Buildroot system development training
101

Buildroot system development

training bootll'n

© Copyright 2004-2026, Bootlin
Creative Commons BY-SA 3.0 license.
Latest update: January 22, 2026

Document updates and training details
https://bootlin. con/training/buildroot

Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering

Send them to feedback@bootlin.com

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/344

https://bootlin.com/training/buildroot
mailto:feedback@bootlin.com

ao Buildroot system development training
o0

o%e]

These slides are the training materials for Bootlin's Buildroot
system development training course.

If you are interested in following this course with an experienced
Bootlin trainer, we offer:

Public online sessions, opened to individual registration. Dates @
announced on our site, registration directly online.

Dedicated online sessions, organized for a team of engineers

from the same company at a date/time chosen by our customer.

Dedicated on-site sessions, organized for a team of engineers m
from the same company, we send a Bootlin trainer on-site to
deliver the training. Icon by Eucalyp, Flaticon

Details and registrations:
https://bootlin.com/training/buildroot

Contact: training@bootlin.com

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/344

https://bootlin.com/training/buildroot

About Bootlin

bootlin

About Bootlin

© Copyright 2004-2026, Bootlin. embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/344

a Bootlin introduction
o)
Engineering company
In business since 2004
Before 2018: Free Electrons
Team based in France and ltaly

Serving customers worldwide
Highly focused and recognized expertise
Embedded Linux
Linux kernel
Embedded Linux build systems
Strong open-source contributor
Activities
Engineering services
Training courses

https://bootlin.com

bootlin

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

4/344

https://bootlin.com

o%e]

Bootloader /
firmware
development

U-Boot, Barebox,
OP-TEE, TF-A, .../

Embedded Linux
build systems

Yocto, OpenEmbedded,
Buildroot, ...

a Bootlin engineering services
o)

Linux kernel
porting and
driver
development

Embedded Linux
integration
Boot time, real-time,

security, multimedia,
networking

Linux BSP
development,
maintenance
and upgrade

Open-source
upstreaming

Get code integrated
in upstream
Linux, U-Boot, Yocto,
Buildroot, ...

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

5/344

Bootlin training courses

Embedded Linux Linux kernel Yocto Project Buildroot
system driver system system Embedded Linux
development development development development networking
On-site: 4 or 5 days On-site: 5 days On-site: 3 days On-site: 3 days On-site: 3 days
Online: 7 * 4 hours Online: 7 * 4 hours Online: 4 * 4 hours Online: 5 * 4 hours Online: 4 * 4 hours
Understandin . Real-Time Linux Linux debugging,
) 9 Embedded Linux) } 9ging
the Linux — with tracing, profiling
graphics stack PREEMPT_RT and performance
analysis
On-site: 2 days On-site: 2 days On-site: 2 days On-site: 3 days
Online: 4 * 4 hours Online: 4 * 4 hours Online: 3 * 4 hours Online: 4 * 4 hours

All our training materials are freely available
under a free documentation license (CC-BY-SA 3.0)
See https://bootlin.com/training/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/344

a@ Bootlin, an open-source contributor
o0

o%e]

Strong contributor to the Linux kernel
In the top 30 of companies contributing to Linux worldwide
Contributions in most areas related to hardware support
Several engineers maintainers of subsystems/platforms
9000 patches contributed
https://bootlin.com/community/contributions/kernel-contributions/
Contributor to Yocto Project
Maintainer of the official documentation
Core participant to the QA effort
Contributor to Buildroot
Co-maintainer
6000 patches contributed
Significant contributions to U-Boot, OP-TEE, Barebox, etc.

Fully open-source training materials

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/344

https://bootlin.com/community/contributions/kernel-contributions/

a Bootlin on-line resources
o)

o%e]

Website with a technical blog:
https://bootlin.com

Engineering services:
https://bootlin.com/engineering \’\,
Training services:

https://bootlin.com/training

LinkedlIn:

https://www.linkedin.com/company/bootlin

L. .) Icon by Freepik, Flaticon
Elixir - browse Linux kernel sources on-line:

https://elixir.bootlin.com

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/344

https://bootlin.com
https://bootlin.com/engineering
https://bootlin.com/training
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com

Generic course information

Generic course bOOtIl'n

information

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/344

4@} Beaglebone Black / Beaglebone black wireless shopping list

> BeagleBone Black or BeagleBone Black Wireless, from BeagleBoard.org

¢ Texas Instruments AM335x (ARM Cortex-A8 CPU)

512 MB of RAM

4 GB of on-board eMMC storage

Plenty of peripherals and features

2 x 46 pins headers, with access to many expansion buses (12C,
SPI, UART and more)

MicroUSB cable

USB Serial Cable - 3.3 V - Female ends (for serial console) *

Nintendo Nunchuk with UEXT connector 2

Breadboard jumper wires - Male ends (to connect the Nunchuk)
MicroSD card

vV VvVvVvYyVvVvyy

https://www.olimex.com/Products/USB-Modules/Interfaces/USB-SERIAL-F

https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
3 . .

https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/344

https://beagleboard.org
https://www.olimex.com/Products/USB-Modules/Interfaces/USB-SERIAL-F
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

4@,? STM32MP157 shopping list

» Discovery Kits from STMicroelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-DK2 or STM32MP157F-DK2 !

¢ STM32MP157 (Dual Cortex-A7 + Cortex-M4) CPU

¢ 512 MB DDR3L RAM

® Plenty of periperals: GPIOs, SPI, Serial, USB, ethernet...
MicroUSB cable (to access the serial console)
USB-C to USB-A cable (to power the board)
Nintendo Nunchuk with UEXT connector
Breadboard jumper wires - Male ends (to connect the Nunchuk) 3
MicroSD card

RJ45 cable

vV VvV VvyVvyVvyy

1Boards documentation: A-DK1, D-DK1, C-DK2, F-DK2
2https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
3

https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/344

https://www.st.com/en/evaluation-tools/stm32mp157a-dk1.html
https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html
https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
https://www.st.com/en/evaluation-tools/stm32mp157f-dk2.html
https://www.olimex.com/Products/Modules/Sensors/MOD-WII/MOD-Wii-UEXT-NUNCHUCK/
https://www.olimex.com/Products/Breadboarding/JUMPER-WIRES/JW-110x10/

a Training quiz and certificate
b

o%e]

To get your training certificate you must

Attend all sessions of this training course
Achieve more than 50% of correct answers at our final quiz
The final quiz questions are identical to the pre-training quiz
The final quiz must be completed within two weeks of the session end’s date

The training certificate will be sent to you two weeks after the session end'’s date.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/344

Participate!
s

o%e]

During the lectures...
Don't hesitate to ask questions. Other people in the audience may have similar
questions too.
Don't hesitate to share your experience too, for example to compare Linux with
other operating systems you know.
Your point of view is most valuable, because it can be similar to your colleagues’
and different from the trainer's.
In on-line sessions

Please always keep your camera on!
Also make sure your name is properly filled.
You can also use the "Raise your hand” button when you wish to ask a question but

don't want to interrupt.
All this helps the trainer to engage with participants, see when something needs
clarifying and make the session more interactive, enjoyable and useful for everyone.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/344

Collaborate!
o

o
@ ¢ embedded-inuc-nov2020

QD -

As in the Free Software and Open Source community, collaboration
between participants is valuable in this training session:
Use the dedicated Matrix channel for this session to add
questions.
If your session offers practical labs, you can also report issues,
share screenshots and command output there.
Don't hesitate to share your own answers and to help others
especially when the trainer is unavailable.

The Matrix channel is also a good place to ask questions outside
of training hours, and after the course is over.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/344

a@ Practical lab - Training Setup

o%e]

Prepare your lab environment

Download and extract the lab archive

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/344

Introduction to Embedded Linux

Introduction to

Embedded Linux

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

16/344

Simplified Linux system architecture

Userspace

Application Application

Application Library

C library Library

Linux kernel

Task/memory
management

Device drivers

Networking Filesystems

Bootloader

Hardware

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/344

Overall Linux boot sequence

Bootloader
Loads the DTB and kernel to RAM, starts the kernel

'

Kernel

Initializes hardware devices and kernel subsystems
Mounts the root filesystem indicated by root=
Starts the init application, /sbin/init by default

(\ 4
/sbin/init
Starts other user space services and applications

I
\ 7 L 4

Shell Other applications

Root filesystem

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

18/344

a@ Embedded Linux work

o%e]

BSP work: porting the bootloader and Linux kernel, developing Linux device
drivers.

system integration work: assembling all the user space components needed for
the system, configure them, develop the upgrade and recovery mechanisms, etc.

application development: write the company-specific applications and libraries.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/344

4@3 Complexity of user space integration

e

Wil RRe el

_

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

20/344

System integration: several possibilities

Pros

Cons

Building everything manually

Full flexibility
Learning experience

Dependency hell

Need to understand a lot of details
Version compatibility

Lack of reproducibility

Binary distribution
Debian, Ubuntu, Fedora, etc.

Easy to create and extend

Hard to customize

Hard to optimize (boot time, size)

Hard to rebuild the full system from source
Large system

Uses native compilation (slow)

No well-defined mechanism to generate an
image

Lots of mandatory dependencies

Not available for all architectures

Build systems

Buildroot, Yocto, PTXdist, etc.

Nearly full flexibility

Built from source: customization and op-
timization are easy

Fully reproducible

Uses cross-compilation

Have embedded specific packages not nec-
essarily in desktop distros

Make more features optional

Not as easy as a binary distribution
Build time

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

21/344

ao Embedded Linux build system:

Jo3e!

Open-source components
(via http, ftp, git, svn, etc.)

In-house components
(via http, ftp, git, svn, etc.)

principle

Embedded Linux
build system

!

> toolchain
> kernel image
- bootloader
[l .

image(s)
5| root filesystem
>

configuration

Building from source — lot of flexibility

Cross-compilation — leveraging fast build machines

Recipes for building components — easy

image

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

22/344

a@ Embedded Linux build system: tools

o%e]

A wide range of solutions: Yocto/OpenEmbedded, PTXdist, Buildroot,
OpenWRT, and more.

Today, two solutions are emerging as the most popular ones
Yocto/OpenEmbedded
Builds a complete Linux distribution with binary packages. Powerful, but somewhat
complex, and quite steep learning curve.
Buildroot
Builds a root filesystem image, no binary packages. Much simpler to use, understand
and modify.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

23/344

Introduction to Buildroot

Introduction to bOOtIl'n

Buildroot

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/344

a Buildroot at a glance
o)

o%e]

Can build a toolchain, a rootfs, a kernel, a bootloader

Easy to configure: menuconfig, xconfig, etc.

Fast: builds a simple root filesystem in a few minutes

Easy to understand: written in make, extensive documentation
Small root filesystem, starting at 2 MB

3200+ packages for user space libraries/apps available
Many architectures supported

Well-known technologies: make and kconfig

Vendor neutral

Active community, regular releases
The present slides cover Buildroot 2025.02. There may be some differences if you
use older or newer Buildroot versions.

https://buildroot.org

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/344

https://buildroot.org

a@ Buildroot design goals

o%e]

Buildroot is designed with a few key goals:
Simple to use
Simple to customize
Reproducible builds
Small root filesystem
Relatively fast boot
Easy to understand

Some of these goals require to not necessarily support all possible features

There are some more complicated and featureful build systems available (Yocto
Project, OpenEmbedded)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/344

Getting Buildroot
Q@ etting Buildroo

o%e]

Stable Buildroot releases are published every three months
YYYY.02, YYYY.05, YYYY.08, YYYY.11

Tarballs are available for each stable release
https://buildroot.org/downloads/

However, it is generally more convenient to clone the Git repository
Allows to clearly identify the changes you make to the Buildroot source code
Simplifies the upstreaming of the Buildroot changes
git clone https://gitlab.com/buildroot.org/buildroot.git
Git tags available for every stable release.

Long term support releases

Previously: YYYY.02 releases maintained one year

New policy starting with 2025.02

Goal is to maintain it during 3 years

Security fixes, bug fixes, build fixes

LTS initiative to fund the maintenance work, sponsoring needed to cover the effort

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/344

https://buildroot.org/downloads/

Using Buildroot
Q@ sing Buildroo

o%e]

Implemented in make
With a few helper shell scripts

All interaction happens by calling make in the main Buildroot sources directory.

$ cd buildroot/
$ make help

No need to run as root, Buildroot is designed to be executed with normal user
privileges.
Running as root is even strongly discouraged!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/344

ao Configuring Buildroot

o%e]

Like the Linux kernel, uses Kconfig
A choice of configuration interfaces:

make menuconfig
make nconfig
make xconfig
make gconfig

Make sure to install the relevant libraries in your system (ncurses for
menuconfig/nconfig, Qt for xconfig, Gtk for gconfig)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/344

/home/thomas/bootlin/training/buildroot/.config - Buildroot 2025.02 Configuration

Buildroot 2025.02 Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y> selects a
feature, while <N> excludes a feature. Press <Esc><Esc> to exit, <?> for
Help, </> for Search. Legend: [*] feature is selected [] feature is

|
Toolchain --->
Build options --->
System configuration --->
@mel eess
Target packages --
Filesystem images --->
Bootloaders --->
Host utilities --->
Legacy config options --->

< Exit > < Help > < Save > < Load >

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/344

Running th il
Q@ unning the build

o%e]

As simple as:

$ make

Often useful to keep a log of the build output, for analysis or investigation:

$ make 2>&1 | tee build.log
Or the helper shell script provided by Buildroot:

$./utils/brmake

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/344

Build results
o

o%e]

The build results are located in output/images
Depending on the configuration, this directory will contain:
One or several root filesystem images, in various formats
One kernel image, possibly one or several Device Tree blobs
One or several bootloader images
There is no standard way to install the images on any given device
Those steps are very device specific
Buildroot provides some tools to generate SD card / USB key images (genimage) or
directly to flash or boot specific platforms: SAM-BA for Microchip, uuu for NXP
i.MX, OpenOCD, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/344

a@ Practical lab - Basic Buildroot usage
o0

g

Get Buildroot

Configure a minimal system with Buildroot for
the target hardware

Do the build
Prepare the target hardware for usage

Flash and test the generated system

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/344

o%e]

Managing the build and
the configuration

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

a@ Managing the build and the configuration

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

34/344

4@3 Default build organization

> All the build output goes into a directory called output/ within the top-level
Buildroot source directory.
® 0 = output
> The configuration file is stored as .config in the top-level Buildroot source
directory.
® CONFIG_DIR = $(TOPDIR)
® TOPDIR = $(shell pwd)

» buildroot/

® _config
arch/
package/
output/
fs/

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/344

ao Out of tree build: introduction
o0

o%e]

Out of tree build allows to use an output directory different than output/
Useful to build different Buildroot configurations from the same source tree.

Customization of the output directory done by passing O=/path/to/directory on
the command line.

Configuration file stored inside the $(0) directory, as opposed to inside the
Buildroot sources for the in-tree build case.
project/
buildroot/, Buildroot sources
foo-output/, output of a first project
.config
bar-output/, output of a second project

.config

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/344

ao Out of tree build: using

o%e]

To start an out of tree build, two solutions:
From the Buildroot source tree, simplify specify a O= variable:
make O=../foo-output/ menuconfig

From an empty output directory, specify 0= and the path to the Buildroot source
tree:

make -C ../buildroot/ 0=$(pwd) menuconfig

Once one out of tree operation has been done (menuconfig, loading a defconfig,
etc.), Buildroot creates a small wrapper Makefile in the output directory.

This wrapper Makefile then avoids the need to pass 0= and the path to the
Buildroot source tree.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/344

a Out of tree build: example
b

o%e]

You are in your Buildroot source tree:

$ 1s
arch board boot ... Makefile ... package ...

