— Cubical Subtypes
— Initial Base Library
— Fast Type Check

— Strict Equality (HTS)
— Kan Operations

Anders O./7.2

Groupoid Infinity Cafe @siegment

(@oHT

Groipoid Infinity, 2021, INFOTECH SE, Ukraine, Kyiv

Vladimir T'hierry
Voevodsky Coquand

P1S ML/2

UN| | UN|
| SIGMA |
SIGMA SIGMA SIGMA
PATH 1D
GLUE PATH
Type Theory i e

HIT
Anders 0O./.2

Anders O./.2

HW VHDL, Verilog, Clash, Chisel, SystemC, Lava, BSV

ASM PDP-11, VAX, S/360, M68K, PowerPC, MIPS, SPARC, Super-H, Intel, ARM, RISC-V

ALG C, BCPL, ALGOL, SNOBOL, Simula, Pascal, Oberon, COBOL, PL/1

ML SML, Alice ML, OCaml, UrWeb, Flow, F#

PURE HOPE, Miranda, Clean, Charity, Joy, Mercury, Elm, PureScript, Fw Scala, Haskell, TML, Plutus
MACR LISP, Scheme, Clojure, Racket, Dylan, LFE, CL, Nemerle, Nim, Haxe, Perl, Elixir

OO Simula, Smalltalk, Self, REBOL, lo, JS, Lua, Ruby, Python, PHP, TS, Java, Kotlin

CMP C++, Rust, D, Swift, Fortran

SHELL PowerShell, TCL, SH, CLIPS, BASIC, FORTH, SVC IDL, SOAP, ASN.1T, GRPC

MARK TeX, PS, XML, SV(G, CSS, ROFF, OWL, SGML, RDF, SysML

| OGIC AUT-68, ACL2, LEGO, ALF, Prolog, CPL, Mizar, Dedukti, HOL, Isabelle, Z

[12 Coq, F*, Lean, NUPRL, ATS, Epigram, Cayenne, |dris, Dhall, Cedile, Kind

HolT Menkar, Cubical, yacctt, redtt, RedPRL, Arend, Agda, Anders

CHKR TLA+, Twelf, Promela, CSPM

PAR | ing, Pony, Erlang, BPMN, Ada, E, Go, Occam, Oz

ARR Julia, Wolfram, MATHLAB, Octave, Futhark, APL, SQL, cg, Clarion, Clipper, QCL, K, MUMPS, Q, R, S, J, O

CoC: * : HE * * gl Heal System Fw: Haskell, Scala, TML
Almost CoC, No Types On
SRR HEE 3 -] velues Infinity Topoi,
AQgda, Lean,
Anders
P2 % HEE 2
System F:
ML, Miranda,
AU * : ¥ : || OCaml
Co(C,
: Morte,
- ¥ : HE Henk
STLC
Untypled SLC:
Frlang, LISP,
JavaScript
Anders 0./.2

AUTOMATH
19638

Anders O./.2
OCaml Internal AST

type exp =
| EPre of int | EKan of int
| EVar of name | EHole
| EPi of exp * (name * exp) | ELam of exp * (hame * exp) | EApp of exp * exp
| ESig of exp * (hame * exp) | EPair of exp * exp | EFst of exp | ESnd of exp
| Eld of exp | ERef of exp | EJ of exp
| EPathP of exp | EPLam of exp | EAppFormula of exp * exp
| El | EDir of dir | EAnd of exp * exp | EOr of exp * exp | ENeg of exp
| ETransp of exp * exp | EPartial of exp | ESystem of system

| ESub of exp * exp * exp | EInc of exp | EQOuc of exp

Anders O./.2

cosmos := U nat | V nat
var := var name | hole
pi:=NTnameEE|AnameEE | EE |nformal BNF
sigma:=2nameEE | (E,E)|E1]|E.2
d:=IdE | refE|IdJE

path:=Path E | Ei |E @ E

| =I|O|1T|E\/E|E/\E]|-E

part := Partial EE | [(E=1)>E, ...]
sub:=incE|oucE|E[I->E]

kan ;= transp E E | hcomp E

F :=cosmos | var | MLTT | CCHM | HIT

HIT := inductive E E | ctor name E | match E E
CCHM :=path || | part | sub | kan | glue

glue := Glue E | glue E|unglueE E MLTT := pi | sigma | id

COSMOoS Agda 2.6.2

iInductive cosmos : U
| prop: nat » cosmos

Anders O 72 | fibrant: nat > cosmos
| pretypes: nat » cosmos
inductive cosmos : U | strict: nat - cosmos
| fibrant: nat > cosmos | omega: cosmos

| pretypes: nat » cosmos | lock: cosmos

Anders O./.2

defPi(A:U)(B:A->U):U:=T1(x:A) Bx

def lambda (A: U) (B:A->U) (b: PIAB):PiIAB:=A(x:A), bx
def lam (AB:U) (f: A>B):A>B:=A(x:A)fx

def apply (A:U) (B:A->U)(:PTADB) (a:A):Ba:=fta
defapp (AB:U) (f: A->B) (x: A:B:=1x
deflM-B(A:U)(B:A->U) (a:A)(f: Pi AB)

