
Buildroot system development training

Buildroot system development
training

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Latest update: January 22, 2026.

Document updates and training details:
https://bootlin.com/training/buildroot

Corrections, suggestions, contributions and translations are welcome!
Send them to feedback@bootlin.com

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/344

https://bootlin.com/training/buildroot
mailto:feedback@bootlin.com

Buildroot system development training

▶ These slides are the training materials for Bootlin’s Buildroot
system development training course.

▶ If you are interested in following this course with an experienced
Bootlin trainer, we offer:

• Public online sessions, opened to individual registration. Dates
announced on our site, registration directly online.

• Dedicated online sessions, organized for a team of engineers
from the same company at a date/time chosen by our customer.

• Dedicated on-site sessions, organized for a team of engineers
from the same company, we send a Bootlin trainer on-site to
deliver the training.

▶ Details and registrations:
https://bootlin.com/training/buildroot

▶ Contact: training@bootlin.com

Icon by Eucalyp, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/344

https://bootlin.com/training/buildroot

About Bootlin

About Bootlin

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/344

Bootlin introduction

▶ Engineering company
• In business since 2004
• Before 2018: Free Electrons

▶ Team based in France and Italy
▶ Serving customers worldwide
▶ Highly focused and recognized expertise

• Embedded Linux
• Linux kernel
• Embedded Linux build systems

▶ Strong open-source contributor
▶ Activities

• Engineering services
• Training courses

▶ https://bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/344

https://bootlin.com

Bootlin engineering services

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/344

Bootlin training courses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/344

Bootlin, an open-source contributor

▶ Strong contributor to the Linux kernel
• In the top 30 of companies contributing to Linux worldwide
• Contributions in most areas related to hardware support
• Several engineers maintainers of subsystems/platforms
• 9000 patches contributed
• https://bootlin.com/community/contributions/kernel-contributions/

▶ Contributor to Yocto Project
• Maintainer of the official documentation
• Core participant to the QA effort

▶ Contributor to Buildroot
• Co-maintainer
• 6000 patches contributed

▶ Significant contributions to U-Boot, OP-TEE, Barebox, etc.
▶ Fully open-source training materials

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/344

https://bootlin.com/community/contributions/kernel-contributions/

Bootlin on-line resources

▶ Website with a technical blog:
https://bootlin.com

▶ Engineering services:
https://bootlin.com/engineering

▶ Training services:
https://bootlin.com/training

▶ LinkedIn:
https://www.linkedin.com/company/bootlin

▶ Elixir - browse Linux kernel sources on-line:
https://elixir.bootlin.com

Icon by Freepik, Flaticon

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/344

https://bootlin.com
https://bootlin.com/engineering
https://bootlin.com/training
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com

Generic course information

Generic course
information

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/344

Beaglebone Black / Beaglebone black wireless shopping list

▶ BeagleBone Black or BeagleBone Black Wireless, from BeagleBoard.org
• Texas Instruments AM335x (ARM Cortex-A8 CPU)
• 512 MB of RAM
• 4 GB of on-board eMMC storage
• Plenty of peripherals and features
• 2 x 46 pins headers, with access to many expansion buses (I2C,

SPI, UART and more)
▶ MicroUSB cable
▶ USB Serial Cable - 3.3 V - Female ends (for serial console) 1

▶ Nintendo Nunchuk with UEXT connector 2

▶ Breadboard jumper wires - Male ends (to connect the Nunchuk) 3

▶ MicroSD card
1
https://www.olimex.com/Products/USB-Modules/Interfaces/USB-SERIAL-F

2
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/

3
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/344

https://beagleboard.org
https://www.olimex.com/Products/USB-Modules/Interfaces/USB-SERIAL-F
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

STM32MP157 shopping list

▶ Discovery Kits from STMicroelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-DK2 or STM32MP157F-DK2 1

• STM32MP157 (Dual Cortex-A7 + Cortex-M4) CPU
• 512 MB DDR3L RAM
• Plenty of periperals: GPIOs, SPI, Serial, USB, ethernet...

▶ MicroUSB cable (to access the serial console)
▶ USB-C to USB-A cable (to power the board)
▶ Nintendo Nunchuk with UEXT connector 2

▶ Breadboard jumper wires - Male ends (to connect the Nunchuk) 3

▶ MicroSD card
▶ RJ45 cable
1Boards documentation: A-DK1, D-DK1, C-DK2, F-DK2
2
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/

3
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/344

https://www.st.com/en/evaluation-tools/stm32mp157a-dk1.html
https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html
https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
https://www.st.com/en/evaluation-tools/stm32mp157f-dk2.html
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

Training quiz and certificate

▶ To get your training certificate you must
1. Attend all sessions of this training course
2. Achieve more than 50% of correct answers at our final quiz

The final quiz questions are identical to the pre-training quiz
The final quiz must be completed within two weeks of the session end’s date

▶ The training certificate will be sent to you two weeks after the session end’s date.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/344

Participate!

During the lectures...
▶ Don’t hesitate to ask questions. Other people in the audience may have similar

questions too.
▶ Don’t hesitate to share your experience too, for example to compare Linux with

other operating systems you know.
▶ Your point of view is most valuable, because it can be similar to your colleagues’

and different from the trainer’s.
▶ In on-line sessions

• Please always keep your camera on!
• Also make sure your name is properly filled.
• You can also use the ”Raise your hand” button when you wish to ask a question but

don’t want to interrupt.
▶ All this helps the trainer to engage with participants, see when something needs

clarifying and make the session more interactive, enjoyable and useful for everyone.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/344

Collaborate!

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
▶ Use the dedicated Matrix channel for this session to add

questions.
▶ If your session offers practical labs, you can also report issues,

share screenshots and command output there.
▶ Don’t hesitate to share your own answers and to help others

especially when the trainer is unavailable.
▶ The Matrix channel is also a good place to ask questions outside

of training hours, and after the course is over.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/344

Practical lab - Training Setup

Prepare your lab environment
▶ Download and extract the lab archive

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/344

Introduction to Embedded Linux

Introduction to
Embedded Linux

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/344

Simplified Linux system architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/344

Overall Linux boot sequence

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/344

Embedded Linux work

▶ BSP work: porting the bootloader and Linux kernel, developing Linux device
drivers.

▶ system integration work: assembling all the user space components needed for
the system, configure them, develop the upgrade and recovery mechanisms, etc.

▶ application development: write the company-specific applications and libraries.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/344

Complexity of user space integration
ALL

toolchain busybox libgtk3 xapp_xkbcomp

xfont_font-aliasxfont_font-cursor-misc xfont_font-misc-misc

xserver_xorg-server

rootfs-tar

toolchain-buildroot

host-gcc-final

glibc

host-gawkhost-gcc-initiallinux-headers

host-automake

host-gettext

host-autoconf

host-libtool

host-m4

host-binutils

host-mpc

host-mpfr

host-gmp

atk

gdk-pixbuf

host-libgtk3 pango

xlib_libXcursor xlib_libXdamage xlib_libXi xlib_libXineramaxlib_libXrandr xlib_libxkbfile

libglib2

host-libglib2

libffi zlibhost-libffi

host-pkgconf

host-zlib

libpng

xlib_libX11

host-xproto_xproto

libxcb xlib_xtransxproto_inputproto xproto_kbprotoxproto_xextprotoxproto_xf86bigfontproto

host-libxslthost-xcb-protolibpthread-stubs xcb-proto xlib_libXauxlib_libXdmcp

host-libxml2host-python

host-expat

xproto_xproto xutil_util-macros

host-gdk-pixbuf

host-libpng

harfbuzz

xlib_libXftcairo

fontconfig

pixman

xlib_libXextxlib_libXrender

expat

freetype

xproto_renderproto

xlib_libXfixes

xproto_fixesproto

xproto_damageproto xproto_xineramaprotoxproto_randrproto

host-xapp_bdftopcfhost-xapp_mkfontdir host-xfont_font-util xfont_font-util

host-xlib_libXfont

host-xfont_encodingshost-xlib_xtrans host-xproto_fontsproto

host-xapp_mkfontscale

host-xutil_util-macros

host-freetype host-xlib_libfontenc

libsha1

mcookie xdata_xbitmaps xkeyboard-config

xlib_libXfont

xlib_libXres xlib_libXxf86vm xproto_bigreqsproto xproto_compositeproto xproto_glproto

xproto_presentproto

xproto_videoprotoxproto_xcmiscproto xproto_xf86dgaproto

host-intltool

host-xapp_xkbcomp

host-libxml-parser-perl

host-xlib_libxkbfile

host-xlib_libX11

host-libxcb host-xproto_inputproto host-xproto_kbproto host-xproto_xextprotohost-xproto_xf86bigfontproto

host-libpthread-stubs

host-xlib_libXau host-xlib_libXdmcp

xfont_encodings

xlib_libfontenc

xproto_fontsproto

xproto_resourceproto xproto_xf86vidmodeproto

host-fakeroot host-makedevs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/344

System integration: several possibilities

Pros Cons
Building everything manually Full flexibility

Learning experience
Dependency hell
Need to understand a lot of details
Version compatibility
Lack of reproducibility

Binary distribution
Debian, Ubuntu, Fedora, etc.

Easy to create and extend Hard to customize
Hard to optimize (boot time, size)
Hard to rebuild the full system from source
Large system
Uses native compilation (slow)
No well-defined mechanism to generate an
image
Lots of mandatory dependencies
Not available for all architectures

Build systems
Buildroot, Yocto, PTXdist, etc.

Nearly full flexibility
Built from source: customization and op-
timization are easy
Fully reproducible
Uses cross-compilation
Have embedded specific packages not nec-
essarily in desktop distros
Make more features optional

Not as easy as a binary distribution
Build time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/344

Embedded Linux build system: principle

▶ Building from source → lot of flexibility
▶ Cross-compilation → leveraging fast build machines
▶ Recipes for building components → easy

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/344

Embedded Linux build system: tools

▶ A wide range of solutions: Yocto/OpenEmbedded, PTXdist, Buildroot,
OpenWRT, and more.

▶ Today, two solutions are emerging as the most popular ones
• Yocto/OpenEmbedded

Builds a complete Linux distribution with binary packages. Powerful, but somewhat
complex, and quite steep learning curve.

• Buildroot
Builds a root filesystem image, no binary packages. Much simpler to use, understand
and modify.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/344

Introduction to Buildroot

Introduction to
Buildroot

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/344

Buildroot at a glance
▶ Can build a toolchain, a rootfs, a kernel, a bootloader
▶ Easy to configure: menuconfig, xconfig, etc.
▶ Fast: builds a simple root filesystem in a few minutes
▶ Easy to understand: written in make, extensive documentation
▶ Small root filesystem, starting at 2 MB
▶ 3200+ packages for user space libraries/apps available
▶ Many architectures supported
▶ Well-known technologies: make and kconfig
▶ Vendor neutral
▶ Active community, regular releases

• The present slides cover Buildroot 2025.02. There may be some differences if you
use older or newer Buildroot versions.

▶ https://buildroot.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/344

https://buildroot.org

Buildroot design goals

▶ Buildroot is designed with a few key goals:
• Simple to use
• Simple to customize
• Reproducible builds
• Small root filesystem
• Relatively fast boot
• Easy to understand

▶ Some of these goals require to not necessarily support all possible features
▶ There are some more complicated and featureful build systems available (Yocto

Project, OpenEmbedded)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/344

Getting Buildroot

▶ Stable Buildroot releases are published every three months
• YYYY.02, YYYY.05, YYYY.08, YYYY.11

▶ Tarballs are available for each stable release
• https://buildroot.org/downloads/

▶ However, it is generally more convenient to clone the Git repository
• Allows to clearly identify the changes you make to the Buildroot source code
• Simplifies the upstreaming of the Buildroot changes
• git clone https://gitlab.com/buildroot.org/buildroot.git
• Git tags available for every stable release.

▶ Long term support releases
• Previously: YYYY.02 releases maintained one year
• New policy starting with 2025.02
• Goal is to maintain it during 3 years
• Security fixes, bug fixes, build fixes
• LTS initiative to fund the maintenance work, sponsoring needed to cover the effort

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/344

https://buildroot.org/downloads/

Using Buildroot

▶ Implemented in make
• With a few helper shell scripts

▶ All interaction happens by calling make in the main Buildroot sources directory.

$ cd buildroot/
$ make help

▶ No need to run as root, Buildroot is designed to be executed with normal user
privileges.

• Running as root is even strongly discouraged!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/344

Configuring Buildroot

▶ Like the Linux kernel, uses Kconfig
▶ A choice of configuration interfaces:

• make menuconfig
• make nconfig
• make xconfig
• make gconfig

▶ Make sure to install the relevant libraries in your system (ncurses for
menuconfig/nconfig, Qt for xconfig, Gtk for gconfig)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/344

Main menuconfig menu

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/344

Running the build

▶ As simple as:

$ make

▶ Often useful to keep a log of the build output, for analysis or investigation:

$ make 2>&1 | tee build.log

▶ Or the helper shell script provided by Buildroot:

$./utils/brmake

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/344

Build results

▶ The build results are located in output/images
▶ Depending on the configuration, this directory will contain:

• One or several root filesystem images, in various formats
• One kernel image, possibly one or several Device Tree blobs
• One or several bootloader images

▶ There is no standard way to install the images on any given device
• Those steps are very device specific
• Buildroot provides some tools to generate SD card / USB key images (genimage) or

directly to flash or boot specific platforms: SAM-BA for Microchip, uuu for NXP
i.MX, OpenOCD, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/344

Practical lab - Basic Buildroot usage

▶ Get Buildroot
▶ Configure a minimal system with Buildroot for

the target hardware
▶ Do the build
▶ Prepare the target hardware for usage
▶ Flash and test the generated system

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/344

Managing the build and the configuration

Managing the build and
the configuration

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/344

Default build organization

▶ All the build output goes into a directory called output/ within the top-level
Buildroot source directory.

• O = output

▶ The configuration file is stored as .config in the top-level Buildroot source
directory.

• CONFIG_DIR = $(TOPDIR)
• TOPDIR = $(shell pwd)

▶ buildroot/
• .config
• arch/
• package/
• output/
• fs/
• ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/344

Out of tree build: introduction

▶ Out of tree build allows to use an output directory different than output/

▶ Useful to build different Buildroot configurations from the same source tree.
▶ Customization of the output directory done by passing O=/path/to/directory on

the command line.
▶ Configuration file stored inside the $(O) directory, as opposed to inside the

Buildroot sources for the in-tree build case.
▶ project/

• buildroot/, Buildroot sources
• foo-output/, output of a first project

.config

• bar-output/, output of a second project
.config

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/344

Out of tree build: using

▶ To start an out of tree build, two solutions:
• From the Buildroot source tree, simplify specify a O= variable:

make O=../foo-output/ menuconfig

• From an empty output directory, specify O= and the path to the Buildroot source
tree:

make -C ../buildroot/ O=$(pwd) menuconfig

▶ Once one out of tree operation has been done (menuconfig, loading a defconfig,
etc.), Buildroot creates a small wrapper Makefile in the output directory.

▶ This wrapper Makefile then avoids the need to pass O= and the path to the
Buildroot source tree.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/344

Out of tree build: example
1. You are in your Buildroot source tree:

$ ls
arch board boot ... Makefile ... package ...

2. Create a new output directory, and move to it:
$ mkdir ../foobar-output
$ cd ../foobar-output

3. Start a new Buildroot configuration:
$ make -C ../buildroot O=$(pwd) menuconfig

4. Start the build (passing O= and -C no longer needed thanks to the wrapper):
$ make

5. Adjust the configuration again, restart the build, clean the build:
$ make menuconfig
$ make
$ make clean

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/344

Full config file vs. defconfig

▶ The .config file is a full config file: it contains the value for all options (except
those having unmet dependencies)

▶ The default .config, without any customization, has 4742 lines (as of Buildroot
2024.02)

• Not very practical for reading and modifying by humans.
▶ A defconfig stores only the values for options for which the non-default value is

chosen.
• Much easier to read
• Can be modified by humans
• Can be used for automated construction of configurations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/344

defconfig: example

▶ For the default Buildroot configuration, the defconfig is empty: everything is the
default.

▶ If you change the architecture to be ARM, the defconfig is just one line:

BR2_arm=y

▶ If then you also enable the stress package, the defconfig will be just two lines:

BR2_arm=y
BR2_PACKAGE_STRESS=y

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/344

Using and creating a defconfig

▶ To use a defconfig, copying it to .config is not sufficient as all the missing
(default) options need to be expanded.

▶ Buildroot allows to load defconfig stored in the configs/ directory, by doing:
make <foo>_defconfig

• It overwrites the current .config, if any
▶ To create a defconfig, run:

make savedefconfig
• Saved in the file pointed by the BR2_DEFCONFIG configuration option
• By default, points to defconfig in the current directory if the configuration was

started from scratch, or points to the original defconfig if the configuration was
loaded from a defconfig.

• Move it to configs/ to make it easily loadable with make <foo>_defconfig.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/344

Existing defconfigs

▶ Buildroot comes with a number of existing defconfigs for various publicly available
hardware platforms:

• RaspberryPi, BeagleBone Black, CubieBoard, Microchip evaluation boards,
Minnowboard, various i.MX6 boards

• QEMU emulated platforms
▶ List them using make list-defconfigs

▶ Most built-in defconfigs are minimal: only build a toolchain, bootloader, kernel
and minimal root filesystem.

$ make qemu_arm_vexpress_defconfig
$ make

▶ Additional instructions often available in board/<boardname>, e.g.:
board/qemu/arm-vexpress/readme.txt.

▶ Your own defconfigs can obviously be more featureful

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/344

Assembling a defconfig (1/2)
▶ defconfigs are trivial text files, one can use simple concatenation to assemble them

from fragments.

platform1.frag
BR2_arm=y
BR2_TOOLCHAIN_BUILDROOT_WCHAR=y
BR2_GCC_VERSION_7_X=y

platform2.frag

BR2_mipsel=y
BR2_TOOLCHAIN_EXTERNAL=y
BR2_TOOLCHAIN_EXTERNAL_CODESOURCERY_MIPS=y

packages.frag
BR2_PACKAGE_STRESS=y
BR2_PACKAGE_MTD=y
BR2_PACKAGE_LIBCONFIG=y

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/344

Assembling a defconfig (2/2)

debug.frag
BR2_ENABLE_DEBUG=y
BR2_PACKAGE_STRACE=y

Build a release system for platform1
$./support/kconfig/merge_config.sh platform1.frag packages.frag
$ make

Build a debug system for platform2
$./support/kconfig/merge_config.sh platform2.frag packages.frag \

debug.frag
$ make

▶ Saving fragments is not possible; it must be done manually from an existing
defconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/344

Other building tips

▶ Cleaning targets
• Cleaning all the build output, but keeping the configuration file:

$ make clean

• Cleaning everything, including the configuration file, and downloaded file if at the
default location:

$ make distclean

▶ Verbose build
• By default, Buildroot hides a number of commands it runs during the build, only

showing the most important ones.
• To get a fully verbose build, pass V=1:

$ make V=1

• Passing V=1 also applies to packages, like the Linux kernel, busybox...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/344

Buildroot source and build trees

Buildroot source and
build trees

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/344

Buildroot source and build trees

Source tree

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/344

Source tree (1/5)

▶ Makefile
• top-level Makefile, handles the configuration and general orchestration of the build

▶ Config.in
• top-level Config.in, main/general options. Includes many other Config.in files

▶ arch/
• Config.in.* files defining the architecture variants (processor type, ABI, floating

point, etc.)
• Config.in, Config.in.arm, Config.in.x86, Config.in.microblaze, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/344

Source tree (2/5)

▶ toolchain/
• packages for generating or using toolchains
• toolchain/ virtual package that depends on either toolchain-buildroot or

toolchain-external
• toolchain-buildroot/ virtual package to build the internal toolchain
• toolchain-external/ virtual package to download/import the external toolchain

▶ system/
• skeleton/ the rootfs skeleton
• Config.in, options for system-wide features like init system, /dev handling, etc.

▶ linux/
• linux.mk, the Linux kernel package

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/344

Source tree (3/5)

▶ package/
• all the user space packages (3200+)
• busybox/, gcc/, qt5/, etc.
• pkg-generic.mk, core package infrastructure
• pkg-cmake.mk, pkg-autotools.mk, pkg-perl.mk, etc. Specialized package

infrastructures
▶ fs/

• logic to generate filesystem images in various formats
• common.mk, common logic
• cpio/, ext2/, squashfs/, tar/, ubifs/, etc.

▶ boot/
• bootloader packages
• at91bootstrap3/, barebox/, grub2/, syslinux/, uboot/, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/344

Source tree (4/5)

▶ configs/
• default configuration files for various platforms
• similar to kernel defconfigs
• atmel_xplained_defconfig, beaglebone_defconfig, raspberrypi_defconfig,

etc.
▶ board/

• board-specific files (kernel configuration files, kernel patches, image flashing scripts,
etc.)

• typically go together with a defconfig in configs/

▶ support/
• misc utilities (kconfig code, libtool patches, download helpers, and more.)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/344

Source tree (5/5)

▶ utils/
• Various utilities useful to Buildroot developers
• brmake, make wrapper, with logging
• docker-run, wrapper to run the build under a Docker container provided by

Buildroot
• get-developers, to know to whom patches should be sent
• test-pkg, to validate that a package builds properly
• scanpipy, scancpan to generate Python/Perl package .mk files
• ...

