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Serial visual search from a parallel model q
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Abstract

We tested a parallel neural network model of visual search, and found that it located targets more quickly when allowed to take
several fast guesses. We suggest that this serially iterated parallel search may be the mode used by the visual system, in accord with
theories such as the Guided Search model. Furthermore, in our model the most efficient mode of processing varied with the type of
search. If the nature of visual search varies with task demands, seemingly contradictory findings can be reconciled.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There is a longstanding debate regarding the nature
of visual search: do we look for an object by moving
attention across a scene serially, one object at a time,
or by processing everything in that scene at once, in par-
allel? (see Wolfe, 1998 for a review). In a standard visual
search (VS) experiment, the participant is asked to
search a display for a particular target object among
many distractors, and quickly decide whether the target
is present. For search tasks such as finding a single red
object among many green ones (‘‘feature search’’), the
search time does not depend on the number of distrac-
tors. For most searches, however, extra distractors slow
search by an amount roughly proportional to their
number.

This led to a Feature Integration Theory (FIT),
which states that people shift attention serially from
one object to the next, deciding for each whether it is
the target (Treisman & Gelade, 1980). This process
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was said to be necessary when conjunctions of object
features (color, shape, size, orientation, etc.) differentiate
targets from distractors, e.g., searching for a red X
among green X�s and red O�s (conjunction search).

However, these results could also be the result of inef-
ficient parallel search processes. Theories of this type are
supported by a variety of evidence (Chelazzi, 1999; Dun-
can & Humphreys, 1989). Deco and Zihl (2001) present-
ed a simple parallel model that reproduced the finding of
feature search times independent of number of objects in
the search display, and conjunction searches times line-
arly dependent on number of objects. That model
embodied a theory with no serial aspects.

We constructed and further explored a computation-
al model of this type, and discovered a relevant and
probably general feature of its behavior: it worked faster
if allowed to operate in a partly serial manner. We there-
fore offer a reinterpretation of this class of model in
which it supports the Guided Search model of Wolfe
and colleagues. Our interpretation supports the idea
that visual search is often partly serial—a parallel pro-
cess may guide attentional fixations, so that easy
‘‘pop-out’’ searches require only one fixation, very diffi-
cult searches may require individual inspection of each
item, while intermediate difficulty searches like standard
conjunction searches require only a few fixations on
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average. This work suggests that the degree to which
search is serial varies across both task conditions, and
with individual strategies.
2. Methods

The core of our model is similar to that of Deco and
Zihl (2001) in structure and basic function (Fig. 1), but
we interpret its performance quite differently (see Sec-
tions 3 and 4). It includes a retinotopic feature layer,
in which each unit represents a specific feature in a spe-
cific location, and location layer that represents any fea-
tures at a given location. These functions match those
known to exist in early ventral visual stream areas,
and late dorsal stream areas, respectively. In addition,
a template layer holds on line the features of the target.
This function is probably performed by prefrontal areas.

As a first step, we replicated the modeling results of
Deco and Zihl (2001) using a different modeling frame-
work. We used the Leabra modeling framework, previ-
ously used to model a wide range of psychological
phenomena (O�Reilly, 1998; O�Reilly & Munakata,
2000). The Leabra framework is designed to mimic prin-
ciples of cortical processing. Units are based on the
Input

Dorsal/location

PFC/templateventral/object

Fig. 1. Input layer is externally set to represent a nine-object
conjunction search with the target in the center. In the input and
object layers, two units of the four-unit group in each location
represent different colors, while the other two represent different
shapes. The four units in the PFC/template layer share this represen-
tation. The connection from input to object layer is one-to-one, with
uniform weights. All four units at each location in the ventral/object
layer project to the one unit in the corresponding location in the
dorsal/location layer, and these connections are reciprocal. Each of the
four units in the PFC/template layer connects to the one matching unit
in every location in the object/ventral layer. The response criteria is the
activation of any location unit above a threshold of .5; we interpret this
response as completing the focus of spatial attention upon a certain
location.
dynamics of single pyramidal neurons, and use the point
neuron approximation (including ion currents and mem-
brane potential).

