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Introduction

LikeourcolleaguesYoungandBurton(in press)(YB), webelievethatgoodmodelsexplainawiderange
of data,in waysthataremotivatedby independenttheoreticalconsiderations,andbadmodelsexplainanar-
row rangeof data,by theadhocfitting of themodelto thedata,divorcedfrom any moregeneraltheoretical
considerations.Alas,YB’scommentarydemonstratesthedifficulty of applyingtheseseeminglystraightfor-
wardprinciplesto realmodelsin a givenresearcharea.Oneneedsanunderstandingof bothempiricaland
computationalissuesbeforeonecanmeaningfullyjudge“wide” versus“narrow” and“principled” versus
“ad hoc.” For example,accountingfor anumberof highly similar tasksshouldnotbetakenasevidencefor
“wide” explanatoryscope,norshouldexplanationsbasedongeneralcomputationalprinciplesbejudged“ad
hoc” becausetheir independentmotivation is not drawn from the realmof existing psychologicalmodels.
Wewill arguethatYB’spreferencefor theIAC model(andlocalistmodelsmoregenerally)over ourFarah,
O’Reilly, andVecera(1993)(FOV) model(anddistributedmodelsmoregenerally)is basedon a mistaken
accountingof breadthof applicability anda neglect of fundamentalcomputationalprinciples,alongwith
moreprosaicerrorssuchasa numberof apparentmistakes in implementingsimulationsanda failure to
notethat several basicpredictionsof their modelaredisconfirmedby the availableevidence. Underlying
this broadpatternof failure to appreciateandattendto computationalissuesin modeling(from technical
issuesof implementationto theoreticalissuesof modelpredictionsandneurobiologicalplausibility) is a
fundamentallydifferentview of the role of computationin psychologicalexplanation.YB deny that fea-
turesof the computation(suchasthe distributednessof the representations)arepart of the modelproper,
andcanplay anexplanatoryrole, insteadrelegatingthecomputationalaspectsof psychologicalmodelsto
theory-irrelevant implementation.

We have organizedour responseinto threepartsthatparallelYB’s, addressingtheir threequestions:1)
Which modelgivesthe mostcompleteaccountof covert recognitionin prosopagnosia?2) Which model
haswider applicabilityto relatedphenomenain theliteratureon facerecognition?3) Whataretherelative
meritsof thedifferentmodelingstyles?Webegin by introducingandclarifying acentralpointof contention
betweenthe two modelingstyles,the useof localist versusdistributed representations.We returnto this
issueagainin part3.

In responseto thefirst question,we point out thatYB’s modelinitially explainedonly a narrow range
of data,andtheir new modelexplainstwo new phenomenaonly by usingbasicfeaturesof FOV, including
distributedrepresentations.Further, while their modelnow capturesthe two additionalcovert recognition
phenomena,its predictionsconflict with othermorebasicfindingsaboutprosopagnosia.FOV, on theother
hand,providesaprincipledexplanationof adisparatesetof covert recognitiontasks,includingtasksthatYB
incorrectlystatearebeyondits scope,andalsoaccountsnaturallyfor severalotherfeaturesof prosopagnosia.
In responseto thesecondquestion,weshow thattheircritiqueof ourmodelis basedonanumberof mistaken
beliefsaboutthecapabilitiesof theFOV modelanddistributedrepresentationmoregenerally. In response
to thethird andmostgeneralquestion,we identify a basicdifferenceof approachto modelingthatappears
to underliethemany otherdifferencesbetweenYB’s views andour own. WhereasYB regardcomputation
asatool for simulatingalready-articulatedpsychologicaltheories,weview computationitself aspotentially
explanatory. We thenpresenta sampleof theoverwhelmingbodyof empiricalandcomputationalevidence
supportingtherealityof, andexplanatoryvalueof, distributedrepresentationin humancognition.To YB’s
lamentthatdistributedsystemsaremoredifficult to understandthanlocal, we say“perhapsso,” but while
this is a relevant criterion for workers in the field of Human-ComputerInteraction,it is not relevant for
scientistsselectingamongtheoriesof thenaturalworld.
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ExplainingtheOvert/CovertDissociation

Thestrengthof theFOV model,in our view, wasthat it explainedtheovert/covert dissociationin three
fundamentallydifferenttaskson the basisof somevery generalpropertiesof distributednetwork compu-
tation. Thusa reasonablywide scopeof datawasexplainedwithout invoking any assumptionsspecifically
for thatpurpose,but ratherby showing thatthey area naturalconsequenceof independentlymotivatedand
commonlyusedassumptionsconcerningcomputationby neuralnetworks.YB’scharacterizationof FOV as
acaseof “the adhocdevelopmentof modelsto accountfor specificphenomena”thusmissesboththeprin-
cipledbasisof themodel’s success(e.g.,distributedrepresentationswerenot inventedby usfor thepurpose
of explainingcovert recognition)andthegeneralityof its scope(threeverydifferentmanifestationsof covert
recognition).As wewill detailbelow, themodelis alsosuccessfulin simulatingvariousadditionaltypesof
tasks,includingsequentialassociative priming,overt familiarity judgments,forcedchoicecuedrecognition,
andprovokedovert recognition,demonstratinganevenwider explanatoryscope.Thereis no possibilityof
ad hocfitting in thesecases,aswe simulatedthesetasksonly in responseto YB’s allegationthat it could
not bedone,andproducedsuccessfulsimulationsthatdependon thesamesmallsetof principlesasin our
originalmodel.

In contrast,the original IAC modelexplainedbehavior on just onegeneraltype of covert recognition
task,which we originally termed“priming.” Furthermore,aswe will explainbelow, it did soby theadhoc
applicationof adecisioncriterion,externalto themodelitself andinvokedonly for overt tasks.Althoughthe
new versionaccountsfor thetwo othertasksmodeledby FOV, it doessowith thehelpof two otherfeatures,
for a 1:1 ratio of datato assumptions.With thesefeatures,sharedwith FOV (distributed representations
anda learningmechanism),IAC canaccountfor almostthesamescopeof covert recognitiondataasFOV.
However, evenwith thesefeaturesit makesanumberof wrongpredictionsaboutprosopagnosia.

TheFOV Accountof Overt/CovertDissociations

YB arguethat theFOV modelfails to accountfor threeimportantaspectsof overt/covert dissociations
that the IAC model can accountfor: covert associative priming, overt familiarity judgments,and cued
recognition. Here we show this to be wrong in all threecases. Further, we show that a fourth aspect,
provoked recognition,which cannotbe accountedfor by the IAC model,canbe simulatedwith the FOV
model.

SequentialAssociativePriming

Whena faceprecedesa nameby someshorttime interval, andthe two aresemanticallyrelated(e.g.,
both membersof Britain’s royal family), judgmentsaboutthe name,suchasa “f amous”versus“not fa-
mous” judgment,can be mademorequickly thanwith no face. This finding, calledby YB “sequential
associative priming,” is alsoshown by someprosopagnosics,andis thereforea form of evidencefor covert
facerecognition. In our 1993article, we simulateda similar taskinvolving simultaneousfaceandname
presentations,andobtainedassociative priming aswell asinterference(delayedresponseto a namewhen
the faceis semanticallydissimilar). Becausetheeffectsweresosimilar we groupedthemtogetherasone
simulationof “priming”.

As far ascovert facerecognitionis concerned,thereis no reasonto distinguishbetweenpriming by an
unrecognizedfacepresentedsimultaneouslywith a name,andpriming by anunrecognizedfacepresented
a few secondsbefore. In contrast,YB credit IAC with broadscopepartly for its ability to simulateboth
effects,andallegethatFOV cannotaccountfor sequentialassociative priming.

Settingaside,momentarily, thequestionof whetherFOV is reallyunableto simulatesequentialassocia-
tive priming, considerpreciselywhatYB sayFOV cannotdo. They do not call our attentionto a problem
in priming a namejudgmentwith a face,which FOV hasalreadysimulated.Nor do they reporta failureto



4 SimulationandExplanationin NeurospychologyandBeyond

obtain� priming per sewhenthe faceprecedesthe name.Rather, they wereunableto obtainany response
to the nameprecededby a face,andso could not determinewhethera facewould or would not prime a
subsequentname. YB correctlypoint out that FOV’s attractorstatesareso strongthat subsequentinputs
have little effect, makingit impossibleto simulateany taskinvolving sequentiallypresentedstimuli. This
is a well-known problemfor attractornetworks,andwould likely bea problemfor our brainsaswell if not
for suchfactorsasthe discretespiking natureof real neuronsascomparedto the continuous,real-valued
outputsof modelunits,andneuronalfatigue. Fatiguecaneasilybecapturedin the modelby introducing
activation decayafter the network settlesinto anactivation state.This is commonlydonewhennetworks
areusedto modelsequentialprocesses(e.g.,Burgess,1995;Dayan,1998). Becausewe hadnot setout to
simulateany sequentialtasks,we did not originally incorporatedecay. However, whenFOV’s activations
aredecayedafter the presentationof the facestimulus,the subsequentpresentationof the namestimulus
wasableto propagatethroughthenetwork, andthepresenceor absenceof sequentialassociative priming
couldbetested.

Using the original FOV model, we did not find a substantialpriming effect, presumablybecauseof
the relatively tiny differencein amountof overlap betweenthe semanticrepresentationsof peoplefrom
the samecategory anddifferentcategories(only oneunit). We thereforealteredthe patternslearnedby
themodelto includesemanticrepresentationsin which themembersof thesamecategory (e.g.,“actors”),
all hadoverlappingdistributed representationsconstructedasrandomvariationsof a commonprototype.
With this greaterwithin-category semanticoverlap,thenetwork exhibitedsignificantsequentialassociative
primingat levelsof damageup to 75%,thesamedegreeof damageat which thesystemperformsat chance
onanovert task.Notethatchangingthepatternsin this waywouldnot beexpectedto affect thequalitative
patternof resultsin any of thepreviously reportedsimulations.Weconfirmedthisby replicatingtheresults
from theoriginalmodel.Appendix1 givesthemodelingparametersandresults.