Create a new output directory, and move to it:
$ mkdir ../foobar-output

@

cd ../foobar-output

Start a new Buildroot configuration:

@

make -C ../buildroot 0=$(pwd) menuconfig

Start the build (passing 0= and -C no longer needed thanks to the wrapper):

@

make

Adjust the configuration again, restart the build, clean the build:

@

make menuconfig
make
make clean

@ o

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/344

ao Full config file vs. defconfig

o%e]

The .config file is a full config file: it contains the value for all options (except
those having unmet dependencies)

The default . config, without any customization, has 4742 lines (as of Buildroot
2024.02)

Not very practical for reading and modifying by humans.
A defconfig stores only the values for options for which the non-default value is
chosen.

Much easier to read

Can be modified by humans
Can be used for automated construction of configurations

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/344

defconfig: example

For the default Buildroot configuration, the defconfig is empty: everything is the
default.
If you change the architecture to be ARM, the defconfig is just one line:

BR2_arm=y

If then you also enable the stress package, the defconfig will be just two lines:

BR2_arm=y
BR2_PACKAGE_STRESS=y

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/344

ao Using and creating a defconfig

o%e]

To use a defconfig, copying it to .config is not sufficient as all the missing
(default) options need to be expanded.

Buildroot allows to load defconfig stored in the configs/ directory, by doing:
make <foo>_defconfig

It overwrites the current .config, if any

To create a defconfig, run:
make savedefconfig

Saved in the file pointed by the BR2_DEFCONFIG configuration option

By default, points to defconfig in the current directory if the configuration was
started from scratch, or points to the original defconfig if the configuration was
loaded from a defconfig.

Move it to configs/ to make it easily loadable with make <foo>_defconfig

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/344

60 Existing defconfigs

o%e]

Buildroot comes with a number of existing defconfigs for various publicly available
hardware platforms:

RaspberryPi, BeagleBone Black, CubieBoard, Microchip evaluation boards,
Minnowboard, various i.MX6 boards
QEMU emulated platforms

List them using make list-defconfigs

Most built-in defconfigs are minimal: only build a toolchain, bootloader, kernel
and minimal root filesystem.

$ make gemu_arm_vexpress_defconfig
$ make

Additional instructions often available in board/<boardname>, e.g.:
board/qgemu/arm-vexpress/readme. txt.

Your own defconfigs can obviously be more featureful

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/344

4@} Assembling a defconfig (1/2)

> defconfigs are trivial text files, one can use simple concatenation to assemble them
from fragments.

platform1.frag

BR2_arm=y
BR2_TOOLCHAIN_BUILDROOT_WCHAR=y
BR2_GCC_VERSION_7_X=y

platform2.frag

BR2_mipsel=y
BR2_TOOLCHAIN_EXTERNAL=y
BR2_TOOLCHAIN_EXTERNAL_CODESOURCERY_MIPS=y

packages.frag

BR2_PACKAGE_STRESS=y
BR2_PACKAGE_MTD=y
BR2_PACKAGE_LIBCONFIG=y

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/344

4@} Assembling a defconfig (2/2)

debug.frag

BR2_ENABLE_DEBUG=y
BR2_PACKAGE_STRACE=y

Build a release system for platforml

$./support/kconfig/merge_config.sh platforml.frag packages.frag
$ make

Build a debug system for platform2

$./support/kconfig/merge_config.sh platform2.frag packages.frag \
debug.frag
$ make

> Saving fragments is not possible; it must be done manually from an existing
defconfig

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/344

h Iding ti
Q@ Other building tips

o%e]

Cleaning targets
Cleaning all the build output, but keeping the configuration file:

$ make clean

Cleaning everything, including the configuration file, and downloaded file if at the
default location:

$ make distclean

Verbose build
By default, Buildroot hides a number of commands it runs during the build, only
showing the most important ones.
To get a fully verbose build, pass V=1:

$ make V=1

Passing V=1 also applies to packages, like the Linux kernel, busybox...

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/344

Buildroot source and build trees

Buildroot source and
build trees

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

46/344

a@ Buildroot source and build trees
o0

o%e]

Source tree

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/344

4@} Source tree (1/5)

> Makefile
® top-level Makefile, handles the configuration and general orchestration of the build

> Config.in
® top-level Config.in, main/general options. Includes many other Config.in files
> arch/
® Config.in.x files defining the architecture variants (processor type, ABI, floating
point, etc.)

® Config.in, Config.in.arm, Config.in.x86, Config.in.microblaze, etc.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/344

4@} Source tree (2/5)

» toolchain/

® packages for generating or using toolchains

® toolchain/ virtual package that depends on either toolchain-buildroot or

toolchain-external

® toolchain-buildroot/ virtual package to build the internal toolchain

® toolchain-external/ virtual package to download/import the external toolchain
> system/

¢ skeleton/ the rootfs skeleton

® Config.in, options for system-wide features like init system, /dev handling, etc.
> linux/

® linux.mk, the Linux kernel package

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/344

4@,? Source tree (3/5)

> package/
¢ all the user space packages (3200+)
® busybox/, gcc/, qt5/, etc.
® pkg-generic.mk, core package infrastructure
® pkg-cmake.mk, pkg-autotools.mk, pkg-perl.mk, etc. Specialized package
infrastructures

> fs/
® logic to generate filesystem images in various formats
® common.mk, common logic
® cpio/, ext2/, squashfs/, tar/, ubifs/, etc.

> boot/

® bootloader packages
® at91bootstrap3/, barebox/, grub2/, syslinux/, uboot/, etc.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/344

4@} Source tree (4/5)

> configs/
® default configuration files for various platforms
® similar to kernel defconfigs
® atmel_xplained_defconfig, beaglebone_defconfig, raspberrypi_defconfig,
etc.
» board/
® board-specific files (kernel configuration files, kernel patches, image flashing scripts,
etc.)
® typically go together with a defconfig in configs/
» support/
® misc utilities (kconfig code, libtool patches, download helpers, and more.)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/344

Qo Source tree (5/5)

Jo3e!

utils/

Various utilities useful to Buildroot developers

brmake, make wrapper, with logging

docker-run, wrapper to run the build under a Docker container provided by
Buildroot

get-developers, to know to whom patches should be sent

test-pkg, to validate that a package builds properly

scanpipy, scancpan to generate Python/Perl package .mk files

docs/

Buildroot documentation

Written in AsciiDoc, can generate HTML, PDF, TXT versions: make manual
~142 pages PDF document

Also available pre-generated online.
https://buildroot.org/downloads/manual/manual.html

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/344

https://buildroot.org/downloads/manual/manual.html

a@ Buildroot source and build trees
o0

o%e]

Build tree

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/344

Q@ Build tree: $(0)

o%e]

output/

Global output directory

Can be customized for out-of-tree build by passing 0=<dir>
Variable: 0 (as passed on the command line)

Variable: BASE_DIR (as an absolute path)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/344

4@} Build tree: $(0)/build

> output/
® build/

B buildroot-config/
B busybox-1.22.1/
B host-pkgconf-0.8.9/
B kmod-1.18/
B build-time.log
® Where all source tarballs are extracted
Where the build of each package takes place
In addition to the package sources and object files, stamp files are created by
Buildroot

® Variable: BUILD_DIR

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/344

4@} Build tree: $(0)/host

> output/

® host/
B 1lib
bin
shin

<tuple>/sysroot/lib
<tuple>/sysroot/usr/lib
B <tuple>/sysroot/usr/bin

® Contains both the tools built for the host (cross-compiler, etc.) and the sysroot of
the toolchain

Variable: HOST_DIR

Host tools are directly in host/

The sysroot is in host/<tuple>/sysroot/usr

<tuple> is an identifier of the architecture, vendor, operating system, C library and
ABI. E.g: arm-unknown-1linux-gnueabihf.

® Variable for the sysroot: STAGING_DIR

|
|
B <tuple>/sysroot/bin
|
|

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/344

4@} Build tree: $(0)/staging

> output/
® staging/
® Just a symbolic link to the sysroot, i.e. to host/<tuple>/sysroot/.
® Available for convenience

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/344

a@ Build tree: $(0)/target

o%e]

output/

target/
bin/
etc/
lib/
usr/bin/
usr/lib/
usr/share/
usr/shin/
THIS_IS_NOT_YOUR_ROOT_FILESYSTEM

The target root filesystem

Usual Linux hierarchy

Not completely ready for the target: permissions, device files, etc.

Buildroot does not run as root: all files are owned by the user running Buildroot, not
setuid, etc.

Used to generate the final root filesystem images in images/

Variable: TARGET_DIR

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/344

4@} Build tree: $(0)/images

> output/
® images/
m zImage
B armada-370-mirabox.dtb
B rootfs.tar
B rootfs.ubi
® Contains the final images: kernel image, bootloader image, root filesystem image(s)
® Variable: BINARIES_DIR

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/344

% Build tree: $(0)/graphs

> output/
® graphs/
® Visualization of Buildroot operation: dependencies between packages, time to build
the different packages
make graph-depends
make graph-build
make graph-size
Variable: GRAPHS_DIR
See the section Analyzing the build later in this training.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/344

4@} Build tree: $(0)/1legal-info

> output/
® legal-info/
B manifest.csv
B host-manifest.csv

m licenses/
m sources/

n ..
® Legal information: license of all packages, and their source code, plus a licensing
manifest
® Useful for license compliance

® make legal-info
Variable: LEGAL_INFO_DIR

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/344

Toolchains in Buildroot

bootlin

Toolchains in Buildroot

© Copyright 2004-2026, Bootlin. . . .
Crentive Commons BY-SA 3.0 license embedded Linux and kernel engineering

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/344

ao What is a cross-compilation toolchain?
o0

o%e]

A set of tools to build and debug code for a target architecture, from a machine
running a different architecture.

Example: building code for ARM from a x86-64 PC.

Binutils Kernel headers

C/C++ libraries GCC compiler

GDB debugger
(optional)

Cross-compilation toolchain

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/344

ao Two possibilities for the toolchain
o0

o%e]

Buildroot offers two choices for the toolchain,
called toolchain backends:
The internal toolchain backend, where
Buildroot builds the toolchain entirely from
source
The external toolchain backend, where
Buildroot uses a existing pre-built toolchain

Selected from Toolchain — Toolchain type.

Toolchain type

Use the arrow keys to navigate this window or press the
hotkey of the item you wish to select followed by the <SPACE
BAR>. Press <2> for additional information about this

Buildroot toolchain|
() External toolchain]

< Help >

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

64/344

a Internal toolchain backend
o)

o%e]

Makes Buildroot build the entire cross-compilation toolchain from source.
Provides a lot of flexibility in the configuration of the toolchain.

Kernel headers version
C library: Buildroot supports uClibc, (e)glibc and musl
glibc, the standard C library. Good choice if you don’t have tight space constraints

(>= 10 MB)
uClibc-ng and musl, smaller C libraries. uClibc-ng supports non-MMU architectures.

Good for very small systems (< 10 MB).
Different versions of binutils and gcc. Keep the default versions unless you have

specific needs.
Numerous toolchain options: C++, LTO, OpenMP, libmudflap, graphite, and more

depending on the selected C library.
Building a toolchain takes quite some time: 15-20 minutes on moderately recent

machines.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

65/344

ao Internal toolchain backend: result
o0

Jo3e!

host/bin/<tuple>-<tool>, the cross-compilation tools: compiler, linker,
assembler, and more. The compiler is hidden behind a wrapper program.
host/<tuple>/
sysroot/usr/include/, the kernel headers and C library headers
sysroot/1lib/ and sysroot/usr/lib/, C library and gcc runtime
include/c++/, C4++ library headers
1ib/, host libraries needed by gcc/binutils
target/
1ib/ and usr/1ib/, C and C++ libraries
The compiler is configured to:

generate code for the architecture, variant, FPU and ABI selected in the
Target options

look for libraries and headers in the sysroot

no need to pass weird gcc flags!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/344

a@ External toolchain backend possibilities
o0

o%e]

Allows to re-use existing pre-built toolchains
Great to:

save the build time of the toolchain

use vendor provided toolchain that are supposed to be reliable
Several options:

Use an existing toolchain profile known by Buildroot
Download and install a custom external toolchain
Directly use a pre-installed custom external toolchain

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/344

ao Existing external toolchain profile
OC

o%e]

Buildroot already knows about a wide selection
of publicly available toolchains.
Toolchains from
ARM (ARM and AArch64)
Mentor Graphics (AArch64, ARM, MIPS,
NIOS-1)
Imagination Technologies (MIPS)
Synopsys (ARC)
Bootlin
In such cases, Buildroot is able to download
and automatically use the toolchain.

It already knows the toolchain configuration: C
library being used, kernel headers version, etc.

Additional profiles can easily be added.

X
Use the arrow keys to navigate this window or press the
hotkey of the item you wish to select followed by the <SPACE
BAR>. Press <?> for additional information about this

() Arm ARM 14.2.rell
() Linaro ARM 2018.05
ootl ol

() Custom toolchain

< Help >

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

68/344

4@3 Existing external toolchains: Bootlin toolchains

> https://toolchains.bootlin.com

> A set of 218 pre-built toolchains, freely
available
® 43 different CPU architecture variants
® All possible C libraries supported: glibc,
uClibc-ng, musl
® Toolchains built with Buildroot!

» Two versions for each toolchain

® stable, which uses the default version of gcc,
binutils and gdb in Buildroot

® bleeding-edge, which uses the latest version of
gcc, binutils and gdb in Buildroot

> Directly integrated in Buildroot

Select arch

aarched

Select libc

glibc

® ®

Download stable Download bleeding-edge

2431 224

P 1430 s 1510

ED 152 gb 183
glbe 2417015022 glibc 24170g1502¢2.
lnueheaders 54296 nucheaders 515189

Bootlin foolchain variant

Use the arrow keys to navigate this window or press tl
hiotkeylofhthekltenlyouly (=nktol-elec Uito oved(y the <seac
BAR>. Press <?> for additional information about this

9 8
() armv7-eabihf glibc stable 2024.05-1

() armv7-eabihf musl bleeding-edge 2024.05-1
() armv7-eabinf musl stable 2024.05-1

() armv7-eabihf uclibc bleeding-edge 2024.05-1
() armv7-eabihf uclibc stable 2024.05-10

<setect>} < Help >

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

69/344

https://toolchains.bootlin.com

a Custom external toolchains
o)

o%e]

If you have a custom external toolchain, for example from your vendor, select
Custom toolchain in Toolchain.
Buildroot can download and extract it for you

Convenient to share toolchains between several developers
Option Toolchain to be downloaded and installed in Toolchain origin
The URL of the toolchain tarball is needed

Or Buildroot can use an already installed toolchain

Option Pre-installed toolchain in Toolchain origin
The local path to the toolchain is needed
In both cases, you will have to tell Buildroot the configuration of the toolchain: C
library, kernel headers version, etc.
Buildroot needs this information to know which packages can be built with this
toolchain
Buildroot will check those values at the beginning of the build

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/344

Custom external toolchain example configuration
o\

Toolchain
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted letters are hotkeys. Pressing <Y> selects
a feature, while <N> excludes a feature. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [] feature is selected []
feature is excluded

1
##% Toolchain External Options xxx
Toolchain (Custom toolchain) --->
Toolchain origin (Toolchain to be downloaded and installed) --->
(http://autobuild. buildroot.org/toolchains/tarballs/bri386-pentiumd-full-2020.11.2. tar .bz2) Toolchain URL
(bin) Toolchain relative binary path (NEW)
($(ARCH)-linux) Toolchain prefix (NEW)
External toolchain gec version (9.x) --->
External toolchain kernel headers series (4.4.x) -
External toolchain C library (uClibc/uClibc-ng)
%= Toolchain has WCHAR support?
[*] Toolchain has locale support?
[*] Toolchain has threads support? (NEW)
[] Toolchain has threads debugging support?
[*] Toolchain has NPTL threads support? (NEW)
[] Toolchain has SSP support? (NEW)
Toolchain has RPC support? (NEW)
Toolchain has Ct+ support?
Toolchain has D support? (NEW)
Toolchain has Fortran support? (NEW)
Toolchain has OpenMP support? (NEW)
Copy gdb server to the Target (NEW)
##% Host GDB Options ks
[] Build cross gdb for the host (NEW)
*x% Toolchain Generic Options *##
() Extra toolchain libraries to be copied to target (NEW)
() Target Optimizations (NEW)
() Target Linker options (NEW)
[] Register toolchain within Eclipse Buildroot plug-in (NEW)

< Exit > < Help > < Save > < Load >

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/344

a External toolchain: result
o)

Jo3e!

host/opt/ext-toolchain, where the original toolchain tarball is extracted.
Except when a local pre-installed toolchain is used.

host/bin/<tuple>-<tool>, symbolic links to the cross-compilation tools in their
original location. Except the compiler, which points to a wrapper program.
host/<tuple>/

sysroot/usr/include/, the kernel headers and C library headers
sysroot/1ib/ and sysroot/usr/lib/, C library and gcc runtime
include/c++/, C4++ library headers

target/
lib/ and usr/1ib/, C and C++ libraries

The wrapper takes care of passing the appropriate flags to the compiler.
Mimics the internal toolchain behavior

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/344

a Kernel headers version
o)

o%e]

One option in the toolchain menu is particularly important: the kernel headers
version.

