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ABSTRACT: A computational neural network model is presented that
explains how the hippocampus can contribute to transitive inference
performance observed in rats (Dusek and Eichenbaum, 1997. Proc Natl
Acad Sci U S A 94:7109–7114; Van Elzakker et al., 2003. Hippocampus
12:this issue). In contrast to existing theories that emphasize the idea that
the hippocampus contributes by flexibly relating previously encoded
memories, we find that the hippocampus contributes by altering the
elemental associative weights of individual stimulus elements during
learning. We use this model to account for a range of existing data and to
make a number of distinctive predictions that clearly contrast these two
views. Hippocampus 2003;13:299–312. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

Rats, pigeons, and primates display what is referred to as transitive infer-
ence. In everyday terms, transitive inference is used when one is told that
John is taller than Bill, who is taller than Fred, and then one logically infers
that John is also taller than Fred. As studied in the laboratory, this phenom-
enon emerges after subjects have been trained on a series of simultaneous
discrimination problems involving common stimuli, e.g., A�B�, B�C�,
C�D�, D�E�, where � designates the rewarded choice, and � desig-
nates the nonrewarded choice. After such training, the subject is then tested
with a novel combination, BD, and transitive inference is demonstrated
when the subject can “infer” that because B is chosen over C, and C is chosen
over D, then B must be chosen over D. This outcome has been obtained a
number times (e.g., von Fersen et al., 1991; Dusek and Eichenbaum, 1997;
Van Elzakker et al., 2003) in neurologically intact subjects.

The central problem addressed in this article is the fact that rats with
hippocampal damage can solve the training problems but fail the BD trans-
fer test (Dusek and Eichenbaum, 1997). Dusek and Eichenbaum (1997)
interpreted their results as strong support for the idea that the hippocampus

provides the substrate for representational flexibility—
that information stored in the hippocampus can be re-
trieved and used appropriately in novel situations. Spe-
cifically, they proposed that the intact rat encoded a
relational representation of the individual elements of
problems, A�B�C�D�E, that enabled comparisons
to be made among them. Thus, if confronted with the
novel combination, BD, the rat compares the position of
B and D on the ordered representation and infers that if
B�C and C�D, then B�D. This comparison leads to a
choice of B.

We noted in our companion article (Van Elzakker et
al., 2003), however, that there is good reason to question
the representational flexibility account of transitive infer-
ence based on results from rats trained on a five-problem
discrimination set (A�B�, B�C�, C�D�, D�E�,
E�F�). This five-premise version of the problem per-
mits two tests of transitivity, BD and BE. Our rats, how-
ever, only displayed transitivity when tested with BE. In
contrast, the representational flexibility account would
appear to predict that rats should display transitivity
when tested with either novel pair. Our analysis of these
results led us to conclude that transitivity was not medi-
ated by the inferential-like processes needed for represen-
tational flexibility, but instead was the result of rats mak-
ing their choice based on the absolute associative
excitatory strength of the individual test cues. The con-
cept of associative strength represents the capacity of the
stimulus to evoke a choice response.

In essence, our analysis implies that the previous con-
clusion that rats are using inferential-like processes to
make their choice resulted because the novel test did not
satisfy the requirement that the choice cues have equal
associative strength and therefore did not provide a true
test of transitive inference. Our account shares common
ground with other theorists who have addressed this
problem (e.g., von Fersen et al., 1991; Siemann and De-
lius, 1998).

Our analysis and conclusions raise two issues for a
theory of transitivity. First, why does training on a set of
premise pairs (A�B�, B�C�, C�D�, D�E�,
E�F�) result in a graded level of associative strength
among individual stimuli that on the surface should have
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equal values (e.g., B, D, and E)? Second, how does the hippocam-
pus contribute to this outcome? The purpose of this article is to
address these two questions. To do this, we use a biologically based
model of the hippocampus and neocortex that we have previously
applied to a variety of phenomena (O’Reilly and Rudy, 2001).

This article proceeds in several stages. First we establish our
position that transitivity is a product of graded associative strengths
to the individual cues that develop during acquisition, and not a
product of representation flexibility. We then describe in detail
how the computational model is implemented. We then show (1)
that this model produces graded associative strengths to the indi-
vidual cues that can mediate transitivity, and (2) how the hip-
pocampus contributes to graded associative strength. We also de-
rive several testable predictions from the model and conclude with
a discussion on the relationship of our model to other views.

GRADIENT OF ASSOCIATIVE STRENGTH

The representational flexibility hypothesis assumes that transi-
tive behavior in nonverbal subjects is the product of a logical in-
ference of the sort: if A�B and B�B, then A�C. Consequently, a
valid test of this hypothesis requires that the reward associations of
the individual stimuli (e.g., B and D) must be equal. Otherwise,
subjects could be performing on the basis of these unequal associa-
tive values, instead of relying on relational flexibility. This is pre-
cisely the reason that the edge stimuli, A and E, are not used in
transitive tests—A is always rewarded and E is never rewarded, so it
would be trivial for the rat to choose A over E.

The results of the companion article (Van Elzakker et al., 2003)
and the previous findings of von Fersen et al. (1991) with pigeons,
however, suggest that the assumption of equal associative strength
for the internal stimuli (including B and D) is false. Instead, these
findings suggest a simpler explanation: The discrimination train-
ing procedures that establish the basis for performance on the test
trials produces what we call a gradient of associative strength (con-
sistent with similar ideas proposed by von Fersen et al., 1991;
Siemann and Delius, 1998). This means that training produces
unequal values of reward associations for the individual stimuli. It
is this variation in the associative values of the stimuli, and not
logical reasoning, that then dictates choice behavior on the transi-
tivity test. Specifically, we show that the strong reward association
of A (which is always rewarded) can effectively bleed over into B (as
explained in more mechanistic terms in the next section), such that
B also has a somewhat positive association. Similarly, the negative
association with E (which is never rewarded) can bleed over into D,
such that it also has a negative association. Therefore, when given
the BD probe, the subject need not rely on comparative processes
any more than in the AE case, as the individual associative
strengths are sufficient to determine the selection of B over D. We
refer to this bleeding-over from the “anchor” stimuli of A and E as
the anchoring effect.

The empirical support for the idea of a gradient of associative
strength emerged in the companion article, when rats were trained

with five discrimination pairs (A�B�, B�C�, C�D�, D�E�,
E�F�). This training permitted two tests of transitivity between
two sets of internal stimulus pairs (BD and BE). The representa-
tional flexibility account predicts that subjects should choose B
over both D and E. However, they did not: B was chosen over E,
but not over D. Although these results are difficult to reconcile
with the representational flexibility account, they are very consis-
tent with the gradient of associative strength view (see also von
Fersen et al., 1991). Simply put, B’s associative value is greater than
E’s, but is similar to D’s. Specifically, we suggest that the negative
association from F bleeds over into E, but not sufficiently into D.