Familiarity

Many of YB’s criticisms of our simulationof the overt/covert dissociationhinge on tasksinvolving
familiarity judgments.We intentionallyavoidedsimulatingsuchtasks,becausethey requirethe modeler
to take a stanceon the mechanisticbasisfor familiarity judgments. Although familiarity seemsto be a
simpleconcept,thewaysin which subjectsmake familiarity decisionsareanything but simple. Perusalof
thepsychologicalliteraturefrom memoryresearch(e.g.,Jacoby, 1991)to lexical decision(which concerns
familiarity decisionsaboutletter strings;e.g.,Seidenberg, Waters,Sanders,& Langer, 1984)makesclear
thevarietyof factorsthatcomeinto play, includingautomaticprocessesof bothaperceptualandconceptual
nature,and strategic processes.Modelershave madevariousattemptsto find reasonablecomputational
interpretationsof familiarity (Plaut,1997;Becker, Moscovitch, , Behrmann,& Joordens,1997;Mathis&
Mozer, 1996;Metcalfe,Cottrell,& Mencl,1992),but noconsensushasemergedat thispoint. YB attempta
veryeasysolution,simplystipulatingthatfamiliarity is PIN activation.Ratherthanincorporatequestionable
assumptionsinto our model,we preferto remainagnosticaboutthe mechanismsof familiarity judgment.
What we give up is the possibilityof attemptingto simulatesomeovert-covert dissociations,specifically
thosedesignedto includefamiliarity judgments.

Sensiblepeoplecandisagree,andYB apparentlyplacegreatervaluethanwe do on simulatingall vari-
antsof theovert-covert dissociation,asopposedto representative resultsfrom eachtypeof task(relearning,
priming, andspeedof perception),evenat thepriceof incorporatingadditionalassumptionsinto a model.
Thereforethey attemptedto simulatefamiliarity judgmentswith FOV, by assigningsettlingspeedof visual
or semanticunitstheinterpretationof familiarity. They reportthattheir simulationsusingthis implementa-
tion of familiarity in FOV failedto capturetheovert-covert dissociation.Givenour reservationsaboutthe
possibilityof any simpleimplementationof familiarity, wewerenotsurprisedto learnof this failure.

We werethereforedoublysurprisedwhenwe couldnot replicatetheir reportedfailurewith FOV! Con-
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trary
�

to our own conservatismregardingthe computationaltractabilityof familiarity, andalsocontraryto
thereportedsimulationresultsof YB, we easilyfoundtheovert-covert dissociationwhenspeedof settling
in semanticunits wasusedasan overt familiarity measurein our model. Specifically, at 50% damageto
thefacehiddenunits,a level of damageatwhich thevariouscovertmeasuressimulatedby usshow positive
evidenceof covert recognition,the averagedresultsfrom 50 randomsamplesof forced-choicefamiliarity
decisionsshowed settlingtime for familiar faceswasnot significantlydifferent thanthe settlingtime for
unfamiliar faces;indeedit wasnonsignificantlylonger. Further, whenwe useda differentmeasureof fa-
miliarity known as the goodness(akanegative energy) of the network’s activation state,which hasbeen
usedin severalothermodels(Beckeretal.,1997;Borowsky & Masson,1996;Rueckl,1995),wefoundthat
theadvantagefor trained(“f amiliar”) facesover unfamiliar onesdisappearedat only 25%damage.Thus,
consistentwith our reservations,theovert familiarity behavior of themodeldependssubstantiallyonwhich
familiarity measureis used.Nevertheless,two candidatesfor a familiarity measurebothyieldedthedesired
dissociation.Furtherdetailsof thesesimulationsareincludedin Appendix2.

We do not know why YB did not obtain the sameresultusing the settling time familiarity measure.
Althoughthey statethatthey have “attemptedto capturelossof familiarity in forced-choicetests”they say
nothingabouttheir simulationattemptsandat leastpartof their conclusionis basednot on simulationbut
on thereasoningthat“Whenever thereis any residualeffect of learning,themodelwill favor a known over
anunknown pattern,” which they supportempiricallyby referenceto our finding (FOV, 1993,Simulation
1) of fastersettlingin visual units for familiar patterns.This reasoningrevealsa misunderstandingof the
behavior of distributedinteractive networks. Thevisualunitsmaysettlefasterwith familiar patternsafter
damage,but aslong asthey aresettlinginto incorrectstates,the inputsto the semanticunits for familiar
patternsmaybeasfar from well-structuredsemanticattractorbasinsastheinputsfor unfamiliarpatterns.

In conclusion,weremainagnosticconcerningthecorrelatesof familiarity in neuralnetworks,andthere-
foreassignlittle weightto thesuccessof theovert/covertsimulationsusingeitherPIN activationor semantic
settlingtimeasa measureof familiarity. But to theextentthatsemanticsettlingtime,or goodness,arerea-
sonablecandidatesfor familiarity in a neuralnetwork, theFOV modeleasilyaccountsfor thedissociations
in question. We cannotexplain why YB did not obtain this resultempirically, but note that their a pri-
ori reasoningwasflawed concerningthe impossibility of dissociatingsemanticsettlingtime from covert
measures.

ForcedChoiceCuedRecognition

Cuedrecognitionis anotherform of covert recognition,in which prosopagnosicscanmake a correct
forcedchoicedecisionbetweentwo nameswhile viewing a face,eventhoughthey cannotovertly judgethe
facefamiliar or unfamiliar, or namethe face. Contraryto theclaim thatFOV cannotbemadeto simulate
this phenomenon,our modelexplainsit very naturally, andwe aregladfor theopportunityto demonstrate
FOV’ssuccessin anotherqualitatively differenttypeof task.

Theimportantthing to noteis thattheforcedchoicecuedrecognitionparadigmprovidesastrongsource
of additionalconstrainton the settlingprocessin the form of the nameinput to the semanticlayervia an
intactpathway. This nameinput is capableof producingthecorrectcorrespondingsemanticrepresentation
by itself, whereasthefaceinput via thedamagedpathway is not capableof producingthecorrectsemantic
representationby itself. Onemustbecarefulnot to confusethebehavior of thenetwork with only theweak
constraintprovidedby thedamagedfaceinputwith thatwhenboththisweakconstraintandthestrongname
input areprovided. In the lattercase(i.e., forcedchoicecuedrecognition),theweakadditionalconstraints
provided by the faceinput canhave a measurableimpactbecausethe network is broughtinto a region of
greatersensitivity to this input by virtue of thestrongnameinput. In otherwords,theweakfaceinput by
itself producessomethinglike a floor effect, andtheadditionalnameinput bringsthesystemoff this floor
sothatthedamagedfaceinputcannow have measurableeffects.
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This reasoningwasconfirmedby simulationusingtheFOV model.Usingeithersemanticsettlingtime
or goodnessasa measureof familiarity, we wereableto simulatethis cuedrecognitioneffect without any
additionalchangesto themodel,asdescribedin Appendix3. Forexample,at75%damageto thefacehidden
units,whereovert familiarity measureshadlong sincefailed,thesystemretainedtheability to distinguish
betweencorrectandincorrectnamesfor thefaces.

Provokedrecognition

Provokedrecognitionis anotherform of preservedfacerecognitionin prosopagnosia,in which thesub-
ject ultimatelyexperiencesovert recognition.After seeinga numberof facesfrom a singlesemanticcate-
gory, suchasactors,facescanbenamedand,reportedly, experiencedasfamiliar. YB assertthatneitherIAC
norFOV canaccountfor thisfinding,but in factthephenomenonis compatiblewith adistributedconstraint
satisfactionarchitectureandcanbesimulatedby FOV. Thegist of theexplanationis that repeatedpresen-
tationsof differentfaceswith commonsemanticsubpatternswill resultin a build-up of residualactivation
primarily in thatsubpattern.Thisactivationwill sometimesprovidetheneededadditionalconstraintto make
up for the lossof constraintscomingfrom damagedfacerepresentationsto allow for successfulsemantic
retrieval andnaming.

In orderto testthis interpretation,we presenteda setof faceinput patternsall from thesamesemantic
category (with thesamedecaymanipulationasusedin semanticassociative priming betweeneachinput),
and recordedmeasuresof namingand familiarity asbefore. We found that overt recognitionwasmore
likely to occurafterviewing multiple facesfrom thesamecategory, asmeasuredby greaterfamiliarity and,
at somelevelsof damage,greatersuccessin naming.Factorscontributing to thesizeof theeffect include
the amountof semanticpatternoverlapandthe amountof decayused. Our face-semantic-namepatterns
werenot optimally designedfor this simulation,with a commonsemanticsubpatternof only 2 units,and
becausethe modelwas not originally set up to simulatesequentialeffects, a relatively large amountof
decaywasnecessaryto overcomethestrongattractordynamicsof thenetwork, which reducedthelevel of
accumulatedactivation in thoseunits. Despitetheselimitations,theeffect is reliable. SeeAppendix4 for
simulationdetailsandresults.

TheIAC Accountof OvertandCovertRecognition in Prosopagnosia

So far we have seenthat the FOV modelis capableof explaining the full rangeof overt-covert disso-
ciationsdiscussedby YB, andthat it doesso in a naturalway, without alterationsdesignedsolely for this
purpose.Wenow turnto theIAC model,whichdiffersbothin failing to accountfor someof thekey dataon
overt andcovert recognitionin prosopagnosia,andin relyingon anadhocadditionto theIAC modelitself
to accountfor theovert-covert dissociation.

AdhocNature of theIAC Account

Theoriginal IAC modelaccountedfor priming-basedcovertmeasures(associative primingandinterfer-
ence)by assumingthatprosopagnosiauniformly attenuatesweightsfrom thefacerecognitionunits(FRUs)
to thepersonidentity nodes(PINs),andthatovert taskperformancesuchasfamiliarity judgmentrequires
that a thresholdon the activation of the PINs be exceeded.The first time we readthis, we assumedthat
this thresholdwasof thestandardtypeusedin neuralnetwork models,andcouldseehow this might play
a role in sucha dissociation.But uponrereading,we realizedthat the explanatorywork in this model is
beingdoneby a type of thresholdthat is unlike othersdiscussedin the neuralnetwork literature— their
thresholdservesabsolutelyno computationalpurposewithin the network, andits function is solely asan
overt-covert-dissociation-maker.

