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Introduction

Likeourcolleague¥oungandBurton(in press)YB), we believe thatgoodmodelsexplainawiderange
of data,in waysthataremotivatedby independentheoreticaconsiderationsandbadmodelsexplainanar
row rangeof data,by thead hocfitting of the modelto thedata,divorcedfrom ary moregeneratheoretical
considerationsAlas, YB’s commentandemonstratethe difficulty of applyingtheseseeminglystraightfor
ward principlesto realmodelsin a givenresearclarea.Oneneedsanunderstandingf bothempiricaland
computationalssuesbeforeone canmeaningfullyjudge“wide” versus‘narron” and“principled” versus
“ad hoc” For example,accountingor a numberof highly similar tasksshouldnot be taken asevidencefor
“wide” explanatoryscopenorshouldexplanationdasedn generabomputationaprinciplesbejudged“ad
hoc” becauseheir independeniotivationis not dravn from the realmof existing psychologicaimodels.
We will arguethatYB’s preferencdor the|AC model(andlocalistmodelsmoregenerally)over our Farah,
O’Reilly, andVecera(1993)(FOV) model(anddistributed modelsmoregenerally)is basedon a mistalen
accountingof breadthof applicability anda neglect of fundamentatomputationaprinciples,alongwith
more prosaicerrorssuchasa numberof apparenimistalesin implementingsimulationsand a failure to
notethat several basicpredictionsof their modelare disconfirmedby the available evidence. Underlying
this broadpatternof failure to appreciateand attendto computationaissuesin modeling(from technical
issuesof implementatiorto theoreticalissuesof model predictionsand neurobiologicalplausibility) is a
fundamentallydifferentview of the role of computationin psychologicakxplanation. YB dery thatfea-
turesof the computation(suchasthe distributednesof the representationsre part of the model proper
andcanplay an explanatoryrole, insteadrelegatingthe computationabspect®f psychologicaimodelsto
theory-irreleantimplementation.

We have organizedour responseénto threepartsthatparallel YB’s, addressingheir threequestions:1)
Which modelgivesthe mostcompleteaccountof covert recognitionin prosopagnosia?2) Which model
haswider applicabilityto relatedphenomenan theliteratureon facerecognition?3) Whataretherelative
meritsof thedifferentmodelingstylesWe begin by introducingandclarifying a centralpoint of contention
betweenthe two modelingstyles,the useof localist versusdistributed representationsWe returnto this
issueagainin part3.

In responseo the first questionwe point out that YB’s modelinitially explainedonly a narrav range
of data,andtheir new modelexplainstwo nev phenomenanly by usingbasicfeaturesof FOV, including
distributed representationsi-urther while their modelnow captureghe two additionalcovert recognition
phenomenaits predictionsconflict with othermorebasicfindingsaboutprosopagnosia-OV, on the other
hand providesaprincipledexplanationof adisparatesetof covertrecognitiontasksjncludingtaskshatYB
incorrectlystatearebeyondits scope andalsoaccountsaturallyfor severalotherfeatureof prosopagnosia.
In respons¢o thesecondjuestionwe shaw thattheircritiqueof ourmodelis basednanumberf mistalen
beliefsaboutthe capabilitiesof the FOV modelanddistributedrepresentatiomoregenerally In response
to thethird andmostgeneralguestionwe identify a basicdifferenceof approacho modelingthatappears
to underliethe mary otherdifferencedetweenYB’s views andour own. WhereasyB regardcomputation
asatool for simulatingalready-articulateg@sychologicatheorieswe view computatioritself aspotentially
explanatory We thenpresent sampleof the overwhelmingbody of empiricalandcomputationaévidence
supportingthe reality of, andexplanatoryvalueof, distributedrepresentatiom humancognition. To YB’s
lamentthatdistributed systemsare moredifficult to understandhanlocal, we say“perhapsso; but while
this is a relevant criterion for workersin the field of Human-Computeinteraction,it is not relevant for
scientistselectingamongtheoriesof the naturalworld.
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Explainingthe Overt/Covert Dissociation

The strengthof the FOV model,in our view, wasthatit explainedthe overt/covert dissociatiorin three
fundamentallydifferenttaskson the basisof somevery generalpropertiesof distributed network compu-
tation. Thusareasonablyide scopeof datawasexplainedwithout invoking ary assumptionspecifically
for thatpurposebut ratherby shaving thatthey area naturalconsequencef independentlynotivatedand
commonlyusedassumptionsoncerningcomputatiorby neuralnetworks. YB' s characterizationf FOV as
acaseof “the ad hocdevelopmenif modelsto accountor specificphenomenathusmissesoththe prin-
cipledbasisof themodels succesge.g.,distributedrepresentationserenot inventedby usfor thepurpose
of explainingcovertrecognition)andthegeneralityof its scopgthreevery differentmanifestationsf covert
recognition).As we will detailbelav, themodelis alsosuccessfuin simulatingvariousadditionaltypesof
tasksjncludingsequentiahssociatie priming, overtfamiliarity judgmentsforcedchoicecuedrecognition,
andprovoked overt recognition,demonstratingn evenwider explanatoryscope.Thereis no possibility of
ad hocfitting in thesecasesaswe simulatedthesetasksonly in responsdo YB's allegationthatit could
not be done,andproducedsuccessfusimulationsthatdependon the samesmall setof principlesasin our
original model.

In contrast.the original IAC model explainedbehaior on just one generaltype of covert recognition
task,whichwe originally termed‘priming.” Furthermoreaswe will explainbelaw, it did soby theadhoc
applicationof adecisiorcriterion,externalto themodelitself andinvokedonly for overttasks.Althoughthe
new versionaccountgor thetwo othertasksmodeledoy FOV, it doessowith the helpof two otherfeatures,
for a 1:1 ratio of datato assumptionsWith thesefeatures sharedwith FOV (distributed representations
andalearningmechanism)IAC canaccountor almostthe samescopeof covert recognitiondataasFOV.
However, evenwith thesefeaturest makesa numberof wrong predictionsaboutprosopagnosia.

TheFOV Accountof Overt/Cwvert Dissociations

YB amguethatthe FOV modelfails to accountfor threeimportantaspect®f overt/corert dissociations
that the IAC model can accountfor: covert associatie priming, overt familiarity judgments,and cued
recognition. Here we shaw this to be wrong in all three cases. Further we shav that a fourth aspect,
provoked recognition,which cannotbe accountedor by the IAC model,canbe simulatedwith the FOV
model.

SequentiaAssociativePriming

Whena faceprecedes nameby someshorttime intenval, andthe two are semanticallyrelated(e.qg.,
both membersof Britain’s royal family), judgmentsaboutthe name,suchasa “famous”versus‘not fa-
mous” judgment,can be mademore quickly thanwith no face. This finding, calledby YB “sequential
associatie priming; is alsoshavn by someprosopagnosicgndis thereforea form of evidencefor covert
facerecognition. In our 1993 article, we simulateda similar taskinvolving simultaneougsaceand name
presentationsand obtainedassociatie priming aswell asinterferencgdelayedresponseo a namewhen
the faceis semanticallydissimilar). Becausédhe effectswere so similar we groupedthemtogetherasone
simulationof “priming”.

As far ascovert facerecognitionis concernedthereis no reasorto distinguishbetweerpriming by an
unrecognizedacepresentedgimultaneouslyith a name,andpriming by anunrecognizedacepresented
a few seconddefore. In contrast,YB credit|AC with broadscopepartly for its ability to simulateboth
effects,andallegethatFOV cannotaccountor sequentiahssociatie priming.

Settingaside momentarilythe questionof whether=OV is really unableto simulatesequentiahssocia-

tive priming, considemreciselywhat YB sayFOV cannotdo. They do not call our attentionto a problem
in priming a namejudgmentwith aface,which FOV hasalreadysimulated.Nor do they reporta failureto
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obtainpriming per sewhenthe faceprecedeshe name. Rathey they wereunableto obtainary response
to the nameprecededy a face,andso could not determinewhethera facewould or would not prime a
subsequenhame. YB correctly point out that FOV’ s attractorstatesare so strongthat subsequeninputs
have little effect, makingit impossibleto simulateary taskinvolving sequentiallypresentedtimuli. This
is awell-knovn problemfor attractometworks,andwould likely be a problemfor our brainsaswell if not
for suchfactorsasthe discretespiking natureof real neuronsascomparedo the continuousreal-\alued
outputsof modelunits, and neuronalfatigue. Fatiguecaneasilybe capturedn the modelby introducing
activation decayafter the network settlesinto an activation state. This is commonlydonewhennetworks
areusedto modelsequentiaprocessege.g.,Burgess,1995; Dayan,1998). Becausave hadnot setout to
simulateary sequentiatasks,we did not originally incorporatedecay However, whenFOV’s activations
aredecayedfter the presentatiorof the facestimulus,the subsequenpresentatiorof the namestimulus
wasableto propagatehroughthe network, andthe presencer absencef sequentiahssociatie priming
couldbetested.

Using the original FOV model, we did not find a substantiabriming effect, presumablybecauseof
the relatively tiny differencein amountof overlap betweenthe semanticrepresentationsf peoplefrom
the samecateyory and different cateyories (only one unit). We thereforealteredthe patternslearnedby
the modelto includesemantiaepresentations which the membersf the samecateyory (e.g.,“actors”),
all had overlappingdistributed representationsonstructecas randomvariationsof a commonprototype.
With this greatemwithin-catgory semanticoverlap,the network exhibited significantsequentiahssociatie
priming atlevelsof damageaupto 75%,the samedegreeof damageat which the systemperformsat chance
onanoverttask. Notethatchanginghe patterngn this way would not be expectedo affect the qualitative
patternof resultsin ary of the previously reportedsimulations We confirmedthis by replicatingtheresults
from the original model. Appendix1 givesthe modelingparametersndresults.

Familiarity

Many of YB's criticisms of our simulation of the overt/corert dissociationhinge on tasksinvolving
familiarity judgments.We intentionally avoided simulatingsuchtasks,becauseahey requirethe modeler
to take a stanceon the mechanistidasisfor familiarity judgments. Although familiarity seemsto be a
simpleconceptthe waysin which subjectamale familiarity decisionsarearything but simple. Perusabf
the psychologicaliteraturefrom memoryresearch{e.g.,Jacoby1991)to lexical decision(which concerns
familiarity decisionsaboutletter strings; e.g., Seidenbey, Waters,Sanders& Langer 1984) malesclear
thevarietyof factorsthatcomeinto play, includingautomatigrocesseef bothaperceptuaindconceptual
nature,and strat@ic processes.Modelershave madevariousattemptsto find reasonableeomputational
interpretationof familiarity (Plaut,1997; Beclker, Moscuwitch, , Behrmann& Joordens1997;Mathis &
Mozer, 1996;Metcalfe,Cottrell, & Mencl,1992),but no consensubasemegedatthis point. YB attempta
very easysolution,simply stipulatingthatfamiliarity is PIN activation. Rathetthanincorporatejuestionable
assumptiongnto our model,we preferto remainagnosticaboutthe mechanism®f familiarity judgment.
Whatwe give up is the possibility of attemptingto simulatesomeovert-covert dissociationsspecifically
thosedesignedo includefamiliarity judgments.

