
Groupoid Infinity

Intetics f(cafe) 25 July 2018 Freud House, Kyiv, Ukraine

Namdak Tonpa

HoTT: The Language of Space

— Nicolaas Govert de Bruĳn [AUTOMATH]
— Per Martin-Löf, Henk Barendregt [MLTT, λ-Cube]
— Robin Milner [ML, LCF, π-Calculus]
— Gérard Pierre Huet [CAML]
— Christine Paulin-Mohring [CiC]
— Peter Dybjer, Martin Hofmann, R.A.G. Seely [CwF, CwA, LCCC]
— Thierry Coquand [CoC, Coq, CCHM]
— Robert William "Bob" Harper, Jr. [HoTT, RedPRL, ML, Twelf]
— Steve Awodey, Vladimir Voevodsky [HoTT, C-Systems]
— Cyril Cohen, Simon Huber, Anders Mörtberg [CCHM, cubicaltt, yacctt]

The HoTT Lineage

Homotopy Type Theory (HoTT) is the most advanced programming
language in the domain of intersection of several theories: algebraic
topology, homological algebra, higher category theory, mathematical
logic, and theoretical computer science. That is why it can be
considered as a language of space, as it can encode any existent
mathematics.

During this lecture on HoTT, we are trying to encode as much
mathematics in the programming language as possible.

Abstract
Cubical Base Library

— MLTT
— Inductive Types, Induction
— IPL and Elements of Set Theory
— Control, Recursive Schemes
— Equiv, Iso, Univalence
— Higher Inductive Types
— Modalities

— Category Theory, Topos Theory
— Basic Algebra
— Ordinals, Mahlo Universe
— Differential Topology
— FIber Bundles and Hopf Fibtations
— K-Theory
— Sequences, Chain Complexes

Talk Structure
Slightly based on HoTT Chapters

I. Foundations II. Mathematics

I. Foundations

POLYREC

No Terms
On Types

P2:
No Types
On Types

AUTOMATH

STLC

System Fω:
Haskell, Scala, 1ML
Almost CoC
No Types
On Values

Untypled SLC:
Erlang, LISP,

JavaScript

http://ttic.uchicago.edu/~dreyer/
course/papers/barendregt.pdf

Infinity Topoi
Agda, Coq, Lean, Om

CoC: Morte, Henk

System F:
ML, Miranda,
OCaml

CoC: * ↝ * ▢ ↝ * * ↝ ▢ ▢ ↝ ▢
Fω: * ↝ * ▢ ↝ * ▢ ↝ ▢

AUT: * ↝ * * ↝ ▢
P2: * ↝ * ▢ ↝ * * ↝ ▢

 F: * ↝ * ▢ ↝ *

λ-Calculi
in Extended Lambda Cube

OM PTS
Type Inference Algorithm (Pure Case Analysis) in Erlang

type (:star, N) D → (:star, N+1)
 (:var, N, I) D → :true = proplists:defined N B, om:keyget N D I
 (:pi, N, 0, I, O) D → (:star ,h (star (type I D)) (star (type O [(N,norm I)|D])))
 (:fn, N, 0, I, O) D → let star (type I D), Ni = norm I in (:pi,N,0,Ni,type(O,[(N,Ni)|D]))
 (:app, F, A) D → let T = type(F,D), (:pi,N,0,I,O) = T, :true = eq I (type A D)
 in norm (subst O N A)

MLTT 1972
Type Theory as new Foundations of Mathematics

U : U — Single Universe Model — MLTT 1972, CoC 1988.
x : A — x is a point (Star) in space A (Box)
y = [x : A] — x and y are definitionaly equal objects of type A

 ∏ ∑

1. Formation Rule
2. Introduction Rule(s)
3. Elimination Rule(s)
4. Computational Rule(s)

(x:A) -> B(x)
\ (x:A) -> B(x)
f a
two

(x:A) * B(x)
(a,b)
.1, .2
three

Beta and Eta
Duality of Intro and Elim and its Uniqueness

Non-Dep Case (CCC). Homework: Proof LCCC case.

A

B

C

A * B

eta

beta

beta

D

eta

B
A * (A->B)A->B

A * CD

beta

MLTT 1975, 1984
Grothendieck Universe (containing all sets), Countable Universes

U₀ : U₁ : U₂ : U₃ : ... ∞ — infinite hierarchy of universes
S (n: nat) = Un
A₁ (n m: nat) = Un : Um where [m>n] — cumulative, [n+1=m] — non-cumulative
R₁ (m n: nat) = Um ⟶ Un : Ux where [x=max(m,n)] — predicative,
 [x=n] — impredicative

1. Formation
2. Introduction
3. Elimination
4. Computational

data nat
zero, succ
natInd
Beta, Eta

data list
nil, cons
listInd
Beta, Eta

Path A x y
refl A x
J
Beta, [Eta]

data W
sup
wInd
Beta, Eta

Intuitionistics Propositional Logic
According to Brouwer–Heyting–Kolmogorov interpretation

