Levels and Pattern Separation
Rat-Sized DG, Monosynaptic CA3, and EC
o
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Fig. 8. The effect of output layer activity levels («,) typical of
the EC, DG, and CA3 on pattern separation. Pattern separa-
tion is enhanced for sparser activity levels (especially as input
pattern overlap increases) because the threshold is further in
the tail of the hit distribution. This makes the DG especially
relevant for pattern separation.

typical of the different regions of the hippocampus. Figure 8
shows, as expected, that pattern separation increases with
lower output activity levels.

Aside from the activity level, the other parameter in the
model that would plausibly have an important effect on pattern
separation is the size of the fan-in F to an output unit. Indeed,
intuition may suggest that a smaller fan-in will result in better
pattern separation, because of a reduced probability of contact
with the input activity pattern. However, in the hypergeomet-
ric model, F is equivalent to the “sample” size, which actually
does not affect the probability distribution very much over
broad ranges. Only very small F values or very large F values
(i.e., F close to N;) would give different results. Figure 9 shows
the effects of three different fan-in values on the pattern sepa-
ration effects for a monosynaptically connected, rat-sized CA3
layer. While the small F case shows worse pattern separation,
there is not much of a difference between 4,000 and 20,000. We
interpret this as indicating that once the “sample” is suffi-
ciently large, increasing it more yields decreasing returns. A
smaller fan-in does not improve pattern separation, because
the probability distribution becomes skewed and deviates from
the bell-shaped distributions typical with a larger F (this will be
discussed in more detail below).

It is important to remember that, despite these negative
results for the effect of fan-in size on pattern separation, there
are other properties of the network that the fan-in might plau-
sibly affect, including overall memory storage capacity and the
fault and noise tolerance of the representations.

MULTIPLE STAGES OF PATTERN SEPARATION

Since the DG, which has a more separated representation
than area CA3 by virtue of its lower activity level, feeds into

CA3 via the mossy fiber pathway, there is the potential for a
compounding of the pattern separation effect over multiple
stages. The potential for such a mechanism is great, since each
stage forms the input to the next, and our results indicate that
each stage of a DG-like layer produces dramatic pattern sepa-
ration. However, the most dramatic compounding effects
would be seen in only a few layers. For example, an input
pattern having 90% overlap would result in the following se-
ries of overlaps over succeeding DG-like layers: 50%, 8%,
45%,... .2%. Given that biological network hardware is “ex-
pensive,” one could easily argue that the two layers of com-
pounded separation evident in the disynaptic pathway from
EC to DG to CA3 represent a reasonable cost/performance
tradeoff.

However, what is less clear is why the second stage of the
hippocampal pattern separation system has direct, monosy-
naptic connections from the EC input layer via the perforant
pathway. The mystery of the connectivity into area CA3 is a
complex issue, and we will explore several different reasons
for having direct EC input into area CA3 later in the context
of pattern completion. For the time being we assume that
there is a good reason for the perforant path input to CA3, and
focus on the effects of such input on multiple stage pattern
separation. In particular, we address the following two ques-
tions: 1) How strong do the mossy fiber inputs have to be in
order for CA3 to exhibit the compounding effect? and 2) Why
are the mossy fiber inputs sparse and strong as opposed to
numerous and weak, like the perforant path input?

In order to address these questions, pattern separation for
units in area CA3 is computed using the combination of two
expressions like the one used previously (equation 3). The first

Fan-in Size and Pattern Separation
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Fig. 9. The effect of fan-in (F) on pattern separation, reveal-
ing reduced pattern separation for smaller F values, with not
much difference between 4,000 and 20,000. The fan-in size of
57 was selected because it produced an output activation level
of 2.4%, while other nearby values resulted in elevated or
depressed activation levels owing to integer round-off effects.
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step is to compute the expected output pattern overlap for the
DG, using the single-stage model previously described. Then,
the CA3 output pattern overlap is computed by combining the
EC monosynaptic hit distribution with another monosynaptic
hit distribution computed using the DG pattern overlap as the
input overlap probability. The F, N,, and k; parameters for
each of these inputs correspond to the perforant path and
mossy fiber pathways, respectively. In addition, a new variable
M is introduced which multiplies each hit from the mossy
fibers, allowing the differential strength of this pathway to be
represented. A single configuration of the multi-input CA3
network thus consists of a particular input pattern A, from
the EC, and another A from the DG. Since these are inde-
pendent events, the probability for this configuration is the
product of the two independent probabilities, and the result-
ing total number of hits is the sum of the two individual num-
bers of hits. The same summing and thresholding techniques
that were applied previously can be applied to the resulting
CA3 total input probability distribution.

The strength of DG inputs into CA3

It is reasonable to assume that the balance between the
strength of inputs from the EC and DG to CA3 neurons
should determine the extent that each affects the firing prop-
erties of the CA3. The stronger the input from the DG, the
more pattern separation should be observed because of the
compounding effect, while weaker DG input will allow the EC
inputs to dominate, resulting in the level of pattern separation
shown in the previous figures for the monosynaptically con-
nected CA3. This suggests that the DG input should be strong
relative to the EC input, which is apparently the case with the
mossy fiber input to CA3 as reviewed previously.

However, our results regarding the fan-in size shown in in
Figure 9 indicate that a larger fan-in yields a greater pattern
separation effect. Thus, one might expect there to be many
mossy fiber inputs into each CA3 neuron, but this is not the
case. On the contrary, only about 52-87 mossy fibers synapse
on a given CA3 cell (Claiborne et al., 1986). Further, if we
estimate the balance of the mean number of hits for this few
mossy fiber inputs relative to the perforant path inputs, we
find that the EC input gives over 1,000 times as many hits as
the DG input (using the rat-sized parameters from Table 1 for
the EC input with 6.25% activity on 4,006 input weights, the
mean number of hits is around 244, and for the DG input with
4% activity on 64 input weights, the mean is .23). While the
mossy fibers are probably stronger than the perforant path
ones, the difference is more plausibly on the order of tens of
times stronger, not thousands.

Paradoxically, both the intrinsic pattern separation proper-
ties of a small F and its weakness relative to the EC input into
CA3 would seem to be working against the sparse mossy fiber
inputs. However, Figure 10 shows that even with a mossy
strength of 10 (M = 101n the figure, where M is the strength of
the mossy fiber inputs relative to the perforant path), the DG
input has an effect on pattern separation in CA3. Further, a
mossy fiber strength of 50 gives the same degree of pattern
separation as a system having only mossy fiber inputs (MOnly
in the figure) even though the difference in mean number of
hits in this case still favors the perforant path input by a factor

Mossy Fiber Strength and Pattern Separation
Rat-Sized CA3 w/Mossy and Perforant Path Inputs
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Fig. 10. The effect of different strength mossy-fiber inputs
into CA3 from the DG (Fp; = 64) on pattern overlap in the
CA3, which is also receiving perforant path input from the EC.
The strength of each mossy fiber connection relative to a
perforant path connection is given by the value of M, where M
= 0 is equivalent to the monosynaptically connected CA3.
MOnly means that only mossy fiber inputs were used, which
indicates the greatest amount of compounded pattern separa-
tion. The DG output overlap curve shows that when M is
greater than roughly 15, a compounding of pattern separation
is occurring (since these curves fall below the output overlap
on the DG).

of 20. Finally, this level is better than the pattern separation on
the DG, indicating a compounding effect.

