
A number of important principles have been developed
for computational neural-network models of cortical learn-
ing and cognitive processing. However, relatively little work
has been done to try to integrate these principles into a co-
herent overall framework. Integrating these principles al-
lows one to demonstrate the consistency of different mod-
els, capitalize on synergies between different principles,
organize and consolidate existing findings, and generate
novel insights into the nature of cognition. This review de-
scribes and motivates a provisional set of six principles (il-
lustrated in Fig. 1) that have proven individually useful in a
number of existing models. Despite their proven utility,
most models incorporate only a small number of these prin-
ciples (e.g. the prototypical feedforward back-propagation
network uses only two). Thus, this review attempts to high-
light the potential advantages and pitfalls of using a more
inclusive set of principles.

Although a specific algorithm called Leabra has been
developed to incorporate these principles (see Box 1), this
review focuses on the history and importance of the princi-
ples themselves, and the ways in which these principles 
interact with each other. As an important caveat, this dis-
cussion focuses on biologically based principles that are 
particularly relevant for cognition, and does not include a
number of functional and cognitive-level principles that
could also be enumerated.

The proposed set of principles can be considered an 
extension of the ‘GRAIN’ framework of McClelland1.
GRAIN stands for graded, random, adaptive, interactive,
(nonlinear) network. This framework was primarily moti-
vated by (and applied to) issues surrounding the dynamics

of activation flow through a neural network. By way of ex-
tension, the present framework emphasizes learning mecha-
nisms and the architectural properties that support them.
Two of the key principles in GRAIN, interactivity and
competition, are among the six principles emphasized here.
The other GRAIN principles (graded, nonlinear activations,
graded activation propagation, and intrinsic variability) are
assumed, but not emphasized in this framework because of
their nearly ubiquitous acceptance within neural-network
models (but see Ref. 2 for an interesting application of these
principles to controversies in cognitive development).

The principles
The six principles can be grouped into three categories. The
first principle, biological realism, is in a category by itself,
providing a general overriding constraint on the framework.
The next three principles, distributed representations, in-
hibitory competition, and bidirectional activation propa-
gation (interactivity), are concerned with the architecture 
of the network and the general behavior of the neuron-like
processing units within it. The final two principles, error-
driven task learning and Hebbian model learning, govern
the way that learning occurs in the network.

(1) Biological realism
Biological realism lies at the foundation of the entire enter-
prise of computational modeling in cognitive neuroscience.
This approach seeks to understand how the brain (and
specifically the cortex in the present case) gives rise to cog-
nition, not how some abstraction of uncertain validity does
so. Thus, wherever possible, computational models should
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be constrained and informed by biological properties of the
cortex. Moreover, computational mechanisms that violate
known biological properties should not be relied upon. This
point has implications for error-driven learning, as dis-
cussed below.

Although the issue of biological realism is easy to state,
it can be difficult to apply, because the known biology often
does not provide sufficient constraints. Thus, biological re-
alism often reduces to plausibility arguments, which depend
on things like how simple and local the mechanism in ques-
tion is, and that it is not inconsistent with known biology.
Also, one can adopt a converging evidence approach, where
multiple constraints from biology, computation, and cogni-
tion converge to support a given principle. This approach is
emphasized here.

Architectural principles
(2) Distributed representations
The cortex is widely believed to use distributed represen-
tations to encode information. A distributed representation
uses multiple active neuron-like processing units to encode
information (as opposed to a single unit, localist represen-
tation), and the same unit can participate in multiple repre-
sentations. Each unit in a distributed representation can be
thought of as representing a single feature, with information
being encoded by particular combinations of such features.
Electrophysiological recordings demonstrate that distrib-
uted representations are widely used in the cortex (e.g. Refs
3–5). The functional benefits of distributed representations
include greater efficiency, robustness, and accuracy, and the
ability to represent similarity relationships6. The efficiency

of distributed representations can be appreciated by analogy
with letters. Just as different combinations of a small num-
ber of letters can represent a large number of words, so can
different combinations of a small set of units represent a
large amount of information. The robustness of distributed
representations comes from the redundancy of having each
item represented by many units. Distributed represen-
tations can more accurately represent graded values through
coarse coding, where a value is encoded by the relative mag-
nitudes of a number of broadly tuned units. Finally, simi-
larity is represented by the shared units involved in the dis-
tributed representations of different items.