∀ ∃ Path 0 1 +

x:A -> B(x)
\ (x: A) -> B(x)
f a = B(a)
Beta, Eta

x:A * B(x)
(x,B(x))
pr1, pr2
Beta, Eta

x:A = y:A
refl A x
J
Beta

data empty

elim0
Beta, Eta

data unit
tt
elim1
Beta, Eta

data either
inl, inr
eitherInd
Beta, Eta

Proto (Prelude)
For run-time and I/O applications

Homework: Add I/O interface for finite and infinite loop.

maybe either stream bool vector fin

U -> U
nothing, just
maybeInd
Beta, Eta

U -> U -> U
inl, inr
eitherInd
Beta, Eta

U -> U
cons
streamInd
Beta, Eta

U
true, false
boolInd
Beta, Eta

nat -> U
vz, vs
vecInd
Beta, Eta

nat -> U
fz, fs
finInd
Beta, Eta

Induction Principle
Natural Numbers Example

natCase (C:U) (a b: C): nat -> C
 = split { zero -> a ; succ n -> b }

natRec (C:U) (z: C) (s: nat->C->C): (n:nat) -> C
 = split { zero -> z ; succ n -> s n (natRec C z s n) }

natInd (C:nat->U) (z: C zero) (s: (n:nat)->C(n)->C(succ n)): (n:nat) -> C(n)
 = split { zero -> z ; succ n -> s n (natInd C z s n) }

Induction Principle could be the ultimate programming tool.

Inductive AST
Data Definition and Case Analysis

data tele (A: U) = emp | tel (n: name) (b: A) (t: tele A)
data branch (A: U) = br (n: name) (args: list name) (term: A)
data label (A: U) = lab (n: name) (t: tele A)
data ind = data_ (n: name) (t: tele lang) (labels: list (label lang))
 | case (n: name) (t: lang) (branches: list (branch lang))
 | ctor (n: name) (args: list lang)

Homework: Add HITs elements as Path Equalities to data declarations.
Hint: use your imagination.

Pi Type : Definition
Family of Types, Fibrations, Fiber Space A->U, Fiber B(x),

Section b(x), Space of Sections Pi(A,B)

<> ::= #option
T ::= #identifier
U ::= ∗ < #number >
O1 ::= U | T | (O) | O O | O -> O
 | \ (I: O) -> O | (I: O) -> O

Pure Type System (PTS), Single Axiom System, Calculus of Constructions (CoC)
Henk, Morte, Om and many many others.

Syntax Model

data pts = star (n: nat)
 | var (x: name) (l: nat)
 | pi (x: name) (l: nat) (d c: lang)
 | lambda (x: name) (l: nat) (d c: lang)
 | app (f a: lang)

Pi Type : Inference Rules
Universal Quantifier

Pi (A: U) (P: A -> U) : U = (x:A) -> P(x)
lambda (A : U) (B: A -> U) (a : A) (b: B a): A -> B a = \ (x: A) -> b
app (A : U) (B: A -> U) (a : A) (f: A -> B a): B a = f a
Beta (A:U) (B:A->U) (a:A) (f: A->B a) : Path (B a) (app A B a (lam A B a (f a))) (f a)
Eta (A: U) (B: A -> U) (a: A) (f: A -> B a) : Path (A -> B a) f (\(x:A) -> f x)

One beta rule and one eta rule for Pi types.

Sigma Type : Definition
Total Space Sigma(A,B), Point in Base with Section (a,b)

data exists = sigma (n: name) (a b: lang)
 | pair (a b: lang)
 | fst (p: lang)
 | snd (p: lang)

Sigma is a part of the MLTT earliest core.
It models Type Refinement and Proofs by Existance (Construction).

Sigma is a chain link of telescopes (contexts), the curried notion of records.

O2 := (x: O) * O | (O,O) | O.1 | O.2Syntax

Model

Sigma Type : Inference Rules
Existential Quantifier

Sigma (A : U) (B : A -> U) : U = (x : A) * B x
pair (A : U) (B: A -> U) (a : A) (b: B a): Sigma A B = ?
pr1 (A: U) (B: A -> U) (x: Sigma A B): A = ?
pr2 (A: U) (B: A -> U) (x: Sigma A B): B (pr1 A B x) = ?
Beta1 (B: A -> U) (a: A) (b: B a) -> Path A a (pr1 A B (pair A B a b)))
Beta2 (B: A -> U) (a: A) (b: B a) -> Path (B a) b (pr2 A B (a,b)))
Eta (B: A -> U) (p: Sigma A B) -> Path (Sigma A B) p (pr1 A B p,pr2 A B p))

sigRec (A:U)(B:A->U)(C: U) (g:(x:A)->B(x)->C) (p: Sigma A B): C = g p.1 p.2
sigInd (A:U)(B:A->U)(C:Sigma A B->U)
 (p: Sigma A B)(g:(a:A)(b:B(a))->C(a,b)):C p=g p.1 p.2

