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Abstract

The problem of computing object-based visual representations can be construed as the de-
velopment of invariancies to visual dimensions irrelevant for object identity. This view, when
implemented in a neural network, suggests a different set of algorithms for computing object-
based visual representations than the “traditional” approach pioneered by Marr (1982). A
biologically plausible self-organizing neural network model that develops spatially invariant
representations is presented. There are four features of the self-organizing algorithm that
contribute to the development of spatially invariant representations: temporal continuity of
environmental stimuli, hysteresis of the activation state (via recurrent activation loops and
lateral inhibition in an interactive network), Hebbian learning, and a split pathway between
“what” and “where” representations. These constraints are tested with a backprop network,
which allows for the evaluation of the individual contributions of each constraint on the de-
velopment of spatially invariant representations. Subsequently, a complete model embodying
a modified Hebbian learning rule and interactive connectivity is developed from biological
and computational considerations. The activational stability and weight function maximiza-
tion properties of this interactive network are analyzed using a Lyapunov function approach.
The model is tested first on the same simple stimuli used in the backprop simulation, and
then with a more complex environment consisting of right and left diagonal lines. The re-
sults indicate that the hypothesized constraints, implemented in a Hebbian network, were
capable of producing spatially invariant representations. Further, evidence for the gradual
integration of both featural complexity and spatial invariance over increasing layers in the
network, thought to be important for real-world applications, was obtained. As the approach
is generalizable to other dimensions such as orientation and size, it could provide the basis
of a more complete biologically plausible object recognition system. Indeed, this work forms
the basis of a recent model of object recognition in the domestic chick (O’Reilly & Johnson,

Submitted).
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2 Self-Organization of Spatial Invariance

Introduction

Object-based visual representations are those which allow us to visually recognize different
objects. While most people take it for granted that they can tell what something is just
by looking at it, those who have attempted to reproduce this ability in artificial systems
have made us realize that the problem is much more difficult than it seems. This disparity
between effortless perception on the one hand and the complicated, computationally intensive
solutions suggested by researchers such as Marr and Biederman on the other leads one to
wonder if there might be a different way of looking at the problem that would make some
sense of the apparent ease with which we can see objects. Recent advances in self-organizing
neural network models (e.g. Linsker, 1986; Miller, 1990a; Marshall, 1990; Foldidk, 1991)
have demonstrated that it is possible for a network to automatically develop many different
types of representations useful for visual processing. These models hold out the promise that
perhaps there is an “effortless” (i.e., self-organizing) solution to the problem of visual object
recognition.

One of the principal reasons for the difficulty of the problem is also a clue to a potential
solution: there are a very large (practically infinite) number of different images that a given
object can project on to the retina. Deciphering which of the many thousands of familiar
objects a given image represents is difficult because of this many-to-many correspondence.
However, the ways in which a given object can produce different images on the retina are
limited to a few dimensions of variability. This suggests that one could focus on eliminating
the systematic variability due to these dimensions as a method of computing object-based
representations.

These dimensions of variability arise principally from the projection of three-dimensional
objects onto our two-dimensional retinas. Thus, the image produced by a given object
can appear in a different location, orientation, and size depending on where it is located
relative to our eyes. There are other dimensions of variability resulting from different lighting
conditions, and from changes in the shape of the object itself. Thus, an object representation
must be invariant with respect to all those dimensions on which the image can vary and still
represent the object, while at the same time being selective enough to distinguish between
different objects. Therefore, one can re-phrase the object-recognition problem as that of
producing representations which exhibit invariance under transformations along the above-
mentioned dimensions (spatial location, orientation, size, etc.).

In order to compare the kinds of algorithms suggested by the invariance approach to
object recognition with the more direct computational approaches, we will briefly consider
the work of investigators such as Marr (1982) and Biederman (1987), which are typical of
a symbolic approach to computational modeling. The general scheme they employ is to
apply several mathematical transformations on the output of sophisticated retinal image
pre-processing systems (e.g., Marr’s 3-D model), and arrive at a parameterization of that
image which uniquely identifies the object based on its geometrical properties. Both Marr
and Biederman suggest the use of generalized cylinders (Biederman calls them Geons), which
are parameterized by the axis and the shape of the cross-section along the axis. The specific



O’Reilly 3

values of these parameters for a given image can then be used to search a lookup table which
will identify the corresponding object for those parameters. The principal difference between
Marr and Biederman’s approach is that Marr applies the generalized cylinder transformation
to an unlabeled, three-dimensional model reconstructed from the 2-D retinal image data,
while Biederman uses the non-accidental properties of the retinal image to identify which
of several standardized Geon components exist in the image. However, the basic strategy
underlying these two approaches is one of parameterization and lookup tables.

In contrast to these approaches, there is another category which involve the use of neural
networks to perform the transformation between image and object. Many researchers (e.g.
Fukushima, 1988; Mozer, 1987; Zemel et al., 1989; Sandon & Uhr, 1988; Hinton, 1981) have
proposed such models, which all share several important features, and can be thought of as
employing the same basic algorithm. The essential character of this algorithm is the “di-
vide and conquer” approach where the image of an object is transformed for the purposes
of invariance and identification in either combined or intertwined stages of processing. In
contrast to the symbolic approaches outlined above, these models focus on the problem of
invariance to spatial variability instead of the parameterization of an object according to
geometrical primitives. This shift in emphasis results from the fact that neural networks
can easily identify spatially invariant image patterns without the need to parameterize these
images according to explicit geometrical models. While any approach must, by logical ne-
cessity, arrive at some form of canonical representation, the means to this end can be quite
different.

Figure 1 illustrates the “divide and conquer” approach with respect to spatial invariance.
This algorithm has been most directly implemented in Mozer’s BLIRNET, which performs
spatially invariant recognition of words:

BLIRNET’s architecture consists of a hierarchy of processing levels, starting at
the lowest level with location-specific detectors for primitive visual features—
the retinal representation—and progressing to a level composed of location-
independent detectors for abstract letter identities. Units at intervening lev-
els register successively higher order features over increasingly larger regions of
retinotopic space. The effect of this architecture is that both location invariance
and featural complexity increase at higher levels of the system. (p. 99 Mozer &
Behrmann, 1990)

Thus, as is illustrated in the figure! this algorithm produces invariant representations by
gradually encompassing more and more of the retina in a single representation, and simul-
taneously endowing these representations with greater internal complexity in terms of the
number of features they contain.

At the highest layer in BLIRNET, there are representations for letter-triples in any spa-
tial location. These representations encode the presence of any three letters (including the

!Note that this figure shows the representation of a single letter, while BLIRNET goes all the way to
complete words at the highest level
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Figure 1: The “Divide and Conquer” Algorithm for producing spatially invariant represen-
tations, illustrated with the letter “A”. The first layer contains a retinotopic feature-map
similar to that found in the first layers of visual cortex. The second layer integrates over
both features and locations, resulting in partially invariant, more complex representations in

layer 2. Finally, in layer 3, these representations are integrated over a larger area of spatial
invariance, and further complexity as well.

possibility of a single “wild card” letter) in a particular sequence. Thus, the representations
encode local relationships between letters, but not the global position of these letters on the
retina. Because of this representational scheme, words that share many letters will not be
confused unless they also have these letters in the same order. Mozer & Behrmann (1990)
give an example of the high-level representations would be activated by the presentation of
the word MONEY: “**M, **_0, *MO, *_.ON, *M_N, MON, M_NE, MO_E, ONE, O_EY,
ON.Y, NEY, NE_*, N.Y* EY* E_** and Y™ (p. 99). Because of the multiplicity of
these three-letter sequences activated by the input, the resulting pattern will be distinct for
each word, and it is this pattern which is used to identity which word is actually being seen.

Because the invariance transformations (incorporating larger regions of the retina) are
combined with the identification transformations (incorporating more and more complex
features), it is possible to recognize objects based on the spatial relationships among the
features, while at the same time remaining invariant over the position of the entire object on
the retina. In contrast, it is difficult to imagine the symbolic approaches having this capabil-
ity, since they perform the invariance transformation and the identification transformation
separately. In addition, the parallelism and distributed nature of the neural network repre-
sentation offers all the reliability, generalization, and graceful degradation properties typical
of these kinds of models. An added advantage over the symbolic approach is the biological
realism of the algorithm—it is well established that lower visual cortex employs a massive
“divide and conquer” approach with millions of neurons encoding edges at each location in
the retina, and others encoding only edges at a certain orientation, etc (e.g. Hubel & Wiesel,
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1962).

However, there are several drawbacks to the specific architecture of BLIRNET. Primary
among them is that it was designed and hand-wired for a lexical environment. The network
does not learn these invariant representations on its own, and this limits the generality of
the model, both in terms of the variety of visual stimuli that it can represent in a spatially
invariant manner, and also in variety of invariance transformations that can be performed
(e.g., rotational invariance in both 2 and 3 dimensions, and size invariance). Other drawbacks
include the absence of top-down connections among units, which would allow for attentional
and other effects that depend on such connections (see Phaf et al., 1990; McClelland, 1981;
Rumelhart, 1982 for a discussion, and Mozer, 1988 for a different way of implementing spatial
attention in his network).

As for the other object recognition networks cited above, both the Sandon & Uhr (1988)
and Hinton (1981) networks are hand-wired. The Neocognitron model (Fukushima, 1988),
even though it does possess some degree of self-organizing capability, has an elaborate pre-
specified architecture that does most of the work. Also, the learning mechanism is quite
complicated, biologically implausible, and does not appear to work well unless given ex-
plicit teaching signals, and the architecture requires a compromise between invariance and

identification (Barnard & Casasent, 1990).

The model presented in this paper attempts to overcome some of these limitations by
showing how spatially invariant representations of the kind used in BLIRNET can develop
naturally from an interactive Hebbian network combined with certain environmental con-
straints. These constraints are general enough that they would be adaptable to other forms
of invariance, including rotational and size invariance. However, the research presented in
this paper focuses on spatial invariance because the kinds of representations needed for this
kind of transformation have been discussed and tested previously (in BLIRNET and the
other networks cited above), and because these representations appear more straightforward
than the other kinds of invariance. Future work will be needed to see if this approach does
indeed generalize to other dimensions.

Network Properties That Produce Spatially Invariant Representations

There are two principal types of learning in neural networks: supervised and unsuper-
vised. Supervised learning involves training a network to perform a mapping between many
different input/output patterns. Unsupervised or self-organizing networks instead use al-
gorithms that capture regularities in the input stimuli to develop representations without
supervision. It is these self-organizing networks that are most appropriate for learning invari-
ant representations, as invariance is a form of regularity that might be present in the visual
environment. Also, self-organizing networks are more realistic for studying the brain because
they do not require the use of the “teaching” stimulus needed by supervised algorithms, the
existence of which in the brain is an unlikely assumption.
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Most self-organizing networks use a variant of the Hebbian associative learning algorithm
(e.g. Hebb, 1949; Rumelhart & Zipser, 1986; Bienenstock et al., 1982; Linsker, 1986; Miller,
1990a; Marshall, 1990), which modifies the weight between two units in proportion to the
product of their activations, yielding a correlation-style? learning. Thus, the regularities in
the environment that can be used by this type of learning algorithm are those which can
be expressed in terms of a correlation between the activities of different units. Is it possible
to find such environmental regularities that would enable a Hebbian network to develop
spatially invariant representations?