(3) Inhibitory competition
Inhibitory competition is important because it selects repre-
sentations for processing and for subsequent refinement
over learning. Inhibitory competition arises when mutual
inhibition among a set of units (i.e. as mediated by in-
hibitory interneurons) prevents all but a subset of them
from becoming active at a time. Approximately 20% of the
neurons in the cortex are inhibitory interneurons7, and it is
clear that they control the explosion of activation that
would otherwise result from all the positive interconnec-
tivity among cortical pyramidal neurons (e.g. as happens in
epilepsy). Inhibitory competition allows only the most
strongly excited representations to prevail, with this selec-
tion process identifying the most appropriate represen-
tations for subsequent processing. Furthermore, most learn-
ing mechanisms (including those discussed later) are
affected by this selection process such that only the selected
representations are refined over time through learning, re-
sulting in an effective differentiation and distribution of
representations8–11.

Aside from the selection and refinement of represen-
tations, another benefit of inhibitory competition comes from
the idea that, given the general structure of the environment,
sparse distributed representations (i.e. having relatively few
units active at a time) are particularly useful12,13. For example,
in visual processing, a given object can be defined along a set
of feature dimensions (e.g. shape, size, color, texture), with a
large number of different values along each dimension (i.e.
many different possible shapes, sizes, colors, textures, etc.).
Assuming that the individual units in a distributed repre-
sentation encode these feature values, a representation of a
given object will only activate a small subset of units (i.e. the
representations will be sparse). To further substantiate this
argument, Olshausen and Field14 showed that imposing a
bias for developing sparse distributed representations can
result in the development of realistic early visual represen-
tations (oriented edge detectors) of natural visual scenes.
More generally, it seems as though the world can be usefully
represented in terms of a large number of categories with a
large number of exemplars per category (animals, furniture,
trees, etc.). If we again assume that only a relatively few such
exemplars are processed at a given time, a bias favoring
sparse representations is appropriate.

(4) Bidirectional activation propagation (interactivity)
Bidirectional activation propagation is a critical principle
for information flow through the network. Bidirectional 
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Fig. 1 Illustration of the six core principles, and their instantiation in a neural net-
work. Biological realism (1) is an overarching constraint. Distributed representations (2)
have multiple units active, while inhibitory competition (3), (implemented via inhibitory
connectivity) ensures that relatively few such units are active. Bidirectional activation propa-
gation (4), (implemented by bidirectional connectivity) enables both bottom-up and top-
down constraints to simultaneously shape the internal representation. Error-driven learning
(5) shapes representations according to differences between expected outputs and actual
ones (represented by the error term δj). Hebbian learning (6) shapes representations accord-
ing to the co-occurrence (correlation) statistics of items in the environment (represented by
the product of the sending- and receiving-unit activations).
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activation propagation (also called ‘interactivity’ or ‘recur-
rence’) is the communication of activation simultaneously
in both bottom-up and top-down directions. This contrasts
with feedforward activation propagation where information
only goes in one direction (bottom-up). To enable infor-
mation to flow in both directions simultaneously in a stable
and effective manner, processing must proceed in gradual,
iterative steps. Thus, a temporally-extended ‘settling’
process with many iterative steps is required for the network
to achieve an appropriate representation of a given input
pattern. This is a central feature of GRAIN (Ref. 1).
Bidirectional connectivity is ubiquitous in the cortex (e.g.
Refs 15–17). An important benefit of bidirectional acti-
vation propagation is powerful ‘constraint-satisfaction’ pro-
cessing18,19, where both lower-level (e.g. perceptual) and
higher-level (e.g. conceptual) constraints can be simultane-
ously brought to bear in interpreting and processing inputs.

The importance of interactivity for understanding cog-
nitive processing was demonstrated in the word superiority
model of McClelland and Rumelhart9. They showed that
interactivity could explain the counterintuitive finding that
higher-level word processing can influence lower-level letter
perception. More recently, Vecera and O’Reilly20 showed
that bidirectional constraint satisfaction can model people’s
ability to resolve ambiguous visual inputs in favor of familiar
versus novel objects21. They also showed that adding inhibi-
tory competition to an interactive network significantly
speeded the settling process, and greatly reduced the num-
ber of times the network settled into bad local minima.