−− Sigma/@
 \ (A: ∗)
−> \ (P: A −> ∗)
−> \ (n: A)
−> \/ (Exists: ∗)
−> \/ (Intro: A −> P n −> Exists)
−> Exists

−− Sigma/Intro
 \ (A: ∗)
−> \ (P: A −> ∗)
−> \ (x: A)
−> \ (y: P x)
−> \ (Exists: ∗)
−> \ (Intro: \/ (x:A) −> P x −> Exists)
−> Intro x y

Sigma Type in Pi
Typing and Introduction Rules in Church-Bohm-Berarducci Encoding

−− Sigma/fst
 \ (A: ∗)
−> \ (B: A −> ∗)
−> \ (n: A)
−> \ (S: #Sigma/@ A B n)
−> S A (\(x: A) −> \(y: B n) −> x)

−− Sigma/snd
 \ (A: ∗)
−> \ (B: A −> ∗)
−> \ (n: A)
−> \ (S: #Sigma/@ A B n)
−> S (B n) (\(: A) −> \(y: B n) −> y)

Sigma Type in Pi
Eliminators in Church-Bohm-Berarducci Encoding

Control (Haskell)
Port of Haskell-style erased 2-categorical structures for flow modeling

pure_sig (F:U->U):U= (A: U) -> A -> F A
appl_sig (F:U->U):U= (A B: U) -> F (A -> B) -> F A -> F B
fmap_sig (F:U->U):U= (A B: U) -> (A -> B) -> F A -> F B
bind_sig (F:U->U):U= (A B: U) -> F A ->(A -> F B)-> F B
functor: U = (F: U -> U) * fmap_sig F
applicative: U = (F: U -> U) * (_: pure_sig F) * (_: fmap_sig F) * appl_sig F
monad: U = (F:U->U)*(_:pure_sig F)*(_:fmap_sig F)*(_:appl_sig F) * bind_sig F
FUNCTOR: U = (f: functor) * isFunctor f
APPLICATIVE: U = (f: applicative) * (_: isFunctor (f.1,f.2.2.1)) * isApplicative f
MONAD: U = (f: monad) * (_: isFunctor (f.1,f.2.2.1))
 * (_: isApplicative (f.1,f.2.1,f.2.2.1,f.2.2.2.1)) * isMonad f

F-Algebras
Inductive Type Modeling with Varmo Vene style Recursion Schemes

data fix (F:U->U) = Fix (point: F (fix F))
data nu (F:U->U) (A B:U) = CoBind (a: A) (f: F B)
data cofree (F:U->U) (A:U) = CoFree (_: fix (nu F A))
ind (F: U -> U) (A: U): U = (in_: F (fix F) -> fix F) * (in_rev: fix F -> F (fix F))
* ((F A -> A) -> fix F -> A) * (cofree_: (F (cofree F A) -> A) -> fix F -> A)
inductive (F: functor) (A: U): ind F.1 A = (in_ F.1,out_ F.1,cata A F,histo A F,tt)

Backported to cubicaltt.

Bishop’s Constructive Analysis
Reflexivity, Transitivity, SymmetrySetoid (A: U): U

 = (Carrier: A)
 * (Equ: (a b: A) -> Path A a b)
 * (Refl: (x: A) -> Equ x x)
 * (Trans: (x₁,x₂,x₃: A) -> Equ x₁ x₂ -> Equ x₂ x₃ -> Equ x₁ x₃)
 * (Sym: (x₁,x₂: A) -> Equ x₁ x₂ -> Equ x₂ x₁)

a =A b

a b
Refl

a =A b a =A b b =A c

a =A cb =A a

a ab b cSym

Trans

Globular Theory
Multidimentional Equality

a

a

b

b

a =A b

a =A b

a =A b

((a =A b) =(=A) (a =A b))

((a =A b) =(=A) (a =A b)) =(=(=A)) ((a =A b) =(=A) (a =A b))

=Aa b
A

Equ Type a la Martin-Löf

Path (A: U) (a b: A): U = axiom — PathP (<i>A) a b
HeteroEqu (A B: U) (a: A) (b: B) (P: Path U A B) : U = axiom — PathP P a b

