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SUMMARY

A family of discrete approximations to the Laplacian operator with increasingly large stencil sizes for explicit

(forward) Euler integration is derived and analyzed. This family includes a 19-point stencil described earlier by

Barkley and colleagues, and a new 27-point stencil. This 27-point stencil, which includes all 26 adjacent neighbors

in a face-centered regular cubic tiling of three-dimensional space (faces, edges, and corners), has a maximum stable

time step parameter∆tmax of .5 for the first-order diffusion equation, and 1 for the second-order wave equation.

In contrast, the standard 7-point stencil has a first-order∆tmax = .1666 and the 19-point stencil∆tmax = .375.

Because these neighborhood calculations are easily vectorized on modern processors, the larger stencils do not

incur substantially greater computational cost, resulting in significant overall speedup from the larger step size

(e.g., 2.58 times faster for the 27-point stencil relative to the standard7-point in our benchmark). The larger

neighborhood stencils also exhibit significantly greater rotational symmetry than the standard approximation. In a

numerical test with a spherical perturbation propagating via the wave equation, the 7-point stencil exhibited 17%

error levels, whereas the 19-point stencil error was only 1%. Thus, these new approximations afford significant

advantages over the standard one. Copyrightc© 2006 John Wiley & Sons, Ltd.
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2 R. C. O’REILLY AND J. M. BECK

1. Introduction

The Laplacian operator∇2 is the critical computation in several important equations, including the

wave and diffusion equations, which occur widely across every branch of physics. To numerically

solve these equations in three dimensions on a computer, a three-dimensional discrete approximation

is required. The standard approximation for explicit (forward) Euler integration with a regular face-

centered cubic tiling of space uses a 7-point stencil involving the central point and its 6 nearest

neighbors along adjacent faces. A 19-point stencil that includes the 6 adjacent faces and the 12 next-

nearest edge neighbors was described by Barkley and colleagues [1], which has two key advantages: a

maximum stable time step that is 2.25 times larger than the 7-point case, and a significant reduction of

grid anisotropies (rotational asymmetry) because the leading contributions to error are invariant under

rotations. Here, we describe an even larger 27-point stencil that includes the 8 corner neighbors in

addition to faces and edges, and has an even larger maximum stable time step (1.333 times larger than

the 19-point, and 3 times larger than the 7-point).

2. Derivation of the 19-point Stencil

The Laplacian is the divergence of the gradient:

∇2 ≡ ~∇ · ~∇ ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (1)

which appears in the standard second-order wave equation:

∂2ϕ

∂t2
= c2∇2ϕ, (2)

where0 < c < 1 controls the speed of wave propagation.
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Figure 1. Face-centered cubic tiling of space, showing centers of cells as nodes, with all 26 neighbors of a given

cell shown. The standard discrete approximation uses only the 6 face neighbors. Other approximations here enable

all 26 to be used.

For a discrete one-dimensional fieldϕi with grid spacingh, the second spatial derivatives can be

approximated by taking the difference of two first order difference equations:

∂ϕ

∂x
≈ D−ϕi =

1

h
(ϕi − ϕi−1)

≈ D+ϕi =
1

h
(ϕi+1 − ϕi)

∂2ϕ

∂x2
≈ 1

h
(D+ϕi −D−ϕi) =

1

h2
(ϕi+1 + ϕi−1 − 2ϕi). (3)

In a discretized three-dimensional space using a face-centered cubic tiling (Figure 1, grid spacingh),

the standard approximation is to simply apply the one-dimensional discretization to each of the three

axes, using the 6 face neighbors:

∇2
fϕi =

1

h2

(

ϕ(1,0,0) + ϕ(−1,0,0) + ϕ(0,1,0) + ϕ(0,−1,0) + ϕ(0,0,1) + ϕ(0,0,−1) − 6ϕi

)

=
1

h2

∑

j∈Nf

ϕj − 6ϕi

=
1

h2

∑

j∈Nf

(ϕj − ϕi), (4)

where∇2
f denotes the face-based approximation andϕ(x,y,z) indicates the neighbor at the given

(x, y, z) offset from the point being computed (ϕi). This set of 6 neighbors is denotedNf (faces).