Learning principles
Learning is essential for shaping the representations of
neural networks according to the structure of the environ-
ment. A key issue is what aspects of the environmental
structure should be learned, with the understanding that
not everything can or should be represented. The following
two learning principles exploit two complementary aspects
of environmental structure: task demands, and the extent to
which different things co-occur. The first is referred to as
‘task learning’ for obvious reasons, and the second is re-
ferred to as ‘model learning’ because the objective is to de-
velop an internal model of the environment irrespective of
specific tasks. These two learning objectives can be achieved
by two different forms of implementational mechanisms,
‘error-driven’ and ‘Hebbian’ learning, respectively.

(5) Error-driven task learning
Error-driven learning (also called ‘supervised’ learning) is
important for shaping representations according to task de-
mands by learning to minimize the difference (i.e. the error)
between a desired outcome and what the network actually
produced. This principle captures the idea that you learn
what enables you to succeed at the necessary tasks of life,
without bothering to represent aspects of the environment
that are not relevant to these tasks. The widely used back-
propagation learning algorithm22 directly minimizes error
through gradient descent, and has proven to be very power-
ful. Although task learning is clearly psychologically rel-
evant, and a majority of psychological models have used this
form of learning, its biological plausibility has been widely

questioned because it requires the propagation of error sig-
nals in a manner inconsistent with known neurobiological
properties (e.g. Refs 23,24). Furthermore, it has not been
clear where the necessary ‘teaching’ signals could plausibly
come from. However, it has recently been shown that bio-
logically plausible bidirectional activation propagation (see
principle 4) can be used to perform essentially the same
error-driven learning as backpropagation25, using any of a
number of readily available teaching signals. The resulting
algorithm generalizes the recirculation algorithm of Hinton
and McClelland26, and is thus called ‘GeneRec’.

The basic idea behind GeneRec is that instead of propa-
gating an error signal, which is a difference between two
terms, one can propagate the two terms separately as acti-
vation signals, and then take their difference locally at each
unit. This works by having two phases of activations for
computing the two terms. In the ‘expectation’ phase, the
bidirectionally-connected network settles based on an input
activation pattern into a state that reflects the expected con-
sequences or correlates of that input pattern. Then, in the
‘outcome’ phase, the network experiences actual conse-
quence(s) or correlate(s). The difference between outcome
and expectation is the error signal, and the bidirectional
connectivity propagates this error signal throughout the
network via local activation signals. Thus, interactivity en-
ables units everywhere in the network to receive (possibly
indirectly via hidden layers) activation signals from the
layer(s) where the expectation and outcome are represented.
The remarkable thing is that the activation signals in an 
interactive network are naturally propagated (even through
hidden layers) in just the right way to enable the correct
error gradient to be simply and locally computed at each
unit25.

The GeneRec analysis also showed that Boltzmann ma-
chine learning and its deterministic versions19,27–29 can be
seen as variants of this more biologically plausible version 
of the back-propagation algorithm. This means that all of
the existing approaches to error-driven learning using 
activation-based signals converge on essentially the same
basic mechanism, making it more plausible that this is the
way the brain does error-driven learning. Furthermore, the
form of synaptic modification necessary to implement this
algorithm is consistent with (though not directly validated
by) known properties of biological synaptic modification
mechanisms. Finally, there are many sources in the natural
environment for the necessary outcome phase signals in the
form of actual environmental outcomes that can be com-
pared with internal expectations to provide error signals25,30.
Thus, one does not need to have an explicit ‘teacher’ to 
perform error-driven learning. Taken together, these de-
velopments make it difficult to continue to object to 
the use of error-driven learning on the grounds that it is not
biologically plausible.

(6) Hebbian model learning
Model learning (also called self-organizing or ‘unsupervised’
learning) is important for forming internal representations of
the general (statistical) structure of the environment, without
respect to particular tasks. Many versions of this general idea
exist, defined by what aspects of environmental structure are

O ’ R e i l l y  –  P r i n c i p l e s  f o r  c o m p u t a t i o n a l  m o d e l s  o f  c o g n i t i o n

