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SUMMARY

A family of discrete approximations to the Laplacian operator with incre@silagge stencil sizes for explicit
(forward) Euler integration is derived and analyzed. This family inckuald 9-point stencil described earlier by
Barkley and colleagues, and a new 27-point stencil. This 27-pointistehéch includes all 26 adjacent neighbors
in a face-centered regular cubic tiling of three-dimensional spaceqfadges, and corners), has a maximum stable
time step parameteki,, .. Of .5 for the first-order diffusion equation, and 1 for the secondovehve equation.
In contrast, the standard 7-point stencil has a first-ofdgr... = .1666 and the 19-point stenci\t,, ., = .375.
Because these neighborhood calculations are easily vectorized ommprdeessors, the larger stencils do not
incur substantially greater computational cost, resulting in significantth\syeedup from the larger step size
(e.g., 2.58 times faster for the 27-point stencil relative to the stang@igmaint in our benchmark). The larger
neighborhood stencils also exhibit significantly greater rotational symgrtiein the standard approximation. In a
numerical test with a spherical perturbation propagating via the waatiequthe 7-point stencil exhibited 17%
error levels, whereas the 19-point stencil error was only 1%. Thesgthew approximations afford significant

advantages over the standard one. Copyr@H006 John Wiley & Sons, Ltd.
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2 R. C. O'REILLY AND J. M. BECK

1. Introduction

The Laplacian operatdv? is the critical computation in several important equatjdnsluding the
wave and diffusion equations, which occur widely acrossyeteanch of physics. To numerically
solve these equations in three dimensions on a computerea-timensional discrete approximation
is required. The standard approximation for explicit (fard) Euler integration with a regular face-
centered cubic tiling of space uses a 7-point stencil inmglvthe central point and its 6 nearest
neighbors along adjacent faces. A 19-point stencil thdtides the 6 adjacent faces and the 12 next-
nearest edge neighbors was described by Barkley and co#ieddj], which has two key advantages: a
maximum stable time step that is 2.25 times larger than theifit case, and a significant reduction of
grid anisotropies (rotational asymmetry) because thangazbntributions to error are invariant under
rotations. Here, we describe an even larger 27-point dtémat includes the 8 corner neighbors in
addition to faces and edges, and has an even larger maxinabie time step1(.333 times larger than

the 19-point, and 3 times larger than the 7-point).

2. Derivation of the 19-point Stencil

The Laplacian is the divergence of the gradient:

2 2 2
v.v;a—+a 0

2
v 02 T a2 T o (1)

which appears in the standard second-order wave equation:

3290 22
2z =V (2)
where0 < ¢ < 1 controls the speed of wave propagation.
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A FAMILY OF LARGE-STENCIL LAPLACIAN APPROXIMATIONS 3

dist2

® 1 (faces)

® 2 (edges)
@® 3 (corners)

Figure 1. Face-centered cubic tiling of space, showing centers of safiedes, with all 26 neighbors of a given
cell shown. The standard discrete approximation uses only the 6 fagtdones. Other approximations here enable
all 26 to be used.
For a discrete one-dimensional field with grid spacingh, the second spatial derivatives can be

approximated by taking the difference of two first orderetiénce equations:

Op _ 1
%:@D wi = E(‘Pi_Wi—l)
1
~ Dy, = E(%ﬂrl )
P 1 _ 1
7 ™ E(DJF%' — D ;) = ﬁ(@i-&-l + vim1 — 2¢;). ®)

In a discretized three-dimensional space using a facesmhtubic tiling (Figure 1, grid spacirg,
the standard approximation is to simply apply the one-d&iaral discretization to each of the three
axes, using the 6 face neighbors:

1

V?%‘ = 5z (@(1,0,0) + ©(=1,0,0) T ¥(0,1,0) T ¥0,-1,0) T ¥0,0,1) + ¥(0,0,-1) — 6%‘)
1
= o2 Z ¢ — b
jGNf
1
= 23 > (e =) @)
JEN}

where V3 denotes the face-based approximation ang, .) indicates the neighbor at the given
(z,y, z) offset from the point being computegh). This set of 6 neighbors is denotéd; (faces).
The final form shows that each neighbor contributes the rdiffee between its value and the central
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4 R. C. O'REILLY AND J. M. BECK
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Figure 2. Three sets of orthogonal axes involving faces and edbed) imcludes all 18 of these neighbors, with no

overlap across sets. A more stable 19-point stencil approximation t@filadian can be constructed by averaging
across these sets.

value to the overall sum.