To explain this result, we recall that the pattern separation
effect comes from hits in the tails of the probability distribu-
tion, since it is the elements in the upper tail that participate in
the output activity for the patterns, given the kWTA competi-
tive mechanism. It follows that the distribution that contrib-
utes the most to the upper tail will be the one which most
influences the pattern separation properties of the active units.
When summing two probability distributions, as in the case
with the two EC and DG hit distributions, the distribution that
has the greatest variance will be the one that contributes the
most to the tails of the summed distribution, regardless of its
mean relative to the other distribution.

Thus, we can estimate the effect of mossy fiber strength on
pattern separation in area CA3 by comparing the magnitude
of the variances, not the means, of the two input distributions.
For a .25 input overlap level on the DG and the EC, the
standard deviation of the DG hit distribution (shown in Fig.
11) is.76, while the EC standard deviation is 15. Thus, a mossy
fiber strength of around 20 would equalize the variances of the
two distributions, giving them equal influence over pattern
separation on CA3. Under such conditions, one would expect
to find the pattern separation curve roughly midway between
the perforant-path only curve (“CA3 M = 0” in Fig. 10), and
the mossy only curve. This appears to be the case given the M
= 20 curve shown in the figure.
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P(Hbja) Distribution by Overlap
Rat-Sized CA3 with Mossy Only Inputs
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Fig. 11. Distributions of P(H,,) for different levels of overlap
in a CA3 with mossy fiber only (MOnly) inputs. This figure is
analogous to the bottom part of Figure 4, but the curves are
distinctly not bell-shaped owing to the low N of the hit distri-
bution. The general effect of the small N is a relatively wide
variance and a skewed upper tail. The P(H,) distribution is
shown for reference (remember that P(H,,) is derived from
the tail of P(H,)).

Many and weak vs. few and strong mossy
fibers

There is a continuum of parameters in the model that will
produce the high levels of variance in the distribution of hits
from the DG inputs to CA3 necessary to retain the compound-
ing effect of pattern separation as discussed above. The rele-
vant variables for determining the variance are the size of the
sample (i.e., F), the activity level of the input layer (o), and
the weight multiplier of each mossy input (M). The mean
number of hits is approximately Fo;, and the standard devia-
tion (o) of the hit distribution is:

M

o= —(——

VFOL,' (4)
while the mean input w to the neuron is
w = MFa, (5)

One way to interpret the relationship between M, F, and the
variance and mean of the hit distribution is that, for a fixed
standard deviation level o, a small F and a big M result in less
mean input . to the unit than a big F and a small M. With .25
input overlap, for example, in the case with F = 64 and M =
10,0 =7.6 and p = 7.0, but when F = 4000 and M = 2,0 =
8.0 and p = 32. Functionally, a smaller level of excitory input
is important if the DG does not participate in the pattern
completion process, as will be discussed later. Also, the
smaller level of excitatory input could be biologically relevant
given that extensive circuitry and numbers of inhibitory in-
terneurons are required to control the activity levels of excita-

tory neurons. Further, each axonal process has space and me-
tabolic costs associated with it, so it might be more efficient for
the nervous system to use the small F, big M of the mossy fiber
pathway to obtain sufficient variance in the hit distribution.

A further motivation for preferring the few strong mossy
fibers comes from the skew evident in the hit distribution as
shown in Figure 11. By comparing the standard deviation of
the P(H,) distribution (.48) with that of the P(H,,) distribu-
tion at input overlaps of .25 and .5 (.76 and .81, respectively),
one can see that this skew causes an increase in variance with
increasing input overlap. In contrast, the standard deviations
of the more normal distributions for the EC inputs decrease
with increasing overlap as a result of the narrowing of the
distribution. Thus, the relative impact of the mossy fiber path-
way as measured by variance nearly doubles as input overlap
increases to .5, after which point it decreases again, to a level
of .53 for the .9 input overlap case.

Thus, the size and strength of the mossy fiber pathway is
appropriate for passing the pattern separation benefits of the
DG on to the CA3. Indeed, for mossy strengths greater than
15 in our model, there is a compounding of pattern separation
so that the CA3 actually produces more separated repre-
sentations than the DG. It is also interesting to note that if the
direct perforant path input was not present, the issue of the
balance of variance would not be relevant, and the small fan-in
and large strength of the mossy fiber pathway would be more
difficult to understand in such a system.

Finally, one might wonder why, if the mossy fiber strength is
such that the CA3 only has the pattern separation level of the
DG, the hippocampus does not simply have a monosynapti-
cally connected CA3 with the activity level of the DG, thereby
doing away with the dentate entirely. One answer is that a
sparse activity level interferes with the ability of the recurrent
connections in a CA3-like layer to perform auto-associative
pattern completion. Assuming that the number of synaptic
connections in the CA3 recurrent collateral pathway (on the
order of 10,000) represents an upper limit, then an activity
level on the order of .4% would amount to an average of only
40 active synaptic inputs, compared to the roughly 250 active
inputs from the EC input. It might be difficult for this few of
recurrent inputs to perform the pattern completion function in
the face of the stronger feedforward input. Interestingly, with
a 2.5% activity level, the CA3 recurrent collaterals deliver an
average of 250 active inputs, which is at the same level as the
feedforward input.

PATTERN COMPLETION

Having established in the previous section that effective
pattern separation should occur in area CA3 given its connec-
tivity with the EC and DG, we can now ask how likely it is that
a partial “cue” input pattern will be able to reinstate a pre-
viously stored CA3 output representation. In other words, we
want to know how well the system will be able to remember
stored memories. There are effectively two different forms of
recall cues that can be used, partial cues and noisy cues. A
partial cue is simply a subset of the original activity pattern,
while a noisy one is a subset plus some extra noise that could
come from outside the original activity pattern. As it happens,
the noisy cue is exactly what we have been exploring as the B
pattern above. Thus, we know that noisy cues will tend to
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engage the pattern separation properties of the hippocampal
feedforward circuit. Indeed, we have discovered that a noisy
cue having 90% signal and only 10% noise would have a
less-than 50% output overlap with the original pattern!

