Intetics f(cafe) 25 July 2018 Freud House, Kyiv, Ukraine

Namdak Tonpa

Ho | I: The Language of Space

\/

Groupoid Infinity

IheHol | Lineage

— Nicolaas Govert de Bruijn [AUTOMATH]
— Per Martin-Lof, Henk Barendregt [MLTT, A-Cube]

— Robin Milner [ML, LCF, rt-Calculus]

— Gérard Pierre Huet [CAML]

— Christine Paulin-Mohring [CiC]

— Peter Dybjer, Martin Hofmann, R.A.G. Seely [CwF, CwA, LCCC]

— Thierry Cogquand [CoC, Cog, CCHM]

— Robert William "Bob" Harper, Jr. [HoT T, RedPRL, ML, Twelf]

— Steve Awodey, Vladimir Voevodsky [HoT T, C-Systems]|

— Cyril Cohen, Simon Huber, Anders Mortberg [CCHM, cubicaltt, yacctt]

Abstract

Cubical Base Library

Homotopy Type Theory (HoTT) is the most advanced programming
language in the domain of intersection of several theories: algebraic
topology, homological algebra, higher category theory, mathematical
logic, and theoretical computer science. That is why It can be
considered as a language of space, as it can encode any existent
mathematics.

During this lecture on Ho I I, we are trying to encode as much
mathematics in the programming language as possible.

. Foundations

ML
nductive lypes, Induction

PL and Elements of Set Theory
Control, Recursive Schemes
—qulv, Iso, Univalence

-igher Inductive Types
Modalities

|, Mathematics

Talk Structure

Slightly based on Ho T T Chapters

Category Theory,
Basic Algebra

Ordinals, Mahlo Universe
Differential Topology
-lber Bundles and Hopf Fibtations

K-Theory

OpPOS

heory

— Sequences, Chain Complexes

. Foundations

CoC;
F:

P/:
AUT:

0 ~ ~ U0 >0
0 - 0 - O
0 - ~ 0
~ U
0 ~
System F:
ML, Miranda,
OCaml
STLC
Untypled SLC:
Erlang, LISP,
JavaScript

http://ttic.uchicago.edu/~dreyer/
course/papers/barendregt.pdf

System Fw:
Haskell, Scala, TML
Almost CoC

No Types

On Values

POLYREC

P2:
No Types
On Types

AUTOMATH

A-Calcul

IN Extended Lambda Cube

Infinity Topoi
Agda, Cog, Lean, Om

CoC: Morte, Henk

No Terms
On Types

OMPTS

Type Inference Algorithm (Pure Case Analysis) in Erlang

type (istar, N - (:star, N+1)

) D
)

(:var, N,) D - :true = proplists:defined N B, om:keyget N D |
(:pi, N, O, 1, O) D - (:star ,h (star (type | D)) (star (type O [(N,norm D|D1)))
(:fn, N, O, I, O) D > let star (type | D), Ni = norm |'in (:pi,N,O,Ni,type(O,[(N,N)|D]))

)
:app, F, A) D > let T =type(F,D), (:pi,N,O,1,0) =T, :true = eqg | (type A D)
in norm (subst O N A)

MLT T 1972

Type Theory as new Foundations of Mathematics

U U — Single Universe Model — MLTT 1972, CoC 1988.
X : A — xis apoint (Star) in space A (Box)
v=[x:A]— xandy are definitionaly equal objects of type A

I >
1. Formation Rule (x:A) -> B(X) (x:A) * B(x)
2. Introduction Rule(s) \ (x:A) -> B(x) (a,b)
3. Elimination Rule(s) fa 12

4. Computational Rule(s) two three

Beta and Eta

Duality of Intro and Elim and its Unigueness
Non-Dep Case (CCC). Homework: Proof LCCC case.

eta

A->B A * (A->B)
A 3

beta beta
eta

beta
A* B

MLT T 1975, 1984

Grothendieck Universe (containing all sets), Countable Universes

Uo: Ui:Uz2:Us: ... o — infinite hierarchy of universes

S (n:nat) = Un

Ar (N m:nat) = Un:Um where [m>n] — cumulative, [n+1=m] — non-cumulative
Ri1(Mmn:nat) = Um — Un : Ux where [x=max(m,n)| — predicative,

Xx=n| — impredicative

1. Formation nat List Path A Xy W
2. Introduction Zero, succ nil, cons refl A X SUpP
3. Elimination natina listind J wlnad