Thus, our computational model must accomplish two goals: (1)
it must explain how training produces a gradient of associative
values that is consistent with the data, and (2) it must clarify the
contribution the hippocampus makes to transitivity. The represen-
tational flexibility account assigns its contribution to retrieval pro-
cesses operating during testing. Our account will show that when
the hippocampus contributes to transitivity, it does so during the
acquisition phase when the associative values of the individual
elements of the problem are being learned.

IMPLEMENTATION OF TRANSITIVE
INFERENCE PARADIGM IN THE MODEL

We begin our explanation of the model by providing a high-
level description of the kinds of processes that enable the rat to
solve the premise discrimination problems. We then formalize
these processes in our computational neural network model of the
hippocampus and neocortex (O’Reilly and Rudy, 2001).

Experimental Paradigm

In the actual experiments (Dusek and Eichenbaum, 1997; Van
Elzakker et al., 2003), the odors were presented to the rats in two
sand-filled cups that were close together. A reward (�, Froot Loop)
was buried in one of the cups and the rat could obtain it by digging
it out of the sand. Thus, when the rat approached a cup, it had two
options: it could dig or switch to the other cup. We used the
five-problem (premise) set (A�B�, B�C�, C�D�, D�E�,
E�F�) to simulate the problem because it permitted more than
one test of transitivity: BD, BE, and CE.

We assumed that the choice behavior displayed by the rat is
determined by two learning processes: (1) a stimulus selection
process, and (2) a response selection process (Fig. 1). For example,
when the rat encounters the first anchor choice stimuli (AB), it will
sample a roughly equal combination of both odor stimuli and
make an initial assessment of which stimulus to approach. Presum-
ably this assessment is based on which stimulus is more likely to
provide reward. This is the stimulus selection process. If the rat
then approaches A, it will receive increased stimulation from A as
compared with stimulus B, which we denote as Ab (where the
closer stimulus is in upper case, and the further one in lower case).
Conversely, if it approaches B, it would experience the Ba situa-
tion. The response selection process then operates on this config-
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uration of the inputs: the rat decides either to dig for the reward at
the closer stimulus or to switch to the other stimulus (in which case
the rat digs in this other stimulus cup). Thus, in the Ab case, the rat
could either dig at A or switch to dig at b, and the reinforcement
outcome would be a direct consequence of this choice (i.e., it
would be rewarded for digging at A, and not for switching to b).
Note that this switching behavior was frequently observed during
training—rats would approach one cup but then not dig, choosing
instead to dig in the other cup.

These two processes are differentially engaged by the five training
pairs (A�B�, B�C�, C�D�, D�E�, E�F�), which present
qualitatively different problems to the rat. The anchor problems
(A�B� and E�F�) can be solved just based on the differential
reinforcement histories of the stimuli, and thus load more on the
stimulus selection process. In the A�B� case, A is always rewarded,
but B is rewarded only on half the trials, so the rat can relatively easily
choose to approach A in the stimulus selection process. Similarly, in
the E�F� case E is rewarded on one-half of the trials, but F is never
rewarded, so the rat can solve this problem just by learning to avoid F
in the stimulus selection phase. These anchor problems can be con-
trasted with the internal problems (B�C�, C�D�, D�E�). Be-
cause the rat is rewarded equally often for each of the individual stimuli
in these problems, the rat would seem to have no straightforward
solution. Thus, the stimulus selection process does not provide the
solution to these problems, leaving it to the response selection process
to make the final decision of where to dig.

In summary, the anchor and internal problems differ qualita-
tively because the anchor problems permit an elemental solution,
and thus can be solved simply on the basis of the associative values
attached to the individual cues. In contrast, the internal problems
cannot be solved unless the subject constructs a conjunctive repre-
sentation of the choice stimuli that resolves the ambiguity of their
associative values (Rudy and Sutherland, 1995; O’Reilly and
Rudy, 2001). In short, the stimulus selection process acts as an
optimization mechanism (i.e., leading to faster performance) for
the relatively easy anchor problems, but not for the internal prob-
lems. This fact will play a critical role in our simulations.

Implementation of Stimulus Selection

We separated the stimulus selection and response selection pro-
cesses by treating stimulus selection as a mechanism that controls
the probabilities of input patterns that are then presented to our
standard neural network model of the neocortex and hippocampus
(O’Reilly and Rudy, 2001). Thus, the neural network model con-
stitutes the response selection mechanism (as described in the next
section), and the stimulus selection mechanism simply controls the
frequencies of input patterns that are presented to the network. For
example, the stimulus selection process can turn the A�B� prob-
lem into two different response selection problems, Ab (A closer
than b) or Ba (B closer than a) (Fig. 2). Consistent with our analysis
of the behavior of the rat, we based the probabilities of stimulus
selection for each of these patterns on the relative reinforcement
values of the two choice stimuli:

P(Ab) � Rew(A)/[Rew(A) � Rew(B)]
(1)

P(Ba) � Rew(B)/[Rew(A) � Rew(B)]

Thus, the probability with which the stimulus selection process
selected Ab for the A�B� problem (P(Ab)) is simply the relative
reward strength of A [Rew(A)] normalized by the total reward
strength of both A and B.

Initially, the reward strengths of all the stimuli are set to 0.5, and
therefore the probabilities are also 0.5. As the simulated rat expe-
riences different patterns of reward for selecting the different stim-
uli, the reward strengths are modified, and this changes the prob-
abilities of the two alternative presentations of a problem.
Specifically, when any given trial is rewarded, the reward values of
both the proximal and distal stimuli are modified. For example, if
the stimulus selection process chooses to approach the A stimulus
on the A�B� problem (Ab), and the response selection process
chooses to dig in response to Ab, then a reward will be obtained.
This reward will increment the reward strength of A [Rew(A)] by a
small fixed amount (0.035), and decrement the reward strength of
B by this same amount (i.e., the approach A and avoid B decisions
are both rewarded, because both lead to the same outcome and
there is no basis to favor one over the other). This will then increase
the probability of Ab being presented next time (and decrease the
probability of Ba) according to equation 0. Similarly, if the stim-
ulus selection process selects Ba and the response process decides to
switch instead of dig, then this is also rewarded and the reward
values are incremented as before. If no reward occurs (because of
either an incorrect dig or switch) then we did not change the
values. We also tried an alternative scheme where the values were
adapted in the opposite direction of the rewarded case, but with
one-half the magnitude, and it made no significant difference to
the results, so we used the simpler reward-only model. In sum, the
change in reward strength for an item X is