What doesit normally meanfor a unit to have a threshold?Units in neuralnetworks summateinput
activationandalsopasson outputactivationto otherunits. In many networks,unitsonly passonactivation
if thesummatedactivationexceedsacertainvalue— theunit’s threshold.Realneuronsalsohavethresholds



O’Reilly & Farah 7

in
�

this senseof the word. In the IAC model,however, activation is continuouslycascadedbetweenunits
duringbothovertandcovert tasks.Thus,theirovert-covert thresholdis notaboutdeterminingwhenenough
activation hasaccumulatedto be propagatedonwards. This appliesto all of the units in the IAC model,
includingthePINs,andindeedit is thecontinuedoutputfrom thePINs,despitetheirattenuatedinputs,that
underliesthepreservationof thecovert priming tasks.

ThePIN “threshold”thatunderliestheovert-covert dissociationin theIAC modelis notpartof theIAC
modelproper. Instead,it is a decisioncriterion appliedto PIN activation levels only whenthey areused
for overt familiarity judgments,andis externalto the model,affecting noneof the model’s activationsor
weights. In theauthors’own words,“Note that thesethresholdvaluesare(of course)arbitrary. However,
theexactthresholdschosendo not affect theprocessingof themodelin any way. Activationis continually
passedin a cascadefashion,and the thresholdaffects only the decisioncriterion” (Young& Burton, in
press).It is because, andonlybecause, theovert taskof familiarity judgmenthasbeenstipulatedto involve
a decisioncriterion, usingthis external-to-the-model,arbitrary “thr eshold” that theIAC modeldissociates
overt and covert recognition. The essenceof the IAC accountof the overt-covert dissociationis this: “If
oneform of recognitionis impairedafterdamageandanotheris spared,thenhypothesizethatanarbitrary
criterion for minimal quality of processingis requiredjust for the impairedability andnot for the spared
one.”

Thisaccountis unsatisfyingin thesameway thatthataccountsof overt-covert dissociationsthatfeature
a “consciousnessbox” areunsatisfying:While bothaccountfor thebasicdissociationin a straightforward
way, it is just a little too easyto explain a selective impairmentin onetypeof taskby postulatinga special
componentof the mind (consciousnesssystemor decisioncriterion) that happensto be requiredonly for
the impairedtask,without any other, independentmotivation for including that componentin the model
or involving it in just the impairedtasks. Indeed,althoughYB seemto regard the IAC accountas an
improvementover theearlierhypothesisthatfacerecognitionhadbeendisconnectedfrom a consciousness
system,we donot. A “decisioncriterion” maysoundmoremechanisticthana “consciousnesssystem,” but
we have alreadyshown that it in factplaysno mechanisticrole in thebehavior of themodel,whereasthere
is at leastampleindependentprecedentfor hypothesizingsystemsinvolvedin consciousawareness.

Finally, we notethattheability of theIAC modelto accountfor thetwo othertasksoriginally modeled
by FOV dependon two additionalassumptions,for a 1:1 ratio of model featuresto effectsexplained. A
learningmechanismwasaddedto modelsavings in relearning,anddistributed facerepresentationswere
addedto accountfor familiarity effects in facematching,bringing the IAC accountcloserto FOV. Even
with thesefeatures,however, thetwo modelsarenotequallysuccessful.In thefour sectionsthatfollow, we
review four of theIAC model’s predictionsaboutprosopagnosiathatareclearlywrong.

IAC PredictsIntactForcedChoiceOvertRecognition in Prosopagnosia

Whenpsychologistssuspectthatperformancein a taskis limited by a decisioncriterion,thatprohibits
subthresholdknowledgefrom beingexpressed,they turn to a forced-choiceparadigm.Insteadof askingthe
subject“Is this anX, yesor no?” they show thesubjectandanX anda Y andask“Which of theseis an
X?” Althoughthestrengthof theX-hoodsignalfor theX mightbebelow thecriterionfor deciding“Yes,” it
couldstill begreaterfor theX thanfor theY. For this reason,accuracy in forced-choicetasksis sometimes
calledacriterion-freemeasureof subjects’ability (Green& Swets,1966).

As we have alreadyseen,the IAC modeldissociatesovert andcovert recognitionthroughtheuseof a
criterionfor PIN activationin anovert “yes/no” familiarity task.However, whenweswitchto thiscriterion-
freeforced-choicemeasureof overtperformance,theIAC modelalwaysproducesperfectperformance, even
with “pr osopagnosic” levelsof damage(FRU-PIN link attenuation).Evidencefor thiscanbefoundin YB’s
Figure7a,whichshowsthatafamiliarfacewill alwayscausehigherPIN activationthananunfamiliaror less
familiar face.Similarly, YB’s Figure4b shows thatalthoughtheactivationin nameunitsmight betoo low



8 SimulationandExplanationin NeurospychologyandBeyond

to
�

exceeda decisioncriterionafterFRU-PIN link attenuation,theunit for thecorrectnamewill alwaysbe
moreactive thantheunitsfor incorrectnames,predictingaccurateforcedchoiceamongnames.Of course,
weknow thattheovert recognitionimpairmentof prosopagnosiais justasevidenton forced-choicetestsas
on “yes/no”andnamingtests.Figure3 in ouroriginal1993papershows thatFOV reacheschancelevelsof
performanceonaforcedchoicetaskabove50%damagewhile continuingto manifestcovert recognitionby
anumberof measures.

IAC PredictsProsopagnosiais All-or-none

Neuropsychologicaldisorderscanbemild or severe,andmaychangetheir level of severity over time.
After anacuteinjury, thedisordermaybesevereandthengraduallyrecover, eitherpartiallyor completely.
In degenerative conditions,the reversemay be seen. Thereis no neuropsychologicalimpairmentthat is
seenonly in full-blown form or notatall. In particular, prosopagnosiacanexist in mild, moderateor severe
forms.Yet theIAC modelpredictsthatpatientsareeithernormalat overt facerecognitionor totally unable
to recognizeany facesovertly. This problemresultsdirectly from the way the modelaccountsfor covert
recognition,namelythe combinationof a thresholdon local PINs anduniform weight reductionbetween
facerecognitionunits (FRUs) and PINs. As the weightsare attenuated,overt performancewill remain
unchangeduntil thefamiliarity thresholdis reached.At thatpoint performancewill dropto chancelevels,
andremainthere.

Onemight try to fix this problemby makingtheweightreductionsnonuniform.For example,themost
realistic way of implementingdamagein a network would be to eliminatesomeconnectionsaltogether
while leaving othersintact,allowing levelsof overt recognitionperformanceto fall anywherebetweenper-
fect performanceandchancedependingon the proportionof connectionseliminated. Unfortunately, this
implementationof damageeliminatesthe overt-covert dissociation:Somefaceswill be recognized,both
overtly andcovertly becausetheirFRU-PIN connectionsareintact,andotherswill notberecognizedeither
overtly or covertly, becausetheir FRU-PIN connectionshave beensevered. In light of this problem,one
mightaimfor intermediateovertperformanceby varyingthedegreeof attenuationof FRU-PIN connections
without eliminatingconnections.This would have the desirableresultof overt performancemeasuresin-
termediatebetweenperfectperformanceandchance,with thepossibilityof covert recognitionfor facesnot
overtly recognized.Unfortunately, it hasthe undesirableresultof predictingperfecttest-retestreliability,
thatis, certainfacesalwaysrecognizedandall otherfacesnever recognized.Weakitemeffectsmaybeseen
with someprosopagnosics,but it is not thecasethatcertainfacesarereliably recognized,acrossdifferent
depictions,whereasothersarenever recognized.A final solutionis to combatthe perfectconsistency of
themodelby directly addingvariability to theactivationvaluesof theunits. Althoughthis couldproduce
intermediateovert performancewithout strongitem effects,it would beyet anotheradhocadditionto the
model.

IAC PredictsProsopagnosiaAffectsonlyFamiliar Faces

Althoughtheliteraturecontainsclaimsof selective impairmentof familiar faceprocessingin prosopag-
nosia,whenever theperceptionof unfamiliar faceshasbeencarefullytestedit hasbeenfoundto beimpaired
(seeFarah,1990;Shuttleworth, Syring,& Allen, 1982,for reviews). Young,Newcombe,deHaan,Small,
andHay (1993)have shown thatapparentdissociationsbetweentheprocessingof familiar andunfamiliar
facesdisappearwhentime to performperceptualtestswith unfamiliar facesis taken into account;patients
may achieve a goodaccuracy scoreby abnormallyslow andslavish checkingof facial features.Indeed,
casesPH, in whomcovert facerecognitionhasbeendemonstratedby preserved familiarity effectsin face
matching,performssimpleperceptualfacematchingpoorly (16%errors)andslowly (almost3 secondson
average)evenwhenthefacesareunfamiliar (deHaan,Young,& Newcombe,1987).

In contrast,theIAC modelis basedon theassumptionthattheimpairmentin prosopagnosialies down-
streamfrom theperceptualrepresentationof faces,in apartof thesystemthatexistsonly for familiar faces,
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namely� connectionsbetweenthe perceptualFRUs and the PINs. The IAC modelcould be defendedby
hypothesizingthat, for reasonsof anatomicalproximity, visual facerepresentationsarealso likely to be
damagedin casesof prosopagnosia,andhave so far invariably beendamaged.The FOV modelhasthe
advantage,however, of not requiringcoincidentaldamageto two partsof the system;it is basedon the
assumptionthatperceptionof faces,familiarandunfamiliar, is impairedin prosopagnosia.

IACL PredictsProsopagnosiais Temporary

Theadditionof a learningmechanismto the IAC model,resultingin the IACL model,createsanother
problem:it commitsthemodelersto thepredictionthatprosopagnosiais temporary, in thatit canbeentirely
overcomeby relearning.Giventhewaydamageandrelearningaresimulatedin IACL, thereis nothingthat
requirestherelearningto stopshortof perfectperformance.Indeed,comparingthe resultsshown in their
Figures4a,b andc, onecanseethat after5 trials of relearning,the network hascompletelyrecoveredto
an unlesionedlevel of performance.This would predict that prosopagnosicpatientscould recover all of
their lost knowledgeby simplystudyingall thefacesthey onceknew for some(apparentlyrelatively short)
periodof time! In contrast,relearningin FOV hasa low asymptote,becausea reducednumberof unitsand
weightsareavailableto storethenew knowledge— thenetwork, like prosopagnosics,hasactuallysuffered
irreparabledamage.