A problem with this standard approximation is that, in thesvaquation, many of the neighboring
points in space are not directly affected by a disturbanopggating along a non-cartesian axis,
because a given cell is only influenced by this small subseteahbors. This introduces preferred
directions of wave propagation (anisotropy), and alsodg¢achumerical instability.

One strategy for including a larger set of neighbors in theldeian calculation is to construct three
new orthogonal basis sets from the face and edge pointspassh Figure 2. Each set of neighbors
has no overlap with the others, and together they includef #ifle face and edge points. Therefore, we
can include all of the face and edge neighbors by averagirggathese three basis cases:

1 1
Viwr = o3| D (wi—w)+5 D (vi—wi)
jGNf JEN.

1 1
= 32 Z@.j+§zsﬁj_12%

jeNf jGNe
1
= o2 23 @it Y p;— 24y (5)
JENF JEN

where the% factor comes from the averaging of the three basis sets,hamgl factor for the edges
reflects a normalization by the distance to the edge neighbbe last form shown above is equivalent
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A FAMILY OF LARGE-STENCIL LAPLACIAN APPROXIMATIONS 5

to the 19-point stencil (18 neighbors = 6 faces + 12 edge$jatkby Barkley and colleagues [1].

3. Stability Analysis of the 19-point Stencil

We reproduce here the stability analysis (in slightly mogéad) of the 19-point stencil as performed
by Barkley and colleagues [1], which we will extend to the@¥nt case later. The overall strategy is
to perform an eigenvalue analysis, where stability regutinat the largest eigenvalue have a magnitude
of less than 1.

First, the first-order diffusion equation is considered;aese it is simpler to analyze than the second-
order wave equation (which we analyze in a subsequent settie maximum stable time step for the

second order equation is twice that of this first-order one):

ou

Using the 19-point faces + edges approximation and exjitigler time stepping, this is:

uTt =l + AtVE,
n 1 n 1 n n
JENT JEN.
This can be expressed as a linear equation:
u?;,gl = Augyy, (8)

where the matriXA. contains the neighborhood weighting factors:
A=1+V3,. ©)
This linear equation can be expressed in terms of eigervalaperating on a rotated eigenfunction
representation of the state valués,
Avijr = MNij. (10)

Copyright(© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006;00:1-16

Prepared using nmeauth.cls



6 R. C. O'REILLY AND J. M. BECK

The system is stable as long as all eigenvalhed the matrix A have a magnitude 1 or less. The

eigenfunctions ofA are discrete forms of the eigenfunctions of the Laplacian:

VYije = cos(lgi)cos(lyj)cos(l k), (11)

wherel,, l,, [, are wavenumbers, and sine can replace any of the cosinedlas we

To determine these eigenvalues, we write out all the termas ahd )\, and then derive a condensed

expression. First, we set:

€= ?)ATZ (12)
and writeA for each of ther, = planes along the different slicesg@f= {—1,0, 1}:
0 5 0
0 5 0
Ay—o = e 1—12 ¢
5 €3
0 5 0
Ay = £ € £ (13)
0 5 0
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A FAMILY OF LARGE-STENCIL LAPLACIAN APPROXIMATIONS 7

Substituting in the Laplacian eigenfunctions (11), this is

0 5 cos(—ly) cos(l) 0
M1 = | geos(-L)cos(—l,)  ecos(—l)  §cos(ly)cos(—l,)
0 5 cos(—ly) cos(—1) 0
Scos(~l,)cos(l.)  ecos(l.)  §cos(l,)cos(L.)
Ay=0 = ecos(—ly) 1—12¢ ecos(ly)

§cos(—ly) cos(—l.) ecos(—l.) §cos(ly)cos(—l)

0 5 cos(ly) cos(l.) 0
Ay=t1 = 5 cos(—1z) cos(ly) ecos(ly) 5 cos(ly) cos(ly) | - (14)
0 5 cos(ly) cos(—1.) 0

Because cosine is symmetric about zexs(—1,) = cos(l,)), we can group like terms and get:
A =1+42¢ [cos(ly)+ cos(ly) + cos(l,)+
cos(ly) cos(ly) + cos(ly) cos(l) + cos(l;) cos(l.) — 6] (15)
The term inside the brackets has its largest magnitude dtia & -8, which occurs when any two of

the wavenumbers areand the third is 0. Thus, the overall largest magnitude eigee is:

16A¢

Amae = 1 — ——, 16
37,2 (16)
which means that the limiting\¢ value required to keep\,,q.| < 1is:
3 2 2
Atpmas = gh = .375h°. a7)
Compare this with the corresponding value for the standgrdifit face-only stencil:
1 2 =y 2
Atmas = 6h = .1666h>. (18)
Thus, the 19-point stencil can be run 2.25 times faster thar7{point case.
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8 R. C. O'REILLY AND J. M. BECK

Furthermore, the error in this approximation is given by [1]

h2

EF=—
12

(V3 2uliji + O(RY). (19)

Because the leading term is the squared Laplacian, whidtdsonally symmetric, this approximation
exhibits much greater rotational symmetry (i.e., propagaalong non-cartesian gridlines) than the

standard 7-point approximation, which does not have aiostally symmetric leading error term.

4. Extension to the 27-point Stencil

Although better than the 7-point stencil, the 19-point faealge approximation still leaves out 8 of the
neighbors: the corners. These are tricky because they dimmotan orthogonal basis. Nevertheless,
we can construct a stencil that includes them (a 27-poimic#)eby noting that in the 19-point case,
each neighbor contributes according to the following eigunat

1
5 —ll

(Spj — ¥i ) ’ (20)

where||j — i|| is the squared distance between the neighbor paamtd the central point(i.e., 1 for
faces, 2 for edges, and 3 for corners). Furthermore, the smorimalized by:

6

_ 21
A]\/vpointsh2 ( )

The 6 in the numerator comes from the fact that the canonmed-based Laplacian consists

of 6 neighbor points located at the ends of the 3 rays that eldfie three second derivatives

(g%ﬁ + ng + ‘g%f) , which is then divided by the total number of points includethe sum (Vpoinss;
note that this the number of neighbors, excluding the ceptiat).
These equations can be used to define a whole family of Lapiadnvolving various combinations

of the faces, edges and corners, including faces only (@tténcil; equation 4), faces + edges (19-
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A FAMILY OF LARGE-STENCIL LAPLACIAN APPROXIMATIONS 9

point stencil; equation 5), and faces + edges + corners ¢@n-ptencil):

3 1 1
Viecpi = D (ei—w)+5 D (wi—w)+% Y (05— i)
13h ; 2 3
JENF JEN. JEN.
3 1 1 44
= s D_wits D witz ) wi— e (22)
13h ; 2 3 3
JENF JEN. JEN.

(see the Appendix for another derivation based on includidditional neighbors in the first order

gradient computation that also yields equation 22).

4.1. Sability Analysis of the 27-point Stencil

Applying the eigenvalue stability analysis from the 19faiase to this 27-point stencil, thematrix
just adds 8 new terms for the corners, each of the fdjmus(+£l, ) cos(+l,) cos(£l.), where thee

factor is now:

3AL
= —. 23
T 32 (23)
Because of the cosine symmetry, the resulting eigenvaluatieq includes just one additional term

for the 8 corner factors, and the subtraction value for thgraépoint is different:

A =1+2¢ [cos(ly)+ cos(ly) + cos(l,)+

cos(ly) cos(ly) + cos(ly) cos(l.) + cos(l) cos(l.) +

4 22

3 cos(ly) cos(ly) cos(l.) — 3 (24)

The term inside the brackets has its largest magnitude alua wh—8.666, which occurs when the
wavenumbers for all dimensions areand when only one wavenumberisnd the others are 0. Thus,

the overall largest magnitude eigenvalue is:

52At

)\max =1—= W? (25)
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10 R. C. O'REILLY AND J. M. BECK

which means that the limiting\¢ value required to keep\,,q.| < 1is:

1
Atpaz = 2%}9 = .5h? (26)

This is1.333 times larger than thét,,, .. for the 19-point case, and 3 times larger than for the 7-point

case.