When building user space programs, libraries or the C library, kernel headers are
used to know how to interface with the kernel.

This kernel /user space interface is backward compatible, but can introduce new
features.

It is therefore important to use kernel headers that have a version equal or older
than the kernel version running on the target.

With the internal toolchain backend, choose an appropriate kernel headers version.

With the external toolchain backend, beware when choosing your toolchain.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/344

ao Other toolchain menu options
o0

o%e]

The toolchain menu offers a few other options:
Target optimizations

Allows to pass additional compiler flags when building target packages
Do not pass flags to select a CPU or FPU, these are already passed by Buildroot
Be careful with the flags you pass, they affect the entire build

Target linker options

Allows to pass additional linker flags when building target packages
gdb/debugging related options

Covered in our Application development section later.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

74/344

60 Managing the Linux kernel configuration
o0

o%e]

Managing the Linux
kernel configuration

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.

bootlin

OO\«

embedded Linux and kernel engineering

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

75/344

a Kernel version
o)

Most packages in Buildroot have a version fixed in their corresponding Buildroot
package
Some packages are more hardware-related, and there is a need to configure their
version in a custom way

Linux kernel, bootloaders, firmware, etc.
Linux kernel version options:

Latest version

Latest CIP SLTS

Latest CIP RT SLTS

Custom version

Custom Git repository
Custom Mercurial repository
Custom Subversion repository

Using a custom version is recommended — ensures that upgrading Buildroot
doesn't imply a change in the kernel version
No relationship between Buildroot version and kernel version

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 76/344

Q} Kernel version configuration
A

Kernel version §
Use the arrow keys to navigate this window or press the
hotkey of the item you wish to select followed by the <SPACE
BAR>. Press <?> for additional information about this

[ll
Latest CIP SLTS verston (5.10.162-cip24)
) Latest CIP RT SLTS version (5.10.162-cip24-rt10)
) Custom version
) Custom tarball
) Custom Git repository
1(+)

—_~———
>

<Select> < Help >
p

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 77/344

60 Kernel configuration vs. Buildroot configuration
o0

o%e]

The Linux kernel itself uses kconfig to define its configuration
Buildroot cannot replicate all Linux kernel configuration options in its menuconfig
Defining the Linux kernel configuration therefore needs to be done in a special way.

Note: while described with the example of the Linux kernel, this discussion is also
valid for other packages using kconfig: barebox, uclibc, busybox and uboot.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 78/344

60 Defining the configuration

o%e]

In the Kernel menu in menuconfig, 3 possibilities to configure the kernel:
Use a defconfig

Will use a defconfig provided within the kernel sources
Available in arch/<ARCH>/configs in the kernel sources
Used unmodified by Buildroot

Good starting point

Use a custom config file

Allows to give the path to either a full .config, or a minimal defconfig
Usually what you will use, so that you can have a custom configuration
Use the architecture default configuration

Use the defconfig provided by the architecture in the kernel source tree. Some
architectures (e.g ARM64) have a single defconfig.

Configuration can be further tweaked with Additional fragments
Allows to pass a list of configuration file fragments.

They can complement or override configuration options specified in a defconfig or a

full configuration file.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

79/344

Q} Examples of kernel configuration

stm32mp157a_dk1_defconfig: custom configuration file

BR2_LINUX_KERNEL _USE_CUSTOM_CONFIG=y
BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE="board/stmicroelectronics/stm32mp157a-dk1/1linux.config"”

ts4900_defconfig: standard kernel defconfig
BR2_LINUX_KERNEL_ _DEFCONFIG="imx_v6_v7"

warpboard_defconfig: standard kernel defconfig + fragment

BR2_LINUX_KERNEL _DEFCONFIG="imx_v6_v7"
BR2_LINUX_KERNEL_CONFIG_FRAGMENT_FILES="board/freescale/warpboard/linux.fragment”

linux.fragment: contains extra kernel options

CONFIG_CFG80211_WEXT=y

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/344

ao Changing the configuration

Jo3e!

Running one of the Linux kernel configuration interfaces:

make linux-menuconfig
make linux-nconfig
make linux-xconfig
make linux-gconfig

Will load either the defined kernel defconfig or custom configuration file, and start
the corresponding Linux kernel configuration interface.

Changes made are only made in $(0)/build/linux-<version>/, i.e. they are
not preserved across a clean rebuild.
To save them:

make linux-update-config, to save a full config file
make linux-update-defconfig, to save a minimal defconfig
Only works if a custom configuration file is used

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/344

4@,? Typical flow

1. make menuconfig
© Start with a defconfig from the kernel, say mvebu_v7_defconfig

2. Run make linux-menuconfig to customize the configuration

3. Do the build, test, tweak the configuration as needed.

4. You cannot do make linux-update-{config,defconfig}, since the Buildroot
configuration points to a kernel defconfig

5. make menuconfig

¢ Change to a custom configuration file. There's no need for the file to exist, it will be
created by Buildroot.

6. make linux-update-defconfig
® Will create your custom configuration file, as a minimal defconfig

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/344

Root filesystem in Buildroot

Root filesystem in
Buildroot

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

83/344

a@ Overall rootfs construction steps
o0

o%e]

Copy the skeleton > Build/install
to $(TARGET_DIR) all packages

Execute (Create rootfs

post-image scripts images

—>

(_

Run a number of
cleanup steps

!

Copy rootfs
overlays

!

Execute
post-build scripts

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

84/344

4@} Root filesystem skeleton

>

The base of a Linux root filesystem: UNIX directory hierarchy, a few configuration
files and scripts in /etc. No programs or libraries.

All target packages depend on the skeleton package, so it is essentially the first
thing copied to $(TARGET_DIR) at the beginning of the build.
skeleton is a virtual package that will depend on:

® skeleton-init-{sysv, systemd, openrc, none} depending on the init system being

selected

® skeleton-custom when a custom skeleton is selected
All of skeleton-init-{sysv, systemd, openrc,none’} depend on
skeleton-init-common

® Copies system/skeleton/* to $(TARGET_DIR)

skeleton-init-{sysv, systemd, openrc} install additional files specific to those
init systems

DOOLIIN - Kernel, driver

rs and embedded Linux - Development, consulting, training and support - https://boot1in. con

85/344

4@} Skeleton packages dependencies

All target packages

'

skeleton
virtual package

BR2_INIT_SYSV=y

\ BR2INIT BUSYBOX=y

BR2_INIT_SYSTEMD=y BR2_INIT_OPENRC=y
Y

BR2_INIT_NONE=y
\ 4

\ 4

skeleton-init-sysv

skeleton-init-systemd

skeleton-init-openrc

skeleton-init-none

skeleton-custom

BR2_ROOTFS_SKELETON_DEFAULT=y

\ 4

skeleton-init-common <€

BR2_ROOTFS_SKELETON_CUSTOM=y

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

86/344

ao Custom root filesystem skeleton
o0

o%e]

A custom skeleton can be used, through the BR2_ROOTFS_SKELETON_CUSTOM and
BR2_ROOTFS_SKELETON_CUSTOM_PATH options.

In this case: skeleton depends on skeleton-custom

Completely replaces skeleton-init-*, so the custom skeleton must provide
everything.

Not recommended though:

the base is usually good for most projects.

skeleton only copied at the beginning of the build, so a skeleton change needs a full
rebuild

Use rootfs overlays or post-build scripts for root filesystem customization (covered
later)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 87/344

a Installation of packages
o)

g

All the selected target packages will be built (can be BusyBox, Qt, OpenSSH,
lighttpd, and many more)

Most of them will install files in $(TARGET_DIR): programs, libraries, fonts, data
files, configuration files, etc.

This is really the step that will bring the vast majority of the files in the root
filesystem.

Covered in more details in the section about creating your own Buildroot
packages.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 88/344

Cleanup step
s

o%e]

Once all packages have been installed, a cleanup step is executed to reduce the
size of the root filesystem.
It mainly involves:
Removing header files, pkg-config files, CMake files, static libraries, man pages,
documentation.
Stripping all the programs and libraries using strip, to remove unneeded
information. Depends on BR2_ENABLE_DEBUG and BR2_STRIP_* options.

Additional specific clean up steps: clean up unneeded Python files when Python is
used, etc. See TARGET_FINALIZE_HOOKS in the Buildroot code.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/344

a Root filesystem overlay
o)

Jo3e!

To customize the contents of your root filesystem, to add configuration files,
scripts, symbolic links, directories or any other file, one possible solution is to use
a root filesystem overlay.

A root filesystem overlay is simply a directory whose contents will be copied over
the root filesystem, after all packages have been installed. Overwriting files is
allowed.

The option BR2_ROOTFS_OVERLAY contains a space-separated list of overlay paths.

$ grep *BR2_ROOTFS_OVERLAY .config
BR2_ROOTFS_OVERLAY="board/myproject/rootfs-overlay”
$ find -type f board/myproject/rootfs-overlay
board/myproject/rootfs-overlay/etc/ssh/sshd_config
board/myproject/rootfs-overlay/etc/init.d/S99myapp

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/344

Post-build script
Qo ost-build scripts

o%e]

Sometimes a root filesystem overlay is not sufficient: you can use post-build
scripts.

Can be used to customize existing files, remove unneeded files to save space,
add new files that are generated dynamically (build date, etc.)

Executed before the root filesystem image is created. Can be written in any
language, shell scripts are often used.

BR2_ROOTFS_POST_BUILD_SCRIPT contains a space-separated list of post-build
script paths.

$(TARGET_DIR) path passed as first argument, additional arguments can be
passed in the BR2_ROOTFS_POST_SCRIPT_ARGS option.
Various environment variables are available:

BR2_CONFIG, path to the Buildroot .config file
HOST_DIR, STAGING_DIR, TARGET_DIR, BUILD_DIR, BINARIES_DIR, BASE_DIR

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 91/344

4@3 Post-build script: example

board/myproject/post-build.sh
#!/bin/sh

Generate a file identifying the build (git commit and build date)
echo $(git describe) $(date +%Y-%m-%d-%H:%M:%S) > \
$TARGET_DIR/etc/build-id

Create /applog mountpoint, and adjust /etc/fstab

mkdir -p $TARGET_DIR/applog

grep -q "*/dev/mtdblock7"” $TARGET_DIR/etc/fstab || \
echo "/dev/mtdblock7\t\t/applog\tjffs2\tdefaults\t\to\to" >> \
$TARGET_DIR/etc/fstab

Remove unneeded files
rm -rf $TARGET_DIR/usr/share/icons/bar

Buildroot configuration

BR2_ROOTFS_POST_BUILD_SCRIPT="board/myproject/post-build.sh”

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/344

a@ Generating the filesystem images
o0

o%e]

In the Filesystem images menu, you can select which filesystem image formats
to generate.

To generate those images, Buildroot will generate a shell script that:
Changes the owner of all files to 9:9 (root user)
Takes into account the global permission and device tables, as well as the
per-package ones.
Takes into account the global and per-package users tables.
Runs the filesystem image generation utility, which depends on each filesystem
type (genext2fs, mkfs.ubifs, tar, etc.)

This script is executed using a tool called fakeroot
Allows to fake being root so that permissions and ownership can be modified, device
files can be created, etc.

Advanced: possibility of running a custom script inside fakeroot, see
BR2_ROOTFS_POST_FAKEROOT_SCRIPT.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/344

a Permission table
o)

o%e]

By default, all files are owned by the root user, and the permissions with which
they are installed in $(TARGET_DIR) are preserved.

To customize the ownership or the permission of installed files, one can create one
or several permission tables

BR2_ROOTFS_DEVICE_TABLE contains a space-separated list of permission table
files. The option name contains device for backward compatibility reasons only.

The system/device_table. txt file is used by default.

Packages can also specify their own permissions. See the Advanced package
aspects section for details.

Permission table example

#<name> <type> <mode> <uid> <gid> <major> <minor> <start> <inc> <count>
/dev d 755 0 0 = = = = =
/tmp d 1777 @) - - - - -
/var/www d 755 33 33 = = o = o

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/344

Device table
o

o%e]

When the system is using a static /dev, one may need to create additional device
nodes

Done using one or several device tables

BR2_ROOTFS_STATIC_DEVICE_TABLE contains a space-separated list of device table
files.

The system/device_table_dev. txt file is used by default.
Packages can also specify their own device files. See the Advanced package
aspects section for details.

Device table example

<name> <type> <mode> <uid> <gid> <major> <minor> <start> <inc> <count>
/dev/mem @ 640 0 0 1 1 [} 0 =
/dev/kmem @ 640 0 0 1 2 [} 0 =
/dev/i2c- c 666 () 0 89 () Q 1 4

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/344

Users table
o

Jo3e!

One may need to add specific UNIX users and groups in addition to the ones
available in the default skeleton.

BR2_ROOTFS_USERS_TABLES is a space-separated list of user tables.
Packages can also specify their own users. See the Advanced package aspects
section for details.

Users table example

<username> <uid> <group> <gid> <password> <home> <shell> <groups> <comment>
foo =1l bar = !=blabla /home/foo /bin/sh alpha,bravo Foo user
test 8000 wheel -1 = o /bin/sh - Test user

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

96/344

a Post-image scripts
o)

o%e]

Once all the filesystem images have been created, at the very end of the build,
post-image scripts are called.
They allow to do any custom action at the end of the build. For example:

Extract the root filesystem to do NFS booting
Generate a final firmware image
Start the flashing process

BR2_ROOTFS_POST_IMAGE_SCRIPT is a space-separated list of post-image scripts to
call.
Post-image scripts are called:

from the Buildroot source directory

with the $(BINARIES_DIR) path as first argument

with the contents of the BR2_ROOTFS_POST_SCRIPT_ARGS as other arguments
with a number of available environment variables: BR2_CONFIG, HOST_DIR,
STAGING_DIR, TARGET_DIR, BUILD_DIR, BINARIES_DIR and BASE_DIR.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/344

a Init mechanism
o)

o%e]

Buildroot supports multiple init implementations:

BusyBox init, the default. Simplest solution.
sysvinit, the old style featureful init implementation
systemd, the modern init system

OpenRC, the init system used by Gentoo

Selecting the init implementation in the System configuration menu will:

Ensure the necessary packages are selected
Make sure the appropriate init scripts or configuration files are installed by packages.

