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Face Recognition

1. What Is Face Recognition?

I Face is the most common biometric
used by humans.

I Face recognition aims to identify
or authenticate individuals by
comparing their face against a
database of known faces and
looking for a match.

I Face recognition can be traced
back to the 1960s. The technology
first captured the public’s attention
from the media reaction to a trial
implementation at the January 2001
Super Bowl.
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Face Recognition

1. What Is Face Recognition?
I Face Verification: validate a claimed identity based on the query

face image (1:1 matching)

I Face Identification: identify a person by computers based on a query
face image (1:N matching)
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Face Recognition

2. Challenges for Face Recognition
I Large intra-personal variations of poses, illuminations, aging,

occlusions, makeups, hair styles and expressions.

Figure: Many faces of Lady Gaga.
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Face Recognition

2. Challenges for Face Recognition
I Small extra-personal variations: different people look similar.

Figure: Miss Korean 2013 Contestants All Look Identical.
(http://www.inquisitr.com/636319/miss-korea-2013-contestants-all-look-identical-say-redditors)

I Small sample size problems: each person only has a few training
examples while features are usually in very high dimensional space.
It is easy for the classifier to overfit the training set.
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Face Recognition

3. Applications

I Access Control

http://www.nec.com/en/global/solutions/safety/face_recognition/NeoFaceWatch.html
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Face Recognition

3. Applications
I Surveillance

(support law enforcement, identify missing children, criminal
investigations, etc.)

http://www.nec.com/en/global/solutions/safety/face_recognition/NeoFaceWatch.html
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Face Recognition

3. Applications
I Facebook’s Automatic Face Tag Suggestion

http://blog.timesunion.com/highschool/facebook-recognizes-your-face-stop-it-now/19944
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Face Recognition

3. Applications
I EasyToon: An Easy and Quick Tool to Personalize a Cartoon

Storyboard Using Family Photo Album (ACM MM’08)
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Face Recognition

3. Applications
I Security

(Log into Twitter/Facebook with your face)

http://vimeo.com/16660014
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Face Recognition

3. Applications
I Augmented ID

https://www.youtube.com/watch?v=tb0pMeg1UN0
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Face Recognition

3. Applications
I Game (CrowsComing)

https://www.youtube.com/watch?v=XIq47P97fpI
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Face Recognition

4. Current State of Research
Nowadays, the Labeled Faces in the Wild (LFW) dataset is the most
challenging benchmark for face verification. (Huang et al. 2007)

matched pairs mismatched pairs

LFW Samples
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Face Recognition

4. Current State of Research

LFW Dataset:

I All of these images are collected from the Web.

I This dataset contains 13,233 uncontrolled face images of 5749
public figures with variety of pose, lighting, expression, race,
ethnicity, age, gender, clothing, hairstyles, and other parameters.

I Before my GaussianFace, the accuracy rate has been improved from
60.02% (Turk et al. 1991) to 97.35% (Taigman et al. 2014) since
LFW is established in 2007.

I Human-Level Performance: 97.53% (cropped images) and 99.20%
(original images) (Kumar et al. 2009)
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Face Recognition

4. Current State of Research

I Top Five Performance on LFW

Method Accuracy Author Training data
GaussianFace 0.9852± 0.0066 CUHK 200K image pairs

DeepID 0.9745± 0.0026 CUHK 200K images
DeepFace 0.9735± 0.0025 Facebook 4000K images

LearnedBayesian 0.9665± 0.0031 CUHK 60K images
FR+FCN 0.9645± 0.0025 CUHK 90K images

(Here: GaussianFace (Lu et al. 2014), DeepID (Sun et al. 2014), DeepFace (Taigman et al. 2014),

LearnedBayesian (Lu et al. 2014), FR+FCN (Zhu et al. 2014)).

NB: Human-Level Performance: 97.53% (cropped images).
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Face Recognition

4. Current State of Research

I Top Five Performance on LFW

Method Accuracy Author Training data
GaussianFace 0.9852± 0.0066 CUHK 200K image pairs

DeepID 0.9745± 0.0026 CUHK 200K images
DeepFace 0.9735± 0.0025 Facebook 4000K images

LearnedBayesian 0.9665± 0.0031 CUHK 60K images
FR+FCN 0.9645± 0.0025 CUHK 90K images

DeepID2: 99.15% using 200 deep ConvNets trained on 200K images
with 21 facial landmarks alignment. (Sun et al. 2014)

NB: Human-Level Performance: 97.53% (cropped images).
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Face Recognition

5. Face Recognition Pipeline

Face 
detection

Face 
alignment Preprocessing Feature

extraction Classification

I Face detection: Given an image, the face region is localized by a
face detection algorithm.