457
T r e n d s  i n  C o g n i t i v e  S c i e n c e s  –  V o l .  2 ,  N o .  1 1 ,   N o v e m b e r  1 9 9 8

Review

TICS NOVEMBER 1998/new  19/10/98 10:57 am  Page 457



deemed important to represent, but it is generally agreed
that something like correlational structure is important.
Hebbian learning mechanisms represent this correlational
structure, encoding the extent to which different things co-
occur in the environment31. Biologically, Hebbian learning
requires that the synaptic strength change as a function of

the co-activation of the sending and receiving neurons.
NMDA-mediated long-term potentiation (LTP) has this
Hebbian property (e.g. Ref. 32). Thus, Hebbian learning is
almost universally regarded as being biologically plausible.
At a functional level, the co-occurrence of items suggests
that there might be a causal relationship between them.
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Box 1. The Leabra implementation

The six principles have been implemented in an algorithm called
Leabra, which is briefly presented here. Leabra stands for ‘learn-
ing in an error-driven and associative, biologically realistic algo-
rithm’ (where associative is another term for Hebbian learning).
Leabra has been used in a forthcoming textbooka to implement a
wide range of cognitive neuroscience models. The scope of phe-
nomena it is capable of modeling is commensurate with the
breadth of the principles as discussed in the paper, and demon-
strates their sufficiency and mutual compatibility.

Point-neuron activation function
Leabra uses a point-neuron activation function that models the
electrophysiological properties of real neurons, while simplify-
ing their geometry to a single point. This is nearly as 
simple computationally as the standard sigmoidal activation
function, but the more biologically based implementation makes
it considerably easier to model inhibitory competition, as de-
scribed below. Further, it enables cognitive models to be more
easily related to more physiologically detailed simulations,
thereby facilitating bridge-building between biology and 
cognition.

The membrane potential Vm is updated as a function of ionic
conductances g with reversal (driving) potentials E as follows:

with three channels, c, corresponding to: e, excitatory input; l,
leak current; and i, inhibitory input. The equilibrium potential
can be written in a simplified form by setting the excitatory 
driving potential, Ee, to one and the leak and inhibitory driving
potentials, El and Ei, to zero:

This shows that the neuron is computing a balance between ex-
citation and the opposing forces of leak and inhibition. This form
of the equation can be understood in terms of a Bayesian deci-
sion-making frameworka. Activation communicated to other cells
(y) is a thresholded (Q), sigmoidal function of the membrane 
potential with gain parameter g:

This can be convolved with Gaussian noise, producing a less dis-
continuous function with a softer lower threshold.

k-Winners-take-all inhibition (KWTA)
Leabra uses a KWTA function to achieve sparse distributed rep-
resentations. This function is achieved by setting a uniform level of
inhibition for all units in the layer that prevents more than k units
from getting over threshold. This inhibitory current is given by:

where q is typically 0.25, and the threshold-level inhibition terms
are 

for the units with the kth and k11th highest excitatory inputs.
Activation dynamics similar to those produced by this function
have been shown to result from simulated inhibitory interneurons
that project both feedforward and feedback inhibitiona.

Error-driven learning
Error-driven learning is implemented in Leabra using a symmet-
ric version of the biologically plausible GeneRec algorithmb, that
is functionally equivalent to the deterministic Boltzmann ma-
chine and contrastive Hebbian learning (CHL) (Refs c,d). The
network settles in two phases, an expectation (minus) phase and
an outcome (plus) phase, and then computes a simple difference of
a pre- and postsynaptic activation product across these two phases:

for sending unit xi, and receiving unit yj, in the two phases.

Hebbian learning
The simplest form of Hebbian learning adjusts the weights in
proportion to the product of the sending (xi) and receiving (yj)
unit activations:

The weight vector is dominated by the principal eigenvector of
the pairwise correlation matrix of the input, but it also grows
without bound. Leabra uses a variant of the Oja normalizatione:

which can also be seen as computing the expected value of the
sending unit activity conditional on the receiver’s activity, if
treated like a binary variable active with probability yj:

This is essentially the same rule as used in standard competitive
learning or mixtures-of-Gaussiansf,g.

Error-driven and Hebbian learning are linearly combined at
each synapse in the network, using a normalized mixing constant.
To keep the error-driven component within the same 0–1 range
of the Hebbian term, soft-weight bounding with exponential ap-
proach to these extremes is used on this component. Finally, a
sigmoidal contrast-enhancement function on the weights can be
used to facilitate learning in environments with underlying 
binary features (i.e. imposing a bias towards binary weights). 
(See Ref. 1 for details.)