The principles of the model�s function can be under-
stood in terms of spreading activation. Each trial begins
with an input pattern clamped onto the input layer, and
a template pattern clamped onto the PFC/template
layer. Activation then spreads from these units to those
they are connected to in the ventral/object layer. Those
units receiving activation from both the input and tem-
plate will quickly become more active.

This activity in turn spreads to the location layer, and
when one location unit reaches an activity of .5, the trial
is terminated. We interpret this as a commitment of spa-
tial attention to that location. This happens only when
units at one ventral/object location have become more
active than those at any other competing location. The
winning location is most likely to be the location con-
taining the target, although this likelihood varies with
how quickly the model is allowed to settle, as explained
in the results section.

In more depth, the Leabra framework functions as
follows. The membrane potential Vm is updated as a
function of ionic conductances, g, with reversal (driving)
potentials, E, as follows:

dV mðtÞ
dt

¼ s
X
c

gcðtÞgcðEc � V mðtÞÞ. ð1Þ

There are three channels (c): e is the excitatory input;
l the leak current; and i is the inhibitory input. The
overall conductance is decomposed into a time-varying
component gc(t) computed as a function of the
dynamic state of the network, and a constant gc that
controls the relative influence of the different
conductances.

The excitatory net input/conductance ge(t) or gj is
computed as the proportion of open excitatory channels
as a function of sending activations times the weight
values:

gj ¼ geðtÞ ¼ hxiwiji ¼
1

n

X
i

xiwij. ð2Þ

The inhibitory conductance is computed via the
kWTA function described in the next section, and leak
is a constant.

Activation communicated to other cells (yj) is a thres-
holded (H) sigmoidal function of the membrane poten-
tial with gain parameter c:

yjðtÞ ¼
1

1þ 1
c½V mðtÞ�H�þ

� � ; ð3Þ

where [x]+ is a threshold function that returns 0 if x < 0
and x if X > 0. Note that if it returns 0, we assume
yj(t) = 0, to avoid dividing by 0. To produce a less dis-
continuous deterministic function with a softer thresh-
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Fig. 2. Settling times for our model. Sloped lines are conjunction
search; lower flat lines are feature searches. The amount of noise affects
the settling slope for conjunction search, but does not affect the feature
search settling time. We assume that human reaction times are
proportional to these settling times, plus constant times for motor
responses and object identification.
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old, the function is convolved with a Gaussian noise
kernel.

2.1. k-Winners-take-all inhibition

Leabra uses a kWTA function to achieve sparse dis-
tributed representations, with two different versions hav-
ing different levels of flexibility around the k out of n

active units constraint. Both versions compute a uni-
form level of inhibitory current for all units in the layer
as follows:

gi ¼ gHkþ1 þ qðgHk � gHkþ1Þ; ð4Þ

where 0 < q < 1 is a parameter for setting the inhibition
between the upper bound of gHk and the lower bound of
gHkþ1. These boundary inhibition values are computed as
a function of the level of inhibition necessary to keep a
unit right at threshold:

gHi ¼ g�e �geðEe �HÞ þ gl �glðEl �HÞ
H� Ei

; ð5Þ

where g�e is the excitatory net input.
In the average-based kWTA version (used for this

model), gHk is the average gHi value for the top k most
excited units, and gHkþ1 is the average of gHi for the
remaining n�k units. This version allows for more flex-
ibility in the actual number of units active depending on
the nature of the activation distribution in the layer and
the value of the q parameter (which is typically between
.5 and .7 depending on the level of sparseness in the
layer, with a standard default value of .6). Activation
dynamics similar to those produced by the kWTA func-
tion have been shown to result from simulated inhibito-
ry interneurons that project both feedforward and
feedback inhibition (O�Reilly & Munakata, 2000).
3. Results

Our model initially produced results quantitatively
similar to those of the previous model, and to behavioral
results. We obtained nearly flat search slopes in the fea-
ture search condition, and a linear increase in time to
settle with additional distractors in conjunction search
(Fig. 2).

