
The Systems

voxoz.com

BSD UNIX
Minix: Intel
CMU Mach 3: OSF/1, xnu
VAX-VMS/Windows NT
Sun Solaris
Linux

OS/370, OS/2
PDP-11 System V

Amiga
RISC OS
Atari TOS

Squeak / Smalltalk
Plan9
Lisp Machines

BeOS
WxWorks
TRON
QNX
Mac OS
L4

Mirage / OCaml
HaLVM / Haskell
LING / Erlang
Kernel / O

Systems History

THREAD

PROCESS VAS

FIBER

PORT NAMED PIPE

AREA SECTIONSHARED MEM

SEMAPHORECRITICAL SECTIONMUTEX

IEEE 1003.1 fork

POSIX / Unix / System V

IEEE 1003.1c RT
IEEE 1003.1b IPC

DRIVERS

TIMERS CPU INTERRUPTS CPU

VFS BUS DEV

ROOT OBJECTS ACL RWX

ALGORITHMSSCHED

HAL IBM VMS WNT

Mach-O

Portable Executable (PE/COFF)

Executable and Linkable Format (ELF)

WebAssembly

Runtime File Formats

DEC OSF/1, DEC Tru64 UNIX, CMU Mach 3, xnu/Darwin

Windows NT, BeOS, OS/2

Linux, QNX, Solaris

Object Code

— objdump
— link
— cc
— as

headers

.code

.data

.reloc

.idata

Streams Exabytes Volumes

RAID StripesTransactional Log

Sparse Files Query Language

ACL

File Systems

Workstation Filesystems: BeFS, NTFS, zfs, ext4
Network Filesystems: NFS, IPFS, glusterfs
Specialized Filesystems: exFAT, ISO-9660

Runtime Libraries

— Heap Management
— Input/Output
— Streams/Buffers
— UTF-8/Encodings
— etc.

Windows

Linux

BSD

Mac

MSVCRT

libc

musl

Foundation

Memory Management ARM
Virtual Address

Granularity: 4K 16K 64K
Space: 4GB 16GB 1TB 4TB 16TB 256TB 4PB

4K
[11:0] offset
[20:12] L4 index
[29:21] L3 index
[38:30] L2 index
[47:39] L1 index
[63] TTBR0

64K
[15:0] in-page offset
[28:16] L3 index
[41:29] L2 index
[47:42] L1 index
[63] TTBR0

. . . OffsetL1 L2 L3

.

/root

Memory Management
Granularity: 4K 2M 4M 1GB
Space: 4GB, 1TB, 4PB, 16EB (~18*10^18)

LM 1G
[63:48] sign
[47:39] 512-entry
[38:30] 512-entry
[29:0] offset

LM 2M
[63:48] sign
[47:39] 512-entry
[38:30] 512-entry
[29:21] 512-entry
[20:0] offset

4K
[31:22] 1024-entry
[21:12] 1024-entry
[11:0] offset

4M
[31:22] 1024 entry
[21:0] offset

PAE 4K
[31:30] 4-entry
[29:21] 512-entry
[20:12] 512-entry
[11:0] offset

PAE 2M
[31:30] 4-entry
[29:21] 512-entry
[20:0] offset

LM 4K
[63:48] sign
[47:39] 512-entry
[38:30] 512-entry
[29:21] 512-entry
[20:12] 512-entry
[11:0] offset

Intel

MBR

UEFI OpenFirmware

grub BCD

uBoot

GPT

BIOS

Boot Process

MBR, BIOS: DOS Ages, Partition Tables, Hardware Abstraction Layer
GPT: Modern Partition Table
uBoot: Evaluation Boards, MIPS, ARM32 Devices
OpenFirmware: SGI, Sun, HP, Apple PowerPC
UEFI: Modern HAL

Hardware Programming

Linux/aio, NtIoCompletionPort, kqueue

OpenCL, CUDA programming

Device Drivers

User

DMA copy

Async I/O

Interrup Packets

IOCTL

Microkernels Era

Windows NT

Book. Helen Custer. Inside Windows NT

OS/2

NT
POSIX WSL Linux

.NET

SSDWin32

BeOS

BeOS/Haiku BeFS

GUI Media Network FS

Audio Video

APPAPPAPP

The Problem of Legacy Systems

BTree

Search BTree

BTree

Hardware

Application

DISK

NET

Database

Filesystem

SSDSSD

SSD

BTree

APP

Improvements

Avoid Context Switching

Zero Copy, Garbage Collection Free, CAS, CMPXCHG8B

Fast Script VM

CPU

MEM

Built-in Language / Yield FSM LLVM / JIT

No Hashtables, Skip Lists instead
No Semaphores and locking primitives
No OS!

