Embedded Linux system development training

Embedded Linux system

development training bOOtll'h

© Copyright 2004-2026, Bootlin
Creative Commons BY-SA 3.0 license.
Latest update: January 22, 2026

Document updates and training details
dded- Linux

https: //boot1in. con/training

Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering

Send them to feedback@bootlin.com

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/532


https://bootlin.com/training/embedded-linux
mailto:feedback@bootlin.com

ao Embedded Linux system development training

o%e]

These slides are the training materials for Bootlin's Embedded
Linux system development training course.

If you are interested in following this course with an experienced
Bootlin trainer, we offer:

Public online sessions, opened to individual registration. Dates @
announced on our site, registration directly online.

Dedicated online sessions, organized for a team of engineers

from the same company at a date/time chosen by our customer.

Dedicated on-site sessions, organized for a team of engineers m
from the same company, we send a Bootlin trainer on-site to
deliver the training. Icon by Eucalyp, Flaticon

Details and registrations:
https://bootlin.com/training/embedded-1inux

Contact: training@bootlin.com

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/532


https://bootlin.com/training/embedded-linux

About Bootlin

bootlin

About Bootlin

© Copyright 2004-2026, Bootlin. embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/532



a Bootlin introduction
o)
Engineering company
In business since 2004
Before 2018: Free Electrons
Team based in France and ltaly

Serving customers worldwide
Highly focused and recognized expertise
Embedded Linux
Linux kernel
Embedded Linux build systems
Strong open-source contributor
Activities
Engineering services
Training courses

https://bootlin.com

bootlin

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

4/532


https://bootlin.com

o%e]

Bootloader /
firmware
development

U-Boot, Barebox,
OP-TEE, TF-A, .../

Embedded Linux
build systems

Yocto, OpenEmbedded,
Buildroot, ...

a Bootlin engineering services
o)

Linux kernel
porting and
driver
development

Embedded Linux
integration
Boot time, real-time,

security, multimedia,
networking

Linux BSP
development,
maintenance
and upgrade

Open-source
upstreaming

Get code integrated
in upstream
Linux, U-Boot, Yocto,
Buildroot, ...

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

5/532



Bootlin training courses

Embedded Linux Linux kernel Yocto Project Buildroot
system driver system system Embedded Linux
development development development development networking
On-site: 4 or 5 days On-site: 5 days On-site: 3 days On-site: 3 days On-site: 3 days
Online: 7 * 4 hours Online: 7 * 4 hours Online: 4 * 4 hours Online: 5 * 4 hours Online: 4 * 4 hours
Understandin . Real-Time Linux Linux debugging,
) 9 Embedded Linux ) } 9ging
the Linux — with tracing, profiling
graphics stack PREEMPT_RT and performance
analysis
On-site: 2 days On-site: 2 days On-site: 2 days On-site: 3 days
Online: 4 * 4 hours Online: 4 * 4 hours Online: 3 * 4 hours Online: 4 * 4 hours

All our training materials are freely available
under a free documentation license (CC-BY-SA 3.0)
See https://bootlin.com/training/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/532



a@ Bootlin, an open-source contributor
o0

o%e]

Strong contributor to the Linux kernel
In the top 30 of companies contributing to Linux worldwide
Contributions in most areas related to hardware support
Several engineers maintainers of subsystems/platforms
9000 patches contributed
https://bootlin.com/community/contributions/kernel-contributions/
Contributor to Yocto Project
Maintainer of the official documentation
Core participant to the QA effort
Contributor to Buildroot
Co-maintainer
6000 patches contributed
Significant contributions to U-Boot, OP-TEE, Barebox, etc.

Fully open-source training materials

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/532


https://bootlin.com/community/contributions/kernel-contributions/

a Bootlin on-line resources
o)

o%e]

Website with a technical blog:
https://bootlin.com

Engineering services:
https://bootlin.com/engineering \’\,
Training services:

https://bootlin.com/training

LinkedlIn:

https://www.linkedin.com/company/bootlin

L. . ) Icon by Freepik, Flaticon
Elixir - browse Linux kernel sources on-line:

https://elixir.bootlin.com

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/532


https://bootlin.com
https://bootlin.com/engineering
https://bootlin.com/training
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com

Generic course information

Generic course bOOtIl'n

information

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/532



4@} Beaglebone Black / Beaglebone black wireless shopping list

> BeagleBone Black or BeagleBone Black Wireless, from BeagleBoard.org

Texas Instruments AM335x (ARM Cortex-A8 CPU)

512 MB of RAM

4 GB of on-board eMMC storage

Plenty of peripherals and features

2 x 46 pins headers, with access to many expansion buses (12C,
SPI, UART and more)

MicroUSB cable

USB Serial Cable - 3.3 V - Female ends (for serial console) *

Nintendo Nunchuk with UEXT connector 2

Breadboard jumper wires - Male ends (to connect the Nunchuk) 3
MicroSD card
A standard USB audio headset

vV VvV Vvy Vv VvYyyw

1

https://www.olimex.com/Products/USB-Modules/Interfaces/USB-SERIAL-F

2
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
3httD ://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x180.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/532


https://beagleboard.org
https://www.olimex.com/Products/USB-Modules/Interfaces/USB-SERIAL-F
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

4@} STM32MP157 shopping list

> Discovery Kits from STMicroelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-DK2 or STM32MP157F-DK2 !

® STM32MP157 (Dual Cortex-A7 + Cortex-M4) CPU
® 512 MB DDR3L RAM
® Plenty of periperals: GPIOs, SPI, Serial, USB, ethernet...

» MicroUSB cable (to access the serial console)
> USB-C to USB-A cable (to power the board)
> Nintendo Nunchuk with UEXT connector >
> Breadboard jumper wires - Male ends (to connect the Nunchuk) 3
> MicroSD card
> RJ45 cable
Peaisthy . [)
> A standard USB audio headset y

1Boards documentation: A-DK1, D-DK1, C-DK2, F-DK2
2https://www.olimex.com/Products/Mcdules/Sensors/MODfWII/MOD*Wii*UEXT*NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/532


https://www.st.com/en/evaluation-tools/stm32mp157a-dk1.html
https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html
https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
https://www.st.com/en/evaluation-tools/stm32mp157f-dk2.html
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

Q} Beagleplay shopping list

> BeaglePlay, from BeagleBoard.org

® Texas Instruments AM625x (4xARM Cortex-A53 CPU)
® 2 GB of RAM

® 16 GB of on-board eMMC storage

® Plenty of peripherals: SPI, 12C, UART, USB...

USB-C cable for the power supply

A USB-FTDI cable

RJ45 cable for networking

A micro SD card with at least 2G of capacity

Nintendo Nunchuk with UEXT connector !

Breadboard jumper wires - Male ends (to connect the Nunchuk) 2
A standard USB audio headset

vV VvV VvV VvV VvV VvYyYy

1
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
2
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/532


https://beagleboard.org
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

4@} STM32MP257 shopping list

> Discovery Kits STM32MP257F from STMicroelectronics *

® STM32MP257 (Dual Cortex-A35 + Cortex-M33) CPU
° 4GB LPDDR4 RAM
® Plenty of periperals: GPIOs, SPI, Serial, USB, ethernet...

USB-C to USB-A cable (to power the board and access console)
Nintendo Nunchuk with UEXT connector

Breadboard jumper wires - Male ends (to connect the Nunchuk) 3
MicroSD card

A standard USB audio headset

vV VvVvYyVvyy

1

Boards documentation: https://www.st.com/en/evaluation-tools/stm32mp257f-dk.html
2

https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
3https ://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/532


https://www.st.com/en/evaluation-tools/stm32mp257f-dk.html
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

% IMX93 FRDM shopping list

>

>
>
>
>

| 2

NXP i.MX93 11x11 FRDM board Available from Mouser (76 EUR + VAT)

NXP i.MX 93 (Dual ARM Cortex-A55 + Cortex-M33)
2 GB LPDDR4

32 GB of on-board eMMC storage

Plenty of peripherals: 12C, SPI, UART, USB...

2 USB-C cable for the power supply and the serial console

RJ45 cable for networking
Nintendo Nunchuk with UEXT connector !

Breadboard jumper wires - Male/Female ends (to connect the Nunchuk) 2 RJ45
cable for networking

A standard USB audio headset

1
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
2
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-200x10-FM/

WM
RN

imx93-frdm-
audio

b

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

14/532


https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-200x10-FM/

a Training quiz and certificate
b

o%e]

To get your training certificate you must

Attend all sessions of this training course
Achieve more than 50% of correct answers at our final quiz
The final quiz questions are identical to the pre-training quiz
The final quiz must be completed within two weeks of the session end’s date

The training certificate will be sent to you two weeks after the session end'’s date.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/532



Participate!
s

o%e]

During the lectures...
Don't hesitate to ask questions. Other people in the audience may have similar
questions too.
Don't hesitate to share your experience too, for example to compare Linux with
other operating systems you know.
Your point of view is most valuable, because it can be similar to your colleagues’
and different from the trainer's.
In on-line sessions

Please always keep your camera on!
Also make sure your name is properly filled.
You can also use the "Raise your hand” button when you wish to ask a question but

don't want to interrupt.
All this helps the trainer to engage with participants, see when something needs
clarifying and make the session more interactive, enjoyable and useful for everyone.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/532



Collaborate!
o

o
@ ¢ embedded-inuc-nov2020

QD -

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
Use the dedicated Matrix channel for this session to add
questions.
If your session offers practical labs, you can also report issues,
share screenshots and command output there.
Don't hesitate to share your own answers and to help others
especially when the trainer is unavailable.

The Matrix channel is also a good place to ask questions outside
of training hours, and after the course is over.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/532



Introduction to Embedded Linux

Introduction to

Embedded Linux

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

18/532



a Birth of Free Software

o)
1983, Richard Stallman, GNU project and the free
software concept. Beginning of the development of gcc,
gdb, glibc and other important tools

1991, Linus Torvalds, Linux kernel project, a UNIX-like
operating system kernel. Together with GNU software and
many other open-source components: a completely free
operating system, GNU /Linux

1995, Linux is more and more popular on server systems

2000, Linux is more and more popular on embedded

systems

2008, Linux is more and more popular on mobile devices Richard Stallman in 2019
https://commons.wikimedia.org/

and phones wiki/File:Richard_Stallman_at_

LibrePlanet_2019. jpg

2012, Linux is available on cheap, extensible hardware:
Raspberry Pi, BeagleBone Black

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/532


https://commons.wikimedia.org/wiki/File:Richard_Stallman_at_LibrePlanet_2019.jpg
https://commons.wikimedia.org/wiki/File:Richard_Stallman_at_LibrePlanet_2019.jpg
https://commons.wikimedia.org/wiki/File:Richard_Stallman_at_LibrePlanet_2019.jpg

a Free software?
o)

o%e]

A program is considered free when its license offers to all its users the following
four freedoms

Freedom to run the software for any purpose
Freedom to study the software and to change it
Freedom to redistribute copies

Freedom to distribute copies of modified versions

These freedoms are granted for both commercial and non-commercial use

They imply the availability of source code, software can be modified and
distributed to customers

Good match for embedded systems!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/532



ao What is embedded Linux?

Embedded Linux is the usage of the Linux
kernel and various open-source components
in embedded systems

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com



o%e]

Ability to reuse components

Many features, protocols and hardware are
supported. Allows to focus on the added
value of your product.

Low cost
No per-unit royalties. Development tools free
too. But of course deploying Linux costs time
and effort.

Full control

You decide when to update components in
your system. No vendor lock-in. This secures
your investment.

Easy testing of new features

No need to negotiate with third-party
vendors. Just explore new solutions released
by the community.

a@ Advantages of Linux and Open-Source in embedded systems

Quality

Your system is built on high-quality
foundations (kernel, compiler, C-library, base
utilities...). Many Open-Source applications
have good quality too.

Security

You can trace the sources of all system
components and perform independent
vulnerability assessments.

Community support
Can get very good support from the
community if you approach it with a
constructive attitude.

Participation in community work
Possibility to collaborate with peers and get
opportunities beyond corporate barriers.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

22/532



a@ Introduction to Embedded Linux

o%e]

A few examples of embedded systems running
Linux

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com



Image credits: Evan Amos (https://bit.1ly/2JzDIkv)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/532


https://bit.ly/2JzDIkv

Video systems
y

Image credits: https://bit.1ly/2HbwyVq

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/532


https://bit.ly/2HbwyVq

Product from BLOKS Permission to use this picture only in this document, in updates and in translations.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/532



Robots

eduMIP robot (https://www.ucsdrobotics.org/edumip)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/532


https://www.ucsdrobotics.org/edumip

In space

ellites Mar Igenmt Hllcopter

SpaceX Starlink sat

., & e

SpaceX Falcon 9 and Falcon Heavy rockets

Dlimx
om0 s

See the Linux on Mars: How the Perseverance Rover and Ingenuity
Helicopter Leveraged Linux to Accomplish their Mission presentation from

| dits: Wikipedi
mage credits fKipedia Tim Canham (JPL, NASA): https://youtu.be/0_GfMcBmbCg?t=111

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/532


https://youtu.be/0_GfMcBmbCg?t=111

a@ Introduction to Embedded Linux

g

Embedded hardware for Linux systems

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com



a@ Processor and architecture (1)
o0

o%e]

The Linux kernel and most other architecture-dependent components support a wide
range of 32 and 64 bit architectures

x86 and x86-64, as found on PC platforms, but also embedded systems
(multimedia, industrial)

ARM, with hundreds of different System on Chips
(SoC: CPU + on-chip devices, for all sorts of products)

RISC-V, the rising architecture with a free instruction set
(from high-end cloud computing to the smallest embedded systems)

PowerPC (mainly real-time, industrial applications)

MIPS (mainly networking applications)

Microblaze (Xilinx), Nios Il (Altera): soft cores on FPGAs
Others: ARC, m68k, Xtensa, SuperH...

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/532



a@ Processor and architecture (2)
o0

o%e]

Both MMU and no-MMU architectures are supported, even though no-MMU
architectures have a few limitations.

Linux does not support small microcontrollers (8 or 16 bit)

Besides the toolchain, the bootloader and the kernel, all other components are
generally architecture-independent

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/532



RAM
Qo and storage

o%e]

RAM: a very basic Linux system can work within 8 MB of RAM, but a more
realistic system will usually require at least 32 MB of RAM. Depends on the type
and size of applications.
Storage: a very basic Linux system can work within 4 MB of storage, but usually
more is needed.
Block storage: SD/MMC/eMMC, USB mass storage, SATA, etc,
Raw flash storage is supported too, both NAND and NOR flash, with specific
filesystems
Not necessarily interesting to be too restrictive on the amount of RAM /storage:
having flexibility at this level allows to increase performance and re-use as many
existing components as possible.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/532



a Communication
o)

o%e]

The Linux kernel has support for many common communication buses

12C

SPI

1-wire

SDIO

PCl

UsB

CAN (mainly used in automotive)

And also extensive networking support

Ethernet, Wifi, Bluetooth, CAN, etc.
IPv4, IPv6, TCP, UDP, SCTP, DCCP, etc.
Firewalling, advanced routing, multicast

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/532



60 Types of hardware platforms (1)

038!

Evaluation platforms from the SoC vendor. Usually
expensive, but many peripherals are built-in. Generally
unsuitable for real products, but best for product

development. STM32MP157C-EV1
evaluation board

Image credits

System on Module (SoM) or Component on Module, a
small board with only CPU/RAM /flash and a few other core
components, with connectors to access all other peripherals.
Can be used to build end products for small to medium
quantities.

PocketBeagle
Image credits (Beagleboard.org):
https://beagleboard.org/pocket

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/532


https://www.mouser.fr/ProductDetail/STMicroelectronics/STM32MP157C-EV1?qs=9r4v7xj2LnmHBJ35TLmsRg%3D%3D
https://beagleboard.org/pocket

4@} Types of hardware platforms (2)

» Community development platforms, to make a particular
SoC popular and easily available. These are ready-to-use Beaglebone Black Wireless
and low cost, but usually have fewer peripherals than board
evaluation platforms. To some extent, can also be used for
real products.

» Custom platform. Schematics for evaluation boards or
development platforms are more and more commonly freely
available, making it easier to develop custom platforms.

Olimex Open hardware
ARM laptop main board
Image credits (Olimex):
https://www.olimex.com/Products/
DTY-| anton

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/532


https://www.olimex.com/Products/DIY-Laptop/
https://www.olimex.com/Products/DIY-Laptop/

a@ Criteria for choosing the hardware
o0

o%e]

Most SoCs are delivered with support for the Linux kernel and for an open-source
bootloader.

Having support for your SoC in the official versions of the projects (kernel,
bootloader) is a lot better: quality is better, new versions are available, and Long
Term Support releases are available.

Some SoC vendors and/or board vendors do not contribute their changes back to
the mainline Linux kernel. Ask them to do so, or use another product if you can.
A good measurement is to see the delta between their kernel and the official one.
Between properly supported hardware in the official Linux kernel and
poorly-supported hardware, there will be huge differences in development
time and cost.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/532



a@ Introduction to Embedded Linux

g

Embedded Linux system architecture

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



_Qb Host and target

Development PC (host) Embedded system (target)

Userspace

Linux kernel

The bootloader disappears
after starting the kernel

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/532



a Software components
o)

o%e]

Cross-compilation toolchain
Compiler that runs on the development machine, but generates code for the target
Bootloader

Started by the hardware, responsible for basic initialization, loading and executing
the kernel

Linux Kernel

Contains the process and memory management, network stack, device drivers and
provides services to user space applications

C library

Of course, a library of C functions
Also the interface between the kernel and the user space applications

Libraries and applications
Third-party or in-house

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/532



a@ Embedded Linux work

o%e]

Several distinct tasks are needed when deploying embedded Linux in a product:
Board Support Package development

A BSP contains a bootloader and kernel with the suitable device drivers for the
targeted hardware
Purpose of our Kernel Development course

System integration
Integrate all the components, bootloader, kernel, third-party libraries and
applications and in-house applications into a working system
Purpose of this course
Development of applications
Normal Linux applications, but using specifically chosen libraries

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

40/532


https://bootlin.com/training/kernel

o%e]

Embedded Linux
development
environment

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

a@ Embedded Linux development environment
o0

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

41/532



a@ Embedded Linux solutions

o%e]

Two ways to switch to embedded Linux
Use solutions provided and supported by vendors like MontaVista, Wind River or
TimeSys. These solutions come with their own development tools and environment.
They use a mix of open-source components and proprietary tools.
Use community solutions. They are completely open, supported by the community.
In Bootlin training sessions, we do not promote a particular vendor, and therefore

use community solutions
However, knowing the concepts, switching to vendor solutions will be easy

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

42/532



a@ OS for Linux development

We strongly recommend to use GNU/Linux as the desktop operating system to
embedded Linux developers, for multiple reasons.
All community tools are developed and designed to run on Linux. Trying to use
them on other operating systems (Windows, macOS) will lead to trouble.
As Linux also runs on the embedded device, all the knowledge gained from using
Linux on the desktop will apply similarly to the embedded device.
If you are stuck with a Windows desktop, at least you should use GNU/Linux in a
virtual machine (such as VirtualBox which is open source), though there could be
a small performance penalty. With Windows 10/11, you can also run your favorite
native Linux distro through Windows Subsystem for Linux (WSL2)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/532



a@ Desktop Linux distribution

o%e]

Any good and sufficiently recent Linux desktop
distribution can be used for the development
workstation

Ubuntu, Debian, Fedora, openSUSE, Arch Linux, etc.

We have chosen Ubuntu, derived from Debian, as it is a
widely used and easy to use desktop Linux
distribution.

The Ubuntu setup on the training laptops has
intentionally been left untouched after the normal
installation process. Learning embedded Linux is also
about learning the tools needed on the development
workstation!

ubuntu®

Image credits:
https://tinyurl.com/f4zxj5kw

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

44/532


https://tinyurl.com/f4zxj5kw

Host vs. target
s

o%e]

When doing embedded development, there is always a split between
The host, the development workstation, which is typically a powerful PC
The target, which is the embedded system under development
They are connected by various means: almost always a serial line for debugging

purposes, frequently a networking connection, sometimes a JTAG interface for
low-level debugging

Host Serial Target

A
Y

ARM, PowerPC, MIPS,
x86.. platform
Networking N More minimalistic
Linux system

x86 or x86_64 PC
Full-featured Linux
desktop system

A
A

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/532



ao Serial line communication program
o0

Jo3e!

An essential tool for embedded development is a serial line communication
program, like HyperTerminal in Windows.

There are multiple options available in Linux: Minicom, Picocom, Gtkterm, Putty,
screen, tmux and the new tio (https://github.com/tio/tio).
In this training session, we recommend using the simplest of them: Picocom

Installation with sudo apt install picocom
Run with picocom -b BAUD_RATE /dev/SERIAL_DEVICE.
Exit with [Ctr1][a] [Ctrl][x]

SERIAL_DEVICE is typically

ttyUSBx for USB to serial converters
ttySx for real serial ports

Most frequent command: picocom -b 115200 /dev/ttyUSBo

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/532


https://github.com/tio/tio

a@ Practical lab - Training Setup

o%e]

Prepare your lab environment

Download and extract the lab archive

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/532



Cross-compiling toolchains

Cross-compiling bOOtIl'n

toolchains

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/532



a Cross-compiling toolchains
o)

o%e]

Definition and Components

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/532



ao Toolchain definition (1)

o%e]

The usual development tools available on a GNU/Linux workstation is a native
toolchain

This toolchain runs on your workstation and generates binary code for your
workstation, usually x86
For embedded system development, it is usually impossible or not interesting to
use a native toolchain

The target is too restricted in terms of storage and/or memory

The target is very slow compared to your workstation

You may not want to install all development tools on your target.
Therefore, cross-compiling toolchains are generally used. They run on your
workstation but generate code for your target.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/532



ao Toolchain definition (2)

o%e]

Source code

¢ ¢ Compilation
c i machine
Native toolchain ross—compl W
toolchain
x86
' ARM bi Execution
x86 binary inary machine
x86 ARM

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/532



ao Architecture tuple and toolchain prefix
o0

o%e]

Many UNIX/Linux build mechanisms rely on architecture tuple names to identify
machines.
Examples: arm-1linux-gnueabihf, mips64el-1inux-gnu,
arm-vendor-none-eabihf
These tuples are 3 or 4 parts:

The architecture name: arm, riscv, mips64el, etc.

Optionally, a vendor name, which is a free-form string

An operating system name, or none when not targeting an operating system

The ABI/C library (see later)
This tuple is used to:

configure/build software for a given platform
as a prefix of cross-compilation tools, to differentiate them from the native toolchain

gcc — native compiler
arm-1linux-gnueabihf-gcc — cross-compiler

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/532



ao Components of gcc toolchains
o0

Jo3e!

Binutils Kernel headers

C/C++ libraries C/C++ compiler

GDB debugger
(optional)

Cross-compilation toolchain

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/532



Binutils
o

o%e]

Binutils is a set of tools to generate and manipulate binaries (usually with the
ELF format) for a given CPU architecture
as, the assembler, that generates binary code from assembler source code
1d, the linker
ar, ranlib, to generate .a archives (static libraries)
objdump, readelf, size, nm, strings, to inspect binaries. Very useful analysis tools!
objcopy, to modify binaries
strip, to strip parts of binaries that are just needed for debugging (reducing their
size).

GNU Binutils: https://www.gnu.org/software/binutils/, GPL license

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/532


https://www.gnu.org/software/binutils/

C/C il
Q@ /C++ compiler

o%e]

GCC: GNU Compiler Collection, the famous free software
compiler

https://gcc.gnu.org/

Can compile C, C++, Ada, Fortran, Java, Objective-C,
Objective-C++, Go, etc. Can generate code for a large number
of CPU architectures, including x86, ARM, RISC-V, and many
others.

Available under the GPL license, libraries under the GPL with
linking exception.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/532


https://gcc.gnu.org/

Kernel h 1
Q@ ernel headers (1)

o%e]

The C standard library and compiled programs need to
interact with the kernel

Available system calls and their numbers

Constant definitions

Data structures, etc. Application
Therefore, compiling the C standard library requires i
. . . C librar
kernel headers, and many applications also require them. lay
v v

Available in <linux/...> and <asm/...> and a few K

ernel headers
other directories corresponding to the ones visible in Kernel
include/uapi/ and in arch/<arch>/include/uapi in
the kernel sources

The kernel headers are extracted from the kernel sources
using the headers_install kernel Makefile target.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/532


https://elixir.bootlin.com/linux/latest/source/include/uapi/

4@,‘3 Kernel headers (2)

> System call numbers, in <asm/unistd.h>

#define __NR_exit 1
#define __NR_fork 2
#tdefine __NR_read 3

> Constant definitions, here in <asm-generic/fcntl.h>, included from
<asm/fcntl.h>, included from <linux/fcntl.h>
#define O_RDWR 00000002
» Data structures, here in <asm/stat.h> (used by the stat command)
struct stat {
unsigned long st_dev;
unsigned long st_ino;
[...]
3

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/532



Kernel h
Qo ernel headers (3)

o%e]

The kernel to user space interface is backward compatible

Kernel developers are doing their best to never break existing programs when the
kernel is upgraded. Otherwise, users would stick to older kernels, which would be
bad for everyone.

Hence, binaries generated with a toolchain using kernel headers older than the
running kernel will work without problem, but won't be able to use the new
system calls, data structures, etc.

Binaries generated with a toolchain using kernel headers newer than the running
kernel might work only if they don't use the recent features, otherwise they will
break.

What to remember: updating your kernel shouldn’t break your programs; it's usually
fine to keep an old toolchain as long as it works fine for your project.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/532



4@,? C standard library

» The C standard library is an essential
component of a Linux system.
® Interface between the applications and the
kernel
¢ Provides the well-known standard C API to
ease application development

> Several C standard libraries are available: glibc,
uClibe, musl, klibc, newlib...

» The choice of the C standard library must be
made at cross-compiling toolchain generation
time, as the GCC compiler is compiled against Source: Wikipedia (nttps://bit.1y/2zrGve2)
a specific C standard library.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/532


https://bit.ly/2zrGve2

a@ glibc

o%e]

License: LGPL
C standard library from the GNU project

Designed for performance, standards compliance and
portability

Found on all GNU / Linux host systems

Of course, actively maintained

By default, quite big for small embedded systems. On
armv7hf, version 2.31: libc: 1.5 MB, libm: 432 KB,
source: https://toolchains.bootlin.com

https://www.gnu.org/software/libc/

Image source

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/532


https://toolchains.bootlin.com
https://www.gnu.org/software/libc/
https://en.wikipedia.org/wiki/File:Heckert_GNU_white.svg

Clibc-
Qo uClibc-ng

https://uclibc-ng.org/

A continuation of the old uClibc project, license: LGPL

Lightweight C standard library for small embedded systems
High configurability: many features can be enabled or disabled through a
menuconfig interface.
Supports most embedded architectures, including MMU-less ones (ARM Cortex-M,
Blackfin, etc.). The only standard library supporting ARM noMMU.
No guaranteed binary compatibility. May need to recompile applications when the
library configuration changes.
Some features may be implemented later than on glibc (real-time, floating-point
operations...)
Focus on size (RAM and storage) rather than performance
Size on armv7hf, version 1.0.34: libc: 712 KB, source:
https://toolchains.bootlin.com

Actively supported, supported by Buildroot but not by Yocto Project.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/532


https://uclibc-ng.org/
https://toolchains.bootlin.com

60 musl C standard library

o%e]

https://www.musl-1libc.org/
A lightweight, fast and simple standard library for embedded systems
Created while uClibc's development was stalled

In particular, great at making small static executables, which can run
anywhere, even on a system built from another C standard library.

More permissive license (MIT), making it easier to release static
executables. We will talk about the requirements of the LGPL license
(glibc, uClibc) later.

Supported by build systems such as Buildroot and Yocto Project.
Used by the Alpine Linux lightweight distribution
(https://www.alpinelinux.org/)

Size on armv7hf, version 1.2.0: 1ibc: 748 KB, source:
https://toolchains.bootlin.com

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/532


https://www.musl-libc.org/
https://www.alpinelinux.org/
https://toolchains.bootlin.com

a Other smaller C libraries
o)

o%e]

Several other smaller C libraries exist, but they do not implement the full POSIX
interface required by most Linux applications

They can run only relatively simple programs, typically to make very small static
executables and run in very small root filesystems.

Therefore not commonly used in most embedded Linux systems
Choices:

Newlib, https://sourceware.org/newlib/, maintained by Red Hat, used mostly in
Cygwin, in bare metal and in small POSIX RTOS.

Klibc, https://en.wikipedia.org/wiki/Klibc, from the kernel community,
designed to implement small executables for use in an initramfs at boot time.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/532


https://sourceware.org/newlib/
https://en.wikipedia.org/wiki/Klibc

a@ Advice for choosing the C standard library

o%e]

Advice to start developing and debugging your applications with glibc, which is
the most standard solution
If you have size constraints, try to compile your app and then the entire filesystem
with uClibc or musl/
The size advantage of uClibc or musl, which used to be a significant argument, is
less relevant with today's storage capacities.
Smaller binaries and filesystems remain useful when optimizing boot time, though,
typically booting on a filesystem loaded in RAM, and to reduce the size of container
and virtual machine images (one of the use cases of Alpine Linux).

If you run into trouble, it could be because of missing features in the C standard
library.

In case you wish to make static executables, mus/ will be an easier choice in terms
of licensing constraints.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/532



a Linux vs. bare-metal toolchain
o)

o%e]

A Linux toolchain

is a toolchain that includes a Linux-ready C standard library, which uses the Linux
system calls to implement system services

can be used to build Linux user-space applications, but also bare-metal code
(firmware, bootloader, Linux kernel)

is identified by the 1inux QS identifier in the toolchain tuple: arm-1linux,
arm-none-linux-gnueabihf

A bare metal toolchain

is a toolchain that does not include a C standard library, or a very minimal one that
isn't tied to a particular operating system

can be used to build only bare-metal code (firmware, bootloader, Linux kernel)

is identified by the none OS identifier in the toolchain tuple: arm-none-eabi,
arm-none-none-eabi (vendor is none, OS is none)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/532



ao An alternate compiler suite: LLVM
o0

o%e]

Most Embedded Linux projects use toolchains based on the GNU project: GCC
compiler, binutils, GDB debugger
The LLVM project has been developing an alternative compiler suite:

Clang, C/C++ compiler, https://clang.1lvm.org/

LLDB, debugger, https://11db.11lvm.org/

LLD, linker, https://11d.11vm.org/

and more, see https://11lvm.org/
While they are used by several high-profile projects, they are not yet in widespread
use in most Embedded Linux projects.

Initially had better code optimization and diagnostics than GCC, but thanks to
having competition, GCC has improved significantly in this area.

Available under MIT/BSD licenses
https://en.wikipedia.org/wiki/LLVM

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/532


https://clang.llvm.org/
https://lldb.llvm.org/
https://lld.llvm.org/
https://llvm.org/
https://en.wikipedia.org/wiki/LLVM

a Cross-compiling toolchains
o)

o%e]

Toolchain Options

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/532



a@ ABI

o%e]

When building a toolchain, the ABI used to generate binaries needs to be defined

ABI, for Application Binary Interface, defines the calling conventions (how
function arguments are passed, how the return value is passed, how system calls
are made) and the organization of structures (alignment, etc.)

All binaries in a system are typically compiled with the same ABI, and the kernel
must understand this ABI.

On ARM 32-bit, two main ABIls: EABI and EABIhf

EABIhf passes floating-point arguments in floating-point registers — needs an ARM
processor with a FPU

On RISC-V, several ABls: ilp32, ilp32f, ilp32d, Ip64, Ip64f, and Ip64d
https://en.wikipedia.org/wiki/Application_Binary_Interface

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/532


https://en.wikipedia.org/wiki/Application_Binary_Interface

a@ Floating point support

o%e]

All ARMv7-A (32-bit) and ARMv8-A (64-bit) processors have a floating point unit
RISC-V cores with the F extension have a floating point unit

Some older ARM cores (ARMv4/ARMV5) or some RISC-V cores may not have a
floating point unit

For processors without a floating point unit, two solutions for floating point
computation:
Generate hard float code and rely on the kernel to emulate the floating point
instructions. This is very slow.
Generate soft float code, so that instead of generating floating point instructions,
calls to a user space library are generated

Decision taken at toolchain configuration time

For processors with a floating point unit, sometimes different FPU are possible.
For example on ARM: VFPv3, VFPv3-D16, VFPv4, VFPv4-D16, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/532



ao CPU optimization flags

o%e]

GNU tools (gce, binutils) can only be compiled for a specific target architecture at
a time (ARM, x86, RISC-V...)

gcc offers further options:
-march allows to select a specific target instruction set
-mtune allows to optimize code for a specific CPU
For example: -march=armv7 -mtune=cortex-a8
-mcpu=cortex-a8 can be used instead to allow gcc to infer the target instruction set
(-march=armv7) and cpu optimizations (-mtune=cortex-a8)
https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

At the GNU toolchain compilation time, values can be chosen. They are used:
As the default values for the cross-compiling tools, when no other -march, -mtune,
-mcpu options are passed
To compile the C library

Note: LLVM (Clang, LLD...) utilities support multiple target architectures at once.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/532


https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

a Cross-compiling toolchains
o)

o%e]

Obtaining a Toolchain

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



a Building a toolchain manually
o)
Building a cross-compiling toolchain manually is a fairly difficult process

Lots of details to learn: many components to build with complicated configuration

Typical process is:

Build dependencies of binutils/gcc (GMP, MPFR, ISL, etc.)

Build binutils

Build a baremetal, first stage GCC

Extract kernel headers from the Linux source code

Build the C library using the first stage GCC

Build the second stage and final GCC supporting the Linux OS and the C library.
Many decisions to make about the components: C library, gcc and binutils
versions, ABI, floating point mechanisms, etc. Not trivial to find correct
combinations of these possibilities

See the Crosstool-NG documentation for details on how toolchains are built.

Talk: Anatomy of Cross-Compilation Toolchains, by Thomas Petazzoni, ELCE
2017, video and slides

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/532


https://crosstool-ng.github.io/docs/toolchain-construction/
https://youtu.be/Pbt330zuNPc
https://elinux.org/images/1/15/Anatomy_of_Cross-Compilation_Toolchains.pdf

ao Get a pre-compiled toolchain
o0

o%e]

Solution that many people choose

Advantage: it is the simplest and most convenient solution
Drawback: you can't fine tune the toolchain to your needs

Make sure the toolchain you find meets your requirements: CPU, endianness, C
library, component versions, version of the kernel headers, ABI, soft float or hard
float, etc.

Some possibilities:

Toolchains packaged by your distribution, for example Ubuntu package
gcc-arm-linux-gnueabihf or Fedora gcc-arm-linux-gnu. Often limited to
ARM/ARM®64 with glibc.

Bootlin's GNU toolchains, most CPU architectures, with glibc/uClibc/musl,
https://toolchains.bootlin.com

ARM and ARM®64 toolchains released by ARM

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

73/532


https://packages.ubuntu.com/gcc-arm-linux-gnueabihf
https://packages.fedoraproject.org/pkgs/cross-gcc/gcc-arm-linux-gnu/
https://toolchains.bootlin.com
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/downloads

4@,? Example of toolchains from ARM: downloading

x86_64 Linux hosted cross compilers

AArch32 bare-metal target (arm-none-eabi)

gec-arm-10.3-2021.07-x86_64-arm-none-eabi.tar.xz
gee-arm-10.3-2021.07-x86_64-arm-none-eabi.tarxz.asc

AArch32 target with hard float (arm-none-linux-gnueabihf)
o gee-arm-10.3-2021.07-x86_64-arm-none-linux-gnueabihf.tar.xz
gee-arm-10.3-2021.07-x86_64-arm-none-linux-
gnueabihftar.xz.asc

AArché4 ELF bare-metal target (aarché4-none-elf)

gcc-arm-10.3-2021.07-x86_64-aarch64-none-elf.tar.xz Fro m A rm G N U TOO I C h a | ns

gce-arm-10.3-2021.07-x86_64-aarch64-none-elf.tar.xz.asc

AArch64 GNU/Linux target (aarché4-none-linux-gnu)
gee-arm-10.3-2021.07-x86_64-aarch64-none-linux-gnu.tar.xz
gee-arm-10.3-2021.07-x86_64-aarch64-none-linux-
gnu.tar.xz.asc

AArché4 GNU/Linux target (aarch64_be-none-linux-gnu)
gee-arm-10.3-2021.07-x86_64-aarch64_be-none-linux-
gnu.tar.xz
gcc-arm-10.3-2021.07-x86_64-aarch64_be-none-linux-

gnu.tar.xzasc

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/532


https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/downloads

4@,? Example of toolchains from ARM: using

$ wget https://developer.arm.com/-/media/Files/downloads/gnu-a/10.3-2021.07/binrel/[...]
[...Jgcc-arm-10.3-2021.07-x86_64-arm-none-linux-gnueabihf.tar.xz

$ tar xf gcc-arm-10.3-2021.07-x86_64-arm-none-linux-gnueabihf.tar.xz
$ cd gcc-arm-10.3-2021.07-x86_64-arm-none-linux-gnueabihf/

$ ./bin/arm-none-linux-gnueabihf-gcc -o test test.c

$ file test

test: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-armhf.so.3, [...]
for GNU/Linux 3.2.0, with debug_info, not stripped

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/532



ao Toolchain building utilities

o%e]

Another solution is to use utilities that automate the process of building the
toolchain

Same advantage as the pre-compiled toolchains: you don't need to mess up with
all the details of the build process

But also offers more flexibility in terms of toolchain configuration, component
version selection, etc.

Allows to rebuild the toolchain if needed to fix a bug or security issue.
They also usually contain several patches that fix known issues with the different
components on some architectures

Multiple tools with identical principle: shell scripts or Makefile that automatically
fetch, extract, configure, compile and install the different components

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/532



4@,? Toolchain building utilities (2)

crosstool-NG News Download Documentation  Support

Crosstool-NG s a versatile (cross) toolchain generator. It supports many architectures and
components and has a simple yet powerful menuconfig-style interface. Please read the
Introduction and refer to the documentation for more information.

See what the users of crosstool-NG have to say!

Crosstool-ng

Latest sources, bugs, questions? Head over to Crosstool-NG at GitHub!
» Rewrite of the older Crosstool, with a Mo
menuconfig-like configuration system "

éé]eased 1.25.0
> Featu re_fu I I su pports u ClIbC, gl | bc a nd m US| , S?:;hz)w 25.0 release as bz2 (PGP signature) (mds, shai, sha512) or xz (PGP signature) (md5, shat,
hard and soft float, many architectures

Apr 22,2022

> ACthely ma|nta|ned Released 1.25.0_rc2

Get the 1.25.0_rc2 release as bz2 (PGP signature) (mds, shat, sha512) or xz (PGP signature) (md5,
shat, sha512) .

> https://crosstool-ng.github.io/

Released 1.25.0_rc1

Get the 1.25.0_rc1 release as bz2 (PGP signature) (mdS, shat, sha512) or xz (PGP signature) (mds,
shat, sha512) .