See Advanced package aspects for details.

98/344

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

ao /dev management method
o0

o%e]

Buildroot supports four methods to handle the /dev directory:
Using devtmpfs. /dev is managed by the kernel devtmpfs, which creates device files
automatically. Default option.
Using static /dev. This is the old way of doing /dev, not very practical.
Using mdev. mdev is part of BusyBox and can run custom actions when devices are
added/removed. Requires devtmpfs kernel support.
Using eudev. Forked from systemd, allows to run custom actions. Requires
devtmpfs kernel support.

When systemd is used, the only option is udev from systemd itself.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 99/344

ao Other customization options
o0

o%e]

There are various other options to customize the root filesystem:
getty options, to run a login prompt on a serial port or screen
hostname and banner options
DHCP network on one interface (for more complex setups, use an overlay)
root password
timezone installation and selection
NLS, Native Language Support, to support message translation
locale files installation and filtering (to install translations only for a subset of
languages, or none at all)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/344

a@ Deploying the images

o%e]

By default, Buildroot simply stores the different images in $(0)/images

It is up to the user to deploy those images to the target device.
Possible solutions:
For removable storage (SD card, USB keys):
manually create the partitions and extract the root filesystem as a tarball to the
appropriate partition.
use a tool like genimage to create a complete image of the media, including all
partitions
For NAND flash:
Transfer the image to the target, and flash it.

NFS booting
initramfs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

101/344

a@ Deploying the images: genimage

o%e]

genimage allows to create the complete image of a block device (SD card, USB
key, hard drive), including multiple partitions and filesystems.

For example, allows to create an image with two partitions: one FAT partition for
bootloader and kernel, one ext4 partition for the root filesystem.

Also allows to place the bootloader at a fixed offset in the image if required.

The helper script support/scripts/genimage.sh can be used as a post-image
script to call genimage

More and more widely used in Buildroot default configurations

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/344

Deploying the images: genimage example

genimage-raspberrypi.cfg

image boot.vfat {

vfat {
files = {
"bcm2708-rpi-b.dtb",
"rpi-firmware/bootcode.bin"”,
"rpi-firmware/cmdline. txt",
"kernel-marked/zImage"
[...]
3
}
size = 32M
3
defconfig

BR2_ROOTFS_POST_IMAGE_SCRIPT="support/scripts/genimage.sh"

image sdcard.img {
hdimage {
3

partition boot {
partition-type = @xC
bootable = "true"”
image = "boot.vfat”

3

partition rootfs {
partition-type = 0x83
image = "rootfs.ext4”

BR2_ROOTFS_POST_SCRIPT_ARGS="-c board/raspberrypi/genimage-raspberrypi.cfg”

flash

dd if=output/images/sdcard.img of=/dev/sdb

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

103/344

ao Deploying the image: NFS booting

Jo3e!

Many people try to use $(0)/target directly for NFS booting

This cannot work, due to permissions/ownership being incorrect
Clearly explained in the THIS_IS_NOT_YOUR_ROOT_FILESYSTEM file.

Generate a tarball of the root filesystem
Use sudo tar -C /nfs -xf output/images/rootfs.tar to prepare your NFS
share.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 104/344

ao Deploying the image: initramfs

o%e]

Another common use case is to use an initramfs, i.e. a root filesystem fully in
RAM.

Convenient for small filesystems, fast booting or kernel development

Two solutions:

BR2_TARGET_ROOTFS_CPIO=y to generate a cpio archive, that you can load from your
bootloader next to the kernel image.

BR2_TARGET_ROOTFS_INITRAMFS=y to directly include the initramfs inside the kernel
image. Only available when the kernel is built by Buildroot.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

105/344

a@ Practical lab - Root filesystem construction
o0

o%e]

Explore the build output

Customize the root filesystem using a rootfs
overlay

Use a post-build script

Customize the kernel with patches and
additional configuration options

Add more packages
Use defconfig files and out of tree build

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/344

a@ Download infrastructure in Buildroot
o0

o%e]

Download infrastructure
in Buildroot

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

107/344

Introduction
o

o%e]

One important aspect of Buildroot is to fetch source code or binary files from
third party projects.

Download supported from HTTP(S), FTP, Git, Subversion, CVS, Mercurial, etc.

Being able to do reproducible builds over a long period of time requires
understanding the download infrastructure.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/344

a Download location
o)

o%e]

Each Buildroot package indicates in its .mk file which files it needs to be
downloaded.

Can be a tarball, one or several patches, binary files, etc.

When downloading a file, Buildroot will successively try the following locations:

The local $(DL_DIR) directory where downloaded files are kept
The primary site, as indicated by BR2_PRIMARY_SITE

The original site, as indicated by the package .mk file

The backup Buildroot mirror, as indicated by BR2_BACKUP_SITE

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/344

Qo DL_DIR

o%e]

Once a file has been downloaded by Buildroot, it is cached in the directory
pointed by $(DL_DIR), in a sub-directory named after the package.
By default, $(TOPDIR)/d1
Can be changed
using the BR2_DL_DIR configuration option
or by passing the BR2_DL_DIR environment variable, which overrides the config
option of the same name
The download mechanism is written in a way that allows independent parallel
builds to share the same DL_DIR (using atomic renaming of files)

No cleanup mechanism: files are only added, never removed, even when the
package version is updated.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 110/344

Primary site
s

o%e]

The BR2_PRIMARY_SITE option allows to define the location of a HTTP or FTP
server.

By default empty, so this feature is disabled.

When defined, used in priority over the original location.

Allows to do a local mirror, in your company, of all the files that Buildroot needs
to download.

When option BR2_PRIMARY_SITE_ONLY is enabled, only the primary site is used

It does not fall back on the original site and the backup Buildroot mirror
Guarantees that all downloads must be in the primary site

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 111/344

a Backup Buildroot mirror
o)

o%e]

Since sometimes the upstream locations disappear or are temporarily unavailable,
having a backup server is useful
Address configured through BR2_BACKUP_SITE
Defaults to http://sources.buildroot.net
maintained by the Buildroot community
updated before every Buildroot release to contain the downloaded files for all
packages
exception: cannot store all possible versions for packages that have their version as a
configuration option. Generally only affects the kernel or bootloader, which typically
don't disappear upstream.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 112/344

http://sources.buildroot.net

ao Special case of VCS download

o%e]

When a package uses the source code from Git, Subversion or another VCS,
Buildroot cannot directly download a tarball.

It uses a VCS-specific method to fetch the specified version of the source from the
VCS repository

The source code is checked-out/cloned inside DL_DIR and kept to speed-up
further downloads of the same project (caching only implemented for Git)
Finally a tarball containing only the source code (and not the version control
history or metadata) is created and stored in DL_DIR

Example:

c-capnproto-9053ebebeeb2ae762655b982e27¢c341chb568366d-git4.tar.gz
This tarball will be re-used for the next builds, and attempts are made to
download it from the primary and backup sites.

Due to this, always use a tag name or a full commit id, and never a branch name:
the code will never be re-downloaded when the branch is updated.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/344

Vendori
@o endoring

o%e]

Some language-specific package management systems like to download the
dependencies by themselves: vendoring

Examples: Cargo in the Rust ecosystem, or Go
Problem for build systems: reproducibility of the builds, licensing, offline builds
Buildroot supports vendoring dependencies for cargo and go packages

Right after the download of the package source code, Buildroot invokes the
language-specific vendoring tool, and bundles the dependencies inside the tarball

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/344

ao File integrity checking

o%e]

Buildroot packages can provide a .hash file to provide hashes for the downloaded
files.

The download infrastructure uses this hash file when available to check the
integrity of the downloaded files.

Hashes are checked every time a downloaded file is used, even if it is already
cached in $(DL_DIR).

If the hash is incorrect, the download infrastructure attempts to re-download the
file once. If that still fails, the build aborts with an error.

Hash checking message

strace-4.10.tar.xz: OK (md5: 107a5be455493861189e9b57a3a51912)
strace-4.10.tar.xz: OK (shal: 5c3ec4c5a9eeb440d7ec70514923c2e7e7f9ab6c)
>>> strace 4.10 Extracting

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 115/344

60 Download-related make targets
o0

o%e]

make source
Triggers the download of all the files needed to build the current configuration.
All files are stored in $(DL_DIR)
Allows to prepare a fully offline build
make external-deps
Lists the files from $(DL_DIR) that are needed for the current configuration to build.
Does not guarantee that all files are in $(DL_DIR), a make source is required

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/344

GNU Make 101

bootlin
GNU Make 101

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/344

Introduction
o

o%e]

Buildroot being implemented in GNU Make, it is quite important to know the
basics of this language

Basics of make rules

Defining and referencing variables

Conditions

Defining and using functions

Useful make functions

This does not aim at replacing a full course on GNU Make
https://www.gnu.org/software/make/manual/make.html

https://www.nostarch.com/gnumake

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 118/344

https://www.gnu.org/software/make/manual/make.html
https://www.nostarch.com/gnumake

a Basics of make rules
o)

o%e]

At their core, Makefiles are simply defining rules to create targets from
prerequisites using recipe commands

TARGET ...: PREREQUISITES ...
RECIPE

target: name of a file that is generated. Can also be an arbitrary action, like
clean, in which case it's a phony target

prerequisites: list of files or other targets that are needed as dependencies of
building the current target.

recipe: list of shell commands to create the target from the prerequisites

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/344

4@3 Rule example

Makefile

clean:
rm -rf $(TARGET_DIR) $(BINARIES_DIR) $(HOST_DIR) \
$(BUILD_DIR) $(BASE_DIR)/staging \
$(LEGAL_INFO_DIR)

distclean: clean
[...]
rm -rf $(BR2_CONFIG) $(CONFIG_DIR)/.config.old \
$(CONFIG_DIR)/.auto.deps

P clean and distclean are phony targets

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/344

60 Defining and referencing variables
o0

o%e]

Defining variables is done in different ways:
FOOBAR = value, expanded at time of use
FOOBAR := value, expanded at time of assignment
FOOBAR += value, append to the variable, with a separating space, defaults to
expanded at the time of use
FOOBAR ?= value, defined only if not already defined
Multi-line variables are described using define NAME ... endef:

define FOOBAR
line 1
line 2
endef

Make variables are referenced using the $(FOOBAR) syntax.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 121/344

4@3 Conditions

> With ifeq or ifneq

ifeq ($(BR2_CCACHE),y)
CCACHE := $(HOST_DIR)/bin/ccache
endif

distclean: clean

ifeq ($(DL_DIR),$(TOPDIR)/d1)
rm -rf $(DL_DIR)

endif

> With the $(if ...) make function:

HOSTAPD_LIBS += $(if $(BR2_STATIC_LIBS),-lcrypto -1z)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/344

4@} Defining and using functions

> Defining a function is exactly like defining a variable:

MESSAGE = echo "$(TERM_BOLD)>>> $($(PKG)_NAME) $($(PKG)_VERSION) $(call qstrip,$(1))$(TERM_RESET)

define legal-license-header # pkg, license-file, {HOST|TARGET}
printf "$(LEGAL_INFO_SEPARATOR)\n\t$(1):\

$(2)\n$(LEGAL_INFO_SEPARATOR)\n\n\n" >>$(LEGAL_LICENSES_TXT_$(3))
endef

> Arguments accessible as $(1), $(2), etc.

> Called using the $(call func,argl,arg?2) construct
$(BUILD_DIR)/%/.stamp_extracted:
[...]
@$(call MESSAGE, "Extracting”)

define legal-license-nofiles # pkg, {HOST|TARGET}
$(call legal-license-header,$(1),unknown license file(s),$(2))
endef

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

123/344

4@,‘3 Useful make functions

> subst and patsubst to replace text
ICU_SOURCE = icu4c-$(subst .,_,$(ICU_VERSION))-src.tgz

> filter and filter-out to filter entries

> foreach to implement loops

$(foreach incdir,$(TI_GFX_HDR_DIRS),
$(INSTALL) -d $(STAGING_DIR)/usr/include/$(notdir $(incdir)); \
$(INSTALL) -D -m 0644 $(@D)/include/$(incdir)/*.h \
$(STAGING_DIR)/usr/include/$(notdir $(incdir))/

P dir, notdir, addsuffix, addprefix to manipulate file names

UBOOT_SOURCE = $(notdir $(UBOOT_TARBALL))

IMAGEMAGICK_CONFIG_SCRIPTS = \
$(addsuffix -config,Magick MagickCore MagickWand Wand)

> And many more, see the GNU Make manual for details.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 124/344

Writing recipes
9o

o%e]

Recipes are just shell commands
Each line must be indented with one Tab

Each line of shell command in a given recipe is independent from the other:
variables are not shared between lines in the recipe

Need to use a single line, possibly split using \, to do complex shell constructs

Shell variables must be referenced using $$name.

package/pppd/pppd.mk

define PPPD_INSTALL_RADIUS
for m in $(PPPD_RADIUS_CONF); do \
$(INSTALL) -m 644 -D $(PPPD_DIR)/pppd/plugins/radius/etc/$$m \

$(TARGET_DIR)/etc/ppp/radius/$$m; \
done

endef

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

125/344

a@ Integrating new packages in Buildroot
o0

o%e]

Integrating new
packages in Buildroot

© Copyright 2004-2026, Bootlin.

Creative Commons BY-SA 3.0 license
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

126/344

a@ Why adding new packages in Buildroot?

o%e]

A package in Buildroot-speak is the set of meta-information needed to
automate the build process of a certain component of a system.

Can be used for open-source, third party proprietary components, or in-house
components.

Can be used for user space components (libraries and applications) but also for
firmware, kernel drivers, bootloaders, etc.

Do not confuse with the notion of binary package in a regular Linux distribution.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 127/344

a@ Basic elements of a Buildroot package
o0

o%e]

A directory, package/foo

A Config.in file, written in kconfig language, describing the configuration options
for the package.

A <pkg>.mk file, written in make, describing where to fetch the source, how to
build and install it, etc.

An optional <pkg>.hash file, providing hashes to check the integrity of the
downloaded tarballs and license files.

Optionally, .patch files, that are applied on the package source code before
building.

Optionally, any additional file that might be useful for the package: init script,
example configuration file, etc.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 128/344

a@ Integrating new packages in Buildroot
o0

o%e]

Config.in file

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 129/344

a@ package/<pkg>/Config.in: basics

Jo3e!

Describes the configuration options for the package.
Written in the kconfig language.
One option is mandatory to enable/disable the package, it must be named
BR2_PACKAGE_<PACKAGE>.
config BR2_PACKAGE_VTUN
bool "vtun”
[

help
Tool for easily creating Virtual Tunnels over TCP/IP networks

with traffic shaping, compression, and encryption.

It supports IP, PPP, SLIP, Ethernet and other tunnel types.

http://vtun.sourceforge.net/

The main package option is a bool with the package name as the prompt. Will
be visible in menuconfig.
The help text give a quick description, and the homepage of the project.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/344

4@} package/<pkg>/Config.in: inclusion

> The hierarchy of configuration options visible in menuconfig is built by reading
the top-level Config.in file and the other Config.in file it includes.