I Face alignment: The landmarks on the face automatically located by
face alignment algorithm.

Xiao et al. ICCV’07 Zhang et al. ECCV’14
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Face Recognition

5. Face Recognition Pipeline

Face 
detection

Face 
alignment Preprocessing Feature

extraction Classification

I Preprocessing: Given an image, the face region is localized by a face
detection algorithm.

(a) Geometric rectification: Face images are cropped and transformed
such that the two eye centers and the mouth centers are at fixed
positions. Background and hair are removed.

(b) Photometric rectification: reduce the effect of lighting variations.
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Face Recognition

6. Different Approaches

I Features
a) Global Features

· Principal Component Analysis (PCA)
· Independent Component Analysis (ICA)
· Convolutional Neural Networks (CNN)

b) Local Features
· Local Binary Pattern (LBP)
· Learning-based Descriptor (LE)
· Gabor Wavelet

I Similarity Measure

· Euclidian Distance
· Neural Networks
· Elastic Graph Matching
· Template Matching

N



Outline

I Face Recognition

I Review of GPs and Its Related Models

I GaussianFace Model

I Learned Bayesian Face Model

I Thinking in GPs for Computer Vision

N



Review of GPs and Its Related Models

1 Gaussian Processes (GPs)

2 Gaussian Process Regression (GPR)

3 Gaussian Processes for Clustering

4 Gaussian Process Latent Variable Model (GPLVM)

5 Discriminative GPLVM (DGPLVM)
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Review of GPs and Its Related Models

1. Gaussian Processes (GPs)
I Infinite set of variables: {f (x) : x ∈ X}

I All possible mappings from X to R: F

I For any f (·) ∈ F , we have f (x1)
...

f (xm)

 ∼ N

 m(x1)

...
m(xm)

 ,
 k(x1, x1) · · · k(x1, xm)

...
. . .

...
k(xm, x1) · · · k(xm, xm)


 ,

f (·) ∼ GP(m(·), k(·, ·)), (1)

m(x) = E[f (x)], (2)

k(x , x ′) = E[(f (x)−m(x))(f (x ′)−m(x ′))>]. (3)
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Review of GPs and Its Related Models

2. Gaussian Process Regression (GPR)

I GPR Model

y i = f (x i ) + εi , i = 1, . . . ,m. (4)

where

f (·) ∼ GP(0, k(·, ·)),

εi ∼ N (0, σ2). (5)

I Bayesian training

P(Y|X,θ) =

∫
p(Y|f)p(f|X)df (6)
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Review of GPs and Its Related Models

2. Gaussian Process Regression (GPR)

I Given test points

T = {(x i∗, y i∗)}
m∗
i=1. (7)

I Prediction

y∗ | y,X,X∗ ∼ N (µ∗,Σ∗) (8)

where

µ∗ = K (X∗,X)(K (X,X) + σ2I)−1y,

Σ∗ = K (X∗,X∗) + σ2I− K (X∗,X)(K (X,X) + σ2I)−1K (X,X∗).
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Review of GPs and Its Related Models

3. Gaussian Processes for Clustering (Kim et al. 2007)

I The principle of GP clustering is based on the key observation that
the variances of predictive values are smaller in dense areas and
larger in sparse areas.

σ2(x∗) = K∗∗ −K∗K̃−1K>∗ . (9)

I To perform clustering, the following dynamic system associated with
the above equation can be written as

F (x) = −Oσ2(x). (10)
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Review of GPs and Its Related Models

4. Gaussian Process Latent Variable Model (GPLVM)
(Lawrence 2003)
I The posterior can be written as

p(Z,θ|X) =
1
Za

p(X|Z,θ)p(Z)p(θ), (11)

where Za is a normalization constant, the uninformative priors over
θ, and the simple spherical Gaussian priors over Z are introduced as
follows,

p(θ) =
∏
i

θi , (12)

p(Z) =
∏
i

exp
(
‖zi‖2

2

)
. (13)
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Review of GPs and Its Related Models

5. Discriminative GPLVM (DGPLVM) (Urtasun et al. 2007)

I Using an informative prior over the latent space Z.