However, if the pattern of activity on the EC during recall
were to be just a subset of the original pattern, there is a
possibility that this might instead engage a pattern completion
process. Thus, activity level might be a factor which decides
between separation and completion, allowing for a reasonable
overall tradeoff between the two. This kind of partial input cue
could result from activity in the EC being regulated by a k or
less WTA function, where the threshold is relatively more
fixed, so that weak inputs to the EC result in fewer active units
there. We can investigate this kind of cued-recall using the
analytical methods developed for pattern separation by simply
composing a pattern B which has the overlapping component
as defined before, but not the unique component.

Completion and the effects of learning

Central to the mechanism of pattern completion is the in-
itial storage of memory representations. Clearly, a neural sys-
tem which does not adapt its weights upon presentation of
items to be stored will not be likely to recall these items at a
later point. Figure 12 shows that without learning, a monosy-
naptically connected, rat-sized area CA3 has a pattern com-
pletion function which resembles its pattern separation
function plus a constant offset.

Pattern completion was computed by eliminating from the
expression for pattern separation the terms involving the non-
overlapping portion of a pattern B. The denominator term in
the resulting hypergeometric is just the number of ways the
pattern of size {); can be drawn from a pool of k; units. Thus,

Pattern Completion vs. Separation
Rat-Sized Monosynaptic CA3, No Learning
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Fig. 12. Pattern completion without learning resembles pat-
tern separation plus a relatively constant offset. Note that the
x-axes are comparable in the two cases, in that the completion
case is the same as the separation one except that the non-
overlapping parts are absent in the former case. The y-axes are
equivalent, in that overlap and completion amount to the
same thing in this case. Results shown are for a monosynapti-
cally connected rat-sized CA3.

the probability that any cue pattern B having overlap (}; and
hits in the overlapping region H , is

ki—H, \(H,
Qi - Hnb Hab

4

The tail of this distribution can be summed as before, and a
conditional probability of re-activation to pattern B given ac-
tivity to pattern A can be computed. However, a novel diffi-
culty with this completion formula is that the input pattern B
has a different number of active units depending on the over-
lap. This differential input activity leads to a round-off prob-
lem given that the threshold is an integer value. Even with the
large N of the rat-sized model, the round-off problem leads to
variations in actual output activity level large enough to affect
the output probabilities significantly. To counteract this prob-
lem, a constraint-satisfaction based interpolation algorithm
was developed (see Appendix B), and all completion graphs
are of the interpolated data.

The effect of learning on pattern completion can by studied
in our analytical model as long as simple learning rules are
employed. Since all of the calculations involve computing the
number of hits from different regions of the input space (i.e.,
as defined in the Venn diagrams in Figs. 5 and 6), it is possible
to treat learning as a matter of re-weighting these hits by
varying amounts depending on what region they come from.
We initially consider a weight increase only (W1) learning rule
that resembles associative LTP, a form of long-term synaptic
modification which has been found in many regions of the
hippocampus (McNaughton, 1983; Brown et al., 1990). Under
this rule, an output unit which is active for pattern A will
increase its weights to all input units which were also active.
All other weights remain the same. In terms of the completion
function just described, this weight increase will only affect
those hits coming from the overlapping region, which are H,,
in number. Thus, in the process of tabulating the total number
of hits, H,;, is multiplied by a learning rate factor 1 + L,,,.

Increasing the value of each hit from the overlapping region
during pattern completion will enhance the probability of
completion. Figure 13a shows the effect of different learning
rates on completion in a rat-sized CA3. Completion goes up
with the learning rate, and is quite substantial even with rela-
tively small learning rates. However, the gains made in pattern
completion with increase-only learning have a detrimental ef-
fect on pattern separation, as can be seen in Figure 13b. Since
the overlapping hits H,, are each magnified by the learning,
increasing overlap results in an increasing probability of reac-
tivation with B for units that were active for pattern A.

PS(H,, QY Hy) = (6)

EXPLORING THE TRADE-OFF BETWEEN
SEPARATION AND COMPLETION

The initial results with learning and its effects on comple-
tion and separation seem to substantiate the notion of a trade-
off between the two. In order to capture this trade-off more
directly, we employ graphs such as Figure 14, which shows the
separation and completion data plotted against each other,
making the trade-off clearly evident. The points with no learn-
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a) WI Learning and Pattern Completion
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b) WI Learning and Pattern Separation
Rat-Sized Monosynaptic CA3
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Fig. 13. a: Pattern completion with weight increase-only learning (W1) shows substantial benefits with increasing learning rate,
in that the curves extend well above the diagonal line that indicates the same amount of output pattern completion as is already
present on the input. b: Pattern separation with WI learning shows a critical erosion of pattern separation with increasing
learning rate. As in the previous figure, the separation function resembles the completion one, except now they both favor
completion instead of separation as before. Both graphs are for a rat-sized monosynaptic CA3.

ing show high separation but poor completion, and increasing
the learning rate up through .8 trades increased completion for
poorer separation (only .1 appears in the graph, with the re-
maining points resulting in a loss in separation performance to
big to fit on the graph).

In the trade-off graph, separation and completion are evalu-
ated at fixed points of the input variable (either .5625 overlap
for the separation case or .25 partial cue for the completion
case). These points were selected to maximize the differentia-
tion between different learning rates on completion and sepa-
ration, and not for any particular a priori belief about the
relevant input parameters of the hippocampus. Thus, they
should not be interpreted as an absolute measure of perform-
ance, but should instead be used for comparing the relative
effects of different manipulations on the trade-off function.
The trade-off function used provides the clearest picture of the
qualitative relationship between separation and completion,
but the actual performance could be better or worse for particu-
lar manipulations when evaluated at different points along the
individual separation and completion curves. However, rarely
if ever will it be the case that one condition that looks better
than another in our trade-off function is actually worse for
other points along the completion or separation curves, since
the ordinal relationship between curves tends to remain con-
stant for the different levels of overlap or sizes of partial cue.

Perhaps the most interesting effect shown in Figure 14 is
that the lower activity level of the DG, which results in better
separation than the CA3, actually results in a worse overall
trade-off because of impaired pattern completion. Thus, we
can conclude that lower activity levels impair completion more
than they enhance separation, at least under these conditions.
Further, the higher learning rate necessary for the DG func-

Separation/Completion Trade-off
Rat-Sized Monosynaptic CA3 and DG
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Fig. 14. The trade-off between pattern separation and com-
pletion as a function of different learning rates (0, .1, with the
points for .2, .3, .4, .8 being out of range for this graph) using
increase-only learning. Gains in completion through learning
are completely offset by losses in pattern separation. Further,
activity level appears to hurt completion more than it helps
separation, as is evident by the DG line being below the CA3
one. Values are plotted by computing the difference from the
input value (overlap or separation) as a proportion of the
maximum possible improvement. Reference points of .5625
overlap and .25 partial cue were chosen to maximally differen-
tiate effects of learning rates.
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tion to get to the same level of completion as the CA3 function
is also a problem, since a larger learning rate leads to greater
interference with previously stored representations (a point
that will be elaborated below).

