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— Kan Operations
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HW VHDL, Verilog, Clash, Chisel, SystemC, Lava, BSV

ASM PDP-11, VAX, S/360, M68K, PowerPC, MIPS, SPARC, Super-H, Intel, ARM, RISC-V

ALG C, BCPL, ALGOL, SNOBOL, Simula, Pascal, Oberon, COBOL, PL/1

ML SML, Alice ML, OCaml, UrWeb, Flow, F#

PURE HOPE, Miranda, Clean, Charity, Joy, Mercury, Elm, PureScript, Fw Scala, Haskell, TML, Plutus
MACR LISP, Scheme, Clojure, Racket, Dylan, LFE, CL, Nemerle, Nim, Haxe, Perl, Elixir

OO Simula, Smalltalk, Self, REBOL, lo, JS, Lua, Ruby, Python, PHP, TS, Java, Kotlin

CMP C++, Rust, D, Swift, Fortran

SHELL PowerShell, TCL, SH, CLIPS, BASIC, FORTH, SVC IDL, SOAP, ASN.1T, GRPC

MARK TeX, PS, XML, SV(G, CSS, ROFF, OWL, SGML, RDF, SysML

| OGIC AUT-68, ACL2, LEGO, ALF, Prolog, CPL, Mizar, Dedukti, HOL, Isabelle, Z

[12 Coq, F*, Lean, NUPRL, ATS, Epigram, Cayenne, |dris, Dhall, Cedile, Kind

HolT Menkar, Cubical, yacctt, redtt, RedPRL, Arend, Agda, Anders

CHKR TLA+, Twelf, Promela, CSPM

PAR | ing, Pony, Erlang, BPMN, Ada, E, Go, Occam, Oz

ARR Julia, Wolfram, MATHLAB, Octave, Futhark, APL, SQL, cg, Clarion, Clipper, QCL, K, MUMPS, Q, R, S, J, O
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OCaml Internal AST

type exp =
| EPre of int | EKan of int
| EVar of name | EHole
| EPi of exp * (name * exp) | ELam of exp * (hame * exp) | EApp of exp * exp
| ESig of exp * (hame * exp) | EPair of exp * exp | EFst of exp | ESnd of exp
| Eld of exp | ERef of exp | EJ of exp
| EPathP of exp | EPLam of exp | EAppFormula of exp * exp
| El | EDir of dir | EAnd of exp * exp | EOr of exp * exp | ENeg of exp
| ETransp of exp * exp | EPartial of exp | ESystem of system

| ESub of exp * exp * exp | EInc of exp | EQOuc of exp
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cosmos := U nat | V nat
var := var name | hole
pi:=NTnameEE|AnameEE | EE |nformal BNF
sigma:=2nameEE | (E,E)|E1]|E.2
d:=IdE | refE|IdJE

path:=Path E | Ei |E @ E

| =I|O|1T|E\/E|E/\E]|-E

part := Partial EE | [ (E=1)>E, ... ]
sub:=incE|oucE|E[I->E]

kan ;= transp E E | hcomp E

F :=cosmos | var | MLTT | CCHM | HIT

HIT := inductive E E | ctor name E | match E E
CCHM :=path || | part | sub | kan | glue

glue := Glue E | glue E|unglueE E MLTT := pi | sigma | id




COSMOoS Agda 2.6.2

iInductive cosmos : U
| prop: nat » cosmos

Anders O 72 | fibrant: nat > cosmos
| pretypes: nat » cosmos
inductive cosmos : U | strict: nat - cosmos
| fibrant: nat > cosmos | omega: cosmos

| pretypes: nat » cosmos | lock: cosmos
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defPi(A:U)(B:A->U):U:=T1(x:A) Bx

def lambda (A: U) (B:A->U) (b: PIAB):PiIAB:=A(x:A), bx
def lam (AB:U) (f: A>B):A>B:=A(x:A)fx

def apply (A:U) (B:A->U)(:PTADB) (a:A):Ba:=fta
defapp (AB:U) (f: A->B) (x: A:B:=1x
deflM-B(A:U)(B:A->U) (a:A)(f: Pi AB)