SensiblepeoplecandisagreeandYB apparentlyplacegreatevaluethanwe do on simulatingall vari-
antsof theovert-covert dissociationasopposedo representate resultsfrom eachtype of task(relearning,
priming, andspeedof perception)gven at the price of incorporatingadditionalassumptiongnto a model.
Thereforethey attemptedo simulatefamiliarity judgmentswith FOV, by assigningsettlingspeedof visual
or semantiaunitstheinterpretatiorof familiarity. They reportthattheir simulationsusingthisimplementa-
tion of familiarity in FOV failedto capturethe overt-covert dissociation.Given our reserationsaboutthe
possibility of any simpleimplementatiorof familiarity, we werenot surprisedo learnof thisfailure.

We werethereforedoubly surprisedvhenwe could not replicatetheir reportedfailure with FOV! Con-
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trary to our own conseratism regardingthe computationatractability of familiarity, andalsocontraryto

thereportedsimulationresultsof YB, we easilyfoundthe overt-covert dissociationvhenspeedf settling
in semanticunits was usedas an overt familiarity measuren our model. Specifically at 50% damageto

thefacehiddenunits,alevel of damageat which thevariouscovert measuresimulatedoy usshow positive

evidenceof covert recognition the averagedresultsfrom 50 randomsamplesof forced-choicdamiliarity

decisionsshaved settlingtime for familiar faceswas not significantly differentthanthe settlingtime for

unfamiliar faces;indeedit wasnonsignificantlylonger Further whenwe useda differentmeasureof fa-

miliarity known asthe goodnesgakanegative enepgy) of the network’s activation state,which hasbeen
usedin severalothermodels(Becleretal.,1997;Borowsky & Masson,1996;Rueckl,1995),we foundthat
the advantagefor trained(“familiar”) facesover unfamiliar onesdisappearedat only 25% damage.Thus,
consistentvith our reserations,the overtfamiliarity behaior of themodeldependsubstantiallyon which

familiarity measures used.Neverthelesstwo candidate$or afamiliarity measurédothyieldedthedesired
dissociationFurtherdetailsof thesesimulationsareincludedin Appendix2.

We do not knowv why YB did not obtain the sameresult using the settling time familiarity measure.
Althoughthey statethatthey have “attemptedo capturelossof familiarity in forced-choicdests”they say
nothingabouttheir simulationattemptsandat leastpart of their conclusionis basednot on simulationbut
onthereasoninghat“Whenever thereis ary residualeffect of learning,the modelwill favor a known over
anunknavn patterr, which they supportempirically by referenceo our finding (FOV, 1993, Simulation
1) of fastersettlingin visual units for familiar patterns.This reasoningevealsa misunderstandingf the
behaior of distributedinteractve networks. The visual units may settlefasterwith familiar patternsafter
damageput aslong asthey aresettlinginto incorrectstatesthe inputsto the semanticunits for familiar
patternamaybeasfar from well-structuredsemantiattractorbasinsastheinputsfor unfamiliar patterns.

In conclusionwe remainagnosticconcerninghe correlateof familiarity in neuralnetworks,andthere-
fore assigrlittle weightto thesuccesef the overt/covert simulationsusingeitherPIN activationor semantic
settlingtime asa measuref familiarity. But to the extentthatsemanticsettlingtime, or goodnessarerea-
sonablecandidategor familiarity in a neuralnetwork, the FOV modeleasilyaccountdor the dissociations
in question. We cannotexplain why YB did not obtainthis resultempirically but note that their a pri-
ori reasoningwvas flawed concerningthe impossibility of dissociatingsemanticsettlingtime from covert
measures.

ForcedChoiceCuedReca@nition

Cuedrecognitionis anotherform of covert recognition,in which prosopagnosicean make a correct
forcedchoicedecisionbetweertwo nameswhile viewing aface,eventhoughthey cannotovertly judgethe
facefamiliar or unfamiliar, or namethe face. Contraryto the claim that FOV cannotbe madeto simulate
this phenomenomur modelexplainsit very naturally andwe aregladfor the opportunityto demonstrate
FOV’'s succes anothemualitatively differenttype of task.

Theimportantthing to noteis thattheforcedchoicecuedrecognitionparadigmprovidesa strongsource
of additionalconstrainton the settlingprocessn the form of the nameinput to the semantidayervia an
intactpathway. This nameinputis capableof producingthe correctcorrespondingemantiaepresentation
by itself, whereaghefaceinput via the damagegathway is not capableof producingthe correctsemantic
representatioby itself. Onemustbe carefulnotto confusethe behaior of the network with only theweak
constrainprovidedby thedamagedaceinputwith thatwhenboththis weakconstrainandthestrongname
inputareprovided. In the latter case(i.e., forcedchoicecuedrecognition) the weakadditionalconstraints
provided by the faceinput canhave a measurablémpactbecausehe network is broughtinto a region of
greatersensitvity to this input by virtue of the strongnameinput. In otherwords,the weakfaceinput by
itself producessomethindike a floor effect, andthe additionalnameinput bringsthe systemoff this floor
sothatthedamagedaceinput cannowv have measurableffects.
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This reasoningvasconfirmedby simulationusingthe FOV model. Using eithersemanticsettlingtime
or goodnesssa measuref familiarity, we wereableto simulatethis cuedrecognitioneffect without any
additionalchangeso themodel,asdescribedn Appendix3. For example at 75%damageo thefacehidden
units, whereovert familiarity measure$iadlong sincefailed, the systemretainedthe ability to distinguish
betweercorrectandincorrectnamedor thefaces.

Provolkedrecaynition

Provoked recognitionis anotherform of presered facerecognitionin prosopagnosian which the sub-
jectultimately experiencesvert recognition. After seeinga numberof facesfrom a singlesemanticcate-
gory, suchasactorsfacescanbenamedand,reportedly experiencedasfamiliar. YB asserthatneitherlAC
nor FOV canaccounffor thisfinding, butin factthe phenomenois compatiblewith adistributedconstraint
satishctionarchitectureandcanbe simulatedby FOV. The gist of the explanationis thatrepeategresen-
tationsof differentfaceswith commonsemanticsubpatternsvill resultin a build-up of residualactivation
primarily in thatsubpatternThisactivationwill sometimeprovide theneededdditionalconstrainto malke
up for the lossof constraintscomingfrom damagedacerepresentation® allow for successfusemantic
retrieval andnaming.

In orderto testthis interpretationwe presented setof faceinput patternsall from the samesemantic
catgyory (with the samedecaymanipulationasusedin semanticassociatie priming betweeneachinput),
and recordedmeasure®f namingand familiarity as before. We found that overt recognitionwas more
likely to occurafterviewing multiple facesfrom the samecateyory, asmeasuredy greaterfamiliarity and,
at somelevels of damagegreatersuccessn naming. Factorscontrituting to the size of the effectinclude
the amountof semantigpatternoverlap andthe amountof decayused. Our face-semantic-nanyatterns
were not optimally designedor this simulation,with a commonsemanticsubpatterrof only 2 units, and
becausdahe modelwas not originally setup to simulatesequentiakffects, a relatively large amountof
decaywasnhecessaryo overcomethe strongattractordynamicsof the network, which reducedhe level of
accumulatedctivationin thoseunits. Despitetheselimitations, the effect s reliable. SeeAppendix4 for
simulationdetailsandresults.

ThelAC Accountof Overtand Covert Rec@nitionin Prosopanosia

Sofar we have seenthatthe FOV modelis capableof explaining the full rangeof overt-covert disso-
ciationsdiscussedy YB, andthatit doessoin a naturalway, without alterationsdesignedsolely for this
purpose We now turnto thelAC model,whichdiffersbothin failing to accounfor someof thekey dataon
overtandcovert recognitionin prosopagnosiandin relying on anadhocadditionto the |AC modelitself
to accounffor the overt-covert dissociation.

AdhocNature of the|AC Account

Theoriginal IAC modelaccountedor priming-basedovert measuregassociatie priming andinterfer
ence)by assuminghatprosopagnosianiformly attenuatesveightsfrom the facerecognitionunits (FRUs)
to the personidentity nodes(PINs), andthat overt taskperformancesuchasfamiliarity judgmentrequires
that a thresholdon the activation of the PINs be exceeded.The first time we readthis, we assumedhat
this thresholdwasof the standardype usedin neuralnetwork models,andcould seehow this might play
arole in sucha dissociation.But uponrereadingwe realizedthat the explanatorywork in this modelis
beingdoneby atype of thresholdthatis unlike othersdiscussedn the neuralnetwork literature— their
thresholdsenes absolutelyno computationapurposewithin the network, andits functionis solely asan
overt-covert-dissociatin-maler.

What doesit normally meanfor a unit to have a threshold?Units in neuralnetworks summatdanput
activationandalsopasson outputactivationto otherunits. In mary networks, unitsonly passon activation
if thesummatedctivationexceedsa certainvalue— theunit's threshold.Realneuronsalsohave thresholds
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in this senseof the word. In the IAC model,however, activation is continuouslycascadedbetweenunits
duringbothovertandcoverttasks.Thus,their overt-corert thresholds notaboutdeterminingvhenenough
activation hasaccumulatedo be propagatednwards. This appliesto all of the unitsin the IAC model,
includingthe PINs,andindeedit is the continuedoutputfrom the PINs, despitetheir attenuatednputs,that
underlieghe preseration of the covert priming tasks.

ThePIN “threshold’thatunderlieghe overt-covert dissociatiorin thelAC modelis not partof the IAC
modelproper Instead,it is a decisioncriterion appliedto PIN activation levels only whenthey are used
for overt familiarity judgmentsandis externalto the model, affecting noneof the models activationsor
weights. In the authors’own words, “Note thatthesethresholdvaluesare (of course)arbitrary However,
the exactthresholdshoserdo not affect the processingf the modelin any way. Activationis continually
passedn a cascaddashion,andthe thresholdaffects only the decisioncriterion” (Young & Burton, in
press).It is becauseandonly becausgthe overttaskof familiarity judgmentasbeenstipulatedto involve
a decisioncriterion, usingthis external-to-the-modehrbitrary “thr eshold” that the IAC modeldissociates
overt and covert recanition. The essenc®f the IAC accountof the overt-covert dissociationis this: “If
oneform of recognitionis impairedafter damageandanotheris sparedthenhypothesizghatan arbitrary
criterion for minimal quality of processings requiredjust for the impairedability andnot for the spared
one’

Thisaccounts unsatisfyingn the sameway thatthataccountf overt-cosert dissociationshatfeature
a“consciousnesbox” areunsatisfying:While bothaccountfor the basicdissociationin a straightforvard
way, it is justalittle too easyto explain a selectve impairmentin onetype of taskby postulatinga special
componenbf the mind (consciousnessystemor decisioncriterion) that happengo be requiredonly for
the impairedtask, without ary other independenmotivation for including that componenin the model
or involving it in just the impairedtasks. Indeed,althoughYB seemto regard the IAC accountas an
improvementover the earlierhypothesighatfacerecognitionhadbeendisconnectedrom a consciousness
systemwe donot. A “decisioncriterion” may soundmoremechanistichana “consciousnessystent, but
we have alreadyshawn thatit in factplaysno mechanistigole in the behaior of the model,whereaghere
is atleastampleindependenprecedentor hypothesizingystemsnvolvedin consciouswareness.