4. Computational Beta, Eta Beta, Eta Beta, [Eta] Beta, Eta

INntuitionistics Propositional Logic

According to Brouwer—Heyting—Kolmogorov interpretation

v 3 Path O 1 +

X:A -> B(X) X:A*B(X) xA=yA empty unit elther
\ (x; A) -> B(x) (X,B(x)) reflAX tt inl, inr
fa=B(a) orl, pr2 J elimO elim? eitherind

Beta, Eta Beta, Eta Beta Beta, Eta Beta, Eta Beta, Eta

Proto (Prelude)

For run-time and |/O applications

maybe either stream bool vector fin

U ->U J->U->U U->U U nat -> U nat -> U
nothing, just inl, inr CoNs true, false vz, vs fz, fs
maybelnd eitherind streamInd boollnc veclnd finlna
Beta, Fta Beta, Fta Beta, Fta Beta, Fta Beta, Fta Beta, Eta

Homework: Add |/O interface for finite and infinite loop.

Induction Principle

Natural Numbers Example
natCase (C:U) (ab: C): nat -> C
= {zero->a;succn->b}

natRec (C:U) (z: C) (s: nat->C->C): (n:nat) -> C
= {zero->z;succn->sn (natRec Czsn)}

natind (C:nat->U) (z: C zero) (s: (n:nat)->C(n)->C(succ n)): (n:nat) -> C(n)
= { zero ->z;succn->sn (natlnd C z s n)

(
J

Induction Principle could be the ultimate programming tool.

INnductive AST

Data Definition and Case Analysis

tele (A: U) =emp | tel (n: name) (b: A) (t: tele A)
branch (A: U) = br (n: name) (args: list name) (term: A)
label (A: U) =lab (n: name) (t: tele A)

n: name) (t: lang) (branches: list (branch lang))

) =
)
) =
ind = data_ (n: name) (t: tele lang) (labels: List (label lang))
(
(N: name) (args: List lang)

omework: Add HlTs elements as Path Equalities to data declarations.
INt: use your imagination.

Pl lype : Definition
Family of Types, Fibrations, Fiber Space A->U, Fiber B(x),
Section b(x), Space of Sections Pi(A,B)

Syntax Model

<> .= Hoption ots = star (n: nat)

1 = #identifier var (x: name) (L: nat)

U=« < #number > oi (x: name) (l: nat) (d c: lang)

Or:=U|T|(O)YOO|O->0 lambda (x: name) (l: nat) (d c: lang)
N (:O)->0O | (l:0)->0O app (T a: lang)

Pure Type System (PTS), Single Axiom System, Calculus of Constructions (CoC)
Henk, Morte, Om and many many others.

Pl lype : Inference Rules

Universal Quantifier

1A U) (Ps
lambda (A

A ->U): U= (xA) -> P(x)
U
app (A:U) (b:
(B:
B:

)(B:A->U)(a:A) (b:Ba)A->Ba=\(xA)->b
A->U)(a:A)(A->Ba):Ba=fa

A->U) (aA) (T: A->B a): Path (Ba) (app ABa(lamABa(fa))) (f a)
A ->U) (a: A) (f:A->Ba) : Path (A ->Ba) f (\(xA) -> f x)

Beta (A:U)
Eta (A: U) (

One beta rule and one eta rule for Pi types.

Sigma lType : Definition

Total Space Sigma(A,B), Point in Base with Section (a,b)

Syntax 0::=(x:0)*O | (0,0)|01]0.2

Model exists = sigma (n: name) (a b: lang)
pair (a b: lang)

fst (p: lang)

snd (p: lang)

Sigma is a part of the MLTT earliest core.
[t models Type Refinement and Proofs by Existance (Construction).
Sigma is a chain link of telescopes (contexts), the curried notion of records.

Sigma lype : Inference Rules

Fxistential Quantifier

Sigma (AU B:A->U):U=(x:A)*Bx

oalr (A:U) (B:A->U) (a:A) (b:Ba):Signa AB="7

orl (A:U) (B: A->U) (x: Sigma AB): A=7

or2 (A:U) (B: A->U) (x: Sigma AB):B(prlfABx) =7

Betal (B: A->U) (a: A) (b:Ba)->FPath Aa(prl AB (pair AB ab)))

BetaZ2 (B:A->U) (a: A) (b:Ba)->Path (Ba) b (prZ2 AB (ab)))

~ta (B: A ->U) (p: Sigma AB) ->Path (Sigma AB) p (prl AB p,pr2 AB p))

sigRec (A:U)(B:A->U)(C: U) (g:(x:A)->B(x)->C) (p: Sigma AB): C=gp.1p.2
sigind (A:U)(B:A->U)(C:5igma A B->U)
(p: Sigma A B)(g:(a:A)(b:B(a))->C(a,b)):C p=g p.1p.2