. Path (B a) (apply AB (lambda ABTf) a) (fa):=idp (B a) (t a)
defll-n (A:U)(B:A->U) (a:A) (f: Pi AB)
- Path (PIAB)f(A(x:A),fx):=idp (PIAB)f

Anders O./.2

def Sigma (A: U) (B:A->U):U:=2 (x: A), B x

def pair (A: U) (B: A->U) (a: A) (b: B a) : SlgmaA B = (a, b)
def pri (A: U) (B: A->U) (x: Sigma AB) : A := X

def pr2 (A: U) (B: A > U) (x: Sigma A B) : (pr1 A B X) = x.2
def Sigma-[3-1 (A)(B A->U)(@:A)(b:Ba)

. Path A a (pn A (a,b)) :=1dp A a

B
def Sigma-B-2(A:U)(B:A->U) (a:A) (b:Ba)
- Path (Ba)b (pr2AB(a, b)) :=i1dp (Ba)b
def Sigma-n(A:U) (B: A-=>U) (p:Sigma A B)
. Path (Sigma AB)p (prniABp, pr2ABp):=idp (Sigma A B) p

Fiporations

Bundle: F > E - B

o : total -> B

F = fiber : B -> total
total = 2 (y: B), fiber(y)

Moebius E = S twisted * [O,1]
Triviab E=B*F

def fiber(AB:U) (: A->B)(y:B):U:=2 (x:A), Path By (f x)

def isContr' (A: U) : U =2 (x: A), Il (y: A), Path A xy

defiskquiv (AB:U) (f: A->B):U:=11(y:B), isContr (fiber A B fy)
defequiv(AB:U):U: =2 (f: A->B),i1skquiv ABf

def idEquiv (A : U) :equiv A A :=(id A, IsContrSingl A) Anders Q72

Anders 0O./.2
|d (Strict Equality) in 'V

defl1=:1->V:=ld |1
def1=1:1=1:=ref 1
defUIP(A:V)(ab:A)(pg:ldAab):Id(ldAab)pqg:=refp
det JS(A:V)B:ll(ab:A),IdAab->V)(ab:A)
(d:Baaf(refa))(p:IldAab):Babp:=idJABadbp
def S-B(A:V)(B:lNM(ab:A),ldAab->V)(a:A)(d:Baa (ref a))
ld(Baa(refa)) (JSABaad(refa))d:=refa

Anders 0./.2
Path (Globular Equality) in U

def hmtpy (A:U) (xy:A) (p:Path A Xxy)
- Path (Path Axx) (<. >x)(<i>p@i/\-i))=<ji>p@j/\i/\ -i

defisProp (A:U):U:=1l(ab:A), PathAab
defisSet (A:U):U:=ll(ab:A) (a0 b0 : Path A a b), Path (Path A a b) aO bO
def isGroupoid (A:U):U:=ll(ab:A) (xy:Path A ab)

(1]: Path (Path A a b) xy), Path (Path (Path Aab) xy) 1]

Path (Computational) Anders 0.7.2

def transport (A B: U) (p: PathP (<_>U) AB) (a: A): B:=transp p O a
def trans_comp (A:U)(a: A): Path A a (transport A A (<i> A) a) := <J> transp (<_> A) -] a
def subst (A: U) (P: A->U) (ab: A) (p: Path Aab)(e:Pa):Pb:=transp (<iI>P (p@1)) O e
deftD(A:U):Ur=1l(xy:A), PathAxy->U
def J (A:U) (x: A) (C:D A) (d: Cxx (1dp A X)) (y: A) (p: Path Axy): Cxyp
= subst (singl A x) (\ (z: singl A x), C x (z.1) (z.2)) (eta A x) (y, p) (contr Axy p) d
det subst_comp (A: U) (P: A->U) (a: A) (e: P a)
. Path (P a)e (subst APaa (ildp Aa)e):=trans_comp (P a) e
def J-B(A:U) (@a:A) (C:DA) (d:Caa (idp A a))
- Path (Caa(idpAa))d(JAaCda (idp A a))
= subst_comp (singl A a) (\ (z: singl A a), Ca(z1) (z.2)) (eta Aa)d