▶ docs/
• Buildroot documentation
• Written in AsciiDoc, can generate HTML, PDF, TXT versions: make manual
• ≈142 pages PDF document
• Also available pre-generated online.
• https://buildroot.org/downloads/manual/manual.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/344

https://buildroot.org/downloads/manual/manual.html

Buildroot source and build trees

Build tree

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/344

Build tree: $(O)

▶ output/

▶ Global output directory
▶ Can be customized for out-of-tree build by passing O=<dir>

▶ Variable: O (as passed on the command line)
▶ Variable: BASE_DIR (as an absolute path)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/344

Build tree: $(O)/build

▶ output/
• build/

buildroot-config/
busybox-1.22.1/
host-pkgconf-0.8.9/
kmod-1.18/
build-time.log

• Where all source tarballs are extracted
• Where the build of each package takes place
• In addition to the package sources and object files, stamp files are created by

Buildroot
• Variable: BUILD_DIR

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/344

Build tree: $(O)/host

▶ output/
• host/

lib
bin
sbin

<tuple>/sysroot/bin
<tuple>/sysroot/lib
<tuple>/sysroot/usr/lib
<tuple>/sysroot/usr/bin

• Contains both the tools built for the host (cross-compiler, etc.) and the sysroot of
the toolchain

• Variable: HOST_DIR
• Host tools are directly in host/
• The sysroot is in host/<tuple>/sysroot/usr
• <tuple> is an identifier of the architecture, vendor, operating system, C library and

ABI. E.g: arm-unknown-linux-gnueabihf.
• Variable for the sysroot: STAGING_DIR

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/344

Build tree: $(O)/staging

▶ output/
• staging/
• Just a symbolic link to the sysroot, i.e. to host/<tuple>/sysroot/.
• Available for convenience

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/344

Build tree: $(O)/target

▶ output/
• target/

bin/
etc/
lib/
usr/bin/
usr/lib/
usr/share/
usr/sbin/
THIS_IS_NOT_YOUR_ROOT_FILESYSTEM
...

• The target root filesystem
• Usual Linux hierarchy
• Not completely ready for the target: permissions, device files, etc.
• Buildroot does not run as root: all files are owned by the user running Buildroot, not

setuid, etc.
• Used to generate the final root filesystem images in images/
• Variable: TARGET_DIR

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/344

Build tree: $(O)/images

▶ output/
• images/

zImage
armada-370-mirabox.dtb
rootfs.tar
rootfs.ubi

• Contains the final images: kernel image, bootloader image, root filesystem image(s)
• Variable: BINARIES_DIR

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/344

Build tree: $(O)/graphs

▶ output/
• graphs/
• Visualization of Buildroot operation: dependencies between packages, time to build

the different packages
• make graph-depends
• make graph-build
• make graph-size
• Variable: GRAPHS_DIR
• See the section Analyzing the build later in this training.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/344

Build tree: $(O)/legal-info

▶ output/
• legal-info/

manifest.csv
host-manifest.csv
licenses/
sources/
...

• Legal information: license of all packages, and their source code, plus a licensing
manifest

• Useful for license compliance
• make legal-info
• Variable: LEGAL_INFO_DIR

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/344

Toolchains in Buildroot

Toolchains in Buildroot

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/344

What is a cross-compilation toolchain?
▶ A set of tools to build and debug code for a target architecture, from a machine

running a different architecture.
▶ Example: building code for ARM from a x86-64 PC.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/344

Two possibilities for the toolchain

▶ Buildroot offers two choices for the toolchain,
called toolchain backends:

• The internal toolchain backend, where
Buildroot builds the toolchain entirely from
source

• The external toolchain backend, where
Buildroot uses a existing pre-built toolchain

▶ Selected from Toolchain → Toolchain type.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/344

Internal toolchain backend

▶ Makes Buildroot build the entire cross-compilation toolchain from source.
▶ Provides a lot of flexibility in the configuration of the toolchain.

• Kernel headers version
• C library: Buildroot supports uClibc, (e)glibc and musl

glibc, the standard C library. Good choice if you don’t have tight space constraints
(>= 10 MB)
uClibc-ng and musl, smaller C libraries. uClibc-ng supports non-MMU architectures.
Good for very small systems (< 10 MB).

• Different versions of binutils and gcc. Keep the default versions unless you have
specific needs.

• Numerous toolchain options: C++, LTO, OpenMP, libmudflap, graphite, and more
depending on the selected C library.

▶ Building a toolchain takes quite some time: 15-20 minutes on moderately recent
machines.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/344

Internal toolchain backend: result

▶ host/bin/<tuple>-<tool>, the cross-compilation tools: compiler, linker,
assembler, and more. The compiler is hidden behind a wrapper program.

▶ host/<tuple>/
• sysroot/usr/include/, the kernel headers and C library headers
• sysroot/lib/ and sysroot/usr/lib/, C library and gcc runtime
• include/c++/, C++ library headers
• lib/, host libraries needed by gcc/binutils

▶ target/
• lib/ and usr/lib/, C and C++ libraries

▶ The compiler is configured to:
• generate code for the architecture, variant, FPU and ABI selected in the

Target options
• look for libraries and headers in the sysroot
• no need to pass weird gcc flags!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/344

External toolchain backend possibilities

▶ Allows to re-use existing pre-built toolchains
▶ Great to:

• save the build time of the toolchain
• use vendor provided toolchain that are supposed to be reliable

▶ Several options:
• Use an existing toolchain profile known by Buildroot
• Download and install a custom external toolchain
• Directly use a pre-installed custom external toolchain

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/344

Existing external toolchain profile

▶ Buildroot already knows about a wide selection
of publicly available toolchains.

▶ Toolchains from
• ARM (ARM and AArch64)
• Mentor Graphics (AArch64, ARM, MIPS,

NIOS-II)
• Imagination Technologies (MIPS)
• Synopsys (ARC)
• Bootlin

▶ In such cases, Buildroot is able to download
and automatically use the toolchain.

▶ It already knows the toolchain configuration: C
library being used, kernel headers version, etc.

▶ Additional profiles can easily be added.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 68/344

Existing external toolchains: Bootlin toolchains

▶ https://toolchains.bootlin.com
▶ A set of 218 pre-built toolchains, freely

available
• 43 different CPU architecture variants
• All possible C libraries supported: glibc,

uClibc-ng, musl
• Toolchains built with Buildroot!

▶ Two versions for each toolchain
• stable, which uses the default version of gcc,

binutils and gdb in Buildroot
• bleeding-edge, which uses the latest version of

gcc, binutils and gdb in Buildroot
▶ Directly integrated in Buildroot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 69/344

https://toolchains.bootlin.com

Custom external toolchains

▶ If you have a custom external toolchain, for example from your vendor, select
Custom toolchain in Toolchain.

▶ Buildroot can download and extract it for you
• Convenient to share toolchains between several developers
• Option Toolchain to be downloaded and installed in Toolchain origin
• The URL of the toolchain tarball is needed

▶ Or Buildroot can use an already installed toolchain
• Option Pre-installed toolchain in Toolchain origin
• The local path to the toolchain is needed

▶ In both cases, you will have to tell Buildroot the configuration of the toolchain: C
library, kernel headers version, etc.

• Buildroot needs this information to know which packages can be built with this
toolchain

• Buildroot will check those values at the beginning of the build

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/344

Custom external toolchain example configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/344

External toolchain: result

▶ host/opt/ext-toolchain, where the original toolchain tarball is extracted.
Except when a local pre-installed toolchain is used.

▶ host/bin/<tuple>-<tool>, symbolic links to the cross-compilation tools in their
original location. Except the compiler, which points to a wrapper program.

▶ host/<tuple>/
• sysroot/usr/include/, the kernel headers and C library headers
• sysroot/lib/ and sysroot/usr/lib/, C library and gcc runtime
• include/c++/, C++ library headers

▶ target/
• lib/ and usr/lib/, C and C++ libraries

▶ The wrapper takes care of passing the appropriate flags to the compiler.
• Mimics the internal toolchain behavior

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/344

Kernel headers version

▶ One option in the toolchain menu is particularly important: the kernel headers
version.

▶ When building user space programs, libraries or the C library, kernel headers are
used to know how to interface with the kernel.

▶ This kernel/user space interface is backward compatible, but can introduce new
features.

▶ It is therefore important to use kernel headers that have a version equal or older
than the kernel version running on the target.

▶ With the internal toolchain backend, choose an appropriate kernel headers version.
▶ With the external toolchain backend, beware when choosing your toolchain.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/344

Other toolchain menu options

▶ The toolchain menu offers a few other options:
• Target optimizations

Allows to pass additional compiler flags when building target packages
Do not pass flags to select a CPU or FPU, these are already passed by Buildroot
Be careful with the flags you pass, they affect the entire build

• Target linker options
Allows to pass additional linker flags when building target packages

• gdb/debugging related options
Covered in our Application development section later.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 74/344

Managing the Linux kernel configuration

Managing the Linux
kernel configuration

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 75/344

Kernel version
▶ Most packages in Buildroot have a version fixed in their corresponding Buildroot

package
▶ Some packages are more hardware-related, and there is a need to configure their

version in a custom way
• Linux kernel, bootloaders, firmware, etc.

▶ Linux kernel version options:
• Latest version
• Latest CIP SLTS
• Latest CIP RT SLTS
• Custom version
• Custom Git repository
• Custom Mercurial repository
• Custom Subversion repository

▶ Using a custom version is recommended → ensures that upgrading Buildroot
doesn’t imply a change in the kernel version

▶ No relationship between Buildroot version and kernel version
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/344

Kernel version configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/344

Kernel configuration vs. Buildroot configuration

▶ The Linux kernel itself uses kconfig to define its configuration
▶ Buildroot cannot replicate all Linux kernel configuration options in its menuconfig
▶ Defining the Linux kernel configuration therefore needs to be done in a special way.
▶ Note: while described with the example of the Linux kernel, this discussion is also

valid for other packages using kconfig: barebox, uclibc, busybox and uboot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/344

Defining the configuration

▶ In the Kernel menu in menuconfig, 3 possibilities to configure the kernel:
1. Use a defconfig

Will use a defconfig provided within the kernel sources
Available in arch/<ARCH>/configs in the kernel sources
Used unmodified by Buildroot
Good starting point

2. Use a custom config file

Allows to give the path to either a full .config, or a minimal defconfig
Usually what you will use, so that you can have a custom configuration

3. Use the architecture default configuration

Use the defconfig provided by the architecture in the kernel source tree. Some
architectures (e.g ARM64) have a single defconfig.

▶ Configuration can be further tweaked with Additional fragments
• Allows to pass a list of configuration file fragments.
• They can complement or override configuration options specified in a defconfig or a

full configuration file.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/344

Examples of kernel configuration

stm32mp157a_dk1_defconfig: custom configuration file
BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG=y
BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE="board/stmicroelectronics/stm32mp157a-dk1/linux.config"

ts4900_defconfig: standard kernel defconfig
BR2_LINUX_KERNEL_DEFCONFIG="imx_v6_v7"

warpboard_defconfig: standard kernel defconfig + fragment
BR2_LINUX_KERNEL_DEFCONFIG="imx_v6_v7"
BR2_LINUX_KERNEL_CONFIG_FRAGMENT_FILES="board/freescale/warpboard/linux.fragment"

linux.fragment: contains extra kernel options
CONFIG_CFG80211_WEXT=y

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/344

Changing the configuration

▶ Running one of the Linux kernel configuration interfaces:
• make linux-menuconfig
• make linux-nconfig
• make linux-xconfig
• make linux-gconfig

▶ Will load either the defined kernel defconfig or custom configuration file, and start
the corresponding Linux kernel configuration interface.

▶ Changes made are only made in $(O)/build/linux-<version>/, i.e. they are
not preserved across a clean rebuild.

▶ To save them:
• make linux-update-config, to save a full config file
• make linux-update-defconfig, to save a minimal defconfig
• Only works if a custom configuration file is used

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/344

Typical flow

1. make menuconfig
• Start with a defconfig from the kernel, say mvebu_v7_defconfig

2. Run make linux-menuconfig to customize the configuration
3. Do the build, test, tweak the configuration as needed.
4. You cannot do make linux-update-{config,defconfig}, since the Buildroot

configuration points to a kernel defconfig
5. make menuconfig

• Change to a custom configuration file. There’s no need for the file to exist, it will be
created by Buildroot.

6. make linux-update-defconfig
• Will create your custom configuration file, as a minimal defconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/344

Root filesystem in Buildroot

Root filesystem in
Buildroot

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 83/344

Overall rootfs construction steps

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 84/344

Root filesystem skeleton

▶ The base of a Linux root filesystem: UNIX directory hierarchy, a few configuration
files and scripts in /etc. No programs or libraries.

▶ All target packages depend on the skeleton package, so it is essentially the first
thing copied to $(TARGET_DIR) at the beginning of the build.

▶ skeleton is a virtual package that will depend on:
• skeleton-init-{sysv,systemd,openrc,none} depending on the init system being

selected
• skeleton-custom when a custom skeleton is selected

▶ All of skeleton-init-{sysv,systemd,openrc,none} depend on
skeleton-init-common

• Copies system/skeleton/* to $(TARGET_DIR)

▶ skeleton-init-{sysv,systemd,openrc} install additional files specific to those
init systems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 85/344

Skeleton packages dependencies

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/344

Custom root filesystem skeleton

▶ A custom skeleton can be used, through the BR2_ROOTFS_SKELETON_CUSTOM and
BR2_ROOTFS_SKELETON_CUSTOM_PATH options.

▶ In this case: skeleton depends on skeleton-custom

▶ Completely replaces skeleton-init-*, so the custom skeleton must provide
everything.

▶ Not recommended though:
• the base is usually good for most projects.
• skeleton only copied at the beginning of the build, so a skeleton change needs a full

rebuild
▶ Use rootfs overlays or post-build scripts for root filesystem customization (covered

later)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/344

Installation of packages

▶ All the selected target packages will be built (can be BusyBox, Qt, OpenSSH,
lighttpd, and many more)

▶ Most of them will install files in $(TARGET_DIR): programs, libraries, fonts, data
files, configuration files, etc.

▶ This is really the step that will bring the vast majority of the files in the root
filesystem.

▶ Covered in more details in the section about creating your own Buildroot
packages.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/344

Cleanup step

▶ Once all packages have been installed, a cleanup step is executed to reduce the
size of the root filesystem.

▶ It mainly involves:
• Removing header files, pkg-config files, CMake files, static libraries, man pages,

documentation.
• Stripping all the programs and libraries using strip, to remove unneeded

information. Depends on BR2_ENABLE_DEBUG and BR2_STRIP_* options.
• Additional specific clean up steps: clean up unneeded Python files when Python is

used, etc. See TARGET_FINALIZE_HOOKS in the Buildroot code.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/344

Root filesystem overlay

▶ To customize the contents of your root filesystem, to add configuration files,
scripts, symbolic links, directories or any other file, one possible solution is to use
a root filesystem overlay.

▶ A root filesystem overlay is simply a directory whose contents will be copied over
the root filesystem, after all packages have been installed. Overwriting files is
allowed.

▶ The option BR2_ROOTFS_OVERLAY contains a space-separated list of overlay paths.

$ grep ^BR2_ROOTFS_OVERLAY .config
BR2_ROOTFS_OVERLAY="board/myproject/rootfs-overlay"
$ find -type f board/myproject/rootfs-overlay
board/myproject/rootfs-overlay/etc/ssh/sshd_config
board/myproject/rootfs-overlay/etc/init.d/S99myapp

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/344

Post-build scripts

▶ Sometimes a root filesystem overlay is not sufficient: you can use post-build
scripts.

▶ Can be used to customize existing files, remove unneeded files to save space,
add new files that are generated dynamically (build date, etc.)

▶ Executed before the root filesystem image is created. Can be written in any
language, shell scripts are often used.

▶ BR2_ROOTFS_POST_BUILD_SCRIPT contains a space-separated list of post-build
script paths.

▶ $(TARGET_DIR) path passed as first argument, additional arguments can be
passed in the BR2_ROOTFS_POST_SCRIPT_ARGS option.

▶ Various environment variables are available:
• BR2_CONFIG, path to the Buildroot .config file
• HOST_DIR, STAGING_DIR, TARGET_DIR, BUILD_DIR, BINARIES_DIR, BASE_DIR

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/344

Post-build script: example

board/myproject/post-build.sh
#!/bin/sh

Generate a file identifying the build (git commit and build date)
echo $(git describe) $(date +%Y-%m-%d-%H:%M:%S) > \

$TARGET_DIR/etc/build-id

Create /applog mountpoint, and adjust /etc/fstab
mkdir -p $TARGET_DIR/applog
grep -q "^/dev/mtdblock7" $TARGET_DIR/etc/fstab || \

echo "/dev/mtdblock7\t\t/applog\tjffs2\tdefaults\t\t0\t0" >> \
$TARGET_DIR/etc/fstab

Remove unneeded files
rm -rf $TARGET_DIR/usr/share/icons/bar

Buildroot configuration
BR2_ROOTFS_POST_BUILD_SCRIPT="board/myproject/post-build.sh"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/344

Generating the filesystem images

▶ In the Filesystem images menu, you can select which filesystem image formats
to generate.

▶ To generate those images, Buildroot will generate a shell script that:
• Changes the owner of all files to 0:0 (root user)
• Takes into account the global permission and device tables, as well as the

per-package ones.
• Takes into account the global and per-package users tables.
• Runs the filesystem image generation utility, which depends on each filesystem

type (genext2fs, mkfs.ubifs, tar, etc.)
▶ This script is executed using a tool called fakeroot

• Allows to fake being root so that permissions and ownership can be modified, device
files can be created, etc.

• Advanced: possibility of running a custom script inside fakeroot, see
BR2_ROOTFS_POST_FAKEROOT_SCRIPT.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/344

Permission table

▶ By default, all files are owned by the root user, and the permissions with which
they are installed in $(TARGET_DIR) are preserved.

▶ To customize the ownership or the permission of installed files, one can create one
or several permission tables

▶ BR2_ROOTFS_DEVICE_TABLE contains a space-separated list of permission table
files. The option name contains device for backward compatibility reasons only.

▶ The system/device_table.txt file is used by default.
▶ Packages can also specify their own permissions. See the Advanced package

aspects section for details.

Permission table example
#<name> <type> <mode> <uid> <gid> <major> <minor> <start> <inc> <count>
/dev d 755 0 0 - - - - -
/tmp d 1777 0 0 - - - - -
/var/www d 755 33 33 - - - - -

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/344

Device table

▶ When the system is using a static /dev, one may need to create additional device
nodes

▶ Done using one or several device tables
▶ BR2_ROOTFS_STATIC_DEVICE_TABLE contains a space-separated list of device table

files.
▶ The system/device_table_dev.txt file is used by default.
▶ Packages can also specify their own device files. See the Advanced package

aspects section for details.

Device table example
<name> <type> <mode> <uid> <gid> <major> <minor> <start> <inc> <count>
/dev/mem c 640 0 0 1 1 0 0 -
/dev/kmem c 640 0 0 1 2 0 0 -
/dev/i2c- c 666 0 0 89 0 0 1 4

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/344

Users table

▶ One may need to add specific UNIX users and groups in addition to the ones
available in the default skeleton.

▶ BR2_ROOTFS_USERS_TABLES is a space-separated list of user tables.
▶ Packages can also specify their own users. See the Advanced package aspects

section for details.
Users table example
<username> <uid> <group> <gid> <password> <home> <shell> <groups> <comment>
foo -1 bar -1 !=blabla /home/foo /bin/sh alpha,bravo Foo user
test 8000 wheel -1 = - /bin/sh - Test user

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 96/344

Post-image scripts

▶ Once all the filesystem images have been created, at the very end of the build,
post-image scripts are called.

▶ They allow to do any custom action at the end of the build. For example:
• Extract the root filesystem to do NFS booting
• Generate a final firmware image
• Start the flashing process

▶ BR2_ROOTFS_POST_IMAGE_SCRIPT is a space-separated list of post-image scripts to
call.

▶ Post-image scripts are called:
• from the Buildroot source directory
• with the $(BINARIES_DIR) path as first argument
• with the contents of the BR2_ROOTFS_POST_SCRIPT_ARGS as other arguments
• with a number of available environment variables: BR2_CONFIG, HOST_DIR,

STAGING_DIR, TARGET_DIR, BUILD_DIR, BINARIES_DIR and BASE_DIR.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/344

Init mechanism

▶ Buildroot supports multiple init implementations:
• BusyBox init, the default. Simplest solution.
• sysvinit, the old style featureful init implementation
• systemd, the modern init system
• OpenRC, the init system used by Gentoo

▶ Selecting the init implementation in the System configuration menu will:
• Ensure the necessary packages are selected
• Make sure the appropriate init scripts or configuration files are installed by packages.

See Advanced package aspects for details.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/344

/dev management method

▶ Buildroot supports four methods to handle the /dev directory:
• Using devtmpfs. /dev is managed by the kernel devtmpfs, which creates device files

automatically. Default option.
• Using static /dev. This is the old way of doing /dev, not very practical.
• Using mdev. mdev is part of BusyBox and can run custom actions when devices are

added/removed. Requires devtmpfs kernel support.
• Using eudev. Forked from systemd, allows to run custom actions. Requires

devtmpfs kernel support.
▶ When systemd is used, the only option is udev from systemd itself.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/344

Other customization options

▶ There are various other options to customize the root filesystem:
• getty options, to run a login prompt on a serial port or screen
• hostname and banner options
• DHCP network on one interface (for more complex setups, use an overlay)
• root password
• timezone installation and selection
• NLS, Native Language Support, to support message translation
• locale files installation and filtering (to install translations only for a subset of

languages, or none at all)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/344

Deploying the images

▶ By default, Buildroot simply stores the different images in $(O)/images

▶ It is up to the user to deploy those images to the target device.
▶ Possible solutions:

• For removable storage (SD card, USB keys):
manually create the partitions and extract the root filesystem as a tarball to the
appropriate partition.
use a tool like genimage to create a complete image of the media, including all
partitions

• For NAND flash:
Transfer the image to the target, and flash it.

• NFS booting
• initramfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/344

Deploying the images: genimage

▶ genimage allows to create the complete image of a block device (SD card, USB
key, hard drive), including multiple partitions and filesystems.