Increase and decrease learning

One approach to improving the trade-off between separa-
tion and completion is to modify the learning rule. Since com-
pletion improves by increasing the weights to overlapping
input units, this aspect of the learning rule must be retained.
However, completion would be unaffected if we simultane-
ously reduced the weights to inactive input units for the active
output units. This would cause units which were active for
pattern A to be less likely to become reactivated for B when
the hits from B come from outside of the original A pattern
(the non-overlapping region, region 3; refer to Fig. 6), and
pattern separation would be improved.

The weight-increase/decrease (WID) learning rule has the
potential to improve the trade-off between separation and
completion because it does not affect the benefits of learning
for completion, while at the same time it enhances separation.
However, it makes further assumptions about the kinds of
synaptic changes taking place in the hippocampus. In particu-
lar, it requires a heterosynaptic long-term-depression (LTD)
phenomenon, which has been described in the hippocampus
(Levy and Desmond, 1985; Levy et al., 1990), but is still the
subject of some debate. Nevertheless, our results indicate that
such a learning rule would be effective in avoiding the separa-
tion/completion trade-off.

In terms of the analytical model, WID learning is imple-
mented in a similar way as WI learning, which is to multiply
the number of hits coming from a particular region by the

a) WID Learning and Pattern Separation
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learning rate parameter. In this case, we add to the WI learn-
ing rule by aiso multiplying the H, hits by 1 — L,,, when
tabulating the probability distribution. Thus, H,, hits are in-
creased by the same amount as the Hj, hits are decreased.
Given that the same learning rate is used for both cases, one
would expect that where most of the hits are coming from the
unique region (i.e., when input overlap is less than 50%), the
LTD-like weight decrease learning would make units which
were active for A4 less likely to be active for B. When most of
the hits come from the overlapping region (i.e., when input
overlap is greater than 50%), the LTP-like weight increase
learning will enhance output overlap. This results in a thresh-
old-based solution to the completion/separation trade-off in
terms of input overlap, so that separation occurs for patterns
with overlap lower than the threshold, and completion occurs
above the threshold. When both increase and decrease learn-
ing have the same rate parameter, the threshold is at around
50% input overlap, but it is possible to move this threshold up
or down by using different L, parameters for weight increase
and decrease.

Figure 15a shows the thresholding effect of WID learning.
As expected, the threshold for pattern separation is centered
around 50% input overlap, so that separation is enhanced
below this level, and completion is favored above it. Plotting
these data against the corresponding completion data in the
trade-off format (Fig. 15b) shows that there are regions of the
learning rate parameter for which the trade-off is more opti-
mal than others. In addition, the pattern separation advantage
for the DG is now preserved for the lower learning rates,
which lends support to the idea that the CA3 should take
advantage of the DG input to better its position on the trade-
off function. This possibility is explored in the next section.

b) Separation/Completion Trade-off: WI vs. WID
Rat-Sized Monosynaptic CA3 and DG
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Fig. 15. a: Pattern separation with weight increase and decrease learning (WID) shows a threshold for pattern separation at
around 50% input overlap, which becomes more pronounced as the learning rate increases. b: The trade-off between pattern
separation and completion as a function of different learning rules, weight increase-only (WI) and weight increase-decrease
(WID). The WID learning rule preserves the pattern separation advantage for the DG over CA3 while retaining comparable

levels of pattern completion.
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Multiple stages of separation and completion

For pattern separation, multiple layers of units can com-
pound the separation effects, which is consistent with the ex-
istence of the EC to DG to CA3 connectivity in the
hippocampus. One might assume that a similar kind of com-
pounding effect would occur for pattern completion since a
partially completed pattern resulting from a first layer of proc-
essing will allow a second layer to complete it further. How-
ever, this is not the case. Instead, owing to the kWTA
competitive activation function, pattern completion in the first
layer will result in a full pattern of activity which overlaps with
the target pattern by the degree of completion, but also has the
remainder of the pattern consisting of units that were not
active for the original pattern. This is because the kWTA
function has a floating threshold, which is lower for partial
input patterns that excite the output units less, thus allowing
the relatively constant k, units in the output layer to become
active. Of these k, units, only a portion of them will be the
same as those active for the full pattern (the completed or
overlapping portion). All of the original units will not be reac-
tivated because the particular subsample of the original input
pattern will favor some distributions of input weights more
than others, and units which would not have enough hits for
the complete pattern can still have enough hits with a partial
input pattern to become active.

The units which become active only for pattern B are essen-
tially noise in the pattern completion process. Thus, instead of
a more complete partial cue pattern resulting from the first
layer of processing, the result is a partially overlapping pattern
like those used in the pattern separation analyses. As such, the
pattern separation function from the first to the second layer
will be highly sensitive to the noise, resulting in an output
pattern in the second layer that has less overlap than the
pattern on the first layer.

The negative impact of multiple stages of processing on
pattern completion may be the key to understanding why the
hippocampus has direct inputs from the EC via the perforant
path. Without this input, the gains in pattern separation from
the two layers of processing could be lost in worse pattern
completion performance. Again, we can view this as a trade-
off function. One plausible hypothesis about the nature of this
trade-off is that the best balance is struck by having a rela-
tively strong multi-layer pathway for pattern separation, but a
not insubstantial direct pathway for pattern completion. Thus,
the extremes of no direct input or all multi-layer input would
be worse than some middle ground between these two alterna-
tives. In the hippocampus, this would amount to the CA3
having strong inputs from the DG but also reasonably influen-
tial inputs directly from EC.

Alternatively, if the hippocampus was able to regulate the
relative strength of the direct vs. multi-stage (DG) inputs
based on the need for completion vs. separation, then the
result could be the best of both compounded separation and
single-stage completion. Indeed, given that the input pattern
characteristics are different for completion and separation
(i.e., completion is driven by a partial cue, while separation
works on full input patterns), there is reason to believe that
the hippocampus could self-regulate the balance between
separation and completion. One mechanism by which this

might happen is a threshold that is determined by factors other
than just the kWTA constraint. For example, as the overall
input becomes weaker, the floating threshold will get lower,
but it might do so at a slower rate than that which would
preserve the full number of active units in the output layer.
Thus, fewer units would become activated, which would send
a weaker signal to the next layer. However, this signal might
be less noisy than with a lower threshold. These issues are
investigated below.

As a first step in exploring the possible implications of the
direct and multi-stage inputs to area CA3, we examined the
interaction between both WI and WID learning and the
strength of the mossy pathway input, which was varied from 0
to a reasonably large value (50), with an extreme case where
no direct perforant path inputs to CA3 existed at all. The
pattern separation figures were generated as described pre-
viously, and the extension of our formalism to multi-layer
pattern completion is a straightforward application of the
same technique. The only difference is that there are now
differences between WI and WID learning for pattern com-
pletion (these rules give identical completion results in the
single-layer case). The difference derives from the fact that the
pattern on the first processing layer (DG) has both overlap-
ping and non-overlapping components, which are increased
and decreased respectively in the WID rule, whereas the non-
overlapping components are not decreased in the WI rule.
Functionally, this will cause CA3 completion to be worse for
DG completion levels under 50% in the WID case than with
W1 learning.