> All package/<pkg>/Config.in files are included from package/Config.in.
> The location of a package in one of the package sub-menu is decided in this file.

package/Config.in
menu "Target packages”

menu "Audio and video applications”
source "package/alsa-utils/Config.in"

endmenu
menu "Libraries”
menu "Audio/Sound”

source "package/alsa-lib/Config.in"

endmenu

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 131/344

a@ package/<pkg>/Config.in: dependencies

o%e]

kconfig allows to express dependencies using select or depends on statements
select is an automatic dependency: if option A select option B, as soon as A is
enabled, B will be enabled, and cannot be unselected.
depends on is a user-assisted dependency: if option A depends on option B, A will
only be visible when B is enabled.

Buildroot uses them as follows:

depends on for architecture, toolchain feature, or big feature dependencies. E.g:
package only available on x86, or only if wide char support is enabled, or depends on
Python.

select for enabling the necessary other packages needed to build the current
package (libraries, etc.)

Such dependencies only ensure consistency at the configuration level. They do
not guarantee build ordering!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 132/344

package/<pkg>/Config.in: dependency example

btrfs-progs package

config BR2_PACKAGE_BTRFS_PROGS

comment

bool "btrfs-progs”
depends on BR2_USE_MMU # util-linux
depends on BR2_TOOLCHAIN_HAS_THREADS
select BR2_PACKAGE_LZO
select BR2_PACKAGE_UTIL_LINUX
select BR2_PACKAGE_UTIL_LINUX_LIBBLKID
select BR2_PACKAGE_UTIL_LINUX_LIBUUID
select BR2_PACKAGE_ZLIB
help

Btrfs filesystem utilities

https://btrfs.wiki.kernel.org/index.php/Main_Page
"btrfs-progs needs a toolchain w/ threads”

depends on BR2_USE_MMU
depends on !BR2_TOOLCHAIN_HAS_THREADS

> depends on BR2_USE_MMU, because the
package uses fork(). Note that there
is no comment displayed about this
dependency, because it's a limitation
of the architecture.

» depends on BR2_TOOLCHAIN_HAS_
THREADS, because the package requires
thread support from the toolchain.
There is an associated comment,
because such support can be added to
the toolchain.

P> Multiple select BR2_PACKAGE_x,
because the package needs numerous
libraries.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

133/344

4@,‘3 Dependency propagation

> A limitation of kconfig is that it doesn't propagate depends on dependencies

accross select dependencies.

> Scenario: if package A has a depends on F0O, and package B has a select A,

then package B must replicate the depends on FOO.

libglib2 package

config BR2_PACKAGE_LIBGLIB2
bool "libglib2"
depends on BR2_USE_WCHAR # gettext
depends on BR2_TOOLCHAIN_HAS_THREADS
depends on BR2_USE_MMU # fork()

select
select
select
select
select
select

BR2_PACKAGE_HOST_QEMU if ...
BR2_PACKAGE_HOST_QEMU_LINUX_USER_MODE if ...
BR2_PACKAGE_LIBICONV if !BR2_ENABLE_LOCALE
BR2_PACKAGE_LIBFFI

BR2_PACKAGE_PCRE2

BR2_PACKAGE_ZLIB

neard package

config BR2_PACKAGE_NEARD
bool "neard"”

depends
depends
depends
depends
depends

0l
]
]
ol
on

33353

select BR2_
select BR2_PACKAGE_LIBGLIB2
select BR2_PACKAGE_LIBNL

BR2_USE_WCHAR # libglib2

BR2_TOOLCHAIN_HAS_THREADS # libnl, dbus, libglib2

BR2_USE_MMU # dbus, libglib2
1BR2_STATIC_LIBS # dlopen
BR2_TOOLCHAIN_HAS_SYNC_4
PACKAGE _DBUS

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

134/344

60 Config.in.host for host packages?

o%e]

Most of the packages in Buildroot are target packages, i.e. they are cross-compiled
for the target architecture, and meant to be run on the target platform.

Some packages have a host variant, built to be executed on the build machine.
Such packages are needed for the build process of other packages.

The majority of host packages are not visible in menuconfig: they are just
dependencies of other packages, the user doesn't really need to know about them.

A few of them are potentially directly useful to the user (flashing tools, etc.), and
can be shown in the Host utilities section of menuconfig.

In this case, the configuration option is in a Config.in.host file, included from
package/Config.in.host, and the option must be named
BR2_PACKAGE _HOST_<PACKAGE>.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/344

4@,? Config.in.host example

package/Config.in.host
menu "Host utilities”

source "package/genimage/Config.in.host"”
source "package/lpc3250loader/Config.in.host"”
source "package/openocd/Config.in.host”
source "package/qgemu/Config.in.host”

endmenu

package/openocd/Config.in.host

config BR2_PACKAGE_HOST_OPENOCD
bool "host openocd”
depends on BR2_HOST_GCC_AT_LEAST_4_9 # host-libusb
help
OpenOCD - Open On-Chip Debugger

http://openocd.org

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/344

ao Config.in sub-options

Jo3e!

Additional sub-options can be
defined to further configure
the package, to enable or
disable extra features.

The value of such options can
then be fetched from the
package .mk file to adjust the
build accordingly.

Run-time configuration does
not belong to Config.in.

package/pppd/Config.in

config BR2_PACKAGE_PPPD
bool "pppd”
depends on !BR2_STATIC_LIBS
depends on BR2_USE_MMU

if BR2_PACKAGE_PPPD

config BR2_PACKAGE_PPPD_FILTER
bool "filtering”
select BR2_PACKAGE_LIBPCAP
help
Packet filtering abilities for pppd. If enabled,
the pppd active-filter and pass-filter options
are available.

endif

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 137/344

a@ Integrating new packages in Buildroot
o0

o%e]

Package infrastructures

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 138/344

ao Package infrastructures: what is it?
o0

o%e]

Each software component to be built by Buildroot comes with its own build
system.

Buildroot does not re-invent the build system of each component, it simply uses it.
Numerous build systems available: hand-written Makefiles or shell scripts,
autotools, Meson, CMake and also some specific to languages: Python, Perl, Lua,
Erlang, etc.

In order to avoid duplicating code, Buildroot has package infrastructures for
well-known build systems.

And a generic package infrastructure for software components with non-standard
build systems.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/344

Package infrastructures

opencv4 kodi libgtk2 gnutls systemd libglib2

package/pkg-cmake.mk package /pkg-autotools.mk package/pkg-meson.mk

autotools-package meson-package

cmake-package

A
1sof
package/pkg-generic.mk generic-package libzlib
boost

Y

python-package

kconfig-package perl-package

package/pkg-python.mk

package/ pke-kconfig.mk package/pkg-perl.mk

busybox uboot perl-net-ssleay perl-xml-libxml python-serial python-zeroconf

140/344

://bootlin. com

v
DOOLIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - htt,

a@ generic-package infrastructure
o0

o%e]

To be used for software components having non-standard build systems.

Implements a default behavior for the downloading, extracting and patching steps
of the package build process.

Implements init script installation, legal information collection, etc.

Leaves to the package developer the responsibility of describing what should be
done for the configuration, building and installation steps.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/344

4% generic-package: steps

download

—>

extract

patch

install

build

<—

configure

Implemented by the

I:] generic-package

infrastructure

Implemented by the
package itself

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

142/344

ao Other package infrastructures
o0

o%e]

The other package infrastructures are meant to be used when the software
component uses a well-known build system.

They inherit all the behavior of the generic-package infrastructure:
downloading, extracting, patching, etc.

And in addition to that, they typically implement a default behavior for the
configuration, compilation and installation steps.

For example, autotools-package will implement the configuration step as a call
to the . /configure script with the right arguments.

pkg-kconfig is an exception, it only provides some helpers for packages using
Kconfig, but does not implement the configure, build and installation steps.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 143/344

a@ Integrating new packages in Buildroot
o0

o%e]

.mk file for generic-package

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

% The <pkg>.mk file

> The .mk file of a package does not look like a normal Makefile.

> It is a succession of variable definitions, which must be prefixed by the uppercase
package name.
® FOOBAR_SITE = https://foobar.com/downloads/
® define FOOBAR_BUILD_CMDS
$(MAKE) -C $(@D)
endef

> And ends with a call to the desired package infrastructure macro.

® $(eval $(generic-package))

® $(eval $(autotools-package))

® $(eval $(host-autotools-package))

> The variables tell the package infrastructure what to do for this specific package.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/344

a Naming conventions
o)

o%e]

The Buildroot package infrastructures make a number of assumption on variables
and files naming.
The following must match to allow the package infrastructure to work for a given
package:
The directory where the package description is located must be package/<pkg>/,
where <pkg> is the lowercase name of the package.
The Config.in option enabling the package must be named BR2_PACKAGE _<PKG>,
where <PKG> is the uppercase name of the package.
The variables in the .mk file must be prefixed with <PKG>_, where <PKG> is the
uppercase name of the package.

Note: a - in the lower-case package name is translated to _ in the upper-case
package name.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/344

a@ Naming conventions: global namespace
o0

o%e]

The package infrastructure expects all variables it uses to be prefixed by the
uppercase package name.
If your package needs to define additional private variables not used by the
package infrastructure, they should also be prefixed by the uppercase package
name.
The namespace of variables is global in Buildroot!

If two packages created a variable named BUILD_TYPE, it will silently conflict.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/344

a Behind the scenes
o)

o%e]

Behind the scenes, $(eval $(generic-package)):

is a make macro that is expanded

infers the name of the current package by looking at the directory name:
package/<pkg>/<pkg>.mk: <pkg> is the package name

will use all the variables prefixed by <PKG>_

and expand to a set of make rules and variable definitions that describe what should
be done for each step of the package build process

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/344

ao .mk file: accessing the configuration
o0

o%e]

The Buildroot .config file is a succession of lines name = value

This file is valid make syntax!
The main Buildroot Makefile simply includes it, which turns every Buildroot
configuration option into a make variable.

From a package .mk file, one can directly use such variables:

ifeq ($(BR2_PACKAGE_LIBCURL),y)
endif
FOO_DEPENDENCIES += $(if $(BR2_PACKAGE_TIFF),tiff)

Hint: use the make qstrip function to remove double quotes on string options:

NODEJS_MODULES_LIST = $(call gstrip,$(BR2_PACKAGE_NODEJS_MODULES_ADDITIONAL))

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/344

4@3 Download related variables

> <pkg>_SITE, download location
® HTTP(S) or FTP URL where a tarball can be found, or the address of a version
control repository.
® CAIRO_SITE = http://cairographics.org/releases
® FMC_SITE = git://git.freescale.com/ppc/sdk/fmc.git
b <pkg>_VERSION, version of the package
® version of a tarball, or a commit, revision or tag for version control systems
® CAIRO_VERSION = 1.14.2
® FMC_VERSION = fsl-sdk-v1.5-rc3
b <pkg>_SOURCE, file name of the tarball
® The full URL of the downloaded tarball is $(<pkg>_SITE)/$(<pkg>_SOURCE)
® When not specified, defaults to <pkg>-$(<pkg>_VERSION).tar.gz
® CAIRO_SOURCE = cairo-$(CAIRO_VERSION).tar.xz

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/344

a Available download methods
o d.)
Buildroot can fetch the source code using different methods:
wget, for FTP/HTTP downloads
scp, to fetch the tarball using SSH/SCP
svn, for Subversion
cvs, for CVS
git, for Git
hg, for Mercurial
bzr, for Bazaar
file, for a local tarball
local, for a local directory

In most cases, the fetching method is guessed by Buildroot using the <pkg>_SITE
variable.
Exceptions:

Git, Subversion or Mercurial repositories accessed over HT TP or SSH.
file and local methods

In such cases, use <pkg>_SITE_METHOD explicitly.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 151/344

4@} Download methods examples

> Subversion repository accessed over HTTP:

LIBXMLRPC_VERSION = r3176
LIBXMLRPC_SITE = https://svn.code.sf.net/p/xmlrpc-c/code/advanced
LIBXMLRPC_SITE_METHOD = svn

> Git repository accessed over HTTP:

LIBUCI_VERSION = 4b3db1179747b6a6779029407984bacef851325¢
LIBUCI_SITE = https://git.openwrt.org/project/uci.git
LIBUCI_SITE_METHOD = git

> Source code available in a local directory:

MYAPP_SITE = $(TOPDIR)/../apps/myapp
MYAPP_SITE_METHOD = local

® The "download" will consist in copying the source code from the designated
directory to the Buildroot per-package build directory.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/344

ao Downloading more elements
o0 nd
<pkg>_PATCH, a list of patches to download and apply before building the
package. They are automatically applied by the package infrastructure.
<pkg>_EXTRA_DOWNLOADS, a list of additional files to download together with the
package source code. It is up to the package .mk file to do something with them.
Two options:
Just a file name: assumed to be relative to <pkg>_SITE.
A full URL: downloaded over HTTP, FTP.

Examples:

sysvinit.mk

UNZIP_PATCH = unzip_$(UNZIP_VERSION)-27.debian.tar.xz

perl.mk

PERL_CROSS_SITE = http://raw.github.com/arsv/perl-cross/releases
PERL_CROSS_SOURCE = perl-$(PERL_CROSS_BASE_VERSION)-cross-$(PERL_CROSS_VERSION).tar.gz
PERL_EXTRA_DOWNLOADS = $(PERL_CROSS_SITE)/$(PERL_CROSS_SOURCE)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 153/344

Hash fil
Q@ ash file

o%e]

In order to validate the integrity of downloaded files and license files, and make
sure the user uses the version which was tested by the Buildroot developers,
cryptographic hashes are used

Each package may contain a file named <package>.hash, which gives the hashes
of the files downloaded by the package.

When present, the hashes for all files downloaded by the package must be
documented.

The hash file can also contain the hashes for the license files listed in
<pkg>_LICENSE_FILES. This allows to detect changes in the license files.

The syntax of the file is:
<hashtype> <hash> <file>

Note: the separator between fields is 2 spaces.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/344

4% Hash file examples

package/perl/perl.hash

Hashes from: https://www.cpan.org/src/5.0/perl-5.40.1.tar.xz.{md5,shal,sha256}.txt

md5 bab3547a5cdf2302ee0396419d74a42e perl-5.40.1.tar.xz

shal 4ffe5246c791df884363aedd5ba81bad1cb02084 perl-5.40.1.tar.xz

sha256 dfa20c2eef2b4af133525610bbb65dd13777ecf998c9c5b1ccf0d308e732ee3f perl-5.40.1.tar.xz

Hash from: https://github.com/arsv/perl-cross/releases/download/1.6.1/perl-cross-1.6.1.hash
sha256 b5f4b4457bbd7be37adac8ee423beedbcdba8963a85f79770f5e701dabc5550f perl-cross-1.6.1.tar.gz

Locally calculated

sha256 dd9ed4f42e4dcadf5a7c09eead189d93c7b37ae560c91f0f6d5233ed3b9292a2 Artistic
sha256 d77d235e41d54594865151f4751e835c5a82322b0e87ace266567¢3391a4b912 Copying
sha256 af805523b88a8ebb60afcO@9caal247a498208502f7b8b3d9d3e329fcfbidc3b README

package/ipset/ipset.hash

From https://ipset.netfilter.org/ipset-7.16.tar.bz2.sha512sum. txt

sha512 e69ddee956f0922c8e08e7e5d358d6b5b24178a9f08151b20957cc3465baabadecdbaad38ael57f2cd286ccd7foOb7a279cfd89cec2393a00b43e4d945c275307 ipse
Locally calculated

sha256 231f7edcc7352d7734a96eef0b8030177982678c516876fchb81e25b32d68564c COPYING

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/344

60 Describing dependencies

o%e]

Dependencies expressed in Config.in do not enforce build order.