Connections Anders 0.7.2

<> a <ij>p@i/\] o p | <ijPp@i\/] P

Anders O./.2

DNF

def T (ij:1):1:=(0G/\-)) \V (-i/\])
def T-comm (ij: D :Id 1 (Tij) (Tji):=ref (Tij)

def /\-comm (ij:D):1d 1 (i /\]j) (§/\i):=ref (i /\])

def \/-comm (ij:):Id1({i\/]j)(\/i):=ref (i\/])

def =-of-/\ (ij:D:I1d | -(i /\]j) (-i \/ -j) :=ref -(i /\j)

def =-of \/ (ij:D:I1d1-(i\/]) (-i /\ -j) :==ref -(i \/ j)

def /\-distrib-\/ (ijk:1):1d 1 ((i \/]j) /\k) ((i /\k)\/ (j/\K)):=ref ((i \/])/\K)
def \/-distrib-/\ (ijk:1):1d 1 ((i /\]) \V/ k) ((i \/ k) /\ (\/ k) =ref ((i/\])\V k)
def /\-assoc (ijk:D):1d1G/\G/\K)) (G /\]) /\K) :=ref (i /\(/\k)

Anders O./.2

Generalized Transport

detf subst (A: U) (P: A->U) (ab: A) (p: Path Aab)(e:Pa):PDb
=transp (<I>P (p@1)) O e

def coerce (A B: U) (p: PathP (<_>U)AB): A->B:=A(x:A) trans AB p x
det pcomp (A: U) (a b c: A) (p: Path A ab) (g: Path A b ¢)

- Path Aac:=subst A(PathAa)bcgp
def transld (A:U): A-> A:=transp (<_> A) 1
det transFill (A B :U) (p: PathP (<_>U) AB) (a: A)

- PathP p a (transp p O a) := <j> transp (<i>p @i /\j) -j a

Anders 0.7.2
transp (Huber)

transp' N 0 uo = Uo

transp' U@ A=A

transp’ (I (x : A), B) ¢ uo v = transp' B(x/w) @ (uo w(i/0)), w = transpFillL" A @ v, v : A(i/1)
transp' (2 (x: A), B) ¢ uo = (transp' A \ (Uo1),transp’ B(x/v) @(uo.2)), v = transpFilll A ¢ uo.
transp' (Pathi A v w) @ uo= £j) comp' A [P > uoj, (j=0) v, (j=>1) w] (uoj), u:A(/0), v:A(/1
transp' (Glue [- (T,w)] A) U uo = glue [¢ (i/1) t1] a1 : B(i/1)

transp™ A ¢ u = (transp’ A(i/1=i) @ u)(i/1-i) : A(i/O)
transpFilll A ¢ uo = transp! A(i/i /\j) (¢ (i=0)) uo : A
hfill A [@ » u] uo =hcompl A [> u(i/i /\j), (i=0) uo] uo: A

- Anders 0O./.2
Homogeneous Composition

deftkan (A:U)(abcd:A)(p:PathAac) (g:Path Abd)(r: Path A ab)
Path Acd:=<i>hcomp A @) A(:D,[(i=0)-»p@j, (i=1)>qg@j]) (inc (r @i))

defcomp (A:1->U) (r:) (u:T1(i:1), Partial (Ai)r) (uo: (AO)r|[>uO]): AT

=hcomp (ANr(A@G:D,[(@:r=T1)>transp (<j>A (i \/j)))i(uip)])
(Inc (transp (<i> A1) O (ouc uo)))

def ghcomp (A:U) (r:) (u:1l-> Partial Ar) (uo: Afr|->uO]): A
= hcompA() ANG:D, [(@:r=T)>uj@, (r=0) > ouc uo]) (inc (ouc uo))

Anders 0.7.2
hcomp (Huber)

hcomp' N [¢(p > O] O =0

hcomp' N [» S u] (Suo)=S (hcomp' N[u] uo)

hcomp' U [» E] A = Glue [(E(i/1), equivi E(i/1-))] A

hcomp! (I (x: A), B) [= u] uo v = hcomp! B(x/v) [u V] (Uo V)

hcomp' (Z (x : A), B) [(p » u] uo = (v(i/1), comp' B(x/V) [@ u.2] uo.2), v = hfill A [® |-> u.1] uo.

(2
hcomp! (Pathi Avw) [P > u]Juo= £ hcomp!A[@uj, (j=0)v, (j=1)w] (uoj)
hcomp' (Glue [> (T,w)] A) [U u] uo = glue [» t1] a1 = glue [- u(i/1)] (unglue u(i/1))
= u(i/1) : Glue [» (TW)] A, t1=u(i/1) : T, a1 =unglue u(i/1) : A, glue[p > ti]al=t:1: T

Anders O./.2

hcomp

A:U (k=0)-> (M:A)

use hcomp to fill the lids:
(k =0, k=1):

| Anders 0O./.2
Base Library Assurance

1. MLTT Internalization v
2. Topos Theory V/

5. lesseract « We are here
4. Category of Groupolids

5. Homological Algebra

0. Grothendieck Group

Groupoid Infinity, 2021, INFOTECH SE, Ukraine, Kyiv Anders 0.7.2

github.com/groupoid/anders

T hank You!