Equ (A: U) (x y: A): U = HeteroEqu A A x y (<i>A)
refl (A: U) (a: A): Equ A a a = <i> a
J (A: U) (a: A) (C: (x : A) -> Path A a x -> U)
 (d: C a (refl A a)) (x: A) (p: Path A a x): C x p
Comp (A : U) (a : A) (C : (x : A) -> Path A a x -> U)
 (d : C a (refl A a)) : Path (C a (refl A a)) d (J A a C d a (refl A a))

data lang = hts | …
data hts = path (a b: lang)
 | path_lam (n: name) (a b: lang)
 | path_app (f: name) (a b: lang)
 | comp_ (a b: lang)
 | fill_ (a b c: lang)
 | glue_ (a b c: lang)
 | glue_elem (a b: lang)
 | unglue_elem (a b: lang)

de Morgan: 1-i | i | i /\ j | i \/ j

a : A b : A

x : [PathP p a b, p = (i: I) -> A]

Path Types as Cubes
Syntax and Model

Syntax Model

data I = i0
 | i1
 | seg <i> [(i=0) -> i0, (i=1) -> i1]

pathToHtpy (A: U) (x y: A) (p: Path A x y): I -> A
 = split { i0 -> x; i1 -> y; seg @ i -> p @ i }

homotopy (X Y: U) (f g: X -> Y)
 (p: (x: X) -> Path Y (f x) (g x))
 (x: X): I -> Y = pathToHtpy Y (f x) (g x) (p x)

HIT: Homotopy
Intro and Elim

n-Types
Infinity Groupoids

Path (A : U) : U = (a b : A) -> PathP (<i> A) a b
isContr (A : U): U = (x: A) * ((y: A) -> Path A x y)
isProp (A : U) : U = (a b : A) -> Path A a b
isSet (A : U) : U = (a b : A) -> isProp (Path A a b)
isGroupoid (A : U) : U = (a b : A) -> isSet (Path A a b)
isGr_2 (A : U) : U = (a b : A) -> isGroupoid (Path A a b)
isGr_3 (A : U) : U = (a b : A) -> isGr_2 (Path A a b)

PROP : U = (X:U) * isProp X
SET : U = (X:U) * isSet X
GROUPOID : U = (X:U) * isGroupoid X
INF_GROUPOID : U = (X:U) * isInfinityGroupoid X

Subtyping in MLTT
Subsets and Subtypes

hsubtypes (X: U): U = X -> PROP
subset (A: U) (_: isSet A): U = A -> PROP

sethsubtypes (X : U) : isSet (hsubtypes X)
hsubtypespair (A B: U) (H0: hsubtypes A) (H1: hsubtypes B) (x: prod A B): PROP

subtypeEquality (A: U) (B: A -> U)
 (pB: (x : A) -> isProp (B x))
 (s t: Sigma A B) : Path A s.1 t.1 -> Path (Sigma A B) s t

iseqclass (X : U) (R : hrel X) (A : hsubtypes X) : U
propiseqclass (X : U) (R : hrel X) (A : hsubtypes X) : isProp (iseqclass X R A)

ac (A B: U) (R: A -> B -> U): (p: (x:A)->(y:B)*(R x y)) -> (f:A->B)*((x:A)->R(x)(f x))
 = \(g: (x:A)->(y:B)*(R x y)) -> (\(i:A)->(g i).1,\(j:A)->(g j).2)

total (A:U) (B C : A->U) (f : (x:A) -> B x -> C x) (w:Sigma A B) : Sigma A C
 = (w.1,f (w.1) (w.2))

Elements of Set Theory
Set Theory Theorems

efq (A: U): empty -> A = emptyRec A
neg (A: U): U = A -> empty
dneg (A:U) (a:A): neg (neg A) = \(h: neg A) -> h a
neg (A: U): U = A -> empty
dec (A: U): U = either A (neg A)
stable (A: U): U = neg (neg A) -> A
discrete (A: U): U = (a b: A) -> dec (Path A a b)

propDec (A : U) (a: isProp A) : isProp (dec A)
propAnd (A B : U) (a: isProp A) (b: isProp B) : isProp (prod A B)
propOr (A B : U) (a: isProp A) (b: isProp B) (x: A -> neg B) : isProp (either A B)
propNeg (A : U) : isProp (neg A)
propN0 : isProp empty

Prop Logic
Set Theory Theorems

funext (A: U) (B: A -> U) (f g: (x:A) -> B x)
 (p: (x:A) -> Path (B x) (f x) (g x))
 : Path ((y:A) -> B y) f g
 = <i> \(a: A) -> (p a) @ i
 = <j> (\(x : A) -> homotopy A B f g p x (seg{I} @ j))

f : (x:A) -> B(x)

g : (x:A) -> B(x)

(x:A) B(x)

f =(A->B) g

f : A->B g : A-> B

<i> \(a:A) -> p a @ i

FunExt
Syntax and Model

funext_form (A B: U) (f g: A -> B): U = Path (A -> B) f g
funext (A B: U) (f g: A -> B) (p: (x:A) -> Path B (f x) (g x)) : funext_form A B f g
happly (A B: U) (f g: A -> B) (p: funext_form A B f g) (x: A) : Path B (f x) (g x)
funext_Beta (A B: U) (f g: A -> B) (p: (x:A) -> Path B (f x) (g x))
 : (x:A) -> Path B (f x) (g x)
funext_Eta (A B: U) (f g: A -> B) (p: funext_form A B f g)
 : Path (funext_form A B f g) (funext A B f g (happly A B f g p)) p