Finally, we notethatthe ability of the IAC modelto accountfor thetwo othertasksoriginally modeled
by FOV dependon two additionalassumptionsfor a 1:1 ratio of modelfeaturesto effectsexplained. A
learningmechanisnwas addedto modelsavings in relearning,and distributed facerepresentationwere
addedto accountfor familiarity effectsin facematching,bringing the IAC accountcloserto FOV. Even
with thesefeatureshowever, thetwo modelsarenot equallysuccessfulln thefour sectionghatfollow, we
review four of the|AC models predictionsaboutprosopagnosithatareclearlywrong.

IAC Predictsintact ForcedChoiceOvertRec@nitionin Prosopgnosia

Whenpsychologistsuspecthat performancen ataskis limited by a decisioncriterion, that prohibits
subthresholdnonledgefrom beingexpressedthey turnto aforced-choicgaradigm Insteadof askingthe
subject‘ls thisan X, yesor no?” they shaw the subjectandan X anda'Y andask“Which of theseis an
X?” Althoughthe strengthof the X-hoodsignalfor the X mightbebelawv thecriterionfor deciding“Yes) it
couldstill begreaterfor the X thanfor the Y. For thisreasonaccurag in forced-choicdasksis sometimes
calleda criterion-freemeasuref subjects’ability (Green& Swets,1966).

As we have alreadyseenthe IAC modeldissociate®vert and covert recognitionthroughthe useof a
criterionfor PIN activationin anovert“yes/no” familiarity task. However, whenwe switchto this criterion-
freeforced-choicaneasuref overtperformancethel AC modelalwaysproducegerfectperformanceeven
with “pr osop@nosic” levelsof damaye (FRU-PIN link attenuation) Evidencefor this canbefoundin YB’s
Figure7a,whichshavsthatafamiliarfacewill alwayscausehigherPIN activationthananunfamiliaror less
familiar face. Similarly, YB’s Figure4b shawvs thatalthoughthe activationin nameunits might be too low
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to exceeda decisioncriterion after FRU-PIN link attenuationthe unit for the correctnamewill alwayshbe
moreactive thanthe unitsfor incorrectnamespredictingaccuratdorcedchoiceamongnames.Of course,
we know thatthe overtrecognitionimpairmentof prosopagnosis just asevidenton forced-choicdestsas
on“yes/no”andnamingtests.Figure3in our original 1993papershavs thatFOV reacheghancdevelsof

performancen aforcedchoicetaskabore 50%damagevhile continuingto manifestcovertrecognitionby

anumberof measures.

IAC PredictsProsopanosiais All-or-none

Neuropsychologicadlisorderscanbe mild or severe,and may changetheir level of severity over time.
After anacuteinjury, the disordermay be severeandthengraduallyrecover, eitherpartially or completely
In degeneratie conditions,the reversemay be seen. Thereis no neuropsychologicampairmentthat is
seenonly in full-blown form or notatall. In particular prosopagnosiaanexist in mild, moderateor sesere
forms. Yetthe |IAC modelpredictsthatpatientsareeithernormalat overt facerecognitionor totally unable
to recognizeary facesovertly. This problemresultsdirectly from the way the modelaccountsor covert
recognition,namelythe combinationof a thresholdon local PINs and uniform weight reductionbetween
facerecognitionunits (FRUs) and PINs. As the weightsare attenuatedpvert performancewill remain
unchangedintil the familiarity thresholdis reached. At thatpoint performancewill dropto chancdevels,
andremainthere.

Onemighttry to fix this problemby makingthe weightreductionsnonuniform.For example,the most
realisticway of implementingdamagein a network would be to eliminate someconnectionsaltogether
while leaving othersintact, allowing levels of overt recognitionperformanceo fall anywherebetweerper
fect performanceand chancedependingon the proportionof connectionsliminated. Unfortunately this
implementatiorof damageeliminatesthe overt-covert dissociation: Somefaceswill be recognizedpoth
overtly andcovertly becauseheir FRU-PIN connection@reintact,andotherswill notberecognizeckither
overtly or covertly, becausdaheir FRU-PIN connectionhave beensevered. In light of this problem,one
mightaimfor intermediatevert performancdy varyingthe degreeof attenuatiorof FRU-PIN connections
without eliminating connections.This would have the desirableresultof overt performanceneasurein-
termediatébetweerperfectperformancendchancewith the possibility of covertrecognitionfor facesnot
overtly recognized.Unfortunately it hasthe undesirablaesultof predictingperfecttest-retesteliability,
thatis, certainfacesalwaysrecognizedindall otherfacesnever recognizedWeakitem effectsmaybeseen
with someprosopagnosicdut it is not the casethat certainfacesarereliably recognizedacrosddifferent
depictions whereasthersare never recognized.A final solutionis to combatthe perfectconsisteng of
the modelby directly addingvariability to the activation valuesof the units. Althoughthis could produce
intermediateovert performanceavithout strongitem effects, it would be yet anotherad hoc additionto the
model.

IAC PredictsProsopanosiaAffectsonly Familiar Faces

Althoughtheliteraturecontainsclaimsof selectve impairmentof familiar faceprocessingn prosopag-
nosiawhen&ertheperceptiorof unfamiliarfaceshasbeencarefullytestedt hasbeenfoundto beimpaired
(seeFarah,1990; Shuttlevorth, Syring, & Allen, 1982, for reviews). Young,Newcombe,de Haan,Small,
andHay (1993)have shawn thatapparendissociationdetweerthe processingf familiar andunfamiliar
facesdisappeawhentime to performperceptuatestswith unfamiliar facesis takeninto account;patients
may achieve a goodaccurag scoreby abnormallyslon and slavish checkingof facial features. Indeed,
casesPH, in whom covert facerecognitionhasbeendemonstratethy presered familiarity effectsin face
matching performssimpleperceptuafacematchingpoorly (16% errors)andslowly (almost3 secondsn
average)venwhenthefacesareunfamiliar (de Haan,Young,& Newcombe,1987).

In contrastthe IAC modelis basedon theassumptionthatthe impairmentin prosopagnosibes down-
streamfrom the perceptuatepresentatioof facesjn a partof the systenthatexistsonly for familiarfaces,
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namelyconnectiondbetweenthe perceptuaFRUs andthe PINs. The IAC model could be defendedoy
hypothesizinghat, for reasonsof anatomicalproximity, visual facerepresentationarealsolikely to be
damagedn casesof prosopagnosiaand have so far invariably beendamaged.The FOV modelhasthe
adwantage however, of not requiring coincidentaldamageto two partsof the system;it is basedon the
assumptiornthat perceptiorof facesfamiliar andunfamiliar, is impairedin prosopagnosia.

IACL PredictsProsop@nosiais Tempoary

The additionof alearningmechanisnto the IAC model,resultingin the IACL model,createsanother
problem:it commitsthemodelergo thepredictionthatprosopagnosie temporaryin thatit canbeentirely
overcomeby relearning.Giventheway damageandrelearningaresimulatedn IACL, thereis nothingthat
requiresthe relearningto stopshortof perfectperformance.lndeed,comparingthe resultsshavn in their
Figures4a, b andc, one canseethat after5 trials of relearningthe network hascompletelyrecoreredto
an unlesionedevel of performance.This would predictthat prosopagnosipatientscould recover all of
theirlost knowledgeby simply studyingall the facesthey onceknew for some(apparentlyrelatively short)
periodof time! In contrastyelearningn FOV hasalow asymptotebecausa reducechumberof unitsand
weightsareavailableto storethe new knowvledge— the network, like prosopagnosicéiasactuallysufered
irreparabledamage.

IAC’s Incorrect PredictionsFollow from Theory-Releant Featues

Of course,for every scientific model, somefeaturesare theory-relgant and someare not. We have
highlightedseveralwaysin which the predictionsof the IAC modelfail to accordwith reality An important
guestionto askis whetherthe IAC models incorrectpredictionsresult from theory relevant or theory-
irrelevant features.In all casesthe failuresderive directly from theory-relgant features,anddirectly or
indirectly from the useof local representations.

In bothmodels covertrecognitionis theresultof a partially functioningsystem With FOV’ sdistributed
representationghe “partiality” of the systems knowledgeof facesconsistsof a subsebf the weightsthat
originally embodiedknowledgeof the faces’appearanceThereis no equivalentway of damagingface
representationwith IAC’s local representationsgnd so the partiality of functioninginsteadresultsfrom
attenuateadonnectiorstrengthdetweerFRUs andPINs. This differencein theway partialfunctioningcan
take placein distributedandlocal systemsaccountdor all of the problemsthatthe IAC modelencounters
in simulatingprosopagnosiaT he attenuatiorof FRU-PIN connectiongsannotaccountfor impairedovert
recognitionwithout the impositionof a decisioncriterion externalto the model, but this leavesthe model
unableto accountfor impairedovert recognitionin criterion-freetasks. The choicebetweenall-or-none
prosopagnosiandstrongitem effectsis forceduponthe IAC modelby its useof local representationsn
conjunctionwith the criterionneededo createthe overt-covert dissociation.Eitherweightsare uniformly
attenuatedgiving rise to the all-or-none problem,or they are nonuniformly attenuatedgiving rise to the
perfecttest-retesproblem.Thereis no naturalwayto obtainagradientof performancevith variedamounts
of damageotherthanhaving one specificfaceat a time drop from the “alwaysrecognizedto the “never
recognizedcataeyory without building in variability explicitly for this purposeln contrastwith distributed
representationgachof theunitsandweightsparticipaten therepresentatioof mary facesanddamageo
eachunit or weightthereforeimpactson mary faces.And becauseachfaceis representetyy mary units
andweights,damageo eachunit or weighthasonly amoderateffectonrecognitionof thatface.Increasing
damagehereforeresultsin a gradientof performancdor all faces,andbecausery particularlesionmay
by chanceaffect more of the units andweightsinvolved in onefaces representatiothananothers, there
maybe weakitem effects.