The <pkg>_DEPENDENCIES variable is used to describe the dependencies of the
current package.

Packages listed in <pkg>_DEPENDENCIES are guaranteed to be built before the
configure step of the current package starts.

It can contain both target and host packages.

It can be appended conditionally with additional dependencies.

python.mk
PYTHON_DEPENDENCIES = host-python libffi
ifeq ($(BR2_PACKAGE_PYTHON_READLINE),y)

PYTHON_DEPENDENCIES += readline
endif

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/344

a@ Mandatory vs. optional dependencies
o0

o%e]

Very often, software components have some mandatory dependencies and some
optional dependencies, only needed for optional features.
Handling mandatory dependencies in Buildroot consists in:
Using a select or depends on on the main package option in Config.in
Adding the dependency in <pkg>_DEPENDENCIES
For optional dependencies, there are two possibilities:
Handle it automatically: in the .mk file, if the optional dependency is available, use
it.
Handle it explicitly: add a package sub-option in the Config.in file.
Automatic handling is usually preferred as it reduces the number of Config.in
options, but it makes the possible dependency less visible to the user.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 157/344

4@} Dependencies: ntp example

P> Mandatory dependency: libevent
> Optional dependency handled automatically: openssl

package/ntp/Config.in

config BR2_PACKAGE_NTP
bool "ntp”
select BR2_PACKAGE_LIBEVENT

package/ntp/ntp.mk

[...]
NTP_DEPENDENCIES = host-pkgconf libevent
Loool

ifeq ($(BR2_PACKAGE_OPENSSL),y)

NTP_CONF_OPTS += --with-crypto --enable-openssl-random
NTP_DEPENDENCIES += openssl

else

NTP_CONF_OPTS += --without-crypto --disable-openssl-random
endif

[...]

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/344

4@3 Dependencies: mpd example (1/2)

package/mpd/Config.in

menuconfig BR2_PACKAGE_MPD
bool "mpd”
depends on BR2_INSTALL_LIBSTDCPP

select BR2_PACKAGE_BOOST

select BR2_PACKAGE_LIBGLIB2

select BR2_PACKAGE_LIBICONV if !BR2_ENABLE_LOCALE
[...]

config BR2_PACKAGE_MPD_FLAC
bool "flac”
select BR2_PACKAGE_FLAC
help
Enable flac input/streaming support.
Select this if you want to play back FLAC files.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/344

4@3 Dependencies: mpd example (2/2)

package/mpd/mpd.mk
MPD_DEPENDENCIES = host-pkgconf boost libglib2

[...]

ifeq ($(BR2_PACKAGE_MPD_FLAC),y)
MPD_DEPENDENCIES += flac
MPD_CONF_OPTS += --enable-flac
else

MPD_CONF_OPTS += --disable-flac
endif

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/344

4@,? Defining where to install (1)

> Target packages can install files to different locations:

® To the target directory, $(TARGET_DIR), which is what will be the target root
filesystem.

® To the staging directory, $(STAGING_DIR), which is the compiler sysroot

® To the images directory, $(BINARIES_DIR), which is where final images are located.

> There are three corresponding variables, to define whether or not the package will
install something to one of these locations:

® <pkg>_INSTALL_TARGET, defaults to YES. If YES, then <pkg>_INSTALL_TARGET_CMDS
will be called.

® <pkg>_INSTALL_STAGING, defaults to NO. If YES, then
<pkg>_INSTALL_STAGING_CMDS will be called.

® <pkg>_INSTALL_IMAGES, defaults to NO. If YES, then <pkg>_INSTALL_IMAGES_CMDS
will be called.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 161/344

4@} Defining where to install (2)

> A package for an application:
® installs to $(TARGET_DIR) only
® <pkg>_INSTALL_TARGET defaults to YES, so there is nothing to do
> A package for a shared library:
* installs to both $(TARGET_DIR) and $(STAGING_DIR)
® must set <pkg>_INSTALL_STAGING = YES
> A package for a pure header-based library, or a static-only library:
® installs only to $(STAGING_DIR)

® must set <pkg>_INSTALL_TARGET = NO and <pkg>_INSTALL_STAGING = YES

> A package installing a bootloader or kernel image:

® installs to $(BINARIES_DIR)
¢ must set <pkg>_INSTALL_IMAGES = YES

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

162/344

4@,‘3 Defining where to install (3)

libyaml.mk
LIBYAML_INSTALL_STAGING = YES

eigen.mk

EIGEN_INSTALL_STAGING = YES
EIGEN_INSTALL_TARGET = NO

linux.mk

LINUX_INSTALL_IMAGES = YES

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/344

4@ Describing actions for generic-package

> Ina

package using generic-package, only the download, extract and patch steps

are implemented by the package infrastructure.

> The
[]
[]

other steps should be described by the package .mk file:
<pkg>_CONFIGURE_CMDS, always called

<pkg>_BUILD_CMDS, always called

<pkg>_INSTALL_TARGET_CMDS, called when <pkg>_INSTALL_TARGET = YES, for
target packages

<pkg>_INSTALL_STAGING_CMDS, called when <pkg>_INSTALL_STAGING = YES, for
target packages

<pkg>_INSTALL_IMAGES_CMDS, called when <pkg>_INSTALL_IMAGES = YES, for
target packages

<pkg>_INSTALL_CMDS, always called for host packages

> Packages are free to not implement any of these variables: they are all optional.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/344

4@3 Describing actions: useful variables
A

Inside an action block, the following variables are often useful:
> $(@D) is the source directory of the package
> $(MAKE) to call make
> $(MAKET) when the package doesn’t build properly in parallel mode
>

$(TARGET_MAKE_ENV) and $(HOST_MAKE_ENV), to pass in the $(MAKE)
environment to ensure the PATH is correct

$(TARGET_CONFIGURE_OPTS) and $(HOST_CONFIGURE_OPTS) to pass CC, LD,
CFLAGS, etc.

> $(TARGET_DIR), $(STAGING_DIR), $(BINARIES_DIR) and $(HOST_DIR).

v

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/344

4@3 Describing actions: iodine.mk example

IODINE_VERSION = 0.7.0

IODINE_SITE = http://code.kryo.se/iodine
IODINE_DEPENDENCIES = zlib
IODINE_LICENSE = MIT
IODINE_LICENSE_FILES = README

IODINE_CFLAGS = $(TARGET_CFLAGS)
[...]

define IODINE_BUILD_CMDS
$(TARGET_CONFIGURE_OPTS) CFLAGS="$(IODINE_CFLAGS)" \
$(MAKE) ARCH=$(BR2_ARCH) -C $(@D)
endef

define IODINE_INSTALL_TARGET_CMDS
$(TARGET_CONFIGURE_OPTS) $(MAKE) -C $(@D) install DESTDIR="$(TARGET_DIR)" prefix=/usr

endef

$(eval $(generic-package))

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/344

4@,‘3 Describing actions: 1ibzlib.mk example

LIBZLIB_VERSION = 1.2.11

LIBZLIB_SOURCE = z1lib-$(LIBZLIB_VERSION).tar.xz
LIBZLIB_SITE = http://www.zlib.net
LIBZLIB_INSTALL_STAGING = YES

define LIBZLIB_CONFIGURE_CMDS
(cd $(@); rm -rf config.cache; \

$(TARGET_CONFIGURE_ARGS) \
$(TARGET_CONFIGURE_OPTS) \
CFLAGS="$(TARGET_CFLAGS) $(LIBZLIB_PIC)" \
./configure \
$(LIBZLIB_SHARED) \
—-prefix=/usr \

endef

define LIBZLIB_BUILD_CMDS
$(TARGET_MAKE_ENV) $(MAKE1) -C $(@D)
endef

define LIBZLIB_INSTALL_STAGING_CMDS
$(TARGET_MAKE_ENV) $(MAKE1) -C $(@D) DESTDIR=$(STAGING_DIR) LDCONFIG=true install
endef

define LIBZLIB_INSTALL_TARGET_CMDS
$(TARGET_MAKE_ENV) $(MAKE1) -C $(@D) DESTDIR=$(TARGET_DIR) LDCONFIG=true install
endef

$(eval $(generic-package))

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 167/344

4@} List of package infrastructures (1/2)

v

generic-package, for packages not using a well-known build system. Already
covered.

autotools-package, for autotools based packages, covered later.
python-package, for distutils and setuptools based Python packages
perl-package, for Perl packages

luarocks-package, for Lua packages hosted on luarocks.org
cmake-package, for CMake based packages

waf-package, for Waf based packages

vVvvyVvVYvYyyvyy

gmake-package, for QMake based packages

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/344

ao List of package infrastructures (2/2)

Jo3e!

golang-package, for packages written in Go
meson-package, for packages using the Meson build system
cargo-package, for packages written in Rust

kconfig-package, to be used in conjunction with generic-package, for
packages that use the kconfig configuration system

kernel-module-package, to be used in conjunction with another package
infrastructure, for packages that build kernel modules

rebar-package for Erlang packages that use the rebar build system

virtual-package for virtual packages, covered later.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/344

a@ Integrating new packages in Buildroot
o0

o%e]

autotools-package infrastructure

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 170/344

4@} The autotools-package infrastructure: basics

> The autotools-package infrastructure inherits from generic-package and is
specialized to handle autotools based packages.
> It provides a default implementation of:
® <pkg>_CONFIGURE_CMDS. Calls the ./configure script with appropriate environment
variables and arguments.
* <pkg>_BUILD_CMDS. Calls make.
® <pkg>_INSTALL_TARGET_CMDS, <pkg>_INSTALL_STAGING_CMDS and
<pkg>_INSTALL_CMDS. Call make install with the appropriate DESTDIR.
> A normal autotools based package therefore does not need to describe any action:
only metadata about the package.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 171/344

4@} The autotools-package: steps
download —> extract > patch
install < build <€— configure

Implemented by the

I:l generic-package

infrastructure

Implemented by the
autotools-package
infrastructure

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

172/344

4@} The autotools-package infrastructure: variables

> It provides additional variables that can be defined by the package:

<pkg>_CONF_ENV to pass additional values in the environment of the ./configure
script.

<pkg>_CONF_OPTS to pass additional options to the ./configure script.
<pkg>_INSTALL_OPTS, <pkg>_INSTALL_STAGING_OPTS and
<pkg>_INSTALL_TARGET_OPTS to adjust the make target and options used for the
installation.

<pkg>_AUTORECONF. Defaults to NO, can be set to YES if regenerating Makefile.in
files and configure script is needed. The infrastructure will automatically make sure
autoconf, automake, libtool are built.

<pkg>_GETTEXTIZE. Defaults to NO, can be set to YES to gettextize the package.
Only makes sense if <pkg>_AUTORECONF = YES.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 173/344

4@3 Canonical autotools-package example

libyaml.mk

B R B R R B B L L B L R I R R R R R R R RS R S R 1
#

libyaml

#

LIBYAML_VERSION = 0.2.5

LIBYAML_SOURCE = yaml-$(LIBYAML_VERSION).tar.gz
LIBYAML_SITE = http://pyyaml.org/download/libyaml
LIBYAML_INSTALL_STAGING = YES

LIBYAML_LICENSE = MIT

LIBYAML_LICENSE_FILES = License
LIBYAML_CPE_ID_VENDOR = pyyaml

$(eval $(autotools-package))
$(eval $(host-autotools-package))

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/344

4@3 More complicated autotools-package example

GNUPG2_VERSION = 2.4.7
GNUPG2_SOURCE = gnupg-$(GNUPG2_VERSION) .tar.bz2

GNUPG2_SITE = https://gnupg.org/ftp/gcrypt/gnupg [...]
GNUPG2_LICENSE = GPL-3.0+
GNUPG2_LICENSE_FILES = COPYING ifeq ($(BR2_PACKAGE_LIBUSB),y)
GNUPG2_CPE_ID_VENDOR = gnupg GNUPG2_CONF_ENV += CPPFLAGS="$(TARGET_CPPFLAGS)
GNUPG2_CPE_ID_PRODUCT = gnupg -I$(STAGING_DIR)/usr/include/1libusb-1.0"
GNUPG2_DEPENDENCIES = zlib libgpg-error libgcrypt libassuan libksba libr GNUPG2_CONF_OPTS += --enable-ccid-driver
$(if $(BR2_PACKAGE_LIBICONV),libiconv) host-pkgconf GNUPG2_DEPENDENCIES += libusb

else
ifeq ($(BR2_PACKAGE_BZIP2),y) GNUPG2_CONF_OPTS += --disable-ccid-driver
GNUPG2_CONF_OPTS += --enable-bzip2 --with-bzip2=$(STAGING_DIR) endif
GNUPG2_DEPENDENCIES += bzip2
else ifeq ($(BR2_PACKAGE_READLINE),y)
GNUPG2_CONF_OPTS += --disable-bzip2 GNUPG2_CONF_OPTS += --with-readline=$(STAGING_DIR)
endif GNUPG2_DEPENDENCIES += readline

else
ifeq ($(BR2_PACKAGE_GNUTLS),y) GNUPG2_CONF_OPTS += --without-readline
GNUPG2_CONF_OPTS += --enable-gnutls endif
GNUPG2_DEPENDENCIES += gnutls
else $(eval $(autotools-package))
GNUPG2_CONF_OPTS += --disable-gnutls
endif

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/344

a@ Integrating new packages in Buildroot
o0

g

Target vs. host packages

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 176/344

Host k
@0 ost packages

o%e]

As explained earlier, most packages in Buildroot are cross-compiled for the target.
They are called target packages.
Some packages however may need to be built natively for the build machine, they
are called host packages. They can be needed for a variety of reasons:
Needed as a tool to build other things for the target. Buildroot wants to limit the
number of host utilities required to be installed on the build machine, and wants to
ensure the proper version is used. So it builds some host utilities by itself.
Needed as a tool to interact, debug, reflash, generate images, or other activities
around the build itself.
Version dependencies: building a Python interpreter for the target needs a Python
interpreter of the same version on the host.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 177/344

4@} Target vs. host: package name and variable prefixes

> Each package infrastructure provides a <foo>-package macro and a
host-<foo>-package macro.

> For a given package in package/baz/baz.mk, <foo>-package will create a
package named baz and host-<foo>-package will create a package named
host-baz.

b <foo>-package will use the variables prefixed with BAZ_
> host-<foo>-package will use the variables prefixed with HOST_BAZ_

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 178/344

4@3 Target vs. host: variable inheritance

> For many variables, when HOST_BAZ_<var> is not defined, the package
infrastructure inherits from BAZ_<var> instead.

® True for <PKG>_SOURCE, <PKG>_SITE, <PKG>_VERSION, <PKG>_LICENSE,
<PKG>_LICENSE_FILES, etc.
¢ Defining <PKG>_SITE is sufficient, defining HOST_<PKG>_SITE is not needed.
® |t is still possible to override the value specifically for the host variant, but this is
rarely needed.
> But not for all variables, especially commands

¢ E.g. HOST_<PKG>_BUILD_CMDS is not inherited from <PKG>_BUILD_CMDS

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 179/344

4@,? Example 1: a pure build utility

> bison, a general-purpose parser generator.
P Purely used as build dependency in packages
® FBSET_DEPENDENCIES = host-bison host-flex

> No Config.in.host, not visible in menuconfig.

package/bison /bison.mk

BISON_VERSION = 3.8.2

BISON_SOURCE = bison-$(BISON_VERSION).tar.xz
BISON_SITE = $(BR2_GNU_MIRROR)/bison
BISON_LICENSE = GPL-3.0+
BISON_LICENSE_FILES = COPYING
BISON_CPE_ID_VENDOR = gnu

parallel build issue in examples/c/reccalc/
BISON_MAKE = $(MAKET)
HOST_BISON_DEPENDENCIES = host-m4
HOST_BISON_CONF_OPTS = --enable-relocatable
HOST_BISON_CONF_ENV = ac_cv_libtextstyle=no

$(eval $(host-autotools-package))

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/344

60 Example 2: filesystem manipulation tool
o0

Jo3e!

fatcat, is designed to manipulate FAT filesystems, in order to explore, extract,
repair, recover and forensic them.