Sigma lType in Pi

Typing and Introduction Rules in Church-Bohm-Berarducci Encoding

—— Sigma/@ —— Sigma/Intro
\ (A) \ (A %)
>\ (P: A —> «) >\ (P: A —>)
->\ (n: A) ->\ (x: A)
—>\/ (Exists: #) =>\ (y: P x)
->\/ (Intro: A => P n —> Exists) —> \ (Exists: *)

—> Exists —>\ (Intro: \/ (x:A) —> P x —> Exists)
-> |ntro x y

Sigma lType in Pi

Eliminators in Church-Bohm-Berarducci Encoding

—— Sigma/fst —- Sigma/snd
\ (A %) \ (A)
>\ (B: A —>) —>\ (B: A —>)
>\ (n: A) ->\ (n: A)
->\ (S: #Sigma/@ A B n) ->\ (S: #Sigma/@ A B n)
>SA\XA) >\(y:Bn) ->x) ->SBnN) (\(:A)->\(y:Bn)->y)

Control (Haskell)

Port of Haskell-style erased 2-categorical structures for flow modeling

pure_sig (F:U->U).U= (A:U) -> A ->F A
appl_sig (F:U->U)U=(AB:U)-> F(A->B)->FA->FB
fmap_sig (F:U->U)U=(AB:U)-> (A->B)->FA->FDB
oiNd_sig (F:U->U):U= (A B: U) - FA->A ->FB)->FB
functor: U = (F: U -> U) * tfmap_sig F

applicative: U= (F: U ->U) * (: pure_sig k) * (_: tmap_sig F) *appl_sig F
monad: U = (F:U->U)*(_:pure_sig F)*(_:fmap_sig F)*(_:appl_sig F) * bind_sig F
FUNCTOR: U = (f: functor) * isFunctor f

APPLICATIVE: U = (f: applicative) * (_: isFunctor (f1,£.2.2.1)) * isApplicative T

MONAD: U = (f: monad) * (_: iskunctor (f.1,1.2.2.1))
* (o isApplicative (T1,1.21,1.2.21,12.2.21)) * isMonad

--Algebras

Inductive Type Modeling with Varmo Vene style Recursion Schemes

fix (F:U->U) = Fix (point: F (fix F))
u (F:U->U) (A B:U) = CoBind (a: A) (f F B)
cofree (F:U->U) (A:U) = Colree (_:fix (nuF A))
ind (F:U->U) (A:U):U=(in_:F (ixF) -> ﬁx F) * (in_rev: fix F -> F (fix F))
*((FA->A)->fixF ->A) * (cofree_: (F (cofree F A) -> A) ->fix F -> A)
inductive (F: functor) (A: U): ind F1 A = (in_ Fl,out_ Fl,cata A Fhisto A F,tt)

Backported to cubicaltt

Bishop's Constructive Analysis

Setoid (A: U): U Reflexivity, Transitivity, Symmetry

= (Carrier: A)

(Egqu: (a b: A) -> Path A ab)

(Refl: (x: A) -> Equ X x)

*(Trans: (xi,X2,x3: A) -> EQu X1 X2 -> EQU X2 X3 -> EQU X1 X3)
*(Sym: (x1,x2: A) -> Equ x1 X2 -> Equ x2 Xx1)

a=ADb a=ADb b =A C

e = Sym o a o C

b =A a rans a=AcC

Globular Theory

a=Ab Multidimentional Equality
A
A ® a =A ® ((a=ADb) =(=A) (a =A b))
a=Ab
((@a=ADb)=(=A) (@a=ADb)) =(=(=A)) ((a =ADb) =(=A) (a=ADb)) a o

—qu lype a la Martin-Lof

Path (A:U) (ab: A): U= — PathP (<i>A)ab

Heterobqu (A B: U) (a: A) (b: B) (P: PathUAB): U= — PathP Pab

Equ (A:U) (xy: A): U =Heterobqu A AXYy (<I>A)

refl (A: U) (a: A): quAaa—<|>a

J (A:U) (a: A) (C: (x: A) ->Path Aax ->U)
(d: Ca (refl A a)) (x A) (p: Path Aax): Cxp

Comp (A:U)(a:A) (C:(x:A)->Path Aax->U)
(d:Ca(reflAa)):Path(Ca(reflAa))d(JAaCda (refl Aa))