One possibility is to use the continuity of a given object with itself over time as an
environmental regularity. Since a given object will be either at rest or in continuous motion
relative to the observer, it will produce a series of images on the observer’s retina that all
have one thing in common: the object itself. If the object is moving relative to the observer,
or the observer’s eyes are saccading around the object, then the series of images will have
this regularity of the presence of the object, while at the same time differing in the position
of the object on the retina. In theory, the object-regularity could be extracted from the
series of images, resulting in a spatially invariant representation. This idea has recently been
suggested by Foldidk (1991), although we had independently come up with the same idea
at around the same time. Our approach differs from his in that we emphasize biologically
plausible mechanisms, and we directly address the multi-layer algorithm that is essential for
any practical implementation of this idea.

In order for a self-organizing neural network to “recognize” the temporal regularity of
an object, it would need to maintain temporal continuity of the activations in the set of
units coding for the object. These units would remain active while the image of the object
appeared in different locations on the retina. With a correlation-based learning rule as
discussed above, these active units would come to be correlated with the different activity
patterns lower in the visual system produced by the object, resulting in the desired many-
to-one mapping between the various images of the object and the invariant representation
of the object. Thus, the environmental fact of the temporal continuity of objects would be
mirrored by internal representations that possess this quality as well, and the two would be
linked by a Hebbian associative learning rule.

While it may sound as though this kind of mechanism requires an object to have been seen
previously in every possible retinal position before it can be recognized in that position, this
is not the case if the network learns to perform the invariance transformation in conjunction
with the object-identification transformations. To the extent that the object-identification
transformations result in the representation of an object in terms of visual subregularities
(“features”) shared by many different objects, one only needs to learn the invariant pattern of
such features for each object once, since the system will already know how to transform these
features into an invariant representation from any given retinal position. For the BLIRNET
system, these features are letters and letter-triples, which the system has encoded in all
possible locations. Any novel word will simply activate a different pattern of these features,
which the system already knows how to represent in a spatially invariant manner. The

21t is not a true correlation unless the units have a mean activation of 0
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proposed learning algorithm will operate gradually over several layers, such that a gradient
of invariance and featural integration will develop, corresponding to the weakening level
of influence the retinal changes have on increasing layers of the network, as is depicted in

Figure 2b.

In summary, the following environmental and network properties form a system which
should be capable of producing spatially invariant representations:

1. Temporal Continuity of Environmental Stimuli: The continued existence of
objects in the world is an assumed property of the environment. The organism must
direct its visual attention towards objects for contiguous periods of time in order to
capitalize upon this property. The direct incorporation of environmental constraints
in this model is reminiscent of Gibson’s (1979) perceptual theories, and Anderson’s
(1990) rational analysis perspective on the mind.

2. Hysteresis in the Activation State of Object Units: Hysteresis, which is the
incorporation of previous states of a variable into subsequent ones, mirrors the conti-
nuity of environmental stimuli. In interactive neural networks, hysteresis is the result
of recurrent activation loops and lateral inhibition. Specifically, a set of units which are
mutually interconnected with excitatory connections will continue to send activation
to each other if they have previously been excited, even if the input pattern which
originally excited them is no longer active. Further, the active units in a pool of units
connected by inhibitory weights will suppress the activity of the other units in the pool,
resulting in the maintenance of the present pattern of activity. The mutual excitation
will typically decay over time, or when another unit in the inhibitory pool becomes
active, at which point the recurrent activation loop will be broken. See Figure 2a for
an illustration. That these kinds of wiring patterns are found in the visual cortex is

well established (e.g. Douglas & Martin, 1990).

3. Hebbian Associative Learning: works by strengthening the connections between
concurrently active units. There is considerable evidence from the literature on LTP
that this is the kind of learning being performed in many parts of the brain (e.g., Brown
et al., 1989; Stanton & Sejnowski, 1989; Bear & Cooper, 1987; Artola et al., 1990)

4. Split “What” and “Where” Pathways: There is evidence that visual processing
is physiologically divided along two broad categories of information corresponding to
object identification and spatial location (see Ungerleider & Mishkin, 1982; Rueckl
et al., 1989; O’Reilly et al., 1990 for details). Thus, the spatial location information
lost in the spatially invariant representations of the object-based “what” system can
be captured in the location-based “where” system. To the extent that both kinds of
information are necessary for later processing in the brain, the existence of a “where”
system might cause a “what” system to exhibit spatial invariance.
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b) Additive Effect of Conservative Forces Yields a Gradient of
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Figure 2: a) Shows how a unit is connected to its neighbors by lateral, inhibitory con-
nections, and to units in other layers by recurrent, excitatory connections. Both of these
connections result in a preservation of the current pattern of activation by directly activating
each other through the recurrent excitatory connections, and preventing other units from
becoming active through the lateral inhibition. b) Illustrates how the cumulative effect of

these conservative forces at each layer will result in a gradient of stability over increasing
layers.
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Simulation 1: Testing the effects of the four factors

The interaction of all four of the above-mentioned factors in concert should be capable
of producing spatially invariant representations in the “what” pathway of a neural network.
In order to test this hypothesis, a backprop network was constructed with the architecture
shown in Figure 3. This network has split “what” and “where” pathways, and is given an
auto-encoder task (the output is the same as the input) to ensure that these two pathways
can capture all the information in the input. The stimuli presented to the network consisted
of single positions of the 522 input and output arrays being active (a = 1.0) with all other
units inactive (¢ = 0). Thus, each unit represents one of two “objects” depending on which
of the two rows it is in, and a different position of that object on the retina depending on
which of the 5 columns it is in. The input representation is intended to be as simple as
possible in order to eliminate any other confounding effects that might be introduced by
trying to implement a more realistic model. The level of encoding at the input layer should
be conceptualized as the output of lower visual areas which process direct retinal input and
produce retinotopic feature representations. Thus, there would be distinct units active for
distinct features in distinct positions, just as in the input layer of this model.

Methods

The experimental manipulation performed on the network described above consisted of
selectively varying the presence of some of the proposed network properties that are hypoth-
esized to create spatially invariant representations in the “what” pathway. These factors
were implemented in the following ways:

Temporal Continuity of Environmental Stimuli: In order to test the “best-case” sce-
nario, temporal continuity for a given stimulus was perfect, so that there was a 100%
chance that the same object would appear in a different position in the next time step
(except for the last position of that object, after which the other stimulus would be
presented). The effects of lower same-object probabilities are investigated later. Thus,
all of the stimuli for one row are shown in random order until all positions of that
stimulus have been shown, then a series of blank stimuli are shown, allowing the net-
work activations to relax before showing the next object. Without such a demarcation
between objects, there is no way for this kind of network to distinguish between the
different objects, and object-specific invariant representations do not develop. This
blank period is possibly unrealistic, given that the images of objects do not conve-
niently disappear until the brain “settles,” but is intended to summarize the probable
effects of attentional mechanisms, which would modulate patterns of activation in ob-
ject based representations (for evidence of such object-based attention, see Duncan,
1984). A switch in attention would effectively inhibit the current pattern of activation,
having the same effect as the settling used in the model.
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Figure 3: a) The architecture of the backprop network, showing the input layer, which
consists of two rows, each of which represents a different object, and five columns, each of
which represents a different retinal position for a given object. The “what” pathway is on
the left in the second layer, with two units, one for each object, and the “where” pathway
is on the right, with five units, one for each location. b) Shows the weights for one of the
“what” units in a trained network, where the weight is represented by the color of the unit to
which it is connected, with lighter colors indicating stronger weights. ¢) Shows the weights
for one of the “where” units. d) The output layer reproduces the stimulus presented on the
input by combining the “what” and the “where” representations, as is shown here. e) The
stimuli for one object in all positions (they were actually presented to the network in random
order)
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Hysteresis: Implemented by modifying the activation function used in the “what” pathway
to include a portion of the previous activation as follows:

aj(t+1) = ha;(t) + (1= ) fuigmoia(I") (la)
1

Jsigmoia(I™") = [} (1b)

]net = Zwijai (1C)

where Equation 1b is the standard backprop activation function® and Equation la
simply weights the influence of the activation at the previous time step by the hys-
teresis factor h, which is typically 0.60. In addition to this hysteresis mechanism, the
momentum factor on the weights contributes a degree of temporal continuity, in that
weights moving in one direction will tend to continue in that direction. This imple-
mentation of hysteresis is neither biologically realistic nor computationally as effective
as the more biologically plausible mechanism proposed previously (for reasons that will
be explained below), but recurrent activation loops and lateral inhibition are not easily
incorporated into the backpropagation framework.

Split “What” and “Where” Pathways: This was implemented by fixing the weights to
the “where” pathway so that each “where” unit encoded the corresponding column of
the input (strong weights to each of the two units in a given column, and 0 weights to
all other units, see Figure 3¢ for an illustration of what these weights look like.)

Note that Hebbian associative learning has been replaced with the backpropagation learn-
ing rule. The hysteresis mechanism described above has a similar effect on the backprop
learning scheme as it does in Hebbian learning—an increased activation value will increase
the weight change to that unit.

Five combinations of these factors were run for 10 different networks each, with random
initial weights. These conditions were selected to evaluate the impact of different influences
on the creation of spatially invariant representations.

1. Temporal continuity, Hysteresis, and Fixed “where” weights: This condition
tests the effect of the full complement of factors. It should produce the highest degree
of spatially invariant representations.

2. Temporal continuity and Fixed “where” weights: When compared to Condi-
tion 1, this should indicate the differential importance of the hysteresis factor.

3. Temporal continuity and Hysteresis: Again in comparison to Condition 1, this
should indicate the differential importance of the split pathway. Also, comparing this
condition to Condition 5 should indicate the combined effect of temporal continuity
and hysteresis, which should work together.

3Note that bias weights were not used in this model because they are not necessary for learning the
problem, and they make the analysis of the learned weights more difficult.
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4. Fixed “where” weights: Having only the split pathway, this should indicate if off-
loading the burden of representing location is enough to produce spatially invariant
representations in the “what” pathway (the findings of (Rueckl et al., 1989) suggest
that this should be the case, but they did not use the encoder network format, so their
results depend on the validity of the output representations used).

5. None: This is the control condition which will be used to determine the probability
of an unconstrained network developing spatially invariant representations.

The parameters used for these simulations were as follows: learning rate (¢) = .25, mo-
mentum factor (o) = .90, h = .60.

Results

The results were scored as follows: First, all the weights to each of the two “what” units
from the input layer were coded as either on or off by comparing each weight to the average
of all weights to the input layer (those above average were on, and those below were off). For
a given “what” unit, the row having the most on weights was considered to be the object
that the unit represented. The strength of this representation is the number of on weights
in that object’s row, minus the number of on weights in the other row. Thus, a perfect
representation would have 5 on weights in a given row and 5 off weights in the other row,
resulting in a score of 5. The total score is just the sum of the individual scores for each
“what” unit, resulting in a maximum of 10. Since there are two “what” units, each had to
be assigned to one of the two different objects. If each “what” unit became selective to the
same object, then the one with the lowest score was assigned to the other object. In the case
of two perfect representations of the same object, the individual scores would be a 5 and a
-5 (for the other object), resulting in a total score of 0.