View more in the news archive or subscribe via RSS

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/532


https://crosstool-ng.github.io/

60 Toolchain building utilities (3)

o%e]

Many root filesystem build systems also allow the construction of a cross-compiling
toolchain
Buildroot
Makefile-based. Can build glibc, uClibc and musl based toolchains, for a wide range

of architectures. Use make sdk to only generate a toolchain.
https://buildroot.org

PTXdist
Makefile-based, maintained mainly by Pengutronix, supporting only glibc and uClibc
(version 2023.01 status)
https://www.ptxdist.org/
OpenEmbedded / Yocto Project
A featureful, but more complicated build system, supporting only glibc and musl.

https://www.openembedded.org/
https://www.yoctoproject.org/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

78/532


https://buildroot.org
https://www.ptxdist.org/
https://www.openembedded.org/
https://www.yoctoproject.org/

4@,‘3 Crosstool-NG: download

> Getting Crosstool-NG
$ git clone https://github.com/crosstool-ng/crosstool-ng.git
> Using a well-known stable version

$ cd crosstool-ng
$ git checkout crosstool-ng-1.27.0

> As we're fetching from Git, the configure script needs to be generated:
$ ./bootstrap

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/532



a Crosstool-NG: installation
o)

Jo3e!

Installation can be done:

system-wide, for example in /usr/local, the ct-ng command is then available
globally

$ ./configure

$ make

$ sudo make install

or just locally in the source directory, the ct-ng command will be invoked from this
directory

$ ./configure --enable-local
$ make

In our labs, we will use the second method

Note: the make invocation doesn't build any toolchain, it builds the ct-ng
executable.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/532



a Crosstool-NG: toolchain configuration
ody)
Once installed, the ct-ng tool allows to configure and build an arbitrary number
of toolchains
Its configuration system is based on kconfig, like the Linux kernel configuration
system
Configuration of the toolchain to build stored in a .config file
Example configurations provided with Crosstool-NG
List: ./ct-ng list-samples
Load an example: ./ct-ng <sample-name>, replaces .config
For example ./ct-ng aarch64-unknown-1linux-gnu
No sample loaded — default Crosstool-NG configuration is a bare-metal toolchain
for the Alpha CPU architecture!

The configuration can then be refined using either:

./ct-ng menuconfig
./ct-ng nconfig

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/532



Crosstool-NG: toolchain configuration

1-NG 26.8 Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y=>
includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to
exit, <?> for Help, </> for Search. Legend: [*] built-in [ ] excluded

Paths and c options ---
Target options --->
Toolchain options --->
Operating System --->
Binary utilities --->
C-library --->

C compiler --->

Debug facilities --->
Companion libraries --->
Companion tools --->
Test suite --->

< Exit > < Help > < Save > < Load >

./ct-ng menuconfig

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/532



ao Crosstool-NG: toolchain building

o%e]

To build the toolchain
./ct-ng build

This will automatically download all the needed dependencies, and build all
toolchain components in the right order, with the specified configuration.

By default the results go in $HOME/x-tools/<architecture-tuple>, as defined
by the option CT_PREFIX_DIR in Paths and misc options

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/532



4@3 Important toolchain contents

P bin/: cross compilation tool binaries
® This directory can be added to your PATH to ease usage of the toolchain
® Sometimes with symlinks for shorter names
arm-linux-gcc -> arm-cortexa7-linux-uclibcgnueabihf-gcc
b <arch-tuple>/sysroot: sysroot directory

® <arch-tuple>/sysroot/lib: C library, GCC runtime, C++ standard library
compiled for the target
® <arch-tuple>/sysroot/usr/include: C library headers and kernel headers

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/532



ao Practical lab - Using Crosstool-NG

o%e]

Time to build your toolchain
Getting and configuring Crosstool-NG

Executing it to build a custom
cross-compilation toolchain

Exploring the contents of the toolchain

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/532



Bootloaders and firmware

Bootloaders and bOOtIl'n

firmware

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/532



a Bootloaders and firmware
o)

o%e]

Introduction

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/532



a Bootloader role
o)

o%e]

The bootloader is a piece of code responsible for
Basic hardware initialization
Loading of an application binary, usually an operating system kernel, from flash
storage, from the network, or from another type of non-volatile storage.
Possibly decompression of the application binary
Execution of the application

Besides these basic functions, most bootloaders provide a shell or menu
Menu to select the operating system to load
Shell with commands to load data from storage or network, inspect memory, perform
hardware testing/diagnostics
The first piece of code running by the processor that can be modified by us
developers.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/532



a Bootloaders and firmware
o)

o%e]

Booting on x86 platforms

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



ao Legacy BIOS booting (1)

o%e]

x86 platforms shipped before 2005-2006 include a firmware called BIOS
BIOS = Basic Input Output System
Part of the hardware platform, closed-source, rarely modifiable
Implements the booting process
Provides runtime services that can be invoked - not commonly used
Stored in some flash memory, outside of regular user-accessible storage devices

To be bootable, the first sector of a storage device is “special”

MBR = Master Boot Record

Contains the partition table

Contains up to 446 bytes of bootloader code, loaded into RAM and executed
The BIOS is responsible for the RAM initialization

https://en.wikipedia.org/wiki/BIO0S

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/532


https://en.wikipedia.org/wiki/BIOS

ao Legacy BIOS booting (2)

o%e]

Due to the limitation in size of the bootloader, bootloaders are split into two
stages

Stage 1, which fits within the 446 bytes constraint

Stage 2, which is loaded by stage 1, and can therefore be bigger

Stage 2 is typically stored outside of any filesystem, at a fixed offset — simpler to
load by stage 1

Stage 2 generally has filesystem support, so it can load the kernel image from a
filesystem

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/532



Legacy BIOS booting: sequence and storage

BIOS Bootloader Bootloader Kernel
stage 1 > stage 2 >
runs from ROM/flash loaded from raw storage loaded from raw storage loaded from filesystem
initializes RAM runs from RAM TnskromiR AN runs from RAM
USB drive, SATA,
SD card, eMMC
f 1
Bootloader Regular partition Regular partition
stage 2
Regular Linux filesystem
e contains the Linux kernel + root filesystem
Bootloader Partition
stage 1 table

446 bytes

Sector 0 (MBR)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/532



Q@ UEFI booting

o%e]

Starting from 2005-2006, UEFI is the new firmware interface on x86 platforms
Unified Extensible Firmware Interface
Describes the interface between the operating system and the firmware
Firmware in charge of booting
Firmware also provides runtime services to the operating system
Stored in some flash memory, outside of regular user-accessible storage devices
Loads EFI binaries from the EFl System Partition
Generally a bootloader
Can also be directly the Linux kernel, with an EFI Boot Stub
Special partition, formatted with the FAT filesystem
MBR: identified by type OxEF
GPT: identified with a specific globally unique identifier
File /efi/boot/bootx32.efi, /efi/boot/bootx64.efi

https://en.wikipedia.org/wiki/UEFI

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/532


https://en.wikipedia.org/wiki/UEFI

a@ UEFI booting: sequence and storage

o%e]

UEFI Bootloader Kernel

firmware ! Ioaded from EFI System >

loaded from filesystem

Partition
from ROM/flash s fienn [RAM runs from RAM
EFl System Partition Regular partition
Partition
table FAT filesystem

contains the bootloader Regular Linux filesystem
Jefi/boot/boot<arch>.efi contains the Linux kernel + root filesystem

USB drive, SATA,
SD card, eMMC, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/532



ao ACPI

o%e]

Advanced Configuration and Power Interface

Open standard that operating systems can use to discover and configure computer
hardware components, to perform power management, to perform auto
configuration, and to perform status monitoring

Tables with descriptions of the hardware that cannot be dynamically discovered at
runtime

Tables provided by the firmware (UEFI or legacy) and used by the operating
system (Linux kernel in our case)

https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/532


https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface

a@ UEFI and ACPIl on ARM

g

Historically UEFI and ACPI are technologies coming from the Intel /x86 world
ARM is also pushing for the adoption of UEFI and ACPI as part of its ARM
System Ready certification
Mainly for servers/workstations SoCs
Does not impact embedded SoCs
Currently not common in embedded Linux projects on ARM
https://www.arm.com/architecture/system-architectures/systemready-
certification-program

Also some on-going effort to use UEFI on RISC-V, but not the de-facto standard
When an embedded platform uses UEFI — its booting process is similar to an x86
platform

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/532


https://www.arm.com/architecture/system-architectures/systemready-certification-program
https://www.arm.com/architecture/system-architectures/systemready-certification-program

a Bootloaders and firmware
o)

o%e]

Booting on embedded platforms

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



a@ Booting on embedded platforms: ROM code

Most embedded processors include a ROM code that implements the initial step
of the boot process
The ROM code is written by the processor vendor and directly built into the
processor

Cannot be changed or updated

Its behavior is described in the processor datasheet
Responsible for finding a suitable bootloader, loading it and running it

From NAND/NOR flash, from USB, from SD card, from eMMC, etc.

Well defined location /format
Generally runs with the external RAM not initialized, so it can only load the
bootloader into an internal SRAM

Limited size of the bootloader, due to the size of the SRAM

Forces the boot process to be split in two steps: first stage bootloader (small, runs
from SRAM, initializes external DRAM), second stage bootloader (larger, runs from
external DRAM)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/532



Booting on STM32MP1: datasheet

AN5031 Boot configuration
7 Boot configuration
71 Boot mode selection

In the STM32MP15x lines devices, different boot modes can be selected by means of the

BOOT[2:0] pins. the reserved configuration is highlighted in gray in the table.

Table 13. Boot modes

BOOT2 |[BOOT1 |BOOTO | Initial boot mode Comments

Wait incoming connection on:
0 0 0 |UARTandUSB(") |- USART2/3/6 and UART4/5/7/8 on default pins

— USB High-Speed device on OTG_HS_DP/DM pins@
0 0 1 |Serial NOR-Flash® | Serial NOR-Flash on QUADSPI®)
0 1 0 |emmMc™® eMMC™ on SDMMC2 (default)(5)X6)
0 1 1 |NAND-Flash® SLC NAND-Flash on FMC

Engineering boot (No " )

1 0 0 Flash boot) Used to get debug access without boot from Flash
1 0 1 |sD-Card® SD-Card on SDMMC1 (default)(5)®)

Wait incoming connection on:
1 1 0 |UARTand USB™M®) |_ USART2/3/6 and UART4/5/7/8 on default pins

— USB High-speed device on OTG_HS_DP/DM pins(?)
1 1 1 | Serial NAND-Flash(® | Serial NAND-Flash on QUADSPI(®)

Source: https://www.st.com/resource/en/
application_note/dm@@389996-getting-
started-with-stm32mp151-stm32mp153-and-
stm32mp157-1ine-hardware-development-
stmicroelectronics.pdf

Useful details:
https://wiki.st.com/stm32mpu/wiki/

STM32_MPU_ROM_code_overview

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

99/532


https://www.st.com/resource/en/application_note/dm00389996-getting-started-with-stm32mp151-stm32mp153-and-stm32mp157-line-hardware-development-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00389996-getting-started-with-stm32mp151-stm32mp153-and-stm32mp157-line-hardware-development-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00389996-getting-started-with-stm32mp151-stm32mp153-and-stm32mp157-line-hardware-development-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00389996-getting-started-with-stm32mp151-stm32mp153-and-stm32mp157-line-hardware-development-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00389996-getting-started-with-stm32mp151-stm32mp153-and-stm32mp157-line-hardware-development-stmicroelectronics.pdf
https://wiki.st.com/stm32mpu/wiki/STM32_MPU_ROM_code_overview
https://wiki.st.com/stm32mpu/wiki/STM32_MPU_ROM_code_overview

Booting on AM335x (32 bit BeagleBone): datasheet

26.1.5 Booting

26.1.5.1 Overview

Figure 26-6 shows the booting procedure. First a booting device list is created. The list consists of all
devices which will be searched for a booting image. The list is filled in based on the SYSBOOT.

Figure 26-6. ROM Code Booting Procedure

I Set the booting device st based on I

the SW Booting Configuration o
svs pins

Process next device Source:
Process device -

https://www.mouser.com/pdfdocs/spruh73h.pdf,

Device is of memory \ypel Device is of peripheral type
chapter 2|
Sucsss__ sucums per 26
Peripheral
Booting Booting

Jump to Initial SW

-Fail

~Timeout Dead loop

No Yes
Get next device in the list Last device in the list?
No more devices in the list

Once the booting device list is set up, the booting routine examines the devices enumerated in the list
sequentially and either executes the memory booting or peripheral booting procedure depending on the
booting device type. The memory booting procedure is executed when the booting device type is one of
NOR, NAND, MMC or SPI-EEPROM. The peripheral booting is executed when the booting device type is
Ethernet, USB or UART.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/532


https://www.mouser.com/pdfdocs/spruh73h.pdf

. Two stage booting sequence

Step 1 _ Step2
The ROM code loads the first The first stafge bootloader,
. running from SRAM,
eMMC stage and executes it configures the DDR
first stage controller
bootloader ™.
second stage ,'/
bootloader |\ \ /
\‘ cPy Il oo | gl » OX
\ core(s) / controller Y memory
| \ A
| ] |
rest of the MMC H
system ( | > controller SRAl |
‘: el ohel ; The first stsatgz gootloader
\ code peripherals l running from SRAM, loads
y i | the second stage into external
\ | DDR and executes it
\ /
e -

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

101/532



ao ROM code recovery mechanism
o0

o%e]

Most ROM code also provide some sort of recovery
mechanism, allowing to flash a board with no
bootloader or a broken one, usually with a

vendor-specific protocol over UART or USB. Cibe || Comolled

Programmer images
software g

Developer workstation

Often allows to push a new bootloader into RAM,
making it possible to reflash the bootloader.

A

USB cable

Vendor-specific tools to run on the workstation

STM32MP1: STM32 Cube Programmer
NXP i.MX: uuu

Microchip AT91/SAM: SAM-BA usBdevice @l pomcose €> MMC . €>| emmc
Allwinner: sunxi-fel
Some open-source, some proprietary STM32MP1 S0

v

Snagboot: new vendor agnostic tool replacing the
above ones: https://github.com/bootlin/snagboot

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/532


https://www.st.com/en/development-tools/stm32cubeprog.html
https://github.com/NXPmicro/mfgtools
https://www.microchip.com/en-us/development-tool/SAM-BA-In-system-Programmer
https://github.com/linux-sunxi/sunxi-tools
https://github.com/bootlin/snagboot

a Bootloaders and firmware
o)

o%e]

Bootloaders

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/532



60 GRUB

Grand Unified Bootloader, from the GNU
project

De-facto standard in most Linux distributions
for x86 platforms

GNU GRUB v

Supports x86 legacy and UEFI systems

*Debian GNU/Linux

Can read many filesystem formats to load the
kernel image, modules and configuration

Provides a menu and powerful shell with
various commands

Can load kernel images over the network

Also supports ARM, ARM64, RISC-V,
PowerPC, but less popular than other
bootloaders on those platforms

https://www.gnu.org/software/grub/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/532


https://www.gnu.org/software/grub/
https://en.wikipedia.org/wiki/GNU_GRUB

4@} Syslinux

» For network and removable media booting (USB key, SD card,
CD-ROM)

> syslinux: booting from FAT filesystem
> pxelinux: booting from the network

» isolinux: booting from CD-ROM
>
>

extlinux: booting from numerous filesystem types

A bit rustic to build and configure, not very actively maintained, SYSLINUX
but still useful for specific use-cases

v

https://wiki.syslinux.org/

v

https://kernel.org/pub/linux/utils/boot/syslinux/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/532


https://wiki.syslinux.org/
https://kernel.org/pub/linux/utils/boot/syslinux/

systemd-boot
s

Simple UEFI boot manager

Useful alternative to GRUB for UEFI systems: simpler
than GRUB

Configured using files stored in the EFI System Partition

Part of the systemd project, even though obviously
distinct from systemd itself
See our slides later in this course for more details on
systemd

https://www.freedesktop.org/wiki/Software/
systemd/systemd-boot/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://boot1in. com 106/532


https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/

shim
9%

o%e]

Minimal UEFI bootloader

Mainly used in secure boot scenario: it is signed by Microsoft and therefore
successfully verified by UEFI firmware in the field

Allows to chainload another bootloader (GRUB) or directly the Linux kernel, with
signature checking

https://github.com/rhboot/shim

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/532


https://github.com/rhboot/shim

ao U-Boot

Jo3e!

The de-facto standard and most widely used bootloader
on embedded architectures: ARM, ARM64, RISC-V,
PowerPC, MIPS, and more.

Also supports x86 with UEFI firmware.

Very likely the one provided by your SoC vendor, SoM
vendor or board vendor for your hardware.

We will study it in detail in the next section, and use it
in all practical labs of this course.

https://www.denx.de/wiki/U-Boot l l B Oot

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/532


https://www.denx.de/wiki/U-Boot

4@} Barebox

» Another bootloader for most embedded CPU
architectures: ARM/ARM®64, MIPS, PowerPC, RISC-V,
x86, etc.
> Initially developed as an alternative to U-Boot to
address some U-Boot shortcomings
® kconfig for the configuration like the Linux kernel
¢ well-defined device model internally

® More Linux-style shell interface
® Cleaner code base

BARE
BOX

> Actively maintained and developed, but
® Less widely used than U-Boot
® Less platform support than in U-Boot
> https://www.barebox.org/

» Talk barebox Bells and Whistles, by Ahmad Fatoum,
ELCE 2020, video and slides

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/532


https://www.barebox.org/
https://youtu.be/Oj7lKbFtyM0
https://elinux.org/images/9/9d/Barebox-bells-n-whistles.pdf

a Bootloaders and firmware
o)

o%e]

Trusted firmware

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/532



Concept
9o

o%e]

Traditionally, bootloaders are only used during the booting process
Bootloader loads operating system, jumps to it, and is discarded

Modern SoCs have advanced security mechanisms that require running some sort
of trusted firmware

This firmware is loaded by the bootloader, or part of the boot chain itself
This trusted firmware stays resident after control has been passed to the OS

It is stored in a dedicated portion of the DDR, or some specific SRAM, inaccessible
from the OS

It provides services to the OS, which the OS cannot perform directly

Can also be responsible for running a secure OS alongside the regular OS (Linux in
our case)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/532



a@ ARM

o%e]

Modern ARMv7 and ARMv8 processors have
4 privilege levels (Exception Levels)

EL3, the most privileged, runs secure firmware
EL2, typically used by hypervisors, for virtualization
EL1, used to run the Linux kernel

ELO, used to run Linux user-space applications

2 worlds

Normal world, used to run a general purpose OS, like Linux
Secure world, to run a separate, isolated, secure operating system and applications.
Also called TrustZone by ARM.

EL3 only exists in the secure world

EL2 exists in both secure and normal worlds since ARMv8.4, before that EL2 was
only in the normal world

EL1 and ELO exist in both secure and normal worlds

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

112/532



4@@ ARM exception levels and worlds

Non-secure Secure

AArch32 App Trusted Services

Trusted OS

EL1 AArché4 Kernel AArch32 Kernel

EL3 Firmware / Secure Monitor

Trusted Partition
Manager®

* Secure EL2 from Armv8.4-A

Source: ARM documentation

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/532


https://developer.arm.com/documentation/102412/0102/Execution-and-Security-states

a@ Interfaces with secure firmware
o0

o%e]

Standardized by ARM

Services
Linux application

implemented by the secure firmware (ELO)
called by the operating system

Linux

Prevents the operating system running in normal world from System
directly accessing critical hardware resources
PSCI, Power State Coordination Interface Hne e

Power management related: turn CPUs on/off, CPU idle state,

platform shutdown /reset PSCI, SCM, ete.
SCMI, System Control and Management Interface l

Power domain, clocks, sensor, performance VR

. . . . . EL3
Secure firmware implementing these interfaces is 3

Mandatory to run Linux on ARMv8
Mandatory to run Linux on some ARMv7 platforms, but not all

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/532


https://developer.arm.com/documentation/den0022/fb/?lang=en
https://developer.arm.com/documentation/den0056/latest

Qo TF-A

o%e]

Trusted Firmware-A (TF-A) provides a reference implementation of secure world
software for Armv7-A and Armv8-A, including a Secure Monitor executing at
Exception Level 3 (EL3)

Formerly known as ATF, for ARM Trusted Firmware

Implements the various standard interfaces that operating systems need from the
secure firmware

Has drivers for the hardware blocks that are not accessed directly by Linux
Needs to be ported for each SoC

Depending on the platform, may also need to be ported per board: DDR
initialization

Used on the vast majority of ARMv8 platforms, and on a few recent ARMv7
platforms

https://www. trustedfirmware.org/projects/tf-a/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/532


https://www.trustedfirmware.org/projects/tf-a/

ao Trusted OS, OP-TEE

o%e]

A trusted operating system can run in the secure world, also called Trusted
Execution Environment or TEE
Hardware partitioning between secure world and normal world

Some hardware resources only available in the secure world, by the trusted OS
Allows to run trusted applications/services

isolated from Linux

can provide services to Linux applications
Most common open-source implementation: OP-TEE

Supported by most silicon vendors
https://www.op-tee.org/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

116/532


https://www.op-tee.org/

ARM: summary

Secure ELO | Trusted applications |
: " Secure
Secure ELL | Trusted Execution Environment (TEE) | world
EL3 ROM code First stage Secure monitor
BL1 BL2 BL31
EL2 Second stage bootloader Hypervisor
BL3
EL1 Linux kernel Normal
world
ELO Linux applications
A
Ll
Time
Mandatory Optional
component component

Largely inspired from Ahmad Fatoum presentation From Reset Vector to Kernel, slides, video
See also details about the ARM terms: BL1, BL2...

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/532


https://archive.fosdem.org/2021/schedule/event/from_reset_vector_to_kernel/attachments/slides/4632/export/events/attachments/from_reset_vector_to_kernel/slides/4632/from_reset_vector_to_kernel.pdf
https://www.youtube.com/watch?v=-Ak9MWGxd7M
https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html

60 RISC-V

o%e]

Linux-class RISC-V processors have several privilege
levels

M-mode: machine mode
S-mode: level at which the Linux kernel runs
U-mode: level at which Linux user-space applications
run
Some specific HW resources are not accessible in
S-mode

A more privileged firmware runs in M-mode
RISC-V has defined SBI, Supervisor Binary Interface

Standardized interface between the OS and the firmware
https://github.com/riscv-non-isa/riscv-sbhi-doc

OpenSBI is a reference, open-source implementation of
SBI

https://github.com/riscv-software-src/opensbi

SBI
calls

ROM code

\/

1st stage
bootloader

v

OpenSBI

A4

U-Boot

\4

Linux
kernel

v

Userspace
apps

M-mode

M-mode

M-mode
Stays
resident

S-mode

S-mode
Stays
resident

U-mode

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

118/532


https://github.com/riscv-non-isa/riscv-sbi-doc
https://github.com/riscv-software-src/opensbi

a Bootloaders and firmware
o)

o%e]

Example boot sequences on ARM

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com



o%e]

code

Stored in ROM

Loaded from a file
called MLO in a FAT
filesystem in the
first bootable
partition

Runs from SRAM

ao TI AM335x (32 bit BeagleBone): ARMv7

Aol ————  U-BoOtSPL —— U-Boot —— LD

kernel

Loaded from a file
called u-boot.img in a FAT
filesystem

Runs from RAM

DOOLIIN - Kernel, drivers and embedded Linux -

Development, consulting, training and support - https://bootlin. com

120/532



a@ NXP i.MX6: ARMv7

o%e]

i.MX6 specific header providing DDR configuration
parameters to the ROM code

Allows U-Boot to be loaded directly in DDR by the ROM code

ROM
code

U-Boot — > LU

kernel

Y

A
Y

\ 4

Stored in ROM u-boot.imx

Loaded raw from offset
1 KB in the SD card

Runs from RAM

Note: this diagram shows one possible boot flow on NXP i.MX6, but it is also possible
to use the U-Boot SPL — U-Boot boot flow on i.MX6.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/532



STM32MP1: ARMv7

=
Loaded from the GPT Loaded from the GPT
partition called fsbll partition called fip
Stored in ROM or fsbi2
Loads
to SRAM
ROM and runs TF-A 2. Runs TF-A
code - w| Secure Monitor
Ll .. Ll
BL1 B2 BL31
Secure world 1. |_oad;x~
___________________________________________________________ ! °RAM$Runs
Loads to
Non-secure world RAM and
U-Boot runs i
|| 3 Linux
BL33 kernel

Note: booting with U-Boot SPL and U-Boot is also possible.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/532



% Allwinner ARMv8 cores

Stored in ROM

Secure world

ROM
code

BL1

Bundled in a
single image
with U-Boot,
typically stored
Loaded from fixed ﬁ:g: sFtAeTm
location in SD card Y
or eMMC
U-Boot SPL 2. Runs TF-A
> Ny
[ < r g
BL2 BL32
1. Loads *._

Non-secure world

Loads to
RAM and

U-Boot runs

Linux
—_ 3

kernel

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

123/532



TI AM62x (BeaglePlay): ARMv7 and ARMv8 cores

Cortex M4F

Cortex R5F

Cortex A53

Stored in ROM

Bundled in tiboot3.bin
located on the ‘boot' FAT partition

ROM Loads system firwmar
code (TIFS) to M4F core TIFS (Tl Fundational Security, closed source)
Offers *firewall" services between secure agents and DM firmware
BLL
Runs starts g 3
Requests o lstart] 1 j
the AS3 processol q v
Loads
RS ROM and U-Boot RS SPL
vode runs Runs DM firmware (Device Manager)
Serves secure and non-secure agents,
BLL BL2
R A
Calls services .
Calls services
y Runs|  OPTEE
Loads U (optional)
BL31 =R
Secure world
o _lkuns N
Normal world
Loads and Loads and
U-Boot AS3 SPL U-Boot
runs runs i
BL33 BL33 bl
Bundled in tispl.bin Bundled in u-boot.img with its DT

located on the ‘boot' FAT partition

See https://u-boot.readthedocs.io/en/latest/board/ti/am62x_sk.html for details.

located on the ‘boot' FAT partition

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

124/532


https://u-boot.readthedocs.io/en/latest/board/ti/am62x_sk.html

a Bootloaders and firmware
o)

o%e]

The U-boot bootloader

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com 15 /532



60 U-Boot

038!

U-Boot is a typical free software project
License: GPLv2 (same as Linux)
Freely available at https://www.denx.de/wiki/U-Boot

Documentation available at
https://u-boot.readthedocs.io/en/latest/

The latest development source code is available in a Git
repository: https://gitlab.denx.de/u-boot/u-boot

Development and discussions happen around an open
mailing-list
https://lists.denx.de/pipermail/u-boot/ l | B O Ot
Follows a regular release schedule. Every 2 or 3 months,

a new version is released. Versions are named YYYY.MM. Image source

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/532


https://www.denx.de/wiki/U-Boot
https://u-boot.readthedocs.io/en/latest/
https://gitlab.denx.de/u-boot/u-boot
https://lists.denx.de/pipermail/u-boot/
https://en.wikipedia.org/wiki/Das_U-Boot#/media/File:U-Boot_Logo.svg

ao Where to get U-Boot from?

o%e]

Ideal: your platform is supported directly by upstream U-Boot

Best quality — code reviewed and approved by the community
Long-term maintenance
Use directly U-Boot from https://gitlab.denx.de/u-boot/u-boot Git repository

Less ideal: use a fork of U-Boot by your silicon vendor, system-on-module vendor
or board vendor

Generally older, does not follow all upstream U-Boot updates

Changes not reviewed by the community — quality is often dubious

Check your HW vendor documentation/SDK
If designing your own custom board

You will have to port U-Boot

If good support for your SoC in upstream U-Boot — use upstream U-Boot

If not — use the U-Boot fork from your SoC vendor

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

127/532


https://gitlab.denx.de/u-boot/u-boot

a U-Boot configuration
o)

o%e]

Configuration system based on kconfig from the Linux kernel

The configs/ directory contains configuration files for supported boards or
platforms

There may be a single configuration supporting multiple boards based on the same
processor

The configuration files defines all relevant options: CPU type, drivers needed,
U-Boot features to compile in
Examples:

configs/stm32mp15_basic_defconfig
configs/stm32mp15_trusted_defconfig
Note: migration to kconfig is still on-going
Not all boards have been converted to the new configuration system.

Many boards still have a combination of configuration settings in include/configs/
header files, and configuration settings in defconfig files

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

128/532


https://elixir.bootlin.com/u-boot/latest/source/configs/
https://elixir.bootlin.com/u-boot/latest/source/configs/stm32mp15_basic_defconfig
https://elixir.bootlin.com/u-boot/latest/source/configs/stm32mp15_trusted_defconfig
https://elixir.bootlin.com/u-boot/latest/source/include/configs/

4@} U-Boot configuration file: stm32mp15_trusted_defconfig

CONFIG_ARM=y
CONFIG_ARCH_STM32MP=y
CONFIG_TFABOOT=y
CONFIG_SYS_MALLOC_F_LEN=0x3000
CONFIG_ENV_OFFSET=0x280000
CONFIG_ENV_SECT_SIZE=0x40000
CONFIG_DEFAULT_DEVICE_TREE="stm32mp157c-ev1”
[

CONFIG_CMD_ADTIMG=y
CONFIG_CMD_ERASEENV=y
CONFIG_CMD_NVEDIT_EFI=y
CONFIG_CMD_MEMINFO=y
CONFIG_CMD_MEMTEST=y
CONFIG_CMD_UNZIP=y
CONFIG_CMD_ADC=y
CONFIG_CMD_CLK=y
CONFIG_CMD_DFU=y
CONFIG_CMD_FUSE=y
CONFIG_CMD_GPIO=y

[...]

CONFIG_SPI=y

CONFIG_DM_SPI=y
CONFIG_STM32_QSPI=y
CONFIG_STM32_SPI=y

[...]

See the full file: configs/stm32mp15_trusted_defconfig

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/532


https://elixir.bootlin.com/u-boot/latest/source/configs/stm32mp15_trusted_defconfig

4@3 U-Boot configuration

» U-Boot must be configured before being
compiled

» Configuration stored in a .config file
> Load a pre-defined configuration
$ make BOARDNAME_defconfig

Where BOARDNAME is the name of a
configuration, as visible in the configs/
directory.

» You can then run make menuconfig to further
customize U-Boot's configuration.

U-Boot 2622.07 Configuration
i L AP 5 T, e S S === (a7 Gy e
nclude: udes

nodularizee festures.  Press <Escr<Eets o exit, <t for Help, </ for Search.
module capable

to

ARM architecture

Al i
P1

Boot ophons -
console

Logging --->

Init options --——>
Security support --->

Bt s
Library routines --->
Unit tests ----

Unit tests in SPL
Tools options --—>

<Exit>  <Help> < Swe> < Lload>

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

130/532


https://elixir.bootlin.com/u-boot/latest/source/configs/

4@3 U-Boot compilation

> The path to the cross-compiler must be specified in the CROSS_COMPILE variable
> CROSS_COMPILE contains the prefix common to all cross-compilation tools, e.g
arm-1linux-
> Common to add the cross-compiler location in PATH to keep the CROSS_COMPILE
value short
$ export PATH=/path/to/toolchain/bin:$PATH
$ make CROSS_COMPILE=arm-linux-
> The main result is a u-boot.bin file, which is the U-Boot image.
> Depending on your specific platform, or what storage device you're booting from

(NAND or MMC), there may be other specialized images: u-boot.img,
u-boot.kwb...

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/532



ao Concept of U-Boot SPL

o%e]

To meet the need of a two-stage boot process, U-Boot has the concept of U-Boot
SPL

SPL = Secondary Program Loader

The SPL is a stripped-down version of U-Boot, made small enough to meet the
size constraints of a first stage bootloader

Configured through menuconfig, one can define the subset of drivers to include
No U-Boot shell/commands: the behavior is hardcoded in C code

For some platforms: TPL, Tertiary Program Loader, an even more minimal first
stage bootloader to do TPL — SPL — main U-Boot.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 132/532



a Device Tree in U-Boot
o)

o%e]

The Device Tree is a data structure that describes the topology of the hardware

Allows software to know which hardware peripherals are available and how they
are connected to the system

Initially mainly used by Linux, now also used by U-Boot, Barebox, TF-A, etc.
Used by U-Boot on most platforms.

Since v2024.07 the Device Tree files location depends on CONFIG_OF _UPSTREAM:

dts/upstream/src/ARCH/VENDOR when CONFIG_OF_UPSTREAM is set
arch/ARCH/dts otherwise

One .dts for each board: need to create one if you build a custom board

U-Boot defconfigs usually specify a default Device Tree, but it can be overridden
using the DEVICE_TREE variable

More details on the Device Tree later in this course.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/532



4@} U-Boot build example: Tl AM335x BeagleBoneBlack wireless

> One defconfig file suitable for all AM335x platforms:
configs/am335x_evm_defconfig

® Yes its name looks like it supports only the EVM (EValuation Module) board
® Contains CONFIG_DEFAULT_DEVICE_TREE="am335x-evm" — uses
arch/arm/dts/am335x-evm.dts by default
» One Device Tree file describing the BeagleBoneBlack Wireless:
arch/arm/dts/am335x-boneblack-wireless.dts
> Configure and build U-Boot
$ export PATH=/path/to/toolchain/bin:$PATH
$ make am335x_evm_defconfig
$ make DEVICE_TREE=am335x-boneblack-wireless CROSS_COMPILE=arm-linux-
> Produces:

® MLO, the SPL, first-stage bootloader. Called MLO (Mmc LOad) as required on Tl
platforms.
® u-boot.img, full U-Boot, second-stage bootloader

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

134/532


https://elixir.bootlin.com/u-boot/latest/source/configs/am335x_evm_defconfig
https://elixir.bootlin.com/u-boot/latest/source/arch/arm/dts/am335x-evm.dts
https://elixir.bootlin.com/u-boot/latest/source/arch/arm/dts/am335x-boneblack-wireless.dts

Installing U-Boot
9o

o%e]

If U-Boot is loaded from external storage, just update the binaries on such storage.

If U-Boot is loaded from internal storage (eMMC or NAND), you can update it
using Snagboot (https://github.com/bootlin/snaghoot) if it supports your
SoC, or with the custom solution from the SoC vendor.

An alternative is to reflash internal storage with JTAG (if available), but that's
more complicated and requires a JTAG probe.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/532


https://github.com/bootlin/snagboot

ao U-boot shell prompt

Jo3e!

Connect the target to the host
through a serial console.
Power-up the board. On the serial
console, you should see U-Boot
starting up.

The U-Boot shell offers a set of
commands.

The U-Boot shell is not a Linux shell:

commands are completely different
from Linux ones.

U-Boot SPL 2022.01 (Mar 31 2022 - 14:58:17 +0200)
Trying to boot from MMC1

U-Boot 2022.01 (Mar 31 2022 - 14:58:17 +0200)

CPU : AM335X-GP rev 2.1

Model: TI AM335x BeagleBone Black

DRAM: 512 MiB

WDT: Started wdt@44e35000 with servicing (60s timeout)
NAND: @ MiB

MMC: OMAP SD/MMC: @, OMAP SD/MMC: 1

Loading Environment from FAT... OK

Net: Could not get PHY for ethernet@4a100000: addr @
eth2: ethernet@4a100000, eth3: usb_ether [PRIME]

Hit any key to stop autoboot: @

=

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

136/532



4@3 U-Boot help command

» help command to list all available
commands
» The set of available commands
depend on the U-Boot configuration
® Many CONFIG_CMD_* options to
enable commands at compile time
® See Command line interface
submenu in menuconfig
> help <command> for the complete
help of one command

STM3
?
adc
adti
base
I
usb
Cos
STM3
usb

Usag
ush
ush
ush
usb
usb

[

2MP> help
- alias for 'help’
- ADC sub-system
mg - manipulate dtb/dtbo Android image

o]

o]

- print or set address offset
- USB sub-system
2MP> help usb

- USB sub-system

e:

start - start (scan) USB controller
reset - reset (rescan) USB controller
stop [f] - stop USB [f]=force stop

tree - show USB device tree

info [dev] - show available USB devices

o

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

137/532



4@3 U-Boot information commands

Version details: version
Board information: bdinfo

=> version
U-Boot 2020.04 (May 26 2020 - 16:05:43 +0200) => bdinfo
arm-linux-gcc (crosstool-NG 1.24.0.105_5659366) 9.2.0 boot_params = 0x00000000
GNU 1d (crosstool-NG 1.24.0.105_5659366) 2.34 DRAM bank = 0x00000000
-> start = 0xc0000000
-> size = 0x20000000
NAND flash information: nand info flashstart = 0x00000000
flashsize = 0x00000000
=> nand info flashoffset = 0x00000000
Device @: nand@, sector size 128 KiB baudrate = 115200 bps
Page size 2048 b relocaddr = 0xddb21000
00B size 64 b reloc off = 0x1da21000
Erase size 131072 b [Loood
subpagesize 2048 b fdt_blob = 0xdbb01950
options 0x40004200 new_fdt = 0xdbb01950
bbt options 0x00008000 fdt_size = 0x0001d540
Video = display-controller@5a001000@ inactive
[...]
MMC information: mmc info
= e A > DRAM starts at 0xc0000000, for a size of 512 MB
Device: STM32 SD/MMC (0x20000000).
Manufacturer ID: 3
[...] > The end of the memory is used by U-Boot itself:
Capacity: 14.8 GiB relocaddr is the location of U-Boot in RAM.

Bus Width: 4-bit

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/532



ao Concept of U-Boot environment
o0

o%e]

A significant part of the U-Boot configuration happens at compile time:
menuconfig

U-Boot also has runtime configuration, through the concept of environment
variables
Environment variables are key/value pairs

Some specific environment variables impact the behavior of different U-Boot
commands

Additional custom environment variables can be added, and used in scripts
U-Boot environment variables are loaded and modified in RAM
U-Boot has a default environment built into its binary

used when no other environment is found
defined in the configuration
the default environment is sometimes quite complex in some existing configurations

The environment can be persistently stored in non-volatile storage

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/532



60 U-Boot environment persistent storage
o0

o%e]

Depending on the configuration, the
U-Boot environment can be: — Environment
At a fixed offset in NAND flash [ 1 Emviromment in Eveon "
[*] Environment is in a FAT filesystem
At a fixed offset on MMC or USB

] Environment is in a EXT4 filesystem
Environment in flash memory

storage, before the beginning of the

first partition.

.config - U-Boot 2620.07 Configuration

)
1 Environment in an MMC device
1 Environment in a NAND device
] Environment in a non-volatile RAM
1 Environment is in OneNAND
1 Environment is in remote memory space
] Environment in a UBI volume
. ag . (mmc) Name of the block device for the environment
In a f||e on a FAT or ext4 part|t|on (0) Device and partition for where to store the environemt in FAT
(uboot.env) Name of the FAT file to use for the environment
(6x4000) Environment Size
In a UBI volume [*] Relocate gd->env_addr
[ ] Create default environment from file
[ 1 Add run-time information to the environment

Not Stored at a”, Only the bu||t_|n [ 1 Block forced environment operations
environment in the U-Boot binary is
used

U-Boot environment configuration menu

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/532



4@} U-Boot environment commands
q

| 2

>

printenv
Shows all variables

printenv <variable-name>

Shows the value of a variable

setenv <variable-name> <variable-value>

Changes the value of a variable or defines a new one, only in RAM

editenv <variable-name>
Interactively edits the value of a variable, only in RAM

After an editenv or setenv, changes in the environment are lost if they are not
saved persistently

saveenv

Saves the current state of the environment to storage for persistence.

env command, with many sub-commands: env default, env info, env erase,
env set, env save, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

141/532



Q} U-Boot environment commands example
A

=> printenv
baudrate=19200
ethaddr=00:40:95:36:35:33
netmask=255.255.255.0
ipaddr=10.0.0.11
serverip=10.0.0.1
stdin=serial
stdout=serial
stderr=serial

=> setenv serverip 10.0.0.100
=> printenv serverip
serverip=10.0.0.100

=> saveenv

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/532



a U-Boot memory allocation
o)

o%e]

Many commands in U-Boot loading data into memory, or using data from
memory, expect a RAM address as argument

No built-in memory allocation mechanism — up to the user to know usable
memory areas to load/use data

Use the output of bdinfo to know the start address and size of RAM

Avoid the end of the RAM, which is used by the U-Boot code and dynamic
memory allocations

Not the best part of the U-Boot design, sadly

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/532



ao U-Boot memory manipulation commands
o0

o%e]

Commands to inspect or modify any memory location, useful for debugging,
poking into hardware registers, etc.