The final form shows that each neighbor contributes the difference between its value and the central
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4 R. C. O’REILLY AND J. M. BECK
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Figure 2. Three sets of orthogonal axes involving faces and edges, which includes all 18 of these neighbors, with no

overlap across sets. A more stable 19-point stencil approximation to the Laplacian can be constructed by averaging

across these sets.

value to the overall sum.

A problem with this standard approximation is that, in the wave equation, many of the neighboring

points in space are not directly affected by a disturbance propagating along a non-cartesian axis,

because a given cell is only influenced by this small subset ofneighbors. This introduces preferred

directions of wave propagation (anisotropy), and also leads to numerical instability.

One strategy for including a larger set of neighbors in the Laplacian calculation is to construct three

new orthogonal basis sets from the face and edge points, as shown in Figure 2. Each set of neighbors

has no overlap with the others, and together they include allof the face and edge points. Therefore, we

can include all of the face and edge neighbors by averaging across these three basis cases:

∇2
feϕi =

1

3h2





∑

j∈Nf

(ϕj − ϕi) +
1

2

∑

j∈Ne

(ϕj − ϕi)





=
1

3h2





∑

j∈Nf

ϕj +
1

2

∑

j∈Ne

ϕj − 12ϕi





=
1

6h2



2
∑

j∈Nf

ϕj +
∑

j∈Ne

ϕj − 24ϕi



 (5)

where the1
3 factor comes from the averaging of the three basis sets, and the 1

2 factor for the edges

reflects a normalization by the distance to the edge neighbors. The last form shown above is equivalent
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A FAMILY OF LARGE-STENCIL LAPLACIAN APPROXIMATIONS 5

to the 19-point stencil (18 neighbors = 6 faces + 12 edges) derived by Barkley and colleagues [1].

3. Stability Analysis of the 19-point Stencil

We reproduce here the stability analysis (in slightly more detail) of the 19-point stencil as performed

by Barkley and colleagues [1], which we will extend to the 27-point case later. The overall strategy is

to perform an eigenvalue analysis, where stability requires that the largest eigenvalue have a magnitude

of less than 1.

First, the first-order diffusion equation is considered, because it is simpler to analyze than the second-

order wave equation (which we analyze in a subsequent section; the maximum stable time step for the

second order equation is twice that of this first-order one):

∂u

∂t
= ∇2u. (6)

Using the 19-point faces + edges approximation and explicit-Euler time stepping, this is:

un+1
i = un

i + ∆t∇2
fe

= un
i + ∆t

1

3h2





∑

j∈Nf

un
j +

1

2

∑

j∈Ne

un
j − 12un

i



 . (7)

This can be expressed as a linear equation:

un+1
ijk = Aun

ijk, (8)

where the matrixA contains the neighborhood weighting factors:

A = 1 + ∇2
fe. (9)

This linear equation can be expressed in terms of eigenvalues λ operating on a rotated eigenfunction

representation of the state values,ψ:

Aψijk = λψijk. (10)
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6 R. C. O’REILLY AND J. M. BECK

The system is stable as long as all eigenvaluesλ of the matrixA have a magnitude 1 or less. The

eigenfunctions ofA are discrete forms of the eigenfunctions of the Laplacian:

ψijk = cos(lxi)cos(lyj)cos(lzk), (11)

wherelx, ly, lz are wavenumbers, and sine can replace any of the cosines as well.