▶ For example, allows to create an image with two partitions: one FAT partition for
bootloader and kernel, one ext4 partition for the root filesystem.

▶ Also allows to place the bootloader at a fixed offset in the image if required.
▶ The helper script support/scripts/genimage.sh can be used as a post-image

script to call genimage
▶ More and more widely used in Buildroot default configurations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/344

Deploying the images: genimage example
genimage-raspberrypi.cfg

image boot.vfat {
vfat {

files = {
"bcm2708-rpi-b.dtb",
"rpi-firmware/bootcode.bin",
"rpi-firmware/cmdline.txt",
"kernel-marked/zImage"
[...]

}
}

size = 32M
}

image sdcard.img {
hdimage {
}

partition boot {
partition-type = 0xC
bootable = "true"
image = "boot.vfat"

}

partition rootfs {
partition-type = 0x83
image = "rootfs.ext4"

}
}

defconfig
BR2_ROOTFS_POST_IMAGE_SCRIPT="support/scripts/genimage.sh"
BR2_ROOTFS_POST_SCRIPT_ARGS="-c board/raspberrypi/genimage-raspberrypi.cfg"

flash
dd if=output/images/sdcard.img of=/dev/sdb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/344

Deploying the image: NFS booting

▶ Many people try to use $(O)/target directly for NFS booting
• This cannot work, due to permissions/ownership being incorrect
• Clearly explained in the THIS_IS_NOT_YOUR_ROOT_FILESYSTEM file.

▶ Generate a tarball of the root filesystem
▶ Use sudo tar -C /nfs -xf output/images/rootfs.tar to prepare your NFS

share.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/344

Deploying the image: initramfs

▶ Another common use case is to use an initramfs, i.e. a root filesystem fully in
RAM.

• Convenient for small filesystems, fast booting or kernel development
▶ Two solutions:

• BR2_TARGET_ROOTFS_CPIO=y to generate a cpio archive, that you can load from your
bootloader next to the kernel image.

• BR2_TARGET_ROOTFS_INITRAMFS=y to directly include the initramfs inside the kernel
image. Only available when the kernel is built by Buildroot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 105/344

Practical lab - Root filesystem construction

▶ Explore the build output
▶ Customize the root filesystem using a rootfs

overlay
▶ Use a post-build script
▶ Customize the kernel with patches and

additional configuration options
▶ Add more packages
▶ Use defconfig files and out of tree build

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/344

Download infrastructure in Buildroot

Download infrastructure
in Buildroot

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/344

Introduction

▶ One important aspect of Buildroot is to fetch source code or binary files from
third party projects.

▶ Download supported from HTTP(S), FTP, Git, Subversion, CVS, Mercurial, etc.
▶ Being able to do reproducible builds over a long period of time requires

understanding the download infrastructure.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/344

Download location

▶ Each Buildroot package indicates in its .mk file which files it needs to be
downloaded.

▶ Can be a tarball, one or several patches, binary files, etc.
▶ When downloading a file, Buildroot will successively try the following locations:

1. The local $(DL_DIR) directory where downloaded files are kept
2. The primary site, as indicated by BR2_PRIMARY_SITE
3. The original site, as indicated by the package .mk file
4. The backup Buildroot mirror, as indicated by BR2_BACKUP_SITE

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/344

DL_DIR

▶ Once a file has been downloaded by Buildroot, it is cached in the directory
pointed by $(DL_DIR), in a sub-directory named after the package.

▶ By default, $(TOPDIR)/dl
▶ Can be changed

• using the BR2_DL_DIR configuration option
• or by passing the BR2_DL_DIR environment variable, which overrides the config

option of the same name
▶ The download mechanism is written in a way that allows independent parallel

builds to share the same DL_DIR (using atomic renaming of files)
▶ No cleanup mechanism: files are only added, never removed, even when the

package version is updated.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/344

Primary site

▶ The BR2_PRIMARY_SITE option allows to define the location of a HTTP or FTP
server.

▶ By default empty, so this feature is disabled.
▶ When defined, used in priority over the original location.
▶ Allows to do a local mirror, in your company, of all the files that Buildroot needs

to download.
▶ When option BR2_PRIMARY_SITE_ONLY is enabled, only the primary site is used

• It does not fall back on the original site and the backup Buildroot mirror
• Guarantees that all downloads must be in the primary site

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/344

Backup Buildroot mirror

▶ Since sometimes the upstream locations disappear or are temporarily unavailable,
having a backup server is useful

▶ Address configured through BR2_BACKUP_SITE
▶ Defaults to http://sources.buildroot.net

• maintained by the Buildroot community
• updated before every Buildroot release to contain the downloaded files for all

packages
• exception: cannot store all possible versions for packages that have their version as a

configuration option. Generally only affects the kernel or bootloader, which typically
don’t disappear upstream.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/344

http://sources.buildroot.net

Special case of VCS download

▶ When a package uses the source code from Git, Subversion or another VCS,
Buildroot cannot directly download a tarball.

▶ It uses a VCS-specific method to fetch the specified version of the source from the
VCS repository

▶ The source code is checked-out/cloned inside DL_DIR and kept to speed-up
further downloads of the same project (caching only implemented for Git)

▶ Finally a tarball containing only the source code (and not the version control
history or metadata) is created and stored in DL_DIR

• Example:
c-capnproto-9053ebe6eeb2ae762655b982e27c341cb568366d-git4.tar.gz

▶ This tarball will be re-used for the next builds, and attempts are made to
download it from the primary and backup sites.

▶ Due to this, always use a tag name or a full commit id, and never a branch name:
the code will never be re-downloaded when the branch is updated.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/344

Vendoring

▶ Some language-specific package management systems like to download the
dependencies by themselves: vendoring

▶ Examples: Cargo in the Rust ecosystem, or Go
▶ Problem for build systems: reproducibility of the builds, licensing, offline builds
▶ Buildroot supports vendoring dependencies for cargo and go packages
▶ Right after the download of the package source code, Buildroot invokes the

language-specific vendoring tool, and bundles the dependencies inside the tarball

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/344

File integrity checking

▶ Buildroot packages can provide a .hash file to provide hashes for the downloaded
files.

▶ The download infrastructure uses this hash file when available to check the
integrity of the downloaded files.

▶ Hashes are checked every time a downloaded file is used, even if it is already
cached in $(DL_DIR).

▶ If the hash is incorrect, the download infrastructure attempts to re-download the
file once. If that still fails, the build aborts with an error.

Hash checking message
strace-4.10.tar.xz: OK (md5: 107a5be455493861189e9b57a3a51912)
strace-4.10.tar.xz: OK (sha1: 5c3ec4c5a9eeb440d7ec70514923c2e7e7f9ab6c)
>>> strace 4.10 Extracting

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/344

Download-related make targets

▶ make source
• Triggers the download of all the files needed to build the current configuration.
• All files are stored in $(DL_DIR)
• Allows to prepare a fully offline build

▶ make external-deps
• Lists the files from $(DL_DIR) that are needed for the current configuration to build.
• Does not guarantee that all files are in $(DL_DIR), a make source is required

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/344

GNU Make 101

GNU Make 101

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/344

Introduction

▶ Buildroot being implemented in GNU Make, it is quite important to know the
basics of this language

• Basics of make rules
• Defining and referencing variables
• Conditions
• Defining and using functions
• Useful make functions

▶ This does not aim at replacing a full course on GNU Make
▶ https://www.gnu.org/software/make/manual/make.html

▶ https://www.nostarch.com/gnumake

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/344

https://www.gnu.org/software/make/manual/make.html
https://www.nostarch.com/gnumake

Basics of make rules

▶ At their core, Makefiles are simply defining rules to create targets from
prerequisites using recipe commands

TARGET ...: PREREQUISITES ...
RECIPE
...

▶ target: name of a file that is generated. Can also be an arbitrary action, like
clean, in which case it’s a phony target

▶ prerequisites: list of files or other targets that are needed as dependencies of
building the current target.

▶ recipe: list of shell commands to create the target from the prerequisites

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/344

Rule example

Makefile
clean:

rm -rf $(TARGET_DIR) $(BINARIES_DIR) $(HOST_DIR) \
$(BUILD_DIR) $(BASE_DIR)/staging \
$(LEGAL_INFO_DIR)

distclean: clean
[...]
rm -rf $(BR2_CONFIG) $(CONFIG_DIR)/.config.old \

$(CONFIG_DIR)/.auto.deps

▶ clean and distclean are phony targets

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/344

Defining and referencing variables

▶ Defining variables is done in different ways:
• FOOBAR = value, expanded at time of use
• FOOBAR := value, expanded at time of assignment
• FOOBAR += value, append to the variable, with a separating space, defaults to

expanded at the time of use
• FOOBAR ?= value, defined only if not already defined
• Multi-line variables are described using define NAME ... endef:

define FOOBAR
line 1
line 2
endef

▶ Make variables are referenced using the $(FOOBAR) syntax.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/344

Conditions

▶ With ifeq or ifneq
ifeq ($(BR2_CCACHE),y)
CCACHE := $(HOST_DIR)/bin/ccache
endif

distclean: clean
ifeq ($(DL_DIR),$(TOPDIR)/dl)

rm -rf $(DL_DIR)
endif

▶ With the $(if ...) make function:
HOSTAPD_LIBS += $(if $(BR2_STATIC_LIBS),-lcrypto -lz)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/344

Defining and using functions

▶ Defining a function is exactly like defining a variable:
MESSAGE = echo "$(TERM_BOLD)>>> $($(PKG)_NAME) $($(PKG)_VERSION) $(call qstrip,$(1))$(TERM_RESET)"

define legal-license-header # pkg, license-file, {HOST|TARGET}
printf "$(LEGAL_INFO_SEPARATOR)\n\t$(1):\

$(2)\n$(LEGAL_INFO_SEPARATOR)\n\n\n" >>$(LEGAL_LICENSES_TXT_$(3))
endef

▶ Arguments accessible as $(1), $(2), etc.
▶ Called using the $(call func,arg1,arg2) construct

$(BUILD_DIR)/%/.stamp_extracted:
[...]
@$(call MESSAGE,"Extracting")

define legal-license-nofiles # pkg, {HOST|TARGET}
$(call legal-license-header,$(1),unknown license file(s),$(2))

endef

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/344

Useful make functions

▶ subst and patsubst to replace text
ICU_SOURCE = icu4c-$(subst .,_,$(ICU_VERSION))-src.tgz

▶ filter and filter-out to filter entries
▶ foreach to implement loops

$(foreach incdir,$(TI_GFX_HDR_DIRS),
$(INSTALL) -d $(STAGING_DIR)/usr/include/$(notdir $(incdir)); \
$(INSTALL) -D -m 0644 $(@D)/include/$(incdir)/*.h \

$(STAGING_DIR)/usr/include/$(notdir $(incdir))/
)

▶ dir, notdir, addsuffix, addprefix to manipulate file names
UBOOT_SOURCE = $(notdir $(UBOOT_TARBALL))

IMAGEMAGICK_CONFIG_SCRIPTS = \
$(addsuffix -config,Magick MagickCore MagickWand Wand)

▶ And many more, see the GNU Make manual for details.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/344

Writing recipes

▶ Recipes are just shell commands
▶ Each line must be indented with one Tab

▶ Each line of shell command in a given recipe is independent from the other:
variables are not shared between lines in the recipe

▶ Need to use a single line, possibly split using \, to do complex shell constructs
▶ Shell variables must be referenced using $$name.

package/pppd/pppd.mk
define PPPD_INSTALL_RADIUS

...
for m in $(PPPD_RADIUS_CONF); do \

$(INSTALL) -m 644 -D $(PPPD_DIR)/pppd/plugins/radius/etc/$$m \
$(TARGET_DIR)/etc/ppp/radius/$$m; \

done
...

endef

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/344

Integrating new packages in Buildroot

Integrating new
packages in Buildroot

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/344

Why adding new packages in Buildroot?

▶ A package in Buildroot-speak is the set of meta-information needed to
automate the build process of a certain component of a system.

▶ Can be used for open-source, third party proprietary components, or in-house
components.

▶ Can be used for user space components (libraries and applications) but also for
firmware, kernel drivers, bootloaders, etc.

▶ Do not confuse with the notion of binary package in a regular Linux distribution.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 127/344

Basic elements of a Buildroot package

▶ A directory, package/foo
▶ A Config.in file, written in kconfig language, describing the configuration options

for the package.
▶ A <pkg>.mk file, written in make, describing where to fetch the source, how to

build and install it, etc.
▶ An optional <pkg>.hash file, providing hashes to check the integrity of the

downloaded tarballs and license files.
▶ Optionally, .patch files, that are applied on the package source code before

building.
▶ Optionally, any additional file that might be useful for the package: init script,

example configuration file, etc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 128/344

Integrating new packages in Buildroot

Config.in file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/344

package/<pkg>/Config.in: basics
▶ Describes the configuration options for the package.
▶ Written in the kconfig language.
▶ One option is mandatory to enable/disable the package, it must be named

BR2_PACKAGE_<PACKAGE>.
config BR2_PACKAGE_VTUN

bool "vtun"
^^I[...]

help
Tool for easily creating Virtual Tunnels over TCP/IP networks
with traffic shaping, compression, and encryption.

It supports IP, PPP, SLIP, Ethernet and other tunnel types.

http://vtun.sourceforge.net/

▶ The main package option is a bool with the package name as the prompt. Will
be visible in menuconfig.

▶ The help text give a quick description, and the homepage of the project.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/344

package/<pkg>/Config.in: inclusion

▶ The hierarchy of configuration options visible in menuconfig is built by reading
the top-level Config.in file and the other Config.in file it includes.

▶ All package/<pkg>/Config.in files are included from package/Config.in.
▶ The location of a package in one of the package sub-menu is decided in this file.

package/Config.in
menu "Target packages"
menu "Audio and video applications"

source "package/alsa-utils/Config.in"
...

endmenu
...
menu "Libraries"
menu "Audio/Sound"

source "package/alsa-lib/Config.in"
...

endmenu
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/344

package/<pkg>/Config.in: dependencies

▶ kconfig allows to express dependencies using select or depends on statements
• select is an automatic dependency: if option A select option B, as soon as A is

enabled, B will be enabled, and cannot be unselected.
• depends on is a user-assisted dependency: if option A depends on option B, A will

only be visible when B is enabled.
▶ Buildroot uses them as follows:

• depends on for architecture, toolchain feature, or big feature dependencies. E.g:
package only available on x86, or only if wide char support is enabled, or depends on
Python.

• select for enabling the necessary other packages needed to build the current
package (libraries, etc.)

▶ Such dependencies only ensure consistency at the configuration level. They do
not guarantee build ordering!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 132/344

package/<pkg>/Config.in: dependency example

btrfs-progs package
config BR2_PACKAGE_BTRFS_PROGS

bool "btrfs-progs"
depends on BR2_USE_MMU # util-linux
depends on BR2_TOOLCHAIN_HAS_THREADS
select BR2_PACKAGE_LZO
select BR2_PACKAGE_UTIL_LINUX
select BR2_PACKAGE_UTIL_LINUX_LIBBLKID
select BR2_PACKAGE_UTIL_LINUX_LIBUUID
select BR2_PACKAGE_ZLIB
help

Btrfs filesystem utilities

https://btrfs.wiki.kernel.org/index.php/Main_Page

comment "btrfs-progs needs a toolchain w/ threads"
depends on BR2_USE_MMU
depends on !BR2_TOOLCHAIN_HAS_THREADS

▶ depends on BR2_USE_MMU, because the
package uses fork(). Note that there
is no comment displayed about this
dependency, because it’s a limitation
of the architecture.

▶ depends on BR2_TOOLCHAIN_HAS_
THREADS, because the package requires
thread support from the toolchain.
There is an associated comment,
because such support can be added to
the toolchain.

▶ Multiple select BR2_PACKAGE_*,
because the package needs numerous
libraries.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 133/344

Dependency propagation

▶ A limitation of kconfig is that it doesn’t propagate depends on dependencies
accross select dependencies.

▶ Scenario: if package A has a depends on FOO, and package B has a select A,
then package B must replicate the depends on FOO.

libglib2 package
config BR2_PACKAGE_LIBGLIB2

bool "libglib2"
depends on BR2_USE_WCHAR # gettext
depends on BR2_TOOLCHAIN_HAS_THREADS
depends on BR2_USE_MMU # fork()
select BR2_PACKAGE_HOST_QEMU if ...
select BR2_PACKAGE_HOST_QEMU_LINUX_USER_MODE if ...
select BR2_PACKAGE_LIBICONV if !BR2_ENABLE_LOCALE
select BR2_PACKAGE_LIBFFI
select BR2_PACKAGE_PCRE2
select BR2_PACKAGE_ZLIB

[...]

neard package
config BR2_PACKAGE_NEARD

bool "neard"
depends on BR2_USE_WCHAR # libglib2
depends on BR2_TOOLCHAIN_HAS_THREADS # libnl, dbus, libglib2
depends on BR2_USE_MMU # dbus, libglib2
depends on !BR2_STATIC_LIBS # dlopen
depends on BR2_TOOLCHAIN_HAS_SYNC_4
select BR2_PACKAGE_DBUS
select BR2_PACKAGE_LIBGLIB2
select BR2_PACKAGE_LIBNL

[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/344

Config.in.host for host packages?

▶ Most of the packages in Buildroot are target packages, i.e. they are cross-compiled
for the target architecture, and meant to be run on the target platform.

▶ Some packages have a host variant, built to be executed on the build machine.
Such packages are needed for the build process of other packages.

▶ The majority of host packages are not visible in menuconfig: they are just
dependencies of other packages, the user doesn’t really need to know about them.

▶ A few of them are potentially directly useful to the user (flashing tools, etc.), and
can be shown in the Host utilities section of menuconfig.

▶ In this case, the configuration option is in a Config.in.host file, included from
package/Config.in.host, and the option must be named
BR2_PACKAGE_HOST_<PACKAGE>.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/344

Config.in.host example

package/Config.in.host
menu "Host utilities"

source "package/genimage/Config.in.host"
source "package/lpc3250loader/Config.in.host"
source "package/openocd/Config.in.host"
source "package/qemu/Config.in.host"

endmenu

package/openocd/Config.in.host
config BR2_PACKAGE_HOST_OPENOCD

bool "host openocd"
depends on BR2_HOST_GCC_AT_LEAST_4_9 # host-libusb
help
OpenOCD - Open On-Chip Debugger

http://openocd.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/344

Config.in sub-options

▶ Additional sub-options can be
defined to further configure
the package, to enable or
disable extra features.

▶ The value of such options can
then be fetched from the
package .mk file to adjust the
build accordingly.

▶ Run-time configuration does
not belong to Config.in.

package/pppd/Config.in
config BR2_PACKAGE_PPPD

bool "pppd"
depends on !BR2_STATIC_LIBS
depends on BR2_USE_MMU
...

if BR2_PACKAGE_PPPD

config BR2_PACKAGE_PPPD_FILTER
bool "filtering"
select BR2_PACKAGE_LIBPCAP
help
Packet filtering abilities for pppd. If enabled,
the pppd active-filter and pass-filter options
are available.

endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 137/344

Integrating new packages in Buildroot

Package infrastructures

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/344

Package infrastructures: what is it?

▶ Each software component to be built by Buildroot comes with its own build
system.

▶ Buildroot does not re-invent the build system of each component, it simply uses it.
▶ Numerous build systems available: hand-written Makefiles or shell scripts,

autotools, Meson, CMake and also some specific to languages: Python, Perl, Lua,
Erlang, etc.

▶ In order to avoid duplicating code, Buildroot has package infrastructures for
well-known build systems.

▶ And a generic package infrastructure for software components with non-standard
build systems.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/344

Package infrastructures

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/344

generic-package infrastructure

▶ To be used for software components having non-standard build systems.
▶ Implements a default behavior for the downloading, extracting and patching steps

of the package build process.
▶ Implements init script installation, legal information collection, etc.
▶ Leaves to the package developer the responsibility of describing what should be

done for the configuration, building and installation steps.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/344

generic-package: steps

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/344

Other package infrastructures

▶ The other package infrastructures are meant to be used when the software
component uses a well-known build system.

▶ They inherit all the behavior of the generic-package infrastructure:
downloading, extracting, patching, etc.

▶ And in addition to that, they typically implement a default behavior for the
configuration, compilation and installation steps.

▶ For example, autotools-package will implement the configuration step as a call
to the ./configure script with the right arguments.

▶ pkg-kconfig is an exception, it only provides some helpers for packages using
Kconfig, but does not implement the configure, build and installation steps.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/344

Integrating new packages in Buildroot

.mk file for generic-package

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 144/344

The <pkg>.mk file

▶ The .mk file of a package does not look like a normal Makefile.
▶ It is a succession of variable definitions, which must be prefixed by the uppercase

package name.
• FOOBAR_SITE = https://foobar.com/downloads/
• define FOOBAR_BUILD_CMDS

$(MAKE) -C $(@D)
endef

▶ And ends with a call to the desired package infrastructure macro.
• $(eval $(generic-package))
• $(eval $(autotools-package))
• $(eval $(host-autotools-package))

▶ The variables tell the package infrastructure what to do for this specific package.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/344

Naming conventions

▶ The Buildroot package infrastructures make a number of assumption on variables
and files naming.

▶ The following must match to allow the package infrastructure to work for a given
package:

• The directory where the package description is located must be package/<pkg>/,
where <pkg> is the lowercase name of the package.

• The Config.in option enabling the package must be named BR2_PACKAGE_<PKG>,
where <PKG> is the uppercase name of the package.

• The variables in the .mk file must be prefixed with <PKG>_, where <PKG> is the
uppercase name of the package.

▶ Note: a - in the lower-case package name is translated to _ in the upper-case
package name.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/344

Naming conventions: global namespace

▶ The package infrastructure expects all variables it uses to be prefixed by the
uppercase package name.