�Rew�X� � � � � if X selected and reward occurs
� � if X not selected and reward occurs (2)

To see why stimulus selection is an important part of the model, we
extrapolate to what will happen in the anchor cases of A�B� and
E�F�. Because A is always rewarded, its reward strength Rew(A)
will approach 1. However, Rew(B) will remain around 0.5 because

FIGURE 1. Two stages of selection as represented in the model.
In the first stimulus selection stage, one of the two stimuli is selected
to approach. In the second response selection stage, the decision to
either dig at the selected (close) stimulus or switch to the other (far)
stimulus is made. A and B represent two odors.
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it is equally often rewarded as not. The overall result is that the
stimulus selection process will tend to approach A (i.e., produce
Ab) two-thirds of the time (by equation 1: P(Ab) � 1/(1�0.5) �
0.67). Conversely, the selection of Ba will occur only one-third of
the time. The net result is that the response selection model learns
mostly to dig at the Ab pattern and does not have to learn as much
to switch when faced with Ba. Consequently, it is easier for the
model to learn to dig at the Bc pattern in the B�C� problem,
because it does not have to overcome such a strong bias to switch in
response to the B stimulus. Thus, stimulus selection provides a
means for the “bleed-over” of the anchoring effects to neighboring
stimuli. These effects are even stronger in the E�F� case, because
F achieves a reward strength of 0, while E stays at around 0.5.
Using equation 1, this means that after enough training Ef will
come to be selected virtually 100% of the time (0.5/(0.5�0)), and
Fe 0% [0/(0.5�0)]. This amounts to the rat always avoiding F,
which is more extreme than the Ab case, in which the rat still
approaches B one-third of the time. Because the elemental com-
ponents of the interior problems (B�C�, C�D�,and D�E�)
are all associated equally often with reward and nonreward, no
dominant stimulus selection pattern will emerge, and both pat-
terns associated with each problem will be presented about equally
often to the response selection network.

Although the stimulus selection process is critical to the acqui-
sition phase of the simulation, it is not implemented during the test
phase when the model is presented with BD and BE. Thus, for
example, when the rat is presented with BE, test performance is
determined by the tendency of the network to produce a dig re-
sponse when it is presented with the Be pattern and to generate a

switch response when presented Eb. This is simply because the
response selection model has no stochastic component and can be
assessed with a single test, whereas the stimulus selection process is
stochastic and would require sampling to minimize added noise in
the measurements. Furthermore, because the tested elements typ-
ically have roughly equal associative value, the stimulus selection
process would not substantially affect the results in any case.

Implementation of Response Selection

The response selection process is simulated via a neural network
model (Fig. 3) that interfaces to the stimulus selection process by
receiving the selected input patterns, and producing either dig or
switch output patterns (Fig. 2). This model is our “standard
model” of the hippocampus and neocortex (O’Reilly et al., 1998;
O’Reilly and Munakata, 2000; O’Reilly and Rudy, 2001; Rudy
and O’Reilly, 2001) The basic mechanisms of this model incorpo-
rate widely accepted ideas of cortical function in one coherent
framework called Leabra (O’Reilly, 1998; O’Reilly and Munakata,
2000). The hippocampal component uses these same mechanisms,
while incorporating the specialized anatomy and physiology of the
hippocampus as emphasized by a number of theorists (Marr, 1971;
McNaughton and Morris, 1987; Rolls, 1989; O’Reilly and Mc-
Clelland, 1994; McClelland et al., 1995; Hasselmo, 1995).

The model learns to associate input patterns with output pat-
terns. This learning is governed by a combination of Hebbian and
error-driven learning, a central feature of the Leabra algorithm.
The error-driven learning uses bidirectional activation propaga-
tion to communicate error signals, and is compatible with known

FIGURE 2. Training patterns: stimulus input pairs and trained
output response. Each stimulus has four associated units, with the
lower three units representing the proximal version of the stimulus
(the stimulus that is initially approached by the stimulus selection
process), and the upper three units representing the distal version.

The model has to respond with Dig or Switch, with respect to the
proximal stimulus. Note that the two versions of each stimulus over-
lap, with only one bit of information distinguishing the close and far
representations.
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properties of synaptic modification (O’Reilly, 1996; O’Reilly and
Munakata, 2000). The cortex has both an elemental representation
of stimulus inputs (layer Elem in Fig. 3) and an associative layer
that can learn higher-order representations of stimulus elements
(layer Assoc in Fig. 3). Error-driven learning can, in response to
explicit task demands over many trials of learning, shape represen-
tations in the associative layer to encode conjunctive representa-
tions of stimuli (O’Reilly and Rudy, 2001), as are needed to learn
the internal problems. The output layer receives from both ele-
mental and associative layers, and has two valid patterns: activation
of all the units at the right side of the layer means “dig,” while the
left side means “switch.” The response layer provides a simple
reduction of the distributed output layer for coding responses: the
output layer itself has to be distributed to provide a substantial
representation in the hippocampal system.

The hippocampal system receives inputs (via entorhinal cortex
(EC) layer EC_in) from the entire cortical system, including the
output layer, and sends reciprocal projections back out to these
same layers (via layer EC_out). The areas of the hippocampus
proper (dentate gyrus (DG), area CA3, and area CA1) form con-
junctive encodings over the EC inputs, and can contribute to out-
put responses by associating a pattern of input cues with a pattern
of activation over the output layer. The sparse activations of the
DG, CA3, and CA1 layers produce a natural tendency for this
system to encode stimulus conjunctions (Marr, 1971; O’Reilly and
McClelland, 1994; O’Reilly and Rudy, 2001). The recurrent col-
laterals of area CA3 support pattern completion where a partial
input pattern (e.g., the Ab input pattern) can trigger recall of the
entire associated pattern that was previously conjunctively encoded

(e.g., the “Dig” output pattern) (McNaughton and Morris, 1987;
Rolls, 1989).

The model was initially trained by presenting the problems in
blocks of trials: a block of A�B�, followed by a block of B�C�,
and so on through E�F�. After the model was performing well in
the blocked phase, the problems were randomly interleaved. This
training sequence captures the essence of the training paradigm
used in rats (Dusek and Eichenbaum, 1998; Van Elzakker et al.,
2003). Our basic simulations used two blocks of seven trials per
block, followed by 10 epochs (passes through all training cases) in
the interleaved condition. After training, the model was tested with
new combinations of stimuli (BD, BE, and AF). The number of
trials per block, the total number of blocks, and the number of
interleaved trials were all varied in order to analyze their effects on
performance. Both the complete model and an incomplete model
that lacked the hippocampal circuitry were trained.

