Embedded Linux system

development training

Course duration
(©) 7 half days - 28 hours

Language

Materials English

Oral Lecture English
French
Portuguese

Italian

Trainer

One of the following engineers

= Alexandre Belloni

= Alexis Lothoré

= Antonin Godard

= Grégory Clement

= Jérémie Dautheribes
= Jodo Marcos Costa
= Luca Ceresoli

= Maxime Chevallier
= Mathieu Dubois-Briand
= Miquél Raynal

= Richard Genoud

= Romain Gantois

= Thomas Petazzoni

Contact

@ training@bootlin.com
() +33 484 258 097

bootlin

boot1lin.com

People developing devices using the Linux kernel
People supporting embedded Linux system developers.

Training objectives

= Be able to understand the overall architecture of Embedded Linux systems.

= Be able to choose, build, setup and use a cross-compilation toolchain.

= Be able to understand the booting sequence of an embedded Linux system, and to
set up and use the U-Boot bootloader.

= Be able to select a Linux kernel version, to configure, build and install the Linux
kernel on an embedded system.

= Be able to create from scratch a Linux root filesystem, including all its elements:
directories, applications, configuration files, libraries.

= Be able to choose and setup the main Linux filesystems for block and flash storage
devices, and understand their main characteristics.

= Be able to interact with hardware devices, configure the kernel with appropriate
drivers and extend the Device Tree

= Be able to select, cross-compile and integrate open-source software components
(libraries, applications) in an Embedded Linux system, and to handle license com-
pliance.

= Be able to setup and use an embedded Linux build system, to build a complete
system for an embedded platform.

= Be able to develop and debug applications on an embedded Linux system.

» Knowledge and practice of UNIX or GNU/Linux commands: participants must
be familiar with the Linux command line. Participants lacking experience on this
topic should get trained by themselves, for example with our freely available on-line
slides.

= Minimal English language level: B1, according to the Common European Frame-
work of References for Languages, for our sessions in English. See the CEFR grid
for self-evaluation.

Pedagogics

= Lectures delivered by the trainer, over video-conference. Participants can ask ques-
tions at any time.

= Practical demonstrations done by the trainer, based on practical labs, over video-
conference. Participants can ask questions at any time. Optionally, participants
who have access to the hardware accessories can reproduce the practical labs by
themselves.

= Instant messaging for questions between sessions (replies under 24h, outside of
week-ends and bank holidays).

= Electronic copies of presentations, lab instructions and data files. They are freely
available here.

Certificate

Only the participants who have attended all training sessions, and who have scored over
50% of correct answers at the final evaluation will receive a training certificate from
Bootlin.

Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

https://bootlin.com/blog/command-line/
https://bootlin.com/blog/command-line/
https://bootlin.com/pub/training/cefr-grid.pdf
https://bootlin.com/doc/training/embedded-linux
mailto:training@bootlin.com
mailto:training@bootlin.com
https://bootlin.com/company/staff/alexandre-belloni/
https://bootlin.com/company/staff/alexis-lothore/
https://bootlin.com/company/staff/antonin-godard/
https://bootlin.com/company/staff/gregory-clement/
https://bootlin.com/company/staff/jeremie-dautheribes/
https://bootlin.com/company/staff/joaomarcos-costa/
https://bootlin.com/company/staff/luca-ceresoli/
https://bootlin.com/company/staff/maxime-chevallier/
https://bootlin.com/company/staff/mathieu-dubois-briand/
https://bootlin.com/company/staff/miquel-raynal/
https://bootlin.com/company/staff/richard-genoud/
https://bootlin.com/company/staff/romain-gantois/
https://bootlin.com/company/staff/thomas-petazzoni/
mailto:training@bootlin.com
https://bootlin.com

Required equipement

Mandatory equipment:

= Computer with the operating system of your choice, with the Google Chrome or Chromium browser for videoconferencing.
= Webcam and microphone (preferably from an audio headset).
» High speed access to the Internet.

Optionnally, if the participants want to be able to reproduce the practical labs by themselves, they must separately purchase the
hardware platform and accessories, and must have a PC computer with a native installation of Ubuntu Linux 24.04.

