
Enzyme: High-Performance Automatic Differentiation of LLVM
William S. Moses (wmoses@mit.edu), Valentin Churavy (vchuravy@mit.edu)

MIT CSAIL

Existing Automatic Differentiation Tools

Differenঞable DSLs (TensorFlow, PyTorch, DiffTaichi) provide a new
language where everything is differenঞable. Must rewrite code in DSL.
Operator Overloading (Adept, JAX) tools provide differenঞable versions
of exisঞng language constructs (double => adouble, np.sum => jax.sum).
May require rewriঞng to use non-standard uঞliঞes for support.
Source Rewriঞng tools staঞcally analyze code to produce a new
gradient funcঞon in the source language. Requires all code available
ahead of ঞme and is difficult to use with external libraries.

Optimization and AD

All tools for exisঞng code operate at the source level prevenঞng opঞmiza-
ঞons before AD without reimplemenঞng compiler analyzes and opঞmiza-
ঞon into the AD tool. While historically not considered necessary, we
demonstrate in Figure 1 how crucial opঞmizaঞon prior to AD can be.

float mag(const float*); //Compute magnitude in O(N)
void norm(float* out, const float* in){

// float res = mag(in); LICM moves mag outside loop
for(int i = 0; i < N; i++) { out[i] = in[i] / mag(in); }

}

// LICM, then AD, O(N)
float res = mag(in);
for(int i = 0; i < N; i++) {

out[i] = in[i] / res;
}
float d_res = 0;
for (int i = 0; i < N; i++) {

d_res += -in[i] * in[i]
* d_out[i]/res;

d_in[i] += d_out[i]/res;

}
∇mag(in, d_in, d_res);

// AD then LICM, O(N^2)
float res = mag(in);
for(int i = 0; i < N; i++) {

out[i] = in[i] / res;
}

for (int i = 0; i < N; i++) {
float d_res = -in[i] * in[i]

* d_out[i]/res;
d_in[i] += d_out[i]/res;
∇mag(in, d_in, d_res);

}
//

Figure 1. When differenঞaঞng norm, running LICM prior to AD is asymptoঞcally faster
than running AD followed by LICM.

Challenges of AD on Low-Level Code

Performing AD on low-level IR presents addiঞonal challenges as source-
level informaঞon is lost. For example, differenঞaঞng memcpy in Figure 2
requires the underlying type of the data to select the correct gradient.

void f(void* dst, void* src) { memcpy(dst, src, 8); }

// Assume double inputs
∇f(double* dst, double* ddst,

double* src, double* dsrc) {
// Forward pass
memcpy(dst, src, 8);
// Reverse pass
dsrc[0] += ddst[0];
ddst[0] = 0;

}

// Assume float inputs
∇f(float* dst, float* ddst,

float* src, float* dsrc) {
// Forward pass
memcpy(dst, src, 8);
// Reverse pass
dsrc[0] += ddst[0];
ddst[0] = 0;
dsrc[1] += ddst[1];
ddst[1] = 0;

}

Figure 2. Top: Call to memcpy for an unknown 8-byte object. Le[: Gradient for a
memcpy of 8 bytes of double data. Right: Gradient for a memcpy of 8 bytes of float data.

Design

Enzyme synthesizes derivaঞves by:
Running Type and Acঞvity Analysis
Allocaঞng shadows of acঞve variables
Creaঞng a “reverse” copy of BasicBlock’s in the original code that
compute the adjoints of its instrucঞons in reverse order.

define @relu3(double %x)
entry:
; Shadows for reverse
; alloca %d_x = 0.0
; alloca %d_call = 0.0
; alloca %d_result = 0.0
; Cache of %cmp
; alloca %cmp_cache
%cmp = %x > 0
br %cmp, %iftrue, %end

iftrue:
%call = @pow(%x, 3)
br cond.end

end:
%res = φ[%call, if.true],

[0, entry]↪→

ret %res

rev_end:
; adjoint of return
store %d_res = 1.0
; adjoint of %res phi node
%cmp2 = load %cmp_cache
%tmp = load %d_res
%d_call += if %cmp2, %tmp else 0
store %d_res = 0.0
br %cmp, %rev_iftrue, %rev_entry

rev_iftrue:
; adjoint of %call
%df = 3 * @pow(%x, 2)
%d_x += %df * (load %d_call)
store %d_call = 0.0
br %rev_entry

rev_entry:
%0 = load %d_x
ret %0

Figure 3. Gradient synthesis of relu(pow(x,3)). Le[: the original computaঞon with
comments showing the shadow allocaঞons of acঞve variables that would be added to
the forward pass. Right: reverse pass generated by Enzyme. The full synthesized
gradient funcঞon would combine these (with shadow allocaঞons added), replacing the
return with a branch to the reverse pass. Bo�om: demonstraঞon of how to call Enzyme.