OS

Unikernels

Scheduler: Round-Robin, Priority Queues, Tree Flavours
Scheduler Actors: Features, Timers, Async I/O
Streams Backends: Zero-copy, Message Passing
Linear Baсkends: Async I/O Disk Streams, Network Streams
Indexed Backends: Timers, Actors
Backpressured Message Bus/Buffers: Arc/Vec prealloc
Class: Low Latency, Real Time

Talk Structure

NET

CLUSTER

InterCore BUS

TASKS

DISK

TIMERSMQ

SPU # 1CPU # 1CPU # 1

reactors

system streams

app streams

Linear: MQ, EXT, DISK, NET
Trees: TIMERS
Priority Queues: TASKS, IRQ

SPSC/LINKSPSC/LINK 4-10ns Lowest Latency Possible

10-40ns Publisher Multicursor

10-40ns Reducer or Subscribe Polling

Queue TypesMQ

MPSC/SUB

SPMC/PUB

FAST DELIVERY CASE

NET NETLINK

I/O TASK

Single Threaded Task Configuration
to be compared as reference

You can use inplace message modifying and reduce copies to unpack and pack.

I/O TASKCPU TASK

LOAD BALANCING CASE Load Balancing
of Priority Streams per Core Buckets

NET NET

LINK

LINK

LINK

PUB SUBINPUT OUTPUT

HASH
SELECT

MULTI CURSOR

PRIO
POLL

HIGH PRIO STREAM
CORE CTX

LOW PRIO STREAM

PUBLISHER CASE

NET I/O

PUB Implementation for Zero-Copy
Multiple Consumer Publishing (SPMC)

NET I/O

LINK

LINK

LINK

LINK/CORE #1

LINK/CORE #2

LINK/CORE #3

CAS Cursor
Shifting

SUBSCRIBER CASE

NET I/O

Multicursor Implementation of SUB (MPSC)
for InterCore Queue Migrations and Cache Locality

NET I/O

LINK

LINK

LINK

LINK/CORE #1

LINK/CORE #2LINK/
CORE #4

LINK/
CORE #5

L2/L3 FIT

CAS Polling

TIMERS Scheduler Reactors can communicate
throught InterCore transport for Timers.

NoDelete Timers use Linear Firing Round Robin of 4 swaps otherwise LogN.

TASK 1.1 TASK 1.2TASK/CORE #1

TIMER/CORE #1

SYSQ

SYSQ

OneShot NoDelete Normal

TASK 0—0xFFFFCUR #1 R/W

0xFFFF—0xFFFF0000CUR #2 R

0xFFFF0000—0xFFFFFFFFCUR #3 W

STATE VEC DATA

FSM CODE

Tasks Cursors/Counters

00120090912090CNT #1

Avg Task Consumtion
Accumulated in the Task Stream

Σ Tasks * Polls * AvgTime = Capacity

10 polls

1 poll

6 polls

Workload: 48

Time: 20Capacity: 239

Total: 400

9 tasks

18 tasks

10 tasks

11 tasks

3 polls

 #2

 #1

 #3

 #4

prios: [10,6,3,1]

+/{x*y}[(1;3;4;5;6);(2;6;2;1;3)]

vec1.iter().zip(vec2.iter()).map(|(i, j)|i * j).sum()

$ objdump ./target/release/o -d | grep vpmul
 2251c:c5 d5 f4 fb vpmuludq %ymm3,%ymm5,%ymm7
 22525:c4 41 55 f4 c0 vpmuludq %ymm8,%ymm5,%ymm8
 2253a:c5 d5 f4 db vpmuludq %ymm3,%ymm5,%ymm3
 22547:c5 cd f4 ec vpmuludq %ymm4,%ymm6,%ymm5
 22550:c5 cd f4 ff vpmuludq %ymm7,%ymm6,%ymm7
 22562:c5 cd f4 e4 vpmuludq %ymm4,%ymm6,%ymm4
 22595:c5 d5 f4 fb vpmuludq %ymm3,%ymm5,%ymm7

ITERATORS

Unified Combinators of Language and Streams
Interpretation for Unicore and Multicore

The motivation is to keep LLVM vectorizer continuous happy

VECTORSO MULTI

UNI

EFFECTS

Lambda Prior

Map

AndThen OrElse

Fold

Filters Over

Scan

Call

Cond

Let

Verbs

Raise

Send/Recv

Read/Write

Get/Set

Random

Alloc/Free

Spawn/Kill

Split/Join

Timer

INTERPRETER

INTERCORE

IBM:[2]

IBM:[3]

PUB:[1]

In: [1]

MSFT:[6,7]

12x CPU Cores:

AAPL:[4,5]

8x32K MEM Regions:

1:[1—6] T1:[8]

T3:[8]

T2:[8]

SUB:[9]5:[12]

6:[13]

7:[14]

2:[7,8]

4:[10,11]

Order Books: [2,3,4,5,6,7]

Reducing Queues: [2,3,4,5,6,7]

Order
BOOK L2

Input Queue: [1]

Traders: [8] Out: [9]

3:[9]