Principal results
In O’Reilly et al.a, Leabra is used to replicate a large number of
published models that were originally implemented using a vari-
ety of different algorithms from backpropagation to Hebbian
self-organizing learning. Leabra also illustrates many of the issues
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Furthermore, co-occurring items can be more efficiently rep-
resented together within a common representational struc-
ture. Mathematical analyses have shown that Hebbian learn-
ing performs something like principal components analysis33,
which extracts the principal dimensions of covariance within
the environment. An interesting demonstration of the power

of this kind of Hebbian model learning was recently pro-
vided in the form of a model that performs principal com-
ponents analysis on the co-occurrence statistics of words
within large texts, yielding surprisingly powerful represen-
tations of word meaning34.

Interactions among the principles
The preceding discussion provided specific and compelling
motivations for each of the individual principles. In this sec-
tion, three examples of interactions (synergies and conflicts)
among the six principles will be discussed. The first example
comes from the GRAIN framework, and deals with the
consequences of interactivity and noise. The second ex-
plores the interactions between distributed representations
and competition, which can be at odds with each other. The
last explores the interactions between error-driven and
Hebbian learning.

Interactivity and noise
The GRAIN framework has been used to explore the impli-
cations of some of the principles on the activation dynamics of
a network1. For example, although interactivity (bidirectional
activation propagation) is important for accounting for a
range of different behavioral phenomena, it can also be prob-
lematic for others. Specifically, interactivity interfered with
the ability of a network to exhibit independent contributions
from context and stimulus strength in a stimulus identifi-
cation situation35,36. McClelland showed that the use of in-
trinsic variability (noise) can resolve this conflict, resulting in
a model that captures a wider range of phenomena, includ-
ing standard interactive phenomena (e.g. top-down effects)
and the independent contributions of context and stimuli1.

This example illustrates a theme that emerges repeat-
edly when attempting to integrate different principles (see
Box 1 for another example): often, subsets of principles do
not work as well as a more complete set of principles. Thus,
instead of abandoning a principle (e.g. interactivity) when it
appears to introduce a problem, one should consider how
other principles might be adopted that would resolve the
problem. The advantage of the integrative approach is that
the resulting model then accounts for a much wider range
of phenomena, and may provide important new insights
into the nature of the originally problematic phenomenon.
For example, the GRAIN model can explain the conditions
under which you would not expect to find an independent
contribution of stimulus and context (see Ref. 1 for details
and empirical validation).

Distributed representations and competition
Perhaps one of the most important challenges in integrating
the six principles comes in combining distributed represen-
tations and competition, which tend to work at cross pur-
poses. Distributed representations require multiple active units
that cooperatively represent something, whereas competition
causes fewer units to be active, and it can inhibit co-
operativity. A reasonable compromise between these two
principles is the sparse distributed representation as discussed
previously. Although seemingly straightforward, achieving 
a sparse distributed representation is technically challeng-
ing, primarily because this case is difficult to analyze 
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discussed in this paper regarding the interactions among the 
different principles. For example, just adding interactivity to an
otherwise generic error-driven network (e.g. a GeneRec net-
work) significantly impairs generalization performance. How-
ever, also adding Hebbian learning and inhibitory competition
(in Leabra) restores good generalization performance within an
interactive network (R.C. O’Reilly, PhD thesis, Carnegie
Mellon University, 1996). The conclusion is similar to that of
the GRAIN exploration of interactivity and noise – interactiv-
ity itself may cause problems, but these can be remedied with
additional principles.

In addition to replicating existing models, Leabra also pro-
vides better models of several phenomena. One salient example of
this is in the case of the U-shaped past-tense over-regularization
phenomenon, which has proven difficult to capture using purely
error-driven backpropagation networks without also manipulat-
ing the training environment in a potentially implausible fash-
ionh–j. By adding Hebbian learning and inhibitory competition,
Leabra introduces biases that produce a much more pronounced
U-shaped effect (including a longer period of early compe-
tence)a. This can be contrasted with the essentially monotonic
decrease in over-regularizations that, in retrospect, is exactly what
would be expected from a purely error-driven algorithm (see
Ref. a and Hoeffner, PhD Thesis, Carnegie Mellon University,
1997, for a more detailed critique of existing models).
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mathematically within a probabilistic learning framework.
The problem is one of combinatorial explosion – one needs
to take into account all the different possible combinations
of active and inactive units to analyze a sparse distributed
representation based on true inhibitory competition. Thus,
sparse distributed representations fall in a complex inter-
mediate zone between two easily analyzed frameworks37: 
(i) The winner-take-all (WTA) framework10,11,38, where only
one unit is allowed to be active at a time. Having a single ac-
tive unit eliminates the combinatorial problems, but this
also violates principle 2 by not allowing for distributed rep-
resentations. (ii) The independent units framework, where
the units are considered to be (conditionally) independent
of each other (e.g. a standard back-propagation network).
This allows the combined probability of an activation pat-
tern to be represented as a simple product of the individual
unit probabilities (and for distributed representations), but
it also violates principle 3 because there is no competition.