The differentlocationsof the lesionsin the IAC and FOV models,and their consequenpredictions
concerningunfamiliar faceprocessingn prosopagnosiaanalsobetracedto thedifficulty of implementing
partialor gradedperformancen systemof local representatiorf-or thereasongust stateddistributedface
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Effect FOV Comments IAC Comments
10AFCOvertatChance Yes No  Always100%correct
Graded_evelsof Prosopagnosia | Yes No  All-or-nothing
Unfamiliar Facesmpaired Yes No  Only familiarhave PINs
PermanenEffectsof Damage Yes No Completerecovery
Savingsin Relearning Yes No Completerelearning
Speedf Settling(Perception) Yes Yes Usesdistributedreps
SemantidPriming (& Interference) Yes Yes

SequentiaAssociatve Priming Yes Requiredecay| Yes
Forced-choic&CuedRecognition | Yes Yes

Prosoked Overt Recognition Yes Requiredecay| No

Tablel: Correctedversionof Youngé& Burton’s Table 1, shaving accuratecomparisorbetweerthe two modelson
basicpropertiesof prosopagnosiandthe setof covertmeasuresonsidered.

representatiomaturallyaccommodatepartial processingf all facesafter damage.Becausdheir model
doesnot include distributed facerepresentationghe authorsof the IAC modelwere forcedto interpret
partialprocessingn termsof wealenedconnectiondetweerintactfacerepresentationsndpost-perceptual
representationdowvnstream.

IACL's predictionthat prosopagnosiahouldbe only transitoryalsofollows from the useof local rep-
resentationswheread-OV'’s predictionof a low asymptotefor relearningafter damagefollows from the
useof distributed representationKnowledgein FOV is representeih a distributed manneracrossa large
numberof weights.Whenthe FOV modelrelearnsit mustcompensatéor the permanentlynissingunitsby
reusingthe remainingweightsandunits. Thusperformanceés constrainedo remainpermanentlympaired
becausef the reducednumberof units and connections.lt is alsoworth noting thatlearningin FOV is
anintegral partof the model,becauselistributed representationsannotbe hand-wiredasis possiblewith
local representationgndwasnot simply addedto the modelto accountfor particulardata. In IACL, the
simulationof damageby attenuatingconnectionsaandrelearningby strengtheninghemagainfails to put
ary constraint®ontheamountof relearninghatcanbeachieved.

Young& Burton's Table 1, corrected

Ourgoalin writing thisarticleis to clarify certainaspect®f thebehaior of distributedinteractve neural
networks, andto discussthe relevanceof this behaior to psychologicakxplanationin the caseof covert
facerecognition. The detailedaccountingof which modelcansimulatewhich variantof which taskis of
lessinterest.Neverthelessthetwo concernsannotbe entirely divorcedfrom oneanotherandsowe wish
to settherecordstraighton thesuccesseandfailuresof themodelsthatYB contrasin their Tablel. Thus,
we provide a correctedTablel, revisedto includeall of the paradigmsawve simulatedin our original paper
togethemwith the new paradigmsonsideredhere.

Accountingfor the Phenomenaf Normal FaceRecognition

YB find it problematicthata modelaimedat explaining the covert/overt dissociationdoesnot explain
otherphenomeneelatedio facerecognition.But themotivationof FOV wasto demonstratéhatovert/covert
dissociationgouldbeexplainedsimplyin termsof somebasicandgenerapropertieof neuralinformation
processingnot to explain facerecognitionmore generally Do we think modelsdesere more credit for
explainingawider rangeof phenomena¥es,of course.Do we think thatmodelsaresuspectf they do not
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explain phenomenautsidethe realmoriginally intended?Not at all, particularlyif thereis nothingin the
modelthatwould conflict with anattemptto broaderits scope.

The FOV modelis perfectlycompatiblewith the broaderangeof faceperceptiorphenomenaeviewed
by YB, theirclaimsto thecontrary Justasthey andtheircolleaguesvereableto simulateadditionalfindings
in personperceptiorby addingfeaturego the original IAC model,suchasseparaténput andoutputname
representationgnd a direct route from nameinputsto nameoutputs,the sameis true of FOV. Neither
modelaccountedor thefull rangeof datareviewedby YB in its original form. Both modelscando sowith
appropriateadditions,andFOV requiresno moreadditionsthanlAC. Indeed the corefeaturesof the FOV
model— distributedrepresentatiorgarning,andinteractvity — provide naturalexplanationsof mary of
the phenomenan normalpersornperceptiorthatYB review. Herewe considereachof the effectsreviewed
by YB in turn.

RepetitionPriming

Repetitionpriming is domain-specificin the sensehatrepeatequdgmentsof anindividual's faceshav
priming whereasa judgmentof a namefollowed by a judgmentof the sameindividual’s face doesnot
shav priming. An obvious explanationfor this aspecbf repetitionpriming is thatthe namerepresentations
engagedn the act of readinga nameare distinct from the namerepresentationengagedn the act of
producinga name for examplewhenafaceis named.This distinctionbetweerninput andoutputlexicons,
which is supportedby considerablevidencein cognitive psychologyand neuropsychologyimplies that
differentnamerepresentationare actvatedwhenreadinga nameandwhenevoking a namefrom a face,
and henceexplainsthe absenceof priming betweenthesetwo typesof task. Separaténput and output
lexiconswereincorporatednto the IAC modelspecificallyin orderto accountfor the domain-specificity
of repetitionpriming, andasYB point out, the samecould be donefor FOV. We thereforefail to seewhat
bearingrepetitionpriming, andits likely explanationin termsof separaténput andoutputlexicons,hason
theissueof localistversuddistributedrepresentatiom generalor onthechoicebetweerthe |AC andFOV
modelsin particular

To putit anothemway, thereis only onedifferencebetweenthe modelsthatis relevantto their different
abilitiesto simulatethe domain-specificityof repetitionpriming: the IAC modelto which separatéexicons
wereaddedhasseparatdexicons,whereaghe FOV modeldoesnot. Thisis not a differenceof “modeling
style} but simply of whathasbeenmodeled We trustthatmostreaderslid notinterpretour useof a single
lexiconasatheoreticabtatementhatthe samerepresentationgnderliethe hearing readingandspeakingf
nameshut insteadrecognizedhatthedistinctionbetweerinputandoutputlexiconswassimply notrelevant
to ary of thetasksthatthe FOV modelwasintendedo simulate.

A relatedpoint concerngheinexorableway in which FOV, andmostneuralnetworks generallytendto
completepatternsyesultingin all facesbeingautomaticallynamed.For thetaskswe simulatedt wasnot
necessaryo incorporateanattentionamechanisnthatgatesheflow of activationin thenetwork depending
ontaskdemandsbut suchmechanismarecertainlyavailable(e.g.,Cohen,Dunbar & McClelland,1990),
and provide a principled basisfor the lack of transferbetweenfaceand namepriming. However, given
thatwe know thatthe presentatiorof a facewill alsoautomaticallyspreado the nameunitsin the IACL
model (asis necessaryor naming,and priming effects), it is entirely unclearwhy their modeldoesnot
predictcross-domaimepetitionpriming aswell, sincethey statethattheir Hebbianlearningmechanisnwas
appliedto all the unitsin the network. Eitherthey have someadditionalmechanisnwhich suppressethe
nameunit activation, or they didn't in factapply Hebbianlearningto the entirenetwork, or we aremissing
somethingabouttheirmodel. The furtherdiscussiorabout‘staged”processingndindependenpriming of
differentpathwaysin thelACL model,while atthesameime adwocatinganubiquitoudink updateproposal,
seemeckquallycontradictoryandconfusing.We would appreciate clarificationof thesepoints.
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Asymmetricalnterference

Theissueof asymmetryof interferenceeffectsis alsoanissueof whatis modeledratherthanhow. Let
ussetasidemodelsaltogethefor amoment,andask: Why is therelessinterferencérom a distractorface
on readinga namethanthereis interferencerom a distractornameon naminga face? Becausaeading
is differentfrom naming! Specifically it is possibleto pronouncea letter string without knowing whatit
meanswherea®necannotnameafaceor objectwithouthaving recognizedt. Now let usreturnto models.
This differencebetweenreadingand naming can be implementedn eitherthe IAC model or the FOV
modelsimply by insertinga directroutebetweemameinputsandspolen nameoutputs.With the addition
of this direct route, namingwill be fasterand lesssusceptiblgo interferencefrom actvity in semantic
representations.

Thus,asbefore thereis only onedifferencebetweerthemodelsthatis relevantto their differentabilities
to simulateinterferenceasymmetry:the IAC model,to which wasaddeda direct routefrom word inputs
to word outputs,hasa direct route from word inputsto word outputs,whereaghe FOV modeldoesnot.
Thereis nothingin the FOV modelthatwould preventit from beingaugmentedn the sameway aslAC
wasaugmentedandhencethe modelsareon equalfooting. Indeed the prototypical“radical” distributed
connectionistnodelcited by YB, the Seidenbeay andMcClelland(1989)word readingmodel(andits de-
scendantsPlaut,McClelland, Seidenbay, & Patterson,1996)clearly adwocatesboth a directandindirect
(via semanticsjoutebetweenword inputandoutput.

Timeto Make Decisions

YB reportthat,in general familiarity decisionsto facesare madefasterthansemantiadecisiong(e.qg.,
actorvspolitician), which arein turn madefasterthannamedecisionge.g. Johnvs Richard). In contrast,
whenshavn a name,namedecisionsare fastestfollowed by familiarity decisions followed by semantic
decisionsYB allow thatboththelAC andthe FOV modelscanaccounfor the patternof decisionlatencies
to facesquite naturally It is the patternof decisionlatenciego nameghatthey claim posesa problemfor
FOV.

As with the finding of asymmetricinterference the finding that namedecisionscan be madefastest
on namess aresultsimply of the direct route betweemameinputsandnameoutputs. The question“ls
JohnGuilguds first nameJohnor Richard?”is ratherlik e the question‘Who is buriedin Grants Tomb?”.
While we do not believe thetopic is entirelytrivial, we alsodo not believe it hasary bearingon the choice
betweenocalistanddistributed models. Again, the only differencebetweenthe modelsthatis relevantto
theirdifferentabilitiesto simulatethe patternof decisionatencieson namess thatthe |AC model,to which
was addeda direct routefrom word inputsto word outputs,hasa direct route from word inputsto word
outputswhereaghe FOV modeldoesnot.

Patternsof Error

Likedecisionatencieserrorpatterngevealaorderingamongypesor stage®f processinglt is possible
to find someondamiliar but fail to retrieve semantior nameinformation,or to find someones familiarand
retrieve semantianformationaboutthembut fail to retrieve aname but it is never the casethata namecan
be retrieved without semantianformation. Heretoo, YB allow thatFOV andIAC canbothaccommodate
this patternnaturally But they claimthatthetwo modelsdivergein their ability to explain error patternsn
the caseof a particularneurologicapatient, ME.