Path Types as Cubes

Syntax and Model

Syntax Model
x: [PathPpab p={(il)->A] lang = hts | ...
hts = path (a b: lang)
a:A oA path_lam (n: name) (a b: lang)
path_app (f: name) (a b: lang)
e A e comp_ (a b: lang)
de Morgan: 1-i |i|i/\jli\/] Sl (abc: lang)

glue_ (a b c: lang)
glue_elem (a b: lang)
unglue_elem (a b: lang)

Al Homotopy

Intro and Elim
| =10
I
seg <> [(1I=0) -> 10, (i=1) -> 1]

pathToHtpy (A: U) (x y: A) (p: Path AXxy): | -> A
= {10 ->x1T->y;seg@i->p @i}

homotopy (X Y:U) (Tg: X->Y)
(p: (x: X) ->Path Y (f X) (g x))
(X: X): I ->Y = pathToHtpy Y (f x) (g X) (p X)

N-lypes

Infinity Groupoids

Path (A:-U):U=(ab:A)->PathP (<i>A)ab
isContr (A:U):U=(xtA)*((y: A) -> Path Axvy)

IsProp (A:U):U=(@ab:A)->PathAab

isSet (A:U):U=(ab:A)->isProp (Path A a b)
isGroupoid (A:U):U=(@ab:A)->IisSet (Path A ab)
isGr_2 (A:U):U=(ab:A)->isGroupoid (FPath A a b)
isGr_5 (A:U)y:U=(ab:A)->isGr_2 (Path A a b)

PROP : U = (X:U) *isProp X

SET :U = (X:U) *isSet X

GROUPOID : U = (X:U) * isGroupoid X
INF_GROUPOID : U = (X:U) * isInfinityGroupoid X

Subtyping in MLT T

Subsets and Subtypes
hsubtypes (X:U): U =X ->PROP
subset (A: U) (_:isSet A): U =A -> PROP

sethsubtypes (X : U) :isSet (hsubtypes X)
hsubtypespair (A B: U) (HO: hsubtypes A) (H1: hsubtypes B) (x: prod A B): PROP

subtypekqguality (A: U) (B: A -> U)
(pB: (x: A) -> isProp (B x))
(s t: Sigma A B) : Path As1t1->Path (Sigma AB) st

iseqgclass (X : U) (R: hrel X) (A: hsubtypes X) : U
propiseqclass (X : U) (R: hrel X) (A : hsubtypes X) : isProp (isegclass X R A)

Flements of Set Theory

Set Theory Theorems

ac (AB:U)(R:A->B->U) (p: (xA)->(y:B)*R x y)) -> (FA->B)*((x:A)->R(x)(f x))
=\(g: (xA)->(y:B)*(R xy)) -> (\(i:A)->(g).1\(:A)->(g)).2)

total (A:U) (B C:A->U) (f: (xA) -> B x -> C x) (W:Sigma A B) : Sigma A C
= (W.1f (w.1) (W.2))

efg
neg
dneg U)
neg
dec (A: U
stable (A: U
discrete (A: U
oropDec (A : U
oropAnd (A B
Oro
oropNeg (A : U
oropNO : isPro

U): empty -> A = emptyRec A

(A:
(A:U):U=A->empty
(A:

(a:A): neg (neg A) =\(h:neg A) ->h a
(A:U): U =A->empty

): U = either A (neg A)
): U =neg (neg A) -> A

) U =(ab: A) ->dec (Path A a b)

) (a: isProp A) : isProp (dec A)

U) (a: isProp A) (b: isProp B) :
oOr (A B :U) (a:isProp A) (b: isProp B) (X

) - i1sProp (neg A)

0 empty

Prop Logic

Set Theory Theorems

IsProp (prod A B)

A ->neg B) :isProp (either A B)

funext (A:U) (B: A -> U) (F g: (xA) -> B x) FUNEXT
(p: (x:A) -> Path (B x) (f x) (g x))
Path ((y:A) ->By)fg
= <i>\(a: A) > (pa) @i
= <j> (\(x: A) -> homotopy A B f g p x (segi{l} @)))

Syntax and Model

f:(xX:A) ->B(x)

f=(A->B) g

(X:A) 5(x) f A->B g:A->B
<i>\(aA) ->pa@]i

FUNEXT

Formation, Intro, Elim, Beta, Eta

funext_form (AB: U) (fg A->B):U=FPath (A->B)fg
funext (A B: U) (Tg: A->B) (p: (xA) ->FPath B (T X) (g X)) : funext_form AB T g
napply (AB:U) (fg: A->B) (p: funext_form AB T Q) (x: A): Path B (f x) (g X)
funext_Beta (AB:U) (fg A ->B) (p: (x:A) -> Path B (f x) (g x))