It is critical to appreciate that the performance of the model, i.e.,
its output representation (Fig. 3), is determined by the combined
influence of three systems: (1) elemental cortex, (3) associative
cortex, and (3) the hippocampus. The results of our model can be
understood as a product of the interaction of this feature of the
architecture and error driven learning operating throughout the
network. Note that the response layer is the source of the error
signals that drive this learning. If there is no error on a given trial,
then this form of learning is not present. Because the output of the
model is determined by the summation of the three systems, a
correct output that is produced by any one of the systems will
eliminate error signals experienced by all systems. In other words,
the network can exhibit a blocking effect like that described by the
well-known Rescorla and Wagner (1972) model of Pavlovian con-
ditioning. This model assumes that increments in associative
strength are a product of the difference between the total associa-
tive strength of all cues present on a training trial and the asymp-
totic level of associative strength the unconditioned stimulus (US)
will support. The blocking effect occurs when prior training to one
stimulus element (A–US) prevents conditioning to another stim-
ulus element (B) when the two stimuli are paired together with the
US (AB–US) (Kamin, 1968). Because A already predicts the US,
the error in prediction that drives new increments in associative
strength is eliminated. Consequently, there is little or no increment
in associative strength to the added cue, B.

A major goal of the simulations is to understand how the hip-
pocampus contributes to transitivity. To preview the results, the
simulations indicate that there is a “blocking effect” produced by
output of the hippocampus that reduces what is learned by the
other systems in the model.

Simulation of the Basic Transitivity Findings

We begin by describing how the intact and hippocampally le-
sioned models perform on the basic transitive inference task. Fig-
ure 4 displays the performance of the intact model during the final
stage of interleaved training before the model was tested with the
BD, BE, and AF probe stimuli. The lesioned model performance
was indistinguishable from the intact model. Note that although
the internal training problems require conjunctive representations,

FIGURE 3. Neural network model of the response selection pro-
cess, having cortex and hippocampus components. The activation
pattern shown (active units in white) shows the Ab input pattern, and
the response of the model is to Dig.
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the lesioned model solved them. This outcome has been demon-
strated in earlier work with this model (O’Reilly and Rudy, 2001).
Furthermore, both models showed a strong anchoring effect, with
performance being better for the anchor problems of A�B� and
E�F� (which was nearly perfect). Note that the asymmetry in the
AB versus EF problems is in accord with the stimulus selection
asymmetry described previously, because B has some reward value
to compete with A, but F has zero reward value and thus provides
no competition with E. These results are similar to those found in
rats and pigeons (Dusek and Eichenbaum, 1997; von Fersen et al.,
1991; Van Elzakker et al., 2003).

Figure 5 displays the performance of the intact and lesioned
models on three transfer problems: BD, BE, and AF. Figure 5
demonstrates two important phenomena:

1. Neither the intact nor lesioned model demonstrates transitive
inference on the BD problem—they choose B over D only barely
over the 50% chance level. This simulates the findings of Van
Elzakker et al. (2003) and clearly shows that one cannot account
for performance on this task in terms of logical inference.
2. The intact model displayed transitivity on the BE problem,
reliably choosing B. In contrast, the lesioned network performed
near-chance on the BE problem. This outcome simulates Dusek
and Eichenbaum’s (1997) finding that rats with damage to the
hippocampal formation perform at chance on the transitivity test.
It should be appreciated that Dusek and Eichenbaum trained rats
on a four-problem set (A�B�, B�C�, C�D�, D�E�) and
tested them on BD. However, just as E is a member of the anchor
E�F problem in the five-problem set used to train the model, D in
is a member of the D�E� anchor problem in the four-problem set
used by Dusek and Eichenbaum. We will show that it is how the
anchor problem is learned that is critical for understanding the
contribution of the hippocampus; therefore, under our model,
Dusek and Eichenbaum’s BD is functionally equivalent to our BE.

Figure 5 also shows that both the intact and lesioned model
reliably chose A on the AF trial. This outcome correctly simulates

the results reported by Van Elzakker et al. (2003) and Dusek and
Eichenbaum (1997). This is the expected outcome because of the
different reinforcement histories associated with A and F; respond-
ing to A was always rewarded, but responding to F was never
rewarded.

Analysis of Initial Results

On the test trials, the model is presented with novel combina-
tions of stimuli. Consequently, conjunctive representations of the
test pairs are not available, and we assume that the model must use
the output of the elemental associative system to generate its
choice. Thus, performance on the AF, BD, and BE test cases must
be due to the individual elements’ association with the dig or
switch response.

Associative Weights

To examine the basis of responding to the other test cases, we
examined the connection strengths between the elemental stimu-

FIGURE 5. Transitive inference transfer pair performance for
intact (a) and lesioned (b) models. Both models perform near-chance
on BD, and near-perfect on AF (which is supported by strong elemen-
tal associations, given that A was always rewarded and F never was).
The key finding is that intact model performs much better on the BE
transitivity test than does the lesioned model.

FIGURE 4. Errors during interleaved training. Note that the per-
formance curve has the same shape as that of the behavioral rats in
Eichenbaum’s study. Specifically, performance during interleaved
training is best for the E vs F pair; this has the least conflict because of
the larger anchoring effect.
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lus representations and the output responses of dig or switch (Fig.
6). By looking at the difference in strength between the dig versus
switch response for the representation of the stimulus when it has
been selected by the stimulus selection process (i.e., when it is the
close stimulus), we can assess how the model will perform on test
cases involving these stimuli. Complementary patterns of weights
were found for the far representation of stimuli (i.e., close A is
strongly associated with dig, while far a is strongly associated with
switch).

We can directly explain the two key findings listed above in
terms of these weight patterns:

Poor BD performance: Both the intact and lesioned model have
ambiguous weights for the D stimulus—it is not strongly associ-

ated with either dig or switch responses, and thus could produce
either response. Although the B stimulus is more strongly associ-
ated with digging, this is not enough to overcome the variable
responses to the D stimulus. Thus, neither network exhibits a
reliable overall pattern of “transitive inference” performance on the
BD test case.

Differential BE performance: The intact network develops a stron-
ger switch versus dig weights from the E stimulus. This means that
it will tend to avoid E in the BE test, and as observed choose B over
E. In contrast, the lesioned network has a much more ambiguous
association with dig and switch, with only a weak overall switch
association. Thus, it will perform poorly on the BE test. Further-
more, the intact model produces a stronger B dig association than
the lesioned model, which also favors the transitive inference
choice of B over E. Thus, the key to understanding the contribu-
tion of the hippocampal system on this problem is to understand
how it contributes to the stronger E-switch and B-dig associations.