ME was unableto retrieve semanticinformationaboutfamiliar peoplefrom eithera nameor a face.
Despitethis, shecould matchnameswith faceswith a high level of accurag. YB take this asevidencefor
PINs, interposedetweenfaceand namerepresentationgnd separatdrom the semanticunits which are
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thehypothesizedbcusof damagen this patient. They concludethata modellike FOV, in whichnamesand
facesareassociatedolelyby way of semantiaepresentationgouldnot accounfor this effect. To quote:

Thereis anarchitecturaproblemwith FOV thatleadsto its failureto capturehesedata...If the
semanticainits [after damagemay be usedfor matching[facesto names]thenthey mustbe
ableto be usedto passnformationbetweerthetwo modalities... This givesriseto a patternof
errorwhichis never obseredin humansthe ‘nameonly’ error (YB, p. 60)

Despitetheirreferenceo FOV’ s “failureto capturehesedata; YB apparentiydid notattempta simula-
tion. Hadthey doneso, they would have foundthatthe model,exactly asdescribedn our 1993papey does
capturethedata.Usingsemanticsettlingtime asatype of familiarity measurenceagain,we implemented
the matchingtaskasa judgmentof the familiarity of the pairing betweerfaceandname.Notethatthisis
essentiallythe sameasthe cued-recognitionaskdescribedoreviously, andthe explanationfor FOV’s suc-
cessfulperformancas exactly the sameaswell — multiple input constraintgfrom nameandfaceinputs)
canproducesignificantly betterperformancehanoneinput constraint(eithernameor facealone). Thus,
whensemanticunits are damagedgvento levels (e.g., 75%) at which the namingof a faceis effectively
atchancethesettlingtimesfor correctandincorrectname-acepairingsremainediscriminablydifferent.
Detailsof the simulationaregivenin Appendix5.

Distinctiveness

Distinctivenessand similarity play a ubiquitousrole in all aspectsof perceptionand cognition, face
processingncluded. As YB explain, a distinctive faceis onewith lessoverall similarity to otherknown
faces.Thedistributedrepresentationsf FOV provide a naturalway of understandinghe mary similarity-
basedohenomenaf faceprocessingincluding associatie priming, the classificatiorof errortypesbased
on target-errorsimilarity (e.g., semanticversusvisual errors)anddistinctvenesseffects. This is because
distributedrepresentatioprovidesa straightforvard metricof similarity, andevenmoreimportant,amech-
anismfor explainingits effects.

In distributedrepresentationgyeateoverlapin active unitscorrespondso greatesimilarity. Thegreater
confusabilityof similar representationarisesfrom thefactthatthey areactuallypartially identical. There-
fore, fewer units’ activation valuesneedbe mistalen in orderfor one representatiotio be confusedfor
anotherby the systemwhenthe two aresimilar. In contrastpurelocalistrepresentationareincapableof
accountingfor similarity-basedeffectswithout additionalmechanismsddedfor this specificpurpose.In-
deed,YB’s adaptatiorof the|AC modelaccountdor distinctvenessy usingdistributedrepresentationsf
facesin a pool of featureunits. We do not know whatYB hadin mind whenthey wrote “Using distributed
representationd, is hardto capturethe notionof a distinctive face; but surelythey have misspolen.

Why were YB unableto obtain distinctvenesseffects with the FOV model? Distinctivenesseffects
will bemeasuredh termsof processinglifferencedbetweerfacepatternghathave smallandlarge average
distance$romtheotherfacesn thefacesimilarity spaceassuminglistanceamonghepatterngn semantic
andnamesimilarity spacesareroughly equivalent. This requiresthe existenceof patternswith large and
small distances. With the small set of patternsusedin our simulations,and the small similarity space
generatedy having a total of only 16 faceinput units, the oddsare strongly againstfinding subsetsf
facepatternsvhoseaveragedistancegrom otherfacepatterndiffer appreciablywhile avoiding offsetting
confoundsn semanti@andnameportionsof the pattern.Indeed whenwe calculatedhe averagehamming
distance®f thefacepatternsn our simulation,they weretightly clusteredaroundan overall averageof 13,
with theentirerangeonly spanningrom 12 to 14.4. With solittle differencebetweerthedistinctvenesof
the leastand mostdistinctive facesin our patternsandno control over the similarity relationsamongthe
non-faceportionsof the patternsthereis no wonderthat YB did not find distinctvenesseffects. Justas
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Effect FOV Comments IAC Comments
RepetitionPriming Yes wi/seplexicons| Yes wi/seplexicons
Asymmetricinterferencel Yes  w/seplexicons| Yes wi/seplexicons
Timeto Make Decisions | Yes  wi/seplexicons| Yes w/seplexicons
Patternsof Error Yes IncludingME | Yes

Distinctiveness Yes Yes Usesdistributedreps

Table2: Correctedversionof Young& Burton’s Table 2, shaving comparisorbetweenthe two modelson ability
to accountfor othereffectsin faceand personrecognition. Note that mostof the effectsare dueto the addition of
separatéexical representationandpathways.

the IAC models patternswveredesignedo fall into groupswith high andlow distinctvenessor purposes
of simulatingdistinctvenesseffects,so FOV would needan appropriatelydesignedsetof patterndor that
purpose.

Thelssue:ExplanatoryScope

YB raisedthe five topicsjust reviewed (repetitionpriming, asymmetryof interferenceeffects, time to
responderrorpatternsanddistinctvenessffects)asevidencebearingontheexplanatoryscope®of thelAC
andFOV modelsin particular andof localistanddistributedcomputationaérchitecturesnoregenerally It
is to thisissue asopposedo theins andoutsof particularsimulationsthatwe now return.

All partiespresumablyagreeon the following criteria. If onemodelor modelingstyle canmoreeasily
accommodatéhefive assortedindingsreviewed abore, thatwould countin its favor. Furthermoreif one
modelor modelingstyleis actuallyconstrainedo predictsomeof thefindings,thatwould countevenmore
stronglyin its favor. Finally, thefive findingsselectedy YB constituteonly a smallsubsebf the potential
explanatoryscopeof modelsof covertandovertfacerecognition andtheability of themodelsandmodeling
stylesto accounffor or predictotherfindingsis alsorelevant.

So how do the modelsfare by thesecriteria? YB statethat “We have shavn thatthe FOV modelis
notgeneralizabléo otherphenomendundin prosopagnosiar for normalfacerecognitionwhereadAC
canreadily do this for a numberof phenomena’(p. 75-76). Our accountings different. In eachof the
five casesf normalpersonperceptionthat YB selected FOV is on equalor betterfooting thanlAC. In
threeof thesecaseqrepetitionpriming, asymmetryof interferenceeffects, time to respond)eithermodel
canbe madeto accountfor the effectsin questionby specificadditions,specificallyseparateameinputs
andoutputsanda directroutebetweerthem. Thesefeaturesarewerenotin the FOV modelor the original
IAC model,but couldbeaddedo either They have no particularcompatibilityor incompatibilitywith local
versudistributedrepresentationg-or afourthfinding, concerningerrorpatternsyyB statedhatFOV could
not accountfor the key findingsof caseME, but in factthe model simulatedthesefindings without ary
additionsor changesin the caseof thefifth finding reviewedby YB, distinctvenessffects,we have acase
of onemodelingstyle beingactually constrainedo predictthe effect, asopposedo merelybeingableto
accommodaté: distributedrepresentationsannothelp but generatalistinctvenessffects,andindeedthe
IAC modelaccountdor theseeffectsby addinga pool of distributedfacerepresentationd hus,for thefive
findingsthatYB selectedor comparinghemodels FOV anddistributedrepresentationareoverall slightly
moresuccessfulWe have thereforeprovidedanupdatedrable2, correspondingo YB’s Table2.

Whataboutfindingsbeyondthefive selectedy YB? As alreadymentionedeffectsinvolving similarity
areexplainedin astraightforvardway by distributedrepresentationsSucheffectsincludesemantigriming,
the greatertendenyg to confusepersonswith similar faces,semantidnformationor namestheinterpreta-
tion of errortypes,andthe effects of visual, semanticor namedistinctveness. As explainedin the first
section,the existenceof degreesof prosopagnosiahe permanencef prosopagnosiaandthe impairment
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of unfamiliar faceprocessingn prosopagnosiareall explainednaturallyby FOV, basedon the properties
of distributedinteractve computationandarenotaccommodatetly IAC. Finally, the FOV explanationof
covert facerecognitionhasexplanatoryscopealonga differentdimensionaswell: Its basicprinciplescan
explain otherformsof performancelissociatiorbetweerdifferenttasksthatostensiblytestthe sameknowl-
edge.Mayall andHumphres (1996)adaptedhe basicarchitecturdo provide a novel accounof presered
readingin purealexia, and MunakataMcClelland,Johnsonand Siegler (1997)usedthe sameunderlying
principlesto explain why infantscanmanifestcertainperceptuaknonledgewhentestedn oneway but not
another

Two Approacheso ComputationaModeling

YB describethe function of the IAC model, relative to non-computationamodelsin psychology as
follows:

The differencebetweenan implementedmodel like IAC and an unimplementedunctional
modelsuchasBruceand Young(1986)is only in the level of detailwhich eachallows. The
implementednodelrequiresa greatelevel of specificity andallows interactie explorationin
away whichis not possiblewith box andarrov models( ms.p. 63).

In otherwords,YB approachhe computationamodelasa powerful book-keepingdevice, forcing psychol-
ogiststo bespecificin theirtheorizingandenablingthemto derive predictiongrom theirfunctionalmodels
thatexceedhumanworking memorycapacity

We agreethatthisis oneusefulrole thatcomputatiorcanplay in psychology But our approachs based
ontheideathatconnectionistnodelinghasthe potentialto offer muchmore.We believe thatin somecases,
the correctexplanationof a psychologicaphenomenomill be basedon propertiesof the computational
systenitself By this, we meanto excludeaspect®f modelsthataresharedwith unimplementeaognitive
psychologymodels,suchasthe directroute betweenvord inputsandoutputsin the elaboratedAC model
accountof aspectof repetitionpriming, asymmetricainterferenceandtime to make decisions. Rathey
we arereferringto propertieso which the modeleris typically forcedto make a commitmentonly when
implementingthe model,andwhosereasonfor beingis the actualinformation processingf the model,
possiblyalso constrainedasin the caseof mary connectionistmodels)by a desirefor neurobiological
plausibility Examplesof suchpropertiesaredistributedrepresentationandthe learningmechanismshat
shapehem.

For purpose®f book-keepingthereis little differencebetweerlocal anddistributedrepresentationther
thanwhatYB call “transpareng” But whenthesystembeingmodeleds computationalasis thecasewith
the humancognitive system,thenthe choiceof a models computationabrchitecturehastheory-relgant
consequence®r the behaior of the model. Somekey behaiors that distributed representationsommit
usto arediscussedn thefollowing section.Theseareamongthe very behaiors thatwe, aspsychologists,
wantto explain. We thereforeplace muchlessemphasighan YB on the “human-computeimteraction”
factorof transpareng andmuchmoreontwo otherconsiderationgjiscusseth thetwo sectionghatfollow:
the explanatorypower of distributed representatiomandrelatedfeaturesof connectionistarchitectureand
correspondencdsetweerthesemodelfeaturesandrealbrainfunction.