Figure 16 shows the trade-off between separation and com-
pletion in a system having either mossy fibers with a strength
of 0, 15, 15, 25, and 50, or no direct connections between the
EC and the CA3 (the MOnly system), with the DG figures
included for reference. In apparent contrast to the predictions
of the hypothesis that an intermediate mossy fiber strength
would result in the best compromise between separation and
completion, the mossy-only (i.e., a purely multi-stage system
without direct input to CA3) case, because of its enhanced
pattern separation, represents the best trade-off. Thus, the
penalty for multi-stage completion is not so severe as to elimi-
nate the advantages of multi-stage separation. This is under-
standable given that once the pattern overlap exceeds 50%
after the first layer of processing (e.g., in the DG), the second
layer will tend to perform pattern completion given the thresh-
old nature of the pattern separation curves under WID learn-
ing (see Fig. 15a). Therefore, the ill effects of multiple stages
on pattern completion are only evident with very partial input
patterns and/or low rates of learning.

One might argue that given a benefit in performance with-
out the perforant path input to CA3, this pathway is not rele-
vant. However, it is important to consider the learning rate
necessary to achieve a given level of performance on the
trade-off curve. To compare learning rates across the different
trade-off curves, a possible “Trade-off Line” is shown in Fig-
ure 16, which represents a particular choice about the relative
importance of completion vs. separation. The learning rate
associated with the point at which a particular trade-off curve
intersects this line reflects the amount of learning needed to
achieve the desired balance of completion and separation. For
the line shown in the figure, the learning rates increase from a
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Separation/Completion Trade-off: Mossy Fibers
Rat-Sized CA3 with Mossy and DG, WID Learning
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Fig. 16. The trade-off between pattern separation and com-
pletion for area CA3 with different strengths of mossy inputs,
as indicated by the M parameter (M Only means no direct
perforant path inputs were present, mossy fibers only). Even
though completion is considerably reduced for a given learn-
ing rate as mossy strength increases (i.e., individual points at
the same learning rate are shifted to the left), pattern separa-
tion is enhanced by the two-stage system enough to make for
a better overall trade-off, even in the mossy-fiber only ex-
treme. “Tradeoff Line” indicates a possible trade-off choice
between completion and separation, allowing the learning rate
required to intersect this line to be compared across M
strengths.

low of around .1 for the M = 0 case to around 2.6 for the
MOnly case. Since learning is responsible for improving pat-
tern completion, this result follows from the finding that com-
pletion is impaired in a multi-layer system: A larger learning
rate must be used to attain a sufficient level of completion
performance.

If there were no adverse consequences of employing a large
learning rate, then one could argue that the mossy-only system
is more optimal than a combined direct and multi-layer sys-
tem. However, it is generally true that the more weights are
changed in the system, the more likely it is that existing memo-
ries will experience interference, which would limit the ability
of the hippocampus to retain memories over time. Since inter-
mediate values of mossy fiber strength, M = 15, for example,
produce a significant benefit in the trade-off curve but require
a lower learning rate than the mossy-only system for equiva-
lent completion performance, they might represent an overall
better trade-off than the mossy-only system when the cost of
interference is factored in.

Hybrid systems and variable thresholds

As was suggested above, it is possible that the hippocampus
can regulate the effective balance between multi-stage and
direct inputs into area CA3 by taking advantage of differences
in completion vs. separation input patterns. Also, it is possible

that differential learning (or lack of learning entirely) in the
direct vs. multi-stage pathways can improve the trade-off.
These possibilities are referred to collectively as “hybrid sys-
tems,” in that they represent a combination of two distinct
input pathways optimized for completion or separation.

The first hybrid system we consider is the “Mossy For
Separation Only” (MSEPQ), which uses the mossy fiber in-
puts to CA3 only for pattern separation, and not for pattern
completion. Thus, pattern completion in this system will be
like that of the direct pathway system, and separation will be
like that of the combined direct and multi-stage system. Ob-
viously, one could consider a hybrid in which, in addition to
the MSEPO system, the direct pathway was absent for sepa-
ration, resulting in even better separation, but such a system
requires further assumptions for a biological mechanism. The
MSEPO system, on the other hand, has a plausible basis in the
physiology of the hippocampus based on the firing properties
of the DG excitatory neurons, which drive the mossy fiber
inputs to CA3.

The MSEPO system relies on the notion that the low activ-
ity levels of the DG are a product of high levels of inhibition
within this layer. Further, individual neurons have spiking
thresholds that require them to be depolarized a certain
amount above the resting potential. With strong inhibitory
input resulting from the activity of inhibitory interneurons, it is
possible that partial input activity patterns on the EC would be
unable to activate the DG neurons above threshold. Thus,
partial EC input patterns would only activate the direct path
input to CA3, and not the multi-stage mossy fiber inputs be-
cause the DG neurons would not be significantly active, result-
ing in the MSEPO property. This is consistent with the idea
mentioned earlier that the kWTA threshold might be deter-
mined by factors other than the k active units constraint (e.g.,
the neuron’s leak current). While there would probably be a
gradual dropoff in DG activity level with decreasing input
activity, we can model the MSEPO system in an all-or-nothing
way for simplicity.

The other hybrid system we consider is the “Fixed Mossy”
system (FM), which has the mossy fiber weights not subject
to learning. Since learning reduces pattern separation, fixing
the mossy weights should have the effect of increasing pat-
tern separation relative to a system where they are learned,
and since much of the pattern completion is a result of the
direct pathway inputs, this should not affect pattern comple-
tion significantly. Indeed, if the FM manipulation is combined
with MSEPO, then the increase in pattern separation would
not produce any effect on completion since mossy fibers are
only involved in separation anyway. While LTP has been
demonstrated in the mossy fiber pathway (Barrionuevo et
al., 1986), it is not NMDA dependent (Harris and Cotman,
1986), and it is not known if it is associative (Brown et al.,
1990). Thus, the FM condition represents an optimal extreme
that is probably not fully realized in the actual mossy fiber
pathway.

Figure 17 shows that the MSEPO and FM manipulations
have the predicted effects, with the combined FM and
MSEPO (FMSEPO) system producing the best overall trade-
off. Further, the MSEPO manipulations have an advantage
over the other systems because lower learning rates are re-
quired to achieve good performance on the trade-off function.
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Separation/Completion Trade-off: Hybrids
Rat-Sized CA3 with Mossy and DG, WID Learning
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Fig. 17. The trade-off between pattern separation and com-
pletion for area CA3 with two forms of hybrid systems that
enhance multi-stage processing for pattern separation, and/or
single-stage perforant path inputs for pattern completion. One
hybrid is the “mossy-for-separation-only” case (MSEPO),
where the mossy fibers are inactive for completion. The other
is the “Fixed Mossy” case (FM), where the mossy fibers do not
undergo learning. FMSEPO is the combination of these two,
and M = 50 is the “control” condition with the same mossy
fiber strength (50) as the others. The MSEPO hybrids give
better performance at a lower learning rate.