I Discriminative methods: LDA (linear) and GDA (non-linear).

I LDA and GDA try to maximize the between-class separability and
minimize with-class variability by maximizing

J(Z) = Tr
(
S−1w Sb

)
, (14)

where Sw and Sb are the within- and between- class matrices:

Sw =
L∑

i=1

Ni

N
(Mi −M0) (Mi −M0)> , (15)

Sb =
L∑

i=1

Ni

N

[
1
Ni

Ni∑
k=1

(
xik −Mi

) (
xik −Mi

)>]
. (16)
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Review of GPs and Its Related Models

5. Discriminative GPLVM (DGPLVM) (Urtasun et al. 2007)

I The informative prior over the latent space Z is interpreted as

p(Z) =
1
Zb

exp
(
− 1
σ2

J(Z)

)
, (17)

where Zb is a normalization constant, and σ2 represents a global
scaling of the prior.

I Given x∗, z∗ can be obtained by optimizing

LInf =
‖x∗ − µ(z∗)‖2

2σ2(z∗)
+

D

2
lnσ2(z∗) +

1
2
‖z∗‖2, (18)

where

µ(z∗) = µ+ X>K−1K∗,

σ2(z∗) = K∗∗ −K>∗ K
−1K∗.
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GaussianFace Model

News Coverage of GaussianFace
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GaussianFace Model

Limitations of Current Face Verification Methods

I Most existing face verification methods assume that the training
data and the test data are drawn from the same feature space and
follow the same distribution. When the distribution changes, these
methods may suffer a large performance drop.

I Most existing face verification methods require some assumptions to
be made about the structures of the data, they cannot work well
when the assumptions are not valid. Moreover, due to the existence
of the assumptions, it is hard to capture the intrinsic structures of
data using these methods.
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GaussianFace Model

Key Ideas
we propose the Multi-Task Learning approach based on DGPLVM ,
named GaussianFace, for face verification.

I GaussianFace model is a non-parametric Bayesian kernel method,
and can adapt its complexity flexibly to the complex data
distributions in the real-world, without any heuristics or manual
tuning of parameters.

I To enhance discriminative power, we introduced a more efficient
equivalent form of Kernel Fisher Discriminant Analysis to DGPLVM.

I In order to take advantage of more data from multiple
source-domains to improve the performance in the target-domain,
we introduce the multi-task learning constraint to DGPLVM.

I To speed up the process of inference and prediction, we exploited
the low rank approximation method.

I Based on GaussianFace model, we propose two different approaches
for face verification: a binary classifier and a feature extractor.
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GaussianFace Model

DGPLVM Reformulation

I A more efficient equivalent form of KFDA (Kim et al. 2006)

J∗ =
1
λ

(
a>Ka− a>KA(λIn + AKA)−1AKa

)
, (19)

where

a =[
1
n+

1>N+
,− 1

N−
1>N− ],

A =diag
( 1√

N+

(
IN+ −

1
N+

1N+1>N+

)
,

1√
N−

(
IN− −

1
N−

1N−1
>
N−

))
.

Here, IN denotes the N × N identity matrix and 1N denotes the
length-N vector of all ones in RN .
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GaussianFace Model

Multi-task Learning Constraint

I We extend the mutual entropy to multiple distributions as follows,

M = H(pt)−
1
S

S∑
i=1

H(pt |pi ), (20)

where H(·) is the marginal entropy, H(·|·) is the conditional entropy,
S is the number of source tasks, {pi}Si=1, and pt are the probability
distributions of source tasks and target task, respectively.
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GaussianFace Model

Our GaussianFace Model
I S source-domain datasets {X1, . . . ,XS}, a target-domain data XT .