Hippocampal Blocking Effect

We noted that the blocking effect is central to understanding
how the hippocampus contributes to the ability of the rat to display
transitivity. From our analysis of the weights, we can conclude that
this blocking effect is taking place primarily on the E�F� trials
when the network correctly chooses to dig in E. Instead of this
pattern producing a strong positive association between E and dig
in the intact network, this association is blocked. The lesioned
model does not have this blocking effect, and it therefore develops
the stronger E-dig association that prevents it from choosing B over
E on the BE test case. Furthermore, the stimulus selection process
ensures that the network will tend to approach E much more
frequently than F (because F is never rewarded), so there should be
many opportunities for the E dig association to strengthen.

Why does the hippocampus block this E-dig association? First,
unlike the cortex, the hippocampus quickly and automatically con-
structs conjunctive representations of co-occurring stimulus pat-
terns (O’Reilly and Rudy, 2001). So, even though the solution to
the E�F� anchor problem does not require a conjunctive repre-
sentation, the hippocampal system of the intact model generates
one automatically. For example, when the stimulus selection pro-
cess presents the network with the close E, far F (Ef) pattern, the
intact hippocampus constructs a conjunctive representation of that
pattern and associates it with the dig response. Thus, because this
hippocampal representation can produce the correct response on
these trials, it will block error signals that would otherwise yield
positive associations between E and the dig response (Fig. 7).

In addition to this basic blocking logic, there are two important
implications of the fact that E is also a member of the D�E�
training pair. First, this training pattern will cause the close E
stimulus to be associated with the switch response, in conflict with
any E-dig association derived from the E�F� case. This produces
a net switch association for E in the intact network when the E-dig
association is blocked. Second, this D�E� case makes the E stim-
ulus by itself ambiguous, which under an error-driven learning rule
will cause the network to rely more strongly on the hippocampal
conjunctive representation of Ef, enhancing the blocking effect.

FIGURE 6. Averaged final weights for digging and switching in
proximal stimuli after training for intact (a) and lesioned (b) models.
The poor performance on BD by both models can be explained by
noting that the model likes to both dig and switch to the D stimulus,
producing random behavior even though it has a slight preference for
digging in B. The differential performance on the BE problem arises
because the intact model learns a net switch association from E (i.e.,
switch is significantly stronger than dig), which favors choosing B
over E. Conversely, the lesioned model learns roughly equally strong
dig and switch associations for E. Similarly, the intact model develops
a stronger dig association for B than the lesioned model, which also
produces better BE test performance in the intact model.
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In short, learning of the association between the close E elemen-
tal representation and the dig response is blocked by the hippocam-
pal conjunctive representation of Ef and the dig response. The
lesioned model does not automatically construct the conjunctive
representation of Ef, so this source of blocking is not present. The
resulting differential associative weights then lead to the observed
testing performance, with the intact model reliably choosing B
over E and the lesioned model not.

The same reasoning can be applied to understand why the intact
model has a stronger B-dig association than the lesioned model.
Specifically, the hippocampus rapidly learns the A�B� problem
and therefore blocks the association of b (far) with switch. This
blocking then allows the B-dig association from the B�C� prob-
lem to dominate, producing the observed stronger B-dig associa-
tion.

Lack of Hippocampal Blocking on Internal
Problems

One remaining question needs to be addressed: if the hippocam-
pus contributes to learning the anchor problems, why doesn’t it
also contribute to learning the internal problems (B�C�,
C��D�, D�E�)? This question is important because if the
hippocampus participated in providing rapid conjunctive repre-
sentations for the internal problems, then these representations
should block the learning of associations for all of the stimuli, not

just B and E. It is the differential effects of the hippocampus on
these stimuli that lead to the transitive behavior of the network.

Our answer is that the internal problems are nonlinear discrim-
ination problems. The composition of each problem overlaps com-
pletely with another problem. For example, B�C� and C�D�
share C; and C�D� and D�E� share D. Therefore, each stim-
ulus is completely ambiguous, experienced equally often with a
rewarded and nonrewarded outcome. Such problems can only be
solved if the animal or model constructs conjunctive representa-
tions of the stimulus pairs. So, one might expect a strong contri-
bution from the hippocampus (cf. Sutherland and Rudy, 1989).
Nevertheless, when we previously explored in detail how our
model solves nonlinear discrimination problems, we found that
the hippocampus does not typically contribute to faster learning
(O’Reilly and Rudy, 2001). This is consistent with the literature
(see Rudy and Sutherland, 1995, for review). We refer the reader to
the report by O’Reilly and Rudy (2001) for a detailed discussion of
why this is the case, with only a quick summary in the present
study. The critical point is that in addition to encoding new mem-
ories, the hippocampus must also recall previously stored memo-
ries, which occurs via pattern completion supported by the CA3
recurrent collaterals, among other things. Pattern completion and
pattern separation (which leads to new encoding of separated con-
junctive representations) are fundamentally in conflict with each
other (O’Reilly and McClelland, 1994); which one dominates de-
pends on the level of input pattern overlap. Therefore, the highly
overlapping internal problems will tend to trigger recall instead of
new encoding. Thus, the hippocampus will be retrieving the an-
swers to other training problems instead of learning the correct
answer to the current problem, and this prevents it from producing
a blocking effect.

Representational Overlap Analysis

To test further our analysis of the behavior of the network, we
measured the degree of overlap of representations in the association
cortex layer of the intact and lesioned models, to see if the hip-
pocampus was influencing these representations. Specifically, we
expected that the rapid learning of the Ef conjunction by the hip-
pocampus in the intact model would cause the representation for
this Ef conjunction to be separated (i.e., via hippocampal pattern
separation influencing the cortex) from the representation of the
individual elements E and f. Indeed, this separation is what enables
the model to get the Ef training problem correct (i.e., generate a dig
response) even though E by itself has a net switch association in the
intact model (Fig. 6). In contrast, the lesioned model has elemental
E weights that are more strongly associated with dig, so it can
perform correctly using just the elemental associations for E and f.
To test these ideas, we computed the Euclidean distance between
the association layer representations of Ef and the elements E and
f, and found that this distance was 25% greater in the intact model
compared with the lesioned one. Thus, hippocampal pattern sep-
aration was influencing the cortical representations to be more
separated for this conjunction.