5. Second-Order Wave Equation

Now we extend the stability analysis to the second-ordeeveaiation. Letting]” = A", we conclude

that the discrete dynamical system is stable when

A48t

W“Y (27)

is between -1 and 14(is short for the coefficients in the Laplacian as well as theirem terms).
Becausey is always negative and bounded belowy;,, only the lower bound need be considered.
Thus stability is insured when

A 2
At < . (28)

"Ymin

In the second-order wave equation, the update rule is now:

At?
n+1 n n—1 n
o Tl = 2 — . 29
U, u; + u; Uy Ahz’y (29)
We once again let! = A", so that
At?
A2—2>\<1+Ah27>+1=0 (30)
defines the eignenvalues of the system. In this quadrate; cds< 1 is insured when
2
“1<14 Ty <L (31)
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A FAMILY OF LARGE-STENCIL LAPLACIAN APPROXIMATIONS 11

Again~ is negative and bounded below $y;;,, so that only the lower bound need be considered. Thus

stability is insured when

2
At? <2 Ah . (32)

TYmin

From this we can conclude that the maximum stable time stefnéowave equation (second order) is

related to that of the first-order diffusion (heat) equatisn

Atw(we =V 2Ath,eat- (33)

This general property of any numerical algorithm whichategs time using the standard forward Euler
method implies that the maximum stable time step for the veaeation using the 27-point stencil is

1h2.

6. Computational Speed and Error Due to Rotational Asymmetr

There are two factors that determine the overall computatiospeed of these Laplacian

approximations: the maximum stable time step (the largestép, the fewer iterations required to solve
the equations over a given amount of physical time), and theuat of computation per time step. It

may seem that the increase in stable time step associatetheilarger stencil approximations is more
than offset by the larger number of neighbors that must bepobed over at each time step. However,
it is critical to appreciate that this neighborhood stencihputation is highly parallelizable on modern
vectorizing processors, such that increasing the steizeilresults in a relatively small increase in net
computation time. Thus, the increase in stable time stepriaies the overall computational cost. This
is especially true when solving more complex equationslifing the Laplacian as only one component
(albeit the stability limiting one), where the overhead tifer computations per time step is relatively
large, and thus the larger time step results in even grepgedsips.

Copyright(© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006;00:1-16
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12 R. C. O'REILLY AND J. M. BECK

As a simple benchmark for computational speed, we impleetetite basic diffusion equation (6)
using the different stencil sizes on a modern Pentium pemrassing the gcc compiler (4.0.2) under
Linux. We first measured the differences in computationat @ssociated with the different stencil
sizes, keeping the number of iterations constant (i.engusie same time step for each). It took 2.13,
2.03, and 1.83 seconds respectively for the 27, 19, and T g@incils to compute 200 iterations over a
30x30x30 space, using a time step of .1. Thus, the increa2@ additional neighbors for the 27-point
stencil relative to the standard 7-point case requires b8 additional computation time. This clearly
demonstrates a significant degree of parallelization sfgténcil computation. When we combine this
per-time-step computational cost factor with the diffeesnin maximum stable time step (.5, .375, and
.1666 for 27, 19, and 7-point stencils), the 27-point case is 2ifs@4 faster overall compared to the
7-point case, and the 19-point stencil is 2.03 times fa$tas represents a significant computational
savings, approaching the theoretical maximum speedups iféighborhood calculation were perfectly
parallel (3 and 2.25). Indeed, these theoretical maximumag bbe achievable on specialized parallel

hardware, providing an even greater computational speedup

The other principal advantage of the larger stencil sizasigieater rotational symmetry, which
results in more accurate simulation of perturbations theatehspatial structure across multiple
dimensions (this will not be evident in plane waves, for eglan To explore the significance of

rotational symmetry, we initialized the state with a spt&ty-symmetric non-normalized Gaussian

114

perturbation (i.e.e™ a;”) with the center point located in the center of a 50x50x50cepd =
(25,25, 25)). The width of the Gaussias was set to 2. This perturbation should remain symmetric
as it spreads via the standard wave equation (2). To medseimtational asymmetry of this wave
propagation, we sorted the state cells as a function ofrdistrom the center of the initial Gaussian,

and computed the mean and standard deviation of values atathe distance (Figure 3). With this
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Figure 3. Contributions of rotational asymmetry to error in the standgrdifm stencil, compared with larger
stencil-size approximations (using the standard wave equation). Platsreban wave value (large amplitude
wavy line) and average error (standard deviation, smaller amplitudeftingjate cells as a function of distance
from the center of an initial rotationally symmetric Gaussiar 2, 30 time stepsAt = .2 for all cases)a) V?