IAC’s IncorrectPredictionsFollow fromTheory-RelevantFeatures

Of course,for every scientificmodel, somefeaturesare theory-relevant and someare not. We have
highlightedseveralwaysin whichthepredictionsof theIAC modelfail to accordwith reality. An important
questionto ask is whetherthe IAC model’s incorrectpredictionsresult from theory relevant or theory-
irrelevant features.In all cases,the failuresderive directly from theory-relevant features,anddirectly or
indirectly from theuseof local representations.

In bothmodels,covert recognitionis theresultof apartially functioningsystem.With FOV’sdistributed
representations,the“partiality” of thesystem’s knowledgeof facesconsistsof a subsetof theweightsthat
originally embodiedknowledgeof the faces’appearance.Thereis no equivalent way of damagingface
representationswith IAC’s local representations,andso the partiality of functioninginsteadresultsfrom
attenuatedconnectionstrengthsbetweenFRUsandPINs.Thisdifferencein thewaypartialfunctioningcan
take placein distributedandlocal systemsaccountsfor all of theproblemsthat theIAC modelencounters
in simulatingprosopagnosia.The attenuationof FRU-PIN connectionscannotaccountfor impairedovert
recognitionwithout the impositionof a decisioncriterionexternalto the model,but this leavesthemodel
unableto accountfor impairedovert recognitionin criterion-freetasks. The choicebetweenall-or-none
prosopagnosiaandstrongitem effectsis forceduponthe IAC modelby its useof local representations,in
conjunctionwith thecriterionneededto createtheovert-covert dissociation.Eitherweightsareuniformly
attenuated,giving rise to the all-or-noneproblem,or they arenonuniformlyattenuated,giving rise to the
perfecttest-retestproblem.Thereis nonaturalwayto obtainagradientof performancewith variedamounts
of damageotherthanhaving onespecificfaceat a time drop from the “alwaysrecognized”to the “never
recognized”category withoutbuilding in variability explicitly for thispurpose.In contrast,with distributed
representations,eachof theunitsandweightsparticipatein therepresentationof many faces,anddamageto
eachunit or weight thereforeimpactson many faces.And becauseeachfaceis representedby many units
andweights,damageto eachunit or weighthasonlyamoderateeffectonrecognitionof thatface.Increasing
damagethereforeresultsin a gradientof performancefor all faces,andbecauseany particularlesionmay
by chanceaffect moreof theunitsandweightsinvolved in oneface’s representationthananother’s, there
maybeweakitemeffects.

The different locationsof the lesionsin the IAC and FOV models,and their consequentpredictions
concerningunfamiliar faceprocessingin prosopagnosia,canalsobetracedto thedifficulty of implementing
partialor gradedperformancein systemsof local representation.For thereasonsjuststated,distributedface
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Effect FOV Comments IAC Comments
10AFCOvertatChance Yes No Always100%correct
GradedLevelsof Prosopagnosia Yes No All-or-nothing
UnfamiliarFacesImpaired Yes No Only familiarhave PINs
PermanentEffectsof Damage Yes No Completerecovery
Savingsin Relearning Yes No Completerelearning
Speedof Settling(Perception) Yes Yes Usesdistributedreps
SemanticPriming(& Interference) Yes Yes
SequentialAssociative Priming Yes Requiresdecay Yes
Forced-choiceCuedRecognition Yes Yes
ProvokedOvertRecognition Yes Requiresdecay No

Table1: Correctedversionof Young& Burton’s Table1, showing accuratecomparisonbetweenthetwo modelson
basicpropertiesof prosopagnosia,andthesetof covertmeasuresconsidered.

representationnaturallyaccommodatespartial processingof all facesafter damage.Becausetheir model
doesnot includedistributed facerepresentations,the authorsof the IAC modelwere forced to interpret
partialprocessingin termsof weakenedconnectionsbetweenintactfacerepresentationsandpost-perceptual
representationsdownstream.

IACL’s predictionthat prosopagnosiashouldbeonly transitoryalsofollows from theuseof local rep-
resentations,whereasFOV’s predictionof a low asymptotefor relearningafter damagefollows from the
useof distributedrepresentation.Knowledgein FOV is representedin a distributedmanneracrossa large
numberof weights.WhentheFOV modelrelearns,it mustcompensatefor thepermanentlymissingunitsby
reusingtheremainingweightsandunits. Thusperformanceis constrainedto remainpermanentlyimpaired
becauseof the reducednumberof units andconnections.It is alsoworth noting that learningin FOV is
an integral partof themodel,becausedistributedrepresentationscannotbehand-wiredasis possiblewith
local representations,andwasnot simply addedto themodelto accountfor particulardata. In IACL, the
simulationof damageby attenuatingconnectionsandrelearningby strengtheningthemagainfails to put
any constraintson theamountof relearningthatcanbeachieved.

Young& Burton’sTable1, corrected

Ourgoalin writing thisarticleis to clarify certainaspectsof thebehavior of distributedinteractiveneural
networks, andto discussthe relevanceof this behavior to psychologicalexplanationin the caseof covert
facerecognition.The detailedaccountingof which modelcansimulatewhich variantof which taskis of
lessinterest.Nevertheless,thetwo concernscannotbeentirelydivorcedfrom oneanother, andsowe wish
to settherecordstraighton thesuccessesandfailuresof themodelsthatYB contrastin theirTable1. Thus,
we provide a correctedTable1, revisedto includeall of theparadigmswe simulatedin our original paper,
togetherwith thenew paradigmsconsideredhere.

Accountingfor thePhenomenaof NormalFaceRecognition

YB find it problematicthat a modelaimedat explaining thecovert/overt dissociationdoesnot explain
otherphenomenarelatedto facerecognition.But themotivationof FOV wasto demonstratethatovert/covert
dissociationscouldbeexplainedsimply in termsof somebasicandgeneralpropertiesof neuralinformation
processing,not to explain facerecognitionmoregenerally. Do we think modelsdeserve morecredit for
explainingawider rangeof phenomena?Yes,of course.Do we think thatmodelsaresuspectif they donot
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e� xplain phenomenaoutsidetherealmoriginally intended?Not at all, particularlyif thereis nothingin the
modelthatwouldconflictwith anattemptto broadenits scope.

TheFOV modelis perfectlycompatiblewith thebroaderrangeof faceperceptionphenomenareviewed
byYB, theirclaimsto thecontrary. Justasthey andtheircolleagueswereableto simulateadditionalfindings
in personperceptionby addingfeaturesto theoriginal IAC model,suchasseparateinput andoutputname
representations,and a direct route from nameinputs to nameoutputs,the sameis true of FOV. Neither
modelaccountedfor thefull rangeof datareviewedby YB in its original form. Bothmodelscandosowith
appropriateadditions,andFOV requiresno moreadditionsthanIAC. Indeed,thecorefeaturesof theFOV
model— distributedrepresentation,learning,andinteractivity — provide naturalexplanationsof many of
thephenomenain normalpersonperceptionthatYB review. Hereweconsidereachof theeffectsreviewed
by YB in turn.

RepetitionPriming

Repetitionpriming is domain-specific,in thesensethatrepeatedjudgmentsof anindividual’s faceshow
priming whereasa judgmentof a namefollowed by a judgmentof the sameindividual’s facedoesnot
show priming. An obviousexplanationfor thisaspectof repetitionpriming is thatthenamerepresentations
engagedin the act of readinga nameare distinct from the namerepresentationsengagedin the act of
producinga name,for examplewhena faceis named.This distinctionbetweeninput andoutputlexicons,
which is supportedby considerableevidencein cognitive psychologyandneuropsychology, implies that
differentnamerepresentationsareactivatedwhenreadinga nameandwhenevoking a namefrom a face,
and henceexplains the absenceof priming betweenthesetwo typesof task. Separateinput and output
lexiconswereincorporatedinto the IAC modelspecificallyin orderto accountfor the domain-specificity
of repetitionpriming,andasYB point out, thesamecouldbedonefor FOV. We thereforefail to seewhat
bearingrepetitionpriming,andits likely explanationin termsof separateinput andoutputlexicons,hason
theissueof localistversusdistributedrepresentationin general,or on thechoicebetweentheIAC andFOV
modelsin particular.

To put it anotherway, thereis only onedifferencebetweenthemodelsthat is relevant to their different
abilitiesto simulatethedomain-specificityof repetitionpriming: theIAC modelto whichseparatelexicons
wereaddedhasseparatelexicons,whereastheFOV modeldoesnot. This is not a differenceof “modeling
style,” but simplyof whathasbeenmodeled.We trustthatmostreadersdid not interpretouruseof asingle
lexiconasatheoreticalstatementthatthesamerepresentationsunderliethehearing,readingandspeakingof
names,but insteadrecognizedthatthedistinctionbetweeninputandoutputlexiconswassimplynotrelevant
to any of thetasksthattheFOV modelwasintendedto simulate.

A relatedpoint concernstheinexorableway in which FOV, andmostneuralnetworksgenerally, tendto
completepatterns,resultingin all facesbeingautomaticallynamed.For thetaskswe simulated,it wasnot
necessaryto incorporateanattentionalmechanismthatgatestheflow of activationin thenetwork depending
on taskdemands,but suchmechanismsarecertainlyavailable(e.g.,Cohen,Dunbar, & McClelland,1990),
andprovide a principledbasisfor the lack of transferbetweenfaceandnamepriming. However, given
thatwe know that thepresentationof a facewill alsoautomaticallyspreadto the nameunits in the IACL
model (as is necessaryfor naming,andpriming effects), it is entirely unclearwhy their modeldoesnot
predictcross-domainrepetitionprimingaswell, sincethey statethattheirHebbianlearningmechanismwas
appliedto all theunits in thenetwork. Either they have someadditionalmechanismwhich suppressedthe
nameunit activation,or they didn’t in factapplyHebbianlearningto theentirenetwork, or we aremissing
somethingabouttheirmodel.Thefurtherdiscussionabout“staged”processingandindependentprimingof
differentpathwaysin theIACL model,whileatthesametimeadvocatinganubiquitouslink updateproposal,
seemedequallycontradictoryandconfusing.Wewouldappreciateaclarificationof thesepoints.
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Asymmetrical
�

Interference

Theissueof asymmetryof interferenceeffectsis alsoanissueof whatis modeled,ratherthanhow. Let
ussetasidemodelsaltogetherfor a moment,andask:Why is therelessinterferencefrom a distractorface
on readinga namethanthereis interferencefrom a distractornameon naminga face? Becausereading
is differentfrom naming! Specifically, it is possibleto pronouncea letter string without knowing what it
means,whereasonecannotnameafaceor objectwithouthaving recognizedit. Now let usreturnto models.
This differencebetweenreadingand namingcan be implementedin either the IAC model or the FOV
modelsimplyby insertinga directroutebetweennameinputsandspokennameoutputs.With theaddition
of this direct route, namingwill be fasterand lesssusceptibleto interferencefrom activity in semantic
representations.