Addresses manipulated in U-Boot are directly physical addresses
Memory display
md [.b, .w, .1, .q] address [# of objects]

Memory write

mw [.b, .w, .1, .ql] address value [count]

Memory modify (modify memory contents interactively starting from address)
mm [.b, .w, .1, .q] address

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/532



4@3 U-Boot raw storage commands

U-Boot can manipulate raw storage devices:

» NAND flash
® nand info
® nand read <addr> <off|partition> > USB storage
<size> ® usb info
® nand erase [<off> [<size>]] ® usb read <addr> <blk#>
® nand write <addr> <off|partition> <cnt>
<size> ® usb write <addr> <blk#>
® More: help nand <cnt>
» MMC ® usb part
® mmc info ° usb éev
® mmc read <addr> <blk#> <cnt> ® More: help usb
® mmc write <addr> <blk#> <cnt> Note: <addr> are addresses in
® mmc part to show partition table RAM where data is stored
® mmc dev to show/set current MMC device
[ J

More: help mmc

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/532



4% U-Boot commands example

List partitions on MMC

STM32MP> mmc part

Partition Map for MMC device @ -- Partition Type: EFI

Part Start LBA End LBA Name
Aierles Read block 0x22 from MMC to RAM 0xc0000000
Type GUID
Partition GUID STM32MP> mmc read c0000000 22 1

1 0x00000022 0x000001d3 "fsb11"

attrs:  0x0000000000000000 MMC read: dev # @, block # 34, count 1 ... 1 blocks read: OK
type: 0fc63daf-8483-4772-8e79-3d69d8477de4
type: linux
guid:  72c63477-c475-4cf7-988e-b763bce4604e Dump memory at 0xc00000000

2 0x000001d4 0x00000385 "fsbl2"
attrs: 0x0000000000000000
type: 0fc63daf-8483-4772-8e79-3d69d8477de4

STM32MP> md c0000000
C0000000: 324d5453

type:  linux Eggggglgf
id: 16db-de56-4ale-9b13-9b1 f .
guid 66d616db-de56-4ale-9b13-9bTa5abe360 C0000030:

3 0x00000386 0x00001385 "fip"
attrs: 0x0000000000000000
type: 0fc63daf-8483-4772-8e79-3d69d8477de4
type: linux
guid: 6251ecf7-d985-4d81-a396-7a6b6fab8b7c

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/532



4@3 U-Boot filesystem storage commands

> U-Boot has support for many filesystems
® The exact list of supported filesystems depends on the U-Boot configuration

> Per-filesystem commands
® FAT: fatinfo, fatls, fatsize, fatload, fatwrite
® ext2/3/4: ext2ls, ext4ls, ext2load, ext4load, ext4size, extdwrite
® Squashfs: sqfsls, sgfsload
> “New" generic commands, working for all filesystem types
® Load a file:
load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]1]
® List files: 1s <interface> [<dev[:part]> [directory]]
® Get the size of a file: size <interface> <dev[:part]> <filename>
(result stored in filesize environment variable)
® interface: mmc, usb
® dev: device number, 0 for first device, 1 for second device
® part: partition number

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/532



4@3 U-Boot filesystem command example

List files
STM32MP> 1s mmc 0:4
<DIR> 1024 .
<DIR> 1024 ..
<DIR> 12288 lost+found
<DIR> 2048 bin
<DIR> 1024 boot
<DIR> 1024 dev
<DIR> 1024 etc
[
STM32MP> 1s mmc 0:4 /etc
<DIR> 1024 .
<DIR> 1024 ..

209 asound.conf
<DIR> 1024 fonts

334 fstab

347 group
[...]

Load file

STM32MP>

load mmc ©:4 c0000000 /etc/fstab

334 bytes read in 143 ms (2 KiB/s)

Show file contents

STM32MP>

C0000000:
C0000010:
C0000020:
C0000030:
C0000040:

[...]

md c0000000

663c2023 20656c69 74737973 093e6d65
756f6d3c 7020746e 3c093e74 65707974
6f3c093e 6697470 093e736e 6d75643c
3c093e70 73736170 642f0a3e 7227665
09746f6f 6509092f 09327478 6e2c7772

# <file system>.
<mount pt>.<type
>.<options>.<dum
p>.<pass>./dev/r
oot./..ext2.rw,n

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

148/532



a U-Boot networking
o)

o%e]

Environment variables
ethaddr: MAC address
ipaddr: IP address of the board
serverip: IP address of the server for network related commands
Important commands
ping: ping a destination machine. Note: U-Boot is not an operating system with
multitasking/interrupts, so ping from another machine to U-Boot cannot work.
tftp: load a file using the TFTP protocol
dhcp: get an IP address using DHCP

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/532



(), TFTP

o%e]

Network transfer from the development workstation to U-Boot on the target takes
place through TFTP
Trivial File Transfer Protocol
Somewhat similar to FTP, but without authentication and over UDP
A TFTP server is needed on the development workstation
sudo apt install tftpd-hpa
All files in /srv/tftp are then visible through TFTP
A TFTP client is available in the tftp-hpa package, for testing
A TFTP client is integrated into U-Boot
Configure the ipaddr, serverip, and ethaddr environment variables
Use tftp <address> <filename> to load file contents to the specified RAM

address
Example: tftp 0x21000000 zImage

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/532



Q} Scripts in environment variables
A

> Environment variables can contain small scripts, to execute several commands and
test the results of commands.
® Useful to automate booting or upgrade processes
® Several commands can be chained using the ; operator
® Tests can be done using if command ; then ... ; else ... ; fi
® Scripts are executed using run <variable-name>
® You can reference other variables using ${variable-name}

> Examples
® setenv bootcmd 'tftp 0x21000000 zImage; tftp 0x22000000 dtb; bootz
0x21000000 - 0x22000000'
® setenv mmc-boot 'if fatload mmc @ 80000000 boot.ini; then source; else
if fatload mmc @ 80000000 zImage; then run mmc-do-boot; fi; fi'

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/532



ao U-Boot booting commands
o0

o%e]

Commands to boot a Linux kernel image
bootz — boot a compressed ARM32 zImage
booti — boot an uncompressed ARM64 or RISC-V Image
bootm — boot a kernel image with legacy U-Boot headers
zboot — boot a compressed x86 bzImage
bootz [addr [initrd[:size]] [fdt]]
addr: address of the kernel image in RAM
initrd: address of the initrd or initramfs, if any. Otherwise, must pass -
fdt: address of the Device Tree passed to the Linux kernel
Important environment variables

bootcmd: list of commands executed automatically by U-Boot after the count down
bootargs: Linux kernel command line

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/532



4@3 U-Boot booting example

Load kernel image and Device Tree

STM32MP> 1s mmc 0:4 /boot

<DIR> 1024 .

<DIR> 1024 ..
117969 stm32mp157c-dk2.dtb
7538376 zImage

STM32MP> load mmc 0:4 c2000000 /boot/zImage
7538376 bytes read in 463 ms (15.5 MiB/s)

STM32MP> load mmc 0:4 c4000000 /boot/stm32mp157c-dk2.dtb
117969 bytes read in 148 ms (778.3 KiB/s)

Set kernel command line and boot

STM32MP> setenv bootargs root=/dev/mmcblk@p4 rootwait

STM32MP> bootz c2000000 - c4000000
Kernel image @ 0xc2000000 [ 0x000000 - 0x7306c8 ]
## Flattened Device Tree blob at c4000000
Booting using the fdt blob at 0xc4000000
Loading Device Tree to cffe@000, end cffffcdo ... OK
[...]

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/532



FIT i
Q@ image

o%e]

U-Boot has a concept of FIT image

FIT = Flat Image Tree
Container format that allows to bundle multiple images into one
Multiple kernel images
Multiple Device Trees
Multiple initramfs
Any other image: FPGA bitstream, etc.
Typically useful for secure booting and to ensure binaries don't overlap in memory.
Interestingly, relies on the Device Tree Compiler
.its file describes the contents of the image
Device Tree Compiler compiles it into an .itb
U-Boot can load an .itb image and use its different elements

https://www. thegoodpenguin.co.uk/blog/u-boot-fit-image-overview/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/532


https://www.thegoodpenguin.co.uk/blog/u-boot-fit-image-overview/

ao Generic Distro boot (1)

Jo3e!

Each board/platform used to have its own U-Boot environment, with custom
variables/commands
Wish to standardize the behavior of bootloaders, including U-Boot
Generic Distro boot concept
If enabled, at boot time, U-Boot:
Can be asked to locate a bootable partition (part list command), as defined by
the bootable flag of the partition table
With the sysboot command, will look for a /extlinux/extlinux.conf or
/boot/extlinux/extlinux.conf file describing how to boot, and will offer a
prompt in the console to choose between available configurations.
Once a configuration is selected, will load and boot the corresponding kernel, device
tree and initramfs images.
Example bootcmd:
part list mmc @ -bootable bootpart; sysboot mmc @:${bootpart} any

https://u-boot.readthedocs.io/en/latest/develop/distro.html

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/532


https://u-boot.readthedocs.io/en/latest/develop/distro.html

4@,‘3 Generic Distro boot (2)

Several environment variables need to be set:

> kernel_addr_r: address in RAM to load
the kernel image

» ramdisk_addr_r: address in RAM to load
the initramfs image (if any)

> fdt_addr_r: address in RAM to load the
DTB (Flattened Device Tree)

> pxefile_addr_r: address in RAM to load
the configuration file (usually
extlinux.conf)

> bootfile: the path to the configuration
file, for example
/boot/extlinux/extlinux.conf

Example /boot/extlinux/extlinux.conf

label stm32mp157c-dk2-buildroot
kernel /boot/zImage
devicetree /boot/stm32mp157c-dk2.dtb
append root=/dev/mmcblkop4 rootwait

U-Boot boot log

Hit any key to stop autoboot: @

Boot over mmc@!

switch to partitions #0, OK

mmc@ is current device

Scanning mmc 0:4...

Found /boot/extlinux/extlinux.conf

Retrieving file: /boot/extlinux/extlinux.conf

131 bytes read in 143 ms (@ Bytes/s)

1: stm32mp157c-dk2-buildroot

Retrieving file: /boot/zImage

7538376 bytes read in 462 ms (15.6 MiB/s)

append: root=/dev/mmcblk@p4 rootwait

Retrieving file: /boot/stm32mp157c-dk2.dtb

117969 bytes read in 148 ms (778.3 KiB/s)

Kernel image @ 0xc2000000 [ 0x000000 - 0x7306c8 ]

## Flattened Device Tree blob at c4000000
Booting using the fdt blob at 0xc4000000
Loading Device Tree to cffe@@00, end cffffcdo ... OK

Starting kernel ...

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

156/532



a Bootloaders and firmware
o)

o%e]

TF-A: Trusted Firmware

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/532



4@} Concept of FIP

FIP = Firmware Image Package

Concept specific to TF-A

packaging format used by TF-A to package firmware images in a single binary
Typically used to bundle the BL33, i.e. the U-Boot bootloader that will be loaded
by TF-A.

https://trustedfirmware-
a.readthedocs.io/en/latest/getting_started/tools-build.html

> https://wiki.st.com/stm32mpu/wiki/How_to_configure_TF-A_FIP

vvyyy

v

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/532


https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/tools-build.html
https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/tools-build.html
https://wiki.st.com/stm32mpu/wiki/How_to_configure_TF-A_FIP

4@} Configuring TF-A

> TF-A does not use Kconfig for configuration
> All the configuration is based on variables passed on the make command line

> Most variables are documented at: https://trustedfirmware-
a.readthedocs.io/en/latest/getting_started/build-options.html

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/532


https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/build-options.html
https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/build-options.html

60 Configure TF-A: important variables

o%e]

CROSS_COMPILE, cross-compiler prefix

ARCH, CPU architecture: aarch32 or aarch64

ARM_ARCH_MAJOR, 7 for ARMv7, 8 for ARMv8

PLAT, SoC family, any directory name in plat that contains platform.mk

AARCH32_SP, the Secure Payload, specific to ARMv7. Either OP-TEE or the
built-in SP-MIN provided by TF-A
DTB_FILE_NAME, path to the Device Tree describing our board

BL33, path to the second stage bootloader, usually U-Boot, to include in the FIP
image
Specific to STM32MP1

BL33_CFG, path to the U-Boot Device Tree
STM32MP_SDMMC=1, enable support for SD card/eMMC in TF-A

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/532



% Building TF-A for STM32MP1

$ make CROSS_COMPILE=arm-linux- \
ARM_ARCH_MAJOR=7 \
ARCH=aarch32 \
PLAT=stm32mp1 \
AARCH32_SP=sp_min \
DTB_FILE_NAME=stm32mp157a-dk1.dtb \
BL33=/path/to/u-boot/u-boot-nodtb.bin \
BL33_CFG=/path/to/u-boot/u-boot.dtbh \
STM32MP_SDMMC=1 \
fip all

Build results in build/stm32mp1/release. Important files:
b tf-a-stm32mp157a-dk1.stm32, TF-A itself

> fip.bin, the FIP image, containing U-Boot and other elements

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/532



4% FIP image contents

fiptool info

$ ./tools/fiptool/fiptool info build/stm32mpl1/release/fip.bin

Secure Payload BL32 (Trusted 0S): offset=0x100, size=0x8AEC, cmdline="--tos-fw"
Non-Trusted Firmware BL33: offset=0x8BEC, size=0QxECE6C, cmdline="--nt-fw"
FW_CONFIG: offset=0xF5A58, size=0x226, cmdline="--fw-config"

HW_CONFIG: offset=0xF5C7E, size=0x16A98, cmdline="--hw-config"

TOS_FW_CONFIG: offset=0x10C716, size=0x3CF6, cmdline="--tos-fw-config"

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/532



STM32MP1 partition layout

SD card

Header specific
to STM32 ROM code

TF-A code

tf-a-stm32mp157a-dkl.stm32 Partition name: fsbl1

(BL2 and BL31)

Device Tree for

tf-a-stm32mp157a-dkl.stm32 Partition name: fsbl2

fip.bin
Partition name: fip

TF-A itself

L P fimware cont e

(FW_CONFIG)

Secure 0S
(BL32)

BL32 hardware desc

(TOS_HW_CONFIG)

U-Boot
(BL33)

U-Boot Device Tree
(HW_CONFIG)

I

Reminder: boot sequence with TF-A
on STM32MP1

Secure woris

Stored in RO

Loaded from the GPT

parcion called fbll
or fsbi2

Loaded from the GPT
parciion called fp

Rom
code

Loass

anaruns

2.huns

A
Secure Monitor

e

Non-secure world

[ s
¥ Loacs o
Fan and
Usoot s o
T kema

e

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

163/532



4@3 AM62x (BeaglePlay) partition layout

SD card

‘boot' FAT partition

Partition name: boot

FAT Filesystem

tiboot3.bin

tispl.bin

X509
Certificate
RS U-Boot SPL
(8L2)

Device Tree for
U-Boot SPL.

u-boot.img

FIT Header

RS DM Firmware

AS3TFA
(BL31)
OPTEE (optional)
(BL32)

A53 U-Boot SPL.
(BL33)

Device Tree for
A53 U-Boot SPL.

Reminder: boot sequence with TF-A

on AM62x

L ‘ w'.i‘:i‘:‘.::::;

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

164/532



ao Practical lab - U-Boot / TF-A

o%e]

Time to start the practical lab!
Communicate with the board using a serial
console

Configure, build and install the bootloader
stages:
TF-A and U-Boot on STM32MP1 and
Beagleplay
U-Boot SPL and U-Boot on BeagleBoneBlack
and QEMU

Learn U-Boot commands
Set up TFTP communication with the host

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/532



Linux kernel introduction

Linux kernel bOOtIl'n

introduction

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/532



4@3 Linux kernel in the system

User app B
Library A User app A
C library
Call to services Event notification,
information exposition
Linux kernel
Manage hardware Event notification
Hardware

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

167/532



a Linux kernel main roles
o)

o%e]

Manage all the hardware resources: CPU, memory, 1/0.

Provide a set of portable, architecture and hardware independent APIs to
allow user space applications and libraries to use the hardware resources.
Handle concurrent accesses and usage of hardware resources from different
applications.
Example: a single network interface is used by multiple user space applications
through various network connections. The kernel is responsible for “multiplexing’
the hardware resource.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/532



System calls
s

o%e]

The main interface between the kernel and user space is
the set of system calls
About 400 system calls that provide the main kernel
services
File and device operations, networking operations,
inter-process communication, process management,
memory mapping, timers, threads, synchronization
primitives, etc.
This system call interface is wrapped by the C library,
and user space applications usually never make a system
call directly but rather use the corresponding C library
function

Image credits (Wikipedia):
https://bit.1ly/2U2rdGB

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/532


https://bit.ly/2U2rdGB

a Pseudo filesystems
o)

o%e]

Linux makes system and kernel information available in user space through
pseudo filesystems, sometimes also called virtual filesystems

Pseudo filesystems allow applications to see directories and files that do not exist
on any real storage: they are created and updated on the fly by the kernel
The two most important pseudo filesystems are
proc, usually mounted on /proc:
Operating system related information (processes, memory management
parameters...)
sysfs, usually mounted on /sys:
Representation of the system as a tree of devices connected by buses. Information
gathered by the kernel frameworks managing these devices.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 170/532



a Linux kernel introduction
o)

g

Linux versioning scheme and development
process

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 171/532



a Linux versioning scheme
o)

o%e]

Until 2003, there was a new “stabilized” release branch of Linux every 2 or 3 years
(2.0, 2.2, 2.4). Development branches took 2-3 years to be merged (too slow!).
Since 2003, there is a new official release of Linux about every 10 weeks:

Versions 2.6 (Dec. 2003) to 2.6.39 (May 2011)

Versions 3.0 (Jul. 2011) to 3.19 (Feb. 2015)

Versions 4.0 (Apr. 2015) to 4.20 (Dec. 2018)

Versions 5.0 (Mar. 2019) to 5.19 (July 2022)

Version 6.0 was released in Oct. 2022.
Features are added to the kernel in a progressive way. Since 2003, kernel
developers have managed to do so without having to introduce a massively
incompatible development branch.

For each release, there are bugfix and security updates called stable releases:
6.0.1, 6.0.2, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 172/532



g

a Linux development model
o)

Using merge and bug fixing windows

2 weeks

6-10 weeks

<

> <

Merge window

Bug-fixing period

Development (master)

6.0

6.0 stable branch

6.1

branch (Linus Torvalds)
>

6.1 stable branch

6.1.1

6.0.1

>

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

173/532



o%e]

a@ Need for long term support (1)

Issue: bug and security fixes only released for most recent kernel versions.

Solution: the last release of each year is made an LTS (Long Term Support)
release, and is supposed to be supported (and receive bug and security fixes) for

at least 2 years.

Longterm release kernels

Version Maintainer Released Projected EOL
6.12 Greg Kroah-Hartman & Sasha Levin 2024-11-17 Dec, 2026
6.6 Greg Kroah-Hartman & Sasha Levin 2023-10-29 Dec, 2026
6.1 Greg Kroah-Hartman & Sasha Levin 2022-12-1 Dec, 2027
5.15 Greg Kroah-Hartman & Sasha Levin 2021-10-31 Dec, 2026
5.10 Greg Kroah-Hartman & Sasha Levin 2020-12-13 Dec, 2026
5.4 Greg Kroah-Hartman & Sasha Levin 2019-11-24 Dec, 2025

Captured on https://kernel.org in Nov.
2023, following the Releases link.

Example at Google: starting from Android O (2017), all new Android devices have
to run such an LTS kernel.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

174/532


https://kernel.org
https://www.kernel.org/category/releases.html

a@ Need for long term support (2)

o%e]

You could also get long term support from a commercial embedded Linux
provider.

Wind River Linux can be supported for up to 15 years.

Ubuntu Core can be supported for up to 10 years.
"If you are not using a supported distribution kernel, or a stable / longterm kernel,
you have an insecure kernel” - Greg KH, 2019
Some vulnerabilities are fixed in stable without ever getting a CVE.

The Civil Infrastructure Platform project is an industry / Linux Foundation effort
to support much longer (at least 10 years) selected LTS versions (currently 4.4,
4.19, 5.10 and 6.1) on selected architectures. See
https://wiki.linuxfoundation.org/civilinfrastructureplatform/start.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/532


https://wiki.linuxfoundation.org/civilinfrastructureplatform/start

a Linux kernel introduction
o)

g

Linux kernel sources

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 176/532



60 Location of official kernel sources
o0

o%e]

The mainline versions of the Linux kernel, as released by Torvalds

These versions follow the development model of the kernel (master branch)

They may not contain the latest developments from a specific area yet

A good pick for products development phase

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
The stable versions of the Linux kernel, as maintained by a maintainers group

These versions do not bring new features compared to Linus’ tree

Only bug fixes and security fixes are pulled there

Each version is stabilized during the development period of the next mainline kernel

Certain versions can be maintained for much longer, 2+ years

A good pick for products commercialization phase

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 177/532


https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

a@ Location of non-official kernel sources
o0

Many chip vendors supply their own kernel sources
Focusing on hardware support first
Can have a very important delta with mainline Linux
Sometimes they break support for other platforms/devices without caring
Useful in early phases only when mainline hasn't caught up yet (many vendors invest
in the mainline kernel at the same time)
Suitable for PoC, not suitable for products on the long term as usually no updates
are provided to these kernels
Getting stuck with a deprecated system with broken software that cannot be
updated has a real cost in the end
Many kernel sub-communities maintain their own kernel, with usually newer but
fewer stable features, only for cutting-edge development
Architecture communities (ARM, MIPS, PowerPC, etc)
Device drivers communities (12C, SPI, USB, PCl, network, etc)
Other communities (real-time, etc)
Not suitable to be used in products

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 178/532



a Getting Linux sources
o)

o%e]

The kernel sources are available from https://kernel.org/pub/linux/kernel
as full tarballs (complete kernel sources) and patches (differences between two
kernel versions).

But today the entire open source community has settled in favor of Git

Fast, efficient with huge code bases, reliable, open source
Incidentally written by Torvalds

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 179/532


https://kernel.org/pub/linux/kernel

4@3 Going through Linux sources

» Development tools: > Powerful web browsing: Elixir
® Any text editor will work ® Generic source indexing tool and code browser
® Vim and Emacs support for C and C++.
ctags and cscope and ® Very easy to find symbols
therefore can help with declaration /implementation /usage

symbol lookup and
auto-completion.

® |t's also possible to use
more elaborate IDEs to o
develop kernel code, like selection : bootlin

(U-Boot,

Visual Studio Code. Linux,

BusyBox...)

Try out https://elixir.bootlin.com!

Documentation
Uicenises. Identifier
search

Source
drivers browsing

All versions
available

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/532


https://elixir.bootlin.com

a Linux kernel size and structure
o)

Jo3e!

Linux v5.18 sources: close to 80k files, 35M lines, 1.3GiB

But a compressed Linux kernel just sizes a few megabytes.

So, why are these sources so big?

Because they include numerous device drivers, network protocols, architectures,
filesystems... The core is pretty small!

As of kernel version v5.18 (in percentage of total number of lines):

drivers/: 61.1% include/: 3.5% scripts/, security/, crypto/,
block/, samples/, ipc/, virt/,

. 0, : .
arch/: 11.6% go‘lc(;mentatlon/. init/, certs/: <0.5%
. 0 . 0
fs/: 4.4% kernel/: 1.3% Build system files: Kbuild,
sound/: 4.1% n e Kconfig, Makefile
5 . 0,
tools/: 3.9% Lib/: 0.7% Other files: COPYING, CREDITS,
net/: 3.7% usr/: 0.6% MAINTAINERS, README
. . 0

mm/: 0.5%

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 181/532



https://elixir.bootlin.com/linux/latest/source/drivers/
https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/fs/
https://elixir.bootlin.com/linux/latest/source/sound/
https://elixir.bootlin.com/linux/latest/source/tools/
https://elixir.bootlin.com/linux/latest/source/net/
https://elixir.bootlin.com/linux/latest/source/include/
https://elixir.bootlin.com/linux/latest/source/Documentation/
https://elixir.bootlin.com/linux/latest/source/kernel/
https://elixir.bootlin.com/linux/latest/source/lib/
https://elixir.bootlin.com/linux/latest/source/usr/
https://elixir.bootlin.com/linux/latest/source/mm/
https://elixir.bootlin.com/linux/latest/source/scripts/
https://elixir.bootlin.com/linux/latest/source/security/
https://elixir.bootlin.com/linux/latest/source/crypto/
https://elixir.bootlin.com/linux/latest/source/block/
https://elixir.bootlin.com/linux/latest/source/samples/
https://elixir.bootlin.com/linux/latest/source/ipc/
https://elixir.bootlin.com/linux/latest/source/virt/
https://elixir.bootlin.com/linux/latest/source/init/
https://elixir.bootlin.com/linux/latest/source/certs/
https://elixir.bootlin.com/linux/latest/source/Kbuild
https://elixir.bootlin.com/linux/latest/source/Kconfig
https://elixir.bootlin.com/linux/latest/source/Makefile
https://elixir.bootlin.com/linux/latest/source/COPYING
https://elixir.bootlin.com/linux/latest/source/CREDITS
https://elixir.bootlin.com/linux/latest/source/MAINTAINERS
https://elixir.bootlin.com/linux/latest/source/README

a@ Practical lab - Fetching Linux kernel sources
o0

o%e]

Clone the mainline Linux tree

Accessing stable releases

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 182/532



a Linux kernel introduction
o)

g

Kernel configuration

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/532



a Kernel configuration
o)

o%e]

The kernel contains thousands of device drivers, filesystem drivers, network
protocols and other configurable items

Thousands of options are available, that are used to selectively compile parts of
the kernel source code

The kernel configuration is the process of defining the set of options with which
you want your kernel to be compiled
The set of options depends

On the target architecture and on your hardware (for device drivers, etc.)
On the capabilities you would like to give to your kernel (network capabilities,
filesystems, real-time, etc.). Such generic options are available in all architectures.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/532



a@ Kernel configuration and build system
o0

o%e]

The kernel configuration and build system is based on multiple Makefiles

One only interacts with the main Makefile, present at the top directory of the
kernel source tree
Interaction takes place
using the make tool, which parses the Makefile
through various targets, defining which action should be done (configuration,
compilation, installation, etc.).
Run make help to see all available targets.
Example
cd linux/
make <target>

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/532


https://elixir.bootlin.com/linux/latest/source/Makefile

a@ Specifying the target architecture

o%e]

First, specify the architecture for the kernel to build

Set ARCH to the name of a directory under arch/:
ARCH=arm or ARCH=arm64 or ARCH=riscyv, etc

By default, the kernel build system assumes that the kernel is configured and built
for the host architecture (x86 in our case, native kernel compiling)
The kernel build system will use this setting to:

Use the configuration options for the target architecture.
Compile the kernel with source code and headers for the target architecture.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/532


https://elixir.bootlin.com/linux/latest/source/arch/

a Choosing a compiler
o)

o%e]

The compiler invoked by the kernel Makefile is $(CROSS_COMPILE)gcc
Specifying the compiler is already needed at configuration time, as some kernel
configuration options depend on the capabilities of the compiler.
When compiling natively

Leave CROSS_COMPILE undefined and the kernel will be natively compiled for the host
architecture using gcc.

When using a cross-compiler

Specify the prefix of your cross-compiler executable, for example for
arm-linux-gnueabi-gcc:
CROSS_COMPILE=arm-1linux-gnueabi-

Set LLVM to 1 to compile your kernel with Clang.

See our LLVM tools for the Linux kernel presentation.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

187/532


https://bootlin.com/pub/conferences/2022/lee/opdenacker-llvm-tools-for-linux-kernel/opdenacker-llvm-tools-for-linux-kernel.pdf

ao Specifying ARCH and CROSS_COMPILE

Jo3e!

There are actually two ways of defining ARCH and CROSS_COMPILE:

Pass ARCH and CROSS_COMPILE on the make command line:

make ARCH=arm CROSS_COMPILE=arm-linux-

Drawback: it is easy to forget to pass these variables when you run any make
command, causing your build and configuration to be screwed up.

Define ARCH and CROSS_COMPILE as environment variables:

export ARCH=arm

export CROSS_COMPILE=arm-linux-

Drawback: it only works inside the current shell or terminal. You could put these
settings in a file that you source every time you start working on the project, see
also the https://direnv.net/ project.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/532


https://direnv.net/

a Initial configuration
o)

o%e]

Difficult to find which kernel configuration will work with your hardware and root
filesystem. Start with one that works!

Desktop or server case:
Advisable to start with the configuration of your running kernel:
cp /boot/config-‘uname -r* .config

Embedded platform case:
Default configurations stored in-tree as minimal configuration files (only listing
settings that are different with the defaults) in arch/<arch>/configs/
make help will list the available configurations for your platform
To load a default configuration file, just run make foo_defconfig (will erase your
current .config!)
On ARM 32-bit, there is usually one default configuration per CPU family
On ARM 64-bit, there is only one big default configuration to customize

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

189/532



ao Create your own default configuration
o0

Use a tool such as make menuconfig to make changes to the configuration

Saving your changes will overwrite your .config (not tracked by Git)
When happy with it, create your own default configuration file:
Create a minimal configuration (non-default settings) file:
make savedefconfig
Save this default configuration in the right directory:
mv defconfig arch/<arch>/configs/myown_defconfig
Add this file to Git.
This way, you can share a reference configuration inside the kernel sources and
other developers can now get the same .config as you by running
make myown_defconfig

When you use an embedded build system (Buildroot, OpenEmbedded) use its
specific commands. E.g. make linux-menuconfig and
make linux-update-defconfig in Buildroot.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 190/532



a Built-in or module?
o)

o%e]

The kernel image is a single file, resulting from the linking of all object files that
correspond to features enabled in the configuration
This is the file that gets loaded in memory by the bootloader
All built-in features are therefore available as soon as the kernel starts, at a time
where no filesystem exists

Some features (device drivers, filesystems, etc.) can however be compiled as
modules

These are plugins that can be loaded/unloaded dynamically to add/remove features
to the kernel

Each module is stored as a separate file in the filesystem, and therefore access
to a filesystem is mandatory to use modules

This is not possible in the early boot procedure of the kernel, because no filesystem
is available

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 191/532



a Kernel option types
b

There are different types of options, defined in Kconfig files:
bool options, they are either

true (to include the feature in the kernel) or
false (to exclude the feature from the kernel)

tristate options, they are either

true (to include the feature in the kernel image) or
module (to include the feature as a kernel module) or
false (to exclude the feature)

int options, to specify integer values

hex options, to specify hexadecimal values

Example: CONFIG_PAGE_OFFSET=0xC0000000

string options, to specify string values

Example: CONFIG_LOCALVERSION=-no-network

Useful to distinguish between two kernels built from different options

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/532


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PAGE_OFFSET
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LOCALVERSION

4@3 Kernel option dependencies

Enabling a network driver requires the network stack to be enabled, therefore
configuration symbols have two ways to express dependencies:

> depends on dependency: > select dependency:
config B config A

depends on A select B

® B is not visible until A is ® When A is enabled, B is enabled too (and
enabled cannot be disabled manually)

® Works well for dependency ® Should preferably not select symbols with
chains depends on dependencies

® Used to declare hardware features or select
libraries

config SPI_ATH79
tristate "Atheros AR71XX/AR724X/AR913X SPI controller driver”
depends on ATH79 || COMPILE_TEST
select SPI_BITBANG
help
This enables support for the SPI controller present on the
Atheros AR71XX/AR724X/AR913X SoCs.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

193/532



4@3 Kernel configuration details

» The configuration is stored in the .config file at
the root of kernel sources

® Simple text file, CONFIG_PARAM=value

¢ Options are grouped by sections and are prefixed
with CONFIG_

® "No" value is encoded as
# CONFIG_FOO is not set

® Included by the top-level kernel Makefile

® Typically not edited by hand because of the
dependencies

#

# CD-ROM/DVD Filesystems

#

CONFIG_IS09660_FS=m
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_UDF_FS=y

# end of CD-ROM/DVD Filesystems

#

# DOS/FAT/EXFAT/NT Filesystems
#

CONFIG_FAT_FS=y
CONFIG_MSDOS_FS=y

# CONFIG_VFAT_FS is not set
CONFIG_FAT_DEFAULT_CODEPAGE=437
# CONFIG_EXFAT_FS is not set

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

194/532



4@} xconfig

make xconfig

> A graphical interface to configure the
kernel.

> File browser: easy to load
configuration files

> Search interface to look for
parameters ([Ctrl] + [f])

» Required Debian/Ubuntu packages:
gtbase5-dev on Ubuntu 22.04

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 195/532



% menuconfig

make menuconfig

» Useful when no graphics are available.
Very efficient interface.

» Same interface found in other tools:
BusyBox, Buildroot...

» Convenient number shortcuts to jump
directly to search results.

» Required Debian/Ubuntu packages:
libncurses-dev

> Alternative: make nconfig
(now also has the number shortcuts)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 196/532



Kernel configuration options

You can switch from one tool to another, they all load/save the same .config file,
and show the same set of options

Compiled as a module:
CONFIG_IS09660_FS=m

Additional driver options:\ -21SO 9660 CDROM file system support <€—>» M SO 9660 CDROM file system support

CONFIG_JOLIET=y €= -sMicrosoft Joliet COROM extensions <€—» [*] Microsoft Joliet CDROM extensions
CONFIG_Z1SOFS=y €= | LaTransparent decompression extension €—» [*] Transparent decompression extension
L=UDF file system support <€—>» <*> UDF file system support
Statically built: /

CONFIG_UDF_FS=y

Values in resulting config file Parameter values as displayed by xconfig Parameter values as displayed by menuconfig

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/532



ke oldconfi
Qo make oldconfig

o%e]

make oldconfig
Useful to upgrade a .config file from an earlier kernel release
Asks for values for new parameters.

. unlike make menuconfig and make xconfig which silently set default values
for new parameters.

If you edit a .config file by hand, it's useful to run make oldconfig afterwards, to set
values to new parameters that could have appeared because of dependency changes.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/532



60 Undoing configuration changes

o%e]

A frequent problem:

After changing several kernel configuration settings, your kernel no longer works.

If you don't remember all the changes you made, you can get back to your
previous configuration:
$ cp .config.old .config

All the configuration tools keep this .config.old backup copy.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/532



a Linux kernel introduction
o)

o%e]

Compiling and installing the kernel

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



a Kernel compilation
b

Jo3e!

make
Only works from the top kernel source directory
Should not be performed as a privileged user

Run several jobs in parallel. Our advice: $(nproc) to
fully load the CPU and I/Os at all times.
Example: make -3j20

To recompile faster (7x according to some benchmarks),
use the ccache compiler cache:
export CROSS_COMPILE="ccache arm-linux-"

Benefits of parallel compile jobs (make -j<n>)

Tests on Linux 5.11 on arm
make allnoconiig configuration
anome-systen-monitor showing the load on 4 threads / 2 CPUS

5%
A
VaVavAl *
) s0%
< AASA )~
S A A S ACA ANV O, 25%

10

make
Command: make
Total time: 129's

ndke -38
Command: make -j8
Total time: 67 s

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

201/532



a Kernel compilation results
o)

Jo3e!

arch/<arch>/boot/Image, uncompressed kernel image that can be booted
arch/<arch>/boot/*Image*, compressed kernel images that can also be booted

bzImage for x86, zImage for ARM, Image.gz for RISC-V, vmlinux.bin.gz for ARC,
etc.

arch/<arch>/boot/dts/<vendor>/*.dtb, compiled Device Tree Blobs
All kernel modules, spread over the kernel source tree, as . ko (Kernel Object) files.

vmlinux, a raw uncompressed kernel image in the ELF format, useful for
debugging purposes but generally not used for booting purposes

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/532



a Kernel installation: native case
o)

o%e]

sudo make install
Does the installation for the host system by default
Installs
/boot/vmlinuz-<version>
Compressed kernel image. Same as the one in arch/<arch>/boot
/boot/System.map-<version>
Stores kernel symbol addresses for debugging purposes (obsolete: such information is
usually stored in the kernel itself)
/boot/config-<version>
Kernel configuration for this version

In GNU/Linux distributions, typically re-runs the bootloader configuration utility
to make the new kernel available at the next boot.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/532



60 Kernel installation: embedded case
o0

o%e]

make install is rarely used in embedded development, as the kernel image is a
single file, easy to handle.

Another reason is that there is no standard way to deploy and use the kernel
image.

Therefore making the kernel image available to the target is usually manual or
done through scripts in build systems.

It is however possible to customize the make install behavior in
arch/<arch>/boot/install.sh

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/532



a Module installation: native case
o)

Jo3e!

sudo make modules_install
Does the installation for the host system by default, so needs to be run as root
Installs all modules in /1ib/modules/<version>/
kernel/
Module .ko (Kernel Object) files, in the same directory structure as in the sources.
modules.alias, modules.alias.bin
Aliases for module loading utilities
modules.dep, modules.dep.bin
Module dependencies. Kernel modules can depend on other modules, based on the
symbols (functions and data structures) they use.
modules.symbols, modules.symbols.bin
Tells which module a given symbol belongs to (related to module dependencies).
modules.builtin
List of built-in modules of the kernel.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/532



ao Module installation: embedded case
o0

Jo3e!

In embedded development, you can't directly use make modules_install as it
would install target modules in /1ib/modules on the host!

The INSTALL_MOD_PATH variable is needed to generate the module related files
and install the modules in the target root filesystem instead of your host root

filesystem (no need to be root):
make INSTALL_MOD_PATH=<dir>/ modules_install

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/532



Kernel cleanup targets

» From make help:

Cleaning targets:

clean - Remove most generated files but keep the config and

enough build support to build external modules
mrproper - Remove all generated files + config + various backup files
distclean - mrproper + remove editor backup and patch files

> If you are in a git tree, remove all files not tracked (and ignored) by git:
git clean -fdx

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

207/532



Kernel building overview

Environment setup Kernel building
and configuration and deployment

Specify target architecture
(if different from host)

Kernel

_ Compile the kernel

export ARCH=arm > and the modules
Specify cross-compiler make

(if cross-compiling)

export CROSS_COMPILE=arm-linux-

Kernel
configuration

Install the kernel Install modules

Get reference configuration:
make soc_defconfig (ARM example) make install make modules install
or manual copy -
Customize configuration:

make menuconfig

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/532



a Linux kernel introduction
o)

o%e]

Booting the kernel

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/532



a Hardware description
o)

o%e]

Many embedded architectures have a lot of non-discoverable hardware (serial,
Ethernet, 12C, Nand flash, USB controllers...)
This hardware needs to be described and passed to the Linux kernel.
The bootloader/firmware is expected to provide this description when starting the
kernel:

On x86: using ACPI tables

On most embedded devices: using an OpenFirmware Device Tree (DT)
This way, a kernel supporting different SoCs knows which SoC and device
initialization hooks to run on the current board.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/532



ao Customize your board device tree!
o0

o%e]

Kernel developers write Device Tree Sources (DTS), which become Device Tree
Blobs (DTB) once compiled.

There is one different Device Tree for each board/platform supported by the
kernel, available in arch/<arch>/boot/dts/<vendor>/<board>.dtb
(arch/arm/boot/dts/<board>.dtb on ARM 32 before Linux 6.5).