There have been a number of attempts to remedy the
limitations of these two analytical frameworks, by introduc-
ing distributed representations within a basically WTA
framework, or by introducing sparseness constraints within
the independent units framework. However, the basic limi-
tations of these frameworks are difficult to overcome.
Basically, any use of WTA prevents the cooperativity and
combinatoriality of true distributed representations, and
the need to preserve independence among the units in the
independent units framework prevents the introduction of
any true activation-based competition. After discussing
these approaches and their limitations, the more difficult to
analyze approach of directly implementing sparse distrib-
uted representations using inhibitory competition will be
discussed.

The following are extensions of the WTA framework.
In the mixture-of-experts framework39, a WTA competition
takes place within a specialized ‘gating’ network that regu-
lates the participation of a set of ‘expert’ networks, which
can themselves have distributed representations. A limi-
tation of this approach is the coarse-grained level of the com-
petition – whole groups of units compete, but individual
units do not. Also, multiple experts cannot easily cooperate
due to the WTA limitation. The model of Dayan and
Zemel40 uses a WTA assumption where units in the hidden
layer compete to determine the value of a given unit in the
output. However, this simply transfers the WTA assump-
tion from representing the input to representing the output,
and a WTA assumption anywhere is likely to be problem-
atic. The Dayan and Zemel model was intended as an im-
provement over the ‘noisy-or’ model of Saund41, which did
not result in sufficient competition. Finally, the Kohonen
network8 uses a WTA to select a single winner, but then a
neighborhood of units around that winner are also acti-
vated. Although useful for achieving topographic represen-
tations, this kind of fixed, imposed activation state does not
enable the full combinatorial representational power that is
an essential feature of true distributed representations.

Within the independent units framework, the main ap-
proach has been to introduce a sparseness constraint that
does not actually involve direct activation-based competi-
tion. This usually involves adding an extra factor to the

learning rule that favors sparse representations (e.g. R.S.
Zemel, PhD Thesis, University of Toronto, 1993; and Refs
14,42,43), or adding a sparseness bias into the activation
function itself (e.g. Ref. 37). Thus, units are only compet-
ing over the long time-course of learning (or against their
own negative bias), and not directly with one another to
represent the current input pattern (i.e. selection).
Furthermore, the dynamic thresholding behavior one
achieves with activation-based competition (which, for ex-
ample, makes the system robust to changes in absolute lev-
els of excitation) is not present in these approaches. This
limitation is particularly evident in bidirectionally con-
nected networks, where the need to control positive feed-
back requires the dynamic thresholding of true competition
(R.C. O’Reilly, PhD Thesis, Carnegie Mellon University,
1996). Thus, integrating all of the principles places further
demands on the competition mechanism.

It seems clear that the cortex implements inhibitory
competition (and sparse distributed representations) via 
inhibitory interneurons. One way of understanding the 
effects of this inhibitory competition is in terms of a 
‘k-winners-take-all’ (KWTA) mechanism, which generalizes
the WTA approach to k winners44. A KWTA mechanism
can enforce true competition amongst the units, while allow-
ing for a (sparse) distributed representation across the sub-
set of k units. KWTA mechanisms have been analyzed for
factors such as stability and convergence onto k units, and
can be implemented with biologically plausible lateral inhi-
bition mechanisms44,45. However, they have not been analyti-
cally treated within a probabilistic learning framework, due to
the combinatorial explosion problems. Nevertheless, a simple
form of KWTA that works well in bidirectionally connected
networks has been shown to be useful for modeling a wide
range of cognitive phenomena (see Box 1).