Hardware platform for practical labs

STM32MP1 Discovery Kit

One of these Discovery Kits from STMi-
croelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-
DK2 or STM32MP157F-DK2

= STM32MP157, dual Cortex-A7 processor

from STMicroelectronics

= USB powered

= 512 MB DDR3L RAM

= Gigabit Ethernet port

= 4 USB 2.0 host ports

= 1 USB-C OTG port

= 1 Micro SD slot

= On-board ST-LINK/V2-1 debugger

= Arduino compatible headers

» Audio codec, buttons, LEDs

= LCD touchscreen (DK2 kits only)

BeagleBone Black

BeagleBone Black or BeagleBone Black
Wireless board
= An ARM AM335x (single Cortex-A8) pro-
cessor from Texas Instruments
= USB powered
= 512 MB of RAM
= 2 or 4 GB of on-board eMMC storage
= USB host and device
= HDMI output
= 2 x 46 pins headers, to access UARTs, SPI
buses, 12C buses and more.
= Ethernet or WiFi

BeaglePlay

BeaglePlay board

= Texas Instruments AM625x (4xARM
Cortex-A53 CPU)

= SoC with 3D acceleration, integrated
MCU and many other peripherals.

= 2 GB of RAM

= 16 GB of on-board eMMC storage

= USB host and USB device, microSD,
HDMI

» 2.4 and 5 GHz WiFi, Bluetooth and also
Ethernet

= 1 MicroBus Header (SPI, 12C, UART, ...),
OLDI and CSI connector.

NXP i.MX93 FRDM

NXP FRDM-IMX93 development board

= NXP i.MX93 SoC (Dual Cortex-A55 +
Cortex-M33)

» 2 GB LPDDR4X, 32 GB eMMC

= Dual Gigabit Ethernet

= USB 2.0 Type-C + USB Type-A

= CAN interface

= MicroSD slot, EEPROM

= Wi-Fi 6 + Bluetooth 54 + 802.15.4
(MAYA-W276)

= HDMI output (via LVDS), MIPI DSI and
Csl

» Audio jack (MQS), buttons and LEDs

» SWD and UART debug

Training Schedule

Advantages of Linux versus traditional embedded operating systems.
Typical hardware platforms used to run embedded Linux systems.
Overall architecture of embedded Linux systems: overview of the ma-
jor software components.

Development environment for Embedded Linux development.

What's inside a cross-compiling toolchain

Choosing the target C library

What's inside the C library

Ready to use cross-compiling toolchains

Building a cross-compiling toolchain with automated tools.

Getting and configuring Crosstool-NG
Executing it to build a custom cross-compilation toolchain
Exploring the contents of the toolchain

Booting process of embedded platforms, focus on the x86 and ARM
architectures

Boot process and bootloaders on x86 platforms (legacy and UEFI)
Boot process on ARM platforms: ROM code, bootloaders, ARM
Trusted Firmware

Focus on U-Boot: configuration, installation, and usage.

U-Boot commands, U-Boot environment, U-Boot scripts, U-Boot
generic distro boot mechanism

Set up serial communication with the board.

Configure, compile and install U-Boot for the target hardware.

Only on STM32MP1: configure, compile and install Trusted
Firmware-A

Become familiar with U-Boot environment and commands.

Set up TFTP communication with the board. Use TFTP U-Boot
commands.

Role and general architecture of the Linux kernel

Separation between kernel and user-space, and interfaces between
user-space and the Linux kernel

Understanding Linux kernel versions: choosing between vendor-
provided kernel and upstream kernel, Long Term Support versions
Getting the Linux kernel source code

Clone the mainline Linux tree
Accessing stable releases

Half day 1

Lecture Introduction to embedded Linux

Lecture Cross-compiling toolchain and C
library

Demo Cross compiling toolchain

Lecture Boot process, firmware, bootload-
ers

Half day 2

Demo Bootloader and U-boot

Lecture Linux kernel

Demo Fetching Linux kernel sources

Lecture Configuring, compiling and boot-

ing the Linux kernel

Configuring the Linux kernel: ready-made configuration files, config-
uration interfaces

Concept of Device Tree

Cross-compiling the Linux kernel

Study of the generated files and their role

Installing and booting the Linux kernel

The Linux kernel command line

Demo

Lecture

Kernel cross-compiling and boot-
ing

Root filesystem in Linux

Configuring the Linux kernel and cross-compiling it for the embedded
hardware platform.

Downloading your kernel on the board through U-boot's TFTP client.
Booting your kernel.

Automating the kernel boot process with U-Boot scripts.

Filesystems in Linux.

Role and organization of the root filesystem.

Location of the root filesystem: on storage, in memory, from the
network.

Device files, virtual filesystems.

Contents of a typical root filesystem.

Lecture

BusyBox

Detailed overview. Detailed features.
Configuration, compiling and deploying.