FunExt
Formation, Intro, Elim, Beta, Eta

Weak Equivalence
Fibrational

Fiber Bundle: F -> E -> B
Moebius E = S^1 ‘twisted *’ [0,1]
Trivial: E = B * F
p : total -> B
F = fiber : B -> total
total = (y: B) * fiber(y)

Fiber=Pi (B: U) (F: B -> U) (y: B)
 : Path U (fiber (total B F) B (trivial B F) y) (F y)

fiber (A B: U) (f: A -> B) (y: B): U = (x: A) * Path B y (f x)
isEquiv (A B: U) (f: A -> B): U = (y: B) -> isContr (fiber A B f y)
equiv (A B: U): U = (f: A -> B) * isEquiv A B f

IsomorphismisIso (A B: U): U --- A = XML, B = JSON
 = (f: A -> B)
 * (g: B -> A)
 * (s: section A B f g)
 * (t: retract A B f g)
 * unit

iso: U
 = (A: U)
 * (B: U)
 * isIso A B

section (A B: U) (f: A -> B) (g: B -> A): U = (b: B) -> Path B (f (g b)) b
retract (A B: U) (f: A -> B) (g: B -> A): U = (a: A) -> Path A (g (f a)) a

isoPath (A B: U) (f: A -> B) (g: B -> A)
 (s: section A B f g) (t: retract A B f g): Path U A B
 = <i> Glue B [(i = 0) -> (A,f,isoToEquiv A B f g s t),
 (i = 1) -> (B,idfun B,idIsEquiv B)]

isoToPath (i: iso): Path U i.1 i.2.1
 = isoPath i.1 i.2.1 i.2.2.1 i.2.2.2.1 i.2.2.2.2.1 i.2.2.2.2.2.1

Univalence Axiom
All Equalities Should Be Equal

ua (A B: U): U = equiv A B -> Path U A B
uaIntro (A B: U): ua A B
uaElim (A B: U) (p: Path U A B): equiv A B

uaComp (A B : U) (p : Path U A B)
 : Path (Path U A B) (uaIntro A B (uaElim A B p)) p

uaUniqueness (A B : U) (w : equiv A B)
 : Path (A -> B) w.1 (uaElim A B (uaIntro A B w)).1

Path Path(Path,Equiv)

Iso Equiv

Equiv(Path,Equiv)
Iso(Path,Equiv)

Univalence Axiom
All Equalities Should Be Equal

Trivial Fiber = Pilem2 (B: U) (F: B -> U) (y: B) (x: F y)
 : Path (F y) (comp (<i>F (refl B y @ i)) x []) x
 = <j> comp (<i>F ((refl B y) @ j/\i)) x [(j=1) -> <k>x]

lem3 (B: U) (F: B -> U) (y: B) (x: fiber (total B F) B (trivial B F) y)
 : Path (fiber (total B F) B (trivial B F) y) ((y,encode B F y x),refl B y) x
 = <i> ((x.2 @ -i,comp (<j> F (x.2 @ -i /\ j)) x.1.2 [(i=1) -> <_> x.1.2]),<j> x.2 @ -i \/ j)

FiberPi (B: U) (F: B -> U) (y: B) : Path U (fiber (total B F) B (trivial B F) y) (F y)
= isoPath T A f g s t where
 T: U = fiber (total B F) B (trivial B F) y
 A: U = F y
 f: T -> A = encode B F y
 g: A -> T = decode B F y
 s (x: A): Path A (f (g x)) x = lem2 B F y x
 t (x: T): Path T (g (f x)) x = lem3 B F y x

I. Mathematics

Category Theory
Categories

cat: U = (A: U) * (A -> A -> U)

isPrecategory (C: cat): U
 = (id: (x: C.1) -> C.2 x x)
 * (c: (x y z:C.1) -> C.2 x y -> C.2 y z -> C.2 x z)
 * (homSet: (x y: C.1) -> isSet (C.2 x y))
 * (left: (x y: C.1) -> (f: C.2 x y) -> Path (C.2 x y) (c x x y (id x) f) f)
 * (right: (x y: C.1) -> (f: C.2 x y) -> Path (C.2 x y) (c x y y f (id y)) f)
 * ((x y z w: C.1) -> (f: C.2 x y) -> (g: C.2 y z) -> (h: C.2 z w) ->
 Path (C.2 x w) (c x z w (c x y z f g) h) (c x y w f (c y z w g h)))

precategory: U = (C: cat) * isPrecategory C

Instances:
Set, Functions, Category, Functors, Commutative Monoids, Abelian Groups