Not used as a build dependency of another package — visible in menuconfig.

package/fatcat/Config.in.host

config BR2_PACKAGE_HOST_FATCAT
bool "host fatcat”
help
Fatcat is designed to manipulate FAT filesystems, in order
to explore, extract, repair, recover and forensic them. It
currently supports FAT12, FAT16 and FAT32

https://github.com/Gregwar/fatcat

package/fatcat/fatcat.mk

FATCAT_VERSION = 1.1.1

FATCAT_SITE = $(call github,Gregwar,fatcat,v$(FATCAT_VERSION))
FATCAT_LICENSE = MIT
FATCAT_LICENSE_FILES = LICENSE

$(eval $(host-cmake-package))

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

181/344

4@3 Example 3: target and host of the same package

package/e2tools/e2tools.mk

E2TOOLS_VERSION = 0.0.16.4
E2TOOLS_SITE = $(call github,ndim,e2tools,v$(E2TOOLS_VERSION))

Source coming from GitHub, no configure included.
E2TOOLS_AUTORECONF = YES

E2TOOLS_LICENSE = GPL-2.0

E2TOOLS_LICENSE_FILES = COPYING
E2TOOLS_DEPENDENCIES = e2fsprogs

E2TOOLS_CONF_ENV = LIBS="-1pthread”
HOST_E2TOOLS_DEPENDENCIES = host-e2fsprogs
HOST_E2TOOLS_CONF_ENV = LIBS="-1pthread”

$(eval $(autotools-package))
$(eval $(host-autotools-package))

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 182/344

a@ Practical lab - New packages in Buildroot

o%e]

Practical creation of several new packages in
Buildroot, using the different package
infrastructures.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/344

Advanced package aspects

Advanced package bOOtIl'n

aspects

© Copyright 2004-2026, Bootlin. embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/344

a@ Advanced package aspects

o%e]

Licensing report

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/344

a@ Licensing report: introduction
o0

o%e]

A key aspect of embedded Linux systems is license compliance.

Embedded Linux systems integrate together a number of open-source
components, each distributed under its own license.

The different open-source licenses may have different requirements, that must
be met before the product using the embedded Linux system starts shipping.

Buildroot helps in this license compliance process by offering the possibility of
generating a number of license-related information from the list of selected
packages.

Generated using:

$ make legal-info

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/344

4@3 Licensing report: contents of legal-info

> sources/ and host-sources/, all the source files that are redistributable
(tarballs, patches, etc.)

> manifest.csv and host-manifest.csv, CSV files with the list of target and host
packages, their version, license, etc.

> licenses/ and host-licenses/<pkg>/, the full license text of all target and host
packages, per package

P> buildroot.config, the Buildroot .config file

v

legal-info.sha256 hashes of all legal-info files
> README

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 187/344

60 Including licensing information in packages
o0

o%e]

<pkg>_LICENSE
Comma-separated list of license(s) under which the package is distributed.

Must use SPDX license codes, see https://spdx.org/licenses/
Can indicate which part is under which license (programs, tests, libraries, etc.)
<pkg>_LICENSE_FILES
Space-separated list of file paths from the package source code containing the
license text and copyright information
Paths relative to the package top-level source directory
<pkg>_REDISTRIBUTE
Boolean indicating whether the package source code can be redistributed or not
(part of the legal-info output)
Defaults to YES, can be overridden to NO
If NO, source code is not copied when generating the licensing report

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

188/344

https://spdx.org/licenses/

4@3 Licensing information examples
A

linux.mk
LINUX_LICENSE = GPL-2.0
LINUX_LICENSE_FILES = COPYING

acl.mk

ACL_LICENSE = GPL-2.0+ (programs), LGPL-2.1+ (libraries)
ACL_LICENSE_FILES = doc/COPYING doc/COPYING.LGPL

owl-linux.mk

OWL_LINUX_LICENSE = PROPRIETARY
OWL_LINUX_LICENSE_FILES = LICENSE
OWL_LINUX_REDISTRIBUTE = NO

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 189/344

a@ Advanced package aspects

o%e]

Security vulnerability tracking

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 190/344

ao Security vulnerability tracking
o0

o%e]

Security has obviously become a key issue in embedded systems that are more and
more commonly connected.

Embedded Linux systems typically integrate 10-100+ open-source components —
not easy to keep track of their potential security vulnerabilities

Industry relies on Common Vulnerability Exposure (CVE) reports to document
known security issues

Buildroot is able to identify if packages are affected by known CVEs, by using the
National Vulnerability Database

make pkg-stats

Produces $(0)/pkg-stats.html, $(0)/pkg-stats. json
Note: this is limited to known CVEs. It does not guarantee the absence of
security vulnerabilities.

Only applies to open-source packages, not to your own custom code.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 191/344

_& Example pkg-stats output

12.0
lpackage/libaolibao.mk 0 “‘:'a"r;‘;‘:“ Yes || ves | Yes 1.2.0 found by 0
distro
2.2.1
package/libcue/libcue.mk 0 ';E';: Yes Yes Yes 221 found by 0
lpackage/libebur128/libebur1 28.mk ':':r;tt‘ Yes || ves | Yes 124 0
. - autotools
Ipackage libfi/libffi.mk ooy || Yes || ves | Yes 33 0
meson
package/libglib2/libglib2.mk targer s host || Yo Yes || Yes 2.66.7 0
autotools
k 0 gt Yes | Yes | Yes 0.15.1b 0
0.31
Ipackage/liblo/liblo.mk 0 "“t"“";‘t"s Yes | Yes | Yes 0.31 found by 0
— distro
0.15.1b
lpackage/libmad/libmad.mk 7 ““t‘:r;‘:“‘ Yes || ves | Yes 0.15.1b 0
lpackage/libmodplug/libmodplug.mk 0 “:;‘:;‘;‘:" Yes | Yes | Yes 0.8.9.0 0
lpackage/libmpd/libmpd.mk 1 ““t:“r;‘;':" Yes || ves | Yes 11.8.17 0
" " autotools
lpackage/libtool libtool.mk 0 | ety | Yes | Yes | ves 24.6 0
[Packages affected by CVEs
Total number of CVEs affecting all packages
[Packages with CPE ID
[Packages without CPE 1D

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 192/344

4@} CPE: Common Platform Enumeration

> Concept of Common Platform Enumeration, which gives a unique identifier to a
software release
® Eg.:cpe:2.3:a:xiph:1ibao:1.2.0:*:*:*:x:x:x:%
> By default Buildroot uses:
® cpe:2.3:a:<pkg>_project:<pkg>:<pkg>_VERSION:*:*:x:%:%x:%x:%
® Not always correct!
> Can be modified using:
® <pkg>_CPE_ID_PREFIX
<pkg>_CPE_ID_VENDOR
<pkg>_CPE_ID_PRODUCT
<pkg>_CPE_ID_VERSION
<pkg>_CPE_ID_UPDATE
> Concept of CPE dictionary provided by NVD, which contains all known CPEs.
® pkg-stats checks if the CPE of each package is known in the CPE dictionary

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 193/344

4@} NVD CVE-2020-35492 example

Q https://nvd.nist.gov/vuln/detail/CVE-2020-35492

Known Affected Software Configurations switch to cre 2.2

Configuration 1 (hide)

Ik cpe:2.3:a:cairographics:cairo:*:*:*;* ¥ i*x*
Hide Matching CPE(s)_a

Showing 10 of 50 matching CPE(s) for the range. View All CPEs here

kA ko

cpe:2.3:a:cairographics:cairo:-

* ok ko kK Kk

cpe:2.3:a:cairographics:cairo:1.0.0::*: %"
cpe:2.3:a:cairographics:cairo:1.0.2:*:*:*:*:**:*
cpe:2.3:a:cairographics:cairo:1.0.4:

cpe:2.3:a:cairographics:cairo:1.2.0:*:*:*: % *:*
cpe:2.3:a:cairographics:cairo:1.2.2::*:*:* "

* ok ko kKK

cpe:2.3:a:cairographics:cairo:1.2.4:*:*:*:*:*:*:

ok ok ok k

kR k

cpe:2.3:a:cairographics:cairo:1.2.6:*:
cpe:2.3:a:cairographics:cairo:1.4.0:
cpe:2.3:a:cairographics:cairo:1.4.2:*:*:*:**:*:

ARk ok

Up to (excluding)
1.17.4

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

194/344

4@3 CPE information in packages

package/bash/bash.mk
BASH_CPE_ID_VENDOR = gnu

package/audit/audit.mk

AUDIT_CPE_ID_VENDOR = linux_audit_project
AUDIT_CPE_ID_PRODUCT = linux_audit

linux/linux.mk

LINUX_CPE_ID_VENDOR = linux
LINUX_CPE_ID_PRODUCT = linux_kernel
LINUX_CPE_ID_PREFIX = cpe:2.3:0

package/libffi/libffi.mk

LIBFFI_CPE_ID_VERSION = 3.3
LIBFFI_CPE_ID_UPDATE = rc@

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 195/344

A

% <pkg>_IGNORE_CVES variable

> There are cases where a CVE reported by the pkg-stats tool in fact is not
relevant:

® The security fix has been backported into Buildroot
® The vulnerability does not affect Buildroot due to how the package is configured or
used
P The <pkg>_IGNORE_CVES variable allows a package to tell pkg-stats to ignore a
particular CVE

package/bind/bind.mk
Only applies to RHEL6.x with DNSSEC validation on
BIND_IGNORE_CVES = CVE-2017-3139

package/avahi/avahi.mk

0001-Fix-NULL-pointer-crashes-from-175.patch
AVAHI_IGNORE_CVES += CVE-2021-36217

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

196/344

ao CycloneDX SBOM

Jo3e!

Buildroot can generate a SBOM (Software Bill Of Material) matching the
standard CycloneDX format

$ make show-info | ./utils/generate-cyclonedx -o buildroot.sbom

This can be used to document the contents of the build

But also for vulnerability tracking, for example in conjunction with tools such as
Dependency Track

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 197/344

https://cyclonedx.org/
https://dependencytrack.org/

a@ Advanced package aspects

o%e]

Patching packages

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/344

ao Patching packages: why?

o%e]

In some situations, it might be needed to patch the source code of certain
packages built by Buildroot.
Useful to:
Fix cross-compilation issues
Backport bug or security fixes from upstream
Integrate new features or fixes not available upstream, or that are too specific to the
product being made
Patches are automatically applied by Buildroot, during the patch step, i.e. after
extracting the package, but before configuring it.

Buildroot already comes with a number of patches for various packages, but you
may need to add more for your own packages, or to existing packages.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/344

ao Patch application ordering

o%e]

Overall the patches are applied in this order:
Patches mentioned in the <pkg>_PATCH variable of the package .mk file. They are
automatically downloaded before being applied.
Patches present in the package directory package/<pkg>/*.patch
Patches present in the global patch directories
In each case, they are applied:

In the order specified in a series file, if available
Otherwise, in alphabetic ordering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/344

a Patch conventions
e

There are a few conventions and best practices that the Buildroot project
encourages to use when managing patches

Their name should start with a sequence number that indicates the ordering in
which they should be applied.

Is package/nginx/*.patch

0001-auto-type-sizeof-rework-autotest-to-be-cross-compila.patch
0002-auto-feature-add-mechanism-allowing-to-force-feature.patch
0003-auto-set-ngx_feature_run_force_result-for-each-featu.patch
0004-auto-lib-libxslt-conf-allow-to-override-ngx_feature_.patch
0005-auto-unix-make-sys_nerr-guessing-cross-friendly.patch

[...]

Each patch should contain a description of what the patch does, and if possible
its upstream status.

Each patch should contain a Signed-off-by that identifies the author of the
patch.
Patches should be generated using git format-patch when possible.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 201/344

4@3 Patch example

From 81289d1d1adaf5a767a4b4d1309c286468cfd37f Mon Sep 17 00:00:00 2001
From: Samuel Martin <s.martin49@gmail.com>

Date: Thu, 24 Apr 2014 23:27:32 +0200

Subject: [PATCH] auto/type/sizeof: rework autotest to be cross-compilation
friendly

Rework the sizeof test to do the checks at compile time instead of at
runtime. This way, it does not break when cross-compiling for a
different CPU architecture.

Signed-off-by: Samuel Martin <s.martin49@gmail.com>

auto/types/sizeof | 42
1 file changed, 28 insertions(+), 14 deletions(-)

diff --git a/auto/types/sizeof b/auto/types/sizeof
index 9215a54..c2c3ede 100644

--- a/auto/types/sizeof

+++ b/auto/types/sizeof

@@ -14,7 +14,7 @@ END

ngx_size=
—-cat << END > $NGX_AUTOTEST.c

+cat << _EOF > $NGX_AUTOTEST.c
ool

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/344

a Global patch directories
o)

o%e]

You can include patches for the different packages in their package directory,
package/<pkg>/.

However, doing this involves changing the Buildroot sources themselves, which
may not be appropriate for some highly specific patches.

The global patch directories mechanism allows to specify additional locations
where Buildroot will look for patches to apply on packages.
BR2_GLOBAL_PATCH_DIR specifies a space-separated list of directories containing
patches.

These directories must contain sub-directories named after the packages,
themselves containing the patches to be applied.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 203/344

4@3 Global patch directory example

Patching strace

$ 1s package/strace/*.patch
0001-1inux-aarch64-add-missing-header.patch

$ find ~/patches/

~/patches/

~/patches/strace/
~/patches/strace/0001-Demo-strace-change.patch

$ grep "BR2_GLOBAL_PATCH_DIR .config
BR2_GLOBAL _PATCH_DIR="$ (HOME) /patches”

$ make strace
[...]

>>> strace 4.10 Patching

Applying 0001-1linux-aarch64-add-missing-header.patch using patch:
patching file linux/aarch64/arch_regs.h

Applying 0001-Demo-strace-change.patch using patch:
patching file README
[Coood

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/344

a Generating patches
o)

o%e]

To generate the patches against a given package source code, there are typically
two possibilities.

Use the upstream version control system, often Git

Use a tool called quilt

Useful when there is no version control system provided by the upstream project
https://savannah.nongnu.org/projects/quilt

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/344

https://savannah.nongnu.org/projects/quilt

60 Generating patches: with Git

Jo3e!

Needs to be done outside of Buildroot: you cannot use the Buildroot package build
directory.

Clone the upstream Git repository
git clone https://...

Create a branch starting on the tag marking the stable release of the software as
packaged in Buildroot
git checkout -b buildroot-changes v3.2

Import existing Buildroot patches (if any)

git am /path/to/buildroot/package/<foo>/*.patch
Make your changes and commit them

git commit -s -m '‘this is a change'’

Generate the patches

git format-patch v3.2

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/344

4@} Generating patches: with Quilt

. Extract the package source code:

tar xf /path/to/dl/<foo>-<version>.tar.gz

Inside the package source code, create a directory for patches
mkdir patches

Import existing Buildroot patches

quilt import /path/to/buildroot/package/<foo>/*.patch

. Apply existing Buildroot patches

quilt push -a

Create a new patch
quilt new 0001-fix-header-inclusion.patch

. Edit a file

quilt edit main.c

Refresh the patch
quilt refresh

DOOLIIN - Kernel, drivers an

d embedded Linux - Development, consulting, training and support - https://bootlin. com

207/344

a@ Advanced package aspects

o%e]

User, permission and device tables

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/344

4@} Package-specific users

» The default skeleton in system/skeleton/ has a number of default users/groups.