As a board user, you may have legitimate needs to customize your board device
tree:
To describe external devices attached to non-discoverable busses and configure them.
To configure pin muxing: choosing what SoC signals are made available on the
board external connectors. See http://linux.tanzilli.com/ for a web service
doing this interactively.
To configure some system parameters: flash partitions, kernel command line (other
ways exist)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 211/532


http://linux.tanzilli.com/

60 Booting with U-Boot

o%e]

On ARM32, U-Boot can boot zImage (bootz command)
On ARM®64 or RISC-V, it boots the Image file (booti command)
In addition to the kernel image, U-Boot should also pass a DTB to the kernel.

The typical boot process is therefore:

Load zImage at address X in memory

Load <board>.dtb at address Y in memory
Start the kernel with boot[z|i] X - Y
The - in the middle indicates no initramfs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 212/532



a Kernel command line
o)

o%e]

In addition to the compile time configuration, the kernel behavior can be adjusted
with no recompilation using the kernel command line
The kernel command line is a string that defines various arguments to the kernel

It is very important for system configuration

root= for the root filesystem (covered later)

console= for the destination of kernel messages

Example: console=ttyS@ root=/dev/mmcblk@p2 rootwait
Many more exist. The most important ones are documented in
admin-guide/kernel-parameters in kernel documentation.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 213/532


https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

ao Passing the kernel command line
o0

Jo3e!

U-Boot carries the Linux kernel command line string in

See the "Understanding U-Boot Falcon

its bootargs environment variable Mode" presentation from Michael

) . i A Opdenacker, for details about how U-Boot
Right before starting the kernel, it will store the boots Linux.
contents of bootargs in the chosen section of the

{7 Booting from raw NAND - Resuls and notes

Device Tree

The kernel will behave differently depending on its
configuration:
If CONFIG_CMDLINE_FROM_BOOTLOADER is set:
The kernel will use only the string from the bootloader
If CONFIG_CMDLINE_FORCE is set:
The kernel will only use the string received at fj‘s:;1“i;tl‘;z:m/pub/mferences/2021/be/
configuration time in CONFIG_CMDLINE Video: https:
If CONFIG_CMDLINE_EXTEND is set: i youtibe confustehtL Fenagihse
The kernel will concatenate both strings

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 214/532


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_FROM_BOOTLOADER
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_FORCE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE_EXTEND
https://bootlin.com/pub/conferences/2021/lee/
https://bootlin.com/pub/conferences/2021/lee/
https://www.youtube.com/watch?v=LFe3x2QMhSo
https://www.youtube.com/watch?v=LFe3x2QMhSo

a Kernel log
b

o%e]

The kernel keeps its messages in a circular buffer in memory
The size is configurable using CONFIG_LOG_BUF_SHIFT

When a module is loaded, related information is available in the kernel log.

Kernel log messages are available through the dmesg command (diagnostic
message)

Kernel log messages are also displayed on the console pointed by the console=
kernel command line argument
Console messages can be filtered by level using the loglevel parameter
Example: console=ttyS0 loglevel=5
It is possible to write to the kernel log from user space:
echo "<n>Debug info"” > /dev/kmsg

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 215/532


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LOG_BUF_SHIFT

ao Practical lab - Kernel cross-compiling
o0

o%e]

Configuring the Linux kernel and
cross-compiling it for the embedded hardware
platform.

Downloading your kernel on the board through
U-boot's TFTP client.

Booting your kernel.

Automating the kernel boot process with
U-Boot scripts.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

216/532



Linux Root Filesystem

bootlin

Linux Root Filesystem

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/532



a Linux Root Filesystem
o)

o%e]

Principle and solutions

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 218/532



Filesystems
s

o%e]

Filesystems are used to organize data in directories and files on storage devices or
on the network. The directories and files are organized as a hierarchy

In UNIX systems, applications and users see a single global hierarchy of files and

directories, which can be composed of several filesystems.

Filesystems are mounted in a specific location in this hierarchy of directories
When a filesystem is mounted in a directory (called mount point), the contents of
this directory reflect the contents of this filesystem.

When the filesystem is unmounted, the mount point is empty again.

This allows applications to access files and directories easily, regardless of their

exact storage location

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 219/532



4@3 Filesystems (2)

> Create a mount point, which is just a directory
$ sudo mkdir /mnt/usbkey

> |t is empty
$ 1s /mnt/usbkey
$

> Mount a storage device in this mount point
$ sudo mount -t vfat /dev/sdal /mnt/usbkey
$

> You can access the contents of the USB key
$ 1s /mnt/usbkey

docs prog.c picture.png movie.avi
$

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 220/532



mount / umount
(% /

o%e]

mount allows to mount filesystems

mount -t type device mountpoint
type is the type of filesystem (optional for non-virtual filesystems)
device is the storage device, or network location to mount

mountpoint is the directory where files of the storage device or network location will
be accessible

mount with no arguments shows the currently mounted filesystems
umount allows to unmount filesystems

This is needed before rebooting, or before unplugging a USB key, because the Linux
kernel caches writes in memory to increase performance. umount makes sure that
these writes are committed to the storage.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 221/532



a Root filesystem
b

o%e]

A particular filesystem is mounted at the root of the hierarchy, identified by /
This filesystem is called the root filesystem
As mount and umount are programs, they are files inside a filesystem.

They are not accessible before mounting at least one filesystem.

As the root filesystem is the first mounted filesystem, it cannot be mounted with
the normal mount command

It is mounted directly by the kernel, according to the root= kernel option

When no root filesystem is available, the kernel panics:

Please append a correct "root=" boot option
Kernel panic - not syncing: VFS: Unable to mount root fs on unknown block(@,0)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 222/532



a@ Location of the root filesystem
o0

o%e]

It can be mounted from different locations
From the partition of a hard disk
From the partition of a USB key
From the partition of an SD card
From the partition of a NAND flash chip or similar type of storage device
From the network, using the NFS protocol
From memory, using a pre-loaded filesystem (by the bootloader)
etc.

It is up to the system designer to choose the configuration for the system, and
configure the kernel behavior with root=

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 223/532



60 Mounting rootfs from storage devices
o0

o%e]

Partitions of a hard disk or USB key
root=/dev/sdXY, where X is a letter indicating the device, and Y a number
indicating the partition

/dev/sdb? is the second partition of the second disk drive (either USB key or ATA
hard drive)

Partitions of an SD card

root=/dev/mmcblkXpY, where X is a number indicating the device and Y a number
indicating the partition
/dev/mmch1k@p2 is the second partition of the first device
Partitions of flash storage
root=/dev/mtdblockX, where X is the partition number

/dev/mtdblock3 is the fourth enumerated flash partition in the system (there could
be multiple flash chips)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

224/532



ao Mounting rootfs over the network (1)
o0

o%e]

Once networking works, your root filesystem could be a directory on your GNU /Linux
development host, exported by NFS (Network File System). This is very convenient for

system development:
Makes it very easy to update files on the root filesystem, without rebooting.
Can have a big root filesystem even if you don’t have support for internal or
external storage yet.

The root filesystem can be huge. You can even build native compiler tools and
build all the tools you need on the target itself (better to cross-compile though).

Host Target
Networking
NFS client
NFS o
server built into the kernel

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

225/532



4@} Mounting rootfs over the network (2)

On the development workstation side, a NFS server is needed

» Install an NFS server (example: Debian, Ubuntu)
sudo apt install nfs-kernel-server
> Add the exported directory to your /etc/exports file:
/home/tux/rootfs 192.168.1.111(rw,no_root_squash, no_subtree_check)
© 192.168.1.111 is the client IP address
® rw,no_root_squash,no_subtree_check are the NFS server options for this
directory export.
> Ask your NFS server to reload this file:
sudo exportfs -r

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 226/532



60 Mounting rootfs over the network (3)
o0

o%e]

On the target system

The kernel must be compiled with
CONFIG_NFS_FS=y (NFS client support)
CONFIG_ROOT_NFS=y (support for NFS as rootfs)
CONFIG_IP_PNP=y (configure IP at boot time)

The kernel must be booted with the following parameters:
root=/dev/nfs (we want rootfs over NFS)
ip=192.168.1.111 (target IP address)
nfsroot=192.168.1.110:/home/tux/rootfs/ (NFS server details)
You may need to add ", nfsvers=3, tcp” to the nfsroot setting, as an NFS version
2 client and UDP may be rejected by the NFS server in recent GNU/Linux
distributions.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 227/532


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_NFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_ROOT_NFS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_IP_PNP

_ﬁ@ Mounting rootfs over the network (4)

Host

NFS server

Networking

/home/tux/rootf's;
/home/tux/rootfs;
/home/tux/rootfs;
/home/tux/rootfs;

/home/tux/rootfs;
/home/tux/rootfs;
/home/tux/rootf's;

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 228/532



a@ Root filesystem in memory: initramfs
o0

o%e]

It is also possible to boot the system with a filesystem in memory: initramfs
Either from a compressed CPIO archive integrated into the kernel image
Or from such an archive loaded by the bootloader into memory

At boot time, this archive is extracted into the Linux file cache

It is useful for two cases:
Fast booting of very small root filesystems. As the filesystem is completely loaded at
boot time, application startup is very fast.
As an intermediate step before switching to a real root filesystem, located on devices
for which drivers are not part of the kernel image (storage drivers, filesystem drivers,
network drivers). This is always used on the kernel of desktop/server distributions to
keep the kernel image size reasonable.

Details (in kernel documentation):

filesystems/ramfs-rootfs-initramfs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 229/532


https://www.kernel.org/doc/html/latest/filesystems/ramfs-rootfs-initramfs.html

Q} External initramfs

> To create one, first create a compressed CPIO archive:

cd rootfs/
find . | cpio -H newc -o > ../initramfs.cpio
cd ..

gzip initramfs.cpio
> If you're using U-Boot, you'll need to include your archive in a U-Boot container:
mkimage -n 'Ramdisk Image' -A arm -0 linux -T ramdisk -C gzip \
-d initramfs.cpio.gz ulnitramfs
P> Then, in the bootloader, load the kernel binary, DTB and uInitramfs in RAM
and boot the kernel as follows:

bootz kernel-addr initramfs-addr dtb-addr

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 230/532



Built-in initramfs
o

o%e]

To have the kernel Makefile include an initramfs archive in the
kernel image: use the CONFIG_INITRAMFS_SOURCE option. p N

It can be the path to a directory containing the root
filesystem contents

Kernel code and data

It can be the path to a ready made cpio archive
It can be a text file describing the contents of the initramfs

See the kernel documentation for details:

Root filesystem stored

driver-api/early-userspace/early_userspace_support as a compressed cpio
archive
WARNING: only binaries from GPLv2 compatible code are M e

allowed to be included in the kernel binary using this technique.
Otherwise, use an external initramfs.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 231/532


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_INITRAMFS_SOURCE
https://www.kernel.org/doc/html/latest/driver-api/early-userspace/early_userspace_support.html

Linux Root Filesystem

Contents

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 232/532



a@ Root filesystem organization
o0

o%e]

The organization of a Linux root filesystem in terms of directories is well-defined
by the Filesystem Hierarchy Standard
https://refspecs.linuxfoundation.org/fhs.shtml

Most Linux systems conform to this specification

Applications expect this organization

It makes it easier for developers and users as the filesystem organization is similar in
all systems

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 233/532


https://refspecs.linuxfoundation.org/fhs.shtml

o%e]

/bin
/boot

/dev
/etc
/home
/lib
/media
/mnt
/proc

a Important directories (1)
bdh)

Basic programs

Kernel images, configurations and initramfs (only when the kernel is
loaded from a filesystem, not common on non-x86 architectures)

Device files (covered later)

System-wide configuration

Directory for the users home directories

Basic libraries

Mount points for removable media

Mount point for a temporarily mounted filesystem

Mount point for the proc virtual filesystem

DOOLIIN - Kernel, drivers and embedded Linux

- Development, consulting, training and support - https://bootlin. com

234/532



o%e]

/root
/run
/sbin
/sys
/tmp
/usr

/var

a Important directories (2)
bdh)

Home directory of the root user

Run-time variable data (previously /var/run)
Basic system programs

Mount point of the sysfs virtual filesystem
Temporary files

/usr/bin Non-basic programs
/usr/lib Non-basic libraries
/usr/sbin Non-basic system programs

Variable data files, for system services. This includes spool directories and
files, administrative and logging data, and transient and temporary files

DOOLIIN - Kernel, drivers and embedded Lin

ux - Development, consulting, training and support - https://boot1in. com

235/532



ao Separation of programs and libraries
o0

Jo3e!

Basic programs are installed in /bin and /sbin and basic libraries in /1ib

All other programs are installed in /usr/bin and /usr/sbhin and all other libraries in
/usr/1lib

In the past, on UNIX systems, /usr was very often mounted over the network, through
NFS

In order to allow the system to boot when the network was down, some binaries and
libraries are stored in /bin, /sbin and /1ib

/bin and /sbin contain programs like 1s, ip, cp, bash, etc.
/1ib contains the C library and sometimes a few other basic libraries
All other programs and libraries are in /usr

Update: distributions are now making /bin link to /usr/bin, /1ib to /usr/lib and
/sbin to /usr/sbin. Details on https://systemd.io/THE_CASE_FOR_THE_USR_MERGE/.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 236/532


https://systemd.io/THE_CASE_FOR_THE_USR_MERGE/

a Linux Root Filesystem
o)

o%e]

Pseudo Filesystems

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



a proc virtual filesystem
b

o%e]

The proc virtual filesystem exists since the beginning of Linux

It allows

The kernel to expose statistics about running processes in the system
The user to adjust at runtime various system parameters about process
management, memory management, etc.

The proc filesystem is used by many standard user space applications, and they
expect it to be mounted in /proc

Applications such as ps or top would not work without the proc filesystem

Command to mount proc:
mount -t proc nodev /proc

See filesystems/proc in kernel documentation or man proc

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 238/532


https://www.kernel.org/doc/html/latest/filesystems/proc.html

4@} proc contents

> One directory for each running process in the system

® /proc/<pid>
® cat /proc/3840/cmdline
® |t contains details about the files opened by the process, the CPU and memory

usage, etc.
> /proc/interrupts, /proc/iomem, /proc/cpuinfo contain general device-related
information
> /proc/cmdline contains the kernel command line
> /proc/sys contains many files that can be written to adjust kernel parameters

® They are called sysctl. See admin-guide/sysctl/ in kernel documentation.
® Example (free the page cache and slab objects):
echo 3 > /proc/sys/vm/drop_caches

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 239/532


https://www.kernel.org/doc/html/latest/admin-guide/sysctl/

fs filesyst
Q@ sysfs filesystem

Jo3e!

It allows to represent in user space the vision that the kernel has of the buses,
devices and drivers in the system

It is useful for various user space applications that need to list and query the
available hardware, for example udev or mdev (see later)

All applications using sysfs expect it to be mounted in the /sys directory

Command to mount /sys:

mount -t sysfs nodev /sys

$ 1s /sys/

block bus class dev devices firmware
fs kernel module power

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 240/532



a Linux Root Filesystem
o)

g

Minimal filesystem

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 241/532



a Basic applications
o)

In order to work, a Linux system needs at least a few applications

An init application, which is the first user space application started by the kernel after
mounting the root filesystem (see https://en.wikipedia.org/wiki/Init):
The kernel tries to run the command specified by the init= command line
parameter if available.
Otherwise, it tries to run /sbin/init, /etc/init, /bin/init and /bin/sh.
In the case of an initramfs, it will only look for /init. Another path can be supplied
by the rdinit= kernel argument.
If none of this works, the kernel panics and the boot process is stopped.
The init application is responsible for starting all other user space applications and
services, and for acting as a universal parent for processes whose parent terminate
before they do.
A shell, to implement scripts, automate tasks, and allow a user to interact with the system
Basic UNIX executables, for use in system scripts or in interactive shells: mv, cp, mkdir,
cat, modprobe, mount, ip, etc.

These basic components have to be integrated into the root filesystem to make it usable

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 242/532


https://en.wikipedia.org/wiki/Init

Overall booting process

Bootloader
Loads the DTB and kernel to RAM, starts the kernel

'

Kernel

Initializes hardware devices and kernel subsystems
Mounts the root filesystem indicated by root=
Starts the init application, /sbin/init by default

( \ 4
/sbin/init
Starts other user space services and applications

I
\ 7 L 4

Shell Other applications

Root filesystem

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

243/532



. Overall booting process with initramfs

Bootloader

Loads the initramfs archive to RAM (if separate)
Loads DTB + kernel to RAM, starts the kernel

v

Kernel
Initializes hardware devices and kernel subsystems
Extracts the initramfs archive to the file cache
Starts the /init executable if found
(otherwise falls back to mounting the device specified by root=)

s l N
/init

Starts early user space commands
(show splashscreen, start time critical application...)
Loads drivers needed to access the final root filesystem
Mounts the root filesystem and switches to it (switch_root)

L Intermediate root fil|esystem (initramfs) )
s \ 4 N
/sbin/init
Regular system startup
S Root filesystem )

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 244/532



BusyBox

bootlin

BusyBox

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 245/532



Why BusyBox?
Q@ y BusyBox

o%e]

A Linux system needs a basic set of programs to work
An init program
A shell
Various basic utilities for file manipulation and system configuration
In normal GNU/Linux systems, these programs are provided by different projects
coreutils, bash, grep, sed, tar, wget, modutils, etc. are all different projects
A lot of different components to integrate
Components not designed with embedded systems constraints in mind: they are not
very configurable and have a wide range of features

BusyBox is an alternative solution, extremely common on embedded systems

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 246/532



4@3 General purpose toolbox: BusyBox

https://www.busybox.net/
> Rewrite of many useful UNIX command line utilities

® Created in 1995 to implement a rescue and installer system
for Debian, fitting in a single floppy disk (1.44 MB)

® Integrated into a single project, which makes it easy to work
with

¢ Great for embedded systems: highly configurable, no
unnecessary features

¢ Called the Swiss Army Knife of Embedded Linux

> License: GNU GPLv2

> Alternative: Toybox, BSD licensed
(https://en.wikipedia.org/wiki/Toybox)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 247/532


https://www.busybox.net/
https://en.wikipedia.org/wiki/Toybox

a@ BusyBox in the root filesystem
OC

o%e]

All the utilities are compiled into a single
executable, /bin/busybox

Symbolic links to /bin/busybox are created for
each application integrated into BusyBox
For a fairly featureful configuration, less than 500
KB (statically compiled with uClibc) or less than 1
MB (statically compiled with glibc).

rootfs
— bin
ash -> busybox
busybox
cat -> busybox
1s -> busybox
mount -> busybox
sh -> busybox
— sbin
halt -> ../bin/busybox
ifconfig -> ../bin/busybox
init -> ../bin/busybox

L— usr
L— shin
L— httpd -> ../../bin/busybox

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

248/532



4% BusyBox - Most commands in one binary

[, [[, acpid, add-shell, addgroup, adduser, adjtimex, arch, arp, arping, ash, awk, base64, basename, bc, beep, blkdiscard, blkid,
blockdev, bootchartd, brctl, bunzip2, bzcat, bzip2, cal, cat, chat, chattr, chgrp, chmod, chown, chpasswd, chpst, chroot, chrt,
chvt, cksum, clear, cmp, comm, conspy, cp, cpio, crond, crontab, cryptpw, cttyhack, cut, date, dc, dd, deallocvt, delgroup,
deluser, depmod, devmem, df, dhcprelay, diff, dirname, dmesg, dnsd, dnsdomainname, dos2unix, dpkg, dpkg-deb, du, dumpkmap,
dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid, ether-wake, expand, expr, factor, fakeidentd, fallocate, false,
fatattr, fbset, fbsplash, fdflush, fdformat, fdisk, fgconsole, fgrep, find, findfs, flock, fold, free, freeramdisk, fsck,
fsck.minix, fsfreeze, fstrim, fsync, ftpd, ftpget, ftpput, fuser, getopt, getty, grep, groups, gunzip, gzip, halt, hd, hdparm,
head, hexdump, hexedit, hostid, hostname, httpd, hush, hwclock, i2cdetect, i2cdump, i2cget, i2cset, i2ctransfer, id, ifconfig,
ifdown, ifenslave, ifplugd, ifup, inetd, init, insmod, install, ionice, iostat, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, ipneigh,
iproute, iprule, iptunnel, kbd_mode, kill, killall, killall5, klogd, last, less, link, linux32, linux64, linuxrc, 1ln, loadfont,
loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr, 1ls, lsattr, lsmod, lsof, lspci, lsscsi, lsusb, lzcat, lzma,
1lzop, makedevs, makemime, man, md5sum, mdev, mesg, microcom, mim, mkdir, mkdosfs, mke2fs, mkfifo, mkfs.ext2, mkfs.minix, mkfs.vfat,
mknod, mkpasswd, mkswap, mktemp, modinfo, modprobe, more, mount, mountpoint, mpstat, mt, mv, nameif, nanddump, nandwrite,
nbd-client, nc, netstat, nice, nl, nmeter, nohup, nologin, nproc, nsenter, nslookup, ntpd, nuke, od, openvt, partprobe, passwd,
paste, patch, pgrep, pidof, ping, ping6, pipe_progress, pivot_root, pkill, pmap, popmaildir, poweroff, powertop, printenv, printf,
ps, pscan, pstree, pwd, pwdx, raidautorun, rdate, rdev, readahead, readlink, readprofile, realpath, reboot, reformime,
remove-shell, renice, reset, resize, resume, rev, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-init, run-parts, runlevel,
runsv, runsvdir, rx, script, scriptreplay, sed, sendmail, seq, setarch, setconsole, setfattr, setfont, setkeycodes, setlogcons,
setpriv, setserial, setsid, setuidgid, sh, shalsum, sha256sum, sha3sum, sha512sum, showkey, shred, shuf, slattach, sleep, smemcap,
softlimit, sort, split, ssl_client, start-stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svc, svlogd, svok, swapoff,
swapon, switch_root, sync, sysctl, syslogd, tac, tail, tar, taskset, tc, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time,
timeout, top, touch, tr, traceroute, traceroute6, true, truncate, ts, tty, ttysize, tunctl, ubiattach, ubidetach, ubimkvol,
ubirename, ubirmvol, ubirsvol, ubiupdatevol, udhcpc, udhcpc6, udhcpd, udpsvd, uevent, umount, uname, unexpand, unig, unix2dos,
unlink, unlzma, unshare, unxz, unzip, uptime, users, usleep, uudecode, uuencode, vconfig, vi, vlock, volname, w, wall, watch,
watchdog, wc, wget, which, who, whoami, whois, xargs, xxd, xz, xzcat, yes, zcat, zcip

Source: run /bin/busybox - July 2021 status

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 249/532



ao Configuring BusyBox

o%e]

Get the latest stable sources from https://busybox.net
Configure BusyBox (creates a .config file):

make defconfig

Good to begin with BusyBox.

Configures BusyBox with all options for regular users.

make allnoconfig

Unselects all options. Good to configure only what you need.

make menuconfig (text)

Same configuration interfaces as the ones used by the Linux kernel (though older
versions are used, causing make xconfig to be broken in recent distros).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 250/532


https://busybox.net

BusyBox make menuconfig

You can choose:

the commands to compile,

and even the command options and

features that you need!

Coreutils
<Enter> selects submenus --->. Highlighted
Pressing <Y> includes, <N> excludes, <M> modularizes

Arrow keys navigate the menu
letters are hotkeys
features.
[*] built-in [ ] excluded <M> module < > module capable

(-

Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend:

[ ] link (3.2 kb)
[*] 1n (4.9 kb)
[ 1 logname (1.1 kb)
IIIIIEI!!!III
Enable filetyping options (-p and -F)
Enable symlinks dereferencing (-L)
[*] Enable recursion (-R)
[*] Enable -w WIDTH and window size autodetection
[*] sort the file names
[*1 Show file timestamps
[*] Show username/groupnames
Allow use of color to identify file types
[*] md5sum (6.5 kb)
1(+)

< Exit > < Help >

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support -

https://bootlin. com

251/532



4@} Compiling BusyBox

> Set the cross-compiler prefix in the configuration interface:
Settings -> Build Options -> Cross Compiler prefix
Example: arm-1inux-

Set the installation directory in the configuration interface:
Settings -> Installation Options
-> Destination path for 'make install’
Add the cross-compiler path to the PATH environment variable:
export PATH=$HOME/x-tools/arm-unknown-linux-uclibcgnueabi/bin:$PATH
Compile BusyBox:
make

Install it (this creates a UNIX directory structure with symbolic links to the
busybox executable):
make install

DOOLIIN - Kernel, drivers an

d embedded Linux - Development, consulting, training and support - https://boot1in. com 252/532



ao Applet highlight: BusyBox init

o%e]

BusyBox provides an implementation of an init program
Simpler than the init implementation found on desktop/server systems (SysV init
or systemd)
A single configuration file: /etc/inittab

Each line has the form <id>::<action>:<process>
Allows to start system services at startup, to control system shutdown, and to
make sure that certain services are always running on the system.

See examples/inittab in BusyBox for details on the configuration

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 253/532


https://elixir.bootlin.com/busybox/latest/source/examples/inittab

Applet highlight: BusyBox vi

. . . [ 1 cmp (4.9 kb)

If you are using BusyBox, adding vi support () a3 ko)
[ ] ed (21 kb)
[ ] patch (9.4 kb)

only adds about 20K [ fed oo
(1 i (23 kb)]
(4096) Maximum screen width

1 H * All to d 1 8-b: h h i h d

You can select which exact features to compile (2 Allow to display 8-bit chars (otherwise shows dots)
[*] Enable yank/put commands and mark cmds

in [*] Enable search and replace cnds

. [1 Enable regex in search and replace

[*] catch signals
[*] Remember previous cmd and "." cmd

Users hardly realize that they are using a [4] Enable R option ond "view mode

[*] Enable settable options, ai ic showmatch
[*]  Support :set

lightweight vi version! {1 Rohate window resize

[ 1 Use 'tell me cursor position' ESC sequence to measure window
[*]  Support undo command "u

Tip: you can learn vi on the desktop, by (336) Haxinim.indo: charactor auee size
[1 Allow vi and awk to execute shell commands
running the vimtutor command.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 254/532



a@ Practical lab - Tiny root filesystem built from scratch with BusyBox

o%e]

Setting up a kernel to boot your system on a
workstation directory exported by NFS

Passing kernel command line parameters to
boot on NFS

Creating the full root filesystem from scratch.
Populating it with BusyBox based utilities.

System startup using BusyBox init
Using the BusyBox HTTP server.

Controlling the target from a web browser on
the PC host.

Setting up shared libraries on the target and
compiling a sample executable.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 255/532



Accessing hardware devices

Accessing hardware bOOtIl'n

devices

© Copyright 2004-2026, Bootlin. embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 256/532



a Accessing hardware devices
o)

o%e]

Kernel drivers

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 257/532



a@ Typical software stack for hardware access
o0

o%e]

From the bottom to the top:

A bus controller driver in the kernel drives an
[12C, SPI, USB, PCI controller

A bus subsystem provides an API for drivers to
access a particular type of bus: 12C, SPI, PCI,

Application

USB, etc. y

—_— Kernel/userspace interface
A device driver in the kernel drives a particular
device connected to a given bus Driver subsystem

\7

A driver subsystem exposes features of certain Device drver
class of devices, through a standard v
kernel /user-space interface

Bus subsystem
An application can access the device through v
Bus controller

this standard kernel/user-space interface either e
directly or through a library.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

258/532



4@3 Stack illustrated with a GPIO expander

Application

GPIO lines
libgpiod [
+- == 3 PCA9537
Userspace |
—_— /dev/gpiochipXYZ H
Kernel H A
'
H 12C bus
GPIO subsystem '
H
10-0a053x  keeemmna- controls__| 1 _ 3 12C Cortex-A7
gplo-p ' controller x2
H
12C subsystem .
'
H
i2c-stm32f7 = meeeme--- .C‘_)'JE'P.IS._ ot STM32MP1 SoC
Software stack Hardware layout

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 259/532



ao Standardized user-space interface
o0

o%e]

Strong advantage of kernel drivers: they expose a standard kernel to user-space
interface

All devices of the same class (e.g GPIO controllers) will expose the same kernel to
user-space interface

Applications don't have to know the details of the GPIO controller, they just need
to know the standard user-space interface valid for all GPIO controllers
Applications can use existing open-source libraries that leverage this standard
user-space interface

Such kernel drivers can also be used internally inside the kernel, for example if one
driver needs to control a GPIO directly (reset signal, interrupt signal, etc.)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 260/532



Networking stack for Ethernet, WiFi,
CAN, 802.15.4, etc.

GPIO

Video4Linux for camera, video
encoders/decoders

DRM for display controllers, GPU
ALSA for audio

10 for ADC, DAC, gyroscopes,
sensors, and more

MTD for flash memory
PWM

a@ Numerous kernel subsystems for device classes
o0

Input for keyboard, mouse,
touchscreen, joystick

Watchdog

RTC for real-time clocks
remoteproc for auxiliary processors
crypto for cryptographic accelerators

hwmon for hardware monitoring
sensors

block layer for block storage

and many more

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

261/532



60 Accessing devices directly from user-space
o0

o%e]

Even though device drivers in the kernel are preferred, it is also possible to access
devices directly from user-space

Especially useful for very specific devices that do not fit in any existing kernel
subsystems
The kernel provides the following mechanisms, depending on the bus:

12C: i2c-dev

SPI: spidev

Memory-mapped: UIO

USB: /dev/bus/usb, through libusb

PCI: sysfs entries for PCl

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 262/532


https://docs.kernel.org/i2c/dev-interface.html
https://docs.kernel.org/spi/spidev.html
https://docs.kernel.org/driver-api/uio-howto.html
https://libusb.info/
https://docs.kernel.org/PCI/sysfs-pci.html

4@} Accessing devices directly from user-space: GPIO example

----------------- --
GPIO lines
‘---»f PcA9537
This diagram shows what'’s — Tdevii2e-0 Userspace
Kernel
not recommended to do — e b
us
for a GPIO controller, a
kernel driver is preferred controts | e | lcortexar
H controller X2
12C subsystem E
i2c-stm32f7 L ommmmeen S | I STM32MP1 SoC
Software stack Hardware layout

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 263/532



ao What can go wrong with a user-space driver?
o0

o%e]

You write your GPIO driver in user-space: other kernel drivers cannot use GPIOs
from this GPIO controller
Other devices that use GPIO signals from this controller for reset, interrupt, etc.
cannot control/configure those signals
Your application is less portable: it will take many changes to support another type
of GPIO controller.

You write your touchscreen driver in user-space: the standard Linux graphics stack
components cannot use your touchscreen
You write your network driver in user-space

You can probably send/receive packets
But you cannot leverage the Linux kernel networking stack for IP, TCP, UDP, etc.
And none of the Linux networking applications can use your network device

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 264/532



ao Upstream drivers vs. out-of-tree drivers
o0

o%e]

The upstream Linux kernel contains thousands of drivers
This is the best place to look for drivers

Drivers have been reviewed and approved by the community
They comply with standard interfaces

Vendor kernels often include additional drivers, directly in the kernel tree
Device vendors sometimes also provide out of tree drivers
Their source code is provided separately from the Linux kernel tree
Quality is often dubious
Compatibility issues when updating to newer kernel releases
Not always use standard user-space interfaces

Example: https://github.com/lwfinger/rtl18723ds
Avoid them when possible!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 265/532


https://github.com/lwfinger/rtl8723ds

ao Finding Linux kernel drivers

o%e]

grep in the Linux kernel tree is your best friend

For 12C, SPI and memory-mapped devices, matching of the driver is done based on
the device name — grep for variants of the device name and vendor
For USB, PCl, matching is done either on the vendor ID/product ID, or the class —
grep for these
Driver file names are sometimes named in a “generic” way, not necessarily
reflecting all devices they support.

Example: drivers/gpio/gpio-pcad53x.c supports much more than just PCA953x.
See the full list of devices supported by this driver

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

266/532


https://elixir.bootlin.com/linux/latest/source/drivers/gpio/gpio-pca953x.c
https://elixir.bootlin.com/linux/v5.19/source/drivers/gpio/gpio-pca953x.c#L1221

Q} Finding Linux kernel drivers: an example

» You have a Maxim Integrated MAX7313 GPIO expander on 12C
> Search in the Linux kernel

git grep -i max7313

drivers/gpio/gpio-pca9d53x.c: { "max7313", 16 | PCA953X_TYPE | PCA_INT, },
drivers/gpio/gpio-pca953x.c: { .compatible = "maxim,max7313", .data = OF_953X(16, PCA_INT), },

P drivers/gpio/gpio-pca953x.c seems to support it

> Read drivers/gpio/Makefile to learn which kernel configuration option enables
this driver

drivers/gpio/Makefile

obj-$(CONFIG_GPIO_PCA953X) += gpio-pca953x.o

> Conclusion: you need to enable CONFIG_GPIO_PCA953X in your kernel configuration

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 267/532


https://www.maximintegrated.com/en/products/interface/controllers-expanders/MAX7313.html
https://elixir.bootlin.com/linux/latest/source/drivers/gpio/gpio-pca953x.c
https://elixir.bootlin.com/linux/latest/source/drivers/gpio/Makefile
https://elixir.bootlin.com/linux/latest/source/drivers/gpio/Makefile
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_GPIO_PCA953X

a Accessing hardware devices
o)

o%e]

User-space interfaces to drivers

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 268/532



ao User-space interfaces for hardware devices
o0

o%e]

For a high-level perspective: three main interfaces to access hardware devices exposed
by the Linux kernel

Device nodes in /dev
Entries in the sysfs filesystem

Network sockets and related APlIs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 269/532



a@ Devices in /dev/

o%e]

One of the kernel important roles is to allow applications to access hardware
devices

In the Linux kernel, most devices are presented to user space applications through
two different abstractions

Character device
Block device

Internally, the kernel identifies each device by a triplet of information

Type (character or block)

Major (typically the category of device)

Minor (typically the identifier of the device)
See Documentation/admin-guide/devices. txt for the official list of reserved
type/major/minor numbers.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 270/532


https://elixir.bootlin.com/linux/latest/source/Documentation/admin-guide/devices.txt

a Block vs. character devices
o)

o%e]

Block devices
A device composed of fixed-sized blocks, that can be read and written to store data
Used for hard disks, USB keys, SD cards, etc.

Character devices
Originally, an infinite stream of bytes, with no beginning, no end, no size. The pure
example: a serial port.

Used for serial ports, terminals, but also sound cards, video acquisition devices,
frame buffers

Most of the devices that are not block devices are represented as character devices
by the Linux kernel

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 271/532



a Devices: everything is a file
o)

o%e]

A very important UNIX design decision was to represent most system objects as
files

It allows applications to manipulate all system objects with the normal file API
(open, read, write, close, etc.)

So, devices had to be represented as files to the applications
This is done through a special artifact called a device file

It is a special type of file, that associates a file name visible to user space
applications to the triplet (type, major, minor) that the kernel understands

All device files are by convention stored in the /dev directory

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 272/532



4@3 Device files examples
A

Example of device files in a Linux system

$ 1s -1 /dev/ttyS@ /dev/ttyl

brw-rw---- 1
brw-rw---- 1
brw-rw----1
brw-rw----1
Crw-—-=---- 1
crw-rw---- 1

crw-rw-rw- 1

root
root
root
root
root
root
root

disk
disk
disk
disk
root
dialout
root

/dev/sda /dev/sdal /dev/sda2 /dev/sdc1 /dev/zero

0
1
2
32
1
64
5

2011-05-27
2011-05-27
2011-05-27
2011-05-27
2011-05-27
2011-05-27
2011-05-27

08:
08:
08:
08:
08:
08:
08:

56
56
56
56
57
56
56

/dev/sda
/dev/sdal
/dev/sda2
/dev/sdc
/dev/ttyl
/dev/ttySe
/dev/zero

Example C code that uses the usual file APl to write data to a serial port

int fd,;

fd = open("”/dev/ttyS@", O_RDWR);

write(fd, "Hello"”, 5);

close(fd);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

273/532



a Creating device files
b

o%e]

Before Linux 2.6.32, on basic Linux systems, the device files had to be created
manually using the mknod command
mknod /dev/<device> [c|b] major minor
Needs root privileges
Coherency between device files and devices handled by the kernel was left to the
system developer
The devtmpf's virtual filesystem can be mounted on /dev — the kernel
automatically creates/removes device files
CONFIG_DEVTMPFS_MOUNT — asks the kernel to mount devimpfs automatically at
boot time (except when booting on an initramfs).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 274/532


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT

60 Better handling of device files: udev and mdev

o%e]

devtmpfs is great, but its capabilities are limited, so complementary solutions exist
udev

daemon that receives events from the kernel about devices appearing/disappearing
can create/remove device files (but that's done by devtmpfs now), adjust
permission /ownership, load kernel modules automatically, create symbolic links to
devices

according to rules files in /1ib/udev/rules.d and /etc/udev/rules.d

used in almost all desktop Linux distributions
https://en.wikipedia.org/wiki/Udev

mdev

lightweight implementation of udev, part of Busybox
https://wiki.gentoo.org/wiki/Mdev

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 275/532


https://en.wikipedia.org/wiki/Udev
https://wiki.gentoo.org/wiki/Mdev

4@3 Examples of user-space interfaces in /dev

Serial-ports: /dev/ttyS*, /dev/ttyUSBx*, /dev/ttyACMx, etc.
GPIO controllers (modern interface): /dev/gpiochipX

Block storage devices: /dev/sdx*, /dev/mmchlkx*, /dev/nvmex
Flash storage devices: /dev/mtdx

Display controllers and GPUs: /dev/dri/*

Audio devices: /dev/snd/*

Camera devices: /dev/videox

Watchdog devices: /dev/watchdogx

Input devices: /dev/input/*

VVvVvyVvVYVVyVYVYYVYY

and many more...

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 276/532



fs filesyst
Q@ sysfs filesystem

o%e]

block/, symlinks to all block devices, in /sys/devices
bus/, one sub-folder by type of bus

class/, one sub-folder per class (category of devices): input, leds, pwm, etc.
dev/

block/, one symlink per block device, named after major/minor
char/, one symlink per character device, named after major/minor

devices/, all devices in the system, organized in a slightly chaotic way, see this
article
firmware/, representation of firmware data

devicetree/, directory and file representation of Device Tree nodes and properties

fs/, properties related to filesystem drivers

kernel/, properties related to various kernel subsystems
module/, properties about kernel modules

power/, power-management related properties

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 277/532


https://lwn.net/Articles/646617/
https://lwn.net/Articles/646617/

sysfs filesystem example

=
> /sys/bus/i2c/drivers: all device drivers for devices connected on 12C busses
[...]
edt_ft5x06
stpmicl
ool
b /sys/bus/i2c/devices: all devices in the system connected to 12C busses
0-002a —> ../../../devices/platform/soc/40012000.i2c/i2c-0/0-002a
0-0039 -> ../../../devices/platform/soc/40012000.i2c/i2c-0/0-0039
0-004a —> ../../../devices/platform/soc/40012000.i2c/i2c-0/0-004a
1-0028 -> ../../../devices/platform/soc/5c002000.i2c/i2c-1/1-0028
1-0033 -> ../../../devices/platform/soc/5c002000.i2c/i2c-1/1-0033

i2c-0 -> ../../../devices/platform/soc/40012000.i2c/i2c-0
i2c-1 -> ../../../devices/platform/soc/5c002000.i2c/i2c-1
i2c-2 -> ../../../devices/platform/soc/40012000.i2c/i2c-0/i2c-2

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 278/532



sysfs filesystem example

=

/sys/bus/i2c/devices/0-002a/

Lrwxrwxrwx driver -> ../../../../../../bus/i2c/drivers/edt_ft5x06

-rw-r--r-- gain

drwxr-xr-x input

s (s Ta ) modalias

“r=-r--r-- name

Lrwxrwxrwx of_node -> ../../../../../../firmware/devicetree/base/soc/i2c@40012000/touchscreen@2a
[T T T offset

-rw-r--r-- offset_x

-rw-r--r-- offset_y

drwxr-xr-x power

S TWa T Ty report_rate

Lrwxrwxrwx subsystem -> ../../../../../../bus/i2c
S WaTR ey threshold

VR ey uevent

> driver, symlink to the driver directory in /sys/bus/i2c/drivers

> of_node, symlink to the directory for the Device Tree node describing this device

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 279/532



ao Example of driver interfaces in sysfs
o0

Jo3e!