I The Automatic Relevance Determination (ARD) kernel is used,

kθ(zi , zj) =θ0 exp
(
− 1

2

d∑
m=1

θm(zmi − zmj )2
)

+ θd+1 +
δzi ,zj
θd+2

, (21)

I For each dataset, learning the DGPLVM is equivalent to optimizing

p(Zi ,θ|Xi ) =
1
Za

p(Xi |Zi ,θ)p(Zi )p(θ), (22)

where

p(Xi |Zi ,θ) =
1√

(2π)ND |K|D
exp
(
− 1

2
tr(K−1XiX>i )

)
,

p(Zi ) =
1
Zb

exp
(
− 1
σ2

J∗
)
.
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GaussianFace Model

Our GaussianFace Model (Cont’d)

I According to the multi-task learning constraint, we can attain

M =H(p(ZT ,θ|XT ))− 1
S

S∑
i=1

H(p(ZT ,θ|XT )|p(Zi ,θ|Xi )). (23)

I Learning GaussianFace model amounts to minimizing the follow
marginal likelihood,

LModel = − log p(ZT ,θ|XT )− βM. (24)

We can optimize the model with respect to the hyper-parameters θ
and the latent positions Zi by the Scaled Conjugate Gradient (SCG)
technique.
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GaussianFace Model

Speedup

We use the anchor graphs method to speed up this process.

K ≈ QQ>︸ ︷︷ ︸
n×n

Woodbury identity−−−−−−−−−−→ K ≈ Q>Q︸ ︷︷ ︸
q×q

,Q ∈ Rn×q, q � n. (25)

I Speedup on Inference

(λIn + AKA)−1 ≈ λ−1In − λ−1AQ(λIq + Q>AAQ)−1Q>A,

K−1 ≈ (K + τ I)−1 ≈ τ−1In − τ−1Q(τ Iq + Q>Q)−1Q>.

I Speedup on Prediction

(K + W−1)−1 ≈W −WQ(Iq + Q>WQ)−1Q>W.
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GaussianFace Model

GaussianFace Model For Face Verification

Figure: Two approaches based on GaussianFace model for face
verification. (a) GaussianFace model as a binary classifier. (b)
GaussianFace model as a feature extractor.
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GaussianFace Model

GaussianFace Model as a Binary Classifier

S1: Given any un-seen face pair, compute its similarity vector x∗,

S2: Estimate its latent representation z∗,

S3: Predict whether the pair is from the same person as follows

π̄(f∗) =

∫
π(f∗)p(f∗|X, y, x∗)df∗. (26)

We prescribe the sigmoid function π(·) to be the cumulative
Gaussian distribution Φ(·), so

π̄∗ = Φ
( f̄∗(z∗)√

1 + σ2(z∗)

)
, (27)

where σ2(z∗) = K∗∗ −K∗K̃−1K>∗ and f̄∗(z∗) = K∗K−1f̂.
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GaussianFace Model

GaussianFace Model as a Feature Extractor
S1: Estimate the latent representations of the training data,

S2: Group the latent data points into clusters automatically:

F (x) = −Oσ2(x). (28)

where

σ2(x∗) = K∗∗ −K∗K̃−1K>∗ .

S3: Suppose that we finally obtain C clusters, we can compute

{ci}Ci=1 : the centers of these clusters

{Σ2
i }Ci=1 : the variances of these clusters

{wi}Ci=1 :
# of latent data points from the i-th cluster

# all latent data points
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GaussianFace Model

GaussianFace Model as a Feature Extractor (Cont’d)
S4: Obtain the corresponding probability pi and variance σ2i of ci ,

S5: For any un-seen pair of face images, compute its joint feature vector
x∗ for each patch pair,

S6: Estimate its latent representation z∗,

S7: Compute its first-order and second-order statistics to the centers,

S8: Obtain the corresponding probability pi and variance σ2i of z∗,

S9: Each patch is represented by the high-dimensional facial feature
ẑ∗ = [∆1

1,∆
2
1,∆

3
1,∆

4
1, . . . ,∆

1
C ,∆

2
C ,∆

3
C ,∆

4
C ]>, where

∆1
i = wi

(
z∗−ci

Σi

)
, ∆2

i = wi

(
z∗−ci

Σi

)2
, ∆3

i = log p∗(1−pi )
pi (1−p∗) , ∆4

i = σ2
∗
σ2
i
,

S10: Concatenate all of the new high-dim features from each patch pair
to form the final new high-dim feature for the face pair.
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GaussianFace Model

Comparisons with Other MTGP/GP Methods
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GaussianFace Model