Demo

Lecture

Tiny root filesystem built from
scratch with BusyBox

Accessing hardware devices

Setting up a kernel to boot your system on a workstation directory
exported by NFS

Passing kernel command line parameters to boot on NFS

Creating the full root filesystem from scratch. Populating it with
BusyBox based utilities.

System startup using BusyBox init

Using the BusyBox HTTP server.

Controlling the target from a web browser on the PC host.

Setting up shared libraries on the target and compiling a sample exe-
cutable.

How to access hardware on popular busses: USB, SPI, 12C, PCI
Usage of kernel drivers and direct user-space access

The Device Tree syntax, and how to use it to describe additional
devices and pin-muxing

Finding Linux kernel drivers for specific hardware devices

Using kernel modules

Hardware access using /dev and /sys

User-space interfaces for the most common hardware devices: storage,
network, GPIO, LEDs, audio, graphics, video

Demo

Accessing hardware devices

Exploring the contents of /dev and /sys and the devices available
on the embedded hardware platform.

Using GPIOs and LEDs.

Modifying the Device Tree to control pin multiplexing and to declare
an 12C-connected joystick.

Adding support for a USB audio card using Linux kernel modules
Adding support for the 12C-connected joystick through an out-of-tree
module.

Lecture

Block filesystems

Accessing and partitioning block devices.
Filesystems for block devices.

Usefulness of journaled filesystems.
Read-only block filesystems.

RAM filesystems.

How to create each of these filesystems.
Suggestions for embedded systems.

Demo Block filesystems = Creating partitions on your SD card
= Booting a system with a mix of filesystems: SquashFS for the root
filesystem, ext4 for system data, and tmpfs for temporary system files.
Lecture Flash filesystems = The Memory Technology Devices (MTD) filesystem.
= Filesystems for MTD storage: JFFS2, Yaffs2, UBIFS.
= Kernel configuration options
= MTD storage partitions.
= Focus on today’s best solution, UBI and UBIFS: preparing, flashing
and using UBI images.
Note: as the embedded hardware platform used for the labs does not have
any flash-based storage, this lecture will not be illustrated with a corre-
sponding practical lab.
Lecture Cross-compiling user-space li- = Configuring, cross-compiling and installing applications and libraries.
braries and applications = Concept of build system, and overview of a few common build systems
used by open-source projects: Makefile, autotools, CMake, meson
= Overview of the common issues encountered when cross-compiling.
Demo Cross-compiling applications and = Manual cross-compilation of several open-source libraries and applica-
libraries tions for an embedded platform.
= Learning about common pitfalls and issues, and their solutions.
= This includes compiling alsa-utils package, and using its
speaker-test program to test that audio works on the tar-
get.
Lecture Embedded system building tools = Approaches for building embedded Linux systems: build systems and
binary distributions
= Principle of build systems, overview of Yocto Project/OpenEmbedded
and Buildroot.
= Principle of binary distributions and useful tools, focus on De-
bian/Ubuntu
= Specialized software frameworks/distributions: Tizen, AGL, Android
Demo System build with Buildroot = Using Buildroot to rebuild the same basic system plus a sound playing
server (MPD) and a client to control it (mpc).
= Driving music playback, directly from the target, and then remotely
through an MPD client on the host machine.
= Analyzing dependencies between packages.
Lecture Open source licenses and compli- = Presentation of the most important open-source licenses: GPL, LGPL,
ance MIT, BSD, Apache, etc.
= Concept of copyleft licenses
= Differences between (L)GPL version 2 and 3
= Compliance with open-source licenses: best practices
Lecture Overview of major embedded = systemd as an init system

Linux software stacks

Hardware management with udev

Inter-process communication with D-Bus

The graphics software stack: DRM/KMS, X.org, Wayland, Qt, Gtk,
OpenGL

The multimedia software stack: Video4Linux, GStreamer, Pulseaudio,
Pipewire

Demo

Integration of additional software
stacks

Integration of systemd as an init system
Use udev built in systemd for automatic module loading

Lecture

Application development and de-
bugging

Programming languages and libraries available.

Build system for your application, an overview of CMake and meson
The gdb debugger: remote debugging with gdbserver, post-mortem
debugging with core files

Performance analysis, tracing and profiling tools, memory checkers:
strace, ltrace, perf, valgrind

Demo

Application development and de-
bugging

Creating an application that uses an 12C-connected joystick to control
an audio player.

Setting up an IDE to develop and remotely debug an application.
Using strace, Itrace, gdbserver and perf to debug/investigate buggy
applications on the embedded board.

Lecture

Useful resources

Books about embedded Linux and system programming
Useful online resources
International conferences