This linear increase was driven by noise: the search
cost per distractor varied with the amount of gaussian
noise applied to the net input current on each time step
(Fig. 2). According to this type of model, varying behav-
ioral search slopes result from a larger signal/noise ratio
for more easily discriminated stimuli.

The model�s performance stems from the fact that
only feature units that enjoy both bottom up (input)
and top down (target template) inputs become active en-
ough to influence the competition among location units.
There is only one such unit in the feature search condi-
tion, the target feature in the target location. In the con-
junction search condition, one target feature is present
at each location, but both target features are present
at the target location, allowing that location to domi-
nate if enough evidence is accumulated to minimize
the effects of noise.

Units needed two sources of input to become active
because the leabra algorithm uses a thresholded activa-
tion function Eq. (3). Without this threshold, we would
expect to see a contribution from inputs with no support
from the PFC/template layer, and therefore a search
cost even in the feature search condition, as is often ob-
served experimentally. However, this cost would be very
small, since only very large contributions from noise
could overcome the lack of top-down support.

This model can be understood as a diffusion process
model in which information is accumulated over time
in a noisy environment, with more noise present for each
distractor that shares a target feature. It is thus possible
to speed the settling process at the cost of accuracy.
Many variables could affect the system in this way. We
chose to vary the starting value of the membrane poten-
tial. This has the effect of placing the system closer to
settling, so that less evidence is needed to produce an
attentional fixation. It also seems that this is a likely var-
iable for online adjustment by the cognitive system; pro-
viding extra diffuse input before a trial will provide a
baseline activity level, and put the system closer to its re-
sponse threshold.

Raising the system�s baseline activity level produced a
dramatic speedup of settling, at the cost of an equally
dramatic reduction in accuracy (Fig. 3).

Is this reduction in accuracy disastrous for the perfor-
mance of the system? It is if we assume that every missed
location is a missed trial; behavioral performance usual-
ly shows a less than 10% error rate. However, if we in-
stead assume that the system checks the accuracy of its
response with an object identification process, then
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Fig. 3. (A) Location process times for varying starting states. Locating a potential target is dramatically speeded by larger starting membrane
potentials, corresponding to a lowered threshold. (B) Error rates rise rapidly as the location process becomes faster.
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chooses a new location if that object does not match the
target template, then risking wrong location guesses
could be a good strategy.

For simplicity we assume, rather than explicitly mod-
el, this object identification process. This identification
may happen by virtue of the dorsal visual stream provid-
ing extra activation to that location in early ventral
stream areas, so that higher areas respond predominant-
ly to that information versus information from sur-
rounding distractors. This account is in general accord
with the biased competition model of Desimone and
Duncan (1995), but our model does not depend on these
details. We assume only that this process takes some
amount of time to identify the object at the location
selected by the model, gives a response if the object is
the target, and triggers a new iteration of the whole pro-
cess if the object is not the target.

If every missed location process results in a repeat of
that process, the total search time will be given by (loca-
tion time + identification time)/(1 � P(error)), since the
series 1 + x + x2 + x3 + x4� � � converges to 1/(1 � x) for
x < 1. That series corresponds to the total number of
location processes that will be completed on average
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Fig. 4. (A) Total conjunction search times under the consideration that th
processing cycles of the model, about the same amount of time the system ta
conjunction search times under the same considerations for identification
information is retained so that additional location processes take 1/2 the tim
efficient search parameters, changes between these two sets of assumptions.
when x = P(error), or alternately, one plus the average
number of errors per trial.

The speedup of search proved so dramatic that the
system can afford one or even more missed attentional
fixations, depending on assumptions about how long
the identification process takes, and the signal strength
and noise level. Fig. 4A gives the total search times un-
der the assumption that an identification process takes
10 extra cycles. Even though that process is fairly costly,
it can be seen that less conservative location processes
are competitive with those that locate the target on the
first try.