Comparisons with Other BC/FE

The Number of SD 0 1 2 3 4
SVM 83.21 84.32 85.06 86.43 87.31
LR 81.14 81.92 82.65 83.84 84.75

Adaboost 82.91 83.62 84.80 86.30 87.21
GaussianFace-BC 86.25 88.24 90.01 92.22 93.73

The Number of SD 0 1 2 3 4
K-means 84.71 85.20 85.74 86.81 87.68
RP Tree 85.11 85.70 86.45 87.52 88.34
GMM 86.63 87.02 87.58 88.60 89.21

GaussianFace-FE 89.33 91.04 93.31 95.62 97.79
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GaussianFace Model

Comparison with the state-of-art Methods
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Figure: The ROC curve on LFW.
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Learned Bayesian Face Model

Classic Bayesian Face Recognition (Moghaddam et al. 2000)

I The difference ∆ = x1 − x2 of two faces x1 and x2,

I It classifies ∆ as intra-personal variations ΩI or extra-personal
variations ΩE ,

I Based on the MAP (Maximum a Posterior) rule, the similarity
measure between x1 and x2 can be expressed by

s(x1, x2) = log
p(∆|ΩI )

p(∆|ΩE )
, (29)

where both p(∆|ΩI ) and p(∆|ΩE ) are assumed to follow one
multivariate Gaussian distribution.
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Learned Bayesian Face Model

Problems in Classic Bayesian Face Recognition
Problem 1

It is based on the difference of a given face pair, which discards the discrimi-
native information and reduce the separability.

Problem 2

The distributions of p(∆|ΩI ) and p(∆|ΩE ) are oversimplified, assuming one
multivariate Gaussian distribution can cover large variations in facial poses,
illuminations, expressions, aging, occlusions, makeups and hair styles in the
real world.

Problem 1 has been addressed (Chen et al. 2012), where the joint
distribution of {x1, x2} is directly modeled as a Gaussian.

In this paper, we focus on solving Problem 2.
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Learned Bayesian Face Model

Key Idea

To overcome Problem 2, we propose a method to automatically
learn the conditional distributions of {x1, x2}.

I We exploit the properties of Manifold Relevance Determination
(MRD) (Damianou et al. 2012) and extend it to learn the identity
subspace for {x1, x2} automatically and accurately.

I Based on the structure of the learned identity subspace, we propose
to flexibly estimate Gaussian mixture densities for {x1, x2} with
Gaussian process regression.

Since the subspace only contains the identity information, the
learned density can fully reflect the distribution of identities of face
pairs {x1, x2} in the observation space.

N



Learned Bayesian Face Model

Properties of MRD

I It can learn a factorized latent variable representation of multiple
observation spaces;

I Each latent variable is either associated with a private space or a
shared space;

I It is a fully Bayesian model and allows estimation of both the
dimensionality and the structure of the latent representation to be
done automatically.
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Learned Bayesian Face Model

The Model of MRD (Damianou et al. 2012)

p(X 1
i , · · · ,X c

i |Zi ,θ
Xi ) =

c∏
j=1

∫
p(X j

i |F
i ,j)p(F i ,j |Zi ,wi ,j ,θi ,j)dF i ,j

p(X 1
i , · · · ,X c

i |θXi ,θZi ) =

∫
p(X 1

i , · · · ,X c
i |Zi ,θ

Xi )p(Zi |θZi )dZi .

N



Learned Bayesian Face Model

The Model of MRD (Cont’d) (Damianou et al. 2012)

Figure: The ARD weights in the case with two views. (Damianou et al.
2012)

To make each individual lie in the identity subspace with the same
dimension QS , we let QS = min(Q1

S , · · · ,QM
S ). For Q i

S > QS , we
only select the dimensions with QS largest ARD weights.
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Learned Bayesian Face Model

The Construction of Training Set for Bayesian Face
I For each individual, we can construct the following ni × c

correspondences between the identity subspace and the observation
space, 

{z i1, x
i ,1
1 } · · · {z i1, x

i ,j
1 } · · · {z i1, x

i ,c
1 }

...
...

...
{z in, x

i ,1
n } · · · {z in, x

i ,j
n } · · · {z in, x

i ,c
n }

...
...

...
{z ini , x

i ,1
ni } · · · {z ini , x

i ,j
ni } · · · {z ini , x

i ,c
ni }

 .