Category Theory
Functors

catfunctor (A B: precategory): U
 = (ob: carrier A -> carrier B)
 * (mor: (x y: carrier A) -> hom A x y -> hom B (ob x) (ob y))
 * (id: (x: carrier A) -> Path (hom B (ob x) (ob x)) (mor x x (path A x)) (path B (ob x)))
 * ((x y z: carrier A) -> (f: hom A x y) -> (g: hom A y z) ->
 Path (hom B (ob x) (ob z)) (mor x z (compose A x y z f g))
 (compose B (ob x) (ob y) (ob z) (mor x y f) (mor y z g)))

Category Equivalence, Id and Composition Functors, Slice and Coslice

Category of Sets
Formal Model of Set Theory

Set: precategory = ((Ob,Hom),id,c,HomSet,L,R,Q) where
 Ob: U = SET
 Hom (A B: Ob): U = A.1 -> B.1
 id (A: Ob): Hom A A = idfun A.1
 c (A B C: Ob) (f: Hom A B) (g: Hom B C): Hom A C = o A.1 B.1 C.1 g f
 HomSet (A B: Ob): isSet (Hom A B) = setFun A.1 B.1 B.2
 L (A B: Ob) (f: Hom A B): Path (Hom A B) (c A A B (id A) f) f = refl (Hom A B) f
 R (A B: Ob) (f: Hom A B): Path (Hom A B) (c A B B f (id B)) f = refl (Hom A B) f
 Q (A B C D: Ob) (f: Hom A B) (g: Hom B C) (h: Hom C D)
 : Path (Hom A D) (c A C D (c A B C f g) h) (c A B D f (c B C D g h))
 = refl (Hom A D) (c A B D f (c B C D g h))

Pullback Completeness
Pullbacks and Fibers as edge case

Examples:
Products, Fibers

Dual Examples (Pushout):
Coproducts, Cofibers

A

B

Z

C

unique
D

Topos Theory
Categories

subobjectClassifier (C: precategory): U
 = (omega: carrier C)
 * (end: terminal C)
 * (trueHom: hom C end.1 omega)
 * (xi: (V X: carrier C) (j: hom C V X) -> hom C X omega)
 * (square: (V X: carrier C) (j: hom C V X) -> mono C V X j
 -> hasPullback C (omega,(end.1,trueHom),(X,xi V X j)))
 * ((V X: carrier C) (j: hom C V X) (k: hom C X omega)
 -> mono C V X j
 -> hasPullback C (omega,(end.1,trueHom),(X,k))
 -> Path (hom C X omega) (xi V X j) k)

Topos (cat: precategory): U
 = (rezk: isCategory cat)
 * (cartesianClosed: isCCC cat)
 * subobjectClassifier cat

1

X

V

true

xi
Ω

Basic Abstract Algebra
StructuresisMonoid (M: SET): U

 = (op: M.1 -> M.1 -> M.1)
 * (_: isAssociative M.1 op)
 * (id: M.1)
 * (hasIdentity M.1 op id)

isCMonoid (M: SET): U
 = (m: isMonoid M)
 * (isCommutative M.1 m.1)

isGroup (G: SET): U
 = (m: isMonoid G)
 * (inv: G.1 -> G.1)
 * (hasInverse G.1 m.1 m.2.2.1 inv)

isAbGroup (G: SET): U
 = (g: isGroup G)
 * (isCommutative G.1 g.1.1)

isRing (R: SET): U
 = (mul: isMonoid R)
 * (add: isAbGroup R)
 * (isDistributive R.1 add.1.1.1 mul.1)

isAbRing (R: SET): U
 = (mul: isCMonoid R)
 * (add: isAbGroup R)
 * (isDistributive R.1 add.1.1.1 mul.1.1)

Basic Abstract Algebra
Objects and Morphisms for Categorical Setup

monoid: U = (X: SET) * isMonoid X
cmonoid: U = (X: SET) * isCMonoid X
group: U = (X: SET) * isGroup X
abgroup: U = (X: SET) * isAbGroup X
ring: U = (X: SET) * isRing X
abring: U = (X: SET) * isAbRing X

monoidhom (a b: monoid): U
 = (f: a.1.1 -> b.1.1)
 * (ismonoidhom a b f)

cmonoidhom (a b: cmonoid): U = monoidhom (a.1, a.2.1) (b.1, b.2.1)
grouphom (a b: group): U = monoidhom (a.1, a.2.1) (b.1, b.2.1)
abgrouphom (a b: abgroup): U = monoidhom (a.1, a.2.1.1) (b.1, b.2.1.1)
cmonabgrouphom (a: cmonoid) (b: abgroup): U = monoidhom (a.1, a.2.1) (b.1, b.2.1.1)