This assumption is probably still too conservative; it
seems unlikely that no information is retained from the
location process after the first settling process. If we as-
sume that later location processes take 1/2 the time of
the first, due to retained information, search efficiency
is biased even further toward processes that make some
mistakes in the interest of a faster location process
(Fig. 4B). In this case, an intermediate parameter setting
is the most efficient over the whole range of display sizes,
while the most efficient search parameters vary with
changing display size. Of course each missed location
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process results in a wasted object identification process,
so if object identification is very slow relative to the loca-
tion process, a conservative (and therefore parallel) pro-
cess will be most efficient.
4. Discussion

We used a model in which target localization is par-
allel and capacity-unlimited. We replicated earlier work
indicating that such a process can produce the linearly
increasing reaction times with set sizes. We went on to
test the speed/accuracy tradeoff within the model, and
discovered that the model gained so much in speed that
in some situations it was faster to obtain a correct an-
swer by running it several times at low accuracy rather
than once with high accuracy. This finding suggests that
human visual search may be performed serially by de-
fault because it is faster than performing search in
parallel.

This conception of search processes, based on an
entirely parallel target location process, has converged
with the Guided Search model (Wolfe, 1994; Wolfe,
Cave, & Franzel, 1989), in which a serial search is guid-
ed by a parallel ‘‘saliency map’’ operation. If we as-
sumed that the process retained all of its information
instead of enough to cut settling time in half, as in
Fig. 4B, we would have exactly reproduced Wolfe�s
guided search model. We do not make this assumption
because Wolfe�s own work has shown that location
information retention is not nearly perfect, (e.g., Horo-
witz & Wolfe, 2001).

Our model therefore differs from Wolfe�s in assuming
that the time consuming parallel process must be run
again for each unsuccessful attentional fixation
(although some information from the previous parallel
process may be retained). This follows from the follow-
ing train of logic: observers generally prefer eye move-
ments in standard conjunction tasks (Shen, Reingold,
& Pomplun, 2003); eye movements massively disrupt
representations in the early ventral stream areas; and
those areas are widely identified with the feature maps
that guide search (reviewed in Shipp, 2004). The impli-
cation is that the time taken by versus the accuracy of
the parallel stage becomes an important tradeoff under
parametric control of the observer. Thus, we predict dif-
ferent search patterns for different strategies on the same
search task, as well as among different search tasks as
predicted by Guided Search.

Like the Guided Search model, our model does not
specify the conditions under which search is terminated.
An effective strategy should assume that no target is
present after a number of unsuccessful guesses, or after
a conservative settling process does not settle in a given
time. The criteria for a ‘‘no’’ response will vary with the
internal parameters (strategy) used for the search, and
the physical parameters of the search. Therefore, we
have dealt only with target present responses, leaving
this issue to be addressed by future work.

Although we have wound up in nearly the same the-
oretical position as Guided Search, we have reached this
position from a very different route. Guided Search as-
sumes that a large amount of noise is inevitable in the
guidance process; we have assumed that the effective
amount of noise varies with the amount of time flexibly
allowed to that process. Thus, guidance is not inaccurate
because it must be, but because it may be faster to quick-
ly guess at and check a few locations rather than waiting
for a more certain guess at the target location.

In our model, the parameters that lead to the fastest
search depend on how long an identification process will
take, the amount of noise in the system, and the search dis-
play size. The first two parameters can be expected to vary
with the perceptual discriminability of target vs distrac-
tors, while the participants knowledge of the display size
can be varied experimentally. Our analysis predicts that
subjects should be measurably more efficient for searches
in which they know the display size before the trial.

According to this analysis, parallel neural network
models can support the conclusion that, under many
conditions, search will have a small number of serial fix-
ations. This conclusion corresponds well to the finding
from eye tracking experiments that participants in visual
search tasks that allow eye movements show a small
number of fixations in searching relatively large displays
(Brown & Gilchrist, 2000; Williams & Reingold, 2001).