All devices are visible in sysfs, whether they have an interface in /dev or not
Usually /dev is to access the device
/sys is more about properties of the devices
However, some devices only have a sysfs interface
LED: /sys/class/leds, see documentation
PWM: /sys/class/pwm, see documentation

10: /sys/bus/iio, see documentation
etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 280/532


https://docs.kernel.org/leds/leds-class.html
https://docs.kernel.org/driver-api/pwm.html#using-pwms-with-the-sysfs-interface
https://docs.kernel.org/driver-api/iio/index.html

A i Pl
Q@ ccessing GPIOs

o%e]

A class of devices worth mentioning is GPIOs (General Purpose Input Output)

The GPIOs can be accessed through a legacy interface in /sys/class/gpios
You will find many instructions on the Internet about how to drive GPIOs through

this interface.
However, this interface is deprecated and has multiple shortcomings:

GPIOs remain exported if the process using them crashes
Need to compute the GPIO numbers, such numbers are not stable
A new interface recommended: libgpiod
Based on /dev/gpiochipx character devices
Implementing advanced features not possible with the legacy interface

Of course, this is a C library
But it also provides command line utilities: gpiodetect, gpioset, gpioget...
The only constraint is to cross-compile them for your target (the legacy interface

could be used without any additional software).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 281/532


https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/

4@3 Other virtual filesystems

> debugfs

¢ Conventionally mounted in /sys/kernel/debug
® Contains lots of debug information from the kernel, including device related
® /sys/kernel/debug/pinctrl for pin-mux debugging, /sys/kernel/debug/gpio for
GPIO debugging, /sys/kernel/debug/pwm for PWM debugging, etc.
® https://www.kernel.org/doc/html/latest/filesystems/debugfs.html
> configfs
¢ Conventionally mounted in /sys/kernel/config
Allows to manage configuration of advanced kernel mechanisms
Example: configuration of USB gadget functionalities
Documentation/filesystems/configfs.rst

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 282/532


https://www.kernel.org/doc/html/latest/filesystems/debugfs.html
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/configfs.rst

a Accessing hardware devices
o)

g

Using kernel modules

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



a@ Why kernel modules?

o%e]

Primary reason: keep the kernel image minimal, and
load drivers on-demand depending on the hardware
detected

Needed to create a generic kernel configuration that

works on many platforms

Used by all desktop/server Linux distributions

But also useful for
Driver development: allows to modify, build and test a
driver without rebooting
Boot time reduction: allows to defer the initialization of
a driver after user-space has started critical applications

Using kernel modules to support
many different devices and setups

Kernel

Intermediate root filesystem (initramfs)

No special driver required to access it
Contains all the modules to access the specific
storage and filesystem of the device
Load such modules
and mount the new root filesystem
Switch to the new root filesystem (switch_root)

|

Final root filesystem

Regular system startup

The modules in the initramfs are updated every time
a kernel upgrade is available.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

284/532



ao Module installation and metadata
o0

Jo3e!

As discussed earlier, modules are installed in /1ib/modules/<kernel-version>/

Compiled kernel modules are stored in .ko (Kernel Object) files
Metadata files:

modules.dep

modules.alias

modules.symbols
modules.builtin

Each file has a corresponding .bin version, which is an optimized version of the
corresponding text file

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 285/532



ao Module dependencies: modules.dep

Jo3e!

Some kernel modules can depend on other modules, based on the symbols
(functions and data structures) that they use.
Example: the ubifs module depends on the ubi and mtd modules.

mtd and ubi need to be loaded before ubifs
These dependencies are described both in
/1lib/modules/<kernel-version>/modules.dep and in
/lib/modules/<kernel-version>/modules.dep.bin

Will be used by module loading tools.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 286/532



Module alias: modules.alias

Kernel compiling

static const struct usb_device_id  products [] = {
{

The device driver
source code lists
which devices

J/ Linksys USB200M
USB_DEVICE (0x077b, 0x2226),
driver_info = (unsigned long) &ax8817x_info,

it supports

J/ Netgear FA120

USB_DEVICE (0x0846, 0x1040),

driver_info = (unsigned long) &netgear_fa120_info,
h

i /I END
b
MODULE_DEVICE_TABLE(usb, products);
drivers/net/usb/asix_devices.c

Module file
make modules
asix.ko

Containing the list of supported devices
(module metadata)

alias usb:v077Bp2226d*dc*dscrdpFictiscHiptin® asix
e mesiEs sl alias usb:v0846p1040d*dcrdsc dp¥ictiscriptin® asix
(depmod) B
modules.alias

A new
USB device
is plugged-in

udev has a rule
for when MODALIAS
is set

is loaded

—

Thanks to
aliases, the
asix module

System operation

The USB controller
driver reads
USB device attributes:
vendor id, product id, etc

The USB bus driver sends a MODALIAS string
encoding these attributes to the udev process
MODALIAS =usb:v077bp2226d0001dcFFdscFFdpO0icFFiscFFp00in00

“7%, RUN{builtin}

ENV{MODALIAS} kmod load $env{MODALIAS}"

/lib/udev/rules.d/80-drivers.rules

kmod I0ad usb:v077bp2226d0001dcFFdscFFdpOIcFFisCFFip00in00

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

287/532



4@3 Module utilities: modinfo

> modinfo <module_name>, for modules in /1ib/modules
» modinfo /path/to/module.ko

# modinfo usb_storage

filename: /1ib/modules/5.18.13-200.fc36.x86_64/kernel/drivers/usb/storage/usb-storage.ko.xz
license: GPL

description: USB Mass Storage driver for Linux

author: Matthew Dharm <mdharm-usb@one-eyed-alien.net>

alias: usb: vxp*dxdcxdscxdp*ic@8isc06ip50ink

alias: usb: vxpxd*dcxdscxdpxic@8isc@5ip50in*

alias: usb: vxpxd*dcxdscxdpxic@8isc@4ip50in*

[Cocodl

intree: Y

name: usb_storage

[Coood

parm: option_zero_cd:ZeroCD mode (1=Force Modem (default), 2=Allow CD-Rom (uint)

parm: swi_tru_install:TRU-Install mode (1=Full Logic (def), 2=Force CD-Rom, 3=Force Modem) (uint)
parm: delay_use:seconds to delay before using a new device (uint)

parm: quirks:supplemental list of device IDs and their quirks (string)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 288/532



a Module utilities: Ismod
o)

Jo3e!

Lists currently loaded kernel modules

Includes
The reference count: incremented when the module is used by another module or by
a user-space process, prevents from unloading modules that are in-use
Dependant modules: modules that depend on us

Information retrieved through /proc/modules

$ lsmod

Module Size Used by

tun 61440 2

tls 118784 ©

rfcomm 90112 4
snd_seq_dummy 16384 0
snd_hrtimer 16384 1

wireguard 94208 ©
curve25519_x86_64 36864 1 wireguard

libcurve25519_generic 49152 2 curve25519_x86_64,wireguard
ip6_udp_tunnel 16384 1 wireguard

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 289/532



Q} Module utilities: insmod and rmmod

> Basic tools to:

® Joad a module: insmod
® unload a module: rmmod

> Basic because:

® Need a full path to the module .ko file
® Do not handle module dependencies

# insmod /lib/modules/‘uname -r‘/kernel/fs/fuse/cuse.ko.xz
# rmmod cuse

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 290/532



4@} Module utilities: modprobe

» modprobe is the more advanced tool for loading/unloading modules

> Takes just a module name as argument: modprobe <module-name>

> Takes care of dependencies automatically, using the modules.dep file

> Supports removing modules using modprobe -r, including its no longer used
dependencies

# modinfo fat_test | grep depends

depends: kunit,fat
# lsmod | grep -E "“(kunit|fat|fat_test)”
fat 86016 1 vfat

# modprobe fat_test
# lsmod | grep -E "*(kunit|fat|fat_test)”

fat_test 24576 0
kunit 36864 1 fat_test
fat 86016 2 fat_test,vfat

# sudo modprobe -r fat_test
# lsmod | grep -E "*(kunit|fat|fat_test)”
fat 86016 1 vfat

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 291/532



4@} Passing parameters to modules

» Some modules have parameters to adjust their behavior

Mostly for debugging/tweaking, as parameters are global to the module, not per-device
managed by the module

» Through insmod or modprobe
insmod ./usb-storage.ko delay_use=0
modprobe usb-storage delay_use=0

> modprobe supports configuration files: /etc/modprobe.conf or in any file in
/etc/modprobe.d/:
options usb-storage delay_use=0

» Through the kernel command line, when the module is built statically into the kernel:
usb-storage.delay_use=0

® ush-storage is the module name

® delay_use is the module parameter name. It specifies a delay before accessing a
USB storage device (useful for rotating devices).

® 0 is the module parameter value

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 292/532



Modules i f:
Qo odules in sysfs

Jo3e!

All modules are visible in sysfs, under /sys/module/<name>
Lots of information available about each module

For example, the /sys/module/<name>/parameters directory contains one file
per module parameter

Can read the current value of module parameters
Some of them can even be changed at runtime (determined by the module code)

Example:
echo @ > /sys/module/usb_storage/parameters/delay_use

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 293/532



a Accessing hardware devices
o)

o%e]

Describing non-discoverable hardware: Device
Tree

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com



a@ Describing non-discoverable hardware
o0

o%e]

Directly in the Using compiled data structures, typically in C
0S/bootloader How it was done on most embedded platforms in Linux,
code U-Boot.

Considered not maintainable/sustainable on ARM32,
which motivated the move to another solution.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/532



a@ Describing non-discoverable hardware
o0

o%e]

On x86 systems, but also on a subset of ARM64
platforms

Using ACPI tables Tables provided by the firmware

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/532



a@ Describing non-discoverable hardware
o0

o%e]

Originates from OpenFirmware, defined by Sun, used
on SPARC and PowerPC

That's why many Linux/U-Boot functions related to
DT have a of _ prefix

Now used by most embedded-oriented CPU
architectures that run Linux: ARC, ARM®64, RISC-V,
ARM32, PowerPC, Xtensa, MIPS, etc.

Using a Device Tree Writing /tweaking a DT is necessary when porting Linux
to a new board, or when connecting additional
peripherals

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/532



a@ Device Tree: from source to blob
o0

o%e]

A tree data structure describing the hardware is written

by a developer in a Device Tree Source file, .dts Device Tree Source
Processed by the Device Tree Compiler, dtc .dts
Produces a more efficient representation: Device Tree I

Blob, .dtb

Additional C preprocessor pass Device Tree Compiler
.dtb — accurately describes the hardware platform in dtc

an OS-agnostic way. +
.dtb &~ few dozens of kilobytes

DTB also called FDT, Flattened Device Tree, once Device Tree Blob
loaded into memory. dtb

fdt command in U-Boot
fdt_ APls

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/532



4@3 dtc example

$ cat foo.dts
/dts-v1/;

/{
welcome = <QxBADCAFE>;
bootlin {
webinar = "great”;
demo = <1>, <2>, <3>;

B3

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 207/532



4@3 dtc example

$ cat foo.dts
/dts-v1/;

/{
welcome = <QxBADCAFE>;
bootlin {
webinar = "great”;
demo = <1>, <2>, <3>;

B3

$ dtc -I dts -0 dtb -o foo.dtb foo.dts

$ 1s -1 foo.dtx

-rw-r--r-- 1 thomas thomas 169 ... foo.dtb
-rw-r--r-- 1 thomas thomas 102 ... foo.dts

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

297/532



4@3 dtc example

$ cat foo.dts
/dts-v1/;

/{
welcome = <QxBADCAFE>;
bootlin {
webinar = "great”;
demo = <1>, <2>, <3>;

B3

$ dtc -I dts -0 dtb -o foo.dtb foo.dts

$ 1s -1 foo.dtx

-rw-r--r-- 1 thomas thomas 169 ... foo.dtb
-rw-r--r-- 1 thomas thomas 102 ... foo.dts

$ dtc -I dtb -0 dts foo.dtb
/dts-v1/;

/ {
welcome = <@xbadcafe>;
bootlin {
webinar = "great";
demo = <0x0@1 0x02 0x03>;
i
33

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

297/532



a@ Device Tree: using the blob

o%e]

RAM
Can be linked directly inside a bootloader
binary
For example: U-Boot, Barebox
Can be passed to the operating system by the Kernel
bootloader Cofe
Most common mechanism for the Linux kernel data
U-Boot:
boot[z,i,m] <kernel-addr> - <dtb-addr> <kernel-addr>  ——
The bootloader can adjust the DTB before DB
passing it to the kernel <dtb-addr> ——F

The DTB parsing can be done using 1libfdt,
or ad-hoc code

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/532



a@ Where are Device Tree Sources located?
o0

o%e]

Even though they are OS-agnostic, no central and OS-neutral place to host
Device Tree sources and share them between projects

Often discussed, never done
In practice, the Linux kernel sources can be considered as the canonical location
for Device Tree Source files

arch/<ARCH>/boot/dts/<vendor>/

arch/arm/boot/dts (on ARM 32 architecture before Linux 6.5)

~ 4500 Device Tree Source files (.dts and .dtsi) in Linux as of 6.0.
Duplicated/synced in various projects

U-Boot, Barebox, TF-A

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/532



a Device Tree base syntax
o)

o%e]

Node name
Tree of nodes Unit address
Property name
. . /4
Nodes with properties DASEN v T
a-string-property = "A string";
roperties of node@o | a-string-list- = "t ing", “second string;
Node = a device or IP block P o | e property » [0x01 axz3 0x34 Gxse;
. . o child-nodeeo { T_
Properties =~ device characteristics e S B

a-reference-to-something = <&nodel>;

}
child-node@l {

Notion of phandle to point to other ““‘Tl”
nodes nodel: nodeel {

an-empty-property;
a-cell-property = <1 2 3 4>;

dtc only does syntax checking, no e
i Four cells (32 bits values)

semantic validation b
};

Notion of cells in property values

A phandle,
(reference to another node)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 300/532



4@3 DT overall structure: simplified example

System-on-chip

CPU cores
/{ Cortex A7 Cortex A7

#address-cells = <1>;

#size-cells = <1>;

model = "STMicroelectronics STM32MP157C-DK2 Discovery Board"”;

compatible = "st,stm32mp157c-dk2", "st,stm32mp157"; GIC

IRQ controller

cpus { ... };

memory@ { ... };

chosen { ... };

intc: interrupt-controller@a@021000 { ... };

Soc { ) ST ST DDR
i2c1: 12c@40012000 { ... }; Ethernet MAC = 12C controller controller
ethernet®: ethernet@5800a000 { ... };

, Y | | |

' I I I

CS42L51
Ethernet . DDR
audio
PHY memory
codec
bootlin- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

301/532



Q} DT overall structure: simplified example

/1
cpus {
#address-cells = <1>;
#size-cells = <@>;
cpu@: cpu@e {
compatible = "arm,cortex-a7";
clock-frequency = <650000000>;
device_type = "cpu”;
reg = <0>;
b
cpul: cpu@l {
compatible = "arm,cortex-a7";
clock-frequency = <650000000>;
device_type = "cpu"”;
reg = <1>;
};
3
memory@o { ... };
chosen { ... };
intc: interrupt-controller@a0021000 { ... };
soc {
i2c1: 12c@40012000 { ... };
ethernet@: ethernet@5800a000 { ... };
b
)

System-on-chip

CPU cores

Cortex A7 Cortex A7

GIC
IRQ controller

ST ST DDR
Ethernet MAC 12C controller controller
| | |
Ethernet CS42|.'51 DDR
audio
PHY memory
codec

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

301/532



Q} DT overall structure: simplified example

System-on-chip

CPU cores
! ipus {... % Cortex A7 Cortex A7
memory@o {

device_type = "memory”;
reg = <0x0 0x20000000>;
b Glc
IRQ controller

chosen {
bootargs = "";
stdout-path = "serial@:115200n8";
3
intc: interrupt-controller@a@021000 { ... }; ST ST DDR
soc { Ethernet MAC 12C controller controller
i2c1: 12c@40012000 { ... };
ethernet®: ethernet@5800a000 { ... }; 1 1 |
5
: | | |
CS42L51
Ethernet . DDR
audio
PHY memory
codec

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/532



Q} DT overall structure: simplified example

/

{

cpus { ... };
memory@@ { .
chosen { ... };

B3

intc: interrupt-controller@a0021000 {
compatible = "arm,cortex-a7-gic";
#interrupt-cells = <3>;
interrupt-controller;
reg = <0xa0021000 0x1000>,
<0xa0022000 0x2000>;

System-on-chip

CPU cores

Cortex A7 Cortex A7

GIC
IRQ controller

3
soc {
compatible = "simple-bus”; ST ST DDR
#address-cells = <1>; Ethernet MAC 12C controller controller
#size-cells = <1>;
interrupt-parent = <&intc>; I I 1
i2c1: 12c@40012000 { ... }; I I I
ethernet@: ethernet@5800a000 { ... }; CS421L51
¥ Ethernet . DDR
; audio
¥} PHY memory
codec
bootlin- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

301/532



Q} DT overall structure: simplified example

/{
cpus { ... };
memory@ { . 33
chosen { ... };
intc: interrupt-controller@a@021000 { ... };
soc {
i2c1: 12c@40012000 {
compatible = "st,stm32mp15-i2c”;
reg = <0x40012000 0x400>;
interrupts = <GIC_SPI 31 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>;
#address-cells = <1>;
#size-cells = <0>;
status = "okay";
cs42151: cs42151@4a {
compatible = "cirrus,cs42151";
reg = <0x4a>;
reset-gpios = <&gpiog 9 GPIO_ACTIVE_LOW>;
status = "okay";
};
b
ethernet®: ethernet@5800a000 { ... };
b
)

System-on-chip

CPU cores

Cortex A7 Cortex A7

GIC
IRQ controller

ST ST DDR
Ethernet MAC 12C controller controller
| | |
Ethernet CS42|.'51 DDR
audio
PHY memory
codec

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

301/532



Q} DT overall structure: simplified example

/{
cpus { ... 35
memory@ { ... };
chosen { ... };
intc: interrupt-controller@a0021000 { ... };
soc {
compatible = "simple-bus”;

interrupt-parent = <&intc>;
i2c1: 12c@40012000 { ... };

ethernet@: ethernet@5800a000 {
compatible = "st,stm32mp1-dwmac”, "snps,dwmac-4.20a";
reg = <0x5800a000 0x2000>;
interrupts-extended = <&intc GIC_SPI 61 IRQ_TYPE_LEVEL_HIGH>;
status = "okay";

mdio@ {
#address-cells = <1>;
#size-cells = <0>;
compatible = "snps,dwmac-mdio”;
phy@: ethernet-phy@o {

reg = <0>;

Y

System-on-chip

CPU cores

Cortex A7 Cortex A7

GIC
IRQ controller

ST ST DDR
Ethernet MAC 12C controller controller
| | |
Ethernet CS42|.'51 DDR
audio
PHY memory
codec

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

301/532



a Device Tree inheritance
o)

o%e]

Device Tree files are not monolithic, they can be split in several files, including
each other.
.dtsi files are included files, while .dts files are final Device Trees
Only .dts files are accepted as input to dtc
Typically, .dtsi will contain
definitions of SoC-level information
definitions common to several boards
The .dts file contains the board-level information

The inclusion works by overlaying the tree of the including file over the tree of
the included file, according to the order of the #include directives.

Allows an including file to override values specified by an included file

Uses the C pre-processor #include directive

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 302/532



4@3 Device Tree inheritance example
A

Definition of the STM32MP157A SoC Definition of the STM32MP157A-DK1 board Compiled DTB
/q #include "stm32mp157.dtsi" 4 {soc {
soc { i2c1: 12c@40012000 {
i2cl: 12c@40012000 { 4 ;oc { compatible = "st,stm32mpl5-i2c";
compatible = "st,stm32mp15-i2c"; i2¢1: 1240012000 { reg = <0x40012000 0x400>;
reg = <0x40012000 0x400>; pinctrl-names = "default", "sleep"; interrupts = <GIC_SPI 31 IRQ...HIGH>,
interrupts = <GIC_SPI 31 IRQ...HIGH>, pinctri-0 si2c1_pins o ! . <GIE,SPI 32"IR1‘1.A HI§H>;
EE_SIPIC 2 LR, o ol i pinctrl-1 = <si2cl_sleep_pins_a>; — pinctrl-names = "default®, "sleep";
status = "disabled"; GES = Taas = = — pinctrl-0 = <&i2cl_pins_a>;
A cs421517 cs42¥5i@4a ¢ pinctrl-1 = <&i2cl_sleep_pins_a>;
Iy o - . status = "okay";
i compitlble = cirrus,cs42151"; cs42151: cs42151@da {
. ) = ) compatible = "cirrus,cs42151";
o reg = <0x4a>;
Yi ¥ ’
}i '
};
stm32mp157.dtsi stm32mp157a-dkl.dts stm32mpl57a-dkl.dtb
Note 1 Note 2

The actual Device Trees for this
platform are more complicated.
This example is highly simplified.

The real DTB is in binary format.
Here we show the text equivalent of the
DTB contents.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

303/532



4@3 Inheritance and labels

Doing:

soc.dtsi
/A

soc {
usartl: serial@5c000000 {
compatible = "st,stm32h7-uart”;
reg = <0x5c000000 0x400>;
status = "disabled”;

board.dts

#include "soc.dtsi”

/{
soc {
serial@5c000000 {
status = "okay";
};
};
3

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

304/532



4@3 Inheritance and labels

Doing:

soc.dtsi
/A

soc {
usartl: serial@5c000000 {
compatible = "st,stm32h7-uart”;
reg = <0x5c000000 0x400>;
status = "disabled”;

};
};
3
board.dts
#include "soc.dtsi”
/ {
soc {
serial@5c000000 {
status = "okay";
};
};
3

Is exactly equivalent to:

soc.dtsi
/7 {

soc {
usartl: serial@5c000000 {
compatible = "st,stm32h7-uart”;
reg = <0x5c000000 0x400>;
status = "disabled”;
X
¥
3

board.dts

#include "soc.dtsi”
&usartl {

status = "okay";
3

— this solution is now often preferred

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

304/532



4@,‘} DT inheritance in STM32MP1 support

stm32mp151.dtsi

Single Cortex-A7
All common
peripherals

A stm32mpl5xxaa-pinctrl.dtsi

stm32mp153.dtsi
stm32mpl5xxab-pinctrl.dtsi
e stm32mp15-pinctrl.dtsi
G S@D
A stm32mpl5xxac-pinctrl.dtsi i
stm32mp157.dtsi

—>} stm32mp15xxad-pinctrl.dtsi

#include stm32mpl53.dtsi

stm32mpl5xc.dtsi
#include stm32mpl51.dtsi

+ GPU + DSI

SoC

stm32mp157a-dkl.dts stm32mp157c-dk2.dts
Board

Definitions

specific to the DK1 board

#include stm32mpl57.dtsi
#include stm32mpl5-pinctrl.dtsi
#include stm32mpl5xxac-pinctrl.dtsi
#include stm32mp15xx-dkx.dtsi

Definitions stm32mp15xx-dkx.dtsi

Definitions common
to the DK1 and DK2
boards

specific to the DK2 board

#include stm32mpl57.dtsi
#include stm32mplSxc.dtsi
#include stm32mpl5-pinctrl.dtsi
#include stm32mpl5xxac-pinctrl.dtsi
#include stm32mpl5xx-dkx.dtsi

| I

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

305/532



ao Device Tree design principles

o%e]

Describe hardware (how the hardware is), not configuration (how | choose to
use the hardware)
0OS-agnostic
For a given piece of HW, Device Tree should be the same for U-Boot, FreeBSD or
Linux
There should be no need to change the Device Tree when updating the OS
Describe integration of hardware components, not the internals of hardware
components
The details of how a specific device/IP block is working is handled by code in device
drivers

The Device Tree describes how the device/IP block is connected/integrated with the
rest of the system: IRQ lines, DMA channels, clocks, reset lines, etc.

Like all beautiful design principles, these principles are sometimes violated.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 306/532



a Device Tree specifications
o)

o%e]

How to write the correct nodes/properties to describe a
given hardware platform ?

Device Tree Specifications — base Device Tree
syntax + number of standard properties.

https://www.devicetree.org/specifications/
Not sufficient to describe the wide variety of hardware.

Device Tree Bindings — documents that each specify
how a piece of HW should be described
Documentation/devicetree/bindings/ in Linux kernel
sources
Reviewed by DT bindings maintainer team
Legacy: human readable documents
New norm: YAML-written specifications

i

Devicetree Specification
Release v0.3

devicetree.org

13 February 2020

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

307/532


https://www.devicetree.org/specifications/
https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/

4@3 Device Tree binding: old style

Documentation/devicetree/bindings/mtd/spear_smi. txt
This IP is not used on STM32MP1.

* SPEAr SMI Example:

smi: flashefceeeeee {
compatible = "st,spear60@-smi";
#address-cells = <1>;

Required properties:
- compatible : "st,spear60@-smi”

- reg : Address range of the mtd chip #size-cells = <1>;
- #address-cells, #size-cells : Must be present if the device has sub-nodes reg = <0xfco00000 0x1000>;
representing partitions. interrupt-parent = <&vicl>;

interrupts = <12>;

- interrupts: Should contain the STMMAC interrupts Clock-rate = <50000000; b G

- clock-rate : Functional clock rate of SMI in Hz

flashef8000000 {
Optional properties: st,smi-fast-mode;
- st,smi-fast-mode : Flash supports read in fast mode .

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 308/532


https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/mtd/spear_smi.txt

4@,‘3 Device Tree binding: YAML style

Documentation/devicetree/bindings/i2c/st,stm32-12c.yaml

# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) clocks:
BYAML 1.2 maxItems: 1
$id: http://devicetree.org/schemas/i2c/st,stm32-i2c.yaml# dmas:
$schema: http://devicetree.org/meta-schemas/core.yaml# items:

- description: RX DMA Channel phandle
title: I2C controller embedded in STMicroelectronics STM32 I2C platform - description: TX DMA Channel phandle
maintainers:

- Pierre-Yves MORDRET <pierre-yves.mordret@st.com>
clock-frequency:

properties: description: Desired I2C bus clock frequency in Hz. If not specified,
compatible: the default 100 kHz frequency will be used.
enum: For STM32F7, STM32H7 and STM32MP1 SoCs, if timing
- st,stm32f4-i2c parameters match, the bus clock frequency can be from
- st,stm32f7-i2c 1Hz to 1MHz.
- st,stm32mp15-i2c default: 100000
minimum: 1
reg: maximum: 1000000
maxItems: 1
required:
interrupts: - compatible
items: - reg
- description: interrupt ID for I2C event - interrupts
- description: interrupt ID for I2C error - resets
- clocks
resets:
maxItems: 1

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 309/532


https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/i2c/st,stm32-i2c.yaml

4@,? Device Tree binding: YAML style example

examples:
//Example 3 (with st,stm32mp15-i2c compatible on stm32mp)
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/clock/stm32mp1-clks.h>
#include <dt-bindings/reset/stm32mpl-resets.h>
12c@40013000 {
compatible = "st,stm32mp15-i2c";
#address-cells = <1>;
#size-cells = <0>;
reg = <0x40013000 0x400>;
interrupts = <GIC_SPI 33 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 34 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&rcc I2C2_K>;
resets = <&rcc I2C2_R>;
i2c-scl-rising-time-ns = <185>;
i2c-scl-falling-time-ns = <20>;
st,syscfg-fmp = <&syscfg 0x4 0x2>;

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

310/532



4@} Validating Device Tree in Linux

P dtc only does syntactic validation
> YAML bindings allow to do semantic validation
> Linux kernel make rules:
® make dt_binding_check
verify that YAML bindings are valid
® make dtbs_check
validate DTs currently enabled against YAML bindings
® make DT_SCHEMA_FILES=Documentation/devicetree/bindings/trivial-
devices.yaml dtbs_check
validate DTs against a specific YAML binding

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 311/532



60 The compatible property

Is a list of strings
From the most specific to the least specific

Describes the specific binding to which the node complies.
It uniquely identifies the programming model of the device.

Practically speaking, it is used by the operating system to find the appropriate
driver for this device.

When describing real hardware, the typical form is vendor,model

Examples:
compatible = "arm,armv7-timer";
compatible = "st,stm32mp1-dwmac”, "snps,dwmac-4.20a";
compatible = "regulator-fixed";

compatible = "gpio-keys”;
Special value: simple-bus — bus where all sub-nodes are memory-mapped
devices

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 312/532



ao compatible property and Linux kernel drivers

o%e]

Linux identifies as platform devices:

. . . /1
Top-level DT nodes with a compatible string timer { > Platform device
Sub-nodes of simple-bus . compatible = *
Instantiated automatically at boot time soc {
compatible = "simple-bus"
Sub-nodes of 12C controllers — 12C devices uarte1000 —> Platform device
compatible = cee 3
. .
Sub-nodes of SPI controllers — SPI devices Taca2000 ¢ > Plattom device
H H H compatible = "..."
Each Linux driver has a table of compatible cepranass { > 12 device
strings 1t supports , compatible = "
struct of_device_id[] o
}
When a DT node compatible string matches a b

given driver, the device is bound to that driver.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 313/532


https://elixir.bootlin.com/linux/latest/ident/of_device_id

4@,‘3 Matching with drivers in Linux: platform driver

drivers/tty/serial/stm32-usart.c

static const struct of_device_id stm32_match[] = {
{ .compatible = "st,stm32-uart”, .data = &stm32f4_info},
{ .compatible = "st,stm32f7-uart”, .data = &stm32f7_info},
{ .compatible = "st,stm32h7-uart”, .data = &stm32h7_info},
{1,

MODULE_DEVICE_TABLE (of, stm32_match);

static struct platform_driver stm32_serial_driver = {

.probe = stm32_serial_probe,
.remove = stm32_serial_remove,
.driver = {

.name = DRIVER_NAME,

.pm = &stm32_serial_pm_ops,

.of _match_table = of_match_ptr(stm32_match),

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

314/532


https://elixir.bootlin.com/linux/latest/source/drivers/tty/serial/stm32-usart.c

4@,‘3 Matching with drivers in Linux:

[2C driver

sound/soc/codecs/cs42151.c

const struct of_device_id cs42151_of_match[] = {
{ .compatible = "cirrus,cs42151", },
{1

MODULE_DEVICE_TABLE (of, cs42151_of_match);

sound/soc/codecs/cs42151-i2c.c

static struct i2c_driver cs42151_i2c_driver
.driver = {

=

.name "cs42151",
.of _match_table

cs42151_of _match,
.pm = &cs42151_pm_ops,

3,

.probe = cs42151_i2c_probe,
.remove = cs42151_i2c_remove,
.id_table =

cs42151_1i2c_id,
¥

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

315/532


https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/cs42l51.c
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/cs42l51-i2c.c

re t
Q@ g property

o%e]

Most important property after compatible

Memory-mapped devices: base physical address and size of the memory-mapped
registers. Can have several entries for multiple register areas.

sai4: sai@50027000 {
reg = <0x50027000 0x4>, <0x500273f0 0x10>;

iE

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/532



re t
Q@ g property

o%e]

Most important property after compatible

Memory-mapped devices: base physical address and size of the memory-mapped
registers. Can have several entries for multiple register areas.

12C devices: address of the device on the 12C bus.

&i2cl {
hdmi-transmitter@39 {
reg = <0x39>;
Ye

cs42151: cs42151@4a {
reg = <0x4a>;

B

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/532



re t
Q@ g property

o%e]

Most important property after compatible

Memory-mapped devices: base physical address and size of the memory-mapped
registers. Can have several entries for multiple register areas.

12C devices: address of the device on the 12C bus.
SPI devices: chip select number

&aspi {
flash@: mx661512351@0 {
reg = <0>;
};
flash1l: mx661512351@1 {
reg = <1>;
};

s

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/532



re t
Q@ g property

o%e]

Most important property after compatible

Memory-mapped devices: base physical address and size of the memory-mapped
registers. Can have several entries for multiple register areas.

12C devices: address of the device on the 12C bus.
SPI devices: chip select number

The unit address must be the address of the first reg entry.

sai4: sai@50027000 {
reg = <0x50027000 0x4>, <0x500273f0 0x10>;

g

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/532



a Status property
o)

o%e]

The status property indicates if the device is really in use or not
okay or ok — the device is really in use
any other value, by convention disabled — the device is not in use

In Linux, controls if a device is instantiated

In .dtsi files describing SoCs: all devices that interface to the outside world have
status = "disabled”;

Enabled on a per-device basis in the board .dts

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 317/532



ao Resources: interrupts, clocks, DMA, reset lines,
od

Jo3e!

intc: interrupt-controller@a0021000 {
compatible = "arm,cortex-a7-gic";
#interrupt-cells = <3>;
interrupt-controller;

Common pattern for resources shared reg = <0xa@021000 0x1000>, <0xa0022000 0x2000>;
by multiple hardware blocks %
H rcc: rcc@50000000 {
lnterrupt ||nes compatible = "st,stm32mp1-rcc”, "syscon”;
Clock controllers E
clock-cells = <1>;
DMA controllers #reset-cells = <1>;

Reset controllers B

dmamux1: dma-router@48002000 {
compatible = "st,stm32h7-dmamux";

A Device Tree node describing the i o e
controller as a device e e Y
B3

References from other nodes that use
spi3: spi@4000c000 {

resources provided by this controller interrupts = <GIC_SPI 51 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&rcc SPI3_K>;
resets = <&rcc SPI3_R>;
dmas = <&dmamux1 61 0x400 0x05>, <&dmamux1 62 0x400 0x05>;

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 318/532



a Pin-muxing description
o)

Jo3e!

Most modern SoCs, including the Er——
STM32MP1, have more features than o CrI00 l
they have pins to expose those )
. UART3 RX

features to the outside world. ’7—>

Muyx m—
Pins are muxed: a given pin can be WA ——
used for one function or another UART3 TX
A specific IP block in the SoC controls i1 o
the muxing of pins: the pinmux — >
controller Mux, me——
The Device Tree describes which pin 2co f [ wcoson ”
configurations are possible, and which
configurations are used by the SoC Configuration

different devices.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 319/532



% Pin-muxing controllers on STM32MP1

arch/arm/boot/dts/st/stm32mp151.dtsi

pinctrl: pin-controller@50002000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "st,stm32mp157-pinctrl”;

gpioa: gpio@50002000

€ coo b
gpiob: gpio@50003000 { ... };
gpioc: gpio@50004000 { ... };
gpiod: gpio@50005000 { ... };
gpioe: gpio@50006000 { ... };

€ coo B8

gpiof: gpio@50007000
)
pinctrl_z: pin-controller-z@54004000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "st,stm32mp157-z-pinctrl”;
ranges = <0 0x54004000 0x400>;
gpioz: gpio@54004000 { .... };

i

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

320/532


https://elixir.bootlin.com/linux/v6.1/source/arch/arm/boot/dts/st/stm32mp151.dtsi

Pin-muxing configuration

arch/arm/boot/dts/st/stm32mp15-pinctrl.dtsi
&pinctrl {

i2c1_pins_a: i2c1-0 {

pins {
pinmux = <STM32_PINMUX('D', 12, AF5)>, /% I2C1_SCL %/
<STM32_PINMUX('F’, 15, AF5)>; /% I2C1_SDA */
bias-disable;
drive-open-drain;
slew-rate = <0@>;
};

35

m_can1_pins_a: m-can1-0 {
pins1 {
pinmux = <STM32_PINMUX('H’, 13, AF9)>; /x CANT_TX */
slew-rate = <1>;
drive-push-pull;
bias-disable;

3

pins2 {
pinmux = <STM32_PINMUX('I', 9, AF9)>; /* CAN1_RX %/
bias-disable;

Y

33

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 321/532


https://elixir.bootlin.com/linux/v6.1/source/arch/arm/boot/dts/st/stm32mp15-pinctrl.dtsi

Q} Pin-muxing configuration

Source: STM32MP157C datasheet. Note that I2C1_SDA is also available

on pin PF15 (not shown here).

Table 8. Alternate function AF0 to AF7(!) (continued)
5] AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SPHI2S1/ sPiz2s2/
SAun2c2/ SAl/
Port TIM1/2116117/ | SAI1/4112C61 TIMB/ CHAs | Shzel | SPZSSl | sPuzsy
u USARTI/ | SPI4/5/6/12C1/ | 12C4IUARTA/ | USARTA213/61
RTC HDPISYS DFSDM1 | TIMISILPTIM/ | SPLSISIZCLT | 2C4ARY Y
/SDMMC1 | DFSDMI/CEC e
DFSDM1__| DFSDMT__ | SPI3_MOSV
PD6 - TIM16_CHIN | SAI1_D1 v fiveh o5 Sbo | SA1SDA | USARTZ_RX
DFSDM1_ . DFSDM1_
PD7 | TRACEDS - - i 12c2_scL el USART2_CK
DFSDM1_
PDB - - - oy - - SAI3_SCK_B | USART3_TX
o DFSDM1_ i .
2 PD9 - - - SO SAI3.SD_B | USART3_RX
3
2 |porp ) DFSDM1_ SPI3_MISO/
s PD10| RTC_REFIN | TIM16_BKIN eour | 2ossvea | STEMBO! | s Fs B | usarTa oK
3
g
N P11 - - - LPTIM2IN2 | 1204 SMBA | 12C1_SMBA - it
PD12 - LPTIMI_IN | TIM4_CH1 | LPTIM2INT | 1204.SCL | [2C1.SCL - e il
D13 B LPTIMI_OUT | TIM4_CH2 B 12C4_SDA | 12C1.SDA | 1253MCK -
PD14 R TIM4_CH3 - R SAI3_MCLK_B. R
PD15 B - TIM4_CHa B B B SAI_MCLK_A B
PEO - LPTIMI_ETR | TIM4_ETR - LPTiM2_ETR | SPRSCK | g4 Motk 8 -
1283 CK
PortE | PET - LPTIMI_INZ B B - 1252 MCK | SAI3_SD_B B
PE2 | TRACECLK - SAI_CK1 - 12C4 SCL | SPI4_SCK | SAI_MCLK A -
PE3 | TRACEDO - - - TIMIS_BKIN - SAI1_SD_B -
g
3
3
2

dI10.SLdWZENLS

‘suopjouny ejeusejje pue uonduosep uld ‘synould

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

321/532


https://www.st.com/resource/en/datasheet/stm32mp157c.pdf

a Pin-muxing consumer
o)

o%e]

&i2cl {
pinctrl-names = "default”, "sleep”;
pinctrl-0 = <&i2cl1_pins_a>;
pinctrl-1 = <&i2cl1_sleep_pins_a>;

Y

Typically board-specific, in .dts

pinctrl-0, pinctrl-1, pinctrl-X provides the pin mux configurations for the
different states

pinctrl-names gives a name to each state, mandatory even if only one state

States are mutually exclusive
The driver is responsible for switching between states

default state is automatically set up when the device is probed

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 322/532



4@} Example: LED and 12C device

> Let's see how to describe an LED and an 12C device connected to the DK1
platform.