Applying this scoring scheme, an interesting trend developed in the data. For Condition
1, the “best-case” network, only one of the two “what” units reliably developed invariant
representations, while the other was somewhat random. In retrospect, this makes sense if
one considers that the on-off state of one of the “what” units contains enough information
to distinguish between the two objects. If a “what” unit has positive weights to one row of
the input layer and negative weights to the other, then it will be positive for one object and
zero for the other. The output units can make use of both of these states, so that the other
unit is essentially redundant. This explains the pattern of results, and suggests that instead
of a total of both units, the best of the two units should be used as the final score.

Figure 4 shows the scores for this simulation. The only significant differences were between
the “All Constraints” condition and every other condition (p < .0001, Bonferroni/Dunn) for
the “best-of” measure.
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Spatial Invariance In Backprop Network
8 T T T T T
T Total Score ——
Best Score -----

Invariance Score

1 1 1 1 1 1

2 3 4 5
Condition (1=All, 2=No Hysteresis, 3=No Where, 4=Where Only, 5=None)

Figure 4: Results of manipulating the presence of three constraints, showing decreasing
invariance developing with less constraints. The “Best” score, representing the best of the
two “what” units, is the more accurate measure.

Discussion

The most interesting aspect of the results from Simulation 1 is the critical dependence of
the spatial invariance effect on the presence of all of the factors hypothesized to be important.
Once either the hysteresis (Condition 2) or the split pathway (Condition 3) is removed, the
network produces significantly less spatial invariance in the “what” pathway. This indicates
the systemic nature of the mechanism, as it requires all elements of the system to be intact
for the effect to occur, dropping off significantly when any critical element is removed. Also
interesting is that the results are generally in the direction of the number of constraints
applied. Thus, each constraint adds something to the effect.

This pattern of results is encouraging, as it is consistent with the hypothesized nature of
the spatial invariance mechanism. However, there are several problems with the backprop
implementation that make it a less than satisfying model of a biologically realistic network.
One of the great appeals of neural network models is their biological realism, and the algo-
rithm suggested here was developed around the specific wiring patterns (recurrent activation
loops and lateral inhibition) and learning mechanisms (Hebbian associative learning) known
to be operating in the brain. Thus, instead of trying to further the backprop implementa-
tion, we will instead develop a Hebbian implementation. However, the backprop network
has provided a very general framework for testing multiple factors, which is not as feasible
in more specialized networks.



14 Self-Organization of Spatial Invariance

Modified Hebbian Learning Mechanism

The Hebbian learning mechanism proposed by D. O. Hebb (Hebb, 1949), is the most plau-
sible form of synaptic modification given the current state of knowledge about the underlying
biochemical mechanisms. Many researchers have noted the parallels between features of Long
Term Potentiation (LTP) in hippocampal neurons and the Hebbian learning rule (e.g. Rolls,
1989; Levy et al., 1990; Bear & Cooper, 1990; Miller, 1990a; McNaughton & Nadel, 1990).
However, both the biochemical data and the original theory proposed by Hebb are inad-
equate as complete descriptions of a computationally effective learning rule. As has been
pointed out by many theorists, Hebb’s original rule is unstable because the conditions under
which synapses decrease in efficacy are not specified, so that all weights would eventually
saturate. Also there are features which have important computational implications that are
not specified by Hebb’s rule either, including the locus of synaptic modifications, the activa-
tion dynamics of neurons employing this learning rule, and the nature of lateral interactions
between neurons. Many researchers have proposed solutions to these various problems, but
a biologically plausible, interactive network employing a Hebbian learning rule has yet to
emerge. We will approach this problem by examining the difficulties with a simple rule
proposed by Oja (1982), which has a clear computational interpretation.

In developing our learning rule, we will rely on both neurobiological and computational
constraints. As such, we will use the terms neuron and wunit interchangeably, and the term
weight to refer to the net efficacy of a synapse. Weights are denoted by the term w;;, which
is the weight from unit ¢ to the unit j. Also, both the pre and postsynaptic components of
synaptic efficacy will be examined. These components are denoted by the suffix pre and post.
Most neural network models developed for psychological modeling summarize the synapse
into a single weight value, when in fact both a presynaptic (release of neurotransmitter
(NT) into the synapse) and a postsynaptic (the effect of the NT on dendritic receptors)
mechanism are at work. The significance of these two different weight components will be
discussed below.

The meaning of the term activation in biological terms is a little trickier, because the
actual thresholded spiking behavior of real neurons is not analytically convenient to work
with in abstract network models. Instead, a continuous real number (denoted by a; for the
Jth unit) in the range (-1,1) and centered on the firing threshold for the neuron is used
to represent the average depolarization level over a relatively short period of time (10’s of
milliseconds, perhaps). It is assumed that there is some thresholded relationship between
this average depolarization level and the probability that the neuron will spike. Increased
depolarization above the threshold translates into an increased rate of firing, and below
it no firing occurs. This is modeled such that the positive range of the activation value
corresponds to increased depolarization above the threshold, and can be interpreted as an
average spiking rate. Since, in real neural networks, information is only transmitted through
the spiking action of axons, the output function for a given unit is as follows:

oj:{aj ita; >0 (2)

0 otherwise
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The o variable is used instead of the raw activation value ¢ whenever a presynaptic neuron
is involved in transmitting information. This interpretation of activation is more flexible
than those that use only a (0,1) range and associate it directly with spiking probability, as
it allows one to model the effects of hyperpolarization and the dynamics of sub-threshold
activations.

Computation Performed by Hebbian Learning

A Hebbian learning rule of one form or another has been employed in many models, most
of which perform some kind of self-organizing pattern recognition or categorization (also
known as vector quantization) on a set of input patterns. The simplest form of the Hebbian
rule is: |

ZALU” = a;0; (3)
where € controls the learning rate, and ¢ is an index over a set of input units, and j an index
of units in an output layer connected to the input units by weights w;;. Intuitively, this
rule will lead to an increase in weights between input units whose activation is correlated
with the activation of the output unit. Further, because the activation of the output unit
is a function of all the input units it is connected to, the Hebbian rule will tend to capture
correlations between input units. Over a series of different input patterns, this function will
cause the weights to unit j to represent the central tendency of the input unit activations.
Indeed, with a modification proposed by Oja (1982), a variant of this simple rule can be
shown to be performing principal components analysis (PCA) on the inputs, and extracting
the first principal component over all the patterns presented to the input array. The specific
modification involves the inclusion of a weight decay term:

1
—Awij = a0 — ajwi;) (4)

which will tend to decrease the weights whenever w;; (modulated by the output unit’s acti-
vation) is greater than the input activation o;. Since Oja used a linear activation rule, a; is
just the sum of all the inputs, 3, oxwy;, so that the equilibrium condition (when Aw;; = 0,
which occurs when o; = a;w;;) results in the following weight value:

0;

>k OkWg;

v

wij (5)
where (7) denotes equilibrium, and k is an index over all the input units. Thus, each weight
will come to represent the normalized proportion of the total input to unit a; for a given
0;. The weight decay term will serve to normalize the weights to the unit, preventing the
infinite growth of weight that would occur under the simplest Hebbian function shown in
equation 3. We will take the normalized learning rule shown in equation 4 as the simplest
case of a practical implementation of a Hebbian learning rule.

Given that we are considering the domain of visual object recognition, we will now specify
the computational goal of the Hebbian learning algorithm in terms of recognizing individual
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patterns of activation over a set of input units which represent the output of visual pre-
processing such as that produced by the lower layers of visual cortex. We consider the
process to take place over several layers (i.e., areas) of visual cortex, where the output layer
contains visual object representations. We assume that individual visual objects produce
distinct but somewhat noisy and possibly incomplete patterns of active units in the input
layer. There is a many-to-one mapping between visual patterns and objects, such that a
given object can project many visual patterns onto the retina. These patterns vary along
dimensions such as size, spatial location, and orientation. The critical components of this
task are:

1. Different visual objects should be represented by different patterns of activation in the
subsequent layers, while partial and slightly noisy versions of the same object should
be represented by similar patterns of activation.

2. The different images of a given object in different locations, sizes, and orientations
should not be confused for other objects. These two constraints act in opposition, and
a balance must be struck between them.

3. Subsequent layers should produce more condensed representations of the pattern of
activation on the previous layer. In information-theoretical terms, the visual channel
contains highly redundant information with respect to the representation of visual
objects, given that (in the simplified case presently being considered) there is only one
object being viewed, but many units activated by this object at the lowest levels of
representation. Thus, the goal is to reduce this mass of redundant information into a
compact, stable representation at the highest levels.

According to this set of requirements, the Oja rule by itself would fail miserably, as it
would cause all output units to represent the average of all the input patterns combined.
They would all discover the main principal component over all the input patters seen by the
network. There are two related but distinct components of this problem: One is that each
output unit is averaging over all the input patterns, and the other is that all the output
units are representing the same thing.

These problems are related because if only some output units were allowed to become
active at a given time (through lateral inhibition, for example), then equation 4 would cause
those units that were active to represent the central tendency of the patterns presented
on the input layer during the period while they were active. To the extent that different
input patterns were distinct enough to activate different output units due to the random
initial weights, this system would work well. Indeed, this is the idea behind the competitive
learning algorithm and its many antecedents and descendants (Rumelhart & Zipser, 1986;
Bienenstock et al., 1982; von der Malsburg, 1973), which works through a Winner Take
All (WTA) mechanism whereby the unit which responds strongest to a given input pattern
adjusts its weights according to a function very similar to equation 4.

The central problem with this kind of competitive mechanism is that overlapping but
distinct input patterns (like those found in distributed representations) tend to be repre-
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sented by the same output unit, as the increase of weights to a given input pattern makes it
more likely than the other output units to respond to any subsequent input pattern having
some common units active. There have been several proposals suggested for eliminating this
problem, which are discussed below. However, it is worth mentioning that the averaging
behavior of the Oja learning rule plays into this problem, rather than acting to counteract
it.

Finally, a WTA-style lateral inhibition mechanism will reduce the number of output layer
units active to 1, satisfying the final requirement that the output be a reduced representation
of the input. However, a more useful reduction of the information would not eliminate the
distributed nature of the representation, rather it would reduce the variability of activity
patterns on the input corresponding to a given object, and enhance the variability of the
output pattern with respect differences between objects. To this end, generalizations of the
strict WTA constraint to N active units (N-WTA) are possible, which retain distributed
representations at all levels of the network.

Problems With the Oja Rule

Despite the promise of a competitive activation mechanism, there are two main problems
intrinsic to the Oja rule itself. First, it requires a linear activation function in order for the
equilibrium condition shown in equation 5 to hold and thereby normalize the weights. If a
logistic activation function which squashed the input into the range (-1,1) were used, the
denominator in equation 5 would no longer represent the total input to the output unit,
and would not produce the desired normalization effect. This would cause the learning to
become unstable. A nonlinear activation function is a prerequisite for multi-layer mappings
to be effective, however, so this is not a trivial problem. Also, attempts to simply clip the
weights at a certain ceiling level would eventually result in the saturation of all weights to
that level, as even low positive activation levels in the input units would result in increasing
weights.