(7 point stencil), which exhibits significant error (nearly 17% of maximuave magnitude), consistent with its
greater anisotropy (rotational asymmettty)).vffe (19-point stencil) has much lower error (1% of maximum wave

magnitude).

analysis, all points at different rotational angles frone ttenter, including those along cartesian
axes and not, can be compared to see if they have the sames,valbieh they should if wave
propagation was perfectly isotropic. As the figure shows, 19-point face+edges stencW}e)
produces nearly perfect isotropic wave propagation, wilis@t the same distance in all directions
having essentially the same values (max standard deviati@000496, only 1% of maximum wave
magnitude). In contrast, the standard 7-point faces-oameo(v%) shows considerable levels of error,
and a correspondingly rough mean value curve (max SD=.Q0&&2ly 17% of max wave magnitude).
The 27-point stencilZ,,) exhibits an intermediate level of error (max SD=.00386, @¥max wave
magnitude, not shown). The improved symmetry of the 194pcise relative to the 27-point case is
presumably because the 19-point case only includes a rhututiogonal set of neighborhood points,
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14 R. C. O'REILLY AND J. M. BECK

whereas the 27-point case includes additional non-orthaigmints.

7. Conclusion

The results presented herein demonstrate that including meighbors in the computation of the
Laplacian produces both faster and more rotationally symmeesults relative to the standard 7-
point stencil. For maximum computational speed, the 2Tpstencil is the best option, as it has the
largest stable step size and the additional neighbors dmoat substantial increased cost on modern
vectorizing processors. For maximum rotational symméitiey,19-point stencil appears to be the best
option. However, each of these large-stencil versions atte significantly faster and more rotationally
symmetric than the standard 7-point stencil, which sugg#=it they should be widely adopted in

numerical simulations involving the Laplacian operator.

8. Appendix: Discrete Gradients with Neighbor Averaging

The 27-point stencil can also be derived by way of a first-ogiadient computation that uses
more than the standard cartesian axis neighbors. The sthdd&rete gradient computation in one

dimension involves averaging the two difference equat@msither side of the point in question:

_ 1
D7, = E(Soi — i-1)
. 1
D7y = E(SDiJrl - ©i)
dp 1, _ 1
9 §(D vi+D i) = %(‘Pwl — 1) (34)

In three dimensions, the averaging process can be takemefully including rays through all
neighboring points that have some projection along theigna@xis (Figure 4), with the contribution
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z
[~
dist2 \
@® 1 (faces) {
® 2 (edges)
@® 3 (corners)
X

Figure 4. Computation of the first order spatial gradient using all 18hbeig that have a non-zero projection
along a given axis. Each neighbor contributes to the gradient in propavtth its projection along the axis (1 for
face points,i2 for edges, and% for corners. Note that, across all three cases, the faces occuyresiyzs occur

twice, and corners in all three cases (i.e., in proportion to their respatistances).

of each neighbor pair weighted by the extent of its projectitong the axis:

dp
or ~ m( (©(1,0,0) = P(=1,0,0)) +

% D (s — i)+ % > (i — %‘—)) (35)

JEN. JEN:
where the neighborhood¥, and.\, denote pairs of pointg+ andj— along the 4 rays through the

edges and corners, respectively. The normalizing facteures that the weighted average sums to one.
Plugging this first-order gradient into the second-ordffedince-of-differences equation results in:

0%p N 1

9z = W( (©(1,0,0) + ©(=1,0,0) — 2i) +

1 1
3 > (0i4 + 0 — 200) + 3 > (o4 o5 — 2%‘)) (36)
JEN. JEN.

Which can be simplified by using sums over the individual neagtpoints, instead of considering the

rays:

falt 3 1 1
P | 2o @i ety D (ei—e) g D (- wi) (37)
JENF JEN. JENC

We can then compute the Laplacian by summing together thigatiees along the three axes

computed according to equation 37. However, the neighlwortad points involved for computing

Copyright(© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006;00:1-16
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16 R. C. O'REILLY AND J. M. BECK

the derivatives along each axis overlaps partially withatiers, as shown in Figure 4. Interestingly,
this overlap is different depending on the distance of thighi®or, in exact proportion to this distance:
faces appear once, edges appear twice, and corners apeatities. Thus, if one were to combine
all the terms in the sums into a single computation operatgrgss all the neighbors, this differential
repetition of neighbors would exactly cancel out the distabased normalization factor%,(%).
However, it does not make sense to overcount the influenamod sieighbors versus others. Therefore,
we can simply drop the repeated factors from the equatioichithen includes all of the 26 neighbors
exactly once, and one arrives at equation 22. It is intergst note that both approaches arrive at the

samef’—3 normalization factor, via somewhat different routes.
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