FIGURE 7. a: Illustration of how rapid hippocampal encoding of
the EF training case can block the elemental associations between E
and the dig output response (shown by a thinner line), causing the
overall balance to favor the E-switch association, which does not
suffer from this blocking effect and is therefore stronger (as shown by
the thicker line). B: In the hippocampally lesioned model, this block-
ing effect from the hippocampus is not present, and the elemental
associations between E and the dig output are roughly equal to those
to the switch output. Only the critical weights between the close
elemental representations are shown.
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MODEL PREDICTIONS

Our simulations and analyses with the intact and lesioned mod-
els provide an explanation of the basic results reported by Van
Elzakker et al. (2003) and Dusek and Eichenbaum (1997). In
addition, the model generates a number of predictions that can be
evaluated to further establish its validity. These predictions are
based on manipulations of: when lesions are made relative to train-
ing, the training regime, and more selective lesions of hippocampal
subregions.

Anterograde Versus Retrograde Effects of
Hippocampal Damage

The idea that the hippocampus contributes to performance on
transitivity tests by its effect on learning is fundamental to how the
model explains the data. Thus, as we showed, damage to the hip-
pocampus before training (anterograde damage) should affect test
performance. Another consequence of this idea, however, is that
damage to the hippocampus after training (retrograde damage)
should not affect test performance. This is because the elemental
associations (which determine test performance) are established
during training and should be available to influence test perfor-
mance even in a lesioned subject or model.

We tested this general prediction by removing the hippocampus
in the model after training on the five problems but before testing
it on BD, BE, and AF. Figure 8 shows that removing the hip-
pocampal circuitry after training did not affect test performance
(cf. Figs. 8 and 5).

Note that the prediction of the model is exactly the opposite of
what one would derive from the representational flexibility ac-
count (Dusek and Eichenbaum, 1997). The latter view assumes
that the hippocampus supports transitivity by providing a flexible
retrieval strategy. Thus, it predicts retrograde damage to the hip-

pocampus should eliminate transitivity. Therefore, a behavioral
study on the retrograde effect of damage to the hippocampus on
transitivity test would provide a strong test of these two views.

Replacing the Hippocampus With a Cue

According to our analysis, the hippocampus contributes to tran-
sitive inference via a blocking effect on the EF and AB problems.
We reasoned that we could simulate the effects of the hippocampus
in the lesioned model by simply providing an additional external
cue that could produce the same kinds of blocking effects that the
hippocampal conjunctive representations normally produce in the
intact animal. Specifically, suppose a distinctive cue such as a shape
or color (call it X) was added to the cup that contained odor F. This
X cue would provide a unique, reliable basis for performance on
the EF problem, in just the same way we think the conjunctive
hippocampal representation does in the intact rat. In particular,
this X cue would lead to rapid error reduction on this EF problem
and therefore block the association of the E stimulus with the dig
response, resulting in a pattern of elemental weights that should
favor performance on the BE transitive inference problem. Figure
9 shows that this result was obtained in the lesioned model with the
X cue provided during training. This cue was simulated by simply
activating two additional units for the F stimulus (these units were
never previously used in any of the other stimuli).

Improving BD Performance With a Cue

With the five-pair training problem (A�B�, B�C�, C�D�,
D�E�, E�F�) studied in this and the companion article (Van
Elzakker et al., 2003), performance on BD has always been worse
than on BE. According to the models, this is because the associative
weights to the dig response for B and D are similar. However, using
the same kind of blocking logic applied in the previous prediction,
we can alter the relative performance on BD and BE by adding a
distinctive X cue to the E cup on D�E� trials. This manipulation
causes the D association with the dig response to be blocked by the

FIGURE 9. Lesioned performance of the model on test trials
when a distinctive cue is added to stimulus F in training. This cue
simulates the hypothesized role of the hippocampus in producing
better BE test performance by blocking the association between E and
dig that would otherwise be learned on the EF trials.

FIGURE 8. Effects of retrograde hippocampal lesions on test trial
performance of the model. Note that performance is similar to that of
the intact model (Fig. 5). This supports our analysis that the hip-
pocampus is contributing during training via the blocking effect, and
not via flexible retrieval during testing, as Dusek and Eichenbaum
(1997) argued.
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X stimulus, giving D a net switch association. This favors the
choice of B over D on the BD test, as is shown in Figure 10 (note
that this effect applies to both the intact and lesioned models).
Interestingly, with this distinctive X cue in place, the intact model
now fails to perform well on the BE test because the X cue was not
present on the E�F� trials, so E without the X cue acquired a net
positive (dig) association that impaired BE performance.

CE Test Case

We can use the models to predict performance on the CE test
problem, which was not tested behaviorally in rats (Van Elzakker et
al., 2003). Based on the associative weights shown in Figure 6, C
has a roughly neutral association with dig and switch, with just a
slight dig preference. However, the intact model has a strong
switch association for E, which favors selection of C on CE. There-
fore, we expect that performance on CE will be better than BD, but
worse than BE, because B has a stronger net dig association than C
(i.e., C does not benefit from the A anchoring effect). This was
confirmed (Fig. 11). CE performance in the lesioned model was
worse than in the intact model and was essentially the same as BE,
as one would expect.

Six-Pair Problem

Because all test probe performance in the model stems from the
anchoring effects and not from “true” inference, it follows that if
the network is tested on two stimuli that do not benefit directly
from anchoring, it should not perform above chance. This is im-
possible to test in the five-pair problem explored heretofore, be-
cause all possible novel test probes involve either a B or E stimulus,
which are directly affected by the anchoring phenomenon. There-
fore, we extended the training stimuli to the six-pair problem going
from A through G, such that the anchoring effects apply to B and
F. Stimuli C, D, and E should thus be relatively unaffected, and

indeed we found that testing on CE produced below-chance levels
of performance in the model (Fig. 12). Conversely, the model
performed well above chance for the BF test trial, as predicted by
anchoring.

Effects of Overtraining

The model makes interesting predictions regarding the effects of
the level of training provided to the model. In all the results pre-
sented to this point, we have provided just enough training for the
network to get significantly above-chance levels of performance on
the training pairs. However, an interesting dynamic occurs as we
continue to train the model beyond this point: we find that the
differences between the lesioned and intact models on the transi-
tivity test items disappear. Recall that the entire difference between
the intact and lesioned models lies in the blocking effect that causes
the E representation to not acquire a dig association on the EF

FIGURE 11. Performance on the CE test problem as compared
with the previously tested problems. Based on the associative weights
(Fig. 6), the E should have a net switch association in the intact model,
while C is roughly neutral. Therefore, it should fall between BD
(where B has a small net dig association and D is roughly neutral) and
BE (where E has a net switch association, which combines with the net
dig association of B to produce better performance). Lesioned model
performance should be roughly the same as on BE.