Thus,asbefore,thereis only onedifferencebetweenthemodelsthatis relevantto theirdifferentabilities
to simulateinterferenceasymmetry:the IAC model,to which wasaddeda direct routefrom word inputs
to word outputs,hasa direct routefrom word inputsto word outputs,whereasthe FOV modeldoesnot.
Thereis nothingin the FOV modelthat would prevent it from beingaugmentedin the sameway asIAC
wasaugmented,andhencethemodelsareon equalfooting. Indeed,theprototypical“radical” distributed
connectionistmodelcitedby YB, theSeidenberg andMcClelland(1989)word readingmodel(andits de-
scendants;Plaut,McClelland,Seidenberg, & Patterson,1996)clearlyadvocatesbotha directandindirect
(via semantics)routebetweenword inputandoutput.

Timeto MakeDecisions

YB reportthat, in general,familiarity decisionsto facesaremadefasterthansemanticdecisions(e.g.,
actorvspolitician),which arein turn madefasterthannamedecisions(e.g. JohnvsRichard). In contrast,
whenshown a name,namedecisionsarefastest,followed by familiarity decisions,followed by semantic
decisions.YB allow thatboththeIAC andtheFOV modelscanaccountfor thepatternof decisionlatencies
to facesquitenaturally. It is thepatternof decisionlatenciesto namesthat they claim posesa problemfor
FOV.

As with the finding of asymmetricinterference,the finding that namedecisionscan be madefastest
on namesis a resultsimply of the direct routebetweennameinputsandnameoutputs. The question“Is
JohnGuilgud’s first nameJohnor Richard?”is ratherlike thequestion“Who is buriedin Grant’s Tomb?”.
While we do not believe thetopic is entirelytrivial, we alsodo not believe it hasany bearingon thechoice
betweenlocalistanddistributedmodels.Again, theonly differencebetweenthemodelsthat is relevant to
theirdifferentabilitiesto simulatethepatternof decisionlatenciesonnamesis thattheIAC model,to which
wasaddeda direct routefrom word inputsto word outputs,hasa direct routefrom word inputsto word
outputs,whereastheFOV modeldoesnot.

Patternsof Error

Likedecisionlatencies,errorpatternsrevealaorderingamongtypesorstagesof processing.It is possible
to find someonefamiliarbut fail to retrievesemanticor nameinformation,or to find someoneis familiarand
retrieve semanticinformationaboutthembut fail to retrieve a name,but it is never thecasethatanamecan
beretrievedwithout semanticinformation. Heretoo, YB allow thatFOV andIAC canbothaccommodate
this patternnaturally. But they claim thatthetwo modelsdivergein their ability to explainerrorpatternsin
thecaseof a particularneurologicalpatient,ME.

ME wasunableto retrieve semanticinformationaboutfamiliar peoplefrom eithera nameor a face.
Despitethis, shecouldmatchnameswith faceswith a high level of accuracy. YB take this asevidencefor
PINs, interposedbetweenfaceandnamerepresentations,andseparatefrom the semanticunits which are
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the
�

hypothesizedlocusof damagein thispatient.They concludethatamodellikeFOV, in whichnamesand
facesareassociatedsolelyby wayof semanticrepresentations,couldnotaccountfor this effect. To quote:

Thereis anarchitecturalproblemwith FOV thatleadsto its failureto capturethesedata...If the
semanticsunits [after damage]maybeusedfor matching[facesto names],thenthey mustbe
ableto beusedto passinformationbetweenthetwo modalities...Thisgivesriseto a patternof
errorwhich is never observedin humans,the‘nameonly’ error. (YB, p. 60)

Despitetheir referenceto FOV’s “f ailureto capturethesedata,” YB apparentlydid notattemptasimula-
tion. Hadthey doneso,they wouldhave foundthatthemodel,exactly asdescribedin our 1993paper, does
capturethedata.Usingsemanticsettlingtimeasa typeof familiarity measureonceagain,we implemented
thematchingtaskasa judgmentof the familiarity of thepairing betweenfaceandname.Notethat this is
essentiallythesameasthecued-recognitiontaskdescribedpreviously, andtheexplanationfor FOV’s suc-
cessfulperformanceis exactly thesameaswell — multiple input constraints(from nameandfaceinputs)
canproducesignificantlybetterperformancethanoneinput constraint(eithernameor facealone). Thus,
whensemanticunits aredamaged,even to levels (e.g.,75%) at which the namingof a faceis effectively
at chance,thesettlingtimesfor correctandincorrectname-facepairingsremaineddiscriminablydifferent.
Detailsof thesimulationaregivenin Appendix5.

Distinctiveness

Distinctivenessand similarity play a ubiquitousrole in all aspectsof perceptionand cognition, face
processingincluded. As YB explain, a distinctive faceis onewith lessoverall similarity to otherknown
faces.Thedistributedrepresentationsof FOV provide a naturalway of understandingthemany similarity-
basedphenomenaof faceprocessing,includingassociative priming, theclassificationof error typesbased
on target-errorsimilarity (e.g.,semanticversusvisual errors)anddistinctivenesseffects. This is because
distributedrepresentationprovidesastraightforwardmetricof similarity, andevenmoreimportant,amech-
anismfor explainingits effects.

In distributedrepresentations,greateroverlapin activeunitscorrespondstogreatersimilarity. Thegreater
confusabilityof similar representationsarisesfrom thefactthatthey areactuallypartially identical.There-
fore, fewer units’ activation valuesneedbe mistaken in order for one representationto be confusedfor
anotherby thesystemwhenthe two aresimilar. In contrast,purelocalist representationsareincapableof
accountingfor similarity-basedeffectswithout additionalmechanismsaddedfor this specificpurpose.In-
deed,YB’sadaptationof theIAC modelaccountsfor distinctivenessby usingdistributedrepresentationsof
facesin a poolof featureunits. We do not know whatYB hadin mind whenthey wrote“Using distributed
representations,it is hardto capturethenotionof adistinctive face,” but surelythey have misspoken.

Why were YB unableto obtain distinctivenesseffects with the FOV model? Distinctivenesseffects
will bemeasuredin termsof processingdifferencesbetweenfacepatternsthathavesmallandlargeaverage
distancesfromtheotherfacesin thefacesimilarityspace,assumingdistancesamongthepatternsin semantic
andnamesimilarity spacesareroughly equivalent. This requiresthe existenceof patternswith large and
small distances.With the small set of patternsusedin our simulations,and the small similarity space
generatedby having a total of only 16 faceinput units, the oddsarestronglyagainstfinding subsetsof
facepatternswhoseaveragedistancesfrom otherfacepatternsdiffer appreciablywhile avoiding offsetting
confoundsin semanticandnameportionsof thepattern.Indeed,whenwecalculatedtheaveragehamming
distancesof thefacepatternsin oursimulation,they weretightly clusteredaroundanoverallaverageof 13,
with theentirerangeonly spanningfrom 12to 14.4.With solittle differencebetweenthedistinctivenessof
the leastandmostdistinctive facesin our patterns,andno controlover thesimilarity relationsamongthe
non-faceportionsof the patterns,thereis no wonderthat YB did not find distinctivenesseffects. Justas
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Effect FOV Comments IAC Comments
RepetitionPriming Yes w/seplexicons Yes w/seplexicons
AsymmetricInterference Yes w/seplexicons Yes w/seplexicons
Timeto Make Decisions Yes w/seplexicons Yes w/seplexicons
Patternsof Error Yes IncludingME Yes
Distinctiveness Yes Yes Usesdistributedreps

Table2: Correctedversionof Young& Burton’s Table2, showing comparisonbetweenthe two modelson ability
to accountfor othereffectsin faceandpersonrecognition. Note that mostof the effectsaredueto the additionof
separatelexical representationsandpathways.

the IAC model’s patternsweredesignedto fall into groupswith high andlow distinctivenessfor purposes
of simulatingdistinctivenesseffects,soFOV would needanappropriatelydesignedsetof patternsfor that
purpose.

TheIssue:ExplanatoryScope

YB raisedthe five topicsjust reviewed (repetitionpriming, asymmetryof interferenceeffects,time to
respond,errorpatterns,anddistinctivenesseffects)asevidencebearingontheexplanatoryscopesof theIAC
andFOV modelsin particular, andof localistanddistributedcomputationalarchitecturesmoregenerally. It
is to this issue,asopposedto theinsandoutsof particularsimulations,thatwenow return.

All partiespresumablyagreeon thefollowing criteria. If onemodelor modelingstylecanmoreeasily
accommodatethefive assortedfindingsreviewedabove, thatwould countin its favor. Furthermore,if one
modelor modelingstyleis actuallyconstrainedto predictsomeof thefindings,thatwouldcountevenmore
stronglyin its favor. Finally, thefivefindingsselectedby YB constituteonly a smallsubsetof thepotential
explanatoryscopeof modelsof covertandovertfacerecognition,andtheability of themodelsandmodeling
stylesto accountfor or predictotherfindingsis alsorelevant.

So how do the modelsfareby thesecriteria? YB statethat “We have shown that the FOV model is
not generalizableto otherphenomenafoundin prosopagnosiaor for normalfacerecognition,whereasIAC
canreadily do this for a numberof phenomena”(p. 75-76). Our accountingis different. In eachof the
five casesof normalpersonperceptionthat YB selected,FOV is on equalor betterfooting thanIAC. In
threeof thesecases(repetitionpriming, asymmetryof interferenceeffects,time to respond)eithermodel
canbemadeto accountfor theeffectsin questionby specificadditions,specificallyseparatenameinputs
andoutputsanda directroutebetweenthem.Thesefeaturesarewerenot in theFOV modelor theoriginal
IAC model,but couldbeaddedto either. They havenoparticularcompatibilityor incompatibilitywith local
versusdistributedrepresentations.For afourthfinding,concerningerrorpatterns,YB statedthatFOV could
not accountfor the key findingsof caseME, but in fact the modelsimulatedthesefindingswithout any
additionsor changes.In thecaseof thefifth findingreviewedby YB, distinctivenesseffects,wehaveacase
of onemodelingstylebeingactuallyconstrainedto predictthe effect, asopposedto merelybeingableto
accommodateit: distributedrepresentationscannothelpbut generatedistinctivenesseffects,andindeedthe
IAC modelaccountsfor theseeffectsby addingapoolof distributedfacerepresentations.Thus,for thefive
findingsthatYB selectedfor comparingthemodels,FOV anddistributedrepresentationsareoverallslightly
moresuccessful.Wehave thereforeprovidedanupdatedTable2, correspondingto YB’sTable2.