Ordinals
Structuresdata ord = zero

 | succ (n: ord)
 | lim (f: nat -> ord)

data ord2 = zero
 | succ (n: ord2)
 | lim (f: nat -> ord2)
 | lim2 (f: ord -> ord2)

data ord3 = zero
 | succ (n: ord3)
 | lim (f: nat -> ord3)
 | lim2 (f: ord -> ord3)
 | lim3 (f: ord2 -> ord3)

http://www.cse.chalmers.se/~coquand/ordinal.ps

Mahlo Universe
Structures

data V
 = pi_ (x: V) (y: Elv x -> V)
 | uni_ (f: (x: V) -> (Elv x -> V) -> V)
 (g: (x: V) -> (y: Elv x -> V) -> (Elv (f x y) -> V) -> V)
Elv: V -> U = split
 pi_ a b -> (x: Elv a) -> Elv (b x)
 uni_ f g -> Universe f g

http://www.cs.swan.ac.uk/
~csetzer/articles/uppermahlo.ps

cubical: Resolver.hs:(293,26)-
(316,29): Non-exhaustive patterns
in case

data Universe
 (f: (x: V) -> (Elv x -> V) -> V)
 (g: (x: V) -> (y: Elv x -> V) -> (Elv (f x y) -> V) -> V)
 = fun_ (x: Universe f g) (_: Elt f g x -> Universe f g)
 | f_ (x: Universe f g) (_: Elt f g x -> Universe f g)
 | g_ (x: Universe f g)
 (y: Elt f g x -> Universe f g)
 (z: Elv (f (Elt f g x) (\(a: Elt f g x) -> y a)))
Elt: (f: (x: V) -> (Elv x -> V) -> V) ->
 (g: (x: V) -> (y: Elv x -> V) -> (Elv (f x y) -> V) -> V) ->
 Universe f g -> V = undefined

Differential Topology
Etale Maps

EtaleMap (A B: U): U
 = (f: A -> B)
 * isÉtaleMap A B f

isÉtaleMap (A B: U) (f: A -> B): U
 = isPullbackSq A iA B (Im B) x y w f h where
 iA : U = Im A
 iB : U = Im B
 x: iA -> iB = ImApp A B f
 y: B -> iB = ImUnit B
 w: A -> iA = ImUnit A
 c1: A -> iB = o A iA iB x w
 c2: A -> iB = o A B iB y f
 T2: U = (a:A) -> Path iB (c1 a) (c2 a)
 h: T2 = \(a : A) -> <i> ImNaturality A B f a @ -i

Im(A)

B

A

f x

y

w

Im(B)

Differential Topology
ManifoldsHomogeneousStructure (V: U): U

et (A B: U): EtaleMap A B -> (A -> B)
isSurjective (A B: U) (f: A -> B): U

manifold (V': U) (V: HomogeneousStructure V'): U
 = (M: U)
 * (W: U)
 * (w: EtaleMap W M)
 * (covers: isSurjective W M (et W M w))
 * (EtaleMap W V')

https://ncatlab.org/schreiber/show/thesis+Wellen

Infinitesimal Modality
in Cohesive ToposIm : U -> U = undefined

ImUnit (A: U) : A -> Im A = undefined
isCoreduced (A:U): U = isEquiv A (Im A) (ImUnit A)
ImCoreduced (A:U): isCoreduced (Im A)
ImApp (A B: U) (f: A -> B): Im A -> Im B
 = ImRecursion A (Im B) (ImCoreduced B) (o A B (Im B) (ImUnit B) f)
ImNaturality (A B:U) (f:A->B): (a:A)->Path (Im B)((ImUnit B)(f a))((ImApp A B f)(ImUnit A a))

ImInduction (A:U)(B:Im A->U)(x: (a: Im A)->isCoreduced(B a))
 (y:(a: A)->B(ImUnit A a)):(a:Im A)->B a

ImComputeInduction (A:U)(B:Im A->U) (c:(a:Im A)->isCoreduced(B a))
 (f:(a:A)->B(ImUnit A a))(a:A)
 : Path (B (ImUnit A a)) (f a) ((ImInduction A B c f) (ImUnit A a))

HIT: Higher Spheres
Fiber Bundle of Spheresdata S1 = base

 | loop <i> [(i=0) -> base, (i=1) -> base]

data susp (A : U) = north
 | south
 | merid (a : A) <i> [(i=0) -> north, (i=1) -> south]
S2 : U = susp S1
S3 : U = susp S2
S4 : U = susp S3

S: nat -> U = split
 zero -> bool
 succ x -> susp (S x)

Hopf Fibrations
Fiber Bundle of Spheres

https://groupoid.space/mltt/hopf/

ua (A B : U) (e : equiv A B) : Path U A B = <i> Glue B [(i = 0) -> (A,e), (i = 1) -> (B,idEquiv B)]
rot: (x : S1) -> Path S1 x x = split { base -> loop1 ; loop @ i -> constSquare S1 base loop1 @ i }

mu : S1 -> equiv S1 S1 = split
 base -> idEquiv S1
 loop @ i -> equivPath S1 S1 (idEquiv S1) (idEquiv S1) (<j> \(x : S1) -> rot x @ j) @ i