▶ If your package needs to define additional private variables not used by the
package infrastructure, they should also be prefixed by the uppercase package
name.

▶ The namespace of variables is global in Buildroot!
• If two packages created a variable named BUILD_TYPE, it will silently conflict.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/344

Behind the scenes

▶ Behind the scenes, $(eval $(generic-package)):
• is a make macro that is expanded
• infers the name of the current package by looking at the directory name:

package/<pkg>/<pkg>.mk: <pkg> is the package name
• will use all the variables prefixed by <PKG>_
• and expand to a set of make rules and variable definitions that describe what should

be done for each step of the package build process

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/344

.mk file: accessing the configuration

▶ The Buildroot .config file is a succession of lines name = value
• This file is valid make syntax!

▶ The main Buildroot Makefile simply includes it, which turns every Buildroot
configuration option into a make variable.

▶ From a package .mk file, one can directly use such variables:
ifeq ($(BR2_PACKAGE_LIBCURL),y)
...
endif

FOO_DEPENDENCIES += $(if $(BR2_PACKAGE_TIFF),tiff)

▶ Hint: use the make qstrip function to remove double quotes on string options:
NODEJS_MODULES_LIST = $(call qstrip,$(BR2_PACKAGE_NODEJS_MODULES_ADDITIONAL))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/344

Download related variables

▶ <pkg>_SITE, download location
• HTTP(S) or FTP URL where a tarball can be found, or the address of a version

control repository.
• CAIRO_SITE = http://cairographics.org/releases
• FMC_SITE = git://git.freescale.com/ppc/sdk/fmc.git

▶ <pkg>_VERSION, version of the package
• version of a tarball, or a commit, revision or tag for version control systems
• CAIRO_VERSION = 1.14.2
• FMC_VERSION = fsl-sdk-v1.5-rc3

▶ <pkg>_SOURCE, file name of the tarball
• The full URL of the downloaded tarball is $(<pkg>_SITE)/$(<pkg>_SOURCE)
• When not specified, defaults to <pkg>-$(<pkg>_VERSION).tar.gz
• CAIRO_SOURCE = cairo-$(CAIRO_VERSION).tar.xz

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/344

Available download methods
▶ Buildroot can fetch the source code using different methods:

• wget, for FTP/HTTP downloads
• scp, to fetch the tarball using SSH/SCP
• svn, for Subversion
• cvs, for CVS
• git, for Git
• hg, for Mercurial
• bzr, for Bazaar
• file, for a local tarball
• local, for a local directory

▶ In most cases, the fetching method is guessed by Buildroot using the <pkg>_SITE
variable.

▶ Exceptions:
• Git, Subversion or Mercurial repositories accessed over HTTP or SSH.
• file and local methods

▶ In such cases, use <pkg>_SITE_METHOD explicitly.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/344

Download methods examples
▶ Subversion repository accessed over HTTP:

LIBXMLRPC_VERSION = r3176
LIBXMLRPC_SITE = https://svn.code.sf.net/p/xmlrpc-c/code/advanced
LIBXMLRPC_SITE_METHOD = svn

▶ Git repository accessed over HTTP:

LIBUCI_VERSION = 4b3db1179747b6a6779029407984bacef851325c
LIBUCI_SITE = https://git.openwrt.org/project/uci.git
LIBUCI_SITE_METHOD = git

▶ Source code available in a local directory:

MYAPP_SITE = $(TOPDIR)/../apps/myapp
MYAPP_SITE_METHOD = local

• The ”download” will consist in copying the source code from the designated
directory to the Buildroot per-package build directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/344

Downloading more elements

▶ <pkg>_PATCH, a list of patches to download and apply before building the
package. They are automatically applied by the package infrastructure.

▶ <pkg>_EXTRA_DOWNLOADS, a list of additional files to download together with the
package source code. It is up to the package .mk file to do something with them.

▶ Two options:
• Just a file name: assumed to be relative to <pkg>_SITE.
• A full URL: downloaded over HTTP, FTP.

▶ Examples:
sysvinit.mk
UNZIP_PATCH = unzip_$(UNZIP_VERSION)-27.debian.tar.xz

perl.mk
PERL_CROSS_SITE = http://raw.github.com/arsv/perl-cross/releases
PERL_CROSS_SOURCE = perl-$(PERL_CROSS_BASE_VERSION)-cross-$(PERL_CROSS_VERSION).tar.gz
PERL_EXTRA_DOWNLOADS = $(PERL_CROSS_SITE)/$(PERL_CROSS_SOURCE)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/344

Hash file

▶ In order to validate the integrity of downloaded files and license files, and make
sure the user uses the version which was tested by the Buildroot developers,
cryptographic hashes are used

▶ Each package may contain a file named <package>.hash, which gives the hashes
of the files downloaded by the package.

▶ When present, the hashes for all files downloaded by the package must be
documented.

▶ The hash file can also contain the hashes for the license files listed in
<pkg>_LICENSE_FILES. This allows to detect changes in the license files.

▶ The syntax of the file is:
<hashtype> <hash> <file>

Note: the separator between fields is 2 spaces.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/344

Hash file examples

package/perl/perl.hash
Hashes from: https://www.cpan.org/src/5.0/perl-5.40.1.tar.xz.{md5,sha1,sha256}.txt
md5 bab3547a5cdf2302ee0396419d74a42e perl-5.40.1.tar.xz
sha1 4ffe5246c791df884363aed05ba81ba41cb02084 perl-5.40.1.tar.xz
sha256 dfa20c2eef2b4af133525610bbb65dd13777ecf998c9c5b1ccf0d308e732ee3f perl-5.40.1.tar.xz

Hash from: https://github.com/arsv/perl-cross/releases/download/1.6.1/perl-cross-1.6.1.hash
sha256 b5f4b4457bbd7be37adac8ee423beedbcdba8963a85f79770f5e701dabc5550f perl-cross-1.6.1.tar.gz

Locally calculated
sha256 dd90d4f42e4dcadf5a7c09eea0189d93c7b37ae560c91f0f6d5233ed3b9292a2 Artistic
sha256 d77d235e41d54594865151f4751e835c5a82322b0e87ace266567c3391a4b912 Copying
sha256 af805523b88a8ebb60afc009caaf247a498208502f7b8b3d9d3e329fcfb1dc3b README

package/ipset/ipset.hash
From https://ipset.netfilter.org/ipset-7.16.tar.bz2.sha512sum.txt
sha512 e69ddee956f0922c8e08e7e5d358d6b5b24178a9f08151b20957cc3465baaba9ecd6aa938ae157f2cd286ccd7f0b7a279cfd89cec2393a00b43e4d945c275307 ipset-7.16.tar.bz2
Locally calculated
sha256 231f7edcc7352d7734a96eef0b8030f77982678c516876fcb81e25b32d68564c COPYING

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/344

Describing dependencies

▶ Dependencies expressed in Config.in do not enforce build order.
▶ The <pkg>_DEPENDENCIES variable is used to describe the dependencies of the

current package.
▶ Packages listed in <pkg>_DEPENDENCIES are guaranteed to be built before the

configure step of the current package starts.
▶ It can contain both target and host packages.
▶ It can be appended conditionally with additional dependencies.

python.mk
PYTHON_DEPENDENCIES = host-python libffi

ifeq ($(BR2_PACKAGE_PYTHON_READLINE),y)
PYTHON_DEPENDENCIES += readline
endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/344

Mandatory vs. optional dependencies

▶ Very often, software components have some mandatory dependencies and some
optional dependencies, only needed for optional features.

▶ Handling mandatory dependencies in Buildroot consists in:
• Using a select or depends on on the main package option in Config.in
• Adding the dependency in <pkg>_DEPENDENCIES

▶ For optional dependencies, there are two possibilities:
• Handle it automatically: in the .mk file, if the optional dependency is available, use

it.
• Handle it explicitly: add a package sub-option in the Config.in file.

▶ Automatic handling is usually preferred as it reduces the number of Config.in
options, but it makes the possible dependency less visible to the user.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/344

Dependencies: ntp example
▶ Mandatory dependency: libevent
▶ Optional dependency handled automatically: openssl

package/ntp/Config.in
config BR2_PACKAGE_NTP

bool "ntp"
select BR2_PACKAGE_LIBEVENT

[...]

package/ntp/ntp.mk

[...]
NTP_DEPENDENCIES = host-pkgconf libevent
[...]
ifeq ($(BR2_PACKAGE_OPENSSL),y)
NTP_CONF_OPTS += --with-crypto --enable-openssl-random
NTP_DEPENDENCIES += openssl
else
NTP_CONF_OPTS += --without-crypto --disable-openssl-random
endif
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/344

Dependencies: mpd example (1/2)

package/mpd/Config.in
menuconfig BR2_PACKAGE_MPD

bool "mpd"
depends on BR2_INSTALL_LIBSTDCPP

[...]
select BR2_PACKAGE_BOOST
select BR2_PACKAGE_LIBGLIB2
select BR2_PACKAGE_LIBICONV if !BR2_ENABLE_LOCALE

[...]

config BR2_PACKAGE_MPD_FLAC
bool "flac"
select BR2_PACKAGE_FLAC
help
Enable flac input/streaming support.
Select this if you want to play back FLAC files.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/344

Dependencies: mpd example (2/2)

package/mpd/mpd.mk
MPD_DEPENDENCIES = host-pkgconf boost libglib2

[...]

ifeq ($(BR2_PACKAGE_MPD_FLAC),y)
MPD_DEPENDENCIES += flac
MPD_CONF_OPTS += --enable-flac
else
MPD_CONF_OPTS += --disable-flac
endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/344

Defining where to install (1)

▶ Target packages can install files to different locations:
• To the target directory, $(TARGET_DIR), which is what will be the target root

filesystem.
• To the staging directory, $(STAGING_DIR), which is the compiler sysroot
• To the images directory, $(BINARIES_DIR), which is where final images are located.

▶ There are three corresponding variables, to define whether or not the package will
install something to one of these locations:

• <pkg>_INSTALL_TARGET, defaults to YES. If YES, then <pkg>_INSTALL_TARGET_CMDS
will be called.

• <pkg>_INSTALL_STAGING, defaults to NO. If YES, then
<pkg>_INSTALL_STAGING_CMDS will be called.

• <pkg>_INSTALL_IMAGES, defaults to NO. If YES, then <pkg>_INSTALL_IMAGES_CMDS
will be called.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/344

Defining where to install (2)

▶ A package for an application:
• installs to $(TARGET_DIR) only
• <pkg>_INSTALL_TARGET defaults to YES, so there is nothing to do

▶ A package for a shared library:
• installs to both $(TARGET_DIR) and $(STAGING_DIR)
• must set <pkg>_INSTALL_STAGING = YES

▶ A package for a pure header-based library, or a static-only library:
• installs only to $(STAGING_DIR)
• must set <pkg>_INSTALL_TARGET = NO and <pkg>_INSTALL_STAGING = YES

▶ A package installing a bootloader or kernel image:
• installs to $(BINARIES_DIR)
• must set <pkg>_INSTALL_IMAGES = YES

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/344

Defining where to install (3)

libyaml.mk
LIBYAML_INSTALL_STAGING = YES

eigen.mk
EIGEN_INSTALL_STAGING = YES
EIGEN_INSTALL_TARGET = NO

linux.mk
LINUX_INSTALL_IMAGES = YES

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/344

Describing actions for generic-package

▶ In a package using generic-package, only the download, extract and patch steps
are implemented by the package infrastructure.

▶ The other steps should be described by the package .mk file:
• <pkg>_CONFIGURE_CMDS, always called
• <pkg>_BUILD_CMDS, always called
• <pkg>_INSTALL_TARGET_CMDS, called when <pkg>_INSTALL_TARGET = YES, for

target packages
• <pkg>_INSTALL_STAGING_CMDS, called when <pkg>_INSTALL_STAGING = YES, for

target packages
• <pkg>_INSTALL_IMAGES_CMDS, called when <pkg>_INSTALL_IMAGES = YES, for

target packages
• <pkg>_INSTALL_CMDS, always called for host packages

▶ Packages are free to not implement any of these variables: they are all optional.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/344

Describing actions: useful variables

Inside an action block, the following variables are often useful:
▶ $(@D) is the source directory of the package
▶ $(MAKE) to call make
▶ $(MAKE1) when the package doesn’t build properly in parallel mode
▶ $(TARGET_MAKE_ENV) and $(HOST_MAKE_ENV), to pass in the $(MAKE)

environment to ensure the PATH is correct
▶ $(TARGET_CONFIGURE_OPTS) and $(HOST_CONFIGURE_OPTS) to pass CC, LD,

CFLAGS, etc.
▶ $(TARGET_DIR), $(STAGING_DIR), $(BINARIES_DIR) and $(HOST_DIR).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/344

Describing actions: iodine.mk example

IODINE_VERSION = 0.7.0
IODINE_SITE = http://code.kryo.se/iodine
IODINE_DEPENDENCIES = zlib
IODINE_LICENSE = MIT
IODINE_LICENSE_FILES = README

IODINE_CFLAGS = $(TARGET_CFLAGS)
[...]

define IODINE_BUILD_CMDS
$(TARGET_CONFIGURE_OPTS) CFLAGS="$(IODINE_CFLAGS)" \

$(MAKE) ARCH=$(BR2_ARCH) -C $(@D)
endef

define IODINE_INSTALL_TARGET_CMDS
$(TARGET_CONFIGURE_OPTS) $(MAKE) -C $(@D) install DESTDIR="$(TARGET_DIR)" prefix=/usr

endef

$(eval $(generic-package))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/344

Describing actions: libzlib.mk example
LIBZLIB_VERSION = 1.2.11
LIBZLIB_SOURCE = zlib-$(LIBZLIB_VERSION).tar.xz
LIBZLIB_SITE = http://www.zlib.net
LIBZLIB_INSTALL_STAGING = YES

define LIBZLIB_CONFIGURE_CMDS
(cd $(@D); rm -rf config.cache; \

$(TARGET_CONFIGURE_ARGS) \
$(TARGET_CONFIGURE_OPTS) \
CFLAGS="$(TARGET_CFLAGS) $(LIBZLIB_PIC)" \
./configure \
$(LIBZLIB_SHARED) \
--prefix=/usr \

)
endef

define LIBZLIB_BUILD_CMDS
$(TARGET_MAKE_ENV) $(MAKE1) -C $(@D)

endef

define LIBZLIB_INSTALL_STAGING_CMDS
$(TARGET_MAKE_ENV) $(MAKE1) -C $(@D) DESTDIR=$(STAGING_DIR) LDCONFIG=true install

endef

define LIBZLIB_INSTALL_TARGET_CMDS
$(TARGET_MAKE_ENV) $(MAKE1) -C $(@D) DESTDIR=$(TARGET_DIR) LDCONFIG=true install

endef

$(eval $(generic-package))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/344

List of package infrastructures (1/2)

▶ generic-package, for packages not using a well-known build system. Already
covered.

▶ autotools-package, for autotools based packages, covered later.
▶ python-package, for distutils and setuptools based Python packages
▶ perl-package, for Perl packages
▶ luarocks-package, for Lua packages hosted on luarocks.org

▶ cmake-package, for CMake based packages
▶ waf-package, for Waf based packages
▶ qmake-package, for QMake based packages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/344

List of package infrastructures (2/2)

▶ golang-package, for packages written in Go
▶ meson-package, for packages using the Meson build system
▶ cargo-package, for packages written in Rust
▶ kconfig-package, to be used in conjunction with generic-package, for

packages that use the kconfig configuration system
▶ kernel-module-package, to be used in conjunction with another package

infrastructure, for packages that build kernel modules
▶ rebar-package for Erlang packages that use the rebar build system
▶ virtual-package for virtual packages, covered later.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/344

Integrating new packages in Buildroot

autotools-package infrastructure

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 170/344

The autotools-package infrastructure: basics

▶ The autotools-package infrastructure inherits from generic-package and is
specialized to handle autotools based packages.

▶ It provides a default implementation of:
• <pkg>_CONFIGURE_CMDS. Calls the ./configure script with appropriate environment

variables and arguments.
• <pkg>_BUILD_CMDS. Calls make.
• <pkg>_INSTALL_TARGET_CMDS, <pkg>_INSTALL_STAGING_CMDS and

<pkg>_INSTALL_CMDS. Call make install with the appropriate DESTDIR.
▶ A normal autotools based package therefore does not need to describe any action:

only metadata about the package.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 171/344

The autotools-package: steps

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 172/344

The autotools-package infrastructure: variables

▶ It provides additional variables that can be defined by the package:
• <pkg>_CONF_ENV to pass additional values in the environment of the ./configure

script.
• <pkg>_CONF_OPTS to pass additional options to the ./configure script.
• <pkg>_INSTALL_OPTS, <pkg>_INSTALL_STAGING_OPTS and

<pkg>_INSTALL_TARGET_OPTS to adjust the make target and options used for the
installation.

• <pkg>_AUTORECONF. Defaults to NO, can be set to YES if regenerating Makefile.in
files and configure script is needed. The infrastructure will automatically make sure
autoconf, automake, libtool are built.

• <pkg>_GETTEXTIZE. Defaults to NO, can be set to YES to gettextize the package.
Only makes sense if <pkg>_AUTORECONF = YES.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 173/344

Canonical autotools-package example

libyaml.mk
##
#
libyaml
#
##

LIBYAML_VERSION = 0.2.5
LIBYAML_SOURCE = yaml-$(LIBYAML_VERSION).tar.gz
LIBYAML_SITE = http://pyyaml.org/download/libyaml
LIBYAML_INSTALL_STAGING = YES
LIBYAML_LICENSE = MIT
LIBYAML_LICENSE_FILES = License
LIBYAML_CPE_ID_VENDOR = pyyaml

$(eval $(autotools-package))
$(eval $(host-autotools-package))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/344

More complicated autotools-package example

GNUPG2_VERSION = 2.4.7
GNUPG2_SOURCE = gnupg-$(GNUPG2_VERSION).tar.bz2
GNUPG2_SITE = https://gnupg.org/ftp/gcrypt/gnupg
GNUPG2_LICENSE = GPL-3.0+
GNUPG2_LICENSE_FILES = COPYING
GNUPG2_CPE_ID_VENDOR = gnupg
GNUPG2_CPE_ID_PRODUCT = gnupg
GNUPG2_DEPENDENCIES = zlib libgpg-error libgcrypt libassuan libksba libnpth \

$(if $(BR2_PACKAGE_LIBICONV),libiconv) host-pkgconf

ifeq ($(BR2_PACKAGE_BZIP2),y)
GNUPG2_CONF_OPTS += --enable-bzip2 --with-bzip2=$(STAGING_DIR)
GNUPG2_DEPENDENCIES += bzip2
else
GNUPG2_CONF_OPTS += --disable-bzip2
endif

ifeq ($(BR2_PACKAGE_GNUTLS),y)
GNUPG2_CONF_OPTS += --enable-gnutls
GNUPG2_DEPENDENCIES += gnutls
else
GNUPG2_CONF_OPTS += --disable-gnutls
endif

[...]

ifeq ($(BR2_PACKAGE_LIBUSB),y)
GNUPG2_CONF_ENV += CPPFLAGS="$(TARGET_CPPFLAGS)

-I$(STAGING_DIR)/usr/include/libusb-1.0"
GNUPG2_CONF_OPTS += --enable-ccid-driver
GNUPG2_DEPENDENCIES += libusb
else
GNUPG2_CONF_OPTS += --disable-ccid-driver
endif

ifeq ($(BR2_PACKAGE_READLINE),y)
GNUPG2_CONF_OPTS += --with-readline=$(STAGING_DIR)
GNUPG2_DEPENDENCIES += readline
else
GNUPG2_CONF_OPTS += --without-readline
endif

$(eval $(autotools-package))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/344

Integrating new packages in Buildroot

Target vs. host packages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 176/344

Host packages

▶ As explained earlier, most packages in Buildroot are cross-compiled for the target.
They are called target packages.

▶ Some packages however may need to be built natively for the build machine, they
are called host packages. They can be needed for a variety of reasons:

• Needed as a tool to build other things for the target. Buildroot wants to limit the
number of host utilities required to be installed on the build machine, and wants to
ensure the proper version is used. So it builds some host utilities by itself.

• Needed as a tool to interact, debug, reflash, generate images, or other activities
around the build itself.

• Version dependencies: building a Python interpreter for the target needs a Python
interpreter of the same version on the host.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 177/344

Target vs. host: package name and variable prefixes

▶ Each package infrastructure provides a <foo>-package macro and a
host-<foo>-package macro.

▶ For a given package in package/baz/baz.mk, <foo>-package will create a
package named baz and host-<foo>-package will create a package named
host-baz.

▶ <foo>-package will use the variables prefixed with BAZ_

▶ host-<foo>-package will use the variables prefixed with HOST_BAZ_

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 178/344

Target vs. host: variable inheritance

▶ For many variables, when HOST_BAZ_<var> is not defined, the package
infrastructure inherits from BAZ_<var> instead.

• True for <PKG>_SOURCE, <PKG>_SITE, <PKG>_VERSION, <PKG>_LICENSE,
<PKG>_LICENSE_FILES, etc.

• Defining <PKG>_SITE is sufficient, defining HOST_<PKG>_SITE is not needed.
• It is still possible to override the value specifically for the host variant, but this is

rarely needed.
▶ But not for all variables, especially commands

• E.g. HOST_<PKG>_BUILD_CMDS is not inherited from <PKG>_BUILD_CMDS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 179/344

Example 1: a pure build utility

▶ bison, a general-purpose parser generator.
▶ Purely used as build dependency in packages

• FBSET_DEPENDENCIES = host-bison host-flex

▶ No Config.in.host, not visible in menuconfig.

package/bison/bison.mk
BISON_VERSION = 3.8.2
BISON_SOURCE = bison-$(BISON_VERSION).tar.xz
BISON_SITE = $(BR2_GNU_MIRROR)/bison
BISON_LICENSE = GPL-3.0+
BISON_LICENSE_FILES = COPYING
BISON_CPE_ID_VENDOR = gnu
parallel build issue in examples/c/reccalc/
BISON_MAKE = $(MAKE1)
HOST_BISON_DEPENDENCIES = host-m4
HOST_BISON_CONF_OPTS = --enable-relocatable
HOST_BISON_CONF_ENV = ac_cv_libtextstyle=no

$(eval $(host-autotools-package))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/344

Example 2: filesystem manipulation tool

▶ fatcat, is designed to manipulate FAT filesystems, in order to explore, extract,
repair, recover and forensic them.