Learning principles
Before discussing the interactions between error-driven task
learning and Hebbian model learning, the distinction be-
tween the computational objectives of learning (i.e. task and
model learning) and the implementational mechanisms (i.e.
error-driven and Hebbian learning) needs to be clarified.
Two points of potential confusion exist: (i) error-driven
learning can be used to achieve a model-learning objective;
and (ii) some error-driven learning mechanisms resemble
Hebbian mechanisms. The first point of confusion arises
because one can train a network to reproduce the infor-
mation in the environment using error-driven mechanisms,
resulting in a task-independent model of the environment;
that is, via an auto-encoder (see Refs 46,47 and R.S. Zemel,
PhD thesis, University of Toronto, 1993) or a generative
model14,48. One can also learn an internal model based on
error signals derived from the mismatch between different
sensory representations of the same underlying event49–51.
(This idea  can also be viewed as an instance of the GeneRec
expectation-outcome framework, where each modality cre-
ates an ‘expectation’ about how the other modality will rep-
resent the event. The difference between this expectation
and how the modality actually represents the event consti-
tutes the error signal.) These examples raise the issue of why
one should use Hebbian mechanisms to implement model
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learning, instead of using error-driven learning for both task
and model learning. The subsequent discussion of the ad-
vantages of combining error-driven and Hebbian learning
addresses this issue.

As for the second point of confusion, a version of the
GeneRec algorithm25 is equivalent to the ‘contrastive
Hebbian learning’ (CHL) algorithm of Movellan29, which
uses the difference between two Hebbian terms. Also, other
algorithms have been proposed that achieve quasi-error-
driven learning with Hebbian-like mechanisms (e.g. 
Ref. 52). However, despite these apparent similarities in the
surface form of the learning rule, error-driven learning
achieves a very different computational objective from 
simple Hebbian learning; only error-driven learning can
achieve a fully general, powerful form of task learning 
(i.e. one that is capable of learning arbitrary input–output
mappings).

Thus, it seems clear that we should begin with the as-
sumption that error-driven learning is essential for achiev-
ing task learning. From this error-driven perspective, it
would then be of interest to know if further constraining
the learning with Hebbian model learning would yield any
benefits. A general framework for understanding why this
might be the case was articulated by Geman, Bienenstock
and Doursat53. They argued that standard neural networks
(e.g. generic back-propagation networks) are typically
underconstrained by the learning task, and thus suffer from
too much variance in solutions. This can have negative con-
sequences for generalization to novel inputs, among other
things. The solution is to add biases to networks that fur-
ther constrain the learning by favoring particular forms of
solutions (representations). To be beneficial, these biases
obviously need to be appropriate – there are no generically
optimal set of biases – but there may be a set of biases that
is particularly appropriate for representing the real world.
Indeed, encouraging sparse distributed representations can
be seen as just such a bias that has been justified in terms of
real world properties, as discussed previously. It is likely,
given the general importance of correlational information
in the world (e.g. for suggesting causal relationships), that
including a Hebbian bias towards representing co-occur-
rence statistics would be another such generally useful bias.

Although error-driven learning can be sensitive to 
correlational information, Hebbian learning is directly 
constrained to learn a correlation-based model because
Hebbian weight changes directly reflect unit correlations.
Thus, Hebbian model learning can provide a distinct and
useful additional bias to further constrain error-driven task
learning. This additional Hebbian bias can be thought of as
a somewhat ‘smarter’ version of the widely-used weight
decay bias (e.g. Ref. 54). Aside from the Leabra algorithm
described in Box 1, there is at least one other example in the
literature where error-driven (back-propagation) and
Hebbian learning have been combined, with the expected
beneficial results55. In addition to the synergy between these
two forms of learning, combining both task-based and
model-based learning enables one to account for phe-
nomena associated specifically with these different types 
of learning. For example, it seems reasonable to assume 
that some kinds of learning occur as a result of mere expo-

sure to stimuli (i.e. as would be expected by model learning,
but not task learning). However, other kinds of learning
(e.g. complex input–output mappings) clearly require task
learning.
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Outstanding questions

• Are there cognitive phenomena or biological facts that appear to
contradict directly the core principles outlined here?

• Is it possible that different parts of the cortex emphasize some principles
over others? How might this influence functional specialization in the
cortex?

• How many other important principles are missing from the present list?
• Can complex, sequential cognitive processing be shown to emerge from

such basic principles as those discussed here, or does this require a whole
new set of principles?

• How might error-driven and Hebbian learning co-exist and interact with
reinforcement learning, which is likely to be taking place in sub-cortical
structures, and possibly the cortex?
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