Type Analysis: A new interprocedural analysis that derives the
underlying types of data by manipulaঞng “TypeTree’s” of LLVM Values.
TypeTrees are iniঞalized with Constant, TBAA info. Each instrucঞon is
given a type propagaঞon rule that unঞl fixpoint. We provide
compile-ঞme error if a necessary type cannot be deduced staঞcally.
Acঞvity Analysis determines what instrucঞons could impact derivaঞve
computaঞon to avoid compuঞng unnecessary adjoints. Build off Type &
Alias Analysis to get be�er results. E.g. all read-only funcঞon that
returns an integer are inacঞve since they cannot propagate adjoints
through the return or to any memory locaঞon.
Shadow Memory is used to store the derivaঞves of values. Shadow
versions of data structures created inside the differenঞated funcঞon
are created automaঞcally. Data structures passed as arguments to the
differenঞated funcঞon must also have shadow arguments passed.
Cache: Some adjoint instrucঞons require values from the forward pass
(e.g. ∇(x ∗ y) −→ x ∗ dy + y ∗ dx). Memory is automaঞcally allocated
for all such values. Enzyme opঞmizes the cache by recompuঞng instead
of caching and avoids caching unnecessary or equivalent values,
whenever possible.
Extensibility: Custom gradients are supported by a�aching metadata
specifying the corresponding gradient funcঞon. Mulঞsource AD is
supporঞng by leveraging LLVM’s LTO support and libraries with
embedded bitcode. This ensures that any potenঞally acঞve call has a
definiঞon available to differenঞate.

Evaluation

Performing AD a[er opঞmizaঞon yields a 4.5× speedup over AD before
opঞmizaঞon. This accounts for much, but not all, of Enzyme’s improvement
over prior art (different cache and acঞvity analysis implementaঞons).

Speedup (Higher is Be�er)

LSTM BA GMM Euler RK4 FFT Bruss0.0

0.2

0.4

0.6

0.8

1.0
Enzyme Ref Tapenade Adept

-O2

Enzyme

Enzyme

-O2

Enzyme
Ref

-O2

-O2

Figure 4. Relaঞve speedup of AD systems on ADBench+ benchmarks, higher is be�er. A
red X denotes programs that an AD system does not produce a correct gradient. A value
of 1.0 denotes the fastest system, whereas 0.5 denotes taking twice as long.

Usage

A user can use gradient funcঞons by calling __enzyme_autodiff with
the funcঞon to be differenঞated as the first argument. When the Enzyme
opঞmizaঞon pass is run, it will replace any calls to __enzyme_autodiff
with a call a newly-generated gradient funcঞon.

%grad = call double @__enzyme_autodiff(@relu3, double %x)

%grad = call double @grad_relu3(double %x)

opt -load=/path/to/LLVMEnzyme.so -enzyme

Figure 5. Convenঞon for invoking Enzyme.

Enzyme is built as an LLVM compiler plugin for versions 7 and later ease
incorporaঞon into an exisঞng tools. We have demonstrated taking deriva-
ঞves of C/C++ via Clang, PyTorch, and Tensorflow. We’ve also demon-
strated dynamic language support by using Enzyme to differenঞate Julia.

For more informaঞon about installing and using Enzyme, please visit
https://enzyme.mit.edu and come to our student research compe-
ঞঞon presentaঞon!

Acknowledgements

William S. Moses was supported in part by a DOE Computaঞonal Sciences Graduate Fel-
lowship DE-SC0019323. Valenঞn Churavy was supported in part by the DARPA pro-
gram PAPPA under Contract Number HR00112090016, and in part by NSF Grant OAC-
1835443.

This research was supported in part by LANL grant 531711. Research was sponsored by
the United States Air Force Research Laboratory andwas accomplished under Cooperaঞve
Agreement Number FA8750-19-2-1000. The views and conclusions contained in this
document are those of the authors and should not be interpreted as represenঞng the
official policies, either expressed or implied, of the United States Air Force or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notaঞon herein.

https://enzyme.mit.edu