FunctionalDifferencesetweerDistributedandLocalistRepesentation

Distributed representationkave mary computationabdwantagesover localist representationsyhich
have eitherdirector indirectimplicationsfor psychology Theseadwantagesesultfrom the useof overlap-
ping subset®f unitsto representlifferententities.Notethatthisis theessencef whatmalesarepresenta-



16 SimulationandExplanationn NeurospchologyandBeyond

tion distributed. Theinterpretabilityof individual unitsdoesnot affectthesepropertiesandis notacriterion
for distinguishingdistributedfrom local representatiorWhereasn local representationsdividual unitsby
definitionhave aninterpretationin distributedrepresentationthey mayor maynotbeinterpretablén sim-
ple or intuitive ways.Most of theunitsin our modelcannot but theactorandpolitician unitsareexceptions,
and consitituepartsof the distributed semanticrepresentation For an exampleof a distributed semantic
representatioim which eachunit hasan English-languageterpretationseeHinton andShallices (1991)
modelof deepdysleia.

We begin our brief review (seeHinton, McClelland,& Rumelhart,1986,for afuller discussionyvith the
computationahdwantagef distributedrepresentationthat are of psychologicarelevancesimply insofar
asthebrainandmindarelikely to be optimized:

Efficiency: Fewertotalunitsarerequiredto represenagivennumberof inputpatternsf therepresentation
is sharedacrosaunits(otherwiseoneunit perpatternis required).For example all of thecolorscanbe
representetdy asfew asthreedistributedunits(e.g.,red,greenandblue), whereadocalistrepresen-
tationswould requireasmary unitsascolor distinctionsbeingmade(i.e., 100%s). Thisis particularly
importantasthe domainbecomegombinatorialin somefeaturespace sincethe numberof possible
differentcombinationgandtherefordocalistunits) quickly approacheastronomicatalues.

Robustness: Having multiple units participatingin eachrepresentatiomakesit morerobustagainsidam-
age,sincethereis someredundang For example,if onelostthe“green” unitin a distributedrepre-
sentationyouwould still beableto tell thatred,yellow, andorangearesimilar. If youlosealocalist
unit, whatever knonvledgewasassociateavith thatunit is completelygone.

Accuracy: In representingcontinuousdimensions distributed (coarse coded representationare much
moreaccuratehanthe equivalentnumberof localistrepresentationdiecausehereis a lot of infor-
mationcontainedn therelative actities of the setof nearbyunits,whereagocalistunitscanonly n
differentvalues(atanaccurayg of 1/n) for n units.

Thefollowing two ubiquitouspsychologicapropertiesarealsopropertiesof distributedrepresentation.
Modelsincorporatingdistributedrepresentationeednot “build in” theseproperties.Rathey the properties
arealmostinescapablén systemf distributedrepresentation:

Similarity: Distributed representationprovide a naturalmeansof encodingthe similarity relationships
amongdifferent patternsas a function of the numberof unitsin common(patternoverlap. For
example,orangecanbe representedssimilar to red andyellow by virtue of sharingsimilar values
of “red” and“green” component®f a distributed representationln contrasteachlocalistunitis an
island,andthe network would not naturallycorvey thefactthatthe orangeunitis somehw relatedto
theredunit.

Generalization: A network with distributedrepresentationsanoftenresponcappropriatelyto novel input
patternsby usingappropriate(novel) combinationsof hiddenunits. This is impossiblefor localist
networks, which would requirethe useof anentirelynen unit. For example,if we knew thatredand
yellow were associatedvith flame (andnot to be touched) but for somereasonhad never seenan
orangeflame,we would still be ableto generalizeour responséo this casebasedon the overlap of
thecolorunitsinvolved. In contrastponehasto learneachassociatioranev with localistunits,which
couldberatherpainfull
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Neural Plausibility: TheoryRelevantversusTheory-irelevantFeatues

YB statethatboth FOV andIAC arebothmodelsof cognitive functionsasopposedo neuralstructures
(ms.p. 63),but thisis notquiteright. FOV, like otherconnectionismodels hassomepropertiesn common
with realneuralnetworks, andcanthereforebe considerech modelof the brain. Of course connectionist
modelsalsofail to incorporatemuchof whatwe know aboutthe brain. In this sensethey arelike ary
modelin sciencewith boththeory-relgantandtheory-irrel@ant properties Thetheory-relgantproperties
arethosepropertiesof real neuralcomputationthathave the potentialfor explaining certainpsychological
phenomenan termsof neuralfunction. Among the theory-relgant propertiesof connectionishetworks
are: the large numberof inputsto and outputsfrom eachunit, the modifiability of connectiondbetween
units,summatiorrules,boundedactivations,thresholdsandthe useof distributedrepresentation.

Evidencefor the brain’s useof distributed representatiocomesfrom suchindirectobserationsasthe
relatively global effects of damageto a given functional area(i.e., recognitionof all facesis affectedin
prosopagnosiaiotjustsome) andthe “graceful” natureof the degradation(i.e., tissuelossmay causeonly
mild or moderatéempairmentsn facerecognition) aswell asmoredirectsinglecell recordingexperiments.
A particularlyrelevantexampleof singlecell evidenceconcernshefacecellsof monkey temporakortex. At
first glancethesemight appeato bejustthe “grandmothercells” of localistcaricature— cellsthatrespond
only whena singlepersonsuchasones grandmothercomesinto view. However, eachfacecell responds
to arangeof faces,andeachfaceevokesactvity in a sizeablefraction of the facecell population,consis-
tentwith distributedratherthanlocalistrepresentatio(Desimone Ungerleider1989;Young& Yamane,
1992). In a numberof otherdomainsof processinganalyse®f cells’ breadthof tuning andproportionof
cellsactive suggestshatdistributed representatiois ubiquitousin the brain. In motor systemspositional
informationrelatedto thetamgetfor armmovementss codedin adistributedfashion(Geogopoulos,1990),
asis the directionfor eye movementso a visualtamget (Sparks& Mays, 1990). Within the dorsalvisual
systemJocationis alsocodedin a distributedmanner{Anderser& Zipser 1988).

The neuralplausibility of connectionisnetworks is crucial to the larger explanatoryrole that we give
them,relative to the “book-keeping”role adwocatedby YB. If connectionishetworks hadnothingin com-
monwith realneuralnetworks, but weresimply a meango implementcognitve models(e.g.,comparable
to a programminganguagsdik e LISP), thenwe would tendto agreewith YB's statementhat“very little
of the explanatorypower of amodelshouldresidein thetechnicalaspect®f thearchitecture’(ms. p. 71).
However, to the extentthat the modelarchitecturehassignificantcommonalitieswith brain architecture,
why would oneesche architecture-baseekplanationsof cognitve functionsof the brain? If a cognitve
phenomenonhatis ultimately basedon underlyingbrain function can be explainedin termsof otherin-
dependenthestablishegrinciplesof brain function, thatwould seemto be a reassuringign for both the
particularexplanationin questionrandthe principlesinvokedin thatexplanation.

Transpaency:Anlssuefor HCI, not Science

YB's preferenceor local over distributed representatioiis basedon differencedn “transpareng” or
easeof interpretation(and implementation). They point out that additionalmeasuremertechniquesare
oftenrequiredto interpretthe outputsof networks with distributed representationgndthey alsocriticize
theuseof biasweightsfor decreasingnodels’transparenc

We areremindedof the old story aboutthe drunklooking for his keys underthe streetlamp, wherethe
light is good,eventhoughhe droppedhemby his door Yes,it's easierto work with local representations,
but if the goalof our work is a theoryof humancognition,andhumancognitionis betterexplainedusing
distributed representationghen easeof useseemsdrrelevant. Thereis indeedgoodreasonto believe in
the psychologicalteality of distributedrepresentationT he physiologicalevidencereviewedin the previous
sectionshaws that the relation betweenneuronsrepresentingateyories of stimulusor responseand the
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catgyoriesthemselesis a mary-mary, distributed form of representatiomot a one-to-onejocalistform
of representationFor thosewho think it hastyto concludethat propertiesof brain computationare also
propertiesof cognitive computationthereis also the fact that distributed, but not local, representations
display suchfundamentapsychologicalphenomenassimilarity, generalizationand patterncompletion.
Finally, the succes®f specificdistributed modelssuchas FOV, over localist equivalentssuchasIAC, in
accountingor specificpsychologicaphenomendseeTablesl and2) arguesfor thereality of distributed
representationln sum,given the empiricalevidencethat distributed representatioplaysa role in human
cognition,asscientistave mustriseto the challengeof building modelsthatreflectthis fact,whetheror not
theresultingmodelsareeasyto understand.

Learning

Learningcanbeusedin connectionismodelsin two very differentways. It canplay a theory-irreleant
technicalrole, asa way of algorithmicallyobtaininga network with weightsthat canperformthe tasksof
theoreticalinterest.It canalsoplay atheory-relgantrole, representindiumanlearning.Let usfirst address
somemistalenideasaboutthetechnicalaspect®f learningcontainedn YB’s critique.

YB'’s assertiorthatlearningis a desirablecomponenbf a connectionismodelonly if it is intendedto
capturesomethingabouthumanlearningrevealsanavté concerninghepracticalitiesof distributedmodels.
Hand-wiringis impossiblefor all but themosttrivially simpledistributedsystemsandlearningis therefore
essentiato all distributedmodeling,whetherthetheoreticalscopeof themodelencompassdsarningor is
confinedto a particularendstate.Indeed not only mustlearningbe usedin the setup of mostconnectionist
modelsof thecognitive endstate jt providesinsightsinto thatendstate.Evenif weview learningalgorithms
as purely technicaltools for creatingrepresentationthat enablea network to perform a task, they can
explain why representationare asthey arein termsof critical aspectsf the task, the inputs, and the
network architecturge.g.,therole of statisticalfeaturesof wordssuchasfrequeng andregularity in the
representationsnderlyingreading Plautetal., 1996).

Therelearningsimulationdn FOV areintendedo modellearningperse,usingthe Contrastie Hebbian
Learning(CHL) algorithm. YB criticize our useof CHL on the groundsthatits learningis nonmonotonic,
andthereforemoredifficult for the modelerto use.Thisis anHCI issuewhich, we reiteratejs irrelevantto
choosingamongcognitive theories. They alsoraisethe morerelevant questionof whetherhumanlearning
alsohasnonmonotonicitiesAlthoughYB remainagnosticonthis questionandit hasrarelybeenaddressed
directly by cognitive psychologiststhereis evidencein atleastonecaseof sucha pattern:Marcus,Pinker,
Uliman, Hollander RosenandXu (1992)have shavn thatnonmonotonicityis therule in theacquisitionof
past-tensenorphologyat boththefine-grainedandlargertime scales.

YB'’s final criticism of learningin FOV appliesto all algorithmsfor learningin distributed systems,
not just CHL, and concernghe useof what they call batchlearning. Becausehe samesetof weightsis
changedavery time a new itemis learnedin a distributed system,caremustbe taken to avoid unlearning
previous itemswhena new item is learned. This is accomplishedy cycling throughall of the itemsto
be learned(the entire "batch; in YB’'s terms)multiple times and usingrelatively small weight changes
eachtime. YB point out thatpeopledo not do all of their learningin life in onebatchon oneoccasiona
factwe do not dispute. However, currenttheorizingon memoryandthe brain holdsthatitem learningis
not confinedto occasion®on which theitem is encounteredRathey the procesof memoryconsolidation
involvesaninternalreplayingof previously encounteredems,interleared with currentitems,to allow the
gradualadjustmenbf sharedweights(McClelland, McNaughton,& O’Reilly, 1995;Rolls, 1989). Thus,
thereis no incompatibility betweenearningin FOV or otherdistributed systemsandthe obseration that
peoplecanlearnnew itemsatary pointin life.