> Create arch/arm/boot/dts/st/stm32mp157a-dk1-custom.dts which includes
stm32mp157a-dk1.dts

#include "stm32mp157a-dk1.dts”

> Make sure stm32mp157a-dk1-custom.dts gets compiled to a DTB by changing
arch/arm/boot/dts/Makefile

dtb-$(CONFIG_ARCH_STM32) += \

stm32mp157a-dk1.dtb \
stm32mp157a-dk1-custom.dtb \

> make dtbs

DTC arch/arm/boot/dts/st/stm32mp157a-dk1-custom.dtb

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 323/532


https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/Makefile

4% Example: describe an LED

1 ARD_DO PE7 USART7_RX
stm32mpl57a-dkl-custom.dts 2 ARD_D1 PE8 USART7_TX
X 3 ARD_D2 PE1 10
#include "stm32mp157a-dk1.dts”
4 ARD_D3 PD14 TIM4_CH3
CN14
/{ 5 ARD_D4 PE10 10
leds { 6 ARD D5 PD15 TiM4_CHA
compatible = "gpio-leds";
B 7 ARD_D& PE9 TIM1_CH1
label = "webinar”; 8 ARD_D7 PD1 10
gpios = <&gpioe 1 GPIO_ACTIVE_HIGH>;
)
b
)
shell
# echo 255 > /sys/class/leds/webinar/brightness
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 324/532



humidity and pressure sensor

4@3 Example: connect 12C temperature,

stm32mp157a-dkl-custom.dts

&i2c5 {
status = "okay";
clock-frequency = <100000>;
pinctrl-names = "default”, "sleep”;
pinctrl-0 = <&i2c5_pins_a>;
pinctrl-1 = <&i2c5_pins_sleep_a>;

pressure@76 {
compatible = "bosch,bme280";
reg = <0x76>;
Y
b

shell

# cat /sys/bus/iio/devices/iio\:device2/in_humidityrelative_input
49147

# cat /sys/bus/iio/devices/iio\:device2/in_pressure_input
101.567167968

# cat /sys/bus/iio/devices/iio\:device2/in_temp_input

24380

CN13

ARD_D8
ARD_D9
ARD_D10
ARD_D11
ARD_D12
ARD_D13
GND
VREFP
ARD_D14
ARD_D15

PG3

PE11
PE14
PE13
PE12

PA12
PA11

10

TIM12_CH1

SPI4_NSS and TIM1_CH2
SPI4_MOSI and TIM1_CH4
SPI4_MISO

SPI4_SCK

GND

VREF+

12C5_SDA

12C5_SCL

Details at https://bootlin.com/blog/building-a-1linux-system-for-the-

stm32mp1-connecting-an-i2c-sensor/

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

325/532


https://bootlin.com/blog/building-a-linux-system-for-the-stm32mp1-connecting-an-i2c-sensor/
https://bootlin.com/blog/building-a-linux-system-for-the-stm32mp1-connecting-an-i2c-sensor/

Check out our Device Tree 101 webinar, by Thomas Petazzoni (2021)

Slides: https://bootlin.com/blog/device-tree-101-webinar-slides-and-videos/

Video: https://youtu.be/a9CZ1Uk30YQ

[syetetili}

Agenda

> Bootlin introduction
> STM32MP
> Why the Device Tree ?
> Basic Devi
> Device Tree inheritance

> Device Tree specifications and bindings

> Device Tree and Linux kernel drivers
> Common properties and examples

Further details about the Device Tree

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

326/532


https://bootlin.com/blog/device-tree-101-webinar-slides-and-videos/
https://youtu.be/a9CZ1Uk3OYQ

a Accessing hardware devices
o)

g

Discoverable hardware: USB and PCI

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com



a Discoverable hardware
o)

o%e]

Some busses have built-in hardware discoverability mechanisms

Most common busses: USB and PClI

Hardware devices can be enumerated, and their characteristics retrieved with just
a driver or the bus controller

Useful Linux commands

1susb, lists all USB devices detected
1spci, lists all PCl devices detected
A detected device does not mean it has a kernel driver associated to it!

Association with kernel drivers done based on product ID/vendor ID, or some
other characteristics of the device: device class, device sub-class, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 328/532



ao Practical lab - Accessing hardware devices
o0

o%e]

Time to start the practical lab!
Exploring the contents of /dev and /sys and
the devices available on the embedded
hardware platform.
Using GPIOs and LED:s.
Modifying the Device Tree to control pin
multiplexing and declare an 12C-connected
joystick.
Adding support for a USB audio card using
Linux kernel modules

Adding support for the 12C-connected joystick
through an out-of-tree module.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 329/532



Block filesystems

bootlin

Block filesystems

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 330/532



Block filesystems

Block devices

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 331/532



Block vs. flash
Qo ock vs. raw flas

o%e]

Storage devices are classified in two main types: block devices and raw flash
devices

They are handled by different subsystems and different filesystems

Block devices can be read and written to on a per-block basis, in random order,
without erasing.
Hard disks, RAM disks
USB keys, SSD, SD cards, eMMC: these are based on flash storage, but have an
integrated controller that emulates a block device, managing the flash in a
transparent way.
Raw flash devices are driven by a controller on the SoC. They can be read, but
writing requires prior erasing, and often occurs on a larger size than the “block”
size.
NOR flash, NAND flash

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 332/532



4@,‘3 Block device list

> The list of all block devices available in the system can be found in
/proc/partitions

$ cat /proc/partitions
major minor #blocks name

179 0 3866624 mmcblko
179 1 73712 mmcblkopl
179 2 3792896 mmcblk@p2
8 © 976762584 sda
8 1 1060258 sdal
8 2 975699742 sda2

> /sys/block/ also stores information about each block device, for example
whether it is removable storage or not.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 333/532



Partitioning
9o

o%e]

Block devices can be partitioned to store different parts of a system
The partition table is stored inside the device itself, and is read and analyzed
automatically by the Linux kernel
mmcb1k® is the entire device
mmcb1k@p?2 is the second partition of mmcb1ko
Two partition table formats:

MBR, the legacy format
GPT, the new format, now used by all modern operating systems, supporting disks
bigger than 2 TB.

Numerous tools to create and modify the partitions on a block device: fdisk,
cfdisk, sfdisk, parted, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 334/532



60 Transfering data to a block device
&\«

It is often necessary to transfer data to or from a block device in a raw way
Especially to write a filesystem image to a block device

This directly writes to the block device itself, bypassing any filesystem layer.
The block devices in /dev/ allow such raw access

dd is the tool of choice for such transfers:

dd if=/dev/mmcblk@pl of=testfile bs=1M count=16

Transfers 16 blocks of 1 MB from /dev/mmcblkopl to testfile

dd if=testfile of=/dev/sda2 bs=1M seek=4

Transfers the complete contents of testfile to /dev/sda2, by blocks of 1 MB, but
starting at offset 4 MB in /dev/sda2

Typical mistake: copying a file (which is not a filesystem image) to a filesystem
without mounting it first:

dd if=zImage of=/dev/sdel

Instead, you should use:

sudo mount /dev/sdel /boot

cp zImage /boot/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 335/532



Block filesyst
Q@ ock filesystems

o%e]

Available block filesystems

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



ao Ext2

o%e]

One of the earliest Linux filesystem, introduced in 1993
filesystems/ext2
Still actively supported. Low metadata overhead, module size and RAM usage

But risk of metadata corruption after an unclean shutdown. You then need to run
e2fsck, which takes time and may need operator intervention. Can't reboot
autonomously.

First successor: ext3 (2001), addressing this limitation with Journaling (see next
slides) but wasn't scaling well. Now deprecated.

It supports all features Linux needs in a root filesystem: permissions, ownership,
device files, symbolic links, etc.

Date range: December 14, 1901 — January 18, 2038, because of 32 bit dates!

Not recommended for embedded systems today!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 337/532


https://www.kernel.org/doc/html/latest/filesystems/ext2.html

a Journaled filesystems
o)

o%e]

Unlike simpler filesystems (ext2, vfat...),
designed to stay in a coherent state even after
system crashes or a sudden poweroff.

Writes are first described in the journal before
being committed to files (can be all writes, or
only metadata writes depending on the
configuration)

Application

User space Modify the filesystem

Kernel-space v

(filesystem)
Writes an entry in the journal,

describing the modification

l

Perform the modification
in the filesystem

l

Clear journal entry

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

338/532



60 Filesystem recovery after crashes
o0

o%e]

Reboot

Thanks to the journal, the recovery at boot
time is quick, since the operations in progress
No Journal at the moment of the unclean shutdown are

empty ?

clearly identified. There's no need for a full

X filesystem check.

Discard incomplete
Jjournal entries

Does not mean that the latest writes made it
to the storage: this depends on syncing the
changes to the filesystem.

\

Execute journal

See https://en.wikipedia.org/wiki/
Journaling_file_system for further details.

e Filesystem OK

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 339/532


https://en.wikipedia.org/wiki/Journaling_file_system
https://en.wikipedia.org/wiki/Journaling_file_system

ao Ext4

o%e]

The modern successor of Ext2
First introduced in 2006, filesystem with Journaling, without ext3 limitations.

Still actively developed (new features added). However, considered in 2008 by Ted
Ts'o as a "stop-gap” based on old technologies.

The default filesystem choice for many GNU/Linux distributions (Debian, Ubuntu)

The ext4 driver also supports ext2 and ext3 (one driver is sufficient).

Noteworthy feature: transparent encryption (but compression not available).

Minimum partition size to have a journal: 2MiB (256 inodes).

Minimum partition size without a journal: 64KiB (only 16 inodes!).
https://en.wikipedia.org/wiki/Ext4

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 340/532


https://en.wikipedia.org/wiki/Ext4

ao XFS

o%e]

A Journaling filesystem
Since 1994 (started by Silicon Graphics for the IRIX OS)
Actively maintained and developed by Red Hat now
Features: variable block size, direct 1/0, online growth...
Minimum partition size: 16MiB (9.7MiB of free space)
https://en.wikipedia.org/wiki/XFS

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

341/532


https://en.wikipedia.org/wiki/XFS

60 Btrfs

o%e]

A copy-on-write filesystem
Pronounced as "better F S”, "butter F S” or "b-tree F S”, since 2009.

A modern filesystem with many advanced features: volumes, snapshots,
transparent compression... Looks great for storage experts.

Minimum partition size: 109MiB (only 32MiB of free space).
However, big module size and long initialization time (bad for boot time)

https://en.wikipedia.org/wiki/Btrfs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 342/532


https://en.wikipedia.org/wiki/Btrfs

ao F2FS — Flash-Friendly File System

o%e]

A log-structured filesystem
Since 2012 (started by Samsung, actively maintained)

Designed from the start to take into account the characteristics of solid-state
based storage (eMMC, SD, SSD)

In particular, trying to make most writes sequential (best on SSD)

Support for transparent encryption and compression (LZO, LZ4, Zstd), possible
on a file by file (or file type) basis, through extended file attributes.

Maximum partition size: 16TB, maximum file size: 3.94TB
Minimum partition size: 52MiB (8MiB free space)
https://en.wikipedia.org/wiki/F2FS

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 343/532


https://en.wikipedia.org/wiki/F2FS

ao SquashFS — A Read-Only and Compressed File System

o%e]

The most popular choice for this usage
Started by Phillip Lougher, since 2009 in the mainline kernel, actively maintained.
Fine for parts of a filesystem which can be read-only (kernel, binaries...)
Used in most live CDs and live USB distributions
Supports several compression algorithms (Gzip, LZO, XZ, LZ4, Zstd)
Supposed to give priority to compression ratio vs read performance
Suitable for very small partitions

https://en.wikipedia.org/wiki/SquashFS

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 344/532


https://en.wikipedia.org/wiki/SquashFS

a@ EROFS — Enhanced Read-Only File System

o%e]

A more recent read-only, compressed solution
Started by Gao Xiang (Huawei), since 2019 in the mainline kernel.
Used in particular in Android phones (Huawei, Xiaomi, Oppo...)
Supposed to give priority to read performance vs compression ratio

EROFS implements compression into fixed 4KB blocks (better for read
performance), while SquashFS uses fixed-sized blocks of uncompressed data.

Unlike Squashfs, EROFS also allows for random access to files in directories.
Development seems more active than on SquashFS.
Suitable for very small partitions

https://en.wikipedia.org/wiki/EROFS

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 345/532


https://en.wikipedia.org/wiki/EROFS

ao Our advice for choosing the best filesystem

o%e]

Some filesystems will work better than others depending on how you use them.
Fortunately, filesystems are easy to benchmark, being transparent to applications:

Format your storage with each filesystem

Copy your data to it

Run your system on it and benchmark its performance.
Keep the one working best in your case.

If you haven't done benchmarks yet, a good default choice is ext4 for read /write
partitions.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 346/532



Filesystem benchmarks

Boot Mount ead Seq. Write SELR read Delete Space
time * ne read write write
delete

very very fair good best very good good good
good good good

average | fair good very best average  fair fair
good

good fair good good good fair - good
fofs fair average good good fair very very average
good good

FOIESIEN excel- best very very best
lent good good

erofs best best best best very
good

1. Boot time = Module loading time + Mount time

See our presentation for more details and benchmarks (Linux 6.3, ARM32 BeagleBone Black):
https://bootlin.com/pub/conferences/2023/eoss/opdenacker-finding-best-block-filesystem/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 347/532


https://bootlin.com/pub/conferences/2023/eoss/opdenacker-finding-best-block-filesystem/

ao Compatibility filesystems

o%e]

Linux also supports several other filesystem formats, mainly to be interoperable with
other operating systems:
vfat (CONFIG_VFAT_FS) for compatibility with the FAT filesystem used in the
Windows world and on numerous removable devices

Also convenient to store bootloader binaries (FAT easy to understand for ROM code)
This filesystem does not support features like permissions, ownership, symbolic links,
etc. Cannot be used for a Linux root filesystem.

Linux now supports the exFAT filesystem too (CONFIG_EXFAT_FS).

ntfs (CONFIG_NTFS_FS) for compatibility with Windows NTFS filesystem.
hfs (CONFIG_HFS_FS) for compatibility with the MacOS HFS filesystem.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

348/532


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_VFAT_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_EXFAT_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_NTFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_HFS_FS

ao tmpfs: filesystem in RAM

o%e]

CONFIG_TMPFS
Not a block filesystem of course!

Perfect to store temporary data in RAM: system log files, connection data,
temporary files...

More space-efficient than ramdisks: files are directly in the file cache, grows and
shrinks to accommodate stored files

How to use: choose a name to distinguish the various tmpfs instances you have
(unlike in most other filesystems, each tmpfs instance is different). Examples:
mount -t tmpfs run /run

mount -t tmpfs shm /dev/shm

See filesystems/tmpfs in kernel documentation.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 349/532


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_TMPFS
https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html

Block filesyst
Q@ ock filesystems

o%e]

Using block filesystems

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 350/532



a Creating filesystems
b

o%e]

To create an empty ext4 filesystem on a block device or inside an already-existing
image file

mkfs.ext4 /dev/sda3

mkfs.ext4 disk.img

To create a filesystem image from a directory containing all your files and
directories
For some filesystems, there are utilities to create a filesystem image from an existing
directory:
ext2: genext2fs -d rootfs/ rootfs.img
squashfs: mksquashfs rootfs/ rootfs.sqfs (details later)
erofs: mkfs.erofs rootfs.erofs rootfs/
For other (read-write) filesystems: create a disk image, format it, mount it (see next
slides), copy contents and umount.
Your image is then ready to be transferred to your block device

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

351/532



60 Mounting filesystem images
o0

o%e]

Once a filesystem image has been created, one can access and modify its contents
from the development workstation, using the loop mechanism:

Example:
mkdir /mnt/test
mount -t ext4 -o loop rootfs.img /mnt/test

In the /mnt/test directory, one can access and modify the contents of the
rootfs.img file.

This is possible thanks to 1oop, which is a kernel driver that emulates a block
device with the contents of a file.

Note: -0 loop no longer necessary with recent versions of mount from GNU
Coreutils. Not true with BusyBox mount.

Do not forget to run umount before using the filesystem image!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 352/532



ao How to access partitions in a disk image
o0

Jo3e!

You may have dumped a complete block device (with partitions) into a disk image.

The losetup command allows to manually associate a loop device to a file, and
offers a ——partscan option allowing to also create extra block device files for the
partitions inside the image:

$ sudo losetup -f --show --partscan disk.img
/dev/loop2

$ 1s -la /dev/loop2*

brw-rw---- 1 root disk 7, 2 Jan 14 10:50 /dev/loop2
brw-rw---- 1 root disk 259, 11 Jan 14 10:50 /dev/loop2pl
brw-rw---- 1 root disk 259, 12 Jan 14 10:50 /dev/loop2p2

Each partition can then be accessed individually, for example:

$ mount /dev/loop2p2 /mnt/rootfs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 353/532



o%e]

ao Creating squashfs filesystems

Need to install the squashfs-tools package

Can only create an image: creating an empty squashfs filesystem would be
useless, since it's read-only.
To create a squashfs image:

mksquashfs data/ data.sqfs -noappend

-noappend: re-create the image from scratch rather than appending to it
Examples mounting a squashfs filesystem:

Same way as for other block filesystems
mount -o loop data.sqfs /mnt (filesystem image on the host)
mount /dev/<device> /mnt (on the target)

Similar commands exist for EROFS

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

354/532



a@ Mixing read-only and read-write filesystems
o0

o%e]

Good idea to split your block storage into:

A compressed read-only partition (SquashFS)

Typically used for the root filesystem (binaries, kernel...).
Compression saves space. Read-only access protects your system
from mistakes and data corruption.

A read-write partition with a journaled filesystem (like ext4)
Used to store user or configuration data.

Journaling guarantees filesystem integrity after power off or
crashes.

Ram storage for temporary files (tmpfs)

squashfs
/

read-only
compressed
root filesystem

ext4
/data

read-write
user and
configuration
data

devtmpfs
/dev

tmpfs
/var

read write
volatile data

A

Block
storage

RAM

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

355/532



60 Issues with flash-based block storage

Flash storage made available only through a block interface.

Hence, no way to access a low level flash interface and use the Linux filesystems

doing wear leveling.

No details about the layer (Flash Translation Layer) they use. Details are kept as
trade secrets, and may hide poor implementations.

Not knowing about the wear leveling algorithm, it is highly recommended to limit
the number of writes to these devices.

Using industrial grade storage devices (MMC/SD, USB) is also recommended.

See the Optimizing Linux with cheap flash drives article from Arnd Bergmann and try
his flashbench tool (https://git.linaro.org/plugins/gitiles/people/arnd/
flashbench.git/+/refs/heads/master/README) for finding out the erase block and
page size for your storage, and optimizing your partitions and filesystems for best
performance. Note that some SD cards report their erase block size, available in
/sys/bus/mmc/devices/<dev>/preferred_erase_size.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 356/532


https://lwn.net/Articles/428584/
https://git.linaro.org/plugins/gitiles/people/arnd/flashbench.git/+/refs/heads/master/README
https://git.linaro.org/plugins/gitiles/people/arnd/flashbench.git/+/refs/heads/master/README

a@ Practical lab - Block filesystems
o0

o%e]

Creating further partitions on your SD card

Booting a system with a mix of filesystems:
SquashFS for the root filesystem, ext4 for data,
and tmpfs for temporary system files.

Loading everything from the SD card, including
the kernel and device tree.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 357/532



a@ Flash storage and filesystems
o0

o%e]

Flash storage and bOOtII'n

filesystems

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 358/532



a@ Block devices vs raw flash devices: reminder
o0

o%e]

Block devices:

Allow for random data access using fixed size blocks

Do not require special care when writing on the media

Block size is relatively small (minimum 512 bytes, can be increased for performance
reasons)

Considered as reliable (if the storage media is not, some hardware or software parts
are supposed to make it reliable)

Raw flash devices:

Flash chips directly driven by the flash controller on your SoC. You can control how
they are managed.

Allow for random data access too, but require erasing before writing on the media.
Read and write (for example 4 KiB) don't use the same block size as erasing (for
example 128 KiB).

Multiple flash technologies: NOR flash, NAND flash (Single Level Cell - SLC: 1 bit
per cell, MLC: multiple bits per cell).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 359/532



a@ NAND flash storage: constraints

g

Reliability

Reliability depends on flash technology (SLC, MLC)
Require mechanisms to recover from bit flips: ECC
(Error Correcting Code), stored in the OOB

(Out-Of-Band area) Erase

block

Lifetime chip

Relatively short lifetime: between 1,000,000 (SLC) and
1,000 (MLC) erase cycles per block

Wear leveling required to erase blocks evenly In-band data ©) Out-0FBand data
Bad block detection/handling required too

Widely used anyway in embedded systems for several reasons:
low cost, high capacity, good read and write performance.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 360/532



60 The MTD subsystem

o%e]

MTD stands for Memory Technology

Devices

Generic subsystem in Linux dealing Linux iesystem inerface

with all types of storage media that » - o

are not fitting in the block subsystem Vet —

Supported media types: RAM, ROM, S YaTes? bloc dec

NOR flash, NAND flash, Dataflash... o o s
Independent of the communication M | [

interface (drivers available for parallel,
SPI, direct memory mapping, ...) Harduare M m
Abstract storage media characteristics

and provide a simple API to access
MTD devices

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 361/532



MTD partitioni
Q@ partitioning

o%e]

MTD devices are usually partitioned

It allows to use different areas of the flash for different purposes: read-only
filesystem, read-write filesystem, backup areas, bootloader area, kernel area, etc.

Unlike block devices, which contains their own partition table, the partitioning of
MTD devices is described externally (don't want to put it in a flash sector which
could become bad)

Specified in the board Device Tree (default partitions, not always relevant)
Specified through the kernel command line

MTD partitions are defined through the mtdparts parameter in the kernel
command line

U-Boot understands the Linux syntax via the mtdparts and mtdids variables

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 362/532



ao MTD partitions on Linux

o%e]

Each partition becomes a separate MTD device

Different from block device labeling (sda3, mmcbh1kop2)

/dev/mtdo is the first enumerated partition on the system

/dev/mtd1 is the second enumerated partition on the system (either from a single
flash chip or from a different one).

Note that the master MTD device (the device those partitions belong to) is not
exposed in /dev

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 363/532



ao Commands to manage NAND devices

Jo3e!

From U-Boot

help nand to see all nand subcommands
nand info, nand read, nand write, nand erase...

From Linux

mtdchar driver: one /dev/mtdX and /dev/mtdXro character device per partition.
Accessed through ioctl() operations to erase and flash the storage.

Used by these utilities: flash_eraseall, nandwrite

Provided by the mtd-utils package, also available in BusyBox

There are also host commands in mtd-utils: mkfs. jffs2, mkfs.ubifs, ubinize...

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 364/532



a Flash wear leveling
o)

o%e]

Wear leveling consists in distributing erases over the whole flash device to avoid
quickly reaching the maximum number of erase cycles on blocks that are written
really often
Can be done in:

the filesystem layer (JFFS2, YAFFS2, ...)

an intermediate layer dedicated to wear leveling (UBI)

The wear leveling implementation is what makes your flash lifetime good or not

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 365/532



Flash file-syst
Q@ ash file-systems

o%e]

'Standard’ file systems (ext2, ext4...) are meant to work on block devices
Specific file systems have been developed to deal with flash constraints
These file systems are relying on the MTD layer to access flash chips

There are several legacy flash filesystems which might be useful for small
partitions: JFFS2, YAFFS2.

Nowadays, UBI/UBIFS is the de facto standard for medium to large capacity
NANDs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 366/532



Qo UBI (1)

o%e]

UBI: Unsorted Block Images Standard file

API
Design choices:
Split the wear leveling and filesystem layers
Add some flexibility UBIFS
Focus on scalability, performance and reliability filesystem

Drawback: introduces noticeable space overhead, - - —
especially when used on small devices or partitions. UBI
JFFS2 still makes sense on small MTD partitions.

Implements logical volumes on top of MTD devices (like
LVM for block devices)

Allows wear leveling to operate on the whole storage,
not only on individual partitions.

http://www.linux-mtd.infradead.org/doc/ubi.html m

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 367/532


http://www.linux-mtd.infradead.org/doc/ubi.html

% UBI (2)

uBl

Logical
Erase Blocks

MTD

Physical
Erase Blocks

Volume 1

Volume 2

LEB

LEB

LEB

LEB

LEB

LEB

LEB

PEB

PEB

Free block

Free block

When there is too much activity on an LEB, UBI can decide to move it to another
PEB with a lower erase count. Even read-only volumes participate to wear leveling!

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

368/532



UBI: d ti
Q@ good practice

o%e]

UBI distributes erases all over the flash device: the more space you assign to a
partition attached to the UBI layer the more efficient wear leveling will be.

If you need partitioning, use UBI volumes, not MTD partitions.
Some partitions will still have to be MTD partitions: e.g. the bootloaders.
U-Boot now even supports storing its environment in a UBI volume!

If you do need extra MTD partitions, try to group them at the beginning of the
flash device (often more reliable area).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 369/532



4% UBI: bad and good practice

UBIFS UBIFS JFFS2 UBIFS
mounted mounted mounted mounted
on / on /myapp on /otherapp on /log
Bootloader (from. (from. (from (from
ubi0:rootfs) ubi0:data) /dev/mtdblockl) ubililog)
UBI volume: UBI volume: UBI volume: UBI volume:
rootfs raw data
MTD UBI device ubi0 MTD UBI device ubil
partition 0 MTD partition 1 partition 2 MTD partition 3
Flash device layout: bad example
UBIFS UBIFS UBIFS UBIFS
mounted mounted mounted mounted
on/ on /myapp on /log on /otherapp
Bootloader (from (from (from (from
ubi0:rootfs) ubi0:data) ubil:log) ubiiotherdata)
UBI volume: UBI volume: UBI volume: UBI volume: UBI volume:
rootfs. raw data log. otherdata
MTD UBI device ubi0
partition 0 MTD partition 1

Flash device layout: good example

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

370/532



60 UBIFS

o%e]

Unsorted Block Images File System
http://www.linux-mtd.infradead.org/doc/ubifs.html

Journaling file system providing better performance than its predecessor (JFFS2)
and addressing its scalability issues

Can be mounted as the root filesystem too
UBIFS filesystem images can be created using mkfs.ubifs from mtd-utils

This image can then be flashed on a volume
or included in a UBI image (ubinize command).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 371/532


http://www.linux-mtd.infradead.org/doc/ubifs.html

ubinize for UBI image creation

Create kernel image Create UBIFS rootfs Create other UBIFS
and dtb: image: images:
make in Linux directory mkfs.ubifs mkfs.ubifs
zlmage board.dtb rootfs.ubifs xxxx.ubifs

ubinize

Create UBI image:

UBI image

Flash UBI image from U-boot or Linux:
nandwrite (Linux)
or
nand write (U-boot)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

372/532



a Linux: Block emulation layers
o)

o%e]

Sometimes needed to use read-only block filesystems such as Squashfs and EROFS

Linux provides two block emulation layers:

mtdblock (CONFIG_MTD_BLOCK): block devices emulated on top of MTD devices.
Named /dev/mtdblockX, one for each partition.
Originally the mount command wanted a block device to mount JFFS2 and YAFFS2.
Don't write to mtdblock devices: bad blocks are not handled!

ubiblock (CONFIG_MTD_UBI_BLOCK): read-only block devices emulated on top of

UBI volumes
Used on static (read-only) volumes
Usually named /dev/ubiblockX_Y, where X is the UBI device id and Y is the UBI
volume id (example: /dev/ubiblocke_3)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 373/532


https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_MTD_BLOCK
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_MTD_UBI_BLOCK

ao Cross-compiling user-space libraries and applications
o0

o%e]

Cross-compiling

user-space libraries and bOOtl N

applications

OO\«

© Copyright 2004-2026, Bootlin. embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 374/532



a@ Integrating user-space libraries and applications
o0

o%e]

One of the advantages of embedded Linux is the wide range of third-party libraries
and applications that one can leverage in its product

There's much more than U-Boot, Linux and Busybox that we can re-use from the
open-source world
Networking, graphics, multimedia, crypto, language interpreters, and more.
Each of those additional software components needs to be cross-compiled and
installed for our target
Including all their dependencies

Which can be quite complex as open-source encourages code re-use

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 375/532



ao Concept of build system

o%e]

Each open-source software project comes with its own set of scripts/files to
control its configuration/compilation: its build system
Detect if system requirements/dependencies are met
Compile all source files, to generate applications/libraries, as well as documentation
Installs build products
Most common build systems:
Hand-written Makefiles
Autotools: autoconf, automake, libtool
https://en.wikipedia.org/wiki/GNU_Autotools
CMake
https://cmake.org/
Meson
https://mesonbuild.com/
Language specific build systems for Python, Perl, Go, Rust, NodelJS, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

376/532


https://en.wikipedia.org/wiki/GNU_Autotools
https://cmake.org/
https://mesonbuild.com/

a@ Target and staging spaces

o%e]

When manually cross-compiling software, we will distinguish two “copies” of the
root filesystem
The target root filesystem, which ends up on our embedded hardware, which
contains only what is needed for runtime
The staging space, which has a similar layout, but contains a lot more files than the
target root filesystem: headers, static libraries, documentation, binaries with
debugging symbols. Contains what's needed for building code.

Indeed, we want the root filesystem on the target to be as minimal as possible.

needed for further
compilations

Sources ) Build space ) Target space
make install copy -+ strip
(only files needed at runtime)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 377/532



ao Cross-compiling with hand-written Makefiles

o%e]

There is no general rule, as each project has a different set of Makefiles, that use
a different set of variables

Though it is common to use make standard variables: CC (C compiler path), CXX
(C++ compiler path), LD (linker path), CFLAGS (C compiler flags), CXXFLAGS
(C++ compiler flags), LDFLAGS (linker flags)

DESTDIR for installation destination, sometimes PREFIX for execution location

Common sequence

$ make CC=arm-linux-gcc CFLAGS=-I/path/to/headers \
LDFLAGS=-L/path/to/libraries
$ make DESTDIR=/installation/path install

Need to read the documentation (if any), read the Makefiles, and adapt to their
behavior.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 378/532



Q} Example: uftp native compilation

Download and extract Look at installed files
$ wget http://sourceforge.net/projects/uftp-multicast/files/\ $ tree /tmp/test
source-tar/uftp-5.0.tar.gz /tmp/test/
$ tar xf uftp-5.0.tar.gz usr
$ cd uftp-5.0 bin
uftp
uftpd
Build and install C...]
share
$ make man
cc -g -Wall -Wextra [...] -c server_announce.c man1
[...] uftp.1
cc -g -Wall -Wextra -o uftp uftp_common.o encrypt_openssl.o \ [...]
server_announce.o [...] server_main.o \
-1m -lcrypto -lpthread $ file /tmp/test/usr/bin/uftp
$ make DESTDIR=/tmp/test install /tmp/test/usr/bin/uftp: ELF 64-bit LSB executable, x86-64

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 379/532



4@3 Example: uftp cross-compilation

First attempt

$ export PATH=/xtools/gcc-arm-10.3-2021.07-x86_64-arm-none-linux-gnueabihf/bin:$PATH
$ make CC=arm-none-linux-gnueabihf-gcc
[...]

encryption.h:87:10: fatal error: openssl/rsa.h: No such file or directory
> Build fails because uftp uses OpenSSL
P This is an optional dependency that can be disabled using the special make

variable NO_ENCRYPTION

Second attempt

$ make CC=arm-none-linux-gnueabihf-gcc NO_ENCRYPTION=1
arm-none-linux-gnueabihf-gcc -g -Wall -Wextra [...] -c server_announce.c

Locod
arm-none-linux-gnueabihf-gcc -g -Wall -Wextra -o uftp uftp_common.o \
encrypt_none.o server_announce.o [...] -1m -lpthread

$ make DESTDIR=/tmp/target NO_ENCRYPTION=1 install
$ file /tmp/target/usr/bin/uftp
/tmp/target/usr/bin/uftp: ELF 32-bit LSB executable, ARM

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 380/532



4@3 Example: OpenSSL cross-compilation

OpenSSL has a hand-written Configure Installed files
. . $ /tmp/ i
shell script that needs to be invoked before free ftip/staging
- bin
the build. openssl
include
Download/extract openssl
rsa.h
$ wget https://www.openssl.org/source/openssl-1.1.1q.tar.gz [...]
$ tar xf openssl-1.1.1q.tar.gz lib
$ cd openssl-1.1.1q libcrypto.a

libcrypto.so -> libcrypto.so.1.1
libcrypto.so.1.1

Configuration /build L...1
pkgconfig
$ CC=arm-none-linux-gnueabihf-gcc ./Configure --prefix=/usr \ libcrypto.pc
linux-generic32 no-asm [...]
$ make share
$ make DESTDIR=/tmp/staging install doc
openssl
man

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 381/532



4@3 Example: uftp with OpenSSL support

$ make CC=arm-none-linux-gnueabihf-gcc
encryption.h:87:10: fatal error: openssl/rsa.h:
No such file or directory

[...]

It cannot find the header, let's add CFLAGS
pointing to where OpenSSL headers are
installed.

$ make CC=arm-none-linux-gnueabihf-gcc \
CFLAGS=-1/tmp/staging/usr/include

[... build OK, but at link time ...]

1d: cannot find -lcrypto

Compilation of object files work, but link fails

as the linker cannot find the OpenSSL library.

Let's add LDFLAGS pointing to where the

OpenSSL libraries are installed.

$ make CC=arm-none-linux-gnueabihf-gcc \
CFLAGS=-1/tmp/staging/usr/include \
LDFLAGS=-L/tmp/staging/usr/lib

[... builds OK! ...]

$ make DESTDIR=/tmp/target install

Now it builds and installs fine!

$ arm-none-linux-gnueabihf-readelf -d /tmp/target/usr/bin/uftp
[...]

0x00000001 (NEEDED) Shared library: [libm.so.6]

0x00000001 (NEEDED) Shared library: [libcrypto.so.1.1]
0x00000001 (NEEDED) Shared library: [libpthread.so.0]
0x00000001 (NEEDED) Shared library: [libc.so.6]

Locod

We can indeed see that uftp is linked against
the libcrypto.so.1.1 shared library.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

382/532



Autotools
o

o%e]

A family of tools, which associated together form a complete and extensible build
system

autoconf is used to handle the configuration of the software package
automake is used to generate the Makefiles needed to build the software package

libtool is used to handle the generation of shared libraries in a system-independent
way

Most of these tools are old and relatively complicated to use

But they are used by a large number of software components, even though Meson
is gaining significant traction as a replacement today

See also Bootlin Autotools training materials

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 383/532


https://bootlin.com/doc/training/autotools/

automake / autoconf / autoheader

autoconf
> configure

configure.in

N . :
P» config.h.in
autoheader

automake

Makefile.am

Written by the |
developer

| Makefile.in

Generated by the developer
using the autotools

; config.h
./configure
> Makefile

Generated by the user
by running the ./configure script

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

384/532



a automake / autoconf
bdh)

o%e]

Files written by the developer
configure.in describes the configuration options and the checks done at configure
time
Makefile.am describes how the software should be built
The configure script and the Makefile.in files are generated by autoconf and
automake respectively.
They should never be modified directly
Software downloaded as a tarball: usually shipped pre-generated in the tarball
Software downloaded from Git: no pre-generated files under version control, so they
must be generated
The Makefile files are generated at configure time, before compiling
They are never shipped in the software package.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

385/532



a autotools usage: four steps
o)

Jo3e!

Only if needed: generate configure and Makefile.in. Either using autoreconf
tool, or sometimes an autogen. sh script is provided by the package

Configuration: ./configure

./configure --help is very useful

--prefix: execution location

--host: target machine when cross-compiling, if not provided, auto-detected. Also
used as the cross-compiler prefix.

Often --enable-<foo>, --disable-<foo>, --with-<foo>, —--without-<foo> for
optional features.

CC, CXX, CFLAGS, CXXFLAGS, LDFLAGS and many more variables

Build: make
Installation: make install
DESTDIR variable for diverted installation

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 386/532



4@3 Example: can-utils native compilation

Download

$ git clone https://github.com/linux-can/can-utils.git
$ cd can-utils/

$ git checkout v2021.08.0

$ 1s -1 configurex xmakefilex

configure.ac

GNUmakefile.am

No configure and GNUmakefile.in,
autoreconf needed.

Autoreconf

$ autoreconf -i

$ 1s -1 configure* xmakefilex
configure

configure.ac

GNUmakefile.am
GNUmakefile.in

Configuration

$ ./configure --prefix=/usr
$ 1s -1 *makefilex
GNUmakefile

GNUmakefile.am
GNUmakefile.in

We now have the GNUmakefile, we can build
and install.

Build/install

$ make

$ make DESTDIR=/tmp/test install

$ file /tmp/test/usr/bin/candump

/tmp/test/usr/bin/candump: ELF 64-bit LSB executable, x86-64

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

387/532



4@3 Example: can-utils cross-compilation
A

$ export PATH=/xtools/gcc-arm-10.3-2021.07-x86_64-arm-none-linux-gnueabihf/bin: $PATH
$ ./configure --prefix=/usr --host=arm-none-linux-gnueabihf

$ make

$ make DESTDIR=/tmp/target install

$ file /tmp/target/usr/bin/candump

/tmp/target/usr/bin/candump: ELF 32-bit LSB executable, ARM

Note: This is a simple example, as can-utils does not have any dependency other than
the C library, and has a simple configure.ac file.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 388/532



ao CMake

o%e]

https://en.wikipedia.org/wiki/CMake

More modern build system, started in 1999, maintained by a company called
Kitware

Used by Qt 6, KDE, and many projects which didn't like autotools
Perhaps losing traction these days in favor of Meson

Needs cmake installed on your machine

Based on:
CMakelLists.txt files that describe what the dependencies are and what to build

and install
cmake, a tool that processes CMakeLists.txt to generate either Makefiles (default)
or Ninja files (covered later)

Typical sequence, when using the Makefile backend:

cmake .
make
make install

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 389/532


https://en.wikipedia.org/wiki/CMake

4@,‘} Example: cJSON native compilation

Installed files

$ tree /tmp/test

/tmp/test/
Download usr
include

$ git clone https://github.com/DaveGamble/cJSON.git cjson
$ cd cJSON cJSON.h
$ git checkout v1.7.15 1lib64

cmake

cJSON
Configure, build, install cjson. cmake
cJSONConfig. cmake

$ cmake -DCMAKE_INSTALL_PREFIX=/usr . cJSONConfigVersion.cmake
$ make cjson-noconfig.cmake
$ make DESTDIR=/tmp/test install libcjson.so -> libcjson.so.1

libcjson.so.1 -> libcjson.so0.1.7.15
libcjson.so0.1.7.15
pkgconfig

libcjson.pc

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 390/532



4@3 Example: cJSON cross-compilation

cJSON has no dependency on any other library, so cross-compiling it is very easy as
only the C cross-compiler needs to be specified:

$ cmake -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_C_COMPILER=arm-none-linux-gnueabihf-gcc .
$ make

$ make DESTDIR=/tmp/target install

$ file /tmp/target/usr/lib/libcjson.so.1.7.15

/tmp/target/usr/lib/libcjson.s0.1.7.15: ELF 32-bit LSB shared object, ARM

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 391/532



ao CMake toolchain file

o%e]

When cross-compiling with CMake, the number of arguments to pass to specify

the paths to all cross-compiler tools, libraries, headers, and flags can become quite
long.

They can be grouped into a toolchain file, which defines CMake variables
Can then be used with
cmake -DCMAKE_TOOLCHAIN_FILE=/path/to/toolchain-file.txt

Such a toolchain file is commonly provided by embedded Linux build systems:
Buildroot, Yocto, etc.