It might also be possible to change the definition of the rule slightly so that the total
input to the unit is used in equation 5 as is required for normalization, while at the same
time using the logistic function on the other activation term. The principal disadvantage
of this mechanism would be that the neuron would have to somehow retain the net input
information, which is not likely to happen in the biological system given that the origin
of activational nonlinearity is due to the electrical properties of dendrites (e.g., Rall, 1990).
Thus, the neuron computes the sum of a number of non-linear functions of its inputs, instead
of somehow taking the sum first, and then applying a non-linearity to it.

Additionally, the Oja rule does not make provision for bidirectional weights. These are
crucial for the recurrent activation loops phenomenon, and for continuous activation models
which require these weights to achieve stability of the activation function. In order to accom-
modate recurrent weights and a continuous activation function, the convergence properties
of this weight rule in an interactive network would need to be analyzed.
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Strong Constraints From Neurobiological Data

In addition to the problems specific to the Oja rule, there are several very well established
properties of neurons that must be accommodated by any realistic learning rule. These are
as follows:

1. Fixed sign weights: Because weights are actually a combination of the release of NT
from the presynaptic neuron and the subsequent effect of that N'T on the postsynaptic
neuron’s receptors. Neither of these factors can change the direction of their effect on
the postsynaptic neuron (Miller, 1990b; O’Reilly, 1989). This means that the same
weight can not represent directly either a correlation or an anti-correlation, but must
represent one or the other only. In most areas of cortex, the weights between layers
are excitatory (positive), and between layers a mix of inhibitory (negative) and excita-
tory. To simplify, we will assume positive inter-layer weights, and inhibitory intra-layer
weights (which implement the WTA activation function).

2. Positive-only presynaptic activations available to the postsynaptic neuron:
As was discussed above, a postsynaptic neuron will only receive information from a
presynaptic neuron if that neuron fires.

3. Positive-only postsynaptic activations involved in weight change: The leading
candidate for a mechanism underlying synaptic modification is the NMDA receptor,
which only opens when the postsynaptic neuron is depolarized (activated) beyond some
threshold determined by the unblocking of a Mg¢** ion from the receptor (Collingridge
& Bliss, 1987; Rolls, 1989; Levy et al., 1990; Bear & Cooper, 1990; Miller, 1990a;
McNaughton & Nadel, 1990).

The net effect of these constraints is that a learning rule must rely on only positive
correlations to govern the adjustment of weights, given that both neurons involved must be
positively activated to be represented in the standard Hebbian term a;o;.

A Pattern-Covariance Alternative

We now return to the standard Hebbian rule from equation 3 to see if an alternative
formulation to Oja’s weight normalization routine can be found that fits more naturally with
the constraints discussed so far. First, if the Hebbian rule is to be computing correlations
among the input units, then the activations used in equation 3 should be replaced by the
temporal covariance of the input unit activations: (0; — {0;)*) (where {0;)* represents the
expected value of the variable in the angle brackets over some sample of the variable above
the brackets, t=time in this case). This makes equation 3 actually:

A = 005 — {01)) ()
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Note that we are now using the output function for the receiving unit (o;) in the weight
update rule to restrict the weight changes to positive-only postsynaptic activations (see item
2 above). The covariance of the activation term is important because it enables variation in
activation below the mean for that unit to be registered as anti-correlated. Also, if an input
neuron had some background level of firing, this would show up in the {0;)! term, and only
activation above this mean level would represent a valid signal.

However, there are several problems with using the (0;)* term in a biologically realistic
neural network. It implies that the statistics of the input environment are either known in
advance or stable enough over time to allow a floating average calculation to approximate
this term with sufficient accuracy. Further, given that we want to establish different repre-
sentations for different input patterns, the critical dimension on which to compare activation
values should be the activation over a given input pattern, rather than the behavior of a
given unit over time.

One solution to these problems, used by Oja and others (c.f. Hertz et al., 1991), is to
simply drop the (0;)* term by assuming that all input units have a mean of 0 over all input
patterns. However, given the constraint that only positive activations are transmitted to the
receiving unit (see constraint 2 above), the mean value of o; will always be positive. Also,
most neurons that have been subjected to single cell recordings have a basic low-level firing
rate independent of the presence of the stimulus to which they respond maximally, which
would add to this (0;)* term and make the zero mean assumption even less viable.

Another alternative can be found in a similar formulation of the basic Oja rule proposed
by Linsker (1988; 1986), which also uses a linear activation function as a critical component
in the learning rule. Linsker starts with the following learning rule:

Aw;; = €1(a; — €2)(0; — €3) + €4 (7)

(where the €,’s are constants) and, because a; is just the linear sum of all 0;w;;’s, this function
can be re-written entirely in terms of the inputs to a given output unit. When the values
for €3 and €3 are set to appropriate functions of the temporal average over patterns of the
input unit activities {(0;)*, this equation is actually adjusting the weights in proportion to
the correlation between input unit ¢ and all the other input units that feed into output unit
J. The Linsker rule suffers the same problems as the Oja rule in terms of needing a linear
activation function, but it does not offer the normalization properties of the Oja rule. Also,
it uses the temporal average term for computing correlations, so the same problems apply.

Another alternative exists, however, and that is to use the pattern covariance instead
of the usual temporal covariance described above. Pattern covariance is defined here as

Ek %k

(0; — {0)™), where (0)"™ represents the mean (<4, k indexing over input units) over the
current pattern of input activations impinging on the output unit. The weight update rule
would then be:

A = 005~ (o)) )

This form of covariance, while not formally equivalent to temporal covariance, shares many
of the same properties which make temporal covariance preferable to straight activations,
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and it overcomes the problems with temporal covariance. Specifically, any signal that exists
above the low-level random firing of the input neurons will show up as a positive covariance
term over the current input pattern, regardless of the long-term statistics of each individual
input unit.

One way to think about the properties of pattern covariance is to imagine that the sta-
tistical variable one is trying to measure is the input pattern, instead of the input unit.
The temporal covariance measure described above assumes that each input unit is a variable
that is somehow being measured and compared to the other variables (input units). Each
measurement of this variable is the activation at a different point in time. In this situation,
it makes sense to use the mean activation over the lifetime of each unit in the covariance
term because this establishes the baseline for the variable in question.

However, if a given input pattern over all input units is the variable of interest, and there
are several different patterns in the environment, then each pattern is a different variable.
The measurement of this variable is performed over the set of input units, so that there
are V;, measurements of each pattern variable, one for each input unit. In this situation, a
reasonable mean signal for the pattern is the average activation over all input units for that
pattern, as this is the mean of all measurements of this variable. This corresponds to the
function shown in equation 8.

The emphasis on the input pattern versus the individual input units is important, as it
is this pattern which is to be recognized and represented, not the relative statistics of each
input unit relative to the others. Intuitively, the pattern covariance measure is simply a way
of differentiating the signal of a given pattern from the noisy and inactive regions of the
pattern.

As an added benefit, the pattern covariance term is unaffected by the positive-only output
function imposed by real neurons because any neuron that is not firing will be below the
mean over all the inputs to a given unit (given that some other input units are active), and
will thus be anti-correlated with an active output unit. Finally, the computation needed
to implement the (o)™ term is local both in space and time, and even has an interesting
biological interpretation, which will be discussed below.

Having argued in favor of using a pattern covariance term for the input units, it would be
logical to extend this argument to the output units, so that a true correlation-like measure
between the input pattern and the output pattern would be computed by the learning rule.
This would change the rule to:

“Awi; = (0 — (o)) (o — (o)) ©)

where (0)°“* is the average of all positive activations over the output layer. There are two

conceivable ways to implement the (0)°* term using localized information available to the two
units linked by weight w;;. One is to use additional lateral inhibitory connections between
units in the output layer such that the total inhibition received by a given unit is equal to the
mean positive activation level over the layer. If this were the case, the activation level of the
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units would reflect the covariation term directly, and the (0)°* term would be represented
in the activation function instead of the learning rule as it is here.

There is a problem with this lateral inhibition formulation, however, because it does not
have the proper effect on the weight itself. Specifically, it does not provide for a decrease in
weight when the output of unit j is below the mean output for the entire layer, as should be
the case according to equation 9. With lateral inhibition, a sub-mean unit would simply not
change its weights at all, as its output function would be 0. Indeed, it should be evident that
the addition of lateral inhibition of this type does not affect the kind of learning performed
by equation 9 much at all, as the absolute value of the activation is not as important as its
relationship to the mean activation over the layer, which is preserved with lateral inhibition.

Thus, we are led to an alternative formulation that can be computed locally, which is
to use the presynaptic weights of unit ¢ in the input layer in addition to the postsynaptic
weights (which we have been tacitly assuming) to unit j in the output layer. Because the
presynaptic unit ¢ is connected to all the output units, it potentially has access to their
activation levels (more on the biological plausibility of this below), and could be computing
the pattern covariance over the output layer. The resulting weight change equation for the
net weight between units ¢ and j would be a combination of the presynaptic and postsynaptic

components:
LA = Aul Al (10a)
€
%Awff& = 0j— (o)™ (10D)
%Awffm = o= (o)" (10c)

This formulation is equivalent to equation 9 (replacing e with €*), but it is re-written
to make the computation at each synapse depend on information local to the synapse and
neuron involved. Only the presynaptic neuron has both the activation of postsynaptic unit
J and the average over the entire output layer (in the fully interconnected case we are
considering here), so the weight adjustment based on these two factors must be located in
the presynaptic component of the weight. The same argument holds for the postsynaptic
component of the weight adjustment.

Zero-Sum Interpretation

There is an interesting interpretation of the correlation form of the Hebbian learning rule
shown in equations 10b and 10c when they are re-written as:
lA' = 0, — Awl’" (11a)
. LLZ] = 05 w; a
1 -
—Awfjm = 0; — Aw?m (11b)

c
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which shows that the second terms of these equations can be re-written as the average
weight change that would have been computed for either the pre or postsynaptic portion
of the weight for the entire set of weights belonging to a unit, if the weight change was
simply a function of the activation state of the units on the other end of the weight (0., or
Oin, respectively). So, for presynaptic unit ¢ having weights to all of the 0,,: output units,

the term (0)°*, is really just % (with [ as an index over all output units), which is just
the average activation of this population of units. The same argument can be made for
the postsynaptic weights from all of the o;, input units to a given output unit. Note that
these equations are computed in two steps, the first of which enables the computation of

the Aw?™“ and Aw?OSt terms according to the output and input unit activations respectively,
and a second step which is shown in the equations.