For example the MSEPO conditions produce maximal separa-
tion and completion performance with a .2 learning rate, while
the mossy only condition requires a .3 learning rate. The en-
hanced separation effect from just fixing the mossy fibers is
somewhat offset by poorer completion performance, resulting
in only a slightly better trade-off. This trade-off is not evident
in the MSEPO condition, because the mossy pathway is not
involved in completion in this case, resulting in better per-
formance with the fixed mossy fibers.

The simplified, binary MSEPO hybrid, where the mossy
fiber inputs are either active or not, can be generalized some-
what by exploring the effects of allowing a very small fraction
of DG neurons to be activated during completion. This would
happen if, for example, the threshold for activation in the DG
does not float in such a way as to maintain a fixed number of
active neurons but instead stays fixed or only adapts a little, so
that, when a partial input arises, the number of units that
exceeds threshold is less than in the case where a complete
input is presented. In this case, although fewer of the DG units
that were active when the whole pattern was presented will
become active, the probability that those that do become ac-
tive will have been part of the pattern produced by the com-
plete pattern will increase.

To measure the effect of varying the threshold in our analyti-
cal model, we plot the overall probability that a unit active for
pattern A is re-activated for partial pattern B (P(B|A) P(A))

(i.e., the “signal” strength), the overall probability that a unit
not active in A is activated for pattern B (P(BJA)P(A)) (i.e.,the
“noise”),and the probability, given a unit is active for pattern B,
that it came from those that were active in A (P(A|B)) (i.e.,the
proportion of “signal” in the overall activity pattern). This is
shown for both 25% and 90% input partial cue size in Figure 18
for a rat-sized DG layer without learning. The overall level of
activity corresponds to the sum of the two individual sources of
activity (“signal” and “noise”). This figure indicates that, in-
deed, the DG could send a clearer, though less complete, signal
to CA3 if it did not lower the threshold as much for weaker in-
put cues.
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Fig. 18. “Signal” (P(B|A)P(A)), “Noise” ((P(B/A)P(A)), and
proportion of “Signal” (P(A|B)) as a function of the activation
threshold in completion for the DG. Values are in log coordi-
nates to provide better resolution. The k<WTA threshold is
indicated. For small input cues (e.g., 25%, top), a higher
threshold would send a clearer but weaker signal to CA3, since
the P(A|B) curve continues to get larger with an increasing
threshold. This is not the case with more complete input cues
as in the case of the 90% cue (bottom), where the proportion
of signal is nearly maximal at the kWTA threshold.
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Implications of MSEPO for mossy fiber
strength

The use of the MSEPO condition has implications for the
number and strength of the mossy fiber synapses. During the
initial storage of an activity pattern on CA3, the DG neurons
participate in pattern separation, and the mossy fiber input
into CA3 neurons, together with the direct perforant path
input, plays a role in determining which of these neurons
become active. However, if the mossy fibers are not active
during recall, then only the perforant path inputs determine
which CA3 neurons are active. Thus, learning taking place in
the perforant path inputs has to compensate for the absence of
the DG input during recall that was present during storage.

If the mossy fiber inputs constitute too much of the total
input to the active CA3 neurons, then the learning in the
perforant path inputs will not be capable of making up the
difference during recall, and pattern completion will suffer.
Thus, this is another factor in support of the idea that the
mossy fiber pathway should just provide enough variance in
the tail of the CA3 hit distribution to put a subset of neurons
that are already receiving a large number of perforant path
hits over the activity threshold. One can think of the mossy
fiber pathway as selecting a random sample from the popula-
tion of CA3 neurons that is strongly excited by the perforant
path input. Since this only requires a relatively weak level of
additional input, learning in the perforant pathway can easily
compensate for the absence of the mossy fiber input during
recall.

THE CONSEQUENCES OF A FOCUSED
MOSSY FIBER PATHWAY

One of the assumptions of our analytical model is that the
connectivity is diffuse and approximately random. While this
might be a reasonable approximation for the perforant path
connectivity, it is not so clear that it applies to the mossy fiber
pathway, which has a more focused character. However, there
are two factors that lead us to conclude that the results of our
model presented so far are valid even with the mossy fiber
pathway being focused and not random. One factor is that the
DG activity pattern, having been generated by the competi-
tive activation process based on the random inputs via the
perforant path, can be considered to be randomly related to
the original EC input pattern. Assuming this, then our model
of the DG input to CA3 can treat each DG input unit as an
independent random variable with a probability equal to the
activity level of the layer.

In the context of a random activity pattern on DG, the effect
of a focused vs. diffuse projection to CA3 is to narrow the
range of possible inputs any given CA3 neuron could receive.
Essentially, a narrow mossy projection amounts to each CA3
neuron sampling from a subspace of the DG smaller than the
whole thing. Interpreted in this way, it is possible to determine
what the effects of this “mini DG” input to CA3 would be as
compared to each CA3 neuron sampling from the entire DG.
Intuitively, it might seem that concentrating all of the inputs
from a smaller region of the DG would have a significant im-
pact on the probability distributions for hits, but this is not the
case. The probability distributions from the entire DG do not
differ significantly from those which are obtained when the

CA3 has 64 input weights from a sub-space of the DG having
only 2,000 units in it (roughly .2% of the DG).

When examined in the context of our analytical model, this
result makes sense. Recalling the analogy for the hyper-
geometric probability distribution in terms of balls in a barrel,
the size of the input layer in our model is analogous to the total
number of balls in the barrel. However, since the activity level
is the same (on average) over the entire input layer, the ex-
pected proportion of active to inactive units (“red vs. blue
balls”) remains the same regardless of the number of total
units. While the total number of balls in the barrel is relevant
when sampling with replacement, its relevance decreases as
the number gets larger (e.g., >100). Thus, given a sufficiently
large space to sample from, the probabilities are determined
by the proportion of items in the space more than by the size
of the space itself. We assume that in the case of the mossy
fiber pathway, the projection is sufficiently wide to allow each
CA3 neuron to sample from at least .2% or more of the DG
neurons.