(x:A) -> Path B (f x) (g x)
funext_Eta (A B: U) (tg: A->B) (p: funext_form AB Tt g)
- Path (funext_form ABf g) (funext AB T g (happly ABTgp) p

Weak Equivalence

fiber (AB:U) (A ->B) (y: B): U = (x: A) * Path By (f x) Fibrational

isEquiv (A B:U) (: A->B): U= (y: B) ->isContr (iber ABTvy)
equiv(AB: U U= A->B)*iskquivABf

Fiber Bundle: F ->E -> B
Moebius E = S twisted * [O,1]
Triviab E=B*F

o :total -> B

- = fiber : B -> total

total = (y: B) * fiber(y)

Fiber=Pi (B: U) (F: B -> U) (y: B)
- Path U (fiber (total B F) B (trivial B F) y) (F vy)

islso (A B: U): U -—- A= XML, B =J50N ‘SOmOl’phlsm

= (f: A -> B)

"(9:B->A)
* (s:section AB T g) isoPath (AB:U) (: A->B) (gB->A)
*(t: retract AB T Q) (s:section ABT Q) (t:retract ABTg): Path U A B
*unit = <[> B[(i=0)->(AfisolToEquiv ABfgst),
(i=1) -> (B,idfun B,idIsEquiv B)]
1so: U
= (A: U) isoToPath (i: iso): Path U i.11.2.1
*(B: U) = isoPath 1.11.211.2.211.2.2211.2.22211.2.2.2.2.2.
*islso A B

section (A B: U) (f: A
retract (A B: U) (f: A ->B) (g:

Univalence Axiom
All Equalities Should Be Equal

ua (A B:U):U=equiv AB->PathUADB
ualntro (A B: U):ua A B
uaklim (A B: U) (p: Path U A B): equiv A B

uaComp (A B:U) (p:Path U A B)
: Path (Path U A B) (ualntro A B (uaklim AB p)) p

uaUnigueness (A B: U) (w:equiv A B)
. Path (A ->B) w1 (uaklim A B (ualntro A B w)).1

Univalence Axiom
All Equalities Should Be Equal

Path Path(Path,Equiv)

Iso(Path,Equi
Equiv(Path,Equiv) so(Path,Equiv)

|SO Equiv

lem?2 (B: U) (F: B ->U) (y: B) (x: Fy) ¢ e . _ .
Path (Fy) ((<i>F (refl By @ i) x []) X Irivial Fiber = P
= <j> comp (<i>F ((refl By) @ j/\i)) x [(=1) -> <k>x]

lem3 (B: U) (F: B ->U) (y: B) (x: fiber (total BF) B (trivial B F) y)
 Path (fiber (total B F) B (trivial B F) y) ((y,encode B F y x),refl B y) x
= <i> ((x.2 @ -], (<j> F (x2 @ -i /\})) x12 [(i=1) -> <_>x12]),<j>x2 @ -i \/)

FiberPi (B: U) (F: B ->U) (y: B) : Path U (fiber (total B F) B (trivial B F) y) (F vy)
= isoPath T Afgst

T: U ="fiber (total B F) B (trivial B F) vy

A:U=Fy

f: T ->A=encodeBFy

g:A->1 =decodeBFy

s (x:A:Path A(f(gx))x=lem2BFyx

t(x:T):Path T (g(fx))x=lems3BFyx

. Mathematics

cat: U= (A:U) * (A -> A -> U)

Category Theory

isPrecategory (C: cat): U Categories

= (id: (x: C.1) -> C.2 X X)
(c:(xyzClhH->C2xy->C2yz->C2x2z)

(homSet: (x y: C.1) -> isSet (C.2 xy))

(left: (x y: C1) -> (: C2xy) ->Path (C2xy) (cxxy (idx) f))
(right: (x y: C1) -> (f: C2 xy) ->Path (C2xy) (cxyyf(idy)))
(xyzw:ClhH ->(f:C2xy)->(g:C2yz)->h:C2zw)->
Path (C2xw)(cxzw(cxyzfg)h)(cxywf(cyzwagh)))

*
X
X
*
X

orecategory: U = (C: cat) * isPrecategory C

Instances:
Set, Functions, Category, Functors, Commutative Monoids, Abelian Groups

Category Theory

Functors

catfunctor (A B: precategory): U

= (ob: carrier A -> carrier B)

(mor: (X y: carrier A) -> hom A Xy ->hom B (ob x) (oby))

(id: (x: carrier A) -> Path (hom B (ob x) (ob x)) (mor x x (path A x)) (path B (ob x)))
((xy z: carrier A) -> (: hom A xy) ->(g-hom Ay z) ->