. Path (B a) (apply AB (lambda ABTf) a) (fa):=idp (B a) (t a)
defll-n (A:U)(B:A->U) (a:A) (f: Pi AB)
- Path (PIAB)f(A(x:A),fx):=idp (PIAB)f
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def Sigma (A: U) (B:A->U):U:=2 (x: A), B x

def pair (A: U) (B: A->U) (a: A) (b: B a) : SlgmaA B = (a, b)
def pri (A: U) (B: A->U) (x: Sigma AB) : A := X

def pr2 (A: U) (B: A > U) (x: Sigma A B) : (pr1 A B X) = x.2
def Sigma-[3-1 (A )(B A->U)(@:A)(b:Ba)

. Path A a (pn A (a,b)) :=1dp A a

B
def Sigma-B-2(A:U)(B:A->U) (a:A) (b:Ba)
- Path (Ba)b (pr2AB(a, b)) :=i1dp (Ba)b
def Sigma-n(A:U) (B: A-=>U) (p:Sigma A B)
. Path (Sigma AB)p (prniABp, pr2ABp):=idp (Sigma A B) p




Fiporations

Bundle: F > E - B

o : total -> B

F = fiber : B -> total
total = 2 (y: B), fiber(y)

Moebius E = S twisted * [O,1]
Triviab E=B*F

def fiber(AB:U) (: A->B)(y:B):U:=2 (x:A), Path By (f x)

def isContr' (A: U) : U =2 (x: A), Il (y: A), Path A xy

defiskquiv (AB:U) (f: A->B):U:=11(y:B), isContr (fiber A B fy)
defequiv(AB:U):U: =2 (f: A->B),i1skquiv ABf

def idEquiv (A : U) :equiv A A :=(id A, IsContrSingl A) Anders Q72
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|d (Strict Equality) in 'V

defl1=:1->V:=ld |1
def1=1:1=1:=ref 1
defUIP(A:V)(ab:A)(pg:ldAab):Id(ldAab)pqg:=refp
det JS(A:V)B:ll(ab:A),IdAab->V)(ab:A)
(d:Baaf(refa))(p:IldAab):Babp:=idJABadbp
def S-B(A:V)(B:lNM(ab:A),ldAab->V)(a:A)(d:Baa (ref a))
ld(Baa(refa)) (JSABaad(refa))d:=refa
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Path (Globular Equality) in U

def hmtpy (A:U) (xy:A) (p:Path A Xxy)
- Path (Path Axx) (<. >x)(<i>p@i/\-i))=<ji>p@j/\i/\ -i

defisProp (A:U):U:=1l(ab:A), PathAab
defisSet (A:U):U:=ll(ab:A) (a0 b0 : Path A a b), Path (Path A a b) aO bO
def isGroupoid (A:U):U:=ll(ab:A) (xy:Path A ab)

(1]: Path (Path A a b) xy), Path (Path (Path Aab) xy) 1]




Path (Computational) Anders 0.7.2

def transport (A B: U) (p: PathP (<_>U) AB) (a: A): B:=transp p O a
def trans_comp (A:U)(a: A): Path A a (transport A A (<i> A) a) := <J> transp (<_> A) -] a
def subst (A: U) (P: A->U) (ab: A) (p: Path Aab)(e:Pa):Pb:=transp (<iI>P (p@1)) O e
deftD(A:U):Ur=1l(xy:A), PathAxy->U
def J (A:U) (x: A) (C:D A) (d: Cxx (1dp A X)) (y: A) (p: Path Axy): Cxyp
= subst (singl A x) (\ (z: singl A x), C x (z.1) (z.2)) (eta A x) (y, p) (contr Axy p) d
det subst_comp (A: U) (P: A->U) (a: A) (e: P a)
. Path (P a)e (subst APaa (ildp Aa)e):=trans_comp (P a) e
def J-B(A:U) (@a:A) (C:DA) (d:Caa (idp A a))
- Path (Caa(idpAa))d(JAaCda (idp A a))
= subst_comp (singl A a) (\ (z: singl A a), Ca(z1) (z.2)) (eta Aa)d
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<> a <ij>p@i/\] o p | <ijPp@i\/] P
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DNF

def T (ij:1):1:=(0G/\-)) \V (-i/\])
def T-comm (ij: D :Id 1 (Tij) (Tji):=ref (Tij)

def /\-comm (ij:D):1d 1 (i /\]j) (§/\i):=ref (i /\])

def \/-comm (ij:):Id1({i\/]j)(\/i):=ref (i\/])

def =-of-/\ (ij:D:I1d | -(i /\]j) (-i \/ -j) :=ref -(i /\j)