Whataboutfindingsbeyondthefiveselectedby YB? As alreadymentioned,effectsinvolving similarity
areexplainedin astraightforwardwaybydistributedrepresentations.Sucheffectsincludesemanticpriming,
thegreatertendency to confusepersonswith similar faces,semanticinformationor names,the interpreta-
tion of error types,andthe effectsof visual, semanticor namedistinctiveness.As explainedin the first
section,theexistenceof degreesof prosopagnosia,thepermanenceof prosopagnosia,andthe impairment



O’Reilly & Farah 15

of� unfamiliar faceprocessingin prosopagnosiaareall explainednaturallyby FOV, basedon theproperties
of distributedinteractive computation,andarenot accommodatedby IAC. Finally, theFOV explanationof
covert facerecognitionhasexplanatoryscopealonga differentdimensionaswell: Its basicprinciplescan
explainotherformsof performancedissociationbetweendifferenttasksthatostensiblytestthesameknowl-
edge.Mayall andHumphreys (1996)adaptedthebasicarchitectureto provideanovel accountof preserved
readingin purealexia, andMunakata,McClelland,Johnson,andSiegler (1997)usedthesameunderlying
principlesto explainwhy infantscanmanifestcertainperceptualknowledgewhentestedin onewaybut not
another.

Two Approachesto ComputationalModeling

YB describethe function of the IAC model, relative to non-computationalmodelsin psychology, as
follows:

The differencebetweenan implementedmodel like IAC and an unimplementedfunctional
modelsuchasBruceandYoung(1986)is only in the level of detailwhich eachallows. The
implementedmodelrequiresa greaterlevel of specificity, andallows interactive explorationin
awaywhich is notpossiblewith boxandarrow models( ms.p. 63).

In otherwords,YB approachthecomputationalmodelasapowerful book-keepingdevice, forcingpsychol-
ogiststo bespecificin their theorizingandenablingthemto derivepredictionsfrom their functionalmodels
thatexceedhumanworkingmemorycapacity.

Weagreethatthis is oneusefulrole thatcomputationcanplay in psychology. But ourapproachis based
ontheideathatconnectionistmodelinghasthepotentialto offer muchmore.Webelieve thatin somecases,
the correctexplanationof a psychologicalphenomenonwill be basedon propertiesof the computational
systemitself. By this,we meanto excludeaspectsof modelsthataresharedwith unimplementedcognitive
psychologymodels,suchasthedirectroutebetweenword inputsandoutputsin theelaboratedIAC model
accountof aspectsof repetitionpriming, asymmetricalinterference,andtime to make decisions.Rather,
we arereferringto propertiesto which the modeleris typically forcedto make a commitmentonly when
implementingthe model,andwhosereasonfor being is the actualinformationprocessingof the model,
possiblyalsoconstrained(as in the caseof many connectionistmodels)by a desirefor neurobiological
plausibility. Examplesof suchpropertiesaredistributedrepresentationsandthe learningmechanismsthat
shapethem.

For purposesof book-keepingthereis little differencebetweenlocalanddistributedrepresentationother
thanwhatYB call “transparency.” But whenthesystembeingmodeledis computational,asis thecasewith
the humancognitive system,thenthe choiceof a model’s computationalarchitecturehastheory-relevant
consequencesfor the behavior of the model. Somekey behaviors that distributedrepresentationscommit
usto arediscussedin thefollowing section.Theseareamongthevery behaviors thatwe,aspsychologists,
want to explain. We thereforeplacemuch lessemphasisthanYB on the “human-computerinteraction”
factorof transparency, andmuchmoreontwo otherconsiderations,discussedin thetwosectionsthatfollow:
the explanatorypower of distributedrepresentationandrelatedfeaturesof connectionistarchitecture,and
correspondencesbetweenthesemodelfeaturesandrealbrainfunction.

FunctionalDifferencesbetweenDistributedandLocalistRepresentation

Distributed representationshave many computationaladvantagesover localist representations,which
have eitherdirector indirectimplicationsfor psychology. Theseadvantagesresultfrom theuseof overlap-
pingsubsetsof unitsto representdifferententities.Notethatthis is theessenceof whatmakesarepresenta-
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tion
�

distributed.Theinterpretabilityof individualunitsdoesnotaffect theseproperties,andis notacriterion
for distinguishingdistributedfrom localrepresentation.Whereasin localrepresentationsindividualunitsby
definitionhave aninterpretation,in distributedrepresentationsthey mayor maynotbeinterpretablein sim-
pleor intuitiveways.Mostof theunitsin ourmodelcannot,but theactorandpoliticianunitsareexceptions,
andconsitituepartsof the distributedsemanticrepresentation.For an exampleof a distributed semantic
representationin which eachunit hasanEnglish-languageinterpretation,seeHinton andShallice’s (1991)
modelof deepdyslexia.

Webegin ourbrief review (seeHinton,McClelland,& Rumelhart,1986,for a fuller discussion)with the
computationaladvantagesof distributedrepresentationsthatareof psychologicalrelevancesimply insofar
asthebrainandmindarelikely to beoptimized:

Efficiency: Fewertotalunitsarerequiredto representagivennumberof inputpatternsif therepresentation
is sharedacrossunits(otherwiseoneunit perpatternis required).For example,all of thecolorscanbe
representedby asfew asthreedistributedunits(e.g.,red,greenandblue),whereaslocalistrepresen-
tationswould requireasmany unitsascolordistinctionsbeingmade(i.e.,100’s). This is particularly
importantasthedomainbecomescombinatorialin somefeaturespace,sincethenumberof possible
differentcombinations(andthereforelocalistunits)quickly approachesastronomicalvalues.

Robustness: Having multiple unitsparticipatingin eachrepresentationmakesit morerobustagainstdam-
age,sincethereis someredundancy. For example,if onelost the“green” unit in a distributedrepre-
sentation,youwouldstill beableto tell thatred,yellow, andorangearesimilar . If you losea localist
unit, whatever knowledgewasassociatedwith thatunit is completelygone.

Accuracy: In representingcontinuousdimensions,distributed (coarse coded) representationsare much
moreaccuratethantheequivalentnumberof localist representations,becausethereis a lot of infor-
mationcontainedin therelative activities of thesetof nearbyunits,whereaslocalistunitscanonly �
differentvalues(atanaccuracy of �	�
� ) for � units.

Thefollowing two ubiquitouspsychologicalpropertiesarealsopropertiesof distributedrepresentation.
Modelsincorporatingdistributedrepresentationneednot “build in” theseproperties.Rather, theproperties
arealmostinescapablein systemsof distributedrepresentation:

Similarity: Distributed representationsprovide a naturalmeansof encodingthe similarity relationships
amongdifferent patternsas a function of the numberof units in common(pattern overlap). For
example,orangecanberepresentedassimilar to redandyellow by virtue of sharingsimilar values
of “red” and“green” componentsof a distributedrepresentation.In contrast,eachlocalistunit is an
island,andthenetwork wouldnotnaturallyconvey thefactthattheorangeunit is somehow relatedto
theredunit.

Generalization: A network with distributedrepresentationscanoftenrespondappropriatelyto novel input
patternsby usingappropriate(novel) combinationsof hiddenunits. This is impossiblefor localist
networks,which would requiretheuseof anentirelynew unit. For example,if we knew thatredand
yellow wereassociatedwith flame(andnot to be touched),but for somereasonhadnever seenan
orangeflame,we would still beableto generalizeour responseto this casebasedon theoverlapof
thecolorunitsinvolved. In contrast,onehasto learneachassociationanew with localistunits,which
couldberatherpainful!
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Neur
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al Plausibility: TheoryRelevantversusTheory-irrelevantFeatures

YB statethatbothFOV andIAC arebothmodelsof cognitive functionsasopposedto neuralstructures
(ms.p. 63),but this is notquiteright. FOV, likeotherconnectionistmodels,hassomepropertiesin common
with realneuralnetworks,andcanthereforebeconsidereda modelof thebrain. Of course,connectionist
modelsalso fail to incorporatemuchof what we know aboutthe brain. In this sense,they are like any
modelin science,with boththeory-relevantandtheory-irrelevantproperties.Thetheory-relevantproperties
arethosepropertiesof realneuralcomputation,thathave thepotentialfor explainingcertainpsychological
phenomenain termsof neuralfunction. Among the theory-relevant propertiesof connectionistnetworks
are: the large numberof inputs to andoutputsfrom eachunit, the modifiability of connectionsbetween
units,summationrules,boundedactivations,thresholds,andtheuseof distributedrepresentation.

Evidencefor thebrain’s useof distributedrepresentationcomesfrom suchindirectobservationsasthe
relatively global effectsof damageto a given functionalarea(i.e., recognitionof all facesis affectedin
prosopagnosia,not just some),andthe“graceful” natureof thedegradation(i.e., tissuelossmaycauseonly
mild or moderateimpairmentsin facerecognition),aswell asmoredirectsinglecell recordingexperiments.
A particularlyrelevantexampleof singlecell evidenceconcernsthefacecellsof monkey temporalcortex. At
first glancethesemight appearto bejust the“grandmothercells” of localistcaricature— cellsthatrespond
only whena singleperson,suchasone’s grandmother, comesinto view. However, eachfacecell responds
to a rangeof faces,andeachfaceevokesactivity in a sizeablefractionof the facecell population,consis-
tentwith distributedratherthanlocalistrepresentation(Desimone& Ungerleider, 1989;Young& Yamane,
1992). In a numberof otherdomainsof processing,analysesof cells’ breadthof tuningandproportionof
cellsactive suggeststhatdistributedrepresentationis ubiquitousin thebrain. In motorsystems,positional
informationrelatedto thetargetfor armmovementsis codedin adistributedfashion(Georgopoulos,1990),
asis the directionfor eye movementsto a visual target (Sparks& Mays,1990). Within the dorsalvisual
system,locationis alsocodedin a distributedmanner(Andersen& Zipser, 1988).