▶ Not used as a build dependency of another package → visible in menuconfig.

package/fatcat/Config.in.host
config BR2_PACKAGE_HOST_FATCAT

bool "host fatcat"
help
Fatcat is designed to manipulate FAT filesystems, in order
to explore, extract, repair, recover and forensic them. It
currently supports FAT12, FAT16 and FAT32.

https://github.com/Gregwar/fatcat

package/fatcat/fatcat.mk
FATCAT_VERSION = 1.1.1
FATCAT_SITE = $(call github,Gregwar,fatcat,v$(FATCAT_VERSION))
FATCAT_LICENSE = MIT
FATCAT_LICENSE_FILES = LICENSE

$(eval $(host-cmake-package))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 181/344

Example 3: target and host of the same package

package/e2tools/e2tools.mk
E2TOOLS_VERSION = 0.0.16.4
E2TOOLS_SITE = $(call github,ndim,e2tools,v$(E2TOOLS_VERSION))

Source coming from GitHub, no configure included.
E2TOOLS_AUTORECONF = YES
E2TOOLS_LICENSE = GPL-2.0
E2TOOLS_LICENSE_FILES = COPYING
E2TOOLS_DEPENDENCIES = e2fsprogs
E2TOOLS_CONF_ENV = LIBS="-lpthread"
HOST_E2TOOLS_DEPENDENCIES = host-e2fsprogs
HOST_E2TOOLS_CONF_ENV = LIBS="-lpthread"

$(eval $(autotools-package))
$(eval $(host-autotools-package))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 182/344

Practical lab - New packages in Buildroot

▶ Practical creation of several new packages in
Buildroot, using the different package
infrastructures.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/344

Advanced package aspects

Advanced package
aspects

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/344

Advanced package aspects

Licensing report

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/344

Licensing report: introduction

▶ A key aspect of embedded Linux systems is license compliance.
▶ Embedded Linux systems integrate together a number of open-source

components, each distributed under its own license.
▶ The different open-source licenses may have different requirements, that must

be met before the product using the embedded Linux system starts shipping.
▶ Buildroot helps in this license compliance process by offering the possibility of

generating a number of license-related information from the list of selected
packages.

▶ Generated using:

$ make legal-info

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/344

Licensing report: contents of legal-info

▶ sources/ and host-sources/, all the source files that are redistributable
(tarballs, patches, etc.)

▶ manifest.csv and host-manifest.csv, CSV files with the list of target and host
packages, their version, license, etc.

▶ licenses/ and host-licenses/<pkg>/, the full license text of all target and host
packages, per package

▶ buildroot.config, the Buildroot .config file
▶ legal-info.sha256 hashes of all legal-info files
▶ README

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 187/344

Including licensing information in packages

▶ <pkg>_LICENSE
• Comma-separated list of license(s) under which the package is distributed.
• Must use SPDX license codes, see https://spdx.org/licenses/
• Can indicate which part is under which license (programs, tests, libraries, etc.)

▶ <pkg>_LICENSE_FILES
• Space-separated list of file paths from the package source code containing the

license text and copyright information
• Paths relative to the package top-level source directory

▶ <pkg>_REDISTRIBUTE
• Boolean indicating whether the package source code can be redistributed or not

(part of the legal-info output)
• Defaults to YES, can be overridden to NO
• If NO, source code is not copied when generating the licensing report

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 188/344

https://spdx.org/licenses/

Licensing information examples

linux.mk

LINUX_LICENSE = GPL-2.0
LINUX_LICENSE_FILES = COPYING

acl.mk

ACL_LICENSE = GPL-2.0+ (programs), LGPL-2.1+ (libraries)
ACL_LICENSE_FILES = doc/COPYING doc/COPYING.LGPL

owl-linux.mk

OWL_LINUX_LICENSE = PROPRIETARY
OWL_LINUX_LICENSE_FILES = LICENSE
OWL_LINUX_REDISTRIBUTE = NO

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 189/344

Advanced package aspects

Security vulnerability tracking

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 190/344

Security vulnerability tracking

▶ Security has obviously become a key issue in embedded systems that are more and
more commonly connected.

▶ Embedded Linux systems typically integrate 10-100+ open-source components →
not easy to keep track of their potential security vulnerabilities

▶ Industry relies on Common Vulnerability Exposure (CVE) reports to document
known security issues

▶ Buildroot is able to identify if packages are affected by known CVEs, by using the
National Vulnerability Database

• make pkg-stats
• Produces $(O)/pkg-stats.html, $(O)/pkg-stats.json

▶ Note: this is limited to known CVEs. It does not guarantee the absence of
security vulnerabilities.

▶ Only applies to open-source packages, not to your own custom code.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 191/344

Example pkg-stats output

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/344

CPE: Common Platform Enumeration

▶ Concept of Common Platform Enumeration, which gives a unique identifier to a
software release

• E.g.: cpe:2.3:a:xiph:libao:1.2.0:*:*:*:*:*:*:*
▶ By default Buildroot uses:

• cpe:2.3:a:<pkg>_project:<pkg>:<pkg>_VERSION:*:*:*:*:*:*:*
• Not always correct!

▶ Can be modified using:
• <pkg>_CPE_ID_PREFIX
• <pkg>_CPE_ID_VENDOR
• <pkg>_CPE_ID_PRODUCT
• <pkg>_CPE_ID_VERSION
• <pkg>_CPE_ID_UPDATE

▶ Concept of CPE dictionary provided by NVD, which contains all known CPEs.
• pkg-stats checks if the CPE of each package is known in the CPE dictionary

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 193/344

NVD CVE-2020-35492 example

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 194/344

CPE information in packages

package/bash/bash.mk

BASH_CPE_ID_VENDOR = gnu

package/audit/audit.mk

AUDIT_CPE_ID_VENDOR = linux_audit_project
AUDIT_CPE_ID_PRODUCT = linux_audit

linux/linux.mk

LINUX_CPE_ID_VENDOR = linux
LINUX_CPE_ID_PRODUCT = linux_kernel
LINUX_CPE_ID_PREFIX = cpe:2.3:o

package/libffi/libffi.mk

LIBFFI_CPE_ID_VERSION = 3.3
LIBFFI_CPE_ID_UPDATE = rc0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 195/344

<pkg>_IGNORE_CVES variable

▶ There are cases where a CVE reported by the pkg-stats tool in fact is not
relevant:

• The security fix has been backported into Buildroot
• The vulnerability does not affect Buildroot due to how the package is configured or

used
▶ The <pkg>_IGNORE_CVES variable allows a package to tell pkg-stats to ignore a

particular CVE

package/bind/bind.mk

Only applies to RHEL6.x with DNSSEC validation on
BIND_IGNORE_CVES = CVE-2017-3139

package/avahi/avahi.mk

0001-Fix-NULL-pointer-crashes-from-175.patch
AVAHI_IGNORE_CVES += CVE-2021-36217

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 196/344

CycloneDX SBOM

▶ Buildroot can generate a SBOM (Software Bill Of Material) matching the
standard CycloneDX format

$ make show-info | ./utils/generate-cyclonedx -o buildroot.sbom

▶ This can be used to document the contents of the build
▶ But also for vulnerability tracking, for example in conjunction with tools such as

Dependency Track

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/344

https://cyclonedx.org/
https://dependencytrack.org/

Advanced package aspects

Patching packages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/344

Patching packages: why?

▶ In some situations, it might be needed to patch the source code of certain
packages built by Buildroot.

▶ Useful to:
• Fix cross-compilation issues
• Backport bug or security fixes from upstream
• Integrate new features or fixes not available upstream, or that are too specific to the

product being made
▶ Patches are automatically applied by Buildroot, during the patch step, i.e. after

extracting the package, but before configuring it.
▶ Buildroot already comes with a number of patches for various packages, but you

may need to add more for your own packages, or to existing packages.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/344

Patch application ordering

▶ Overall the patches are applied in this order:
1. Patches mentioned in the <pkg>_PATCH variable of the package .mk file. They are

automatically downloaded before being applied.
2. Patches present in the package directory package/<pkg>/*.patch
3. Patches present in the global patch directories

▶ In each case, they are applied:
• In the order specified in a series file, if available
• Otherwise, in alphabetic ordering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/344

Patch conventions
▶ There are a few conventions and best practices that the Buildroot project

encourages to use when managing patches
▶ Their name should start with a sequence number that indicates the ordering in

which they should be applied.
ls package/nginx/*.patch
0001-auto-type-sizeof-rework-autotest-to-be-cross-compila.patch
0002-auto-feature-add-mechanism-allowing-to-force-feature.patch
0003-auto-set-ngx_feature_run_force_result-for-each-featu.patch
0004-auto-lib-libxslt-conf-allow-to-override-ngx_feature_.patch
0005-auto-unix-make-sys_nerr-guessing-cross-friendly.patch
[...]

▶ Each patch should contain a description of what the patch does, and if possible
its upstream status.

▶ Each patch should contain a Signed-off-by that identifies the author of the
patch.

▶ Patches should be generated using git format-patch when possible.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 201/344

Patch example

From 81289d1d1adaf5a767a4b4d1309c286468cfd37f Mon Sep 17 00:00:00 2001
From: Samuel Martin <s.martin49@gmail.com>
Date: Thu, 24 Apr 2014 23:27:32 +0200
Subject: [PATCH] auto/type/sizeof: rework autotest to be cross-compilation
friendly

Rework the sizeof test to do the checks at compile time instead of at
runtime. This way, it does not break when cross-compiling for a
different CPU architecture.

Signed-off-by: Samuel Martin <s.martin49@gmail.com>

auto/types/sizeof | 42 ++++++++++++++++++++++++++++--------------
1 file changed, 28 insertions(+), 14 deletions(-)

diff --git a/auto/types/sizeof b/auto/types/sizeof
index 9215a54..c2c3ede 100644
--- a/auto/types/sizeof
+++ b/auto/types/sizeof
@@ -14,7 +14,7 @@ END

ngx_size=

-cat << END > $NGX_AUTOTEST.c
+cat << _EOF > $NGX_AUTOTEST.c
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/344

Global patch directories

▶ You can include patches for the different packages in their package directory,
package/<pkg>/.

▶ However, doing this involves changing the Buildroot sources themselves, which
may not be appropriate for some highly specific patches.

▶ The global patch directories mechanism allows to specify additional locations
where Buildroot will look for patches to apply on packages.

▶ BR2_GLOBAL_PATCH_DIR specifies a space-separated list of directories containing
patches.

▶ These directories must contain sub-directories named after the packages,
themselves containing the patches to be applied.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/344

Global patch directory example

Patching strace
$ ls package/strace/*.patch
0001-linux-aarch64-add-missing-header.patch

$ find ~/patches/
~/patches/
~/patches/strace/
~/patches/strace/0001-Demo-strace-change.patch

$ grep ^BR2_GLOBAL_PATCH_DIR .config
BR2_GLOBAL_PATCH_DIR="$(HOME)/patches"

$ make strace
[...]
>>> strace 4.10 Patching

Applying 0001-linux-aarch64-add-missing-header.patch using patch:
patching file linux/aarch64/arch_regs.h

Applying 0001-Demo-strace-change.patch using patch:
patching file README
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/344

Generating patches

▶ To generate the patches against a given package source code, there are typically
two possibilities.

▶ Use the upstream version control system, often Git
▶ Use a tool called quilt

• Useful when there is no version control system provided by the upstream project
• https://savannah.nongnu.org/projects/quilt

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/344

https://savannah.nongnu.org/projects/quilt

Generating patches: with Git

Needs to be done outside of Buildroot: you cannot use the Buildroot package build
directory.
1. Clone the upstream Git repository

git clone https://...

2. Create a branch starting on the tag marking the stable release of the software as
packaged in Buildroot
git checkout -b buildroot-changes v3.2

3. Import existing Buildroot patches (if any)
git am /path/to/buildroot/package/<foo>/*.patch

4. Make your changes and commit them
git commit -s -m ``this is a change''

5. Generate the patches
git format-patch v3.2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/344

Generating patches: with Quilt
1. Extract the package source code:

tar xf /path/to/dl/<foo>-<version>.tar.gz

2. Inside the package source code, create a directory for patches
mkdir patches

3. Import existing Buildroot patches
quilt import /path/to/buildroot/package/<foo>/*.patch

4. Apply existing Buildroot patches
quilt push -a

5. Create a new patch
quilt new 0001-fix-header-inclusion.patch

6. Edit a file
quilt edit main.c

7. Refresh the patch
quilt refresh

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 207/344

Advanced package aspects

User, permission and device tables

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/344

Package-specific users

▶ The default skeleton in system/skeleton/ has a number of default users/groups.
▶ Packages can define their own custom users/groups using the <pkg>_USERS

variable:
define <pkg>_USERS

username uid group gid password home shell groups comment
endef

▶ Examples:

define AVAHI_USERS
avahi -1 avahi -1 * - - -

endef

define MYSQL_USERS
mysql -1 nogroup -1 * /var/mysql - - MySQL daemon

endef

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/344

File permissions and ownership

▶ By default, before creating the root filesystem images, Buildroot changes the
ownership of all files to 0:0, i.e. root:root

▶ Permissions are preserved as is, but since the build is executed as non-root, it is
not possible to install setuid applications.

▶ A default set of permissions for certain files or directories is defined in
system/device_table.txt.

▶ The <pkg>_PERMISSIONS variable allows packages to define special ownership and
permissions for files and directories:

define <pkg>_PERMISSIONS
name type mode uid gid major minor start inc count
endef

▶ The major, minor, start, inc and count fields are not used.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/344

File permissions and ownership: examples

▶ sudo needs to be installed setuid root:

define SUDO_PERMISSIONS
/usr/bin/sudo f 4755 0 0 - - - - -

endef

▶ /var/lib/nginx needs to be owned by www-data, which has UID/GID 33 defined
in the skeleton:

define NGINX_PERMISSIONS
/var/lib/nginx d 755 33 33 - - - - -

endef

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 211/344

Devices

▶ Defining devices only applies when the chosen /dev management strategy is
Static using a device table. In other cases, device files are created dynamically.

▶ A default set of device files is described in system/device_table_dev.txt and
created by Buildroot in the root filesystem images.

▶ When packages need some additional custom devices, they can use the
<pkg>_DEVICES variable:

define <pkg>_DEVICES
name type mode uid gid major minor start inc count
endef

▶ Becoming less useful, since most people are using a dynamic /dev nowadays.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 212/344

Devices: example

xenomai.mk

define XENOMAI_DEVICES
/dev/rtheap c 666 0 0 10 254 0 0 -
/dev/rtscope c 666 0 0 10 253 0 0 -
/dev/rtp c 666 0 0 150 0 0 1 32
endef

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 213/344

Advanced package aspects

Init scripts and systemd unit files

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 214/344

Init scripts, systemd unit files

▶ Buildroot supports several main init systems: sysvinit, BusyBox, systemd, OpenRC
▶ When packages want to install a program to be started at boot time, they need to

install a startup script (sysvinit/BusyBox), a systemd service file, etc.
▶ They can do so using the following variables, which contain a list of shell

commands.
• <pkg>_INSTALL_INIT_SYSV
• <pkg>_INSTALL_INIT_SYSTEMD
• <pkg>_INSTALL_INIT_OPENRC

▶ Buildroot will execute the appropriate <pkg>_INSTALL_INIT_xyz commands of all
enabled packages depending on the selected init system.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 215/344

Init scripts, systemd unit files: example

bind.mk
define BIND_INSTALL_INIT_SYSV

$(INSTALL) -m 0755 -D package/bind/S81named \
$(TARGET_DIR)/etc/init.d/S81named

endef

define BIND_INSTALL_INIT_SYSTEMD
$(INSTALL) -D -m 644 package/bind/named.service \

$(TARGET_DIR)/usr/lib/systemd/system/named.service
endef

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 216/344

Advanced package aspects

Config scripts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/344

Config scripts: introduction

▶ Libraries not using pkg-config often install a small shell script that allows
applications to query the compiler and linker flags to use the library.

▶ Examples: curl-config, freetype-config, etc.
▶ Such scripts will:

• generally return results that are not appropriate for cross-compilation
• be used by other cross-compiled Buildroot packages that use those libraries

▶ By listing such scripts in the <pkg>_CONFIG_SCRIPTS variable, Buildroot will
adapt the prefix, header and library paths to make them suitable for
cross-compilation.

▶ Paths in <pkg>_CONFIG_SCRIPTS are relative to $(STAGING_DIR)/usr/bin.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 218/344

Config scripts: examples

libpng.mk
LIBPNG_CONFIG_SCRIPTS = \

libpng$(LIBPNG_SERIES)-config libpng-config

imagemagick.mk
IMAGEMAGICK_CONFIG_SCRIPTS = \

$(addsuffix -config,Magick MagickCore MagickWand Wand)

ifeq ($(BR2_INSTALL_LIBSTDCPP)$(BR2_USE_WCHAR),yy)
IMAGEMAGICK_CONFIG_SCRIPTS += Magick++-config
endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 219/344

Config scripts: effect

Without <pkg>_CONFIG_SCRIPTS
$./output/staging/usr/bin/libpng-config --cflags --ldflags
-I/usr/include/libpng16
-L/usr/lib -lpng16

With <pkg>_CONFIG_SCRIPTS

$./output/staging/usr/bin/libpng-config --cflags --ldflags
-I.../buildroot/output/host/arm-buildroot-linux-uclibcgnueabi/sysroot/usr/include/libpng16
-L.../buildroot/output/host/arm-buildroot-linux-uclibcgnueabi/sysroot/usr/lib -lpng16

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 220/344

Advanced package aspects

Hooks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 221/344

Hooks: principle (1)

▶ Buildroot package infrastructure often implement a default behavior for certain
steps:

• generic-package implements for all packages the download, extract and patch steps
• Other infrastructures such as autotools-package or cmake-package also

implement the configure, build and installations steps
▶ In some situations, the package may want to do additional actions before or

after one of these steps.
▶ The hook mechanism allows packages to add such custom actions.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 222/344

Hooks: principle (2)

▶ There are pre and post hooks available for all steps of the package compilation
process:

• download, extract, rsync, patch, configure, build, install, install staging, install
target, install images, legal info

• <pkg>_(PRE|POST)_<step>_HOOKS
• Example: CMAKE_POST_INSTALL_TARGET_HOOKS, CVS_POST_PATCH_HOOKS,

BINUTILS_PRE_PATCH_HOOKS

▶ Hook variables contain a list of make macros to call at the appropriate time.
• Use += to register an additional hook to a hook point

▶ Those make macros contain a list of commands to execute.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 223/344

Hooks: examples

bind.mk: remove unneeded binaries
define BIND_TARGET_REMOVE_TOOLS

rm -rf $(addprefix $(TARGET_DIR)/usr/bin/, $(BIND_TARGET_TOOLS_BIN))
endef

BIND_POST_INSTALL_TARGET_HOOKS += BIND_TARGET_REMOVE_TOOLS

vsftpd.mk: adjust configuration
define VSFTPD_ENABLE_SSL

$(SED) 's/.*VSF_BUILD_SSL/#define VSF_BUILD_SSL/' \
$(@D)/builddefs.h

endef

ifeq ($(BR2_PACKAGE_OPENSSL),y)
VSFTPD_DEPENDENCIES += openssl host-pkgconf
VSFTPD_LIBS += `$(PKG_CONFIG_HOST_BINARY) --libs libssl libcrypto`
VSFTPD_POST_CONFIGURE_HOOKS += VSFTPD_ENABLE_SSL
endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 224/344

Advanced package aspects

Overriding commands

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 225/344

Overriding commands: principle

▶ In other situations, a package may want to completely override the default
implementation of a step provided by a package infrastructure.

▶ A package infrastructure will in fact only implement a given step if not already
defined by a package.

▶ So defining <pkg>_EXTRACT_CMDS or <pkg>_BUILD_CMDS in your package .mk file
will override the package infrastructure implementation (if any).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 226/344

Overriding commands: examples

jquery: source code is only one file
JQUERY_SITE = http://code.jquery.com
JQUERY_SOURCE = jquery-$(JQUERY_VERSION).min.js

define JQUERY_EXTRACT_CMDS
cp $(DL_DIR)/$(JQUERY_SOURCE) $(@D)

endef

tftpd: install only what’s needed
define TFTPD_INSTALL_TARGET_CMDS

$(INSTALL) -D $(@D)/tftp/tftp $(TARGET_DIR)/usr/bin/tftp
$(INSTALL) -D $(@D)/tftpd/tftpd $(TARGET_DIR)/usr/sbin/tftpd

endef

$(eval $(autotools-package))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 227/344

Advanced package aspects

Legacy handling

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 228/344

Legacy handling: Config.in.legacy

▶ When a Config.in option is removed, the corresponding value in the .config is
silently removed.

▶ Due to this, when users upgrade Buildroot, they generally don’t know that an
option they were using has been removed.

▶ Buildroot therefore adds the removed config option to Config.in.legacy with a
description of what has happened.

▶ If any of these legacy options is enabled then Buildroot refuses to build.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 229/344

Advanced package aspects

DEVELOPERS file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 230/344

DEVELOPERS file: principle

▶ A top-level DEVELOPERS file lists Buildroot developers and contributors interested
in specific packages, board defconfigs or architectures.