This equation represents a Zero-Sum Hebbian (ZSH) rule because it will result in a net
weight change of 0 for the total of each weight component. Zero-sum effects like these occur
often in nature, as they are a direct consequence of having limited resources available, or
from the competition between two different systems (as is suggested by Bear & Cooper,
1990). While the specific circumstances under which a synapse will decrease in efficacy, or
Long Term Depression (LTD) are not as clearly understood as the LTP mechanism, many
researchers have computational or theoretical models of LTD (Rolls, 1989; Levy et al., 1990;
Bear & Cooper, 1990; Miller, 1990a; McNaughton & Morris, 1987), and empirical evidence is
accumulating (Artola et al., 1990; Stanton & Sejnowski, 1989; Bradler & Barrionuevo, 1990;
Frégnac et al., 1988). Several of the models (Rolls, 1989; Levy et al., 1990; Miller, 1990a)
specifically hypothesize a competitive mechanism based on a limit of total postsynaptic
efficacy, which is what the Z5H equations postulate.

While several researchers have employed normalized weight update schemes similar to
that shown in Oja’s rule in simulated neural networks (e.g. Rumelhart & Zipser, 1986; von
der Malsburg, 1973; Bienenstock et al., 1982; Grossberg, 1976), to our knowledge only two
others (Miller, 1990a; Rolls, 1989) have used the weight conservation approach detailed here.
Thus, the computational properties of this learning rule as implemented in working neural
network simulations have not been extensively explored. However, both of these researchers
employed this algorithm in simulations whose goal was similar to that stated above regarding
visual object recognition.

Rolls (1989), in simulating the function of the hippocampus, developed a simulation that
“effectively selects different output neurons to respond to different combinations of active
input patterns”, which is quite similar to the objective of recognizing distinct patterns of
activity over the input layer as distinct visual objects. Miller (1990a) applied a ZSH-style
rule to the development of ocular dominance columns in the visual cortex, showing that
under certain conditions the zero-sum constraint was critical for the differentiation of a
given neuron’s receptive field between the right and left eyes.

What both of these previous applications of a ZSH-style learning rule demonstrate is that
this constraint is important for making a neuron make a “forced-choice” kind of decision
regarding which input units to respond to. This kind of behavior is a direct result of the fact
that once the weights from an active output unit to one input pattern have been increased,



O’Reilly 23

there will be a correspondingly diminished amount of weight over the other input units
to that output unit, so that another output layer unit which did not respond to the first
input pattern will be more likely to respond to a different pattern because there will be less
competition from the units that responded to the first pattern.

The effects of the ZSH rule on individual weight values can be seen by examining what
would happen with a stable input pattern which always activates a given output unit. It
should be clear that the weights will be driven to extremum by equations 11a and 11b, with
those units having above-average activation values always driving the weights upwards, and
the below-average inputs driving the weights monotonically downwards. This is in contrast
to the weight normalization performed by Oja’s rule, where the weight update rule imposes
a built-in constraint on the weight magnitudes. Also unlike Oja’s rule, the instability of
the ZSH rule is amenable to simply fixing the weights within certain boundaries because
only the weights that “should” be increased are being increased, while the others are being
decreased, so that the weights will not become completely saturated over time. With the
constraint that weights do not change sign, the obvious choice for a lower weight bound is
0, and the upper bound can be any arbitrary value (1.0 is used for convenience).

While it might be considered advantageous to have self-bounded weights, it is important
to note that the pattern-differentiation effect in a ZSH model will not occur with a weight-
normalization approach (e.g., the Oja rule), because the weight from each input unit to a
given output unit will approximate its relative frequency of firing, whereas the ZSH rule will
make an active delineation between those input units which have above-average output, and
drive those weights to the upwards boundary while driving the remaining weights downwards.
The result is a contrast enhancement of the input pattern.

The difference between weight normalization and weight conservation effects for a given
input pattern is illustrated in Figure 5. This figure shows that weight normalization results
in a vector pointing to the center of a set of pattern vectors on a (n-dimensional) sphere,
while weight conservation results in a vector pointing towards the nearest corner of an (n-
dimensional) cube. This difference is also shown in the bar-chart portion of the figure, where
the active (above-average) components of the input vector are pushed to 1, while the others
go to 0 under weight conservation, but weight normalization has each weight vector strictly
proportional to the relative activity of the unit. The two different representations of the
difference between a ZSH and a Oja learning rule are equivalent, but the bar-chart allows
one to graph a higher dimensional example.

The value of going to a corner on a cube vs a point on a sphere is that there are an infinite
number of points on a sphere, but only a fixed (2") number of corners on a cube, so that
weight conservation has the effect of reducing the information content of the input vector
(where information is the number of possible states of a system). While the reduction of
information is a stated goal for visual representations, there is an inevitable cost associated
with reductions of this sort, namely a distortion of the data. However, this form of distortion
is similar to that performed by a sigmoidal “squashing” activation function—it forces a
continuous domain into a more binary (n-ary in this case) domain. For categorization and
pattern recognition, we feel that it is more important to differentiate between different stimuli



24 Self-Organization of Spatial Invariance

o OO OO
) OC
7
OO
@)

ZSH Weights

Input Activations

- Avg Activation

ﬂ OjaWeights

b) Bar-Graph rendition, where light grey is the activations of input units, medium grey in
background is result of ZSH learning, dark grey is result of Oja-style normalization.

Figure 5: a) Weight normalization produces (n-dimensional) spherical weight vectors pointed
at the center of cluster of input patterns, while weight competition produces weight vectors
pointing at the corner of a (n-dimensional) cube closest to the input patterns. b) A bar-
graph rendition of the difference between weight normalization and weight competition for
a fixed set of inputs.

than accurately capture the precise direction an input vector points, as is the case with weight
normalization.

This perspective contrasts with that of Linsker (1988), who claims that the goal of rep-
resentations is to preserve the maximum amount of information in the input. In the linear
case, his Infomaz principle is equivalent to the PCA representation formed by Oja’s rule, so
the difference is captured by the sphere vs cube distinction. We would say instead that the
goal of representations is to maximally differentiate between truly different input patterns,
while generalizing over small distortions of the same pattern. This is achieved in the cube
analogy by realizing that the decision surface of a trained network will tend to cause a given
input vector to be categorized into its nearest corner.

Another category of modifications made to simple Hebbian learning schemes which ad-
dress the problem of having differentially selective units develop in the output layer involves
adding an activity-modulated gain function to a unit’s activation function. The gain for a
given unit moves in inverse proportion to the activity of the unit, much like a sensitization /
desensitization effect. Thus, units which are responding to too many of the input patterns
will have their gain reduced, and will therefore be less likely to be activated, while those
which have not been active have a higher gain, making them more likely to respond (Bienen-
stock et al., 1982; DeSieno, 1988). This scheme results in different input patterns activating
different output units, but it does so through the activation function. The consequence of
this is that it depends on the frequency of pattern presentation being roughly equal across
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patterns, which seems to us to be an unrealistic constraint to place on the environment.
Therefore, we feel that the weight-modulated ZSH selectivity mechanism is a more robust
way of differentiating input patterns.

Dual Mechanisms at the Synapse

In order to obtain a true correlation term between the input and output layer in the
learning rule, it was necessary to introduce a modifiable presynaptic weight component.
Biologically, this weight corresponds to the release of neurotransmitter (NT) at the synapse.
The pattern covariation formulation of the weight update rule requires that there be a fixed
amount of NT which is distributed over the synapses of a given axon in a competitive,
zero-sum manner. Further, the competitive mechanism involves the presynaptic unit having
access to the postsynaptic activation levels of all the neurons to which it projects.

There are many contradictory findings regarding the locus of synaptic modification, with
some researchers claiming it is presynaptic (e.g., Bliss, 1990; Bekkers & Stevens, 1990) and
others supporting a postsynaptic mechanism (e.g., Lynch & Baudry, 1984; Perkel & Perkel,
1985; Rall & Segev, 1987). Current thinking is that both pre and postsynaptic processes
must be involved, given the weight of the evidence. Postsynaptic changes are probably due
to either the exposure of additional receptors or changes in the shape of dendritic spines,
while presynaptic changes are due to changes in the eflux of NT. Further, there is evidence
that presynaptic changes depend on the postsynaptic NMDA receptor complex (which itself
depends on the depolarization state of the postsynaptic cell) through a retrograde messenger
that goes from the postsynaptic to the presynaptic cell (see Fazeli, 1992 for a recent review).

We feel that the biological evidence sufficiently supports the use of two synaptic mecha-
nisms. Our imposition of a zero-sum constraint on these two mechanisms is probably a more
rigorous constraint than is actually warranted, but the general character of the competitive
interactions among synapses of the same neuron is likely to correspond to biological reality.

The other remaining issue regarding the dual synaptic mechanisms is the way in which a
net synaptic efficacy results from the individual efficacies of the two components. According
to the correlation model developed above, the derivative of the net weight should be the
product of the derivative of the two individual synaptic efficacies, so that the function itself
is just the integral of both sides

ne re ost ¢
[dwitar = [ awiyar dty (12)
which, given that each of the two right-hand terms are separate functions of dt, can be
written as fd'wf;edtfdwfjmdt, which is simply,

.net __ _ pre_ post ‘

Biologically, this function says that there is an interaction between the amount of NT
released into the synapse (wf; ), and the efficacy of the postsynaptic receptors, (wf;St) on
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the net effect of a given synapse on the postsynaptic cell. Most models of synaptic efficacy
do indeed postulate such a multiplicative interaction (e.g., McNaughton, 1988; Shepherd,
1990).

Activation Function And Network Convergence

Because we will be using continuous-valued activations in order to capture interactive
and inhibitory effects, we need to demonstrate that the activation update function will
stabilize for a given set of weights, and further that the weight adjustments made will act
to move the stable patterns of activation in the desired direction. Following the previous
approaches to this problem (e.g. Hopfield, 1984; Movellan, 1990; Hinton, 1989), this can be
proven analytically by showing that both activation and weight updates will drive a global
Goodness (also referred to as Energy) measure in the appropriate direction. A global function
of this nature is known as a Lyapunov function if it can be shown that the system will always
converge on a minima or maxima of it. In general, this function is not related specifically
to the underlying dynamics, but merely acts as a “metric” function similar to Euclidean
distance in Cartesian space. For neural networks, a simple Goodness measure takes into
account how well the activations reflect the current weights, so the following function is

typically used (Hopfield, 1984)*

H = %Ezaiww (14)
;

where the H represents the Harmony of the fit between the weights ® and the activations.

According to the Harmony function, the signs of the activations on either side of the
weight and the weight itself must all be positive or any two negative and the third positive
for a positive contribution to the Harmony measure. Any other combination would result
in a negative value. However, once positive, there is nothing to constrain the activations
from taking on increasingly large values to increase the Harmony measure. For this reason,
a second term is added which penalizes large activations®:

S=Y " Y a)da (15)

rest

and the resulting overall Goodness function is G = H — 5, so that increasing Harmony due
to larger activations is offset by increasing Stress to the activation levels in the network.

Hopfield (1984) has shown that these two terms when combined with a suitable logistic
activation function result in G being the Helmholtz free energy function, which allows such

“Note that we are using a positive Harmony measure instead of Hopfield’s original negative Energy
measure

We are using w;; to represent the net weight between units, which is actually w?jet in this and all
subsequent equations in this analysis.