The neuralplausibility of connectionistnetworks is crucial to the larger explanatoryrole that we give
them,relative to the“book-keeping”role advocatedby YB. If connectionistnetworkshadnothingin com-
monwith realneuralnetworks,but weresimply a meansto implementcognitive models(e.g.,comparable
to a programminglanguagelike LISP), thenwe would tendto agreewith YB’s statementthat “very little
of theexplanatorypower of a modelshouldresidein thetechnicalaspectsof thearchitecture”(ms. p. 71).
However, to the extent that the modelarchitecturehassignificantcommonalitieswith brain architecture,
why would oneeschew architecture-basedexplanationsof cognitive functionsof thebrain? If a cognitive
phenomenonthat is ultimately basedon underlyingbrain function canbe explainedin termsof other in-
dependentlyestablishedprinciplesof brain function, that would seemto bea reassuringsign for both the
particularexplanationin questionandtheprinciplesinvokedin thatexplanation.

Transparency:An Issuefor HCI, notScience

YB’s preferencefor local over distributed representationis basedon differencesin “transparency,” or
easeof interpretation(and implementation).They point out that additionalmeasurementtechniquesare
often requiredto interprettheoutputsof networkswith distributedrepresentations,andthey alsocriticize
theuseof biasweightsfor decreasingmodels’transparency.

We areremindedof theold storyaboutthedrunklooking for his keys underthestreetlamp,wherethe
light is good,eventhoughhedroppedthemby his door. Yes,it’s easierto work with local representations,
but if thegoalof our work is a theoryof humancognition,andhumancognitionis betterexplainedusing
distributed representations,theneaseof useseemsirrelevant. Thereis indeedgoodreasonto believe in
thepsychologicalrealityof distributedrepresentation.Thephysiologicalevidencereviewedin theprevious
sectionshows that the relationbetweenneuronsrepresentingcategoriesof stimulusor responseand the
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cate� goriesthemselves is a many-many, distributed form of representation,not a one-to-one,localist form
of representation.For thosewho think it hastyto concludethat propertiesof brain computationarealso
propertiesof cognitive computation,thereis also the fact that distributed, but not local, representations
displaysuchfundamentalpsychologicalphenomenaassimilarity, generalization,andpatterncompletion.
Finally, the successof specificdistributedmodelssuchasFOV, over localist equivalentssuchasIAC, in
accountingfor specificpsychologicalphenomena(seeTables1 and2) arguesfor thereality of distributed
representation.In sum,given theempiricalevidencethatdistributedrepresentationplaysa role in human
cognition,asscientistswemustriseto thechallengeof building modelsthatreflectthis fact,whetheror not
theresultingmodelsareeasyto understand.

Learning

Learningcanbeusedin connectionistmodelsin two verydifferentways.It canplaya theory-irrelevant
technicalrole, asa way of algorithmicallyobtaininga network with weightsthatcanperformthe tasksof
theoreticalinterest.It canalsoplaya theory-relevant role,representinghumanlearning.Let usfirst address
somemistakenideasaboutthetechnicalaspectsof learningcontainedin YB’scritique.

YB’s assertionthat learningis a desirablecomponentof a connectionistmodelonly if it is intendedto
capturesomethingabouthumanlearningrevealsanäivté concerningthepracticalitiesof distributedmodels.
Hand-wiringis impossiblefor all but themosttrivially simpledistributedsystems,andlearningis therefore
essentialto all distributedmodeling,whetherthetheoreticalscopeof themodelencompasseslearningor is
confinedto aparticularendstate.Indeed,notonly mustlearningbeusedin thesetupof mostconnectionist
modelsof thecognitiveendstate,it providesinsightsinto thatendstate.Evenif weview learningalgorithms
as purely technicaltools for creatingrepresentationsthat enablea network to perform a task, they can
explain why representationsare as they are in termsof critical aspectsof the task, the inputs, and the
network architecture(e.g.,the role of statisticalfeaturesof wordssuchasfrequency andregularity in the
representationsunderlyingreading,Plautet al., 1996).

Therelearningsimulationsin FOV areintendedto modellearningperse,usingtheContrastive Hebbian
Learning(CHL) algorithm.YB criticize our useof CHL on thegroundsthat its learningis nonmonotonic,
andthereforemoredifficult for themodelerto use.This is anHCI issuewhich,we reiterate,is irrelevantto
choosingamongcognitive theories.They alsoraisethemorerelevantquestionof whetherhumanlearning
alsohasnonmonotonicities.AlthoughYB remainagnosticonthisquestion,andit hasrarelybeenaddressed
directly by cognitive psychologists,thereis evidencein at leastonecaseof sucha pattern:Marcus,Pinker,
Ullman,Hollander, Rosen,andXu (1992)haveshown thatnonmonotonicityis therule in theacquisitionof
past-tensemorphologyat boththefine-grainedandlargertimescales.

YB’s final criticism of learningin FOV appliesto all algorithmsfor learningin distributed systems,
not just CHL, andconcernsthe useof what they call batchlearning. Becausethe samesetof weightsis
changedevery time a new item is learnedin a distributedsystem,caremustbe taken to avoid unlearning
previous itemswhena new item is learned. This is accomplishedby cycling throughall of the itemsto
be learned(the entire ”batch,” in YB’s terms)multiple times and using relatively small weight changes
eachtime. YB point out thatpeopledo not do all of their learningin life in onebatchon oneoccasion,a
fact we do not dispute. However, currenttheorizingon memoryandthe brain holdsthat item learningis
not confinedto occasionson which the item is encountered.Rather, theprocessof memoryconsolidation
involvesaninternalreplayingof previously encountereditems,interleavedwith currentitems,to allow the
gradualadjustmentof sharedweights(McClelland,McNaughton,& O’Reilly, 1995;Rolls, 1989). Thus,
thereis no incompatibilitybetweenlearningin FOV or otherdistributedsystemsandtheobservation that
peoplecanlearnnew itemsatany point in life.

Finally, althoughYB neglectedto raisethe perennialcritique of error-driven learningmechanismsas
beingbiologically implausiblecomparedto Hebbianlearning,we notethatmany of theseissueshave been
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recently
 addressedin ananalysisthatshows thecloserelationshipbetweenCHL anderrorbackpropagation
(O’Reilly, 1996). This analysisshows thatwhereasbackpropagationrequiresthebiologically implausible
propagationof anerrorsignal,which is a differencebetweentwo terms,CHL insteadpropagatesthe two
termsseparatelyasactivation signals,andthentakestheir differencelocally at eachneuron. Further, the
form of synapticmodificationnecessaryto implementthis algorithmis consistentwith (thoughnotdirectly
establishedby)known propertiesof biologicalsynapticmodificationmechanisms.Finally, thereareawealth
of potentialsourcesfor thenecessaryteachingsignalsin theform of actualenvironmentaloutcomesthatcan
becomparedwith internalexpectationsto provideerrorsignals(McClelland,1994;O’Reilly, 1996).

AreConnectionistModelstooPowerful?:DataFitting versusEmergentProperties

To hearYB tell it, our model is bad becauseit cannotaccountfor many key findings aboutcovert
recognitionandnormalfaceprocessing(familiarity effects,forced-choicecuedrecognition,provokedovert
recognition,sequentialassociative priming,repetitionpriming,asymmetricinterference,timeto makedeci-
sions,patternsof error, anddistinctiveness)andit is alsobadbecauseit canaccountfor anything. At least
oneof thesecriticismsmustbewrong! In ourview, they bothare.In thefirst two sectionsof thisarticlewe
presentedresultsthatcounterthefirst criticism. Tables1 and2 summarizetheseresults.But perhapsthese
accomplishmentsdo not matter, becauseof the secondcriticism, that connectionistmodelscansimulate
anythingandarethereforeunfalsifiable.

Theclaimthatconnectionistnetworkscansimulateanythingis trueonly in averynarrow, andirrelevant,
sense.It is truethat,givenenoughhiddenunits,anetwork canbetrainedto learnany well-definedfunction,
that is, any set of one-to-oneor many-to-oneinput-outputmappings. In other words, networks can be
explicitly trainedto implementany arbitrarylook-uptable.But themodelbehaviorsof interestareinvariably
emergentfrom featuresof its implementation,andnot theresultof explicit trainingto fit thedata.

In what senseis the FOV modela look-up table? Its pre-damageability to associatefaces,semantic
representationsandnamescouldbedescribedin this way, andindeedthis behavior wasexplicitly trained.
But this is the only behavior that wasexplicitly trained,andit is not oneof the behaviors on which any
theoreticalconclusionswerebased.In contrast,thevariousbehavioral measuresof theeffectsof damage
onovert andcovert recognitionwerenot trained;Noneof thefindingslistedin Tables1 and2 wereaccom-
plishedby anything analogousto tablelook-up in our model. Rather, theseaspectsof modelbehavior are
emergentfrom thecomputationalimplementationof theface-semantics-nameassociations.

To make clearthe differencebetweenthe simulationswe reportwith FOV andthe kind of simulation
that is successfulbecauseof thesheerpower of networks to learnany well-definedfunction,considerhow
a network would have to betrainedto learnthefindingslistedin Tables1 and2. First of all, to exploit this
senseof “power,” onewouldhave to somehow makevariableslike thedegreeof damageandthefamiliarity
measureexplicit componentsof thepatternsto belearned.Then,to simulatetheeffectsof damageonovert
recognition,for example,onewouldtrainthenetwork to mapfacepatternswhenaccompaniedby anexplicit
representationof “no damage”ontotheircorrectsemanticandnamepatterns,andontoanexplicit represen-
tationof “f amiliar.” Further, thesefacepatternswhenaccompaniedby explicit representationsof different
levelsof damagewould have to betrainedto mapontopartially incorrectsemanticandnamepatterns,and
ontorepresentationsof “unfamiliar.” To simulatecovert recognitionin thematchingtask,for example,one
would trainthenetwork to mapthesamefaceanddamageinputpatternsto explicit representationsof speed
of matching,suchas“1200msecaveragematchingtime,” with shortermatchingspeedstrainedfor patterns
in thepreviously known setandlongermatchingspeedstrainedfor all otherpatterns.