Facilitates cross-compilation using CMake

https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 392/532


https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html

4@} Meson

https://en.wikipedia.org/wiki/Meson_(software)

>

vVvyyVvyy

The most modern one, written in Python

Gaining big traction in lots of major open-source projects

Processes meson.build + meson_options.txt and generates Ninja files
Ninja is an alternative to make, with much shorter build times

Needs meson and ninja installed on your machine

Meson requires an out-of-tree build: the build directory must be distinct from the
source directory
1. mkdir build
cd build
meson ..
ninja
ninja install

RN

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

393/532


https://en.wikipedia.org/wiki/Meson_(software)

4@3 Example: ipcalc native compilation

Download

$ git clone https://gitlab.com/ipcalc/ipcalc.git
$ cd ipcalc
$ git checkout 1.0.1

Configuration, build, installation

$ mkdir build

$ cd build

$ meson --prefix /usr ..

$ ninja

$ DESTDIR=/tmp/test ninja install

Installed files

$ tree /tmp/test
/tmp/test/
usr
bin
ipcalc

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

394/532



a Meson cross file
o)

o%e]

In a similar manner to CMake's
toolchain file, Meson has a concept of

cross file .
Cross file example
Small text file that contains variable [binaries]

] . . ¢ = 'arm-none-linux-gnueabihf-gcc’
deflnltlons te”|ng Meson a” detaI|S strip = 'arm-none-linux-gnueabihf-strip’
needed for cross-compilation Chost_machine]

system = 'linux’
Can be created manually, or may be cpu_family = 'arm’
cpu = 'cortex-a9’

provided by an embedded Linux build endian = 'little’
systems such as Buildroot or Yocto.

--cross-file option of Meson

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 305/532



4@3 Example: ipcalc cross-compilation

$ cat cross-file.txt

[binaries]
c = 'arm-none-linux-gnueabihf-gcc'’
strip = 'arm-none-linux-gnueabihf-strip’

[host_machine]
system = 'linux’
cpu_family = 'arm
cpu = 'cortex-a9’
endian = 'little’
$ mkdir build-cross

$ cd build-cross

$ meson --cross-file ../cross-file.txt --prefix /usr ..
$ ninja
$
$
/

1

DESTDIR=/tmp/target ninja install
file /tmp/target/usr/bin/ipcalc
tmp/target/usr/bin/ipcalc: ELF 32-bit LSB executable, ARM

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 396/532



ao Distinction between prefix and DESTDIR

o%e]

There is often a confusion between
prefix and DESTDIR

Distinction is very important in Host
cross-compilation context

) 5 Target
pr‘efix: Where the software will be home/tux/rootfs usrybin/aplay

executed from on the target E/home/tux/rootfs usrfbin/arecord
g /home/tux/rootfs usrlrbin/speaker—test

DESTDIR: Where the software iS ?:Z:z;t::;:zzt: Ez:;:ﬁ::slzjﬁ;i/alsaﬁront_Center.wav
installed by the build system : :

installation procedure. Allows to
install in a different place than
prefix, when creating a root

filesystem for a different machine.

DESTDIR  prefix

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 397/532



4@,? pkg-config

> pkg-config is a tool that allows to query a small database to get information on
how to compile programs that depend on libraries

> https://people.freedesktop.org/~dbn/pkg-config-guide.html

> The database is made of .pc files, installed by default in
<prefix>/lib/pkgconfig/.

> pkg-config is often used by autotools, CMake, Meson to find libraries

> By default, pkg-config looks in /usr/lib/pkgconfig for the *.pc files, and
assumes that the paths in these files are correct.

P PKG_CONFIG_LIBDIR allows to set another location for the x.pc files.

P PKG_CONFIG_SYSROOT_DIR allows to prepend a directory to the paths mentioned
in the .pc files and appearing in the pkg-config output.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 398/532


https://people.freedesktop.org/~dbn/pkg-config-guide.html

4@,? pkg-config example for native compilation

$ pkg-config --list-all

openssl OpenSSL - Secure Sockets Layer and cryptography libraries and tools
z1lib z1lib - zlib compression library

blkid blkid - Block device id library

cairo-script cairo-script - script surface backend for cairo graphics library
cairo-pdf cairo-pdf - PDF surface backend for cairo graphics library
xcb-xinput XCB XInput - XCB XInput Extension (EXPERIMENTAL)

libcurl libcurl - Library to transfer files with ftp, http, etc.

[...]

$ pkg-config --cflags --libs openssl

-1ssl -lcrypto

$ pkg-config --cflags --libs cairo-script

-I/usr/include/cairo -I/usr/include/libpng16 -I/usr/include/freetype2 -I/usr/include/harfbuzz
[...] -lcairo -1z

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 309/532



4@,‘} pkg-config example for cross-compilation

Use PKG_CONFIG_LIBDIR

$ export PKG_CONFIG_LIBDIR=/tmp/staging/usr/lib/pkgconfig
$ pkg-config --list-all

openssl OpenSSL - Secure Sockets Layer and cryptography libraries and tools
libssl OpenSSL-1libssl - Secure Sockets Layer and cryptography libraries
libcrypto OpenSSL-libcrypto - OpenSSL cryptography library

$ pkg-config --cflags --libs openssl
-I/usr/include -L/usr/lib -1ssl -lcrypto

The -L/usr/1ib is incorrect, we need to use PKG_CONFIG_SYSROOT_DIR.

Use PKG_CONFIG_SYSROOT_DIR

$ export PKG_CONFIG_SYSROOT_DIR=/tmp/staging/
$ pkg-config --cflags --libs openssl
-I/tmp/staging/usr/include -L/tmp/staging/usr/lib -1ssl -lcrypto

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 400/532



a@ Practical lab - Cross-compiling applications and libraries
o0

o%e]

Time to start the practical lab!

Manual cross-compilation of several
open-source libraries and applications for an
embedded platform.

Learning about common pitfalls and issues, and
their solutions.

This includes compiling alsa-utils package, and
using its speaker-test program to test that
audio works on the target.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 401/532



Embedded system building tools

Embedded system
building tools

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

402/532



A h
Q@ pproaches

o%e]

Three main approaches to build your embedded Linux system:
Cross-compile everything manually from source
Use a binary distribution such as Debian, Ubuntu or Fedora

Use an embedded Linux build system that automates the cross-compilation
process

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 403/532



Approaches pros and cons

Pros

Cons

Building everything manually

Full flexibility
Learning experience

Dependency hell

Need to understand a lot of details
Version compatibility

Lack of reproducibility

Binary distribution
Debian, Ubuntu, Fedora, etc.

Easy to create and extend
Extensive set of packages
Usually excellent security maintenance

Hard to customize

Hard to optimize (boot time, size)

Hard to rebuild the full system from source
Large system

Uses native compilation (slow)

No well-defined mechanism to generate an
image

Lots of mandatory dependencies

Not available for all architectures

Embedded Linux Build systems

Buildroot, Yocto, PTXdist, OpenWrt, etc.

Nearly full flexibility

Built from source: customization and op-
timization are easy

Fully reproducible

Uses cross-compilation

Have embedded specific packages not nec-
essarily in desktop distros

Make more features optional

Not as easy as a binary distribution
Build time

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

404/532



a@ Embedded system building tools

g

Embedded Linux build systems

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



ao Embedded Linux build system:

Jo3e!

Open-source components
(from http, ftp, git, svn, etc.)

In-house components
(from http, ftp, git, svn, etc.)

principle

Embedded Linux
build system

!

» root filesystem
image

>

kernel image
- bootloader
[l .

image(s)

> toolchain

configuration

Building from source — lot of flexibility

Cross-compilation — leveraging fast build machines

Recipes for building components — easy

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

406/532



o%e]

Possible confusion between build system
(Makefiles, autotools, CMake, Meson) and
embedded Linux build systems (Buildroot,
Yocto/OpenEmbedded, OpenWrt, etc.)

Build systems are used by individual software
components, to control the build process of
each source file into a library, executable,
documentation, etc.

Embedded Linux build systems are tools that

orchestrate the build of all software
components one after the other. They invoke

the build system of each software component.

a@ Build systems vs. Embedded Linux build

systems

Buildroot or Yocto

Embedded Linux build system

builds |
>

Busybox

build system:
hand-written
Makefiles

builds |
>

Linux kernel

build system:
hand-written
Makefiles

builds |
>

can-utils

build system:
autotools

builds
>

cJSON

build system:

builds |
>

ipcalc

build system:
meson

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

407/532



a Buildroot: introduction
o)

Allows to build a toolchain, a root filesystem image with many
applications and libraries, a bootloader and a kernel image
Or any combination of the previous items

Supports using uClibc, glibc and musl toolchains, either built by
Buildroot, or external

N\

Rbot

Over 2800 applications or libraries integrated, from basic utilities
to more elaborate software stacks: Wayland, GStreamer, Qt,
Gtk, WebKit, Python, PHP, NodelS, Go, Rust, etc.

Good for small to medium size embedded systems, with a fixed
set of features

No support for generating packages (.deb or .1ipk)
Needs complete rebuild for most configuration changes.

ulLd

Making "Embedded Linux Easy

ﬂ:‘

Active community, releases published every 3 months. One LTS
release made every year (YYYY.02 so far).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 408/532



4@,‘3 Buildroot: configuration and build

» Configuration takes place through a *config
interface similar to the kernel
make menuconfig
> Allows to define
¢ Architecture and specific CPU
Toolchain configuration
Set of applications and libraries to integrate
Filesystem images to generate
Kernel and bootloader configuration
» Build:
make

> Useful build results in output/images/

Butldroot 2622.11 Conflguratis

Arron keys navigate the nenu.  <Enters selects subnenus ---> (o enpty subnenus
Highighted R o (i, Prassing <t sele(!s a feature, while <

crclnies s Festure, prect <taeoiee o et S Tor Relpe 2/2 for Sestch: Lesend:

] e 6 e 1 o] s 6 Gt

def te(tad check the content of the nenu below =+
Leascy contis ot

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

409/532



60 Buildroot: adding a new package

o%e]

A package allows to integrate a user application or library to Buildroot
Can be used to integrate

Additional open-source libraries or applications

But also your own proprietary libraries and applications — fully integrated build
process

Each package has its own directory (such as package/jose). This directory
contains:
A Config.in file (mandatory), describing the configuration options for the package.
At least one is needed to enable the package. This file must be sourced from
package/Config.in
A jose.mk file (mandatory), describing how the package is built.

A jose.hash file (optional, but recommended), containing hashes for the files to
download, and for the license file.

Patches (optional). Each file of the form *.patch will be applied as a patch.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 410/532



4@3 Buildroot: adding a new package, Config.in

package/jose/Config.in

config BR2_PACKAGE_JOSE

bool "jose"

depends on BR2_TOOLCHAIN_HAS_THREADS

select BR2_PACKAGE_ZLIB

select BR2_PACKAGE_JANSSON

select BR2_PACKAGE_OPENSSL

help
C-language implementation of Javascript Object Signing and
Encryption.

https://github.com/latchset/jose

package/Config.in

[...]
source "package/jose/Config.in”
[...]

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 411/532



4@} Buildroot: adding new package, .mk file

package/jose/jose.mk

JOSE_VERSION = 11

JOSE_SOURCE = jose-$(JOSE_VERSION).tar.xz

JOSE_SITE = https://github.com/latchset/jose/releases/download/v$(JOSE_VERSION)
JOSE_LICENSE = Apache-2.0

JOSE_LICENSE_FILES = COPYING

JOSE_INSTALL_STAGING = YES

JOSE_DEPENDENCIES = host-pkgconf zlib jansson openssl

$(eval $(meson-package))

> The package directory and the prefix of all variables must be identical to the suffix
of the main configuration option BR2_PACKAGE _JOSE

> The meson-package infrastructure knows how to build Meson packages. Many
other infrastructures exist, for different build systems

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 412/532



‘Gb Buildroot resources
q

Buildroot

Making Embedded Linu:

Buildroot s a simple, efficient and easy-to-
use tool to generate embedded Linux
systems through cross-compllation

» Official site: https://buildroot.org/
» Buildroot manual: https://buildroot.org/ O at @
downloads/manual/manual.html ‘ g :

» Complete Buildroot system development
training course from Bootlin
® https://bootlin.com/training/buildroot/
® Freely available training materials

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 413/532


https://buildroot.org/
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://bootlin.com/training/buildroot/

a@ Yocto Project / OpenEmbedded

o%e]

OpenEmbedded

Started in 2003

Goal is to build custom Linux distributions for
embedded devices

Back then, no stable releases, limited/no

YOCTO PROJECT (YP)

documentation, difficult to use for products ok bl apan soree
Yocto PI’OJeCt ;"ubriE;ee;erence maintains validated open

Started in 2011 cpr st

By the Linux Foundation o emassas

Goal is to industrialize OpenEmbedded CEEEEED

Funds the development of OpenEmbedded,
makes regular stable releases, QA effort,
extensive documentation

One Long Term Support release every 2 years,
supported for 4 years.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 414/532



‘Gb Yocto Project overview

User
Configuration

Meta
(.bb + patches)

Machine BSP
Configuration

Policy
Configuration

Upstream
Project
Releases

Source
Fetching

Patch
Application

Config/
Compile/
Autoconf
as needed

Local
Projects

Source Materials

‘Qutput
Analysis for
package
splitting plus
package
relationships

SCMs
(optional)

.deb
generation

rpm
generation

ek
generation

Open Embedded Architecture Workflow

Upstream Source . Output Packages
Metadata/Inputs Process Steps (tasks)
Build System . Output Image Data

Image SDK
Generation ~ Generation

Tests

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

415/532



a Yocto Project concepts
o)

o%e]

Terminology
Layer: Git repository containing a collection of recipes, machines, etc.
Recipe: metadata that describes how to build a particular software component, the
contents of an image to generate
Machine: a specific hardware platform
bitbake: the orchestration tool that processes recipes to generate the final products

Yocto/OpenEmbedded generate a distribution

For each recipe, it produces one or several binary packages (deb, rpm, ipk)
A selection of these binary packages are installed to create a root filesystem image

that can be flashed
The other packages can be installed at runtime on the system using a package

management system: apt, dnf, opkg

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 416/532



Q@ Public layers (1/2)

o%e]

Core layers

bitbake, not really a layer, but the core build orchestration tool
openembedded-core, the very core recipes, to build the most common software
packages: Linux, BusyBox, toolchain, systemd, mesa3d, X.org, Wayland
bootloaders. Supports only QEMU machines.

poky, a layer from the Yocto Project that combines openembedded-core, bitbake,
that defines the Poky distribution, a reference distribution. Supports a few more
machines. In practice not useful for real projects.

meta-openembedded, community maintained additional recipes from the
OpenEmbedded project

BSP layers, provided by HW vendors or the community, to support additional
hardware platforms: recipes for building custom Linux kernel, bootloaders, for
HW-related software components
meta-intel, meta-arm, meta-ti, meta-xilinx, meta-freescale, meta-atmel,
meta-st-stm32mp, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 417/532


https://git.openembedded.org/bitbake/
https://git.openembedded.org/openembedded-core
https://git.yoctoproject.org/poky/
http://cgit.openembedded.org/meta-openembedded/
https://git.yoctoproject.org/meta-intel/
https://git.yoctoproject.org/meta-arm/
https://git.yoctoproject.org/meta-ti/
https://git.yoctoproject.org/meta-xilinx/
https://git.yoctoproject.org/meta-freescale/
https://github.com/linux4sam/meta-atmel
https://github.com/STMicroelectronics/meta-st-stm32mp

ao Public layers (2/2)

o%e]

Additional software layers: recipes for building additional software components,
not in openembedded-core

meta-qt6, meta-virtualization, meta-rauc, meta-swupdate, etc.
Layer index: https://layers.openembedded.org/
Each layer normally has a branch matching the Yocto release you're using

Not all layers have the same level of quality/maintenance: third-party layers are
not necessarily reviewed by OpenEmbedded experts.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 418/532


https://code.qt.io/cgit/yocto/meta-qt6.git/
https://git.yoctoproject.org/meta-virtualization
https://github.com/rauc/meta-rauc
https://github.com/sbabic/meta-swupdate
https://layers.openembedded.org/

a Combine layers
o)

o%e]

For your project, you will typically combine a number of public layers
At least the openembedded-core layer
Possibly one or several BSP layers
Possibly one or several additional software layers
And you will create your own layer, containing recipes for:
Machine definitions for your custom hardware platforms
Image/distro definitions for your custom system(s)
Recipes for your custom software
A tool is often used to automate the retrieval of the necessary layers, at the right
version
Google repo tool, the Yocto-specific Kas utility

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 419/532


https://gerrit.googlesource.com/git-repo/
https://kas.readthedocs.io

4@} Yocto quick start: STM32MP1 example

Download bitbake and layers

$ git
$ git
$ git
$ git
$ git
$ git

clone https://git.openembedded.org/openembedded-core

-C openembedded-core checkout e67d659847af

clone https://git.openembedded.org/meta-openembedded

-C meta-openembedded checkout 4052c97dc83d

clone https://git.openembedded.org/bitbake -b 2.0

clone https://github.com/STMicroelectronics/meta-st-stm32mp.git \

-b openstlinux-5.15-yocto-kirkstone-mp1-v23.07.26

Note: we're not using a tool such as repo or Kas here, we are fetching each layer
manually.

Enter the build environment

$ source openembedded-core/oe-init-build-env

This automatically enters a directory called build/, with a few files/directories already
prepared.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 420/532



4@} Yocto quick start: STM32MP1 example

Configure layers: conf/bblayers.conf

BBLAYERS ?= " \
/path/to/openembedded-core/meta \
/path/to/meta-st-stm32mp \
/path/to/meta-openembedded/meta-oe \
/path/to/meta-openembedded/meta-python \

n

Start the build
$ MACHINE=stm32mp1 bitbake core-image-minimal

> MACHINE=stm32mp1 will build images usable on all STM32MP1 platforms

P core-image-minimal builds a minimal image

Build results

$ 1s tmp-glibc/deploy/images/stm32mp1/

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 421/532



4@3 Yocto recipe example

openembedded-core/tree/meta/recipes-extended/libmnl/1libmnl_1.0.5.bb

SUMMARY = "Minimalistic user-space Netlink utility library”
DESCRIPTION = "Minimalistic user-space library oriented to Netlink developers, providing \
functions for common tasks in parsing, validating, and constructing both the Netlink header and TLVs."
HOMEPAGE = "https://www.netfilter.org/projects/libmnl/index.html"”
SECTION = "libs”
LICENSE = "LGPL-2.1-or-later”
LIC_FILES_CHKSUM = "file://COPYING;md5=4fbd65380cdd255951079008b364516¢"

SRC_URI = "https://netfilter.org/projects/libmnl/files/libmnl-${PV}.tar.bz2"
SRC_URI[sha256sum] = "274b9b919ef3152bfb3da3al3c950dd60d6e2bcd54230f feca298d03b40d0525"

inherit autotools pkgconfig

BBCLASSEXTEND = "native”

> Recipe to build libmnl
> Build system based on autotools — inherit autotools
> Available both for the target and the host — BBCLASSEXTEND = "native”

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 422/532


https://git.openembedded.org/openembedded-core/tree/meta/recipes-extended/libmnl/libmnl_1.0.5.bb
https://www.netfilter.org/projects/libmnl/

Q} Yocto resources
q

> Official website: https://www.yoctoproject.org/

> Release information:
https://wiki.yoctoproject.org/wiki/Releases

> Official documentation:
https://docs.yoctoproject.org/

® Maintained by Bootlin engineers!

» Complete Yocto Project and OpenEmbedded
system development training course from Bootlin

® https://bootlin.com/training/yocto/
® Freely available training materials

4 a=bootlin®

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

423/532


https://www.yoctoproject.org/
https://wiki.yoctoproject.org/wiki/Releases
https://docs.yoctoproject.org/
https://bootlin.com/training/yocto/

a@ Buildroot vs. Yocto: a few key differences

g

What it builds

Yocto: builds a distribution, with binary packages and a package management
system

Buildroot: builds a fixed functionality root filesystem, no binary packages
Note: binary packages are not necessarily a good thing for embedded!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/532



a@ Buildroot vs. Yocto: a few key differences

o%e]

What it builds
Configuration

Yocto: flexible, powerful but complex configuration description
Buildroot: very simple configuration system, but sometimes limited

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/532



a@ Buildroot vs. Yocto: a few key differences

o%e]

What it builds
Configuration

Build strategy
Yocto: complex and heavy logic, but with efficient caching of artifacts and “rebuild
only what's needed” features

Buildroot: simple but somewhat dumb logic, no caching of built artifacts, full
rebuilds needed for some config changes

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/532



a@ Buildroot vs. Yocto: a few key differences

g

What it builds
Configuration
Build strategy
Ecosystem

Yocto: (relatively) small common base in OpenEmbedded, lots of features
supported in third party layers — lots of things, but varying quality
Buildroot: everything in one tree — perhaps less things, but more consistent quality

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/532



a@ Buildroot vs. Yocto: a few key differences

o%e]

What it builds
Configuration

Build strategy

Ecosystem
Complexity/learning curve

Yocto: admittedly steep learning curve, bitbake remains a magic black box for most
people

Buildroot: much smoother and shorter learning curve, the tool is simple to
approach, and reasonably simple to understand

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/532



a@ Buildroot vs. Yocto: a few key differences

o%e]

What it builds
Configuration

Build strategy

Ecosystem
Complexity/learning curve

And also a matter of personal taste/preference, as often when choosing tools

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 424/532



ao OpenWrt

o%e]

Another Embedded Linux build system
Derived from Buildroot a very long time ago
Now completely different, except for the use of Kconfig and make
Targeted at building firmware for WiFi routers and other networking equipments

Unlike Buildroot or Yocto that leave a lot of flexibility to the user in defining the
system architecture, OpenWrt makes a lot of set in stone decisions:

musl is the C library

an OpenWrt specific init system

an OpenWrt specific inter-process communication bus

a Web Ul specific to OpenWrt
The aim of OpenWrt is to build a final product out of the box, with support for
popular networking products and development boards

https://openwrt.org/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 425/532



a@ Embedded system building tools

g

Working with distributions

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 426/532



a Binary distributions
o)

o%e]

Many popular Linux desktop/server distributions have support for embedded
architectures

Debian: ARMv5, ARMv7, ARM64, i386, x86-64, MIPS, PowerPC, RISC-V in
progress

Ubuntu: ARMv7, ARM64, x86-64, RISC-V (initial support), PowerPC64 little-endian
Fedora: ARMv7, ARM64, x86-64, MIPS little-endian, PowerPC64 little-endian,
RISC-V

Some more specialized Linux distributions as well

Raspberry Pi OS, a Debian derivative targeted at RaspberryPi platforms
Alpine Linux, a lightweight distribution, based on musl and Busybox, ARMv7,
ARMG64, i386, x86-64, PowerPC64 little-endian

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 427/532


https://www.debian.org
https://www.ubuntu.com
https://getfedora.org
https://www.raspberrypi.com/software/
https://www.alpinelinux.org/

a Binary distributions pitfalls
o)
Be careful when using a binary distribution on how you create your system image,
and how reproducible this process is
We have seen projects use the following (bad) procedure:
Install a binary distribution manually on their target hardware
Install all necessary packages by hand
Compile the final applications on the target
Tweak configuration files directly on the target
Then duplicate the resulting SD card for all other boards
This process is really bad as:
it is not reproducible
it requires installing many more things on the target than needed (development
tools), increasing the footprint, the attack surface and the maintenance effort
If you end up using a binary distribution in production, make sure you have an
automated and reproducible process to generate the complete image, ready to
flash on your target.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 428/532



4@3 Debian/Ubuntu image building tools
ELBE

>
>
>

E.mbedded L.inux B.uild E.nvironment
Implemented in Python

Uses an XML file as input to describe the
system to generate

Can use pre-built packages from
Debian/Ubuntu repositories, but can also
cross-compile and install additional packages
https://elbe-rfs.org/

Building Embedded Debian and Ubuntu
Systems with ELBE talk

ELBE: automated building of Ubuntu images
for a Raspberry Pi 3B

DebOS
» Debian OS images builder
» Implemented in Go
> Uses a YAML file as input to

describe the system to
generate

Creating Debian-Based
Embedded Systems in the
Cloud Using Debos talk

https://github.com/go-
debos/debos

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

429/532


https://elbe-rfs.org/
https://www.youtube.com/watch?v=BwHzyCGB7As
https://www.youtube.com/watch?v=BwHzyCGB7As
https://bootlin.com/blog/elbe-automated-building-of-ubuntu-images-for-a-raspberry-pi-3b/
https://bootlin.com/blog/elbe-automated-building-of-ubuntu-images-for-a-raspberry-pi-3b/
https://www.youtube.com/watch?v=_NZrSR3prwk
https://www.youtube.com/watch?v=_NZrSR3prwk
https://www.youtube.com/watch?v=_NZrSR3prwk
https://github.com/go-debos/debos
https://github.com/go-debos/debos

a@ Android

o%e]

The obviously highly popular mobile operating system
Uses the Linux kernel
Most of the user-space is completely different from a normal embedded Linux
system
Most components rewritten by Google
bionic C library
Custom init system and device management
Custom IPC mechanism, custom display stack, custom multimedia stack
Custom build system
Android pitfalls for industrial embedded systems
Large footprint, and resource hungry
Complexity and build time
Maintenance issues: difficult to upgrade to newer releases due to increasing hardware
requirements

Embedded Android Training course from Opersys, with freely available training
materials

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 430/532


https://www.opersys.com/training/embedded-android-training/
https://www.opersys.com

ao Automotive Grade Linux, Tizen
od

o%e]

Industry groups collaborate around the creation of embedded Linux distributions
targeting specific markets
These are regular embedded Linux systems, usually based on Yocto, with a selection
of relevant open-source software components
Fund the development of missing features in existing components, or development of
new software components
Automotive Grade Linux
Linux Foundation project
Collaborative open source project that is bringing together automakers, suppliers and
technology companies to accelerate the development and adoption of a fully open
software stack for the connected car
https://www.automotivelinux.org/
Tizen
Linux Foundation project too
Operating system targeting TVs, wearables, phones, in-vehicle infotainment, based
on HTML5 applications.
https://www.tizen.org/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 431/532


https://www.automotivelinux.org/
https://www.tizen.org/

ao Practical lab - System build wi

o%e]

th Buildroot

Time to start the practical lab!

Using Buildroot to rebuild the same basic
system plus a sound playing server (MPD) and
a client to control it (mpc).

Overlaying the root filesystem built by
Buildroot

Driving music playback, directly from the
target, and then remotely through an MPD
client on the host machine.

Analyzing dependencies between packages.

Building evtest and using it to test the
Nunchuk device driver.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

432/532



ao Open source licenses and compliance
o0

o%e]

Open source licenses bOOtI 1N

and compliance

OO\«

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 433/532



ao Open source licenses and compliance
o0

o%e]

Introduction

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 434/532



a Free software vs. open-source
b

o%e]

Free software: term defined by the Free Software Foundation, grants 4 freedoms
Freedom to use
Freedom to study
Freedom to copy
Freedom to modify and distribute modified copies
See https://www.gnu.org/philosophy/free-sw.html
Open Source: term defined by the Open Source Initiative, with 10 criterias
See https://www.opensource.org/docs/osd

Free Software movement insists more on ethics, while Open Source insists more
on the technical advantages

From a freedom standpoint, they are similar.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 435/532


https://www.gnu.org/philosophy/free-sw.html
https://www.opensource.org/docs/osd

a Open source licenses
b

o%e]

All free software/open-source licenses rely on copyright law
Those licenses fall in two main categories

The copyleft licenses
The non-copyleft licenses, also called permissive licenses

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

436/532



o%e]

Non-Copyleft
(BSD, MIT, Apache, X11..)

You can
Use
Modify
Redistribute

You must
Provide license text
Attribution

a@ Non-Copyleft VS Copyleft licenses

Copyleft
(GPL, LGPL, AGPL..)

You can
Use
Modify
Redistribute

You must
Provide license text
Attribution
Make source code available

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

437/532



What i left
Q@ at I1s copylert

o%e]

The concept of copyleft is to ask for reciprocity in the freedoms given to a user.

You receive software under a copyleft license and redistribute it, modified or not
— you must do so under the same license

Same freedoms to the new users
Incentive, but no obligation, to contribute back your changes instead of keeping
them secret

Copyleft is not the opposite of copyright!

Non-copyleft licenses have no such requirements: modified versions can be made
proprietary, but they still require attribution

https://en.wikipedia.org/wiki/Copyleft

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 438/532


https://en.wikipedia.org/wiki/Copyleft

ao Open source licenses and compliance
o0

o%e]

Non-copyleft licenses

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 439/532



60 Most common non-copyleft licenses
o0

o%e]

MIT, BSD 2 CLAUSE

Very simple

Require to preserve the copyright notice
BSD 3 CLAUSE

Adds a non-endorsement clause
Apache

More complex
Includes a patent grant, a mechanism to prevent users of the licensed project from
suing others based on patents related to the project

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 440/532


https://en.wikipedia.org/wiki/MIT_License
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://www.apache.org/licenses/LICENSE-2.0

ao Open source licenses and compliance
o0

o%e]

Copyleft licenses

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 441/532



ao GPL: GNU General Public License

o%e]

The flagship license of the GNU project
Used by Linux, BusyBox, U-Boot, Barebox, GRUB, many projects from GNU

Is a copyleft license
Requires derivative works to be released under the same license
Source code must be redistributed, including modifications
If GPL code is integrated in your code, your code must now be GPL-licensed
Only applies when redistribution takes place
Also called strong copyleft license

Programs linked with a library released under the GPL must also be released under

the GPL
Does not prevent GPL programs and non-GPL programs from co-existing in the
same system or to communicate

https://www.gnu.org/licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://en.wikipedia.org/wiki/GNU_General_Public_License

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 442/532


https://www.gnu.org/licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://en.wikipedia.org/wiki/GNU_General_Public_License

60 LGPL: GNU Lesser General Public License

o%e]

Used by glibc, uClibc, and many libraries
Derived from the GPL license

Also a copyleft license

But a weaker copyleft license

Programs linked against a library under the LGPL do not need to be released under
the LGPL and can be kept proprietary.

However, the user must keep the ability to update the library independently from the
program.

Requires using dynamic linking, or in the case of static linking, to provide the object
files to relink with the library

https://www.gnu.org/licenses/lgpl-2.1.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html

https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 443/532


https://www.gnu.org/licenses/lgpl-2.1.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License

a@ GPL/LGPL: redistribution

o%e]

No obligation when the software is not distributed
You can keep your modifications secret until the product delivery
It is then authorized to distribute binary versions, if one of the following
conditions is met:
Convey the binary with a copy of the source on a physical medium
Convey the binary with a written offer valid for 3 years that indicates how to fetch
the source code

Convey the binary with the network address of a location where the source code can
be found

In all cases, the attribution and the license must be preserved

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

444/532



ao GPL/LGPL: version 2 vs version 3

o%e]

GPLv2/LGPLv2 published in 1991, widely used in the open-source world for major
projects
GPLv3/LGPLv3 published in 2007, and adopted by some projects
Main differences
More legalese and definitions to clarify the license
Explicit patent grant
Grace period of 30 days to get back into compliance instead of immediate

termination
Anti-Tivoization clause

Anti-Tivoization
Requirement that the user must be able to run the modified versions on the device
Need to provide installation instructions
Only required for User products, i.e. consumer devices
On-going debate on how strong this requirement is, and how difficult it is to comply
with

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 445/532



a@ GPL: v2, v3, v2 or later, v3 or later

o%e]

Some projects are released under GPLv2 only
Examples: Linux kernel, U-Boot

Some projects are released under GPLv3 only

Some projects are released under GPLv2 or later
The recipient can chose to apply either the terms of GPLv2, GPLv3 or any later
version

Some projects are released under GPLv3 or later
The recipient can chose to apply the terms of GPLv3 or any later version (none of
which exists today)
Examples: GCC, Samba, Bash, GRUB

Note: this logic applies similarly to the LGPL license.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 446/532



a Dual licensing
o)

o%e]

Some companies use a dual licensing business model, mainly for software libraries
Their software is offered under two licenses:
A strong copyleft license, typically GPL, to encourage adoption of the software by

the open-source world, allow the development and distribution of GPL licensed
applications based on this library

A commercial license, offered against a fee, which allows to develop and distribute
proprietary applications based on this library.

Examples: Qt (only parts), MySQL, wolfSSL, Asterisk, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 447/532



a Is this free software?
o)

o%e]

Most of the free software projects are covered by about 10 well-known licenses, so
it is fairly easy for the majority of projects to get a good understanding of the
license

Check Free Software Foundation's opinion
https://www.fsf.org/licensing/licenses/

Check Open Source Initiative's opinion

https://www.opensource.org/licenses

Check the simplified license description on tl;drLegal
https://www.tldrlegal.com

Otherwise, read the license text

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 448/532


https://www.fsf.org/licensing/licenses/
https://www.opensource.org/licenses
https://www.tldrlegal.com

Licensing: examples

Cross-compiler
GPLv3 GPL
(PSEd to D, Apedie 20, Proprieta Proprieta Proprieta application
build target BSD-2c, BSD-3¢ (BT prietary HEETE 2 :
de) P application application application kernel
code application
or bootloader
With caution if
static linking
\ 4
MIT,
LGPL A";ch_ez'i'o' GPL
library BSD-3c' library
library
Host machine Target filesystem
Source code can be kept Source code must be offered
zggrr;e Egdceoca: br?t':\?(itce secret, including your for redistribution, including Not allowed
is neet’jed pyrig modifications, but copyright your modifications. Same
notices are needed license must be preserved.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 449/532



ao Open source licenses and compliance
o0

o%e]

Best practices

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 450/532



a@ Respect free software licenses
o0

o%e]

Free Software is not public domain software, the distributors have obligations due
to the licenses

Before using a free software component, make sure the license matches your
project constraints

Make sure to keep your modifications and adaptations well-separated from the
original version.

Make sure to keep a complete list of the free software packages you use, and the
version in use

Buildroot and Yocto Project can generate this list for you!
Buildroot: make legal-info
Yocto: see the project documentation

Conform to the license requirements before shipping the product to the customers.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 451/532


https://docs.yoctoproject.org/dev-manual/licenses.html#maintaining-open-source-license-compliance-during-your-product-s-lifecycle

a@ Keeping changes separate

o%e]

When integrating existing open-source components in your project, it is
sometimes needed to make modifications to them
Better integration, reduced footprint, bug fixes, new features, etc.
Instead of mixing these changes, it is much better to keep them separate from the
original component version
If the component needs to be upgraded, easier to know what modifications were
made to the component
If support from the community is requested, important to know how different the
component we're using is from the upstream version
Makes contributing the changes back to the community possible
It is even better to keep the various changes made on a given component separate
Easier to review and to update to newer versions

If possible, use the same version control system as the upstream project to
maintain your changes.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 452/532



a@ Overview of major embedded Linux software stacks
o0

o%e]

Overview of major

embedded Linux bOOtIln

software stacks
. Q

© Copyright 2004-2026, Bootlin. embedded Linux and kernel engineering

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 453/532



60 D-Bus

o%e]

Message-oriented middleware mechanism that allows
communication between multiple processes running concurrently
on the same machine

Relies on a daemon to pass messages between applications

Mainly used by system daemons to offer services to client

cat
applications o

Example: a network configuration daemon, running as root, bus
offers a D-Bus API that CLI and GUI clients can use to e
configure networking

(CLI client) (GUI client)

Several busses

One system bus, accessible by all users, for system services
One session bus for each user logged in

Object model: interfaces, objects, methods, signals

https://www.freedesktop.org/wiki/Software/dbus/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 454/532


https://www.freedesktop.org/wiki/Software/dbus/

1
Q@ systemd (1)

o%e]

Modern init system used by almost all Linux desktop/server distributions
Much more complex than Busybox init, but also much more powerful
Only supported with glibc, not with uClibc and Musl

Provides features such as
Parallel startup of services, taking into account dependencies
Monitoring of services
On-demand startup of services, through socket activation
Resource-management of services: CPU limits, memory limits
Configuration based on unit files
Declarative language, instead of shell scripts used in other init systems

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 455/532



2
Q@ systemd (2)

o%e]

Systemd also provides

journald, logging daemon, replacement for syslogd
networkd, network configuration management
udevd, hotplugging and /dev management

logind, login management

systemctl, tool to control/monitor systemd

And many, many other things

https://systemd.io/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

456/532


https://systemd.io/

4@3 systemd service unit file example

/usr/lib/systemd/system /sshd.service

[Unit]

Description=0penSSH server daemon
Documentation=man:sshd(8) man:sshd_config(5)
After=network.target sshd-keygen.service
Wants=sshd-keygen.service

[Servicel]
EnvironmentFile=/etc/sysconfig/sshd
ExecStart=/usr/sbin/sshd -D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process

Restart=on-failure

RestartSec=42s

[Install]
WantedBy=multi-user.target

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 457/532



4@3 Example systemctl/journalctl commands

systemctl status, status of all services
systemctl status <service>, status of one service

systemctl [start|stop] <service>, start or stop a service

vVvyyypwy

systemctl [enable|disable] <service>, enable or disable a service, i.e.
whether it should start at boot time

systemctl list-units, list all available units
journalctl -a, all logs

journalctl -f, show the last entries, and keep printing new entries as they arrive

vvyyypwy

journalctl -u, logs from a particular service

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 458/532



Linux graphics stack overview

| Applications |
| SbL | | at | | Gtk | | Flutter | Graphics toolkits
X11 protocol Wayland protocol
| X.org | | Weston | Display servers
OpenGL, OpenGL ES,
EGL, etc. APIs.
: [Proprietary, vendor-specific
| (D | | fivzEEEl | | OpenGL implementation
User-space
fodev stack s obsolete
—{ [dev/bX [dev/dri/cardX, /dev/dri/renderDX H I

‘ fodev subsystem

DRM subsystem

| Kernel

framebuffer DRM fbdev
driver emulation

=1

DRM display
controller driver

DRM GPU driver

| | Vendor-specific GPU |
2

Display controller

Display panel

Hmware

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

459/532



a Display controller support
o)

o%e]

Deprecated Linux kernel subsystem: fbdev
Still a few old graphics drivers only available in this subsystem
If possible, don't use!
https://en.wikipedia.org/wiki/Linux_framebuffer
Modern Linux kernel subsystem: DRM
Supports display controllers of SoC or graphics cards, and all types of display panels
and bridges: parallel, LVDS, DSI, HDMI, DisplayPort, etc.
Also supports small display panels connected over 12C or SPI
Devices exposed as /dev/dri/cardX
Companion user-space library: 1ibdrm, includes a very handy test tool: modetest
https://en.wikipedia.org/wiki/Direct_Rendering_Manager

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

460/532


https://en.wikipedia.org/wiki/Linux_framebuffer
https://en.wikipedia.org/wiki/Direct_Rendering_Manager

ao GPU support: OpenGL acceleration

o%e]

Open-source
A kernel driver in the DRM subsystem to send commands to the GPU and manage
memory
mesa3d user-space library implementing the various OpenGL APls, contains massive
GPU-specific logic
More and more GPUs supported
https://www.mesa3d.org/

Proprietary

Many embedded GPUs used to be supported only through proprietary blobs —
long-term maintenance issues

A kernel driver provided out-of-tree by the vendor — they are not accepted upstream
if the user-space is closed source

A (huge) closed-source user-space binary blob implementing the various OpenGL
APls

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 461/532


https://www.mesa3d.org/

ao Concept of display servers

o%e]

The Linux kernel does not handle the
multiplexing of the display and input
devices between applications
Only one user-space application can use a
display and a given set of input devices

Display servers are special user-space

applications that multiplex display/input

by:
Allowing multiple client GUI applications
to submit their window contents
Composing the final frame visible on the
screen, based on contents submitted by
applications, window visibility and layering
Propagating input events to the
appropriate clients, based on focus

GUI app GUI app GUI app

Submits window
graphics contents

Display server

Userspace

Submit final
frame for display
Y
DRM subsystem input subsystem
and drivers and drivers

Kernel

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

462/532



X11 X.
Q@ and X.org

o%e]

X.org is the historical display server on UNIX systems, including
Linux

Implements the X11 protocol, used between clients and the
server

UNIX socket for local clients, TCP for remote clients N

On modern Linux, works on top of DRM or fbdev for graphics,
input subsystem for input events

Still maintained, but now legacy.
X11 license

https://www.x.org

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 463/532


https://www.x.org

60 Wayland

o%e]

Communication protocol that specifies the communication
between a display server and its clients, as well as a C library
implementation of that protocol

A display server using the Wayland protocol is called a Wayland
compositor

Modern replacement for the aging X11 protocol
More heavily based on OpenGL technologies
https://wayland. freedesktop.org/

https://en.wikipedia.org/wiki/Wayland_(display_server_
protocol)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 464/532


https://wayland.freedesktop.org/
https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)
https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)

4@3 Wayland compositors

> Weston
® The reference compositor
® https://gitlab.freedesktop.org/wayland/weston
> Mutter, used by the GNOME desktop environment
https://gitlab.gnome.org/GNOME/mutter
> wlroots, a Wayland compositor library, used by

® Cage, a Wayland kiosk-style compositor
https://github.com/Hjdskes/cage

® swayWM, a tiling Wayland compositor
https://swaywm.org/

» And many more
https://wiki.archlinux.org/title/wayland#Compositors

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 465/532


https://gitlab.freedesktop.org/wayland/weston
https://gitlab.gnome.org/GNOME/mutter
https://github.com/Hjdskes/cage
https://swaywm.org/
https://wiki.archlinux.org/title/wayland#Compositors

ao Concept of graphics toolkits

o%e]

The X11 and Wayland protocols are very low-level [hemtcns —
Application | | Application |
protocols
While possible, developing applications directly using Toolkit Toolkit
those protocols or their corresponding client libraries I
. Display
would be painful sorver
Existence of toolkits
Some of them work only on top of a display server: X11 DRM input
or Wayland With a display server
Some of them can work directly on top of DRM +
input, for single full-screen applications
Widget-oriented toolkits, with APIs to create windows, Toolkit
buttons, text fields, drop-down lists, etc.
Game/multimedia-oriented toolkits, with no pre-defined oRt nput
Wldget API Without a display server

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 466/532



{p

>

>

>

Highly popular and well-documented development
framework, providing:

® Core libraries: data structures, event handling, XML,
databases, networking, etc.
® Graphics libraries: widgets and more
Standard API is C4++, but bindings to other languages
available
Works as

® Single application with DRM with OpenGL, or fbdev
with no acceleration
® Multiple applications on top of X11 or Wayland

Multiplatform: Linux, MacOS, Windows.