6Note that the letter S was originally used to represent Entropy, but we use it here to indicate Stress
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a system to be interpreted according to known physical principles. Movellan (1990) has
shown using this function that the standard Interactive Activation and Competition (IAC)
activation function (McClelland, 1981; Rumelhart et al., 1986a) will result in the network
finding and settling into stable states for a given set of weights, and that a simple Hebbian
learning rule (such as that shown in equation 3) will perform gradient ascent in terms of the
global Goodness function G.

The TAC activation function (in a slightly modified form) contains a decay term and an
input term (with the relative contribution of these two factors controlled by modifying the
gain of the input term), with a rate parameter A:

da
di

where A is the parameter controlling the rate of change in activation, and f(net;) is the
following input function:

= M—a; + f(I})) (16)

]}m(max —a;) ]}wt >0

nety __
f([j )'_ { [f”(aj——fnin) I?ﬁ <0 (17)

and 17 is the net input to the unit:

]}wt = Z 0;W;5 + Z o|Wi; (18)
i Li#j

(with [ indexing over the other units in the same layer with inhibitory connections). It turns

out that the actual form of the f(/7*") input function is not critical for the proof, as any

monotonic function would produce the same results.

Presumably, we could simply use this activation function and the weight update rule
from equation 8, but the Harmony measure used in these other models does not correspond
exactly to the pattern covariation model being used here. Therefore, we will modify the
Harmony term to include the pattern covariation, and we will also reformulate the function
into three separate terms: one for the feedforward weights to the output layer, one for the
feedback weights from the output layer to the input, and another for the lateral inhibition
between units in the output layer:

7 z

H= % (E(%‘ — (@)™ Y (ai — {a)™)wy; + > (@i — {a)™) Zk:(aj — (@) Ywji + Y a; Y ajwy

J Li#;

(19)
where j and [ are indices over the output layer, and ¢ over the input layer. Because we
are considering the input and output layers separately, we also need to update the Stress
function to sum over both of these layers:

S=Y[" ri@dat+ Y [ a)da (20)

rest rest

The Goodness function is then just G = H — S, as before. If it can be shown that this
function is being maximized by the activation and weight functions, then we can prove the

|
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stability of the system. This is true despite the changes made to the Goodness function, as
any function can serve as a Lyapunov function (although not many will actually work!).

In writing these functions, we are using activations instead of the output functions that
should be used in order to simplify the derivation with respect to the activation function.
In order to make this work, we temporarily assume that the activations are bounded in the
range (0,1), instead of the (-1,1) range postulated at the outset. Also remember that the w;;
and wj; weights are positive, while the lateral inhibitory w;; weights are negative and fixed
(we are not interested in learning the inhibitory weights, and it is not clear that they are
subject to modification in the brain).

In order to determine if this Harmony function combined with the Stress term will result
in the network achieving a stable equilibrium with a given set of weights, we simply take the
derivative of G with respect to changes in the activation of a given output unit. While we
will focus on the output layer units, the same analysis will hold for the input units if they
also have lateral inhibitory connections. The details of this derivative can be found in the
Appendix. Summarizing these results, the following equation shows the derivative of G with
respect to a given output activation change:

aG ne in — ¢
9a. = L f={a)" D wi; = [ () (21)
J 7

In order to obtain this simplified expression, it was necessary to assume that the weights
between a input and output unit were symmetric with each other (i.e., that w;; = w;;). While
it is not difficult to imagine the inhibitory weights being symmetric, as we are assuming they
are fixed (they could all just be fixed at the same value), the assumption of symmetry between
the inter-laminar weights is more difficult to accept. However, like the networks examined by
Hopfield (1984) and Movellan (1990), our weight adjustment rule is symmetric for both the
input and output units so that the weight adjustment rule will tend to produce symmetric
inter-laminar weights, making this assumption less problematic. In the simulations done on
the network the effect of strictly enforcing this constraint versus letting the learning rule take
care of it was explored, and found not to make a difference on the convergence or stability
of the network.

In order to determine if the TAC activation function will always cause this derivative
to increase over time, we must apply the chain rule using the derivative of the activation
function over time (see equation 16) to get the derivative of G over time. When this is done
(again, see the Appendix for details), the sign of the resulting expression will always be
positive given that a certain condition holds. Assuming this condition holds for the moment,
we can conclude that in addition to satisfying the original Goodness function specified by
Hopfield (1984) and Movellan (1990), the IAC activation function will serve to maximize our
global fitness function G, as the derivative of G with respect to time will always be positive.
Further, since G is bounded and always increasing, it will evgntually settle to a point where
aG a4,

%7 1s 0, which, according to equation 32, means that both — and % must be 0 for all j
J

(Movellan, 1990). This means that the activations will end up in an equilibrium point, which
will be a maximum of G.
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However, these results depend on the following condition being true for all units j in the
output layer:

I;Let > <a>m EZ Wi ;];Let >0 (22&)
I;Let < <a>2n Zz Wi ]]’(L@t < 0 (22b)

In order to analyze this condition, we can first apply some of the strong neurobiological
constraints on the signs of these variables, which dictate that w;; is positive, and that {a)®"
is positive as well, so that the (@) 3", w;; term will always be positive. Thus, this condition
will be violated only in the first case when I7* > 0, but less than {a)™ 3, w;;. This will
happen when the feedforward input is greater than the lateral inhibition coming from the
other output layer units (because ]]mt > 0), but less than the sum of the weights to the input
times the average activation value over the input (a)™. Ignoring the lateral inhibition for
the moment, this results in the following inequality for a given output unit a;:

Zaiwij < Z<a>mw” (23)

which says that this unit must have had stronger than average weights to the input units
which were not active than to those that were. Given that there is lateral inhibition operating
in the output layer, it is unlikely that such a unit would have a I7* > 0, because some
other output unit(s) will have weights that correlate stronger with the present input pattern
than a unit meeting the conditions of equation 23. Thus, the inclusion of sufficient lateral
inhibition will ensure that the network will converge on a stable activation state for a given
set of weights, assuming there are other output units that represent the input pattern. In
the initial, random condition, approximately half of the output units will have above-average
weights to a given input pattern, so this constraint should not be a problem. Further, the
learning rule will act to correct this inequality as the weights will be adjusted to any active
output unit in the direction of the present input vector, so that the net input will probably
be larger than (@)™ ", w;; next time around.

This dependency of the pattern covariation learning rule on sufficient lateral inhibition to
prevent instability in the activation space is interesting, as it was unanticipated and is not the
case with the original Harmony term used by Hopfield (1984) and Movellan (1990). While
this conditional stability might be considered a weakness by some, it does have the advantage
of bolstering the computational importance of lateral inhibition beyond the intuitive notions
of selecting an active output unit.

Wewght Update Rule Maximization Properties

Having established that the TAC activation function will result in a stable pattern of
activation for a given set of weights, we must now determine if the weight update rule will
move the global Goodness function upwards at every step. Given that the weight update
rule was designed to take advantage of the pattern covariance, it should not be surprising
that it will adjust the weights in the direction of increasing Goodness, which includes the
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pattern covariance over the input layer. This can be shown by the following analysis, which
proceeds in the same way as the stability of the activations proof, except that we now use the
equilibrium state of the network as the point at which the weights are changed. If weights
were changed prior to the network reaching equilibrium, the activation patterns would not
necessarily reflect the optimum Goodness level for the current weights, and it would be
difficult to ensure that the change in weights reflects a step towards greater Goodness.

Of course, it would be nice not to have to assume that weights only change at points
of activational equilibrium, but two points can be made regarding this problem. First,
one could relax the constraint somewhat when simulating the network, and explore the
practical consequences of updating the weights prior to the equilibrium point. Second, since
a large Harmony term contributes to a larger overall G term at equilibrium (which is a point
where G is at a maximum according to the previous analysis), this will be a time when a
unit is receiving a relatively high level of input from other units, which would correspond
in real neurons to high frequency synaptic transmissions and a high level of postsynaptic
depolarization. This correlates well with what is known about the synaptic modification
mechanisms involved in LTP, which depend on the postsynaptic neuron being depolarized,
and most studies of this phenomenon induce synaptic modification with high frequency
bursts of electricity. So, while speculative, there is some evidence that nature may in fact
be implementing something akin to the equilibrium weight adjustment constraint.

We begin the analysis by computing % (where ” again indicates equilibrium) for a given

i
weight from the input layer unit ¢ to the output layer unit j. There are several variables in
GG which depend on weight w;;, so we first decompose the derivative into these partial terms:

G G 9G iy
= 24
d‘wi]‘ 6w” + Zk: %k 8'wij ( )
where k is now an index over «ll units in the network. The first of these terms is just
aé v v\ ou v v\in ¢
— = (a; — (a)™")(a; — (a)™) (25)
Ow;;

which is exactly the correlational learning rule proposed at the outset. Fortunately, several

different analyses (Movellan, 1990; Hinton, 1989) have shown that the g{i is zero at equi-
librium, so that this second term is 0. Intuitively, this should be so because evaluating %

at ay = ap will be 0 according to the activation stability proof given above. While this form

of the proof is not entirely rigorous, it provides at least an intuitive justification for only
considering the first term in equation 24. Refer to Hinton (1989) for a geometrical argument
of the proof. This concludes our proof that the ZSH weight update function will result in an
increase in the Goodness function G.

Having shown that the activations are stable according to the modified Goodness measure
and that the ZSH learning rule works to increase the overall Goodness of a network, one can
be reasonably confident that a ZSH network will converge on a stable, “good” mapping for
a given set of input patterns. Exactly what kinds of representations will develop depends on
the specific environment a network is exposed to. However, the general result will be that
output units will tend to differentially represent different input patterns.
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Simulation 2

The purpose of this simulation is to evaluate the potential of the zero-sum Hebbian
learning rule just developed on the same task as was used in Simulation 1. However, since
there is no error-driven component to the ZSH learning rule, it is not appropriate to give it
the auto-encoder task. In dropping this component of the network, we also lose the value of
the separate “where” pathway, since the total information present in the input does not need
to be preserved for the auto-encoder output. Essentially, we are only interested in exploring
the role of hysteresis and temporal contiguity in the environment in the real Hebbian system.
The architecture used was simply a three-layer network consisting of 5x2 units in each layer.
The large number of units in the upper two layers were used because a reduced number
would have been an additional assumption and constraint on our part about the kinds of
representations that are to develop. One of the benefits of a self-organizing network of this
kind is that it will use just as many units in each layer as it requires, and additional units
will become inactive “dead” units.

The use of two layers above the input layer was important as it allowed for hysteresis
from the recurrent activation loops to develop between units in these two layers, which are
connected with recurrent, excitatory weights. Within each layer, there are inhibitory weights.
It was not clear at the outset where the invariant representations would develop, as they
could be in either of the upper two layers (see Figure 6 in the Results section below for a
diagram of the architecture).

Using this architecture, two goals were pursued. One was to determine what the relative
impact the recurrent activation loops and lateral inhibition have on the development of
spatial invariance, and the other was to ask a similar question regarding the same-object
temporal continuity probability (i.e., the probability that the next image represents the
same object as the previous one) in the environment. The answer to the first question will
further establish the validity of the hypothesized mechanism, and determine what levels of
these variables are necessary for it to work. This information can then be compared to what
is known about the physiology of visual cortex to determine if the mechanism is biologically
plausible.