Path (hom B (ob x) (ob z)) (mor x z (compose A Xy zTQg))

(compose B (ob x) (ob y) (ob z) (mor xy) (mory z g)))

¥ % ¥

Category Equivalence, Id and Composition Functors, Slice and Coslice

Category of Sets

Formal Model of Set Theory

Set: precategory = ((Ob,Hom),id,c,HomSet,L,R,Q)

Ob: U=5SET

Hom (A B: Ob): U=A1->B.

id (A: Ob): Hom A A = idfun A’

c(ABC:Ob) (: HomAB) (ggHomBC): HOMmMAC=0AITBI1CIgf
HomSet (A B: Ob): isSet (Hom A B) = setFun A1B1B.2
_ (A B: Ob) (f: Hom A B): Path (HOm A B) (cAAB(IdA)f) f=refl (Hom AB) f
R (A B: Ob) (f: Hom A B): Path (HOmAB) (cABBTf (idB)) f=refl (HomAB) f
QABCD: Ob) (f:HOm AB) (g-Hom B C) (h: Hom C D)

- Path (HOmAD)(cACD (cABCTg)h)(cABDT(cBCDgh))
=refl(HoOmAD)(cABDTf(cBCDgh))

Pullback Completeness

Pullbacks and Fibers as edge case

unigque
/

A Examples:
Products, Fibers

Dual Examples (Pushout):
Coproducts, Cofibers

subobjectClassifier (C: precategory): U TO pOS T h 20 ry

= (omega: carrier C)
(end: terminal C)
(trueHom: hom C end.T omega)
(xi: (V X:carrier C) (J: hom CV X) -> hom C X omega)
* (square: (V X: carrier C) (j: hom CV X) -> mono CV X |
-> hasPullback C (omega,(end.1,trueHom),(X,xi V X |)))
*((V X:carrier C) (j: hom C V X) (ki hom C X omega)
-> mono CV X | \/ 1
-> hasPullback C (omega,(end.1,trueHom),(X,k))
-> Path (hom C X omega) (xi V X) k)

Categories

X
S

*

true
Topos (cat: precategory): U
= (rezk: isCategory cat)
* (cartesianClosed: isCCC cat) X . ()

* subobjectClassifier cat XI

Basic Apstract Algebra

isMonoid (M: SET): U Structures
= (op: M1 ->M1->M1) isAbGroup (G: SET): U
* (_: iIsAssociative M.T op) = (g: isGroup O)
* (1d: M.1) * (isCommutative G.1g.1.1)
X

(hasldentity M.1T op id)
isRing (R: SET): U
(mul: isMonoid R)
(add: isAbGroup R)
(isDistributive R.1 add.1.1.1 mul.1)

isCMonoid (M: SET): U
= (m: isMonoid M)
* (isCommutative M1 m.1)

isGroup (G: SET): U ISAbRIng (R: SET): U
= (m: isMonoid Q) = (mul: isCMonoid R)
*(inv: G.1->G.1) (add: isAbGroup R)
* (haslnverse G 1T m.1m.2.2.17inv) (isDistributive R.1 add.1.1.1 mul.1.1)

¥ ¥

Basic Apstract Algebra

Objects and Morphisms for Categorical Setup

monoid: U = (X: SET) * isMonoid X
cmonoid: U = (X: SET) * isCMonoid X
group: U= (X:SET) *isGroup X
abgroup: U = (X: SET) * isAbGroup X
ring: U= (X:5SET) *isRing X
abring: U= (X:SET) *isAbRing X

monoidhom (a b: monoid): U
= (f: a11->b.117)
* (ismonoidhom a b 1)

cmonoidhom (a b: cmonoid): U = monoidhom (a.1, a.2.1) (b.1, b.2.7)

grouphom (a b: group): U =monoidhom (a.l, a.21) (b.1, b.2.1)

abgrouphom (a b: abgroup): U = monoidhom (a.1, a.2.1.1) (b1, b.2.1.1)
cmonabgrouphom (a: cmonoid) (b: abgroup): U = monoidhom (a.1, a.2.1) (b.1, b.2.1.1)