▶ Used by:
• The utils/get-developers script to identify to whom a patch on an existing

package should be sent
• The Buildroot autobuilder infrastructure to notify build failures to the appropriate

package or architecture developers
▶ Important to add yourself in DEVELOPERS if you contribute a new package/board

to Buildroot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 231/344

DEVELOPERS file: extract

N: Thomas Petazzoni <thomas.petazzoni@bootlin.com>
F: arch/Config.in.arm
F: boot/boot-wrapper-aarch64/
F: boot/grub2/
F: package/android-tools/
F: package/cmake/
F: package/cramfs/
[...]
F: toolchain/

N: Waldemar Brodkorb <wbx@openadk.org>
F: arch/Config.in.bfin
F: arch/Config.in.m68k
F: arch/Config.in.or1k
F: arch/Config.in.sparc
F: package/glibc/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 232/344

Advanced package aspects

Virtual packages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 233/344

Virtual packages

▶ There are situations where different packages provide an implementation of the
same interface

▶ The most useful example is OpenGL
• OpenGL is an API
• Each HW vendor typically provides its own OpenGL implementation, each packaged

as separate Buildroot packages
▶ Packages using the OpenGL interface do not want to know which implementation

they are using: they are simply using the OpenGL API
▶ The mechanism of virtual packages in Buildroot allows to solve this situation.

• libgles is a virtual package offering the OpenGL ES API
• Ten packages are providers of the OpenGL ES API: gpu-amd-bin-mx51,

imx-gpu-viv, gcnano-binaries, mali-t76x, mesa3d, nvidia-driver,
rpi-userland, sunxi-mali-mainline, ti-gfx, ti-sgx-um

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 234/344

Virtual packages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 235/344

Virtual package definition: Config.in

libgles/Config.in

config BR2_PACKAGE_HAS_LIBGLES
bool

config BR2_PACKAGE_PROVIDES_LIBGLES
depends on BR2_PACKAGE_HAS_LIBGLES
string

▶ BR2_PACKAGE_HAS_LIBGLES is a hidden boolean
• Packages needing OpenGL ES will depends on it.
• Packages providing OpenGL ES will select it.

▶ BR2_PACKAGE_PROVIDES_LIBGLES is a hidden string
• Packages providing OpenGL ES will define their name as the variable value
• The libgles package will have a build dependency on this provider package.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 236/344

Virtual package definition: .mk

libgles/libgles.mk

$(eval $(virtual-package))

▶ Nothing to do: the virtual-package infrastructure takes care of everything, using
the BR2_PACKAGE_HAS_<name> and BR2_PACKAGE_PROVIDES_<name> options.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 237/344

Virtual package provider
sunxi-mali-mainline/Config.in

config BR2_PACKAGE_SUNXI_MALI_MAINLINE
bool "sunxi-mali-mainline"
select BR2_PACKAGE_HAS_LIBEGL
select BR2_PACKAGE_HAS_LIBGLES

config BR2_PACKAGE_PROVIDES_LIBGLES
default "sunxi-mali-mainline"

sunxi-mali-mainline/sunxi-mali-mainline.mk

[...]
SUNXI_MALI_MAINLINE_PROVIDES = libegl libgles
[...]

▶ The variable <pkg>_PROVIDES is only used to detect if two providers for the same
virtual package are enabled.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 238/344

Virtual package user
qt5/qt5base/Config.in

config BR2_PACKAGE_QT5BASE_OPENGL_ES2
bool "OpenGL ES 2.0+"
depends on BR2_PACKAGE_HAS_LIBGLES
help
Use OpenGL ES 2.0 and later versions.

qt5/qt5base/qt5base.mk

ifeq ($(BR2_PACKAGE_QT5BASE_OPENGL_DESKTOP),y)
QT5BASE_CONFIGURE_OPTS += -opengl desktop
QT5BASE_DEPENDENCIES += libgl
else ifeq ($(BR2_PACKAGE_QT5BASE_OPENGL_ES2),y)
QT5BASE_CONFIGURE_OPTS += -opengl es2
QT5BASE_DEPENDENCIES += libgles
else
QT5BASE_CONFIGURE_OPTS += -no-opengl
endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 239/344

Practical lab - Advanced packages

▶ Package an application with a mandatory
dependency and an optional dependency

▶ Package a library, hosted on GitHub
▶ Use hooks to tweak packages
▶ Add a patch to a package

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 240/344

Analyzing the build

Analyzing the build

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 241/344

Analyzing the build: available tools

▶ Buildroot provides several useful tools to analyze the build:
• The licensing report, covered in a previous section, which allows to analyze the list

of packages and their licenses.
• The dependency graphing tools
• The build time graphing tools
• The filesystem size tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 242/344

Dependency graphing

▶ Exploring the dependencies between packages is useful to understand
• why a particular package is being brought into the build
• if the build size and duration can be reduced

▶ make graph-depends to generate a full dependency graph, which can be huge!
▶ make <pkg>-graph-depends to generate the dependency graph of a given

package
▶ The graph is done according to the current Buildroot configuration.
▶ Resulting graphs in $(O)/graphs/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 243/344

Dependency graph example

ALL

toolchain busybox strace rootfs-ubifs

toolchain-buildroot

host-gcc-final

uclibc

host-gcc-initial linux-headers

host-binutils host-mpc

host-mpfr

host-gmp

host-m4

host-mtd host-fakeroot host-makedevs

host-e2fsprogs

host-lzo

host-zlib

host-pkgconf

host-automake

host-autoconf

host-libtool

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 244/344

Build time graphing

▶ When the generated embedded Linux system grows bigger and bigger, the build
time also increases.

▶ It is sometimes useful to analyze this build time, and see if certain packages are
particularly problematic.

▶ Buildroot collects build duration data in the file $(O)/build/build-time.log
▶ make graph-build generates several graphs in $(O)/graphs/:

• build.hist-build.pdf, build time in build order
• build.hist-duration.pdf, build time by duration
• build.hist-name.pdf, build time by package name
• build.pie-packages.pdf, pie chart of the per-package build time
• build.pie-steps.pdf, pie chart of the per-step build time

▶ Note: only works properly after a complete clean rebuild.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 245/344

Build time graphing: example

toolchain-external
toolchain

busybox

cups

host-m
4

host-libtool

host-autoconf

host-autom
ake

ijs zlib

lcm
s2

gettext

host-gettext

host-libffi

host-pkgconf

host-zlib

host-libglib2

libffi

pcre

libglib2

expat

freetype

fontconfig

poppler

qpdf

0

20

40

60

80

100

Ti
m

e
(s

ec
on

ds
)

Build time of packages, by build order

extract
patch
configure
build
install-target
install-staging
install-images
install-host

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 246/344

Filesystem size graphing

▶ In many embedded systems, storage resources are limited.
▶ For this reason, it is useful to be able to analyze the size of your root filesystem,

and see which packages are consuming the biggest amount of space.
▶ Allows to focus the size optimizations on the relevant packages.
▶ Buildroot collects data about the size installed by each package.
▶ make graph-size produces:

• file-size-stats.csv, CSV with the raw data of the per-file size
• package-size-stats.csv, CSV with the raw data of the per-package size
• graph-size.pdf, pie chart of the per-package size consumption

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 247/344

Filesystem size graphing: example

strace (289 kB)

9.2%

busybox (686 kB)

21.8%

lua (262 kB)

8.3%ncurses (198 kB)

6.3%

toolchain-external (1462 kB)

46.3%
libusb (71 kB)

2.3% htop (100 kB)

3.2% libhid (52 kB)
1.7% Other (32 kB)1.0%

Total filesystem size: 3156 kB

Filesystem size per package

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 248/344

Advanced topics

Advanced topics

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 249/344

BR2_EXTERNAL: principle

▶ Storing your custom packages, custom configuration files and custom defconfigs
inside the Buildroot tree may not be the most practical solution

• Doesn’t cleanly separate open-source parts from proprietary parts
• Makes it harder to upgrade Buildroot

▶ The BR2_EXTERNAL mechanism allows to store your own package recipes,
defconfigs and other artefacts outside of the Buildroot source tree.

▶ It is possible to use several BR2_EXTERNAL trees, to further separate various
aspects of your project.

▶ Note: can only be used to add new packages, not to override existing Buildroot
packages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 250/344

BR2_EXTERNAL: example organization

▶ project/
• buildroot/

The Buildroot source code, cloned from Git, or extracted from a release tarball.
• external1/
• external2/

Two external trees
• output-build1/
• output-build2/

Several output directories, to build various configurations
• custom-app/
• custom-lib/

The source code of your custom applications and libraries.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 251/344

Using BR2_EXTERNAL

▶ Specify, as a colon-separated list, the external directories in BR2_EXTERNAL

▶ Not a configuration option, only an environment variable to be passed on the
command line

make BR2_EXTERNAL=/path/to/external1:/path/to/external2

▶ Automatically saved in the hidden .br2-external.mk file in the output
directory

• no need to pass BR2_EXTERNAL at every make invocation
• can be changed at any time by passing a new value, and removed by passing an

empty value
▶ Can be either an absolute or a relative path, but if relative, important to

remember that it’s relative to the Buildroot source directory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 252/344

BR2_EXTERNAL: important files

▶ Each external directory must contain:
• external.desc, which provides a name and description
• Config.in, configuration options that will be included in menuconfig
• external.mk, will be included in the make logic

▶ If configs exists, it will be used when listing all defconfigs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 253/344

BR2_EXTERNAL: recommended structure

+-- board/
| +-- <company>/
| +-- <boardname>/
| +-- linux.config
| +-- busybox.config
| +-- <other configuration files>
| +-- post_build.sh
| +-- post_image.sh
| +-- rootfs_overlay/
| | +-- etc/
| | +-- <some file>
| +-- patches/
| +-- libbar/
| +-- <some patches>
|
+-- configs/
| +-- <boardname>_defconfig
|

+-- package/
| +-- <company>/
| +-- package1/
| | +-- Config.in
| | +-- package1.mk
| +-- package2/
| +-- Config.in
| +-- package2.mk
|
+-- Config.in
+-- external.mk
+-- external.desc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 254/344

BR2_EXTERNAL: external.desc

▶ File giving metadata about the external tree
▶ Mandatory name field, using characters in the set [A-Za-z0-9_]. Will be used to

define BR2_EXTERNAL_<NAME>_PATH available in Config.in and .mk files, pointing
to the external tree directory.

▶ Optional desc field, giving a free-form description of the external tree. Should be
reasonably short.

▶ Example

name: FOOBAR
desc: Foobar Company

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 255/344

BR2_EXTERNAL: main Config.in

▶ Custom configuration options
▶ Configuration options for the external packages
▶ The $BR2_EXTERNAL_<NAME>_PATH variable is available, where NAME is defined in

external.desc

Example Config.in

source "$BR2_EXTERNAL_<NAME>_PATH/package/package1/Config.in"
source "$BR2_EXTERNAL_<NAME>_PATH/package/package2/Config.in"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 256/344

BR2_EXTERNAL: external.mk

▶ Can include custom make logic
▶ Generally only used to include the package .mk files

Example external.mk

include $(sort $(wildcard $(BR2_EXTERNAL_<NAME>_PATH)/package/*/*.mk))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 257/344

Use BR2_EXTERNAL in your configuration

▶ In your Buildroot configuration, don’t use absolute paths for the rootfs overlay,
the post-build scripts, global patch directories, etc.

▶ If they are located in an external tree, you can use
$(BR2_EXTERNAL_<NAME>_PATH) in your Buildroot configuration options.

▶ With the recommended structure shown before, a Buildroot configuration would
look like:

BR2_GLOBAL_PATCH_DIR="$(BR2_EXTERNAL_<NAME>_PATH)/board/<company>/<boardname>/patches/"
...
BR2_ROOTFS_OVERLAY="$(BR2_EXTERNAL_<NAME>_PATH)/board/<company>/<boardname>/rootfs_overlay/"
...
BR2_ROOTFS_POST_BUILD_SCRIPT="$(BR2_EXTERNAL_<NAME>_PATH)/board/<company>/<boardname>/post_build.sh"
BR2_ROOTFS_POST_IMAGE_SCRIPT="$(BR2_EXTERNAL_<NAME>_PATH)/board/<company>/<boardname>/post_image.sh"
...
BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG=y
BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE="$(BR2_EXTERNAL_<NAME>_PATH)/board/<company>/<boardname>/linux.config"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 258/344

Examples of BR2_EXTERNAL trees

▶ There are a number of publicly available BR2_EXTERNAL trees, especially from
hardware vendors:

• buildroot-external-st, maintained by Bootlin in partnership with ST, containing
example configurations for the STM32MP1 platforms.
https://github.com/bootlin/buildroot-external-st

• buildroot-external-microchip, containing example configurations, additional
packages and demo applications for Microchip ARM platforms.
https://github.com/linux4sam/buildroot-external-microchip

• buildroot-external-boundary, containing example configurations for Boundary
Devices boards, mainly based on NXP i.MX processors.
https://github.com/boundarydevices/buildroot-external-boundary

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 259/344

https://github.com/bootlin/buildroot-external-st
https://github.com/linux4sam/buildroot-external-microchip
https://github.com/boundarydevices/buildroot-external-boundary

Package-specific targets: basics

▶ Internally, each package is implemented through a number of package-specific
make targets

• They can sometimes be useful to call directly, in certain situations.
▶ The targets used in the normal build flow of a package are:

• <pkg>, fully build and install the package
• <pkg>-source, just download the source code
• <pkg>-extract, download and extract
• <pkg>-patch, download, extract and patch
• <pkg>-configure, download, extract, patch and configure
• <pkg>-build, download, extract, patch, configure and build
• <pkg>-install-staging, download, extract, patch, configure and do the staging

installation (target packages only)
• <pkg>-install-target, download, extract, patch, configure and do the target

installation (target packages only)
• <pkg>-install, download, extract, patch, configure and install

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 260/344

Package-specific targets: example (1)

$ make strace
>>> strace 4.10 Extracting
>>> strace 4.10 Patching
>>> strace 4.10 Updating config.sub and config.guess
>>> strace 4.10 Patching libtool
>>> strace 4.10 Configuring
>>> strace 4.10 Building
>>> strace 4.10 Installing to target
$ make strace-build
... nothing ...
$ make ltrace-patch
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Extracting
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Patching
$ make ltrace
>>> argp-standalone 1.3 Extracting
>>> argp-standalone 1.3 Patching
>>> argp-standalone 1.3 Updating config.sub and config.guess
>>> argp-standalone 1.3 Patching libtool
[...]
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Configuring
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Autoreconfiguring
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Patching libtool
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Building
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Installing to target

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 261/344

Package-specific targets: advanced

▶ Additional useful targets
• make <pkg>-show-depends, show the package dependencies
• make <pkg>-graph-depends, generates a dependency graph
• make <pkg>-dirclean, completely remove the package source code directory. The

next make invocation will fully rebuild this package.
• make <pkg>-reinstall, force to re-execute the installation step of the package
• make <pkg>-rebuild, force to re-execute the build and installation steps of the

package
• make <pkg>-reconfigure, force to re-execute the configure, build and installation

steps of the package.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 262/344

Package-specific targets: example (2)

$ make strace
>>> strace 4.10 Extracting
>>> strace 4.10 Patching
>>> strace 4.10 Updating config.sub and config.guess
>>> strace 4.10 Patching libtool
>>> strace 4.10 Configuring
>>> strace 4.10 Building
>>> strace 4.10 Installing to target
$ ls output/build/
strace-4.10 [...]
$ make strace-dirclean
rm -Rf /home/thomas/projets/buildroot/output/build/strace-4.10
$ ls output/build/
[... no strace-4.10 directory ...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 263/344

Package-specific targets: example (3)

$ make strace
>>> strace 4.10 Extracting
>>> strace 4.10 Patching
>>> strace 4.10 Updating config.sub and config.guess
>>> strace 4.10 Patching libtool
>>> strace 4.10 Configuring
>>> strace 4.10 Building
>>> strace 4.10 Installing to target
$ make strace-rebuild
>>> strace 4.10 Building
>>> strace 4.10 Installing to target
$ make strace-reconfigure
>>> strace 4.10 Configuring
>>> strace 4.10 Building
>>> strace 4.10 Installing to target

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 264/344

make show-info

▶ make show-info outputs JSON text
that describes the current
configuration: enabled packages, in
which version, their license, tarball,
dependencies, etc.

▶ Can be useful for post-processing,
build analysis, license compliance, etc.

$ make show-info | jq .
{
"busybox": {
"type": "target",
"virtual": false,
"version": "1.31.1",
"licenses": "GPL-2.0",
"dl_dir": "busybox",
"install_target": true,
"install_staging": false,
"install_images": false,
"downloads": [
{
"source": "busybox-1.31.1.tar.bz2",
"uris": [
"http+http://www.busybox.net/downloads",
"http|urlencode+http://sources.buildroot.net/busybox",

]
}

],
"dependencies": [
"host-skeleton",
"host-tar",
"skeleton",
"toolchain"

],
"reverse_dependencies": []

},

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 265/344

Understanding rebuilds (1)

▶ Doing a full rebuild is achieved using:

$ make clean all

• It will completely remove all build artefacts and restart the build from scratch
▶ Buildroot does not try to be smart

• once the system has been built, if a configuration change is made, the next make will
not apply all the changes made to the configuration.

• being smart is very, very complicated if you want to do it in a reliable way.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 266/344

Understanding rebuilds (2)

▶ When a package has been built by Buildroot, Buildroot keeps a hidden file telling
that the package has been built.

• Buildroot will therefore never rebuild that package, unless a full rebuild is done, or
this specific package is explicitly rebuilt.

• Buildroot does not recurse into each package at each make invocation, it would be
too time-consuming. So if you change one source file in a package, Buildroot does
not know it.

▶ When make is invoked, Buildroot will always:
• Build the packages that have not been built in a previous build and install them to

the target
• Cleanup the target root filesystem from useless files
• Run post-build scripts, copy rootfs overlays
• Generate the root filesystem images
• Run post-image scripts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 267/344

Understanding rebuilds: scenarios (1)

▶ If you enable a new package in the configuration, and run make
• Buildroot will build it and install it
• However, other packages that may benefit from this package will not be rebuilt

automatically
▶ If you remove a package from the configuration, and run make

• Nothing happens. The files installed by this package are not removed from the
target filesystem.

• Buildroot does not track which files are installed by which package
• Need to do a full rebuild to get the new result. Advice: do it only when really needed.

▶ If you change the sub-options of a package that has already been built, and run
make

• Nothing happens.
• You can force Buildroot to rebuild this package using make <pkg>-reconfigure or

make <pkg>-rebuild.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 268/344

Understanding rebuilds: scenarios (2)

▶ If you make a change to a post-build script, a rootfs overlay or a post-image
script, and run make

• This is sufficient, since these parts are re-executed at every make invocation.
▶ If you change a fundamental system configuration option: architecture, type of

toolchain or toolchain configuration, init system, etc.
• You must do a full rebuild

▶ If you change some source code in output/build/<foo>-<version>/ and issue
make

• The package will not be rebuilt automatically: Buildroot has a hidden file saying
that the package was already built.

• Use make <pkg>-reconfigure or make <pkg>-rebuild
• And remember that doing changes in output/build/<foo>-<version>/ can only

be temporary: this directory is removed during a make clean.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 269/344

Tips for building faster

▶ Build time is often an issue, so here are some tips to help
• Use fast hardware: lots of RAM, and SSD
• Do not use virtual machines
• You can enable the ccache compiler cache using BR2_CCACHE
• Use external toolchains instead of internal toolchains
• Learn about rebuilding only the few packages you actually care about
• Build everything locally, do not use NFS for building
• Remember that you can do several independent builds in parallel in different output

directories

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 270/344

Support for top-level parallel build (1)

▶ Buildroot normally builds packages sequentially, one after the other.
▶ Calling Buildroot with make -jX has no effect
▶ Parallel build is used within the build of each package: Buildroot invokes each

package build system with make -jX
• This level of parallelization is controlled by BR2_JLEVEL
• Defaults to 0, which means Buildroot auto-detects the number of CPUs cores

▶ Buildroot 2020.02 has introduced experimental support for top-level parallel
build

• Allows to build multiple different packages in parallel
• Of course taking into account their dependencies
• Allows to better use multi-core machines
• Reduces build time significantly

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 271/344

Support for top-level parallel build (2)

▶ To use this experimental support:
1. Enable BR2_PER_PACKAGE_DIRECTORIES=y
2. Build with make -jX

▶ The per-package option ensures that each package uses its own HOST_DIR,
STAGING_DIR and TARGET_DIR so that different packages can be built in parallel
with no interference

▶ See $(O)/per-package/<pkg>/
▶ Limitations

• Not yet supported by all packages, e.g Qt5
• Absolutely requires that packages do not overwrite/change files installed by other

packages
• <pkg>-reconfigure, <pkg>-rebuild, <pkg>-reinstall not working

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 272/344

Reproducible builds

▶ Buildroot guarantees that for a given version/configuration, it will always build
the same components, in the same version, with the same configuration.

▶ However, a number of aspects (time, user, build location) can affect the build and
make two consecutive builds of the same configuration not strictly identical.

▶ BR2_REPRODUCIBLE enables experimental support for build reproducibility
▶ Goal: have bit-identical results when

• Date/time is different (i.e. same build later)
• Build location has the same path length

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 273/344

Practical lab - Advanced aspects

▶ Use legal-info for legal information
extraction

▶ Use graph-depends for dependency graphing
▶ Use graph-build for build time graphing
▶ Use BR2_EXTERNAL to isolate the

project-specific changes (packages, configs,
etc.)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 274/344

Application development

Application
development

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 275/344

Building during development

▶ Buildroot is mainly a final integration tool: it is aimed at downloading and
building fixed versions of software components, in a reproducible way.

▶ When doing active development of a software component, you need to be able to
quickly change the code, build it, and deploy it on the target.