The answer to the second question will tell us how robust the mechanism is. If it requires
100% same-object probability to work at all, then the value of this mechanism will be very
limited. However, if it can work with relatively low same-object probabilities, then the
mechanism holds real-world promise. Average same-object probabilities can be computed
for the looking behavior of young children, and these values tested in the network.

Methods

For the first part of this simulation, only half of the desired variable can be manipulated,
because lateral inhibition is an intrinsic part of the stability of the network, as was proven
above. Therefore, we will only manipulate the relative strength of the recurrent activation
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connections between layers 1 and 2 (the input layer is 0). The gain of these weights can be
set by a layer-wide parameter. While both the feed-forward weights from layer 1 to layer
2 and the feed-back weights from layer 2 to layer 1 are involved in a recurrent activation
loop, only the feed-back weights were manipulated, as it is these weights which determine
the stabilizing influence of the activation of a layer 2 unit on units in layer 1. This gain
value was varied from .75 to 0 in steps of .25, where a gain of 1 was used on the feed-forward
weights in the system, and a lateral inhibition gain of 4 was used. This relatively large degree
of lateral inhibition was found to be necessary to ensure that only one unit in each layer was
active at any given time. While a distributed representation having multiple units active
would be more realistic, the simplicity of analyzing the local representations encouraged by
strong lateral inhibition was preferable in the present situation.

In the second part of the present simulation, the same-object probability was varied from
1.0 to .25, with intermediate values of .90, .75, .60, and .50. In the “best-case” condition
with a SOP (Same-Object Probability) of 1.0, there was one blank stimulus in between
each set of objects. As was discussed in Simulation 1, this blank stimulus simulates the
(presumed) effects of attention, which would deactivate the currently active units during a
shift of attention, such as that which would accompany viewing a different object. However,
for the lower SOP values, it was not possible to preserve the presence of this blank stimulus
after every shift in object type, so that the blank stimulus appeared randomly after a shift
from the present object. The algorithm for computing which stimulus to present simply
selected another position of the same object with the given SOP probability, or another
stimulus that was not the same object. This included the various positions of the other
objects, and the two blank stimuli. In order to determine the relative importance of the blank
stimuli, their presence was manipulated for the “best-case” and .90 probability networks.

For networks with lower SOP values, it is important to balance the perseveration of the
higher-layer activations with the ability to change state upon presentation of a different
object. For this reason, all simulations included a short decay period during which no
stimuli were presented was inserted between each stimulus presentation (i.e., one position of
one object). This decay period lasted for 50 time steps. This period would correspond to
the time during the actual movement of the eye during a saccade.

Each network was run with 10 random sets of initial weights, and the following parameters:
weight learning rate (dW) = .1, activation step (1) = .1, decay = .1, max = 1, min = -1. The
weights were adjusted after the network settled in activation space so that the maximum
change in activation was less than .0001, or after 500 time steps, which ever came first.
Typical settling times were on the order of 100-150 time steps.

Results

The scores for spatial invariance were computed in much the same way as those in Sim-
ulation 1, except that the total score could now be used as a unit only sends information
when it has a positive activation, thus ensuring that both objects will be represented by
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a) 1st Layer Spatial Invariance b) 2nd Layer Spatia Invariance

Figure 6: a) The architecture of the network used in Simulation 2, showing only the strong
weights which developed after training. This network developed spatial invariance in Layer
1 (Layer 0 is the input), as is indicated by the presence of strong weights to each position of
one object to a single Layer 1 cell. b) Shows a different network which developed complete
spatial invariance only in Layer 2, which combined partially invariant representations from
Layer 1.

units with positive weights. As there were 10 units to choose from in each of the two layers,
the score was computed on that unit which actually responded to a given object the most.
In most cases, this unit was in layer 2, but in some cases the layer 2 representations captured
both objects, so that layer 1 units were scored in this case. Figure 6 shows two examples of
trained networks that developed spatially invariant representations in different layers.

Figure 7 shows the results from the first part of the simulation. The direction of the
effect is as predicted, with lower gain values reducing the degree of spatial invariance pro-
duced. Only the .75 condition was significantly different than the 0 condition (p < .05,
Bonferroni/Dunn), but the .75 condition was also nearly significantly different than the .25
condition (p < .06). No other differences were significant.

Figure 8 shows the results from the second part of the simulation. Again, the direction
of the effect is as predicted, with decreasing SOP leading to lower spatial invariance scores.
Indeed, the effect is linear with the function slope and intercept shown in the figure with a fit
of R* = .98 to the data. In order to compare these SOP levels with real-world behavior, one
can estimate the average time that an individual would need to be looking at a given object
to produce a particular probability that the next saccade will be of the same object. This
probability is dependent upon the rate of saccading, as this determines the effective time
step length. As an example, if one saccades every 200ms, and continues to look at a given
object for two seconds (2000ms), then there will be 9 consecutive instances of a given object
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Spatial Invariance by Gain of Top-Down Weights
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Figure 7: Results of manipulating gain of top-down weights for layer 1 of zero-sum network,
showing existence of a critical level of top-down weights

followed by a 10th on a different object. Thus, there would be a .90 SOP level associated
with this level of observation. This level would, according to these simulations, result in a
high degree of spatial invariance developing.

As for the use of a blank stimulus to simulate attentional effects, the mean invariance score
over 10 “best-case” (SOP = 1.0) networks dropped from 9.4 to 6.2 with the elimination of
the blank stimuli, with a significance level of (p < .0001). For the .90 SOP network, the score
dropped from 8.2 to 6.1 with the elimination of the blank stimuli, (significant at p < .01).
Thus, the effect of the blank stimulus was less significant for the lower SOP network, as
would be predicted from the more random nature of its appearance.

Discussion

The principal lessons to be learned from this simulation are that the predicted effects of
manipulating the strength of the recurrent activation loops were found, and a surprisingly lin-
ear relationship between the spatial invariance and the SOP statistics of the environment was
observed. The first of these findings confirms that the spatial invariance effect is developing
according to the hypothesized mechanism. The second of these findings was not predicted,
but is a suggestive result in light of the Rational Analysis theory of human cognition recently
discussed by Anderson (1990). Perhaps such sensitivities to environmental statistics are not
indicative of rationality as much as they are of certain underlying mechanisms which depend
critically on such statistics.
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Spatial Invariance by Probability
of Same Object at t+1
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Figure 8: Results of manipulating the probability of seeing the same object at the next
time step (t+1), showing linear relationship between SOP and amount of spatial invariance
developed

The need for a blank stimulus between objects to prevent the perseveration of the higher-
order activation patterns over multiple different objects was clearly demonstrated for these
networks. The central problem with this requirement is that it could be construed as circular,
in that one must somehow know that one’s gaze has shifted to a different object in order for
some kind of attentional mechanism to be activated. An object recognition system can not
rely on attentional mechanisms which in turn rely on the existence of an object recognition
system. However, several arguments could be made for why this would not necessarily hold
for larger, more realistic networks. First, the spatial invariance transformation is supposed
to occur gradually over features of increasing complexity. For most levels of this transfor-
mation, the features will be common to many different objects, so that perseveration over
different objects would not be as damaging as it is in the network studied. Second, there are
many potential lower-order visual features that could be used to signal a shift in the object
being observed, without actually requiring the identification of the object. These features
center around figure/ground separation, and include such things as cohesivity of motion,
illuminance, and other stimulus qualities over a region of space. Differences in these lower
order features could signal the presence of a different object, and serve to inhibit the higher
order object recognition units.

While the results from this simulation are encouraging and interesting, they do not yet
constitute a convincing demonstration that a more realistic environment could be handled
by such a mechanism. Thus, in the next simulation, we will take the environment one step
further and introduce very simple visual objects at the level of a retinal image as input to
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the system.

Simulation 3

The critical difference between the model explored in the present simulation and that of
Simulation 2 is in the stimuli presented to the network. The stimuli for this model were
intended to more closely represent some of the complexity of actual retinal images. In
addition, we wanted to capture at least some of the feature-level properties of the proposed
invariance algorithm, so that the images were of single features from which objects might be
composed, in this case a diagonal line of either the right or left-leaning orientation. Unlike
the stimuli for Simulations 1 and 2, the same input units are used to represent both “objects.”
so it is not possible for the network to simply develop strong excitatory weights to an entire
portion of the input and still distinguish between the two stimuli (as was the case in the
previous simulations). Instead, the network must develop retinotopic representations of the
features, which can then be combined into spatially invariant representations at higher levels.
These retinotopic representations of features were assumed as input to the previous models,
but now we want to see if the network will develop them in response to the environment.

As can be seen in Figure 9, the network has five layers of 6x3 units, except the input layer
(the “retina”), which has 8z4 units. Based on the findings of Simulation 2 regarding the
different layers at which invariance developed, it was anticipated that a hierarchical structure
of spatially invariant representations would develop, with higher layers encompassing more
positions. The figure shows a trained network which has developed spatially invariant rep-
resentations in layer 3. These representations are built upon the locally spatially invariant
representations developed in layer 2 (shown in Figure 9e), which in turn are built upon the
retinotopic feature representations developed in layer 1 (shown in Figure 9f).

Methods

The network was trained in much the same way as in the previous simulation, with five
different positions of the two diagonal lines presented with a specified SOP. The SOP was
varied from 1.0 to .5 with levels of .9 and .75 in between. The same activation function
parameters and learning rate from Simulation 2 were used. The gain factors for the weights
were the same as well, with .75 for top-down weights, 4 for lateral inhibitory weights, and
1 for bottom-up weights, except for the units in layer 1, which had a gain of .5 for the
bottom-up weights to compensate for the larger number of active units projecting to these
units.

Initially, a difficulty arose in the development of the layer 1 retinotopic feature repre-
sentations due to the large receptive fields of these units. Because the zero-sum learning
algorithm decreases weights to inactive units in proportion to the average activation over
a unit’s receptive field, a large number of inactive input units will dilute the amount of
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weight taken from each inactive input unit. As a layer 1 unit developed strong weights to
the four input units comprising a given line, each of these accentuated units was shared with
a different diagonal of the opposite direction, causing this unit to respond more favorably
to those other diagonals. The zero-sum Hebbian algorithm will compensate for this effect
by reducing the weights to all the other units that were not part of a given diagonal line,
including the three other units comprising a diagonal going the other way. However, because
this weight decrease is normalized over all the inactive units (28 out of the 32 total), more
weight increase than decrease results to this other diagonal line. This effect caused a given
layer 1 unit which responded to a diagonal line of one orientation to be more likely to respond
to a diagonal line of the opposite orientation which shared one of the input units with the
other line, as the weight had increased to that unit, and a proportionally large amount of
weight had not been taken from the other inactive input units. This, compounded with the
perseverative effects from the lateral inhibition and top-down weights caused many layer 1
units to respond to multiple diagonal lines of both orientations.

