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Design

= Differentiable DSLs (TensorFlow, PyTorch, DiffTaichi) provide a new
language where everything is differentiable. Must rewrite code in DSL.

= Operator Overloading (Adept, JAX) tools provide differentiable versions
of existing language constructs (double => adouble, np.sum => jax.sum).
May require rewriting to use non-standard uftilities for support.

= Source Rewriting tools statically analyze code to produce a new
gradient function in the source language. Requires all code available
ahead of time and is difficult to use with external libraries.

Optimization and AD

All tools for existing code operate at the source level preventing optimiza-
tions before AD without reimplementing compiler analyzes and optimiza-
tion into the AD tool. While historically not considered necessary, we
demonstrate in Figure 1 how crucial optimization prior to AD can be.

float mag(const floatx); //Compute magnitude in O(N)
void norm(float* out, const floatx 1in){
// float res = mag(in); LICM moves mag outside loop
for(int i = 0; i < N; i++) { out[i] = in[i] / mag(in); }
h

// LICM, then AD, O(N)

float res = mag(in);

for(int i = 0; i < Nj; i++) {
out[i] = 1in[i] / res;

} }

float d_res = 0;

for (int i = 0; i < N; di++) { | for (int i = 0; 1 < Nj i++) {
d_res += —in[i] * in[i] float d_res = -in[i] * in[i]

* d_out[i]/res; * d_out[i]/res;

d_in[i] += d_out[i]/res; d_in[i] += d_out[i]/res;

Vmag(in, d_in, d_res);

// AD then LICM, O(NA2)

float res = mag(in);

for(int i = 0; i < Nj; i++) {
out[i] = in[i] / res;

} }
Vmag(in, d_in, d_res); //

Figure 1. When differentiating norm, running LICM prior to AD is asymptotically faster
than running AD followed by LICM.

Challenges of AD on Low-Level Code

Performing AD on low-level IR presents additional challenges as source-
level information is lost. For example, differentiating memcpy in Figure 2
requires the underlying type of the data to select the correct gradient.

void f(voidx dst, void*x src) { memcpy(dst, src, 8); }

// Assume double inputs
Vf(doublex dst, doublex ddst,
double*x src, doublex dsrc) {
// Forward pass
memcpy (dst, src, 8);
// Reverse pass
dsrc[0] += ddst[0];

// Assume float inputs
Vf(float*x dst, floatx ddst,
float*x src, floatx dsrc) {
// Forward pass
memcpy (dst, src, 8);
// Reverse pass
dsrc[0] += ddst[0];

ddst[0] = 0; ddst[0] = 0;
dsrc[1] += ddst[1];
ddst[1] = 0;
} k;

Figure 2. Top: Call to memcpy for an unknown 8-byte object. Left: Gradient for a
memcpy of 8 bytes of double data. Right: Gradient for a memcpy of 8 bytes of float data.

Enzyme synthesizes derivatives by:
= Running Type and Activity Analysis
= Allocating shadows of active variables

= Creating a “reverse” copy of BasicBlock's in the original code that
compute the adjoints of its instructions in reverse order.

rev_end:

; adjoint of return

store %d_res = 1.0

; adjoint of %res phi node

%cmp2 = load %cmp_cache

%tmp = load %d_res

%d_call += if %cmp2, %tmp else 0O
store %d_res = 0.0

br %cmp, %rev_iftrue, %rev_entry
rev_iftrue:

; adjoint of %call

%df = 3 * @pow(%x, 2)

%d_x += %df * (load %d_call)
store %d_call = 0.0

, , . r %rev_entr
%res = ¢[%call, if.true], br %rev_entry
rev_entry:

. 0, entr
re érés y] %0 = load %d_x
ret %0

define @relu3(double %x)
entry:

; Shadows for reverse
alloca %d_x = 0.0
alloca %d_call =
alloca %d_result
Cache of %cmp

; alloca %cmp_cache

%cmp = %x > 0

br %cmp, %iftrue, %end
iftrue:

%call = @pow(%x, 3)

br cond.end
end:

0.0
= 0.0
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Figure 3. Gradient synthesis of relu (pow(x,3)). Left: the original computation with
comments showing the shadow allocations of active variables that would be added to
the forward pass. Right: reverse pass generated by Enzyme. The full synthesized
gradient function would combine these (with shadow allocations added), replacing the
return with a branch to the reverse pass. Bottom: demonstration of how to call Enzyme.

= Type Analysis: A new interprocedural analysis that derives the
underlying types of data by manipulating “TypeTree’s” of LLVM Values.
Typelrees are initialized with Constant, TBAA info. Each instruction is
given a type propagation rule that until fixpoint. We provide
compile-time error if a necessary type cannot be deduced statically.

= Activity Analysis determines what instructions could impact derivative
computation to avoid computing unnecessary adjoints. Build off Type &
Alias Analysis to get better results. E.g. all read-only function that
returns an integer are inactive since they cannot propagate adjoints
through the return or to any memory location.

= Shadow Memory is used to store the derivatives of values. Shadow
versions of data structures created inside the differentiated function
are created automatically. Data structures passed as arguments to the
differentiated function must also have shadow arguments passed.

* Cache: Some adjoint instructions require values from the forward pass
(e.g. V(r*xy) — x x dy + y = dx). Memory is automatically allocated
for all such values. Enzyme optimizes the cache by recomputing instead
of caching and avoids caching unnecessary or equivalent values,
whenever possible.

= Extensibility: Custom gradients are supported by attaching metadata
specifying the corresponding gradient function. Multisource AD is
supporting by leveraging LLVM’s LTO support and libraries with
embedded bitcode. This ensures that any potentially active call has a
definition available to differentiate.

Performing AD after optimization yields a 4.5x speedup over AD before
optimization. This accounts for much, but not all, of Enzyme’s improvement
over prior art (different cache and activity analysis implementations).

Evaluation
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Figure 4. Relative speedup of AD systems on ADBench+ benchmarks, higher is better. A
red X denotes programs that an AD system does not produce a correct gradient. A value
of 1.0 denotes the fastest system, whereas 0.5 denotes taking twice as long.

Usage

A user can use gradient functions by calling __enzyme_autodiff with
the function to be differentiated as the first argument. When the Enzyme
optimization pass is run, it will replace any calls to __enzyme_autodiff
with a call a newly-generated gradient function.

%grad = call double @__enzyme_autodiff(@relu3, double %x)

opt -load=/path/to/LLVMEnzyme.so -enzyme

~

%grad = call double @grad_relu3(double %x)

Figure 5. Convention for invoking Enzyme.

Enzyme is built as an LLVM compiler plugin for versions 7 and later ease
incorporation into an existing tools. We have demonstrated taking deriva-
tives of C/C++ via Clang, PyTorch, and Tensorflow. We've also demon-
strated dynamic language support by using Enzyme to differentiate Julia.

For more information about installing and using Enzyme, please visit
https://enzyme.mit.edu and come to our student research compe-
tition presentation!
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