I K matched pairs and K mismatched pairs, denoted by Π1 and Π2,
can be generated using the following criterion,

πk = {[z iaa , z
ib
b ], [x ia,jaa , x ib,jbb ]}, k = 1, . . . ,K (30)

where πk ∈ Π1 when ia = ib and πk ∈ Π2 when ia 6= ib.
N



Learned Bayesian Face Model

Gaussian Mixture Modeling with GPR

I If z ∼ N (µz,Σz), then the distribution of x can be approximated by
the following Gaussian distribution,

x ∼ N (µx,Σx), (31)

with µx = Ck̄, and Σx =
(
k̄ − Tr(K−1K̄)

)
I + C(K̄− k̄k̄>)C>,

where C = [x1, . . . , xK ]K−1, k̄ = E[k], K̄ = E[kk>],
k = [k̂(z1, z), . . . , k̂(zK , z)]>, K = [k̂(za, zb)]a,b=1..K and
k̄ = k̂(µz,µz).

I p(z) =
∑L

l=1 λlN (z|µl
z,Σ

l
z) 7−→ p(x) =

∑L
l=1 λlN (x|µl

x,Σ
l
x)
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Learned Bayesian Face Model

The Leave-set-out Method

I To estimate the parameters of the covariance function on the
training set {zk , xk}Kk=1, we can maximize,

L(θK) =
K∑

k=1

ln p(xk) =
K∑

k=1

ln
L∑

l=1

λlN (xk |µl
x,Σ

l
x). (32)

I We propose the leave-set-out (LSO) method to prevent overfitting,

LLSO(θK) =
L∑

l=1

∑
k∈Il

ln
∑
l ′ 6=l

λl ′N (xk |µl ′
x ,Σ

l ′
x ). (33)

I We use the scaled conjugate gradients to optimize LLSO(θK) with
respect to θK.
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Learned Bayesian Face Model

Handling Large Poses

Figure: Samples on Multi-PIE.
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Learned Bayesian Face Model

Handling Large Poses

Pose Pairs APEM ELF CBVT TFA LLR MvDA Ours
{0◦,+60◦} 65.3 77.4 86.7 89.1 85.4 86.4 93.6
{0◦,+75◦} 51.7 63.9 79.2 86.5 74.7 82.3 91.2
{0◦,+90◦} 40.1 38.9 70.1 82.4 64.2 73.6 88.5
{+15◦,+75◦} 60.2 75.1 81.6 86.5 82.3 75.4 89.1
{+15◦,+90◦} 45.8 55.2 75.2 81.2 78.6 79.3 89.2
{+30◦,+90◦} 41.2 57.3 73.2 84.4 79.1 77.2 90.3

Table: Results (%) on the Multi-PIE dataset.
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Learned Bayesian Face Model

Handling Large Occlusions

Figure: Samples on AR.

Method SRC SMRFs GSRC Ours
Accuracy (%) 87.13 92.42 94.38 96.23

Table: Results on the AR dataset.
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Learned Bayesian Face Model

Comparison with the state-of-art Methods
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Figure: The ROC curve on LFW.
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I Face Recognition
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Thinking in GPs for Computer Vision

1. Large Scale Visual Recognition Challenge 2014
(Russakovsky? and Deng? et al. 2014)

a) A detection challenge on fully labeled data for 200 categories of
objects.
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1. Large Scale Visual Recognition Challenge 2014
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Thinking in GPs for Computer Vision

1. Large Scale Visual Recognition Challenge 2014
(Russakovsky? and Deng? et al. 2014)

a) A detection challenge on fully labeled data for 200 categories of
objects.

NB: the newest result in our lab is 45%.
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Thinking in GPs for Computer Vision

1. Large Scale Visual Recognition Challenge 2014
(Russakovsky? and Deng? et al. 2014)

b) An image classification plus object localization challenge with 1000
categories.

I Training data: 1.2 million images from 1000 categories
I Validation data: 150,000 images with the presence or absence of

1000 categories
I Test data: 150,000 images with the presence or absence of 1000

categories
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Thinking in GPs for Computer Vision

1. Large Scale Visual Recognition Challenge 2014
(Russakovsky? and Deng? et al. 2014)

b) An image classification plus object localization challenge with 1000
categories.
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