This type of model can potentially account for the
full efficiency range of visual search findings. The dis-
criminability of targets from distractors can be modeled
by changing noise amounts, by reducing the difference in
input values for different stimuli, or both. Informal
experimentation suggest that these changes can produce
a range of search efficiencies. However, findings of slow
feature search, and cases in which little or no informa-
tion seems to be guiding search, require a more complex
explanation. We are working on models that explain
these effects as results of the increasing size of receptive
fields outside the fovea, and in neurons receptive to
more subtle visual features (Herd & O�Reilly, in
preparation).

As a final note, the current work has an interesting
link to theories of visual search inspired by Signal Detec-
tion Theory. A major criticism of visual search theories
is that they are ‘‘high threshold’’, that is, they do not al-
low for a distractor to be misidentified as a target. High
threshold theories have been convincingly rejected in the
domain of simple detection (Palmer, Verghee, & Pavel,
2000). The current model avoids this criticism in that
the parallel stage of the model is �low threshold�; it often
misidentifies a distractor location as a target location.

However, studies of search overwhelmingly show
many more misses than false alarms, implying that a
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low threshold model is not the only factor. We therefore
theorized a second identification process, which checks
the identity of the object at the selected location, and re-
starts search if it is not the target. In the current model
this process is truly �high threshold�; we assume it never
mistakes a distractor for a target. Because false alarms
certainly do occur in most search tasks, a more realistic
model would include a decision process that uses a rela-
tively high threshold for the identification process, but
that does sometimes mistake a distractor for a target.
This two stage arrangement may be more efficient than
simply using a high decision criteria for the parallel loca-
tion process, because it directs the (likely) time consum-
ing work of more certain identification process only to
locations that are likely to contain a target.
References

Brown, J. M. F. V., & Gilchrist, I. D. (2000). Saccade target selection
in visual search: The effect of information from the previous fi
xation. Vision Research, 41(1), 87–95.

Chelazzi, L. (1999). Serial attention mechanisms in visual search: A
critical look at the evidence. Psychological Research, 62, 195–219.

Deco, G., & Zihl, J. (2001). Top-down selective visual attention: A
neurodynamical approach. Visual Cognition, 8, 119–140.

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective
visual attention. Annual Review of Neuro science, 18, 193.
Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus
similarity. Psychological Review, 96(3).

Horowitz, T. S., & Wolfe, J. M. (2001). Search for multiple targets:
Remember the targets, forget the search. Perception & Psycho-

physics, 63(2), 272–285.
O�Reilly, R. C. (1998). Six principles for biologically-based computa-

tional models of cortical cognition. Trends in Cognitive Sciences,

2(11), 455–462.
O�Reilly, R. C., & Munakata, Y. (2000). Computational explorations in

cognitive neuroscience: Understanding the mind by simulating the

brain. Cambridge MA: MIT Press.
Palmer, I., Verghee, P., & Pavel, M. (2000). The psychophysics of

visual search. Vision Research, 40, 1227–1268.
Shen, J., Reingold, E. M., & Pomplun, M. (2003). Guidance of eye

movements during conjunctive viusal search: The distractor-ratio
effect. Canadian Journal of Experimental Psychology, 57(2), 76–96.

Shipp, S. (2004). The brain circuitry of attention. Trends in Cognitive

Sciences, 8(5), 223–230.
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of

attention. Cognitive Psychology, 12, 97–136.
Williams, D. E., & Reingold, E. M. (2001). Preattentive guidance of

eye movements during triple conjunction search tasks: The effects
of feature discriminability and saccadic amplitude. Psychonomic

Bulletin & Review, 8(3), 476–488.
Wolfe, J. M. (1994). Guided search 2.0—a revised model of visual

search. Psychonomic Bulletin and Review, 1(2), 202–238.
Wolfe, J. M. (1998). Visual search. In H. Pashler (Ed.), Attention

(pp. 13–73). Philadelphia: Psychology Press.
Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: An

alternative to the feature integration model for visual search.
Journal of Experimental Psychology: Human Perception & Perfor-

mance, 15(3), 419–433.


	Serial visual search from a parallel model
	Introduction
	Methods
	k-Winners-take-all inhibition

	Results
	Discussion
	References