FIGURE 10. Intact performance of the model on test trials when
a distinctive cue is added to stimulus E in the D�E training trials.
This cue blocks the association of D with the dig response, giving D a
net switch association that favors the selection of B on the BD test.
Note that performance on BE is now at chance, because the distinctive
cue is not added to E on E�F� trials, and the model learns that E by
itself (with no cue) is rewarding.
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training patterns. Instead, the E representation is associated with
switch from the DE problems. If we continue to train the lesioned
model, however, the EF problem is easier than the DE problem
because it does have the unambiguous F stimulus. Therefore, at
some point the model will learn EF quite well and stop building up
a dig association for E, while still building up a switch association
based on the DE problem. Therefore, we predict that BE test
performance in the lesioned rat will continue to improve with
training as E acquires more of a net switch association. Similar
dynamics will occur for the B dig association. Figure 13 shows this
prediction in the lesioned model with more extensive amounts of
training.

Lesions of Dentate Gyrus

Hippocampal pattern separation of the EF and AB training
patterns is critical for the blocking effects that lead to the good test
performance of the intact network relative to the lesioned one.
According to our detailed analyses of the hippocampal system
(O’Reilly and McClelland, 1994), the dentate gyrus (DG) is par-
ticularly important for pattern separation because of its exception-
ally sparse activations and large size. Furthermore, this area is the
only major area of the hippocampus that can be lesioned without
completely blocking the flow of activation through the hippocam-
pal circuit. Therefore, we tested whether DG lesions produced
impairments of the same nature as those observed with lesions of
the entire hippocampus. In fact, they did (Fig. 14). This provides
supporting evidence for our account of the dependence on the
hippocampus for transitivity. Specifically, the anatomy of the DG
is instrumental in separating the necessary patterns such that the
rat can choose B over E in test trials. Without the DG, pattern
separation in the hippocampus is reduced, lessening the blocking
effect that is otherwise seen in the intact model.

Summary of Predictions

Based on the above experiments with the models, we make the
following predictions for experiments that could be tested straight-
forwardly in rats:

1. Retrograde hippocampal lesions (after training, before test)
should produce relatively little effect compared with anterograde
lesions. Note that this prediction contradicts several other findings
in the literature, demonstrating that retrograde lesions have larger
effects than those of anterograde lesions (e.g., Kim and Fanselow,
1992; Maren et al., 1997; Frankland et al., 1998; Richmond et al.,
1999; Anagnostaras et al., 1999; Rudy et al., submitted;). This is
attributed to the fact that the absence of the hippocampus can be
compensated for through cortical learning (O’Reilly and Rudy,
2001), but if the hippocampus is present during training the rat
will preferentially rely on it, and performance will therefore be
impaired with retrograde lesions.

FIGURE 12. Results on test problems for the six-pair problem.
Only in this problem can we test stimuli, CE, that do not benefit in
any way from the anchoring effects. The poor performance on CE
supports our analysis that previous good performance on other tests
are due to anchoring effects.

FIGURE 13. Effects of additional training on the lesioned model,
which improves test performance on BE and BD. This is essentially
due to a magnification of the anchoring effects, where the anchor
problems become well learned and stop driving associative weights
(i.e., E is less strongly associated with dig on the EF trials and B is less
strongly associated with switch on the AB trials). These changes im-
prove test performance.

FIGURE 14. Effects of dentate gyrus (DG) lesions in the model,
which produce impairments in the same direction as the entire hip-
pocampal lesion, caused by the loss of pattern separation otherwise
provided by the DG.
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2. Transitive inference-like performance on the BE test case with
anterograde hippocampal lesions similar to that in intact animals
can be produced by training with a distinctive cue (e.g., and added
color or shape) on the F stimulus. This distinctive cue simulates the
effects of hippocampal conjunctive representations and produces
the blocking effects that lead to choosing B over E.
3. The pattern of better BE than BD performance in intact ani-
mals can be reversed by adding a distinctive cue to the E stimulus
on the DE training trials. Again, this produces blocking effects that
shift the associative weights to favor B over D, but not B over E.
4. Testing on CE in intact animals should produce performance
levels in between that of BD and BE. This is based on the associa-
tive weight gradients.
5. Extending to six training pairs and testing on CE in the intact
animal should produce the worst test performance of any test
probe. It is only in this case that neither stimulus benefits at all
from anchoring effects.
6. Continued training with the lesioned animals should produce
steadily better performance on BE and BD, as this effectively mag-
nifies the anchoring effects.
7. Selective lesions of only the dentate gyrus should produce sim-
ilar behavioral impairments as complete hippocampal lesions, be-
cause the pattern separation supported by this area is critical for the
hippocampal contribution to normal performance.

DISCUSSION

We have used our computational model of the hippocampus
and neocortex to understand how the hippocampus might contrib-
ute to tests of transitive inference performance in rats. In contrast
to the ideas proposed by Dusek and Eichenbaum (1997) (see also
Bunsey and Eichenbaum, 1996), who suggest that the hippocam-
pus contributes by flexibly comparing memory traces at the point
of testing, we found that the hippocampal system in our model
contributed by shaping the elemental associative weights learned
during training. Specifically, rapidly learned hippocampal repre-
sentations produced a blocking-like effect by reducing the error
signals on the anchor problems (A�B�, E�F�, in the five-pair
training set), shaping the elemental associations for the B and E
stimuli in a way that increases the selection of B over E on the BE
transitive inference test. However, the D stimulus does not benefit
from this anchoring effect, so performance on BD was near-
chance. This pattern of results was observed in the behavioral study
described in the companion paper (Van Elzakker et al., 2003), and
is inconsistent with a logical inference account. We used our model
to make predictions regarding effects of anterograde hippocampal
lesions on the five-pair problem, which are consistent with the
four-pair results reported by Dusek and Eichenbaum (1997). Fi-
nally, we used the model to make seven distinctive predictions that
can be tested empirically, involving manipulations of training pa-
rameters (amount of training, additional cues, six-pair problem),
lesions (retrograde, dentate gyrus) and other test cases (CE). Work

is under way to begin testing some of these predictions in our
laboratory.