▶ The package build directory is temporary, and removed on make clean, so making
changes here is not practical

▶ Buildroot does not automatically “update” your source code when the package is
fetched from a version control system.

▶ Three solutions:
• Build your software component outside of Buildroot during development. Doable for

software components that are easy to build.
• Use the local SITE_METHOD for your package
• Use the <pkg>_OVERRIDE_SRCDIR mechanism

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 276/344

Building code for Buildroot

▶ The Buildroot cross-compiler is installed in $(HOST_DIR)/bin
▶ It is already set up to:

• generate code for the configured architecture
• look for libraries and headers in $(STAGING_DIR)

▶ Other useful tools that may be built by Buildroot are installed in
$(HOST_DIR)/bin:

• pkg-config, to find libraries. Beware that it is configured to return results for target
libraries: it should only be used when cross-compiling.

• qmake, when building Qt applications with this build system.
• autoconf, automake, libtool, to use versions independent from the host system.

▶ Adding $(HOST_DIR)/bin to your PATH when cross-compiling is the easiest
solution.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 277/344

Building code for Buildroot: C program

Building a C program for the host

$ gcc -o foobar foobar.c
$ file foobar
foobar: ELF 64-bit LSB executable, x86-64, version 1...

Building a C program for the target

$ export PATH=$(pwd)/output/host/bin:$PATH
$ arm-linux-gcc -o foobar foobar.c
$ file foobar
foobar: ELF 32-bit LSB executable, ARM, EABI5 version 1...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 278/344

Building code for Buildroot: pkg-config

Using the system pkg-config

$ pkg-config --cflags libpng
-I/usr/include/libpng12

$ pkg-config --libs libpng
-lpng12

Using the Buildroot pkg-config
$ export PATH=$(pwd)/output/host/bin:$PATH

$ pkg-config --cflags libpng
-I.../output/host/arm-buildroot-linux-uclibcgnueabi/sysroot/usr/include/libpng16

$ pkg-config --libs libpng
-L.../output/host/arm-buildroot-linux-uclibcgnueabi/sysroot/usr/lib -lpng16

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 279/344

Building code for Buildroot: autotools

▶ Building simple autotools components outside of Buildroot is easy:

$ export PATH=.../buildroot/output/host/bin/:$PATH
$./configure --host=arm-linux

▶ Passing --host=arm-linux tells the configure script to use the cross-compilation
tools prefixed by arm-linux-.

▶ In more complex cases, some additional CFLAGS or LDFLAGS might be needed in
the environment.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 280/344

Building code for Buildroot: CMake

▶ Buildroot generates a CMake toolchain file, installed in
output/host/share/buildroot/toolchainfile.cmake

▶ Tells CMake which cross-compilation tools to use
▶ Passed using the CMAKE_TOOLCHAIN_FILE CMake option
▶ https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html

▶ With this file, building CMake projects outside of Buildroot is easy:

$ cmake -DCMAKE_TOOLCHAIN_FILE=.../buildroot/output/host/share/buildroot/toolchainfile.cmake .
$ make
$ file app
app: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 281/344

https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html

Building code for Buildroot: Meson

▶ Buildroot generates a Meson cross file, installed in
output/host/etc/meson/cross-compilation.conf

▶ Tells Meson which cross-compilation tools to use
▶ Passed using the --cross-file Meson option
▶ https://mesonbuild.com/Cross-compilation.html

▶ With this file, building Meson projects outside of Buildroot is easy:

$ mkdir build
$ meson --cross-file=.../buildroot/output/host/etc/meson/cross-compilation.conf ..
$ ninja
$ file app
app: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 282/344

https://mesonbuild.com/Cross-compilation.html

Building code for Buildroot: environment-setup

▶ Enable BR2_PACKAGE_HOST_ENVIRONMENT_SETUP

▶ Installs an helper shell script output/host/environment-setup that can be
sourced in the shell to define a number of useful environment variables and aliases.

▶ Defines: CC, LD, AR, AS, CFLAGS, LDFLAGS, ARCH, etc.
▶ Defines configure as an alias to run a configure script with the right arguments,

cmake as an alias to run cmake with the right arguments
▶ Drawback: once sourced, the shell environment is really only suitable for

cross-compiling with Buildroot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 283/344

Building code for Buildroot: environment-setup
$ source output/host/environment-setup
_ _ _ _ _

| |__ _ _(_) | __| |_ __ ___ ___ | |_
| '_ \| | | | | |/ _` | '__/ _ \ / _ \| __|
| |_) | |_| | | | (_| | | | (_) | (_) | |_
|_.__/ __,_|_|_|__,_|_| ___/ ___/ __|

Making embedded Linux easy!

Some tips:
* PATH now contains the SDK utilities
* Standard autotools variables (CC, LD, CFLAGS) are exported
* Kernel compilation variables (ARCH, CROSS_COMPILE, KERNELDIR) are exported
* To configure do "./configure $CONFIGURE_FLAGS" or use

the "configure" alias
* To build CMake-based projects, use the "cmake" alias

$ echo $CC
/home/thomas/projets/buildroot/output/host/bin/arm-linux-gcc
$ echo $CFLAGS
-D_LARGEFILE_SOURCE -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -Os -D_FORTIFY_SOURCE=1
$ echo $CROSS_COMPILE
/home/thomas/projets/buildroot/output/host/bin/arm-linux-
$ alias configure
alias configure='./configure --target=arm-buildroot-linux-gnueabihf --host=arm-buildroot-linux-gnueabihf \

--build=x86_64-pc-linux-gnu --prefix=/usr --exec-prefix=/usr --sysconfdir=/etc --localstatedir=/var \
--program-prefix='

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 284/344

local site method

▶ Allows to tell Buildroot that the source code for a package is already available
locally

▶ Allows to keep your source code under version control, separately, and have
Buildroot always build your latest changes.

▶ Typical project organization:
• buildroot/, the Buildroot source code
• external/, your BR2_EXTERNAL tree
• custom-app/, your custom application code
• custom-lib/, your custom library

▶ In your package .mk file, use:

<pkg>_SITE = $(TOPDIR)/../custom-app
<pkg>_SITE_METHOD = local

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 285/344

Effect of local site method

▶ For the first build, the source code of your package is rsync’ed from <pkg>_SITE
to the build directory, and built there.

▶ After making changes to the source code, you can run:
• make <pkg>-reconfigure
• make <pkg>-rebuild
• make <pkg>-reinstall

▶ Buildroot will first rsync again the package source code (copying only the
modified files) and restart the build from the requested step.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 286/344

local site method workflow

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 287/344

<pkg>_OVERRIDE_SRCDIR

▶ The local site method solution is appropriate when the package uses this method
for all developers

• Requires that all developers fetch locally the source code for all custom applications
and libraries

▶ An alternate solution is that packages for custom applications and libraries fetch
their source code from version control systems

• Using the git, svn, cvs, etc. fetching methods
▶ Then, locally, a user can override how the package is fetched using

<pkg>_OVERRIDE_SRCDIR
• It tells Buildroot to not download the package source code, but to copy it from a

local directory.
▶ The package then behaves as if it was using the local site method.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 288/344

Passing <pkg>_OVERRIDE_SRCDIR

▶ <pkg>_OVERRIDE_SRCDIR values are specified in a package override file, configured
in BR2_PACKAGE_OVERRIDE_FILE, by default $(CONFIG_DIR)/local.mk.

Example local.mk

LIBPNG_OVERRIDE_SRCDIR = $(HOME)/projects/libpng
LINUX_OVERRIDE_SRCDIR = $(HOME)/projects/linux

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 289/344

Debugging: debugging symbols and stripping

▶ To use debuggers, you need the programs and libraries to be built with debugging
symbols.

▶ The BR2_ENABLE_DEBUG option controls whether programs and libraries are built
with debugging symbols

• Disabled by default.
• Sub-options allow to control the amount of debugging symbols (i.e. gcc options -g1,

-g2 and -g3).
▶ The BR2_STRIP_strip option allows to disable or enable stripping of binaries on

the target.
• Enabled by default.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 290/344

Debugging: debugging symbols and stripping

▶ With BR2_ENABLE_DEBUG=y and BR2_STRIP_strip=y
• get debugging symbols in $(STAGING_DIR) for libraries, and in the build directories

for everything.
• stripped binaries in $(TARGET_DIR)
• Appropriate for remote debugging

▶ With BR2_ENABLE_DEBUG=y and BR2_STRIP_strip disabled
• debugging symbols in both $(STAGING_DIR) and $(TARGET_DIR)
• appropriate for on-target debugging

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 291/344

Debugging: remote debugging requirements

▶ To do remote debugging, you need:
• A cross-debugger

With the internal toolchain backend, can be built using BR2_PACKAGE_HOST_GDB=y.
With the external toolchain backend, is either provided pre-built by the toolchain, or
can be built using BR2_PACKAGE_HOST_GDB=y.

• gdbserver
With the internal toolchain backend, can be built using BR2_PACKAGE_GDB=y +
BR2_PACKAGE_GDB_SERVER=y
With the external toolchain backend, if gdbserver is provided by the toolchain it can
be copied to the target using BR2_TOOLCHAIN_EXTERNAL_GDB_SERVER_COPY=y or
otherwise built from source like with the internal toolchain backend.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 292/344

Debugging: remote debugging setup
▶ On the target, start gdbserver

• Use a TCP socket, network connectivity needed
• The multi mode is quite convenient
• $ gdbserver --multi localhost:2345

▶ On the host, start <tuple>-gdb
• $./output/host/bin/<tuple>-gdb <program>
• <program> is the path to the program to debug, with debugging symbols

▶ Inside gdb, you need to:
• Connect to the target:

(gdb) target extended-remote <ip>:2345
• Tell the target which program to run:

(gdb) set remote exec-file myapp
• Set the path to the sysroot so that gdb can find debugging symbols for libraries:

(gdb) set sysroot ./output/staging/
• Start the program:

(gdb) run

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 293/344

Debugging tools available in Buildroot

▶ Buildroot also includes a huge amount of other debugging or profiling related
tools.

▶ To list just a few:
• strace
• ltrace
• LTTng
• perf
• sysdig
• sysprof
• OProfile
• valgrind

▶ Look in Target packages → Debugging, profiling and benchmark for more.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 294/344

Generating a SDK for application developers

▶ If you would like application developers to build applications for a Buildroot
generated system, without building Buildroot, you can generate a SDK.

▶ To achieve this:
• Run make sdk, which prepares the SDK to be relocatable
• Tarball the contents of the host directory, i.e. output/host
• Share the tarball with your application developers
• They must uncompress it, and run the relocate-sdk.sh script

▶ Warning: the SDK must remain in sync with the root filesystem running on the
target, otherwise applications built with the SDK may not run properly.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 295/344

Practical lab - Application development

▶ Build and run your own application
▶ Remote debug your application
▶ Use <pkg>_OVERRIDE_SRCDIR

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 296/344

Understanding Buildroot internals

Understanding
Buildroot internals

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 297/344

Configuration system

▶ Uses, almost unchanged, the kconfig code from the kernel, in support/kconfig
(variable CONFIG)

▶ kconfig tools are built in $(BUILD_DIR)/buildroot-config/

▶ The main Config.in file, passed to *config, is at the top-level of the Buildroot
source tree

CONFIG_CONFIG_IN = Config.in
CONFIG = support/kconfig
BR2_CONFIG = $(CONFIG_DIR)/.config

-include $(BR2_CONFIG)

$(BUILD_DIR)/buildroot-config/%onf:
mkdir -p $(@D)/lxdialog
... $(MAKE) ... -C $(CONFIG) -f Makefile.br $(@F)

menuconfig: $(BUILD_DIR)/buildroot-config/mconf outputmakefile
@$(COMMON_CONFIG_ENV) $< $(CONFIG_CONFIG_IN)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 298/344

Configuration hierarchy

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 299/344

When you run make...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 300/344

Where is $(PACKAGES) filled?

Part of package/pkg-generic.mk
argument 1 is the lowercase package name
argument 2 is the uppercase package name, including a HOST_ prefix
for host packages

define inner-generic-package
...

$(2)_KCONFIG_VAR = BR2_PACKAGE_$(2)
...

ifeq ($$($$($(2)_KCONFIG_VAR)),y)
PACKAGES += $(1)
endif # $(2)_KCONFIG_VAR

endef # inner-generic-package

▶ Adds the lowercase name of an enabled package as a make target to the
$(PACKAGES) variable

▶ package/pkg-generic.mk is really the core of the package infrastructure

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/344

Diving into pkg-generic.mk

▶ The package/pkg-generic.mk file is divided in two main parts:
1. Definition of the actions done in each step of a package build process. Done through

stamp file targets.
2. Definition of the inner-generic-package, generic-package and

host-generic-package macros, that define the sequence of actions, as well as all
the variables needed to handle the build of a package.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 302/344

Definition of the actions: code

$(BUILD_DIR)/%/.stamp_downloaded:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_extracted:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_patched:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_configured:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_built:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_host_installed:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_staging_installed:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_images_installed:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_target_installed:
Do some stuff here
$(Q)touch $@

$(BUILD_DIR)/%/.stamp_installed:
Do some stuff here
$(Q)touch $@

▶ $(BUILD_DIR)/%/ → build directory of any package
▶ a make target depending on one stamp file will trigger the corresponding action
▶ the stamp file prevents the action from being re-executed

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 303/344

Action example 1: download

Retrieve the archive
$(BUILD_DIR)/%/.stamp_downloaded:

$(foreach hook,$($(PKG)_PRE_DOWNLOAD_HOOKS),$(call $(hook))$(sep))
[...]
$(foreach p,$($(PKG)_ALL_DOWNLOADS),$(call DOWNLOAD,$(p))$(sep))
$(foreach hook,$($(PKG)_POST_DOWNLOAD_HOOKS),$(call $(hook))$(sep))
$(Q)mkdir -p $(@D)
$(Q)touch $@

▶ Step handled by the package infrastructure
▶ In all stamp file targets, PKG is the upper case name of the package. So when

used for BusyBox, $($(PKG)_SOURCE) is the value of BUSYBOX_SOURCE.
▶ Hooks: make macros called before and after each step.
▶ <pkg>_ALL_DOWNLOADS lists all the files to be downloaded, which includes the

ones listed in <pkg>_SOURCE, <pkg>_EXTRA_DOWNLOADS and <pkg>_PATCH.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 304/344

Action example 2: build

Build
$(BUILD_DIR)/%/.stamp_built::

@$(call step_start,build)
@$(call MESSAGE,"Building")
$(foreach hook,$($(PKG)_PRE_BUILD_HOOKS),$(call $(hook))$(sep))
+$($(PKG)_BUILD_CMDS)
$(foreach hook,$($(PKG)_POST_BUILD_HOOKS),$(call $(hook))$(sep))
@$(call step_end,build)
$(Q)touch $@

▶ Step handled by the package, by defining a value for <pkg>_BUILD_CMDS.
▶ Same principle of hooks
▶ step_start and step_end are part of instrumentation to measure the duration of

each step (and other actions)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 305/344

The generic-package macro
▶ Packages built for the target:

generic-package = $(call inner-generic-package,
$(pkgname),$(call UPPERCASE,$(pkgname)),
$(call UPPERCASE,$(pkgname)),target)

▶ Packages built for the host:
host-generic-package = $(call inner-generic-package,

host-$(pkgname),$(call UPPERCASE,host-$(pkgname)),
$(call UPPERCASE,$(pkgname)),host)

▶ In package/libzlib/libzlib.mk:
LIBZLIB_... = ...

$(eval $(generic-package))
$(eval $(host-generic-package))

▶ Leads to:
$(call inner-generic-package,libzlib,LIBZLIB,LIBZLIB,target)
$(call inner-generic-package,host-libzlib,HOST_LIBZLIB,LIBZLIB,host)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 306/344

inner-generic-package: defining variables

Macro code
$(2)_TYPE = $(4)
$(2)_NAME = $(1)
$(2)_RAWNAME = $$(patsubst host-%,%,$(1))

$(2)_BASE_NAME = $(1)-$$($(2)_VERSION)
$(2)_DIR = $$(BUILD_DIR)/$$($(2)_BASE_NAME)

ifndef $(2)_SOURCE
ifdef $(3)_SOURCE
$(2)_SOURCE = $$($(3)_SOURCE)

else
$(2)_SOURCE ?=

$$($(2)_RAWNAME)-$$($(2)_VERSION).tar.gz
endif
endif

ifndef $(2)_SITE
ifdef $(3)_SITE
$(2)_SITE = $$($(3)_SITE)

endif
endif

...

Expanded for host-libzlib
HOST_LIBZLIB_TYPE = host
HOST_LIBZLIB_NAME = host-libzlib
HOST_LIBZLIB_RAWNAME = libzlib

HOST_LIBZLIB_BASE_NAME =
host-libzlib-$(HOST_LIBZLIB_VERSION)

HOST_LIBZLIB_DIR =
$(BUILD_DIR)/host-libzlib-$(HOST_LIBZLIB_VERSION)

ifndef HOST_LIBZLIB_SOURCE
ifdef LIBZLIB_SOURCE
HOST_LIBZLIB_SOURCE = $(LIBZLIB_SOURCE)

else
HOST_LIBZLIB_SOURCE ?=
libzlib-$(HOST_LIBZLIB_VERSION).tar.gz

endif
endif

ifndef HOST_LIBZLIB_SITE
ifdef LIBZLIB_SITE
HOST_LIBZLIB_SITE = $(LIBZLIB_SITE)

endif
endif

...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 307/344

inner-generic-package: dependencies

ifeq ($(4),target)
ifeq ($$($(2)_ADD_SKELETON_DEPENDENCY),YES)
$(2)_DEPENDENCIES += skeleton
endif
ifeq ($$($(2)_ADD_TOOLCHAIN_DEPENDENCY),YES)
$(2)_DEPENDENCIES += toolchain
endif
endif

...

ifeq ($$(BR2_CCACHE),y)
ifeq ($$(filter host-tar host-skeleton host-xz host-lzip host-fakedate host-ccache,$(1)),)
$(2)_DEPENDENCIES += host-ccache
endif
endif

▶ Adding the skeleton and toolchain dependencies to target packages. Except for
some specific packages (e.g. C library).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 308/344

inner-generic-package: stamp files

$(2)_TARGET_INSTALL = $$($(2)_DIR)/.stamp_installed
$(2)_TARGET_INSTALL_TARGET = $$($(2)_DIR)/.stamp_target_installed
$(2)_TARGET_INSTALL_STAGING = $$($(2)_DIR)/.stamp_staging_installed
$(2)_TARGET_INSTALL_IMAGES = $$($(2)_DIR)/.stamp_images_installed
$(2)_TARGET_INSTALL_HOST = $$($(2)_DIR)/.stamp_host_installed
$(2)_TARGET_BUILD = $$($(2)_DIR)/.stamp_built
$(2)_TARGET_CONFIGURE = $$($(2)_DIR)/.stamp_configured
$(2)_TARGET_RSYNC = $$($(2)_DIR)/.stamp_rsynced
$(2)_TARGET_RSYNC_SOURCE = $$($(2)_DIR)/.stamp_rsync_sourced
$(2)_TARGET_PATCH = $$($(2)_DIR)/.stamp_patched
$(2)_TARGET_EXTRACT = $$($(2)_DIR)/.stamp_extracted
$(2)_TARGET_SOURCE = $$($(2)_DIR)/.stamp_downloaded
$(2)_TARGET_DIRCLEAN = $$($(2)_DIR)/.stamp_dircleaned

▶ Defines shortcuts to reference the stamp files

$$($(2)_TARGET_INSTALL): PKG=$(2)
$$($(2)_TARGET_INSTALL_TARGET): PKG=$(2)
$$($(2)_TARGET_INSTALL_STAGING): PKG=$(2)
$$($(2)_TARGET_INSTALL_IMAGES): PKG=$(2)
$$($(2)_TARGET_INSTALL_HOST): PKG=$(2)
[...]

▶ Pass variables to the stamp file targets, especially PKG

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 309/344

inner-generic-package: sequencing

$(1): $(1)-install
$(1)-install: $$($(2)_TARGET_INSTALL)

ifeq ($$($(2)_INSTALL_TARGET),YES)
$$($(2)_TARGET_INSTALL): $$($(2)_TARGET_INSTALL_TARGET)
endif
ifeq ($$($(2)_INSTALL_STAGING),YES)
$$($(2)_TARGET_INSTALL): $$($(2)_TARGET_INSTALL_STAGING)
endif
ifeq ($$($(2)_INSTALL_IMAGES),YES)
$$($(2)_TARGET_INSTALL): $$($(2)_TARGET_INSTALL_IMAGES)
endif

$(1)-install-target: $$($(2)_TARGET_INSTALL_TARGET)
$$($(2)_TARGET_INSTALL_TARGET): $$($(2)_TARGET_BUILD)

$(1)-install-staging: $$($(2)_TARGET_INSTALL_STAGING)
$$($(2)_TARGET_INSTALL_STAGING): $$($(2)_TARGET_BUILD)

$(1)-install-images: $$($(2)_TARGET_INSTALL_IMAGES)
$$($(2)_TARGET_INSTALL_IMAGES): $$($(2)_TARGET_BUILD)

$(1)-build: $$($(2)_TARGET_BUILD)
$$($(2)_TARGET_BUILD): $$($(2)_TARGET_CONFIGURE)

$(1)-configure: $$($(2)_TARGET_CONFIGURE)
$$($(2)_TARGET_CONFIGURE): | $$($(2)_FINAL_DEPENDENCIES)
$$($(2)_TARGET_CONFIGURE): $$($(2)_TARGET_PATCH)

$(1)-patch: $$($(2)_TARGET_PATCH)
$$($(2)_TARGET_PATCH): $$($(2)_TARGET_EXTRACT)

$(1)-extract: $$($(2)_TARGET_EXTRACT)
$$($(2)_TARGET_EXTRACT): $$($(2)_TARGET_SOURCE)
$$($(2)_TARGET_EXTRACT): | $$($(2)_FINAL_EXTRACT_DEPENDENCIES)

$(1)-source: $$($(2)_TARGET_SOURCE)
$$($(2)_TARGET_SOURCE): | $$($(2)_FINAL_DOWNLOAD_DEPENDENCIES)

$$($(2)_TARGET_SOURCE): | prepare
$$($(2)_TARGET_SOURCE): | dependencies

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 310/344

inner-generic-package: sequencing diagram

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 311/344

Preparation work: prepare, dependencies

pkg-generic.mk
$$($(2)_TARGET_SOURCE): | prepare
$$($(2)_TARGET_SOURCE): | dependencies

▶ All packages have two targets in their dependencies:
• prepare: generates a kconfig-related auto.conf file
• dependencies: triggers the check of Buildroot system dependencies, i.e. things that

must be installed on the machine to use Buildroot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 312/344

Rebuilding packages?