Whereasonecannotfalsify thetrivial approachjustdescribed,becausethenetworksareindeedpowerful
enoughto fit any datasetgivenenoughunitsandlearningtrials,accountsbasedon emergentpropertiesare
fully falsifiable.Wehave alreadyreferredto thetendency of networksto generalize,confuse,andprimeon
thebasisof similarity. Thesearepropertiesthatemerge inexorably from interactive distributedrepresenta-
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tions.
�

Therefore,if thehumandatawereotherwise,thebroadclassof modelswould bedisconfirmed.The
sameholdstruefor specificmodelssuchasFOV. For example,fastersettlingof familiar faceswasnotbuilt
into themodel,but emergedindependentof themodelers’control. If humanshadshown fasterperception
of unfamiliar faces(aperfectlyconceivablestateof affairs)themodelwouldbedisconfirmed.

In sum,theallegationthatconnectionistmodelsarepowerful enoughto simulateanything,in thecontext
of the presentdebate,is basedon a confusionbetweentwo kinds of power: the power to learnany well-
definedfunctionthatexplicitly taught,anda scientificallymoreinterestingpower to provide parsimonious
explanationsof complex psychologicalphenomenain termsof emergentpropertiesof the computational
architecture.

Theexplanatorypowerof connectionistmodelssuchasFOV lies in theiremergentproperties,therange
of behaviors that they exhibit asa resultof a relatively small setof computationalprinciples. That these
principleshave someindependentsupportfrom neurobiologyaddsto the likelihood that the modelsare
correct.Weagreewith YB thatthebestapproachto theissueof thecomputationalarchitecturefor cognition
is not entirelygeneral,but focuseson specificmodelswith aneye towardsthegeneralissues.In thecase
of covert recognitionof faces,our distributed connectionistFOV modelexplainsall of the datathat the
localistIAC modelexplains,andmore,anddoessowith aparsimoniousandindependentlymotivatedsetof
principles.
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Figure1: Sequentialassociativepriming results,showing fastersettlingfor namesprecededby facesof peoplefrom
thesamecategory.
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Appendix1: SequentialAssociativePriming

In this simulationthenetwork waspresentedwith a faceinput patternandthenetwork wasallowed to
settleto equilibrium.Theactivationstatesof thenetwork werethendecayed(by a factorof 90%)towards0
(simulatingfatigue),following whicha nameinput patternwaspresented,andthenetwork againallowedto
settle.Thenumberof cyclesto settlefor thisnamepatternwasthedependentmeasure.

Therewere two conditions: samesemanticcategory anddifferent semanticcategory primes. For the
samecondition,eachnameinput waspairedwith a facefrom thesamesemanticcategory (but never with
the sameindividual’s face),and for the different condition, the faceandnameinputswerechosenfrom
differentsemanticcategories.

New patternswerecreatedfor this simulationbecause,asexplainedin thearticle, the within-category
overlapof the original patternswassmall (oneunit) and thusallowed only very weakmanipulationsof
semanticrelatedness.Theoccupationsubpatternof thenew patternswaslarger. To retainthesmallnetwork
sizeof the original model,a somewhat complicatedprocedurewasnecessaryto ensurethat the resulting
distributed semanticrepresentationsproperlycapturedthe within-category similarity without introducing
confoundsthat would affect the results. For example,the overlap of the faceandnamerepresentations
within andbetweencategorieshadto becontrolled.

All patternsweremadewith the samebasicprocedure:four prototypepatternswerecreated(onefor
actor, onefor politician,andtwo “other” categories).Then10 instancesof eachprototypewerecreated,by
flipping somenumberof bits(i.e.,changinga+1 to a-1 or viceversa)from theprototype,while maintaining
minimumandmaximumdistancelimits within a givencategory, andaminimumdistancebetweenitemsin
different categories. For faceand nameinputs, the prototypeseachhad 5 bits active (out of 16) and a
minimumhammingdistanceof 6, while thesemanticpatternshad6 bits active (out of 18) anda minimum
distanceof 8. The face/nameinstanceswereproducedby flipping 3 bits on and3 bits off, with distance
limits between4 and10 within and4 between,which effectively eliminatedany of thesimilarity produced
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Figure2: Familiarity results,with two differentmeasures.a) shows settlingtime over the semanticslayer (faster
settlingmeansgreaterfamiliarity), andb) showsgoodness(negativeenergy)overthesemanticslayer(largergoodness
meansgreaterfamiliarity).

by theprototype.In contrast,thesemanticinstancesflippedonebit on andoneoff, with distancelimits of
2 and6 within and6 between,retainingsimilarity within a category. However, someamountof distance
amongsemanticpatternsis necessaryfor thenetwork to learntheuniquenameandfacemappingassociated
with this semanticpattern. In addition,a further checkwasdoneto ensurethat the averagedistanceof
faceandnamepatternswithin a category andthat betweencategorieswasessentiallyequal,so that these
differenceswouldn’t createanartifactualprimingeffect,or obscurea trueprimingeffect.

A network was then trainedwith thesenew patterns,and the full batteryof testsas reportedfor the
original FOV modelwererun (in additionto all the other testsreportedhere). In all cases,this network
exhibitedcomparableperformanceto theoriginalmodel.

Theresultsfor thesequentialassociative priming caseareshown in Figure1 for 100randomlesionsat
eachof the critical levels of damageabove 50%(whereovert measuresareat chancelevel performance).
Note that thereis a significantlyfastersettlingtime for thesameconditionthanthedifferentconditionall
theway up to 75%damage.This simulationdemonstratesthatsequentialassociative priming doesindeed
occurin FOV. With larger patternsallowing bothmoreoverlapandmoredifferences,this resultwould be
evenstronger.

Appendix2: Familiarity

In this simulation,we simply presented10 trainedfacepatterns(“f amiliar”) and10 untrainedfacepat-
terns(“unfamiliar”) to thenetwork, andrecordedthenumberof cyclesnecessaryfor thesemanticunits to
reachour standardequilibriumcriterion(maximumchangein activation �! #"$� ). Twenty-five differentran-
domlesionsweremadeeachin incrementsof 12.5%of the16 facehiddenunits. Theresultsareshown in
Figure2a. Notethat thedifferencein settlingtime betweenfamiliar andunfamiliar facesdisappearsat the
50%damagelevel, a level at whichcovertmeasurescontinueto show differences.

To comparethis resultwith anothercommonly-usedfamiliarity measure,wealsorecordedthegoodness
(negative energy) of thesemanticunitsafterthenetwork hadsettled.Goodnessis computedas:%'&'(*)+(-,/. ) . ,102)#,

(1)

which givesa measureof the extent to which the activation statesatisfiesthe constraintsimposedby the
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Figure3: Forcedchoicecuedrecognitionresults,with two differentmeasuresof familiarity. a) shows settlingtime
over thesemanticslayer(fastersettlingmeansgreaterfamiliarity), andb) showsgoodness(negativeenergy) over the
semanticslayer(largergoodnessmeansgreaterfamiliarity).

input and the weights(Hopfield, 1984;Smolensky, 1986). Greaterfamiliarity would be associatedwith
larger goodnessvalues. Figure2b shows the goodnessresults,which aresubstantiallydifferent from the
settlingtimeresultsin thattheadvantagefor trainedfacesdisappearsatonly 25%damage.Thus,familiarity
resultsdependsignificantlyonwhichmeasureis beingused,leadingusto besuspiciousof thesemeasures.

Appendix3: ForcedChoiceCuedRecognition

Both nameandfaceinput patternswerepresentedto thenetwork, and,asbefore,boththesettlingtime
over thesemanticslayerunitsandthegoodnesswereusedasameasuresof familiarity. In onecondition,the
nameandfacewerefrom thesameperson(thecorrectpairing condition),andin theotherthenameandface
werefrom differentpeople(the incorrectpairing condition). Again 25 randomlesionsweremadeat each
level of lesion. The resultsareshown in Figure3. Thus,even at 75%damage,both familiarity measures
indicatethatthenetwork hasa reliablepreferencefor thecorrectpairingover theincorrectone.This is true
evenwhenthefaceinput presentedaloneis incapableof producingeithercorrectforced-choicenamingor
familiarity response.

Appendix4: ProvokedRecognition

Wesimulatedsubjects’successivefixationsof multiplefacesby sequentiallypresentingthefacepatterns
of a category with a decayof .95. Familiarity wassimulatedby semanticsettlingtime andnamingaccu-
racy by thethe10 AFC procedure,andthesemeasureswerecomparedfollowing groupedpresentation(as
just described)andindividual presentation(initializing the activationscompletelybetweenpresentations).
Given that theaccumulationof activation betweensame-category presentationsdependson overlapin the
distributedsemanticrepresentations,weusedtheprototype-basedrepresentationsdevelopedfor thesequen-
tial associativeprimingsimulation(describedin Appendix1). Figure4 showsthatfor thethecritical damage
levelsbetween50and75%,familiarity andovertnamingincreasewith thegroupedpresentation.Theeffect
is small,and500randomsampleswererun for eachpoint to obtainsignificantresultsfor the10AFCmea-
sure.As discussedin Appendix1 in connectionwith sequentialpriming, increasingthesizeof thenetwork
wouldallow for largereffects.
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Figure4: Provoked recognitionperformanceof the network, comparingfacespresentedindividually (singleface)
with multiple sequentialfacesfrom the samecategory (multiple faces). a) shows familiarity as indexedby setting
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Figure5: Performancewith semanticlesionsasamodelof patientME. a) showsthesamepatternof rapidly impaired
overt forced-choicefacenamingperformanceasobserved in the original model. b) shows the name-facematching
performance(i.e.,cuedrecognition)for thesesamelevelsof damage,which is preservedup to high levelsof damage.

Appendix5: SemanticLesions(PatientME)

In order to simulatepatientME, who cannotretrieve semanticinformationaboutfamiliar people,we
damagedthesemanticlayerof our network, running25 differentlesionsat eachlesionlevel. As a demon-
strationof the dramaticallyimpairedovert performancethat resultsfrom this damage,we show the same
patternof highly impairedovert forced-choicefacenamingperformancein Figure5a.However, evenat the
higherlevelsof damagewherethis overt performanceis extremelyimpaired,thename-facematchingper-
formance(instantiatedasin thecued-recognitionsimulationdescribedabove) remainsverygood,asshown
in Figure5b.
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