To determine these eigenvalues, we write out all the terms ofA andλ, and then derive a condensed

expression. First, we set:

ǫ =
∆t

3h2
(12)

and writeA for each of thex, z planes along the different slices ofy = {−1, 0, 1}:

Ay=−1 =

















0 ǫ
2 0

ǫ
2 ǫ ǫ

2

0 ǫ
2 0

















Ay=0 =

















ǫ
2 ǫ ǫ

2

ǫ 1 − 12ǫ ǫ

ǫ
2 ǫ ǫ

2

















Ay=+1 =

















0 ǫ
2 0

ǫ
2 ǫ ǫ

2

0 ǫ
2 0

















. (13)
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A FAMILY OF LARGE-STENCIL LAPLACIAN APPROXIMATIONS 7

Substituting in the Laplacian eigenfunctions (11), this is:

λy=−1 =

















0 ǫ
2 cos(−ly) cos(lz) 0

ǫ
2 cos(−lx) cos(−ly) ǫ cos(−ly) ǫ

2 cos(lx) cos(−ly)

0 ǫ
2 cos(−ly) cos(−lz) 0

















λy=0 =

















ǫ
2 cos(−lx) cos(lz) ǫ cos(lz)

ǫ
2 cos(lx) cos(lz)

ǫ cos(−lx) 1 − 12ǫ ǫ cos(lx)

ǫ
2 cos(−lx) cos(−lz) ǫ cos(−lz) ǫ

2 cos(lx) cos(−lz)

















λy=+1 =

















0 ǫ
2 cos(ly) cos(lz) 0

ǫ
2 cos(−lx) cos(ly) ǫ cos(ly) ǫ

2 cos(lx) cos(ly)

0 ǫ
2 cos(ly) cos(−lz) 0

















. (14)

Because cosine is symmetric about zero (cos(−lx) = cos(lx)), we can group like terms and get:

λ = 1 + 2ǫ [cos(lx) + cos(ly) + cos(lz)+

cos(lx) cos(ly) + cos(ly) cos(lz) + cos(lx) cos(lz) − 6] . (15)

The term inside the brackets has its largest magnitude at a value of -8, which occurs when any two of

the wavenumbers areπ and the third is 0. Thus, the overall largest magnitude eigenvalue is:

λmax = 1 − 16∆t

3h2
, (16)

which means that the limiting∆t value required to keep|λmax| < 1 is:

∆tmax =
3

8
h2 = .375h2. (17)

Compare this with the corresponding value for the standard 7-point face-only stencil:

∆tmax =
1

6
h2 = .1666h2. (18)

Thus, the 19-point stencil can be run 2.25 times faster than the 7-point case.
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8 R. C. O’REILLY AND J. M. BECK

Furthermore, the error in this approximation is given by [1]:

E =
h2

12
(∇2)2u|ijk +O(h4). (19)

Because the leading term is the squared Laplacian, which is rotationally symmetric, this approximation

exhibits much greater rotational symmetry (i.e., propagation along non-cartesian gridlines) than the

standard 7-point approximation, which does not have a rotationally symmetric leading error term.

4. Extension to the 27-point Stencil

Although better than the 7-point stencil, the 19-point face+ edge approximation still leaves out 8 of the

neighbors: the corners. These are tricky because they do notform an orthogonal basis. Nevertheless,

we can construct a stencil that includes them (a 27-point stencil) by noting that in the 19-point case,

each neighbor contributes according to the following equation:

1

||j − i|| (ϕj − ϕi), (20)

where||j − i|| is the squared distance between the neighbor pointj and the central pointi (i.e., 1 for

faces, 2 for edges, and 3 for corners). Furthermore, the sum is normalized by:

6

Npointsh2
. (21)

The 6 in the numerator comes from the fact that the canonical face-based Laplacian consists

of 6 neighbor points located at the ends of the 3 rays that define the three second derivatives
(

∂2ϕ
∂x2 + ∂2ϕ

∂y2 + ∂2ϕ
∂z2

)

, which is then divided by the total number of points includedin the sum (Npoints;

note that this the number of neighbors, excluding the central point).