There is an additional consequence deriving from the fo-
cused mossy projection having to do with the effect of the
small “N” of the sample of DG units seen by each CA3 unit.
When each CA3 unit samples from the entire DG, the ex-
pected level of overlap on the DG seen by each unit would be
very close to the probability as we have computed it, because
the variance in overlap level for the 3,400 active DG units is
minimal due to the large number of units contributing (each of
which has the computed, independent probability of being
active in both patterns A and B). The distribution of actual
levels of overlap over the entire DG when each unit has an
independent probability of overlap can be modeled by the
binomial distribution. The standard deviation (in terms of
probability) for such a distribution is Vkw,(1 — w,,g)/kdgi,
which is .00742. However, when computed for the case where
the DG contains effectively 2,000 units, only eight will be
active, so the standard deviation for the overlap distribution
becomes .153. When this rather wider distribution is con-
volved with the non-linearities of the pattern separation curve,
the resulting pattern overlap might not compare very well with
results based on the expected value of DG pattern overlap.

To test this possibility, we computed the pattern separation
on CA3 when using the binomial distribution of DG pattern
overlap as compared to the usual expected value computation.
Since this distinction is relevant only for the mossy fiber inputs
to CA3, we used the mossy-only case with several different
expected DG overlap levels. The CA3 pattern separation is
the convolution of the binomial distribution of DG overlap
levels with their resulting CA3 pattern separation levels. Fig-
ure 19 shows that there is some difference, but it is not sub-
stantial.

DISCUSSION

Through analytical models, we have evaluated and com-
pared with plausible alternatives several properties of the hip-
pocampus in order to determine why the hippocampus is
constructed as it is. The metric we have used in this evaluation
is that of avoiding to the greatest extent possible a trade-off
between pattern separation and pattern completion. This met-
ric derives from a larger theoretical model about what the role
of the hippocampus is for memory and behavior that is consis-
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Efffect of DG Overlap Distribution in Micro-DG
CA3 Overlap from Mossy-Only Input, 2,000 DG units
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Fig. 19. The effect on pattern separation of using the DG
overlap distribution in the micro-DG case (2,000 DG units per
CA3 unit), as compared to using the expected value of DG
overlap. The expected value computation underestimates the
true level of pattern overlap on CA3, but only by a small
amount.

tent with many sources of evidence, from human and animal
amnesics to hippocampal neuron recording data from behav-
ing animals. By using analytical techniques that allow our
results to be generalized along the range of parameters in our
models, we have been able to establish with some certainty
that the parameters corresponding to those of the hippocam-
pus are indeed effective in avoiding the separation/completion
trade-off.

The strength of the mossy fiber inputs from the dentate
gyrus to area CA3 is an important parameter in our model,
with a strength of at least ten times that of a perforant path
synapse being necessary to result in significant improvements
on the separation/completion trade-off. However, we were
able to show that the mossy fibers exert their influence by
having a high level of variance in the input distribution, in-
stead of through their raw strength in “detonating” the cell.
Thus, evidence that indicates that the mossy fibers do not act
as “detonator” synapses (Brown and Zador, 1990) does not
necessarily mean that a more modest level of EPSP would not
be effective in improving the pattern separation properties of
the CA3 neurons.

One feature which we found to be highly significant for
improving the trade-off was the use of an increase and de-
crease weight update function, as opposed to an increase-only
update function. While there is strong evidence that associa-
tive LTP is taking place in the perforant pathway connections
in the hippocampus (McNaughton, 1983; Brown et al., 1990),
the evidence for heterosynaptic LTD, while present, is per-
haps less plentiful (Levy and Desmond, 1985; Levy et al,
1990). Our model leads us to believe that LTD is very impor-
tant for the functioning of the hippocampus, and that the
relative magnitude of LTP vs. LTD would have relevance for
the setting of a separation/completion threshold.

Further, there are some empirical issues regarding the bal-
ance between LTP and LTD that need to be addressed. For
example, if the very simple increase/decrease learning rule
explored in this paper were applied repeatedly for many dif-
ferent patterns, all the' weights in the system would go to zero
(assuming them to be bounded at a lower limit of zero) be-
cause the relatively sparse activity levels in the hippocampus
would cause weights to be decreased much more frequently
than they are increased. One straightforward way of dealing
with this problem is to have the weights approach their upper
and lower bounds using an exponentially decreasing step size,
which dynamically alters the ratio of increase to decrease
learning based on the size of the weight. In addition, one can
use a lower limit that is above zero, so that weights that have
not been potentiated recently are still functional. These modi-
fied learning rules, and other more sophisticated ways of regu-
lating the overall size of the weights, remain to be thoroughly
explored.

In addition to increase/decrease learning, we have identi-
fied several ways in which the hippocampus could further
improve its performance on the separation/completion trade-
off, including the inactivation of the DG neurons for partial
input patterns, and the unmodifiability of the mossy fiber sy-
naptic strength. Neither of these features is as critical to the
functioning of the hippocampus as the LTD learning, but both
have a degree of plausibility that merits further empirical re-
search on these topics.

Our finding that the completion-separation trade-off found
in the feedforward pathway from EC to CA3 is minimized
when the DG participates in initial representation formation
(separation) but not in retrieval (completion) nicely comple-
ments the earlier findings of Treves and Rolls (1992). They
showed that the recurrent collateral feedback from CA3 py-
ramidal cells may tend to swamp the signal arising from the
EC during storage, but that strong mossy fiber input could
overcome this swamping effect. They further noted that asso-
ciative modification of synaptic inputs into CA3 is important if
incomplete input patterns are to successfully initiate pattern
completion via CA3 collaterals. Thus the two analyses both
point to the possibility that the dentate gyrus may play a more
important role in storage than in retrieval.

We would, however, be hesitant to suggest that the DG
typically remains totally inactive during recall. One reason for
this is the fact that the perforant path input to the dentate is
rich in NMDA receptors, and LTP is easily induced in the
perforant path input to the dentate (Bliss and Lomo, 1973). If
the role of the DG is only to separate patterns for encoding,
this plasticity is very puzzling since, as we have seen, LTP
enhances completion but tends to reduce pattern separation.
Indeed, we showed that, while it might require larger learning
rates, a system without the direct perforant path inputs to CA3
can actually perform better on both separation and comple-
tion than a system with both forms of input.

One resolution of this situation would be to exploit the idea
raised in this article that the DG may use a relatively fixed
threshold, so that during completion neurons that become
active are very likely to have been present during earlier stor-
age of the complete pattern. This would then allow the plastic-
ity in the perforant path projection to the DG to result in
enhancement of pattern completion with a minimal disruption
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of the pattern separation effect. Obviously this matter de-
serves further experimental as well as theoretical exploration.

In the course of identifying those parameters which are
relevant for the pattern separation and completion properties
of the hippocampus, we have also identified those parameters
which, despite intuitions to the contrary, are not relevant.
These include the size of the fan-in, and the focused aspect of
the mossy fiber pathway projections to CA3. In both cases,
these parameters affect variables in the probability distribu-
tions that reflect the sample size used in computing the distri-
butions, but not the intrinsic probabilities. The fan-in size is
like the sample taken of the input environment, and as long as
this is sufficiently large, the statistics of the input layer will
determine the probability distribution. Similarly, the focused
mossy fiber projection amounts to giving each CA3 neuron a
smaller subspace of the DG input layer from which to sample.
Again, as long as this sample is sufficiently large (e.g., above
1,000 or so), then the difference between a focused and a
diffuse mossy pathway is not substantial. Of course, there are
likely to be other constraints on these parameters which are
not included in our model.