H : S2 -> U = split { north -> S1 ; south -> S1 ; merid x @ i -> ua S1 S1 (mu x) @ i }
TH : U = (c : S2) * H c

Sequencesdata Seq (A: U) (B: A -> A -> U) (X Y: A)
 = seqNil (_: A)
 | seqCons (X Y Z: A) (_: B X Y) (_: Seq A B Y Z)

fiberSeq: pointed -> pointed -> U = Seq pointed pmap
fiberNil (X: pointed): fiberSeq X X = seqNil X
fiberCons (X Y Z: pointed) (h: pmap X Y) (t: fiberSeq Y Z): fiberSeq X Z = seqCons X Y Z h t

homSeq: group -> group -> U = Seq group grouphom
homNil (X: group): homSeq X X = seqNil X
homCons (X Y Z: group) (h: grouphom X Y) (t: homSeq Y Z): homSeq X Z = seqCons X Y Z h t

abSeq: abgroup -> abgroup -> U = Seq abgroup abgrouphom
abNil (X: abgroup): abSeq X X = seqNil X
abCons (X Y Z: abgroup) (h: abgrouphom X Y) (t: abSeq Y Z): abSeq X Z = seqCons X Y Z h t

Chain Complexes

ChainComplex: U
 = (head: abgroup)
 * (chain: nat -> abgroup)
 * (augment: abgrouphom (chain zero) head)
 * ((n: nat) -> abgrouphom (chain (succ n)) (chain n))

CochainComplex: U
 = (head: abgroup)
 * (cochain: nat -> abgroup)
 * (augment: abgrouphom head (cochain zero))
 * ((n: nat) -> abgrouphom (cochain n) (cochain (succ n)))

Impredicative Encoding
As in version of Steve Awodey, HITs encoding

Nat_Church = (X: U) -> (X -> X) -> X -> X
Nat = (X: U) -> isSet X -> (X -> X) -> X -> X
Unit = (X: U) -> isSet X -> X -> X

1 = (one: Unit) * ((X Y: U) (x: isSet X) (y:isSet Y) (f:X->Y) -> naturality X Y f (one X x) (one Y y))
N = (one: Nat) * ((X Y: U) (x: isSet X) (y:isSet Y) (f:X->Y) -> naturality X Y f (one X x) (one Y y))

Truncation ||A|| parametrized by (A:U) type = (X: U) -> isProp X -> (A -> X) -> X
S^1 = (X:U) -> isGroupoid X -> (x:X) -> Path X x x -> X
Arbitrary (A:U) type = (X: U) -> isSet X -> (A -> X) -> X

Impredicative Encoding
Encode Unit. Homework: Bool, Circle, Sphere

unitEnc': U = (X: U) -> isSet X -> X -> X
naturality (X Y:U)(f:X->Y)(a:X->X)(b:Y->Y): U = Path (X->Y)(o X X Y f a)(o X Y Y b f)
isUnitEnc (one: unitEnc'): U
 = (X Y:U)(x:isSet X)(y:isSet Y)(f:X->Y)->naturality X Y f (one X x)(one Y y)

unitEnc: U = (x: unitEnc') * isUnitEnc x
unitEncStar: unitEnc = (\(X:U)(_:isSet X)->idfun X,\(X Y: U)(_:isSet X)(_:isSet Y)->refl(X->Y))
unitEncRec (C: U) (s: isSet C) (c: C): unitEnc -> C = \(z: unitEnc) -> z.1 C s c
unitEncBeta (C: U) (s: isSet C) (c: C): Path C (unitEncRec C s c unitEncStar) c
unitEncEta (z: unitEnc): Path unitEnc unitEncStar z
unitEncInd (P: unitEnc -> U) (a: unitEnc): P unitEncStar -> P a
unitEncCondition (n: unitEnc'): isProp (isUnitEnc n)

Lof72 Voevodsky15 Dybjer08 Hofmann94 Lof84 Sozeau Clairambault05
Jacobs99 Coq88 Selsam16 Abel08 Joyal14 Hofmann96 Bohm85 Seely84

Henk93 Pfenning89 Curien14 HoTT13 Mortberg17 Erik97 Wadler90
Castellan14 Shulman15 Hedberg98 Gambino03 Voevodsky14 Orton17
Hermida95 Dybjer94 Dybjer95 Huber16 Curien08 Jacobs97 Bishop67

Huber17 MacLane71 Vene00 Nordstrom90 Angiuli16 Lawvere09 Basold16
Hermida98 Barthe00

Literature Overview
groupoid.space/mltt/infinity

Thank You!
Maxim Sokhatsky

https://groupoid.space

https://github.com/groupoid/cafe