These equations can be used to define a whole family of Laplacians involving various combinations

of the faces, edges and corners, including faces only (7-point stencil; equation 4), faces + edges (19-

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006;00:1–16
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A FAMILY OF LARGE-STENCIL LAPLACIAN APPROXIMATIONS 9

point stencil; equation 5), and faces + edges + corners (27-point stencil):

∇2
fecϕi =

3

13h2





∑

j∈Nf

(ϕj − ϕi) +
1

2

∑

j∈Ne

(ϕj − ϕi) +
1

3

∑

j∈Nc

(ϕj − ϕi)





=
3

13h2





∑

j∈Nf

ϕj +
1

2

∑

j∈Ne

ϕj +
1

3

∑

j∈Nc

ϕj −
44

3
ϕi



 (22)

(see the Appendix for another derivation based on includingadditional neighbors in the first order

gradient computation that also yields equation 22).

4.1. Stability Analysis of the 27-point Stencil

Applying the eigenvalue stability analysis from the 19-point case to this 27-point stencil, theλ matrix

just adds 8 new terms for the corners, each of the form:ǫ
3 cos(±lx) cos(±ly) cos(±lz), where theǫ

factor is now:

ǫ =
3∆t

13h2
. (23)

Because of the cosine symmetry, the resulting eigenvalue equation includes just one additional term

for the 8 corner factors, and the subtraction value for the central point is different:

λ = 1 + 2ǫ [cos(lx) + cos(ly) + cos(lz)+

cos(lx) cos(ly) + cos(ly) cos(lz) + cos(lx) cos(lz) +

4

3
cos(lx) cos(ly) cos(lz) −

22

3

]

. (24)

The term inside the brackets has its largest magnitude at a value of −8.666, which occurs when the

wavenumbers for all dimensions areπ, and when only one wavenumber isπ and the others are 0. Thus,

the overall largest magnitude eigenvalue is:

λmax = 1 − 52∆t

13h2
, (25)
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10 R. C. O’REILLY AND J. M. BECK

which means that the limiting∆t value required to keep|λmax| < 1 is:

∆tmax =
13

26
h2 = .5h2 (26)

This is1.333 times larger than the∆tmax for the 19-point case, and 3 times larger than for the 7-point

case.

5. Second-Order Wave Equation

Now we extend the stability analysis to the second-order wave equation. Lettingun
i = λn, we conclude

that the discrete dynamical system is stable when

λ = 1 + 2
∆t

∆h2
γ (27)

is between -1 and 1 (γ is short for the coefficients in the Laplacian as well as the cosine terms).

Becauseγ is always negative and bounded below byγmin only the lower bound need be considered.

Thus stability is insured when

∆t ≤ ∆h2

γmin

. (28)

In the second-order wave equation, the update rule is now:

un+1
i − 2un

i + un−1
i = un

i 2
∆t2

∆h2
γ. (29)

We once again letun
i = λn, so that

λ2 − 2λ

(

1 +
∆t2

∆h2
γ

)

+ 1 = 0 (30)

defines the eignenvalues of the system. In this quadratic case, |λ| ≤ 1 is insured when

−1 ≤ 1 +
∆t2

∆h2
γ ≤ 1. (31)

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006;00:1–16
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A FAMILY OF LARGE-STENCIL LAPLACIAN APPROXIMATIONS 11

Againγ is negative and bounded below byγmin so that only the lower bound need be considered. Thus

stability is insured when

∆t2 ≤ 2
∆h2

γmin

. (32)

From this we can conclude that the maximum stable time step for the wave equation (second order) is

related to that of the first-order diffusion (heat) equationas:

∆twave =
√

2∆theat. (33)

This general property of any numerical algorithm which iteraties time using the standard forward Euler

method implies that the maximum stable time step for the waveequation using the 27-point stencil is

1h2.

6. Computational Speed and Error Due to Rotational Asymmetry

There are two factors that determine the overall computational speed of these Laplacian

approximations: the maximum stable time step (the larger the step, the fewer iterations required to solve

the equations over a given amount of physical time), and the amount of computation per time step. It

may seem that the increase in stable time step associated with the larger stencil approximations is more

than offset by the larger number of neighbors that must be computed over at each time step. However,

it is critical to appreciate that this neighborhood stencilcomputation is highly parallelizable on modern

vectorizing processors, such that increasing the stencil size results in a relatively small increase in net

computation time. Thus, the increase in stable time step dominates the overall computational cost. This

is especially true when solving more complex equations involving the Laplacian as only one component