In order to reduce the number of “blends” in the retinotopic feature representations, the
receptive fields of the layer 1 units were reduced to cover only 50% of the input layer. The
connections were distributed according to a Gaussian distribution based on the distance
between a given layer 1 unit and the input units, with a sigma of .15 (defined over the
maximum distance across the the layer), yielding retinotopic receptive fields centered below
the layer 1 unit. This reduced the blending problem significantly, but it did not eliminate
it entirely. Given that the problem was due to an insufficient degree of weight decrease to
inactive units, we simply multiplied the computed amount of weight decrease by a factor
of 2. In a more realistic case where features were represented by distributed patterns of
activity, blends would not be a problem, and these manipulations would be unnecessary.

In addition, the top-down weights for layer 1 were set to zero to obtain a minimum of
blending over different features at this layer. However, a set of 10 1.0 SOP networks were
run with this parameter set to .75 to determine the relative importance of this factor.

Results

The most important result of this simulation is to demonstrate that the entire pathway
from retina to object recognition can be simulated in the same network, and that the repre-
sentations which developed follow a gradient of increasing spatial invariance, as can be seen
in Figure 9. In order to ensure that this network has the same robust qualities for lower
SOP values, a range of SOP values were used (1.0, .90, .75, .50). The performance of the
network was similar to those of Simulation 2, as can be seen in Figure 10. This network had
a negative Y intercept for the linear fit, but a larger slope, as compared to Simulation 2.
However, this line fit the data well at R* = .98.

The best-case performance of this network was similar to the best-case network from
Simulation 2, with a mean of 9.2 vs 9.4 ns. As with the Simulation 2 best-case networks,
the only deviation from a perfect invariance over all 10 networks came from a network
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c) Layer 3, left diagonal  d) Layer 3, right diagonal
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Figure 9: Network architecture for Simulation 3, showing a network that developed spatially
invariant representations in layer 3 (with the input layer defined as layer 0). a) shows the
weights for the network, giving an idea of the hierarchical nature of the representations.
b) shows an “activation trace” of the right-diagonal stimulus as it sweeps across the input
layer. In this figure, the greyscale represents when the unit was last active, with lighter
shades representing those that were active most recently. This view shows how activity on
the retina has a decreasing influence as one goes higher into the network, so that by layer 3,
the same unit is active for all positions of the stimulus. ¢ & d show what the receptive fields
for the two spatially invariant units in layer 3 look like. These receptive fields were generated
by projecting (convolving) the input weights to these units through the input weights to the
units in the layer below, and so on down to the input layer. e) shows the receptive fields for
all of the layer 2 units. Each unit in layer 2 is represented in its respective location, with its
receptive field. The units in layer 2 are separated by thicker white lines, while those in the
receptive field are separated by thin white lines. f) shows the receptive fields for layer 1.



O’Reilly 39

Spatial Invariance by SOP
for 5-Layer Diagonal Line Network
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Figure 10: Results of manipulating the probability of seeing the same object at the next
time step (t+1), showing linear relationship between SOP and amount of spatial invariance
developed

which developed too much invariance, such that it summed over both types of objects in all
positions. In this situation, the maximal spatially invariant representations were at a lower
level in the network, which caused them to encompass less of the different positions of a
given object.

Another notable feature of these networks was the degree to which individual lines got
combined in the retinotopic feature representations in Layer 1, as was discussed above. To
compare the relative importance of the various Layer 1 manipulations used in the networks
reported above, the following conditions were run and analyzed: 1. Uniform parameters for
all layers, with full receptive field size in Layer 1, weight decrease = 1.0, and top-down weight
gain = .75. 2. Same as 1 but with 50% receptive fields, and top-down gain of 0. 3. Same as
1 but with 50% Layer 1 receptive fields, and weight decrease factor of 2 (note that the weight
decrease factor affects all units in the network, as it is a global parameter). Comparing these
conditions to the best-case network (Layer 1 receptive field = 50%, weight decrease = 2,
top-down gain = 0), the spatial invariance scores drop off to 5.5 for condition 1, 5.1 for
condition 2, and 6.6 for condition 3. Only the difference between the first two conditions
and the best-case network was statistically significant (p < .05, Bonferroni/Dunn). Further,
the average number of blended diagonal line representations was significantly higher for
conditions 1 and 2 (p < .05, Bonferroni/Dunn), going from 2.0 for the best-case network
(one blend encompassing two diagonal lines) to 4.5 for condition 1 and 3.8 for condition 2.
Condition 3 yielded 2.6 ns. Thus, both the smaller receptive fields and increased level of
weight decrease were important, but the top-down weight gain was less so.
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Even in the best-case network, an average of one retinotopic feature blend per network
was observed. However, the network was able to still distinguish which line was present by
using the context of a previously activated line position. This was an interesting finding, as
it suggests a mechanism for the representation of temporal context effects.

Discussion

The critical insight for explaining why the hierarchical structure of spatially invariant rep-
resentations develops is illustrated in Figure 9.b, which shows how the changes in activation
in the input layer have a decreasing influence on subsequent layers of the network, such that
by layer 3, a single unit can remain active during the presentation of all 5 positions of a given
feature. This gradient of stability over the layers of the network comes from the combined
effects of recurrent activation loops between layers and the lateral inhibition within layers,
and it is this gradient which is hypothesized to be capable of producing a corresponding
gradient of spatially invariant representations.

The network modifications necessary to make the feature detectors in layer 1 local and
distinct were important for this network and the stimuli used, as is clear from the results
when they were not in place. However, the relative merits of these modifications is not
important, given that more realistic stimuli and representational structures (e.g., distributed
representations) should not require them. These more realistic models should be explored,
however, to determine if this is actually the case.

In addition to the question of distributed representations, the role of the integration of
increasingly complex representations of object features over increasing layers of the network
needs to be explored in order to completely duplicate the algorithm suggested by Mozer. Both
of these considerations require larger networks than those used here. Having established the
validity of the learning mechanism in these simpler networks, it would not be unreasonable
to scale up the models to include more complex stimuli that can be decomposed into features
for recognition purposes.

Conclusions

Having demonstrated in simulated neural networks that certain patterns of neural in-
terconnectivity combined with a Hebbian learning rule are capable of exploiting temporal
regularities in the environment, many interesting predictions of this model can be explored.
For example, the model would predict that areas of the brain responsible for object-based
representations would have higher degrees of lateral inhibition and recurrent activation loops
in order to maintain a perseveration of object-based representations. Further, areas of the
brain that are designed to represent other aspects of visual information, such as spatial lo-
cation (the “where” pathway), should not have as much of these effects in order to avoid
developing object-based representations.
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Several pieces of physiological data fit these requirements. First, it has been shown
that the earliest projections from the retina to the LGN can be divided into two basic
types, known as the magnocellular and parvocellular pathways (Livingstone & Hubel, 1988;
Maunsell et al., 1990). These pathways have many different properties, temporal response
characteristics being one of them. The magno cells respond quickly and briefly to a given
stimulus, while the parvo cells have slower, longer lasting responses. While these properties
do not derive directly from the wiring patterns of cortex such as lateral inhibition or recurrent
connections, they do represent different kinds of input to higher visual areas. According
to the theory developed herein, one would predict that the parvo pathway, because of its
temporally extended response properties, would project more to the areas responsible for
object recognition, while the magno pathway would target the location-specific areas. This
is exactly what happens. Maunsell et al. (1990) have shown by differentially disabling the
magno and parvo pathways in LGN that disabling the magno pathway has large effects on
the Middle Temporal (MT) visual area, which subsequently projects to the parietal “where”
pathway, while these effects are not found for the parvo pathway.

Livingstone & Hubel (1988) have shown that many behavioral dissociations between the
kinds of stimulus properties that people can use to generate different kinds of visual infor-
mation such as depth and motion correlate with the differences in the magno and parvo
pathways. These results support the notion that these pathways project to different areas
of higher visual cortex. However, at the end of their paper, Livingstone & Hubel (1988) ask
“Is the existence of separate pathways an accident of evolution or a useful design principle?”
(p. 748). The present analysis suggests that indeed these two different pathways could have
important computational implications for the kinds of representations developed from inputs
differing in the temporal continuity of their responses.

Finally, it appears that the portion of the domestic chick brain responsible for object
recognition in filial imprinting and other tasks has the specific form of neural interconnec-
tivity hypothesized in our model: recurrent excitatory connections and lateral inhibition.
Because of the relative simplicity of the avian brain compared to that of the human, it is an
ideal system in which to explore the behavioral and neural implications of an object recog-
nition system like the one we have proposed. Indeed, in collaboration with Mark Johnson,
the present model has been successtully applied to several behavioral phenomena associated
with imprinting. The details of this work are available in O’Reilly & Johnson (Submitted).
The success of our chick model in accounting for a range of behavioral data supports the hy-
pothesis that at least some biological systems perform object recognition using the algorithm
proposed herein.



42 Self-Organization of Spatial Invariance

Analysis of Goodness Function

The following is the derivative of the Goodness function suggested in the text for the ZSH
learning algorithm with respect to a given output unit a; (where 5 € {k}):

oG 0H 08
== (26)
8a]- 8aj aa]‘
Taking the % term first results in the following equation, given that (a)°* is really just a
J
sum over all output units k£. Thus, it reduces to Zaﬁj, which is just 1/N.
J
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For the remainder of the analysis, we will assume that the number of output layer units N
is large enough to consider % R % (the difference is not important for the results).

Clearly, this equation would be much simpler to analyze if the feedforeward and feedback
weights were the same (i.e., that w;; = w;;), and that the lateral inhibition weights were also
symmetric (w;; = wj;). This condition is discussed in the text.

Assuming symmetric weights, equation 27 can be re-written as:
5 = 2w T ) awy = ) {a)"wy (28)
aj i 1i#5 i

which is just a combination of the net input to a given unit (17, see equation 18) plus an
additional term:
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This leaves the % term, which is relatively simple because the derivative of the integral
of a function is the function itself 95
— = f"(q; 30
o) (30)

Which makes the derivative of G

G :
5. = L =@ 3wy = 7 (e)) (31)

This gives us the derivative of our global Goodness function in terms of any output layer
unit. In order to determine if the IAC activation function will always cause this derivative
to increase over time, we must apply the chain rule using the derivative of the activation
function over time (see equation 16) to get the derivative of G over time:

bl AG day N
e (32
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where j indexes over all units in the output layer. This reduces to:

% =2 l(];“ft )™ D f_l(%)) (—a;+ f(If“))] (33)

Because there are similar terms in both of these expressions, it is possible to predict the

conditions under which this expression will have the desired positive sign. Following (Movel-

lan, 1990), we realize that the % term (I — (@)™ ¥ wi; — f(a;)) will have the same

sign as f(I7" — (a)™ 3", wi;) — a; because the activation function f is monotonic and will
therefore preserve the sign of its parameter. In comparing this new expression to the dc%
term (—a; + f(17°)), it should be clear that they will both have the same sign whenever
]]mt —(a)™ 3°, w;; has the same sign as ];-wt. Thus, the sum in equation 33 is over'the product
of two terms having the same sign, which must be positive, whenever ];-wt —{a)™ > w;; has

the same sign as /7. The implications of this condition are explored in the text.
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