def =-of \/ (ij:D:I1d1-(i\/]) (-i /\ -j) :==ref -(i \/ j)

def /\-distrib-\/ (ijk:1):1d 1 ((i \/]j) /\k) ((i /\k)\/ (j/\K)):=ref ((i \/])/\K)
def \/-distrib-/\ (ijk:1):1d 1 ((i /\]) \V/ k) ((i \/ k) /\ ( \/ k) =ref ((i/\])\V k)
def /\-assoc (ijk:D):1d1G/\G/\K)) (G /\]) /\K) :=ref (i /\(/\k)
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Generalized Transport

detf subst (A: U) (P: A->U) (ab: A) (p: Path Aab)(e:Pa):PDb
=transp (<I>P (p@1)) O e

def coerce (A B: U) (p: PathP (<_>U)AB): A->B:=A(x:A) trans AB p x
det pcomp (A: U) (a b c: A) (p: Path A ab) (g: Path A b ¢)

- Path Aac:=subst A(PathAa)bcgp
def transld (A:U): A-> A:=transp (<_> A) 1
det transFill (A B :U) (p: PathP (<_>U) AB) (a: A)

- PathP p a (transp p O a) := <j> transp (<i>p @i /\j) -j a
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transp (Huber)

transp' N 0 uo = Uo

transp' U@ A=A

transp’ (I (x : A), B) ¢ uo v = transp' B(x/w) @ (uo w(i/0)), w = transpFillL" A @ v, v : A(i/1)
transp' (2 (x: A), B) ¢ uo = (transp' A \ (Uo1),transp’ B(x/v) @(uo.2)), v = transpFilll A ¢ uo.
transp' (Pathi A v w) @ uo= £j) comp' A [P > uoj, (j=0) v, (j=>1) w] (uoj), u:A(/0), v:A(/1
transp' (Glue [ - (T,w)] A) U uo = glue [¢ (i/1) t1] a1 : B(i/1)

transp™ A ¢ u = (transp’ A(i/1=i) @ u)(i/1-i) : A(i/O)
transpFilll A ¢ uo = transp! A(i/i /\j) (¢ (i=0)) uo : A
hfill A [@ » u] uo =hcompl A [ > u(i/i /\j), (i=0) uo] uo: A
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Homogeneous Composition

deftkan (A:U)(abcd:A)(p:PathAac) (g:Path Abd)(r: Path A ab)
Path Acd:=<i>hcomp A @) A(:D,[(i=0)-»p@j, (i=1)>qg@j]) (inc (r @i))

defcomp (A:1->U) (r:) (u:T1(i:1), Partial (Ai)r) (uo: (AO)r|[>uO]): AT

=hcomp (ANr(A@G:D,[(@:r=T1)>transp (<j>A (i \/j)))i(uip)])
(Inc (transp (<i> A1) O (ouc uo)))

def ghcomp (A:U) (r: ) (u:1l-> Partial Ar) (uo: Afr|->uO]): A
= hcompA( ) ANG:D, [(@:r=T)>uj@, (r=0) > ouc uo]) (inc (ouc uo))
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hcomp (Huber)

hcomp' N [¢(p > O] O =0

hcomp' N [ » S u] (Suo)=S (hcomp' N[ u] uo)

hcomp' U [ » E] A = Glue [ (E(i/1), equivi E(i/1-))] A

hcomp! (I (x: A), B) [ = u] uo v = hcomp! B(x/v) [ u V] (Uo V)

hcomp' (Z (x : A), B) [(p » u] uo = (v(i/1), comp' B(x/V) [@ u.2] uo.2), v = hfill A [® |-> u.1] uo.

(2
hcomp! (Pathi Avw) [P > u]Juo= £ hcomp!A[@uj, (j=0)v, (j=1)w] (uoj)
hcomp' (Glue [ > (T,w)] A) [U u] uo = glue [ » t1] a1 = glue [ - u(i/1)] (unglue u(i/1))
= u(i/1) : Glue [ » (TW)] A, t1=u(i/1) : T, a1 =unglue u(i/1) : A, glue[p > ti]al=t:1: T
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hcomp

A:U (k=0)-> (M:A)

use hcomp to fill the lids:
(k =0, k=1):
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Base Library Assurance

1. MLTT Internalization v
2. Topos Theory V/

5. lesseract « We are here
4. Category of Groupolids

5. Homological Algebra

0. Grothendieck Group
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