We can compare the present model with an earlier incarnation
(O’Reilly and Rudy, 2001). In this earlier model, which motivated
the studies reported in the companion article (Van Elzakker et al.,
2003), we did not incorporate an adaptive stimulus selection phase
in the model, which resulted in a more equal distribution of asso-
ciative weights. In this context, the only way that transitive infer-
ence could occur was through a pattern completion effect, where in
the four-pair problem the BD test problem triggered pattern com-
pletion to either the BC or CD training problems. If BC was
reactivated, the correct B response would be produced. However, if
CD was reactivated, the associated C response was not eligible, so
we imagined that this C would support the recall of BC instead,
leading again to the B response. Although we do think that some of
this pattern completion can be taking place in the current model, it
is swamped by the larger and more reliable effects of the differential
associative strength produced by anchoring effects. Thus, we see
the present model as an evolution of our initial work that takes into
account a critical piece that was missing from our initial analysis.
The process of developing the earlier model, and deriving clear
testable predictions from it, demonstrates an important strength of
the computational modeling approach—it can clarify a set of ideas
to the point where they can be rejected as insufficient if not sup-
ported by empirical tests. In contrast, more vague verbal theories
are not always so easily testable.

Comparison With Other Theories on Transitivity

Perhaps the most direct comparison with our work can be found
in the models developed by Levy and colleagues (Levy and Wu,
1997; Wu and Levy, 2001). Levy and Wu (1997) used a hip-
pocampal-like computational model based on sequence learning
that solves a similar transitive inference problem—the network
chooses B over D 80% of the time. However, the only mechanism
they propose is that the BD pair activates C neuronal firing which
cues the selection of B, since B beats C, and D is not selected in the
context of C. This interpretation is similar to the pattern comple-
tion account described above and is inconsistent with the symbolic
distant effect. It is somewhat difficult, then, to understand how the
same model accounts for the symbolic distance effect in subse-
quent research, as no mechanism is described (Wu and Levy,
2001). Furthermore, their model is purely hippocampal and so the
distinctive contribution of the hippocampus relative to the cortex
cannot be evaluated.

Another neural network model was developed by Siemann and
Delius (1998). This model shares our focus on the associative
strengths of individual stimulus items as the underlying basis for
transitive behavior, but it was not related to specific neural systems.
Therefore, it cannot speak to the unique contribution of the hip-
pocampus versus cortex. Furthermore, Siemann and Delius (1998)
introduced somewhat complex and specialized learning mecha-
nisms in their model, whereas our model has shown that more
generic learning mechanisms can produce differential associative
strengths and transitive behavior.
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We have already emphasized the contrasts between our account
and that of Dusek and Eichenbaum (1997). However, there are
other theoretical accounts in the literature that are much closer to
our own. In particular, the anchoring theory that emerged out of
our analysis of the model is similar in spirit to the value transfer
theory put forth by von Fersen et al. (1991). This theory argues
that associative or reward value is transferred to adjacent stimuli in
the sequence. In essence, it is argued that because the rat does not
have to learn much about E to approach it over F, it then only has
to learn slightly more about D in order to approach it over E. In
turn, this implies that the rat only has to learn slightly more about
C than D, and the problem of approaching C over D is then also
slightly easier. The value transfer theory implies that the effects of
anchoring propagates through to all stimuli, creating a linear or-
dered reward relationship.

The ranked order of weight values corresponding to the elemen-
tal stimuli A through F observed in our model (Fig. 6) would seem
to support the linear ordered reward relationship among the stim-
ulus items (Trabasso and Riley, 1975; von Fersen et al., 1991).
However, we postulate that the anchoring effect is enough to give
a preferential benefit only to the stimuli adjacent to the anchors.
Moreover, even though there is a ranked order of weights for
approaching the elemental stimuli, the intact model still fails to
perform well when tested on B versus D. Although the weights for
approaching B are stronger than those for approaching D, the
tendency to approach D still exists. If the rat happens to sample D
first (i.e., D is close), it will likely approach it and fail the test. The
value transfer theory seems to apply to the excitability of elemental
stimuli, but the difference in value does not necessarily produce
enough of an effect to cause the rat to choose the stimulus with a
nominal value advantage. In short, to choose the correct stimulus
consistently, the rat must have both a bias to approach it and a bias
to avoid the incorrect stimulus.

The model can also address the issue of extending the training
cycle by adding the inconsistent training pair of F�A�, which was
implemented by Davis (1992). It was argued that this pair renders
the cycle nontransitive because A is now at both the high (A�B)
and low (A	F) ends of the hierarchy. We found that when this
wrapping of premise pairs is implemented in the model, it takes far
more trials in order to train properly. This is to be expected, be-
cause with wrapping, the anchoring conditions are effectively elim-
inated. There is no “crutch” to make any one pair easier to solve, as
the task is completely nonlinear. Accordingly, there is no true test
of transitivity, and the model performs at chance when tested on
any of the test pairs that were not trained together.

SUMMARY AND CONCLUSIONS

After training on a series of discrimination problems (e.g.,
A�B�, B�C�, C�D�, D�E�), nonverbal organisms display
transitive performance: When tested with the novel combination,
BD, they choose B. It is important to understand why this phe-
nomenon occurs because it has implications for the cognitive pro-

cesses that one can assume an organism can use to adapt to its
environment. One possibility is that rats, pigeons and monkeys all
can extract some ordered representation from the training set
(A�B�C�D�E) and display transitive performance because
they use this ordered information to choose B when given the BD
problem. The simpler alternative, advocated here, is that transitive
performance occurs because during training each stimulus acquires
some absolute amount of excitatory strength, and when the subject
is faced with a novel combination (BD), it chooses the stimulus
with the greatest excitatory strength.

Although organisms may have the ability to extract order from
such training sequences, such a high level of cognition is not
needed to produce the observed behaviors, and parsimony favors
the simpler graded excitatory strength account. At the very least, to
claim that behavioral transitivity is mediated by high-level rela-
tional processes, the experimenter should provide independent ev-
idence that the choice stimuli have equal excitatory strength.

In support of the graded excitatory strength account, we dem-
onstrated that our computational model of the hippocampus and
neocortex (O’Reilly and Rudy, 2001) yields graded excitatory
strengths for the individual cues and produces appropriate transi-
tivity. Moreover, by analyzing the internal states of the network
(e.g., the elemental associative weights), we were able to recon-
struct how this happened and point to a subtle and perhaps tran-
sient role the hippocampus plays in contributing to the final exci-
tatory values of the stimuli. Specifically, the ability of the
hippocampus to create, both rapidly and automatically, a conjunc-
tive representation of the EF anchor blocked excitatory condition-
ing to E. We were at a loss to explain this contribution before
developing the computational model. Thus, we view this as exam-
ple of how models can provide unique insight into subtle and
complex problems in cognitive neuroscience. By testing the impli-
cations we derived from this account, we hope to determine
whether this insight is correct.
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