Somewhat complex licensing, with a mix of LGPLv3,
GPLv2, GPLv3, and an (expensive) commercial license

https://www.qt.io/

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

467/532


https://www.qt.io/

% Gtk

» Toolkit used as the base for the GNOME desktop environment,
the most popular desktop environment for Linux desktop
distributions, but loosing traction in embedded projects.

v

Composed of glib (core library), pango (text handling), cairo
(vector graphics), gtk (widget library)

Standard APl in C, but bindings exist for many languages
Requires a display server: X11 or Wayland
License: LGPLv2

Version 3.x the most deployed currently, 4.x is a new major
release

» Multiplatform: Linux, MacOS, Windows.
> https://www.gtk.org

vvyyy

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 468/532


https://www.gtk.org

4@} Flutter

>
>

Cross-platform Ul application development: Linux, Android, iOS,

Windows, MacOS

Developed and maintained by Google

Applications must be developed using the Dart programming
language

Applications can run in the Dart virtual machine, or be natively
compiled for better performance.

License: BSD-3-Clause
https://flutter.dev

Read our blog post: https://bootlin.com/blog/flutter-nvidia-
jetson-openembedded-yocto/

€ Flutter

100 % / 556 «m

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

469/532


https://flutter.dev
https://bootlin.com/blog/flutter-nvidia-jetson-openembedded-yocto/
https://bootlin.com/blog/flutter-nvidia-jetson-openembedded-yocto/

ao SDL

o%e]

Cross-platform development library designed to provide low level
access to audio, keyboard, mouse, joystick, and graphics

hardware N
Implemented in C, lightweight S 4 /
Does not provide a widget library et

Games, media players, custom Uls

License: zlib license (simple permissive license)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 470/532



4@} Other graphical toolkits

» Enlightenment Foundation Libraries (EFL) / Elementary
Lightweight and very powerful, but a lot less popular
Work on top of X or Wayland.

License: LGPLv2.1
https://www.enlightenment.org/about-efl.md

> LVGL
® Very lightweight, mostly targeted at micro-controllers, but also runs on Linux

® License: MIT
® https://1lvgl.io/

> See https://en.wikipedia.org/wiki/List_of_widget_toolkits

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 471/532


https://www.enlightenment.org/about-efl.md
https://lvgl.io/
https://en.wikipedia.org/wiki/List_of_widget_toolkits

Linux multimedia stack overview

| ffmpeg | | GStreamer | Libraries
| pulseaudio | | jack | pipewire Audio/video servers
audio only audio only audio and video

| alsa-lib | | libval | | libcamera | Base libraries

User-space
/dev/snd... /devivideoX

Kernel

| ALSA subsystem | | VideodLinux subsystem |

| ALSA drivers | | VideoaLinux drivers |
Hardware

l Audio interface ‘ l

Camera interface ‘ l Video encoder/decoder

| mdocodec ||

Comerasenser |

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting,

training and support - https://bootlin

com

472/532



Audi k
Q@ udio stac

o%e]

Kernel-side: the ALSA subsystem, Advanced Linux Sound Architecture

Includes drivers for audio interfaces and audio codecs
Exposes audio devices in /dev/snd/
https://alsa-project.org

Companion user-space library: alsa-lib

Audio servers
Needed when multiple applications share audio devices: mix audio stream, route
audio stream from specific applications to specific devices
JACK: mainly for professional audio
pulseaudio: mainly for regular desktop Linux audio
pipewire: modern replacement for both pulseaudio and JACK, already adopted by
some Linux distributions
https://pipewire.org/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

473/532


https://alsa-project.org
https://pipewire.org/

Vi k
Q@ ideo stac

o%e]

Kernel-side: Video4Linux subsystem, or VAL in short
Supports camera devices: webcams as well as camera interfaces of SoCs and camera
sensors (parallel, CSI, etc.)
Also used to support video encoding/decoding HW accelerators: H264, H265, etc.
Exposes video devices as /dev/videoX
https://www.linuxtv.org/

Traditional user-space library: libv4/

New user-space library, more modern, with many more features, under adoption:
libcamera

Supported in lots of multimedia stacks/software: GStreamer, ffmpeg, VLC, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 474/532


https://www.linuxtv.org/

Q} GStreamer

> Library for constructing graphs of media-handling components

> Allows to create pipelines to transform, convert, stream, display, capture
multimedia streams, both audio and video

» Composed of a vast amounts of plugins: video capture/display, audio
capture/playback, encoding/decoding, scaling, filtering, and more.

> https://gstreamer.freedesktop.org/
> An interesting alternative is ffmpeg

pipeline
B> Vorbis-decoder audio-sink
g @)
file-source ogg-demuxer
AN
= B@a
theora-decoder video-sink
o =1
&) \.
Gstreamer pipeline for a basic ogg player

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 475/532


https://gstreamer.freedesktop.org/

4@,‘3 Further details on Linux graphics and multimedia stacks

Color quantization approaches

» Different approaches exist for color quantization:
* Uniform quantization in the color range (most common)
values are attributed to colors with a regular step (resolution)
* Iegular quantization with indexed colors (palettes)
values are attributed to colors as needed
» Uniform color coordinates are quantized with:
« A given resolution: the smallest possible color difference
- . . . * A given range: the span of representable colors .
» Bootlin's Understanding the Linux graphics W, i o S s . e on 4 st
» A trade-off between range and resolution must be defined
* Increasing the resolution reduces the range

stack training e e e o e o

» Bootlin's Embedded Linux Audio training T —
Anatomy

» Complete courses focused exclusively on those

Digital Audio

topics

soC copEC

> Freely available training materials

Configuration

Example of an embedded system sound card

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 476/532


https://bootlin.com/doc/training/graphics
https://bootlin.com/doc/training/graphics
https://bootlin.com/doc/training/audio

Linux networking stack

| R | | openssh | | samb2 |
o] [omm] [ ]
SR | o | | dhep | | |"§f,3;;'::§<;";:;
EEEE |
wpa_supplicant
o | o ]| |
| iproute2 | | nftables |
[ oo | [ o ]
User-space
- erface for config, through sockets — Socket API
Kernel
| Networing sack |
DSA/switchdev | 802.11 stack |
mac80211
| Switch driver | | Ethernet MAC driver | Ethernet PHY driver | WiFi hardmac driver | WiFi softmac driver | CAN controller driver
Hardware

| Ethernet switch | | Ethernet MAC | | Ethernet PHY | | chip | | Softmac WiFi chip | | CAN controller |

boOotIiN - Kernel, d

ers and embedded Linux - Development, consulting, training and support - https://boot1in. con

477/532



W ible Ul
Q@ eb accessible U

o%e]

Very common in embedded systems to use a Web interface for device
configuration/monitoring

Needs a web server: Busybox httpd for very simple needs, lighttpd, nginx, apache
for more complex needs

Can use PHP, NodelS or other interpreted languages, or simple CGI shell scripts

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 478/532



ao Web browsers: rendering engines
o0

Jo3e!

To add HTML rendering capability to your device

WebKit

Started by Apple, used in iOS, Safari

Open source project: LGPLv2.1 and BSD-2-Clause

https://webkit.org/

Integrated with Gtk: WebKitGTK

Integrated with Qt: QtWebKit

Port optimized for embedded devices: WPE WebKit
Blink

Forked from WebKit

Developed by Google, used in Chrome

https://en.wikipedia.org/wiki/Blink_(browser_engine)

Integrated with Qt: QtWebEngine

Used by Electron

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 479/532


https://webkit.org/
https://webkitgtk.org/
https://wiki.qt.io/Qt_WebKit
https://wpewebkit.org/
https://en.wikipedia.org/wiki/Blink_(browser_engine)
https://wiki.qt.io/QtWebEngine
https://www.electronjs.org/

Q@ Web-based Uls

o%e]

An alternative to native GUI applications is to create a GUI based on Web
technologies

Run a Web browser full-screen, and use popular Web technologies to develop the
application
Some possible options
Cog, a simple launcher for the WPE Webkit port
Electron, a way to package a NodelS application with a web rendering engine, into a
self-contained application
Beware of the footprint and performance impact: a web rendering engine is a
massive and resource-consuming piece of software

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 480/532


https://github.com/Igalia/cog
https://www.electronjs.org/

a Programming languages
o)

o%e]

Wide range of languages and frameworks available, not just C/C++
Beware of footprint and performance implications
Natively compiled languages

Rust

Go

Ada

Fortran
Interpreted languages

Python

Javascript, NodelS

Lua

Shell scripts
Perl, Ruby, PHP

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 481/532



a@ Practical lab - Integration of additional software stacks
o0

o%e]

Integration of systemd as an init system

Use udev built in systemd for automatic
module loading

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 482/532



o%e]

Embedded Linux
application development

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

a@ Embedded Linux application development

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

483/532



Contents
o

o%e]

Application development
Developing applications on embedded Linux
Building your applications

Debugging and analysis tools

Debuggers
Remote debugging
Tracing and profiling

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 484/532



a@ Embedded Linux application development

o%e]

Developing applications on embedded Linux

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



a Application development
o)

o%e]

An embedded Linux system is just a normal Linux system, with usually a smaller
selection of components

In terms of application development, developing on embedded Linux is exactly the
same as developing on a desktop Linux system

All existing skills can be re-used, without any particular adaptation

All existing libraries, either third-party or in-house, can be integrated into the
embedded Linux system
Taking into account, of course, the limitation of the embedded systems in terms of
performance, storage and memory

Application development could start on x86, even before the hardware is available.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 486/532



a@ Leverage existing libraries and languages
o0

o%e]

Many developers getting started with embedded Linux limit themselves to C,
sometimes C++, and the C/C++ standard library.
However, there are a lot of libraries and languages that can help you accelerate
and simplify your application development

Compiled languages like Rust and Go are increasingly popular

Interpreted languages, especially Python

Higher-level libraries: Qt, Glib, Boost, and many more
Make sure to evaluate what is the right choice for your project, but pay attention
to

Footprint and performance on low-end platforms

Use well-maintained and well-known technologies

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 487/532



a@ Building your applications/libraries

o%e]

Even for simple applications or libraries, make use of a build system
CMake
Meson

This will simplify
the build process of your application

the life of developers joining your project
the packaging of your application into an embedded Linux build system

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 488/532


https://cmake.org/
https://mesonbuild.com/

4@3 Getting started with meson

Minimal meson.build
project('example’, 'c')
executable('demo’, 'main.c')

meson.build for multiple programs and source files
project('example’, 'c')

src_demol = ['demol.c', 'fool.c']
executable('demol’, src_demol)
src_demo2 = ['demo2.c', 'foo2.c']
executable('demo2', src_demo2)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 489/532



4@} Options with meson

meson_options. txt

option('demo-debug’, type : 'feature', value :

meson.build

project('tutorial’, 'c')

demo_c_args = []

if get_option('demo-debug’').enabled()
demo_c_args += '-DDEBUG’

endif

'disabled"’)

executable('demo’, 'main.c’', c_args: demo_c_args)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

490/532



4@3 Library dependencies with meson

meson.build

project('tutorial’, 'c’)

gtkdep = dependency('gtk+-3.0")

executable('demo’, 'main.c', dependencies : gtkdep)

The dependency gtk+-3.0 is searched using pkg-config.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 491/532



a@ Embedded Linux application development

o%e]

Debugging

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 492/532



60 GDB: GNU Project Debugger

The debugger on GNU/Linux, available for most embedded
architectures.

Supported languages: C, C++, Pascal, Objective-C, Fortran,
Ada...

Command-line interface
Integration in many graphical IDEs
Can be used to

control the execution of a running program, set breakpoints or
change internal variables
to see what a program was doing when it crashed: post mortem
analysis
https://www.gnu.org/software/gdb/
https://en.wikipedia.org/wiki/Gdb

New alternative: /ldb (https://11db.11lvm.org/)
from the LLVM project.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 493/532


https://www.gnu.org/software/gdb/
https://en.wikipedia.org/wiki/Gdb
https://lldb.llvm.org/

60 GDB crash course (1/3)

o%e]

GDB is used mainly to debug a process by starting it with gdb
$ gdb <program>

GDB can also be attached to running processes using the program PID
$ gdb -p <pid>

When using GDB to start a program, the program needs to be run with
(gdb) run [prog_argl [prog_arg2] ...]

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

494/532



4@3 GDB crash course (2/3)

A few useful GDB commands

> break foobar (b)
Put a breakpoint at the entry of function foobar()

> break foobar.c:42
Put a breakpoint in foobar.c, line 42

» print var, print $reg or print task->files[0].fd (p)
Print the variable var, the register $reg or a more complicated reference. GDB can also
nicely display structures with all their members

» info registers
Display architecture registers

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 495/532



60 GDB crash course (3/3)

o%e]

continue (c)
Continue the execution after a breakpoint

next (n)

Continue to the next line, stepping over function calls

step (s)
Continue to the next line, entering into subfunctions

stepi (si)

Continue to the next instruction
finish

Execute up to function return

backtrace (bt)
Display the program stack

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 496/532



a@ Embedded Linux application development

o%e]

Remote debugging

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 497/532



ao Remote debugging

Jo3e!

In a non-embedded environment, debugging takes place using gdb or one of its
front-ends.

gdb has direct access to the binary and libraries compiled with debugging symbols,
which is often false for embedded systems (binaries are stripped, without
debug_info) to save storage space.

For the same reason, embedding the gdb program on embedded targets is rarely
desirable (2.4 MB on x86).

Remote debugging is preferred

ARCH-1inux-gdb is used on the development workstation, offering all its features.
gdbserver is used on the target system (only 400 KB on arm).

ARCH-1inux-gdb
gdbserver

-

A
Y

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 498/532



g

Host
(build space)

ARCH-1inux-gdb

a@ Remote debugging: architecture

Serial or Ethernet
connection

Target

(root filesystem)

A
\ 4

Binaries and libraries
with debugging
symbols not
stripped

gdbserver

A
Y

Running program
with binaries and
libraries that can be
stripped

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

499/532



4@3 Remote debugging: target setup

> On the target, run a program through gdbserver.
Program execution will not start immediately.
gdbserver :<port> <executable> <args>
gdbserver /dev/ttyS@ <executable> <args>
> Otherwise, attach gdbserver to an already running program:
gdbserver --attach :<port> <pid>
> You can also start gdbserver without passing any program to start or attach (and

set the target program later, on client side):
gdbserver --multi :<port>

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 500/532



4@} Remote debugging: host setup

> Then, on the host, start ARCH-1inux-gdb <executable>,
and use the following gdb commands:
® To tell gdb where shared libraries are:

gdb> set sysroot <library-path> (typically path to build space without 1ib/)
® To connect to the target:

gdb> target remote <ip-addr>:<port> (networking)

gdb> target remote /dev/ttyUSBo (serial link)

m Make sure to replace target remote with target extended-remote if you have
started gdbserver with the --multi option

® |If you did not set the program to debug on gdbserver commandline:

gdb> set remote exec-file <path_to_program_on_target>

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 501/532



ao Coredumps for post mortem analysis
o0 »d
It is sometime not possible to have a debugger attached when a crash occurs
Fortunately, Linux can generate a core file (a snapshot of the whole process
memory at the moment of the crash), in the ELF format. gdb can use this core
file to let us analyze the state of the crashed application
On the target
Use ulimit -c unlimited in the shell starting the application, to enable the
generation of a core file when a crash occurs

The output name and path for the coredump file can be modified using
/proc/sys/kernel/core_pattern (see man 5 core)

Example: echo /tmp/mycore > /proc/sys/kernel/core_pattern
Depending on the system configuration, the core_pattern file may be rewritten
automatically by some software to handle core files or even disable core generation
(eg: systemd)
On the host
After the crash, transfer the core file from the target to the host, and run
ARCH-1inux-gdb application-binary core-file

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 502/532


https://man7.org/linux/man-pages/man5/core.5.html

a minicoredumper
o)

o%e]

Coredumps can be huge for complex applications

minicoredumper is a userspace tool based on the standard core dump feature
Based on the possibility to redirect the core dump output to a user space program
via a pipe

Based on a JSON configuration file, it can:

save only the relevant sections (stack, heap, selected ELF sections)
compress the output file
save additional information from /proc

https://github.com/diamon/minicoredumper

“Efficient and Practical Capturing of Crash Data on Embedded Systems”

Presentation by minicoredumper author John Ogness
Video: https://www.youtube.com/watch?v=q2zmwrglLJGs
Slides: elinux.org/images/8/81/E0ss2023_ogness_minicoredumper.pdf

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 503/532


https://github.com/diamon/minicoredumper
https://www.youtube.com/watch?v=q2zmwrgLJGs
https://elinux.org/images/8/81/Eoss2023_ogness_minicoredumper.pdf

a@ Embedded Linux application development

o%e]

Tracing and profiling

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 504/532



strace

System call tracer - https://strace.io

Available on all GNU/Linux systems
Can be built by your cross-compiling toolchain generator or by
your build system.

Allows to see what any of your processes is doing: accessing files,
allocating memory... Often sufficient to find simple bugs.

Usage:

strace <command> (starting a new process)

strace -f <command> (follow child processes too)

strace -p <pid> (tracing an existing process)

strace -c <command> (time statistics per system call)
strace -e <expr> <command> (use expression for advanced
filtering)

See the strace manual for details

Image credits: https://strace.io/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

505/532


https://strace.io
https://man7.org/linux/man-pages/man1/strace.1.html
https://strace.io/

strace example output

> strace cat Makefile
Co-.]
fstat64(3, {st_mode=S_IFREG|0644, st_size=111585, ...}) = @
mmap2(NULL, 111585, PROT_READ, MAP_PRIVATE, 3, @) = 0xb7f69000
close(3) = @
access("/etc/1d.so.nohwcap”, F_OK) = -1 ENOENT (No such file or directory)
open("/1ib/tls/i1686/cmov/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\320h\1\0004\0\0\0\344" ..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1442180, ...}) = 0@
mmap2(NULL, 1451632, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, @) = 0xb7e06000
mprotect(0xb7f62000, 4096, PROT_NONE) = 0
mmap2 (0xb7f66000, 9840, PROT_READ|PROT_WRITE,
MAP_PRIVATE |MAP_FIXED|MAP_ANONYMOUS, -1, @) = 0xb7f66000

close(3) = @

[...]

openat (AT_FDCWD, "Makefile"”, O_RDONLY) = 3

newfstatat(3, "", {st_mode=S_IFREG|Q644, st_size=173, ...}, AT_EMPTY_PATH) = @

fadvise64(3, 0, 0, POSIX_FADV_SEQUENTIAL) = @

mmap(NULL, 139264, PROT_READ|PROT_WRITE, MAP_PRIVATE |MAP_ANONYMOUS, -1, @) = @x7f7290d28000
read(3, "ifneq ($(KERNELRELEASE),)\nobj-m "..., 131072) = 173

write(1, "ifneq ($(KERNELRELEASE),)\nobj-m "..., 173ifneq ($(KERNELRELEASE),)

Hint: follow the open file descriptors returned by open(). This tells you what files are
handled by further system calls.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 506/532



strace filtering
9o

o%e]

Display only a specific set of system calls:
$ strace -e 'openat,write’ cat Makefile
Filter out specific system calls:
$ strace -e '!poll’ cat Makefile
Show only system calls returning a specific status
$ strace -e 'status=failed’' cat Makefile
Trace how a file is accessed and used among different system calls
$ strace -P '/etc/ld.so.cache' cat Makefile

Run strace --tips to learn new commands !

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 507/532



[trace
5

o%e]

A tool to trace shared library calls used by a program and all the signals it receives
Very useful complement to strace, which shows only system calls.
Of course, works even if you don’t have the sources

Allows to filter library calls with regular expressions, or just by a list of function
names.

With the -S option it shows system calls too!
Also offers a summary with its -c option.
Manual page: https://linux.die.net/man/1/1trace

Works better with glibc. 1trace used to be broken with uClibc (now fixed), and is
not supported with Mus/ (Buildroot 2022.11 status).

See https://en.wikipedia.org/wiki/Ltrace for details

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 508/532


https://linux.die.net/man/1/ltrace
https://en.wikipedia.org/wiki/Ltrace

4@3 ltrace example output

# ltrace ffmpeg -f video4linux2 -video_size 544x288 -input_format mjpeg -i /dev

/video@ -pix_fmt rgb565le -f fbdev /dev/fbo

__libc_start_main([ "ffmpeg”, "-f", "video4linux2", "-video_size"”... ] <unfinished ...
=0

setvbuf (0xb6avec80, nil, 2, @)
av_log_set_flags(1, 0, 1, 0)
strchr("f"”, ':")

strlen(”f")

strncmp("f", "L", 1)
strncmp("f", "h", 1)
strncmp("f", "?", 1)
strncmp("f", "help”, 1)
strncmp("f", "-help”, 1)
strncmp("f", "version”, 1)
strncmp("f", "buildconf”, 1)
strncmp("f", "formats”, 1)
strlen(”formats")
strncmp("f", "muxers”, 1)
strncmp("f", "demuxers”, 1)
strncmp("f", "devices"”, 1)
strncmp("f", "codecs”, 1)

nil
1
26
=2
39
=2
57
-16

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

500/532



4@3 ltrace summary
A

Example summary at the end of the Itrace output (-c option)

% time seconds usecs/call calls function
52.64 5.958660 5958660 1 __libc_start_main
20.64 2.336331 2336331 1 avformat_find_stream_info
14.87 1.682895 421 3995 strncmp
7.17 0.811210 811210 1 avformat_open_input
Q.75 0.085290 584 146 av_freep
0.49 0.055150 434 127 strlen
Q.29 0.033008 660 50 av_log
Q.22 0.025090 464 54 strcmp
0.20 0.022836 22836 1 avformat_close_input
0.16 0.017788 635 28 av_dict_free
0.15 0.016819 646 26 av_dict_get
0.15 0.016753 440 38 strchr
9.13 0.014536 581 25 memset
100.00 11.318773 4762 total

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 510/532



ftrace
5

o%e]

In-kernel tracing functionality
Can trace

Well-defined trace locations in the kernel, called tracepoints, identifying important
events in the kernel: scheduling, interrupts, etc.

Arbitrary functions in the kernel

Arbitrary functions in user-space applications

Low-overhead and optimized tracing
Accessible using the dedicated tracefs filesystem
trace-cmd is a higher-level CLI tool to use ftrace

Can be used to understand overall system activity (what is my system doing?) as
well as narrow down specific performance issues

https://www.kernel.org/doc/Documentation/trace/ftrace. txt

https://www.trace-cmd.org/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 511/532


https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.trace-cmd.org/

4% kernelshark

> Visualization tool for ftrace traces
> https://kernelshark.org/

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 512/532


https://kernelshark.org/

ao perf

o%e]

instrument CPU performance counters, tracepoints, kprobes, and uprobes
Directly included in the Linux kernel source code: tools/perf

Began as a tool for using the performance counters in Linux, and has had various
enhancements to add tracing capabilities

Supports a list of measurable events: hardware events (cycle count, L1 cache
hits/miss, page faults), software events (tracepoints)

https://perf.wiki.kernel.org

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 513/532


https://elixir.bootlin.com/linux/latest/source/tools/perf
https://perf.wiki.kernel.org

4@3 perf examples

>

>

| 4

List all currently known events
perf list

List scheduler tracepoints
perf list 'sched:*'

CPU counter statistics for the specified command
perf stat <command>

CPU counter statistics for the entire system, for 5 seconds
perf stat -a sleep 5

Profiling: sample on-CPU functions for the specified command, at 99 Hertz
perf record -F 99 <command>

Tracing: trace all context-switches via sched tracepoint, until Ctrl-C
perf record -e sched:sched_switch -a

Many more at https://www.brendangregg.com/perf.html

DOOLIIN - Kernel, driver

rs and embedded Linux - Development, consulting, training and support - https://boot1in. com 514/532


https://www.brendangregg.com/perf.html

perf GUI: hotspot

» Hotspot - the Linux perf GUI
for performance analysis

» The main feature of hotspot
is visualizing a perf.data file
graphically

» github.com/KDAB /hotspot

perf.data - Hotspot

File Help Settings
Summary | Bottom Up | Top Down | Flame Graph | Caller / Callee

LR () Bottom-Down View (] Collapse Recursion | Cost Threshold: 0.10%

Search.

134982 samples in total

=
(anonymous n...
| (anonymous n..
(anonymous n..
[ | (anonymous n...
| (anonymous n.

| (anonymous  na...
(anonymous na..

13107 (9.71%) samples in bool __gnu_¢

> >(_gnu_cxx::_normali...

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

515/532


https://github.com/KDAB/hotspot

4@,? gprof

> Application-level profiler

> Part of binutils

> Requires passing gcc -pg option at build/link time

> Run your program normally, it automatically generates a gmon.out file when
exiting

> Use the gprof tool on gmon.out to extract profiling data

> http://sourceware.org/binutils/docs/gprof/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 516/532


http://sourceware.org/binutils/docs/gprof/

4% gprof example

main

$ ./test-gprof % \ 34.03%
$ gprof test-gprof gmon.out
Flat profile:

0/ %6
Each sample counts as 0.01 seconds. (gg:giéz) (gj:gg.—)/g)
% cumulative  self self total 1x 1x
time seconds  seconds calls s/call s/call name
35.31 7.46 7.46 1 7.46 13.92 funcl
34.03 14.65 7.19 1 7.19 7.19 func2
30.57 21.11 6.46 1 6.46 6.46 new_funcl new_funcl
0.09 21.13 0.02 main 30.57%
(30.57%)
[...1 =

Generated with gprof2dot

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 517/532


https://github.com/jrfonseca/gprof2dot

a@ Embedded Linux application development

o%e]

Memory debugging

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com



Valgrind
Qo algrin

o%e]

https://valgrind.org/
instrumentation framework for building dynamic analysis tools

detect many memory management and threading bugs
profile programs

Supported architectures: x86, x86-64, ARMv7, ARMv8, mips32,
s390, ppc32 and ppcb4

Very popular tool especially for debugging memory issues

Runs your program on a synthetic CPU — significant
performance impact (100 x slower on SAMA5D3!), but very
detailed instrumentation

Runs on the target. Easy to build with Yocto Project or
Buildroot.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 519/532


https://valgrind.org/

Valgrind tools
9o

o%e]

Memcheck: detects memory-management problems

Cachegrind: cache profiler, detailed simulation of the I1, D1 and L2 caches in your
CPU and so can accurately pinpoint the sources of cache misses in your code

Callgrind. extension to Cachegrind, provides extra information about call graphs

Massif. performs detailed heap profiling by taking regular snapshots of a
program’s heap

Helgrind: thread debugger which finds data races in multithreaded programs.
Looks for memory locations accessed by multiple threads without locking.

More at https://valgrind.org/info/tools.html

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 520/532


https://valgrind.org/info/tools.html

4@3 Valgrind examples

> Memcheck

@

valgrind --leak-check=yes <program>

==19182== Invalid write of size 4

==19182== at 0x804838F: f (example.c:6)

19182 by 0x80483AB: main (example.c:11)

19182 Address Ox1BA45050 is @ bytes after a block of size 40 alloc'd
==19182== at 0x1B8FF5CD: malloc (vg_replace_malloc.c:130)

19182 by 0x8048385: f (example.c:5)

==19182== by 0x80483AB: main (example.c:11)

> Callgrind

£

valgrind --tool=callgrind --dump-instr=yes --simulate-cache=yes --collect-jumps=yes <program>
$ 1s callgrind.out.*

callgrind.out.1234

$ callgrind_annotate callgrind.out.1234

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 521/532



4% Kcachegrind - Visualizing Valgrind profiling data

callgrind.out.115 [ffmpeg - videoal [devvideoo -pix_fmk rgbsesle -f fodev /dev/fbo] — KCachegrind

File View Go Settings Help

|wgopen.. € Back ~ ) G up ~ [Relative | @ Cycle Detection | Relative to Parent ~ Shorten Templates | Instruction Fetch -
Flat Profile o®

search: |Search Query || (No Grouping) ~ |

Types | Callers | AllCallers | Callee Map | Source Code

Incl. self  called Function Location =
W 9965 000  (0) M 0x00033851 libc.so
9965 002 1 M 0x0003386d libc.so
W 906483096 23 M <cycle 6> libavutil.0.56.51.100
. 8981 0.00 1~ 0x00016ae9 ffmpeg
mw 8981  0.00 1 8 (below main) libc.so
mw 8977 000 1 M 0x00016841 ffmpeg
mw 8977 000 1 5 0x00025631 ffmpeg
8921 000 1 5 0x00025281 ffmpeg ’7 =i
= 8735 0.00 1 = 0x0001f0d1 ffmpeg ’* Er”D
W 5053 000 1 W 0x000281a1 ffmpeg HrCE =l
m 5953 000 1 M 0x0003044d ffmpeg i O R
m 5953 000 1 8 0x0002fc01 ffmpeg e i f rr rrrrr rrrrrnrrrrrrrr rrrm i
2782 000 1 8 0x000275d9 ffmpeg
¥ 2739 000 1 8 0x00027bbS ffmpeg
¥ 2738 000 18 <cycle 7> ffmpeg Ir Irpercall Count Callee
¥ 2659 000 1 8 0x0001bed1 <cycle 7> Ffmpeg W 89.81 13746745 1 8 (below main) (libc.s0)
¥ 2657 000 1 ® av_find_input_format  libavformat.50.58.45.100
Yy 1789 000 1 M 0x00010421 <cycle 6> libavFilter.50.7.85.100
1789 000 1 5 sws_scale
1789 000 1 8 0x00029811
1789 000 1 M 0x00029811°2
¥17.890 1795 1 8 0x0003c045 libswscale 50.5.7.100
11639 000 2m d<cycle6>  libavcodec.s0.58.91.100
11639 000 1m libavcodec.50.58.91.100
11639 000 1. libavcodec.50.58.91.100
116391 772 1. libavcodec.50.58.91.100
I 974 000 18 _dis2b libc.so
' 974 o001 1m_dis3 libc.so
I 910 276 127 dav_mallocz2<cycle6>  libavutil50.56.51.100 ‘ =
| sss 000 3 = 0%0003409 libe.so g allees | CallGraph | AllCallees | CallerMap = Machine Code

callgrind.out.115 [1] - Total Instruction Fetch Cost: 15 306 392

https://github.com/KDE/kcachegrind

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 522/532


https://github.com/KDE/kcachegrind

4% Debugging resources

» Brendan Gregg Systems performance book

» Brendan Gregg Linux Performance page

» Bootlin's "Linux debugging, profiling, tracing and
performance analysis” training course and free
training materials (250 pages):
https://bootlin.com/training/debugging/.

interrupt
OO[E ee us’gr"s’rpr;'é‘lé"e
4 ev'ace-cmd'
0y perf

WﬂmKCachgﬁﬁpQﬁ .ﬁrace
wdebligging

O : .
paniz 3K, D QN 2= € Svmlinux
printkOxe 5 ¢ Fhmembeak

TR 2 Sgdb

>
GEERZ  debugfs

eBPESAN
SySEE!WFUKpmbeS segfault

massif

i

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

523/532


https://www.brendangregg.com/systems-performance-2nd-edition-book.html
https://www.brendangregg.com/linuxperf.html
https://bootlin.com/training/debugging/

ao Practical lab - Application development and debugging

o%e]

Creating an application that uses an
[2C-connected joystick to control an audio
player.

Setting up an IDE to develop and remotely
debug an application.

Using strace, Itrace, gdbserver and perf to
debug/investigate buggy applications on the
embedded board.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 524/532



Useful resources

bootlin

Useful resources

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 525/532



60 Books

038!

Mu‘siering

Embedded Linux

Mastering Embedded Linux Programming, 4th Edition ! Development
By Frank Vasquez, Chris Simmonds, Packt Publishing, May 2025 )
An up-to-date resource covering most aspects of embedded Linux
development.

The Linux Programming Interface 2
Michael Kerrisk (maintainer of Linux manual pages), 2010, No Starch Press PROGRAMMING
A gold mine about Linux system programming e

1
https://www.amazon.com/dp/1803232595
https://man7.org/tlpi/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 526/532


https://www.amazon.com/dp/1803232595
https://man7.org/tlpi/

Web sites
o

o%e]

ELinux.org, https://elinux.org, a Wiki entirely dedicated to embedded Linux.
Lots of topics covered: real-time, filesystems, multimedia, tools, hardware
platforms, etc. Interesting to explore to discover new things.

LWN, https://1lwn.net, very interesting news site about Linux in general, and

specifically about the kernel. Weekly edition, available for free after one week for
non-paying visitors.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 527/532


https://elinux.org
https://lwn.net

a International conferences (1)
bdh)

o%e]

Embedded Linux Conference:

https://embeddedlinuxconference.com/
Organized by the Linux Foundation
Once per year, alternating North America/Europe )

. . . €Embedded Linux
Very interesting kernel and user space topics for embedded ¥ Conference
systems developers. Many kernel and embedded project
maintainers are present.
Presentation slides and videos freely available on
https://elinux.org/ELC_Presentations

Linux Plumbers

https://1lpc.events/

About the low-level plumbing of Linux: kernel, audio, power
management, device management, multimedia, etc.

Not really a conventional conference with formal presentations,
but rather a place where contributors on each topic meet, share
their progress and make plans for work ahead.

i §

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 528/532


https://embeddedlinuxconference.com/
https://elinux.org/ELC_Presentations
https://lpc.events/

a International conferences (2)
bdh)

o%e]

FOSDEM: https://fosdem.org
Brussels (Belgium), February Q
Community-oriented conference, free, during the

Nany de FOSDEM

Many developer rooms, including on low-level,
embedded and hardware topics

Embedded Recipes: https://embedded-recipes.org

Paris (France), September
2-day conference about all embedded Linux topics
Well attended by known contributors

Very affordable conference, thanks to sponsors (like
Veryaf Fmbedded
Most conferences are now also accessible on-line, which ReC | peS

makes them much more affordable.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 529/532


https://fosdem.org
https://embedded-recipes.org

Last slides

bootlin

Last slides

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 530/532



Last slide
o

o%e]

Thank you!
And may the Source be with you

00tliN - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com



Rights t
Q@ ights to copy

o%e]

© Copyright 2004-2026, Bootlin

License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work
Under the following conditions:
Attribution. You must give the original author credit.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 532/532


https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

Extra slides

Extra slides

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

1/2



Linux connectivity stack

Bluetooth

A
v
A

Modem (2G, 3G, 4G, 5G)

v

BlueZ daemon
(D-Bus interface)

ModemManager
(D-Bus interface)

i |
User-space
- Socket API — Socket API /dev/tty* | Socket API — /dev/cdc-wdm — Socket APl — /dev/wwan*
Kernel
Bluetooth stack WWAN stack
| (part of networking stack) | | Net stack | | UART subsystem | (part of networking stack) cdc-wdm | Net stack | WWAN stack
Bluetooth USB Bluetooth UART
| ey | ey | | PPP | USB subsystem | | MHI subsystem |
PCle subsystem
Hardware
Bluetoogh usB Bluetoot‘h UART Old-style UART Old-style USB USB CDC modem FEE G
chip chip modem modem

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

2/2



	About Bootlin
	Generic course information
	Introduction to Embedded Linux
	A few examples of embedded systems running Linux
	Embedded hardware for Linux systems
	Embedded Linux system architecture

	Embedded Linux development environment
	Cross-compiling toolchains
	Definition and Components
	Toolchain Options
	Obtaining a Toolchain

	Bootloaders and firmware
	Introduction
	Booting on x86 platforms
	Booting on embedded platforms
	Bootloaders
	Trusted firmware
	Example boot sequences on ARM
	The U-boot bootloader
	TF-A: Trusted Firmware

	Linux kernel introduction
	Linux versioning scheme and development process
	Linux kernel sources
	Kernel configuration
	Compiling and installing the kernel
	Booting the kernel

	Linux Root Filesystem
	Principle and solutions
	Contents
	Pseudo Filesystems
	Minimal filesystem

	BusyBox
	Accessing hardware devices
	Kernel drivers
	User-space interfaces to drivers
	Using kernel modules
	Describing non-discoverable hardware: Device Tree
	Discoverable hardware: USB and PCI

	Block filesystems
	Block devices
	Available block filesystems
	Using block filesystems

	Flash storage and filesystems
	Cross-compiling user-space libraries and applications
	Embedded system building tools
	Embedded Linux build systems
	Working with distributions

	Open source licenses and compliance
	Introduction
	Non-copyleft licenses
	Copyleft licenses
	Best practices

	Overview of major embedded Linux software stacks
	Embedded Linux application development
	Developing applications on embedded Linux
	Debugging
	Remote debugging
	Tracing and profiling
	Memory debugging

	Useful resources
	Last slides
	Appendix
	Extra slides