▶ Once one step of a package build
process has been done, it is never
done again due to the stamp file

▶ Even if the package configuration is
changed, or the package is disabled →
Buildroot doesn’t try to be smart

▶ One can force rebuilding a package
from its configure, build or install step
using make <pkg>-reconfigure,
make <pkg>-rebuild or
make <pkg>-reinstall

$(1)-clean-for-reinstall:
rm -f $$($(2)_TARGET_INSTALL)
rm -f $$($(2)_TARGET_INSTALL_STAGING)
rm -f $$($(2)_TARGET_INSTALL_TARGET)
rm -f $$($(2)_TARGET_INSTALL_IMAGES)
rm -f $$($(2)_TARGET_INSTALL_HOST)

$(1)-reinstall: $(1)-clean-for-reinstall $(1)

$(1)-clean-for-rebuild: $(1)-clean-for-reinstall
rm -f $$($(2)_TARGET_BUILD)

$(1)-rebuild: $(1)-clean-for-rebuild $(1)

$(1)-clean-for-reconfigure: $(1)-clean-for-rebuild
rm -f $$($(2)_TARGET_CONFIGURE)

$(1)-reconfigure: $(1)-clean-for-reconfigure $(1)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 313/344

Specialized package infrastructures

▶ The generic-package infrastructure is fine for packages having a custom build
system

▶ For packages using a well-known build system, we want to factorize more logic
▶ Specialized package infrastructures were created to handle these packages, and

reduce the amount of duplication
▶ For autotools, CMake, Python, Perl, Lua, Meson, Golang, QMake, kconfig, Rust,

kernel-module, Erlang, Waf packages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 314/344

CMake package example: flann

package/flann/flann.mk
FLANN_VERSION = 1.9.1
FLANN_SITE = $(call github,mariusmuja,flann,$(FLANN_VERSION))
FLANN_INSTALL_STAGING = YES
FLANN_LICENSE = BSD-3-Clause
FLANN_LICENSE_FILES = COPYING
FLANN_CONF_OPTS = \

-DBUILD_C_BINDINGS=ON \
-DBUILD_PYTHON_BINDINGS=OFF \
-DBUILD_MATLAB_BINDINGS=OFF \
-DBUILD_EXAMPLES=$(if $(BR2_PACKAGE_FLANN_EXAMPLES),ON,OFF) \
-DUSE_OPENMP=$(if $(BR2_GCC_ENABLE_OPENMP),ON,OFF) \
-DPYTHON_EXECUTABLE=OFF \
-DCMAKE_DISABLE_FIND_PACKAGE_HDF5=TRUE

$(eval $(cmake-package))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 315/344

CMake package infrastructure (1/2)

define inner-cmake-package

$(2)_CONF_ENV ?=
$(2)_CONF_OPTS ?=
...

$(2)_SRCDIR = $$($(2)_DIR)/$$($(2)_SUBDIR)
$(2)_BUILDDIR = $$($(2)_SRCDIR)

ifndef $(2)_CONFIGURE_CMDS
ifeq ($(4),target)
define $(2)_CONFIGURE_CMDS

(cd $$($$(PKG)_BUILDDIR) && \
$$($$(PKG)_CONF_ENV) $$(HOST_DIR)/bin/cmake $$($$(PKG)_SRCDIR) \

-DCMAKE_TOOLCHAIN_FILE="$$(HOST_DIR)/share/buildroot/toolchainfile.cmake" \
...
$$($$(PKG)_CONF_OPTS) \

)
endef
else
define $(2)_CONFIGURE_CMDS
... host case ...
endef
endif
endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/344

CMake package infrastructure (2/2)

$(2)_DEPENDENCIES += host-cmake

ifndef $(2)_BUILD_CMDS
ifeq ($(4),target)
define $(2)_BUILD_CMDS

$$(TARGET_MAKE_ENV) $$($$(PKG)_MAKE_ENV) $$($$(PKG)_MAKE) $$($$(PKG)_MAKE_OPTS)
-C $$($$(PKG)_BUILDDIR)

endef
else
... host case ...
endif
endif

... other commands ...

ifndef $(2)_INSTALL_TARGET_CMDS
define $(2)_INSTALL_TARGET_CMDS

$$(TARGET_MAKE_ENV) $$($$(PKG)_MAKE_ENV) $$($$(PKG)_MAKE) $$($$(PKG)_MAKE_OPTS)
$$($$(PKG)_INSTALL_TARGET_OPT) -C $$($$(PKG)_BUILDDIR)

endef
endif

$(call inner-generic-package,$(1),$(2),$(3),$(4))

endef

cmake-package = $(call inner-cmake-package,$(pkgname),...,target)
host-cmake-package = $(call inner-cmake-package,host-$(pkgname),...,host)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 317/344

Autoreconf in pkg-autotools.mk

▶ Package infrastructures can also add additional capabilities controlled by variables
in packages

▶ For example, with the autotools-package infra, one can do
FOOBAR_AUTORECONF = YES in a package to trigger an autoreconf before the
configure script is executed

▶ Implementation in pkg-autotools.mk

define AUTORECONF_HOOK
@$$(call MESSAGE,"Autoreconfiguring")
$$(Q)cd $$($$(PKG)_SRCDIR) && $$($$(PKG)_AUTORECONF_ENV) $$(AUTORECONF)

$$($$(PKG)_AUTORECONF_OPTS)
...

endef

ifeq ($$($(2)_AUTORECONF),YES)
...
$(2)_PRE_CONFIGURE_HOOKS += AUTORECONF_HOOK
$(2)_DEPENDENCIES += host-automake host-autoconf host-libtool
endif

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 318/344

Toolchain support

▶ One virtual package, toolchain, with two implementations in the form of two
packages: toolchain-buildroot and toolchain-external

▶ toolchain-buildroot implements the internal toolchain back-end, where
Buildroot builds the cross-compilation toolchain from scratch. This package
simply depends on host-gcc-final to trigger the entire build process

▶ toolchain-external implements the external toolchain back-end, where
Buildroot uses an existing pre-built toolchain

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 319/344

Internal toolchain back-end

▶ Build starts with utility host tools and libraries needed for gcc
(host-m4, host-mpc, host-mpfr, host-gmp). Installed in
$(HOST_DIR)/{bin,include,lib}

▶ Build goes on with the cross binutils, host-binutils, installed in
$(HOST_DIR)/bin

▶ Then the first stage compiler, host-gcc-initial
▶ We need the linux-headers, installed in

$(STAGING_DIR)/usr/include

▶ We build the C library, uclibc in this example. Installed in
$(STAGING_DIR)/lib, $(STAGING_DIR)/usr/include and of
course $(TARGET_DIR)/lib

▶ We build the final compiler host-gcc-final, installed in
$(HOST_DIR)/bin

ALL

toolchain

toolchain-buildroot

host-gcc-final

uclibc

host-gcc-initial linux-headers

host-binutils host-mpc

host-mpfr

host-gmp

host-m4

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 320/344

External toolchain back-end

▶ toolchain-external-package infrastructure,
implementing the common logic for all external
toolchains

• Implemented in toolchain/toolchain-
external/pkg-toolchain-external.mk

▶ Packages in toolchain/toolchain-external/
are using this infrastructure

• E.g. toolchain-external-arm-aarch64,
toolchain-external-bootlin

▶ toolchain-external is a virtual package itself
depends on the selected external toolchain.

ALL

toolchain

toolchain-external

toolchain-external-arm-aarch64

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 321/344

External toolchain example

toolchain/toolchain-external/toolchain-external-arm-aarch64/toolchain-external-arm-aarch64.mk
TOOLCHAIN_EXTERNAL_ARM_AARCH64_VERSION = 2020.11
TOOLCHAIN_EXTERNAL_ARM_AARCH64_SITE = \

https://developer.arm.com/-/media/Files/downloads/
gnu-a/10.2-$(TOOLCHAIN_EXTERNAL_ARM_AARCH64_VERSION)/binrel

TOOLCHAIN_EXTERNAL_ARM_AARCH64_SOURCE = \
gcc-arm-10.2-$(TOOLCHAIN_EXTERNAL_ARM_AARCH64_VERSION)-x86_64-aarch64-none-linux-gnu.tar.xz

$(eval $(toolchain-external-package))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 322/344

toolchain-external-package logic

1. Extract the toolchain to $(HOST_DIR)/opt/ext-toolchain

2. Run some checks on the toolchain to verify it matches the configuration specified
in menuconfig

3. Copy the toolchain sysroot (C library and headers, kernel headers) to
$(STAGING_DIR)/usr/{include,lib}

4. Copy the toolchain libraries to $(TARGET_DIR)/usr/lib

5. Create symbolic links or wrappers for the compiler, linker, debugger, etc from
$(HOST_DIR)/bin/<tuple>-<tool> to
$(HOST_DIR)/opt/ext-toolchain/bin/<tuple>-<tool>

6. A wrapper program is used for certain tools (gcc, ld, g++, etc.) in order to
ensure a certain number of compiler flags are used, especially
--sysroot=$(STAGING_DIR) and target-specific flags.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 323/344

Root filesystem image generation

▶ Once all the targets in $(PACKAGES) have been built, it’s time to create the root
filesystem images

▶ First, the target-finalize target does some cleanup of $(TARGET_DIR) by
removing documentation, headers, static libraries, etc.

▶ Then the root filesystem image targets listed in $(ROOTFS_TARGETS) are processed
▶ These targets are added by the common filesystem image generation

infrastructure rootfs, in fs/common.mk
▶ The purpose of this infrastructure is to:

• Collect the users, permissions and device tables
• Make a copy of TARGET_DIR per filesystem image
• Generate a shell script that assigns users, permissions and invokes the filesystem

image creation utility
• Invoke the shell script under fakeroot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 324/344

fs/common.mk, dependencies and table generation

ROOTFS_COMMON_DEPENDENCIES = \
host-fakeroot host-makedevs \
$(BR2_TAR_HOST_DEPENDENCY) \
$(if $(PACKAGES_USERS)$(ROOTFS_USERS_TABLES),host-mkpasswd)

rootfs-common: $(ROOTFS_COMMON_DEPENDENCIES) target-finalize
@$(call MESSAGE,"Generating root filesystems common tables")
rm -rf $(FS_DIR)
mkdir -p $(FS_DIR)
$(call PRINTF,$(PACKAGES_USERS)) >> $(ROOTFS_FULL_USERS_TABLE)
cat $(ROOTFS_USERS_TABLES) >> $(ROOTFS_FULL_USERS_TABLE)
$(call PRINTF,$(PACKAGES_PERMISSIONS_TABLE)) > $(ROOTFS_FULL_DEVICES_TABLE)
cat $(ROOTFS_DEVICE_TABLES) >> $(ROOTFS_FULL_DEVICES_TABLE)
$(call PRINTF,$(PACKAGES_DEVICES_TABLE)) >> $(ROOTFS_FULL_DEVICES_TABLE)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 325/344

fs/common.mk, rootfs infrastructure 1

define inner-rootfs

ROOTFS_$(2)_IMAGE_NAME ?= rootfs.$(1)
ROOTFS_$(2)_FINAL_IMAGE_NAME = $$(strip $$(ROOTFS_$(2)_IMAGE_NAME))
ROOTFS_$(2)_DIR = $$(FS_DIR)/$(1)
ROOTFS_$(2)_TARGET_DIR = $$(ROOTFS_$(2)_DIR)/target

ROOTFS_$(2)_DEPENDENCIES += rootfs-common

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 326/344

fs/common.mk, rootfs infrastructure 2

$$(BINARIES_DIR)/$$(ROOTFS_$(2)_FINAL_IMAGE_NAME): $$(ROOTFS_$(2)_DEPENDENCIES)
@$$(call MESSAGE,"Generating filesystem image $$(ROOTFS_$(2)_FINAL_IMAGE_NAME)")
[...]
mkdir -p $$(ROOTFS_$(2)_DIR)
rsync -auH \

--exclude=/$$(notdir $$(TARGET_DIR_WARNING_FILE)) \
$$(BASE_TARGET_DIR)/ \
$$(TARGET_DIR)

echo '#!/bin/sh' > $$(FAKEROOT_SCRIPT)
echo "set -e" >> $$(FAKEROOT_SCRIPT)
echo "chown -h -R 0:0 $$(TARGET_DIR)" >> $$(FAKEROOT_SCRIPT)
PATH=$$(BR_PATH) $$(TOPDIR)/support/scripts/mkusers $$(ROOTFS_FULL_USERS_TABLE) $$(TARGET_DIR) >> $$(FAKEROOT_SCRIPT)
echo "$$(HOST_DIR)/bin/makedevs -d $$(ROOTFS_FULL_DEVICES_TABLE) $$(TARGET_DIR)" >> $$(FAKEROOT_SCRIPT)
[...]
$$(call PRINTF,$$(ROOTFS_$(2)_CMD)) >> $$(FAKEROOT_SCRIPT)
chmod a+x $$(FAKEROOT_SCRIPT)
PATH=$$(BR_PATH) $$(HOST_DIR)/bin/fakeroot -- $$(FAKEROOT_SCRIPT)

[...]
ifeq ($$(BR2_TARGET_ROOTFS_$(2)),y)
TARGETS_ROOTFS += rootfs-$(1)
endif
endef

rootfs = $(call inner-rootfs,$(pkgname),$(call UPPERCASE,$(pkgname)))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 327/344

fs/ubifs/ubifs.mk

UBIFS_OPTS := -e $(BR2_TARGET_ROOTFS_UBIFS_LEBSIZE) \
-c $(BR2_TARGET_ROOTFS_UBIFS_MAXLEBCNT) \
-m $(BR2_TARGET_ROOTFS_UBIFS_MINIOSIZE)

ifeq ($(BR2_TARGET_ROOTFS_UBIFS_RT_ZLIB),y)
UBIFS_OPTS += -x zlib
endif
...

UBIFS_OPTS += $(call qstrip,$(BR2_TARGET_ROOTFS_UBIFS_OPTS))

ROOTFS_UBIFS_DEPENDENCIES = host-mtd

define ROOTFS_UBIFS_CMD
$(HOST_DIR)/sbin/mkfs.ubifs -d $(TARGET_DIR) $(UBIFS_OPTS) -o $@

endef

$(eval $(rootfs))

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 328/344

Final example

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 329/344

Buildroot community: support and contribution

Buildroot community:
support and
contribution

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 330/344

Documentation

▶ Buildroot comes with its own documentation
▶ Pre-built versions available at https://buildroot.org/docs.html (PDF,

HTML, text)
▶ Source code of the manual located in docs/manual in the Buildroot sources

• Written in Asciidoc format
▶ The manual can be built with:

• make manual
• or just make manual-html, make manual-pdf, make manual-epub,

make manual-text, make manual-split-html
• A number of tools need to be installed on your machine, see the manual itself.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 331/344

https://buildroot.org/docs.html

Getting support

▶ Free support
• The mailing list for e-mail discussion

http://lists.busybox.net/mailman/listinfo/buildroot

1400+ subscribers, quite heavy traffic.
• The IRC channel, #buildroot on the OFTC network, for interactive discussion

60+ people, most available during European daylight hours
• Bug tracker

https://bugs.busybox.net/buglist.cgi?product=buildroot

▶ Commercial support
• A number of embedded Linux services companies, including Bootlin, can provide

commercial services around Buildroot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 332/344

http://lists.busybox.net/mailman/listinfo/buildroot
https://bugs.busybox.net/buglist.cgi?product=buildroot

Tips to get free support

▶ If you have a build issue to report:
• Make sure to reproduce after a make clean all cycle
• Include the Buildroot version, Buildroot .config that reproduces the issue, and last

100-200 lines of the build output in your report.
• Use pastebin sites like https://paste.ack.tf/ when reporting issues over IRC.

▶ The community will be much more likely to help you if you use a recent Buildroot
version.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 333/344

Release schedule

▶ The Buildroot community publishes stable releases every three months.
▶ YYYY.02, YYYY.05, YYYY.08 and YYYY.11 every year.
▶ The three months cycle is split in two periods

• Two first months of active development
• One month of stabilization before the release

▶ At the beginning of the stabilization phase, -rc1 is released.
▶ Several -rc versions are published during this stabilization phase, until the final

release.
▶ Development not completely stopped during the stabilization, a next branch is

opened.
▶ Long-term maintenance of YYYY.02, with a LTS initiative

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 334/344

Contribution process

▶ Contributions are made in the form of patches
▶ Created with git and sent by e-mail to the mailing list

• Use git send-email to avoid issues
• Use get-developers to know to who patches should be sent

▶ The patches are reviewed, tested and discussed by the community
• You may be requested to modify your patches, and submit updated versions

▶ Once ready, they are applied by one of the project maintainers
▶ Some contributions may be rejected if they do not fall within the Buildroot

principles/ideas, as discussed by the community.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 335/344

Patchwork
▶ Tool that records all patches sent on the mailing list
▶ Allows the community to see which patches need review/testing, and the

maintainers which patches can be applied.
▶ Everyone can create an account to manage his own patches
▶ https://patchwork.ozlabs.org/project/buildroot/list/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 336/344

https://patchwork.ozlabs.org/project/buildroot/list/

Automated build testing

▶ The enormous number of configuration options in Buildroot make it very difficult
to test all combinations.

▶ Random configurations are therefore built 24/7 by multiple machines.
• Random choice of architecture/toolchain combination from a pre-defined list
• Random selection of packages using make randpackageconfig
• Random enabling of features like static library only, or BR2_ENABLE_DEBUG=y

▶ Scripts and tools publicly available at
https://gitlab.com/buildroot.org/buildroot-test/

▶ Results visible at http://autobuild.buildroot.org/
▶ Daily e-mails with the build results of the past day

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 337/344

https://gitlab.com/buildroot.org/buildroot-test/
http://autobuild.buildroot.org/

autobuild.buildroot.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 338/344

Autobuild daily reports
Subject: [Buildroot] [autobuild.buildroot.net] Build results for 2019-03-19

Build statistics for 2019-03-19
===============================

branch | OK | NOK | TIM | TOT |
2018.02.x | 18 | 3 | 0 | 21 |
2018.11.x | 36 | 1 | 0 | 37 |
2019.02.x | 25 | 4 | 0 | 29 |

master | 166 | 105 | 3 | 274 |

Results for branch 'master'
===========================

Classification of failures by reason

unknown | 22
angularjs-legal-info | 15

host-uboot-tools-2019.01 | 11
[...]

Detail of failures

sparc | android-tools-4.2.2+git2013... | NOK | http://autobuild.buildroot.net/results/f1648f245d77f85661bc0d2f1e8097c3695206d8 |
mips64el | angularjs-legal-info | NOK | http://autobuild.buildroot.net/results/fdf6b64648dfa58ec74de31104a1a71248242d80 |

[...]
arm | glib-networking-2.58.0 | NOK | http://autobuild.buildroot.net/results/fc2e68921bd84d13d2e9bc900a91e46b08d698fe |

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 339/344

Additional testing effort

▶ Run-time test infrastructure in support/testing
• Contains a number of test cases that verify that specific Buildroot configurations

build correctly, and boot correctly under Qemu.
• Validates filesystem format support, specific packages, core Buildroot functionality.
• ./support/testing/run-tests -l
• ./support/testing/run-tests tests.fs.test_ext.TestExt2
• Run regularly on Gitlab CI

▶ All defconfigs in configs/ are built every week on Gitlab CI

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 340/344

Acknowledgements

▶ Bootlin would like to thank the following members of the Buildroot community for
their useful comments and reviews during the development of these training
materials:

• Thomas De Schampheleire
• Peter Korsgaard
• Yann E. Morin
• Arnout Vandecappelle
• Gustavo Zacarias

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 341/344

Last slides

Last slides

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 342/344

Last slide

Thank you!
And may the Source be with you

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 343/344

Rights to copy

© Copyright 2004-2026, Bootlin
License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

▶ to copy, distribute, display, and perform the work
▶ to make derivative works
▶ to make commercial use of the work

Under the following conditions:
▶ Attribution. You must give the original author credit.
▶ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.
▶ For any reuse or distribution, you must make clear to others the license terms of this work.
▶ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 344/344

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

	About Bootlin
	Generic course information
	Introduction to Embedded Linux
	Introduction to Buildroot
	Managing the build and the configuration
	Buildroot source and build trees
	Source tree
	Build tree

	Toolchains in Buildroot
	Managing the Linux kernel configuration
	Root filesystem in Buildroot
	Download infrastructure in Buildroot
	GNU Make 101
	Integrating new packages in Buildroot
	Config.in file
	Package infrastructures
	.mk file for generic-package
	autotools-package infrastructure
	Target vs. host packages

	Advanced package aspects
	Licensing report
	Security vulnerability tracking
	Patching packages
	User, permission and device tables
	Init scripts and systemd unit files
	Config scripts
	Hooks
	Overriding commands
	Legacy handling
	DEVELOPERS file
	Virtual packages

	Analyzing the build
	Advanced topics
	Application development
	Understanding Buildroot internals
	Buildroot community: support and contribution
	Last slides