A central question that arises concerns the degree to which
our models can be related to empirical findings. We have
attempted to incorporate findings from the literature on hip-
pocampal anatomy and physiology into our models and to
evaluate their impact on pattern separation and compietion.
However, the actual results from our model have not been
compared to results obtained by recording the activity pat-
terns of neurons in the hippocampus. This is because the rele-
vant data have yet to be collected. Little is known about the
pattern overlap and level of activity on the entorhinal cortex in
different behavioral contexts, to say nothing of the simultane-
ous recording of this kind of data from the EC, DG, and CA3.
The kind of data our model needs can best be provided by
massive paralle] recording of activity patterns in different re-
gions of the hippocampus, because our predictions are about
pattern level properties, not about the individual firing pat-
terns of single neurons. The kind of recording techniques re-
quired are just being developed (Wilson and McNaughton,
1993), and we eagerly await the data they will provide..

Thus, we feel that our work makes a contribution by identi-
fying and comparing at a very basic level several important
mechanisms that are almost undoubtedly involved in how the
hippocampus functions. There is ample support for the notion
that activity in the hippocampus and elsewhere in the brain is
regulated by a network of inhibitory interneurons, and that
there are significant differences between the activity levels of
different hippocampal regions. Further, the anatomical con-
nectivity of the perforant path and the mossy fiber pathway
have been extensively studied, and their properties are reason-
ably well established. Given that our model is based upon only
the two assumptions of activity regulation and diffuse, random
connectivity, its behavior is almost certainly relevant for un-
derstanding the role of the perforant path in the DG and area
CA3.

Further, our model is able to relate neural mechanisms on
the one hand with behaviorally relevant information process-
ing functions on the other, establishing a critical link for un-
derstanding the role of the hippocampus in the broader
context of animal and human behavior. In summary, perhaps

the best interpretation of our results is that we cannot say that
we now know for sure what the hippocampus is doing, but we
can say that if it is doing what we think it is, then it is well
designed to do so.
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APPENDIX A: COMPUTING
THE CONDITIONAL PROBABILITY FOR
H, GIVEN H,

Given a specific number of hits H, on pattern A, the prob-
ability that a unit will be active for a pattern B will be the
cumulative probability of getting more than H? total hits from
the presentation of pattern B. Since these hits will come from
both H,, and H;,, we need to perform a double-sum over all
possible combinations of these numbers which will lead to
having more than H? total hits:

MINQ, H, K-
Pf'(Ho, ) = 3 >
H,, = MAX(0, H, — (k, — Q) Hap =0 N

Py(Ha, Qi Houp, Hapy s Hop + Hap= HY
0 ; otherwise.

The lower limit on the H;, sum term is necessary to prevent
. o k;— H, .
the first coefficient in the numerator (Ql— “J from being
7 ab
undefined due to trying to select more units (; — H,;)

than are in the region (k; — H,). The upper limit prevents a
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similar problem from happening with the second coefficient,
which has a total of H, possible units in it.

Since equation 7 gives the probability for activity in B for a
specified prior H, level, the total probability for activity in B
among those units which were active in A is the sum over the
tail of this probability distribution where H, >= H%. The con-
ditional probability is just this total divided by the prior prob-
ability for activity in A:

wy(Q) = P(H, = H)\H,= H) =

> PRH, Q) ®)

H, = H|

'

Qo

APPENDIX B: INTERPOLATION ALGORITHM
FOR PATTERN COMPLETION CURVES

This algorithm takes advantage of the information about
what the actual output activity was for each data point, which
gives an estimate of the magnitude of the error of the data
point as compared to the desired output activity level. The line
is fit through the data points by incorporating smoothness
constraints with a data-fitting cost function that uses both the
actual output completion data and the deviation in output
activation level. This algorithm produced smooth lines having
total squared errors (in terms of the cost function being mini-
mized) of less than .01.

There are four terms in the cost function which is iteratively
minimized along the gradient of the function with respect to
the parameters: local and average slope deviation (i.e.,
smoothness constraints), an exponential function of the actual
activation level error which is used to correct the actual data
points, and the squared distance between the corrected data
points and the fitted line. The parameters of the function are
two parameters of the exponential function (g = gain and 0 =
offset), the weighting of the exponential function term, k,,,,
and the weighting of the entire error term, k,,,, and the N data
point estimates, d; _y.

The cost of the local-slope deviation is just the slope be-
tween the current estimate point and the previous one and the
slope between the previous two points (it is 0 before i = 3):

ca=m2¥ﬂ—£_o—wﬁ1—ﬁ~mz ©

where k; is a weighting constant. The derivative of this with
respect to the estimate is

CS * 23
o= —hldi —di )~ —dia). (10)
The aggregate slope deviation is computed by first comput-
ing the mean local slope within a range 7 around a given data

point:

i+r

1
S,':— Z d;_dj*+1
r 4, (11

The cost term is then just the squared difference between this
and the slope at the current point times a weighting constant

(ky):
Cs = kx 2 ((d;k - d: — 1) - si)z- (12)

The derivative of this term with respect to the estimate point is

3 = ki - d - - s, (13)
o

The exponential function which scales the activation-level
error is specified as a function of the input overlap proportion

{w;)
forr = €977 (14)

which reflects the increasing influence of the activation error
as overlap increases. The error term used to correct the ob-
tained pattern overlap data points is

err, = (OL,, - 0‘2’)(1 + ke.rpferr) (15)

where o is the output activity level associated with the data

point d; and «, is the desired activity level for the output layer.
Finally, the data cost is just the difference between the

estimate and the obtained data (d;) minus the error term:

Cy= kar(d;'k —(di— kerre”ri))2~ (16)

The gradient of this cost term is taken with respect to each of

the modifiable parameters. We let a,,, = (e, — o)

3Ca _ _ ky(d; — (d; — err)) (17a)
dd;

4~ hed ~ (d; ~ ernpyem, (17b)
8kerr
8Cy .

—Bkm, = — ky(d; — (d; — err))konerder (170)
88—(;1 = - kd(d: - (d, - erri))ke"aerrkexp(mi _ O)f;_»,r (17d)
8C .

—67d = — kodi — (d; — errDkerOpekosp@forr- (17¢)

The algorithm is started with the data point estimates, d; set
to the actual pattern completion data points, and reasonable
initial values for the remaining parameters. Then, parameters
are iteratively adjusted by some fraction e of the gradient as
computed above until the total cost (the sum of all the individ-
ual costs shown above) stabilizes. The initial parameters used
werek,, = 1, k., =1.8,g=52,0= "7k, =1,k = 8 k,;= 1,
€=l
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