(albeit the stability limiting one), where the overhead of other computations per time step is relatively

large, and thus the larger time step results in even greater speedups.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006;00:1–16
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12 R. C. O’REILLY AND J. M. BECK

As a simple benchmark for computational speed, we implemented the basic diffusion equation (6)

using the different stencil sizes on a modern Pentium processor using the gcc compiler (4.0.2) under

Linux. We first measured the differences in computational cost associated with the different stencil

sizes, keeping the number of iterations constant (i.e., using the same time step for each). It took 2.13,

2.03, and 1.83 seconds respectively for the 27, 19, and 7 point stencils to compute 200 iterations over a

30x30x30 space, using a time step of .1. Thus, the increase of20 additional neighbors for the 27-point

stencil relative to the standard 7-point case requires only16% additional computation time. This clearly

demonstrates a significant degree of parallelization of this stencil computation. When we combine this

per-time-step computational cost factor with the differences in maximum stable time step (.5, .375, and

.1666 for 27, 19, and 7-point stencils), the 27-point case is 2.58 times faster overall compared to the

7-point case, and the 19-point stencil is 2.03 times faster.This represents a significant computational

savings, approaching the theoretical maximum speedups if the neighborhood calculation were perfectly

parallel (3 and 2.25). Indeed, these theoretical maximums may be achievable on specialized parallel

hardware, providing an even greater computational speedup.

The other principal advantage of the larger stencil size is its greater rotational symmetry, which

results in more accurate simulation of perturbations that have spatial structure across multiple

dimensions (this will not be evident in plane waves, for example). To explore the significance of

rotational symmetry, we initialized the state with a spherically-symmetric non-normalized Gaussian

perturbation (i.e.,e−
||~i−~µ||

σ2 ) with the center point located in the center of a 50x50x50 space (~µ =

(25, 25, 25)). The width of the Gaussianσ was set to 2. This perturbation should remain symmetric

as it spreads via the standard wave equation (2). To measure the rotational asymmetry of this wave

propagation, we sorted the state cells as a function of distance from the center of the initial Gaussian,

and computed the mean and standard deviation of values at thesame distance (Figure 3). With this

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006;00:1–16
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Figure 3. Contributions of rotational asymmetry to error in the standard 7-point stencil, compared with larger

stencil-size approximations (using the standard wave equation). Plots show mean wave value (large amplitude

wavy line) and average error (standard deviation, smaller amplitude line)for state cells as a function of distance

from the center of an initial rotationally symmetric Gaussian (σ = 2, 30 time steps,∆t = .2 for all cases).a) ∇2

f

(7 point stencil), which exhibits significant error (nearly 17% of maximumwave magnitude), consistent with its

greater anisotropy (rotational asymmetry).b) ∇2

fe (19-point stencil) has much lower error (1% of maximum wave

magnitude).

analysis, all points at different rotational angles from the center, including those along cartesian

axes and not, can be compared to see if they have the same values, which they should if wave

propagation was perfectly isotropic. As the figure shows, the 19-point face+edges stencil (∇2
fe)

produces nearly perfect isotropic wave propagation, with cells at the same distance in all directions

having essentially the same values (max standard deviation= 0.000496, only 1% of maximum wave

magnitude). In contrast, the standard 7-point faces-only case (∇2
f ) shows considerable levels of error,

and a correspondingly rough mean value curve (max SD=.00742, nearly 17% of max wave magnitude).

The 27-point stencil (∇2
fec) exhibits an intermediate level of error (max SD=.00386, 8%of max wave

magnitude, not shown). The improved symmetry of the 19-point case relative to the 27-point case is

presumably because the 19-point case only includes a mutually orthogonal set of neighborhood points,

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006;00:1–16
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14 R. C. O’REILLY AND J. M. BECK

whereas the 27-point case includes additional non-orthogonal points.