Finally, althoughYB negglectedto raisethe perennialcritique of errordriven learningmechanismas
beingbiologically implausiblecomparedo Hebbianlearning,we notethatmary of theseissueshave been
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recentlyaddresseth ananalysighatshavs the closerelationshipbetweerCHL anderrorbackpropagation
(O’Reilly, 1996). This analysisshavs thatwhereadackpropagationequiresthe biologically implausible
propagatiorof an error signal,which is a differencebetweentwo terms,CHL insteadpropagateshe two
termsseparatelasactivation signals,andthentakestheir differencelocally at eachneuron. Further the
form of synapticmodificationnecessaryo implementthis algorithmis consistentvith (thoughnotdirectly
establishedby) known propertie®f biologicalsynaptianodificationmechanismdrinally, thereareawealth
of potentialsourcegor thenecessaryeachingsignalsin theform of actualenvironmentalbutcomeghatcan
be comparedvith internalexpectationgo provide errorsignals(McClelland,1994;0’Reilly, 1996).

Are ConnectionisModelstoo Powerful?: Data Fitting versusEmegentProperties

To hearYB tell it, our modelis bad becausdt cannotaccountfor mary key findings aboutcovert
recognitionandnormalfaceprocessindfamiliarity effects,forced-choicecuedrecognition provoked overt
recognition sequentialissociatie priming, repetitionpriming, asymmetridgnterferencetime to make deci-
sions,patternof error, anddistinctvenessyndit is alsobadbecausdt canaccountfor anything At least
oneof thesecriticismsmustbewrong! In our view, they bothare.In thefirst two sectionf this articlewe
presentedesultsthatcounterthefirst criticism. Tablesl and2 summarizeheseresults.But perhapghese
accomplishmentsglo not matter becauseof the secondcriticism, that connectionisimodelscan simulate
arything andarethereforeunfalsifiable.

Theclaimthatconnectionishetworkscansimulatearnythingis trueonly in avery narraw, andirrelevant,
senselt is truethat,givenenoughhiddenunits,anetwork canbetrainedto learnary well-definedfunction,
thatis, arny setof one-to-oneor mary-to-oneinput-outputmappings. In otherwords, networks can be
explicitly trainedto implementary arbitrarylook-uptable.Butthemodelbehaiors of interestareinvariably
emegentfrom featuref its implementationandnottheresultof explicit trainingto fit thedata.

In what sensds the FOV modela look-up table? Its pre-damagebility to associatdaces,semantic
representationandnamescould be describedn this way, andindeedthis behaior wasexplicitly trained.
But this is the only behaior that wasexplicitly trained,andit is not one of the behaiors on which ary
theoreticalconclusionsverebased.In contrastthe variousbehaioral measuresf the effectsof damage
onovertandcovert recognitionwerenottrained;Noneof thefindingslistedin Tablesl and2 wereaccom-
plishedby anything analogougo tablelook-upin our model. Rathey theseaspectof modelbehaior are
emegentfrom the computationaimplementatiorof the face-semantics-nanassociations.

To male clearthe differencebetweernthe simulationswe reportwith FOV andthe kind of simulation
thatis successfubecaus®f the sheempower of networksto learnary well-definedfunction, considethow
a network would have to betrainedto learnthefindingslistedin Tablesl and?2. Firstof all, to exploit this
sensef “power” onewould have to somehav male variabledik e the degreeof damageandthefamiliarity
measurexplicit componentsf the patterngdo belearned.Then,to simulatethe effectsof damageon overt
recognition for example,onewouldtrainthenetwork to mapfacepatternsvhenaccompanietly anexplicit
representationf “no damage’dbntotheir correctsemanti@andnamepatternsandontoanexplicit represen-
tationof “familiar” Further thesefacepatternsvhenaccompaniedby explicit representationef different
levels of damagewnould have to betrainedto maponto partially incorrectsemanti@andnamepatternsand
ontorepresentationgf “unfamiliar” To simulatecovert recognitionin the matchingtask,for example,one
wouldtrainthe network to mapthesamefaceanddamagenput patterngo explicit representationsf speed
of matching,suchas“1200 msecaveragematchingtime; with shortermatchingspeedsrainedfor patterns
in the previously knovn setandlongermatchingspeedsrainedfor all otherpatterns.

Wherea®necannoffalsify thetrivial approachustdescribedbecaus¢henetworksareindeedpowerful
enoughto fit ary datasetgivenenoughunitsandlearningtrials, accountdasecn emegentpropertiesare
fully falsifiable.We have alreadyreferredto thetendeng of networksto generalizeconfuse andprime on
the basisof similarity. Thesearepropertieshatemepge inexorably from interactve distributedrepresenta-
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tions. Thereforejf the humandatawereotherwise the broadclassof modelswould be disconfirmed.The
sameholdstruefor specificmodelssuchasFOV. For example fastersettlingof familiar faceswvasnot built
into the model,but emegedindependentdf the modelers’control. If humanshadshavn fasterperception
of unfamiliar faces(a perfectlyconcevablestateof affairs)the modelwould be disconfirmed.

In sum,theallegationthatconnectionistnodelsarepowerful enougho simulateanything, in the context
of the presentdebatejs basedon a confusionbetweentwo kinds of power: the power to learnary well-
definedfunctionthatexplicitly taught,anda scientificallymoreinterestingpower to provide parsimonious
explanationsof complex psychologicalphenomenan termsof emegent propertiesof the computational
architecture.

Theexplanatorypower of connectionistnodelssuchasFOV liesin theiremegentpropertiestherange
of behaiors thatthey exhibit asa resultof a relatively small setof computationaprinciples. Thatthese
principleshave someindependensupportfrom neurobiologyaddsto the likelihood that the modelsare
correct.We agreewith YB thatthebestapproachio theissueof the computationahrchitecturdor cognition
is not entirely general but focuseson specificmodelswith an eye towardsthe generalissues.In the case
of covert recognitionof faces,our distributed connectionist=OV model explainsall of the datathat the
localistlAC modelexplains,andmore,anddoessowith a parsimoniousindindependentlynotivatedsetof
principles.
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Figurel: Sequentiahssociatie priming results shaving fastersettlingfor namesprecededy facesof peoplefrom
thesamecategory.
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Appendix1: SequentiaAssociatve Priming

In this simulationthe network waspresentedvith a faceinput patternandthe network wasallowedto
settleto equilibrium. The activation statesof the network werethendecayedby afactorof 90%)towardsO
(simulatingfatigue),follaving which a nameinput patternwaspresentedandthe network againallowedto
settle. Thenumberof cyclesto settlefor this namepatternwasthe dependenteasure.

Thereweretwo conditions: samesemanticcategyory and different semanticcategory primes. For the
samecondition,eachnameinput waspairedwith a facefrom the samesemanticcateyory (but never with
the sameindividual’s face),andfor the different condition, the face and nameinputs were chosenfrom
differentsemanticateories.

New patternswere createdfor this simulationbecauseasexplainedin the article, the within-cateory
overlap of the original patternswas small (one unit) and thus allowed only very weak manipulationsof
semantiaelatednessThe occupatiorsubpattermof thenew patternsvaslarger To retainthe smallnetwork
size of the original model, a somavhat complicatedprocedurevas necessaryo ensurethatthe resulting
distributed semanticrepresentationproperly capturedthe within-category similarity without introducing
confoundsthat would affect the results. For example,the overlap of the faceand namerepresentations
within andbetweercatgorieshadto be controlled.

All patternswere madewith the samebasicprocedure:four prototypepatternswere created(onefor
actor onefor politician, andtwo “other” catgyories). Then10instance®f eachprototypewerecreatedpy
flipping somenumberof bits (i.e.,changinga+1to a-1 or vice versa)from theprototype while maintaining
minimumandmaximumdistancdimits within a givencateory, anda minimumdistancebetweeritemsin
different cateyories. For faceand nameinputs, the prototypeseachhad5 bits active (out of 16) anda
minimumhammingdistanceof 6, while the semantigatternshad6 bits active (out of 18) anda minimum
distanceof 8. The face/namenstancesvere producedby flipping 3 bits on and 3 bits off, with distance
limits betweend and10 within and4 betweenwhich effectively eliminatedary of the similarity produced
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Figure 2: Familiarity results,with two differentmeasuresa) shavs settlingtime over the semanticdayer (faster
settlingmeangreateifamiliarity), andb) shavs goodnes¢negative enegy) overthe semanticéayer(largergoodness
meangreaterfamiliarity).

by the prototype.In contrastthe semantidnstancedlipped onebit on andoneoff, with distancdimits of
2 and 6 within and6 betweenretainingsimilarity within a cateyory. However, someamountof distance
amongsemantigatternss necessarjor the network to learntheuniguenameandfacemappingassociated
with this semanticpattern. In addition, a further checkwas doneto ensurethat the averagedistanceof
faceandnamepatternswithin a catgory andthat betweencateyorieswas essentiallyequal,so thatthese
differencesvouldn' createanartifactualpriming effect, or obscureatrue priming effect.

A network wasthentrainedwith thesenew patterns,andthe full batteryof testsasreportedfor the
original FOV modelwererun (in additionto all the othertestsreportedhere). In all casesthis network
exhibited comparablgerformancdo the original model.

Theresultsfor the sequentiahssociatie priming caseareshavn in Figurel for 100randomlesionsat
eachof the critical levels of damageabove 50% (whereovert measuresire at chanceevel performance).
Notethatthereis a significantlyfastersettlingtime for the sameconditionthanthe differentconditionall
theway up to 75% damage.This simulationdemonstratethat sequentiahssociatie priming doesindeed
occurin FOV. With larger patternsallowing both more overlapand moredifferencesthis resultwould be
evenstronger

Appendix2: Familiarity

In this simulation,we simply presented.0 trainedfacepatterng“familiar”) and 10 untrainedfacepat-
terns(“unfamiliar”) to the network, andrecordedthe numberof cyclesnecessaryor the semantiaunitsto
reachour standardequilibriumcriterion (maximumchangen activation < .01). Twenty-five differentran-
domlesionsweremadeeachin incrementf 12.5%of the 16 facehiddenunits. Theresultsareshavn in
Figure2a. Notethatthe differencein settlingtime betweerfamiliar andunfamiliar facesdisappearst the
50%damagsdevel, alevel atwhich covert measuresontinueto shawv differences.