Ordinals

_ Structures
ord = zero
| succ (n: ord)
| lim (f: nat -> ord) ord3 = zero
succ (n: ord3)
ord2 = zero im (f: nat -> ord3)
succ (n: ord?) im2 (f: ord -> ord3)
lim (f: nat -> ord2) im3 (T: ord2 -> ord3)
Lim?2 (f: ord -> ord?2)

http://www.cse.chalmers.se/~coquand/ordinal.ps

V

=pi_ (x: V) (y: Elv x -> V) MahLO UﬂlV@FS@
luni_ (f: (x: V) -> (Elv x -> V) -> V) Structures
(g: (X: V) -> (y: Elvx->V)->(Elv (f xy) ->V) ->V)
Elv: V -> U =
pi_a b -> (x: ELV a) -> kElv (b x) Universa
uni_ t g ->Universet g (F: (x: V) => (Elv x -> V) -> V)
(g: (X: V) -> (y: Elvx->V)->(Elv (f xy) ->V)->V)
fun_ (x: Universe f g) (_: Elt T g x -> Universe t Q)

http://www.cs.swan.ac.uk/
~csetzer/articles/uppermahlo.ps

cubical: Resolver.hs:(293,20)-
(316,29): Non-exhaustive patterns
IN case

(x: Universe T g) (
g_ (x:Universe t g)
(y: E t fgx->Universef g)

(z Elv (f (Elt f g x) (\(a: Elt f g x) ->y &)))
(T (X \/) > (Elv x -> V) -> V) -
(g: (x: V) -> (y: Elvx->V)->(Elv
Universet g ->V =

_Elttgx->Universe t g)

ELt

(Fxy)->V)

>\/)

Ftletap (A B:)L Ditferential Topology
=(:A->B
“isEtaleMap A B f ~tale Maps
isEtaleMap (A B: U) (f: A ->B): U
= isPullbackSg A IAB (ImB) xy w f h W
A:U=ImA A (A
B:U=ImB (A)
X: 1A ->IB=ImApp ABT
y: B ->iB =ImUnit B T X
w: A -> 1A =ImUnit A
cl:A->iB=0AIAIB xw
2 A->B=0AB iByf > Im(B)
T2: U = (a:A) -> Path iB (ca) (c2 a) Y
h: T2 =\(a: A) -> <i> ImNaturality ABfa @ -i

Ditferential Topology

Manifolds

HomogeneousStructure (V: U): U
et (A B: U): EtaleMap AB -> (A -> B)
isSurjective (A B: U) (f: A ->B): U

manifold (V" U) (V: HomogeneousStructure V'): U
(M:U)

W EtaLeMap W ™M)

(
(
(covers: isSurjective W M (et W M w))
(EtaleMap W V')

https://ncatlab.org/schreiber/show/thesis+Wellen

Infinitesimal Modality

Im:U->U = in Cohesive Topos
ImUnit (A:U): A->1Im A =
isCoreduced (A:U): U =iskquiv A (Im A) (ImUnit A)
ImCoreduced (A:U): isCoreduced (Im A)
ImApp (AB:U) (FA->B)ImA->ImB
= ImRecursion A (Im B) (ImCoreduced B) (o0 A B (Im B) (ImUnit B) 1)
ImNaturality (A B:U) (f:A->B): (a:A)->Path (Im B)((ImUnit B)(f a))((ImApp A B f)(ImUnit A a))

ImInduction (A:U)(B:Im A->U)(x: (a: Im A)->isCoreduced(B a))
(y:(a: A)->B(ImUnit A a)):(a:lm A)->B a

ImComputelnduction (A:U)(B:Im A->U) (c:(a:lm A)->isCoreduced(B a))
(T:(a:A)->B(ImUnit A a))(a:A)
- Path (B (ImUnit A a)) (fa) ((Imnduction AB cf) (ImUnit A a))

HIT: Higher Spheres

data 51 = Dbase Fiber Bundle of Spheres

| loop <i> [(i=0) -> base, (i=1) -> base]

data susp (A : U) = north
| south
| merid (a: A) <i> [(i=0) -> north, (i=1) -> south]
S2 U =susp ST
S3: U =susp S2
S4 U =susp S3

S:nat -> U = split
zero -> bool
SUCC X -> susp (S x)

https://groupoid.space/mltt/hopf/ I—I O pf I: | b rat | ONsS
Fiber Bundle of Spheres

ua (AB:U) (e:equivAB):PathUAB=<i> B[(i=0)->(Ae), (i=1)->(B,ideEquiv B)]
rot: (x : S1) -> Path ST x x = { base -> loopT; loop (@i -> constSquare ST base loopl (@i}

mu : ST ->equiv 5151 =
base -> idEquiv ST
loop @ i -> equivPath S1S1 (idEquiv S1) (idEquiv S1) (<j> \(x : ST) -> rot x @ j) @ |

H:52 ->U = {north ->5T1; south -> 51, merid x @i ->ua STST(mux) @i}
TH:U=(c:52)*HCc