7. Conclusion

The results presented herein demonstrate that including more neighbors in the computation of the

Laplacian produces both faster and more rotationally symmetric results relative to the standard 7-

point stencil. For maximum computational speed, the 27-point stencil is the best option, as it has the

largest stable step size and the additional neighbors do notincur substantial increased cost on modern

vectorizing processors. For maximum rotational symmetry,the 19-point stencil appears to be the best

option. However, each of these large-stencil versions are both significantly faster and more rotationally

symmetric than the standard 7-point stencil, which suggests that they should be widely adopted in

numerical simulations involving the Laplacian operator.

8. Appendix: Discrete Gradients with Neighbor Averaging

The 27-point stencil can also be derived by way of a first-order gradient computation that uses

more than the standard cartesian axis neighbors. The standard discrete gradient computation in one

dimension involves averaging the two difference equationson either side of the point in question:

D−ϕi =
1

h
(ϕi − ϕi−1)

D+ϕi =
1

h
(ϕi+1 − ϕi)

∂ϕ

∂x
≈ 1

2
(D+ϕi +D−ϕi) =

1

2h
(ϕi+1 − ϕi−1) (34)

In three dimensions, the averaging process can be taken further by including rays through all

neighboring points that have some projection along the gradient axis (Figure 4), with the contribution

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006;00:1–16
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A FAMILY OF LARGE-STENCIL LAPLACIAN APPROXIMATIONS 15

dist2

1 (faces)
2 (edges)
3 (corners)

x

z

y

Figure 4. Computation of the first order spatial gradient using all 18 neighbors that have a non-zero projection

along a given axis. Each neighbor contributes to the gradient in proportion with its projection along the axis (1 for

face points, 1√
2

for edges, and1√
3

for corners. Note that, across all three cases, the faces occur once, edges occur

twice, and corners in all three cases (i.e., in proportion to their respective distances).

of each neighbor pair weighted by the extent of its projection along the axis:

∂ϕ

∂x
≈ 1

h(2+ 8√
2
+ 8√

3
)

(

(ϕ(1,0,0) − ϕ(−1,0,0)) +

1√
2

∑

j∈Ne

(ϕj+ − ϕj−) +
1√
3

∑

j∈Nc

(ϕj+ − ϕj−)
)

(35)

where the neighborhoodsNe andNc denote pairs of pointsj+ andj− along the 4 rays through the

edges and corners, respectively. The normalizing factor ensures that the weighted average sums to one.

Plugging this first-order gradient into the second-order difference-of-differences equation results in:

∂2ϕ

∂x2
≈ 1

h2(1+ 4

2
+ 4

3
)

(

(ϕ(1,0,0) + ϕ(−1,0,0) − 2ϕi) +

1

2

∑

j∈Ne

(ϕj+ + ϕj− − 2ϕi) +
1

3

∑

j∈Nc

(ϕj+ + ϕj− − 2ϕi)
)

(36)

Which can be simplified by using sums over the individual neighbor points, instead of considering the

rays:

∂2ϕ

∂x2
≈ 3

h213





∑

j∈Nf

(ϕj − ϕi) +
1

2

∑

j∈Ne

(ϕj − ϕi) +
1

3

∑

j∈Nc

(ϕj − ϕi)



 (37)

We can then compute the Laplacian by summing together the derivatives along the three axes

computed according to equation 37. However, the neighborhood of points involved for computing
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the derivatives along each axis overlaps partially with theothers, as shown in Figure 4. Interestingly,

this overlap is different depending on the distance of the neighbor, in exact proportion to this distance:

faces appear once, edges appear twice, and corners appear three times. Thus, if one were to combine

all the terms in the sums into a single computation operatingacross all the neighbors, this differential

repetition of neighbors would exactly cancel out the distance-based normalization factors (1
2 , 1

3 ).

However, it does not make sense to overcount the influence of some neighbors versus others. Therefore,

we can simply drop the repeated factors from the equation, which then includes all of the 26 neighbors

exactly once, and one arrives at equation 22. It is interesting to note that both approaches arrive at the

same 3
13 normalization factor, via somewhat different routes.
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