To comparehisresultwith anothecommonly-usedamiliarity measureywe alsorecordedhe goodness
(negative enegy) of the semantiainitsafterthe network hadsettled.Goodness$s computeds:

G=> Y aajw; (1)
i

which gives a measureof the extentto which the activation statesatisfiesthe constraintdmposedby the
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Figure3: Forcedchoicecuedrecognitionresults with two differentmeasuresf familiarity. a) shavs settlingtime
overthe semanticsayer (fastersettlingmeangyreaterfamiliarity), andb) shavs goodnesgnegative enegy) overthe
semanticdayer (largergoodnessneangyreateifamiliarity).

input and the weights(Hopfield, 1984; Smolenslt, 1986). Greaterfamiliarity would be associatedvith
larger goodneswalues. Figure 2b shavs the goodnessesults,which are substantiallydifferentfrom the
settlingtimeresultsin thattheadwantageor trainedfacesdisappearatonly 25%damageThus,familiarity
resultsdependsignificantlyon which measures beingused Jeadingusto be suspiciouof thesemeasures.

Appendix3: ForcedChoiceCuedRecognition

Both nameandfaceinput patternawverepresentedo the network, and,asbefore,boththe settlingtime
overthesemanticsayerunitsandthegoodnessvereusedasa measuresf familiarity. In onecondition,the
nameandfacewerefrom thesamepersonthecorrectpairing condition),andin theotherthenameandface
werefrom differentpeople(the incorrect pairing condition). Again 25 randomlesionsweremadeat each
level of lesion. The resultsareshavn in Figure3. Thus,even at 75% damagepoth familiarity measures
indicatethatthe network hasareliablepreferencdor the correctpairingover theincorrectone. Thisis true
evenwhenthefaceinput presentedloneis incapableof producingeithercorrectforced-choicenamingor
familiarity response.

Appendix4: Provoked Recognition

We simulatedsubjects’'successi fixationsof multiple facesby sequentiallypresentinghefacepatterns
of a category with a decayof .95. Familiarity wassimulatedby semanticsettlingtime andnamingaccu-
ragy by thethe 10 AFC procedureandthesemeasuresverecomparedollowing groupedpresentatiorfas
just describedandindividual presentatiorfinitializing the activationscompletelybetweenpresentations).
Giventhatthe accumulatiorof actvation betweensame-catgory presentationslependn overlapin the
distributedsemantiaepresentationsye usedthe prototype-basecepresentationdevelopedfor thesequen-
tial associatie priming simulation(describedn Appendix1). Figure4 shavsthatfor thethecritical damage
levelsbetweerb0and75%, familiarity andovert namingincreaseawith thegroupedoresentationTheeffect
is small,and500randomsamplesvererun for eachpointto obtainsignificantresultsfor the 10AFC mea-
sure.As discussedn Appendix1 in connectiorwith sequentiapriming, increasinghe sizeof the network
would allow for larger effects.
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Figure5: Performancevith semantidesionsasa modelof patientME. a) shavsthesamepatternof rapidlyimpaired
overt forced-choicefacenamingperformanceasobsenedin the original model. b) shavs the name-acematching
performancei.e., cuedrecognition)for thesesamdevelsof damagewhichis preseredupto highlevelsof damage.

Appendix5: Semantid_esions(PatientME)

In orderto simulatepatientME, who cannotretrieve semantidnformationaboutfamiliar people,we

damagedhe semantidayerof our network, running25 differentlesionsat eachlesionlevel. As ademon-
strationof the dramaticallyimpairedovert performancedhat resultsfrom this damagewe shawv the same
patternof highly impairedovert forced-choicdacenamingperformancen Figure5a. However, evenatthe
higherlevels of damagewnherethis overt performances extremelyimpaired,the name-acematchingper
formance(instantiatedasin the cued-recognitiosimulationdescribedbore) remainsvery good,asshavn
in Figure5h.



O'Reilly & Farah 25

References

AndersenR. A., & Zipser D. (1988). Therole of theposteriomparietalcortex in coordinatdransformations
for visual-motorintegration. CanadianJournal of Physiolaical Pharmacolgy, 66, 488—501.

Becler, S., Moscwitch, M., , Behrmann,M., & JoordensS. (1997). Long-termsemanticpriming: a
computationahccountandempiricalevidence.Journal of ExperimentaPsydolagy: Learning Memory
and Cognition, 23, 1059-1082.

Borowsky, R., & MassonM. E. J. (1996). Semanticambiguity effectsin word identification. Journal of
ExperimentaPsydiology: LearningMemoryand Cognition, 22(1), 63—85.

BurgessN. (1995). A solvable connectionistodelof immediaterecall of orderedists. In D. S. Touret-
zky, G. Tesauro& T. K. Leen(Eds.),Advancesn neual informationprocessingsystemgpp. 51-58).
CambridgeMA: MIT Press.

Cohen,J. D., Dunbar K., & McClelland,J. L. (1990). On the control of automaticprocessesA parallel
distributed processingnodelof the stroopeffect. Psytolagical Review, 97(3), 332—361.

Dayan,P. (1998). A hierarchicamodelof binocularrivalry. Neual Computation10, 1119-1136.

deHaan,E. H., Young,A. W., & Newcombe,F. (1987). Facerecognitionwithout avareness.Cognitive
Neuopsytology, 4, 385-415.

DesimoneR., & UngerleiderL. G. (1989). Neuralmechanism®f visual processingn monlkeys. In F.
Boller, & J. Grafman(Eds.),Handbookof neuophysiolgy, vol. 2 (Chap.14, pp.267—299) Amsterdam:
Elsevier.

Farah,M. J.(1990). Visual agnosia CambridgeMA: MIT Press.

Farah M. J.,O'Reilly, R.C.,& VeceraS.P. (1993).Dissociatedvertandcovertrecognitiorasanemegent
propertyof alesionedneuralnetwork. Psydological Review, 100, 571-588.

GeogopoulosA. P. (1990). Neurophysiologyandreaching.In M. JeannerodEd.), Attentionand perfor
mancevol. 13 (pp.227-263)Hillsdale,N.J.: Erlbaum.

GreenD. M., & SwetsJ.A. (1966). Signaldetectiontheoryand psydiophysics New York: Wiley.

Hinton, G. E., McClelland,J. L., & RumelhartD. E. (1986). Distributedrepresentationdn D. E. Rumel-
hart,J.L. McClelland,& PDPResearclGroup(Eds.),Parallel distributed processingvolumel: Foun-
dations(Chap.3, pp. 77-109). CambridgeMA: MIT Press.

Hinton, G. E., & Shallice,T. (1991). Lesioningan attractornetwork: Investigationsof acquireddyslexia.
Psydtolagical Review, 98(1), 74-95.

Hopfield,J. J.(1984). Neuronswith gradedresponséave collective computationapropertiedik e thoseof
two-stateneurons Proceeding®f the National Academyof Sciences81, 3088—3092.

Jacoby L. L. (1991). A procesdissociationframeavork: Separatingautomaticfrom intentionalusesof
memory Journal of MemoryandLanguaye, 30, 513-541.

Marcus,G. F, Pinker, S.,Uliman, M., Hollander M., RosenJ. T., & Xu, F. (1992). Overregularizationin
languageacquisition.Monayraphsof the Societyfor Reseath in Child Development57(4), 1-165.

Mathis,D. A., & Mozer, M. C. (1996). Consciousandunconsciouperception’A computationatheory In
G. Cottrell (Ed.),Proceeding®f the EighteenthAnnualConfeenceof the Cognitive Sciencesociety(pp.
324-328)Hillsdale,NJ: Erlbaum.

Mayall, K., & Humphregs, G. (1996).A connectionistnodelof alexia: Covertrecognitionandcasemixing
effects. British Journal of Psytology, 87, 355—402.



26 SimulationandExplanationn NeurospchologyandBeyond

McClelland, J. L. (1994). The interactionof natureand nurturein development: A paralleldistributed
processingperspectie. In P. BertelsonP. Eelen,& G. D’Ydewalle (Eds.),Currentadvancesn psydo-
logical science:Ongoingreseach (pp.57—-88).Hillsdale,NJ: Erlbaum.

McClelland,J. L., McNaughtonB. L., & O'Reilly, R. C. (1995). Why thereare complementaryearning
systemsin the hippocampusand neocort&: Insightsfrom the successeand failuresof connectionst
modelsof learningandmemory Psytological Review, 102 419-457.

Metcalfe,J.,Cottrell, G.W., & Mencl,W. E. (1992).Cognitive binding: A computational-modelganalysis
of adistinctionbetweerimplicit andexplicit memory Journal of Cognitive Neuoscience4, 289-298.

Munakata,Y., McClelland,J. L., JohnsonM. J., & Sigyler, R. S. (1997). Rethinkinginfant knowledge:
Towardanadaptve processaiccounpf successeandfailuresin objectpermanenceasks.Psydological
Review, 104 686—713.

O'Reilly, R. C. (1996). Biologically plausibleerrordriven learningusinglocal activation differencesThe
generalizedecirculationalgorithm. Neural Computation8(5), 895-938.

Plaut,D. C. (1997). Structureandfunctionin thelexical system:Insightsfrom distributed modelsof word
readingandlexical decision.Languae and cognitive processesl2, 767—808.

Plaut,D. C., McClelland,J. L., Seidenbay, M. S., & PattersonK. E. (1996). Understandinghormaland
impairedword reading:Computationaprinciplesin quasi-rgulardomains.Psytiological Review, 103
56-115.

Rolls,E. T. (1989). Functionsof neuronahetworksin the hippocampusndneocort& in memory In J. H.
Byrne,& W. O. Berry (Eds.),Neural modelsof plasticity: Experimentabndtheoketical appoades(pp.
240-265) SanDiego, CA: AcademicPress.

Rueckl, J. G. (1995). Ambiguity and connectionisnetworks: Still settlinginto a solution—Commenon
Joordensaand Besner(1994). Journal of ExperimentalPsydiology: LearningMemoryand Cognition,
21(2),501-508.

Seidenbay, M. S., & McClelland,J. L. (1989). A distributed, developmentaimodel of word recognition
andnaming.Psydolagical Review, 96, 523-568.

Seidenbay, M. S.,Waters,G. S.,SandersM., & Langer P. (1984). Pre-andpostlical loci of contectual
effectsonword recognition.Memoryand Cognition, 12, 315-328.

Shuttlevorth, E. C., Syring, V., & Allen, N. (1982). Furtherobserationson the natureof prosopagnosia.
Brain and Cognition, 1, 307-322.

Smolensl, P. (1986). Informationprocessingn dynamicalsystems:Foundationsof harmoly theory In
D. E. RumelhartJ. L. McClelland,& PDPResearclGroup(Eds.),Parallel distributed processingvol-
umel: FoundationdChap.5, pp.282-317)CambridgeMA: MIT Press.

Sparks,D. L., & Mays, L. E. (1990). Signaltransformationsequiredfor the generatiorof saccadicye
movements AnnualReview of Neuosciencel3, 309-336.

Young,A. W,, & Burton,A. M. (in press).Simulatingfacerecognition:Implicationsfor modellingcogni-
tion. Cognitive Neuopsytology.

Young,A. W., Newcombe ., deHaan,E. H., Small,M., & Hay, D. C. (1993). Faceperceptiorafterbrain
injury. Brain, 116, 941-959.

Young,M. P, & YamaneS.(1992).Sparseopulationcodingof facedn theinferotemporatortex. Science
256, 309-316.