Seq (A:U) (B: A -> A -> U) (X Y: A) SGQUGHCGS

= segNil (_: A)
| seqCons (XY Z:A) (LB XY)(L:SegABY Z)

fiberSeq: pointed -> pointed -> U = 5eq pointed pmap
fiberNil (X: pointed): fiberSeg X X = segNil X
fiberCons (X Y Z: pointed) (h: pmap X Y) (t: fiberSeq Y Z): fiberSeq X Z =seqCons XY Z h't

nomsSeq: group -> group -> U = Seqg group grouphom
NnomNil (X: group): homSeg X X = segNil X
nomCons (X Y Z: group) (h: grouphom X Y) (t: homSeq Y Z): homSeg X Z =segCons XY Zh't

abSeq: abgroup -> abgroup -> U = Seqg abgroup abgrouphom
abNil (X: abgroup): abSeg X X = segNil X
abCons (XY Z: abgroup) (h: abgrouphom X Y) (t: abSeq Y Z): abSeg X Z =segCons XY Zh 't

Chain Complexes

ChainComplex: U
= (head: abgroup)
* (chain: nat -> abgroup)
* (augment: abgrouphom (chain zero) head)
*((n: nat) -> abgrouphom (chain (succ n)) (chain n))

CochainComplex: U

= (head: abgroup)

(cochain: nat -> abgroup)

(augment: abgrouphom head (cochain zero))

*((n: nat) -> abgrouphom (cochain n) (cochain (succ n)))

¥ ¥

'mpredicative Encoding

AsS In version of Steve Awodey, HITs encoding

Nat_Church = (X: U) -> (X -> X) -> X -> X
Nat = (X:U) ->isSet X -> (X -> X) -> X -> X
Unit = (X:U) ->isSet X -> X -> X

1= (one: Unit) * (X Y: U) (x:isSet X) (y:isSet Y) (f:X->Y) -> naturality X Y T (one X x) (one Y y))
N = (one: Nat) * (X Y: U) (x:isSet X) (y:isSet Y) (1:X->Y) -> naturality X Y (one X x) (one Y vy))

Truncation ||Al| parametrized by (A:U) type = (X: U) -> isProp X -> (A -> X) -> X
SM = (X:U) -> isGroupoid X -> (x:X) -> Path X x x -> X
Arbitrary (A:U) type = (X: U) ->isSet X -> (A -> X) -> X

'mpredicative Encoding

Encode Unit. Homework: Bool, Circle, Sphere

unitbEnc: U = (X: U) -> isSet X -> X -> X

naturality (X Y:U)(f:X->Y)(a:X->X)(b:Y->Y): U = Path (X->Y)(o X X Y fa)(o X Y Y b f)

isUnitEnc (one: unitenc'): U
= (X Y:U)(x:isSet X)(y:isSet Y)(f: X->Y)->naturality XY f (one X x)(one Y y)

unit
unit
unit
unit
unit
unit
unit

- NC

-NC
- NC
—NC
-NC

U = (x: unitenc’) * isUnitEnc x
EncStar: unitEnc = (\(X:U)(_:isSet X)->idfun X,\(X Y: U)(_:isSet X)(_:isSet Y)->refl(X->Y))

Rec (C:U) (s:isSet C) (c: C): unitEnc -> C = \(z: unitEnc) ->z1Csc
Beta (C: U) (s:isSet Q) (¢: Q): Path C (unitbEncRec C s c unitbncStar) ¢
—ta (z: unitEnc): Path unitbEnc unitEncStar z

nd (P: unitEnc -> U) (a: unitEnc): P unitEncStar -> P a

-ncCondition (n: uniteEnc)): isProp (isUnitEnc n)

| iterature Overview

groupoid.space/mltt/infinity

Lof/2 Voevodsky15 DybjerO8 Hotmann94 Lofd4 Sozeau ClairambaultO5
Jacobs99 Cogd8 Selsaml1o AbelO3 Joyalld Hofmann96 Bohmabh Seelyd4
Henk93 Pfenning89 Curien14 Ho 1 115 Mortbergl/ Erik97 Wadler90
Castellan14 Shulmani5 Hedberg98 Gambino03 Voevodsky14 Ortonl/
Hermida95 Dybjer94 Dybjer95 Huberlo Curien0O8 Jacobs9/ Bishopb/
uberl/ MaclLane/1 VeneOO Nordstrom90 Angiulilo LawvereQ9 Basold16
Hermida938 BartheOO

https://github.com/groupoid/cafe

| hank You!

Maxim Sokhatsky

https://groupoid.space