> Packages can define their own custom users/groups using the <pkg>_USERS
variable:

define <pkg>_USERS
username uid group gid password home shell groups comment
endef

> Examples:

define AVAHI_USERS
avahi -1 avahi -1 x - - -
endef

define MYSQL_USERS
mysgl -1 nogroup -1 * /var/mysgl - - MySQL daemon
endef

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/344

a File permissions and ownership
o)

o%e]

By default, before creating the root filesystem images, Buildroot changes the
ownership of all files to 0:0, i.e. root:root

Permissions are preserved as is, but since the build is executed as non-root, it is
not possible to install setuid applications.

A default set of permissions for certain files or directories is defined in
system/device_table. txt.

The <pkg>_PERMISSIONS variable allows packages to define special ownership and
permissions for files and directories:

define <pkg>_PERMISSIONS
name type mode uid gid major minor start inc count
endef

The major, minor, start, inc and count fields are not used.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 210/344

Q} File permissions and ownership: examples
A

> sudo needs to be installed setuid root:

define SUDO_PERMISSIONS
/usr/bin/sudo f 4755 0 @ - - - - -
endef

» /var/lib/nginx needs to be owned by www-data, which has UID/GID 33 defined
in the skeleton:

define NGINX_PERMISSIONS
/var/lib/nginx d 755 33 33 - - - - -
endef

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 211/344

a Devices
o)

o%e]

Defining devices only applies when the chosen /dev management strategy is
Static using a device table. In other cases, device files are created dynamically.
A default set of device files is described in system/device_table_dev.txt and
created by Buildroot in the root filesystem images.

When packages need some additional custom devices, they can use the
<pkg>_DEVICES variable:

define <pkg>_DEVICES
name type mode uid gid major minor start inc count

endef

Becoming less useful, since most people are using a dynamic /dev nowadays.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

212/344

4@3 Devices: example
A

xenomai.mk

define XENOMAI_DEVICES

/dev/rtheap ¢ 666 @ @ 10 254 @ @ -
/dev/rtscope ¢ 666 @ @ 10 253 @ @ -
/dev/rtp cC 666 @0 © 150 0 o 1 32
endef

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 213/344

a@ Advanced package aspects

g

Init scripts and systemd unit files

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 214/344

a Init scripts, systemd unit files
ody)

o%e]

Buildroot supports several main init systems: sysvinit, BusyBox, systemd, OpenRC

When packages want to install a program to be started at boot time, they need to
install a startup script (sysvinit/ BusyBox), a systemd service file, etc.
They can do so using the following variables, which contain a list of shell
commands.

<pkg>_INSTALL_INIT_SYSV

<pkg>_INSTALL_INIT_SYSTEMD

<pkg>_INSTALL_INIT_OPENRC
Buildroot will execute the appropriate <pkg>_INSTALL_INIT_xyz commands of all
enabled packages depending on the selected init system.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 215/344

4@3 Init scripts, systemd unit files: example

bind.mk

define BIND_INSTALL_INIT_SYSV
$(INSTALL) -m @755 -D package/bind/S81named \
$(TARGET_DIR)/etc/init.d/S81named
endef

define BIND_INSTALL_INIT_SYSTEMD
$(INSTALL) -D -m 644 package/bind/named.service \
$(TARGET_DIR)/usr/lib/systemd/system/named.service
endef

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 216/344

a@ Advanced package aspects

o%e]

Config scripts

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/344

a Config scripts: introduction
o)

o%e]

Libraries not using pkg-config often install a small shell script that allows
applications to query the compiler and linker flags to use the library.
Examples: curl-config, freetype-config, etc.
Such scripts will:

generally return results that are not appropriate for cross-compilation

be used by other cross-compiled Buildroot packages that use those libraries
By listing such scripts in the <pkg>_CONFIG_SCRIPTS variable, Buildroot will
adapt the prefix, header and library paths to make them suitable for
cross-compilation.

Paths in <pkg>_CONFIG_SCRIPTS are relative to $(STAGING_DIR)/usr/bin.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 218/344

4@3 Config scripts: examples

libpng.mk

LIBPNG_CONFIG_SCRIPTS = \
1ibpng$(LIBPNG_SERIES)-config libpng-config

imagemagick.mk

IMAGEMAGICK_CONFIG_SCRIPTS = \
$(addsuffix -config,Magick MagickCore MagickWand Wand)

ifeq ($(BR2_INSTALL_LIBSTDCPP)$(BR2_USE_WCHAR),yy)
IMAGEMAGICK_CONFIG_SCRIPTS += Magick++-config
endif

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 219/344

4@,‘} Config scripts: effect

Without <pkg>_CONFIG_SCRIPTS

$./output/staging/usr/bin/libpng-config --cflags --1ldflags
-I/usr/include/libpng16
-L/usr/1lib -1png16

With <pkg>_CONFIG_SCRIPTS

$./output/staging/usr/bin/libpng-config --cflags --ldflags
-I.../buildroot/output/host/arm-buildroot-linux-uclibcgnueabi/sysroot/usr/include/1ibpng16
-L.../buildroot/output/host/arm-buildroot-linux-uclibcgnueabi/sysroot/usr/lib -1lpng16

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 220/344

Advanced package aspects

Hooks

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 221/344

Hooks: principle (1
Q@ ooks: principle (1)

o%e]

Buildroot package infrastructure often implement a default behavior for certain
steps:
generic-package implements for all packages the download, extract and patch steps
Other infrastructures such as autotools-package or cmake-package also
implement the configure, build and installations steps
In some situations, the package may want to do additional actions before or
after one of these steps.

The hook mechanism allows packages to add such custom actions.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 222/344

Hooks: principle (2
Qo ooks: principle (2)

o%e]

There are pre and post hooks available for all steps of the package compilation
process:

download, extract, rsync, patch, configure, build, install, install staging, install
target, install images, legal info
<pkg>_(PRE|POST)_<step>_HOOKS
Example: CMAKE_POST_INSTALL_TARGET_HOOKS, CVS_POST_PATCH_HOOKS,
BINUTILS_PRE_PATCH_HOOKS

Hook variables contain a list of make macros to call at the appropriate time.

Use += to register an additional hook to a hook point

Those make macros contain a list of commands to execute.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 223/344

4@3 Hooks: examples

bind.mk: remove unneeded binaries

define BIND_TARGET_REMOVE_TOOLS
rm -rf $(addprefix $(TARGET_DIR)/usr/bin/, $(BIND_TARGET_TOOLS_BIN))
endef

BIND_POST_INSTALL_TARGET_HOOKS += BIND_TARGET_REMOVE_TOOLS

vsftpd.mk: adjust configuration

define VSFTPD_ENABLE_SSL
$(SED) 's/.*xVSF_BUILD_SSL/#define VSF_BUILD_SSL/' \
$(@D)/builddefs.h
endef

ifeq ($(BR2_PACKAGE_OPENSSL),y)

VSFTPD_DEPENDENCIES += openssl host-pkgconf

VSFTPD_LIBS += ‘$(PKG_CONFIG_HOST_BINARY) --libs libssl libcrypto"
VSFTPD_POST_CONFIGURE_HOOKS += VSFTPD_ENABLE_SSL

endif

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 224/344

a@ Advanced package aspects

g

Overriding commands

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 225/344

ao Overriding commands: principle
o0

o%e]

In other situations, a package may want to completely override the default
implementation of a step provided by a package infrastructure.

A package infrastructure will in fact only implement a given step if not already
defined by a package.

So defining <pkg>_EXTRACT_CMDS or <pkg>_BUILD_CMDS in your package .mk file
will override the package infrastructure implementation (if any).

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 226/344

4@3 Overriding commands: examples
A

jquery: source code is only one file

JQUERY_SITE = http://code. jquery.com
JQUERY_SOURCE = jquery-$(JQUERY_VERSION).min.js

define JQUERY_EXTRACT_CMDS
cp $(DL_DIR)/$(JQUERY_SOURCE) $(@D)
endef

tftpd: install only what's needed

define TFTPD_INSTALL_TARGET_CMDS
$(INSTALL) -D $(@D)/tftp/tftp $(TARGET_DIR)/usr/bin/tftp

$(INSTALL) -D $(@D)/tftpd/tftpd $(TARGET_DIR)/usr/sbin/tftpd
endef

$(eval $(autotools-package))

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 227/344

a@ Advanced package aspects

o%e]

Legacy handling

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

ao Legacy handling: Config.in.legacy

o%e]

When a Config.in option is removed, the corresponding value in the .config is
silently removed.

Due to this, when users upgrade Buildroot, they generally don't know that an
option they were using has been removed.

Buildroot therefore adds the removed config option to Config.in.legacy with a
description of what has happened.

If any of these legacy options is enabled then Buildroot refuses to build.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 229/344

a@ Advanced package aspects

o%e]

DEVELOPERS file

bootlin - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com

Qo DEVELOPERS file: principle

o%e]

A top-level DEVELOPERS file lists Buildroot developers and contributors interested
in specific packages, board defconfigs or architectures.
Used by:
The utils/get-developers script to identify to whom a patch on an existing
package should be sent

The Buildroot autobuilder infrastructure to notify build failures to the appropriate
package or architecture developers

Important to add yourself in DEVELOPERS if you contribute a new package/board
to Buildroot.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 231/344

% DEVELOPERS file: extract

Thomas Petazzoni <thomas.petazzoni@bootlin.com>
arch/Config.in.arm

boot/boot-wrapper-aarch64/

boot/grub2/

package/android-tools/

package/cmake/

package/cramfs/

MMM MM T =z

toolchain/

Waldemar Brodkorb <wbx@openadk.org>
arch/Config.in.bfin
arch/Config.in.m68k
arch/Config.in.orlk
arch/Config.in.sparc

package/glibc/

Mmooz

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 232/344

a@ Advanced package aspects

o%e]

Virtual packages

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 233/344

Virtual k
Q@ irtual packages

o%e]

There are situations where different packages provide an implementation of the
same interface
The most useful example is OpenGL
OpenGL is an API
Each HW vendor typically provides its own OpenGL implementation, each packaged
as separate Buildroot packages
Packages using the OpenGL interface do not want to know which implementation
they are using: they are simply using the OpenGL API
The mechanism of virtual packages in Buildroot allows to solve this situation.

libgles is a virtual package offering the OpenGL ES API

Ten packages are providers of the OpenGL ES API: gpu-amd-bin-mx51,
imx-gpu-viv, gcnano-binaries, mali-t76x, mesa3d, nvidia-driver,
rpi-userland, sunxi-mali-mainline, ti-gfx, ti-sgx-um

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 234/344

4@3 Virtual packages

cairo weston qt5 kodi
\ 4
libgles
v v v v v

gpu-viv-bin-mx6q

mesa3d

rpi-userland

gpu-amd-bin-mx51

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

235/344

4@} Virtual package definition: Config.in

libgles/Config.in

config BR2_PACKAGE_HAS_LIBGLES
bool

config BR2_PACKAGE_PROVIDES_LIBGLES
depends on BR2_PACKAGE_HAS_LIBGLES
string

P BR2_PACKAGE_HAS_LIBGLES is a hidden boolean

¢ Packages needing OpenGL ES will depends on it.
® Packages providing OpenGL ES will select it.

P BR2_PACKAGE_PROVIDES_LIBGLES is a hidden string
® Packages providing OpenGL ES will define their name as the variable value

® The libgles package will have a build dependency on this provider package.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

236/344

4@} Virtual package definition: .mk

libgles/libgles.mk
$(eval $(virtual-package))

> Nothing to do: the virtual-package infrastructure takes care of everything, using
the BR2_PACKAGE_HAS_<name> and BR2_PACKAGE_PROVIDES_<name> options.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 237/344

4@} Virtual package provider

sunxi-mali-mainline/Config.in
config BR2_PACKAGE_SUNXI_MALI_MAINLINE
bool "sunxi-mali-mainline”

select BR2_PACKAGE_HAS_LIBEGL
select BR2_PACKAGE_HAS_LIBGLES

config BR2_PACKAGE_PROVIDES_LIBGLES
default "sunxi-mali-mainline”

sunxi-mali-mainline/sunxi-mali-mainline.mk

[...]
SUNXI_MALI_MAINLINE_PROVIDES = libegl libgles
[...]

> The variable <pkg>_PROVIDES is only used to detect if two providers for the same
virtual package are enabled.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 238/344

4@,‘} Virtual package user

qt5/qtbbase/Config.in

config BR2_PACKAGE_QT5BASE_OPENGL_ES2
bool "OpenGL ES 2.0+"
depends on BR2_PACKAGE_HAS_LIBGLES
help
Use OpenGL ES 2.0 and later versions.

qt5/qt5base/qt5base.mk

ifeq ($(BR2_PACKAGE_QT5BASE_OPENGL_DESKTOP),y)
QT5BASE_CONFIGURE_OPTS += -opengl desktop
QT5BASE_DEPENDENCIES += libgl

else ifeq ($(BR2_PACKAGE_QT5BASE_OPENGL_ES2),y)
QT5BASE_CONFIGURE_OPTS += -opengl es2
QT5BASE_DEPENDENCIES += libgles

else

QT5BASE_CONFIGURE_OPTS += -no-opengl

endif

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 239/344

a@ Practical lab - Advanced packages

o%e]

Package an application with a mandatory
dependency and an optional dependency

Package a library, hosted on GitHub
Use hooks to tweak packages

Add a patch to a package

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 240/344

Analyzing the build

bootlin

Analyzing the build

© Copyright 2004-2026, Bootlin. embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 241/344

a@ Analyzing the build: available tools

o%e]

Buildroot provides several useful tools to analyze the build:

The licensing report, covered in a previous section, which allows to analyze the list
of packages and their licenses.

The dependency graphing tools

The build time graphing tools

The filesystem size tools

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 242/344

ao Dependency graphing

o%e]

Exploring the dependencies between packages is useful to understand

why a particular package is being brought into the build
if the build size and duration can be reduced

make graph-depends to generate a full dependency graph, which can be huge!

make <pkg>-graph-depends to generate the dependency graph of a given
package

The graph is done according to the current Buildroot configuration.

Resulting graphs in $(0)/graphs/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 243/344

. Dependency graph example

A

toolchain busybox strace rootfs-ubifs.
toolchain-buildroot host-mtd ‘host-fakeroot host-makedevs
' RN
host-gec-final host-e2fsprogs. host-zlib
| /
uclibe host-pkgconf host-1zo
/N |
N /
‘host-binutils host-mpe ‘host-autoconf
| !
host-mpfr host-libtool
\
host-gmp
\
host-m4.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 244/344

ao Build time graphing

Jo3e!

When the generated embedded Linux system grows bigger and bigger, the build
time also increases.

It is sometimes useful to analyze this build time, and see if certain packages are
particularly problematic.

Buildroot collects build duration data in the file $(0)/build/build-time.log
make graph-build generates several graphs in $(0)/graphs/:
build.hist-build.pdf, build time in build order
build.hist-duration.pdf, build time by duration
build.hist-name.pdf, build time by package name
build.pie-packages.pdf, pie chart of the per-package build time
build.pie-steps.pdf, pie chart of the per-step build time

Note: only works properly after a complete clean rebuild.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 245/344

Build time graphing: example

Build time of packages, by build order

100,
8o}
3 eof
E
g
8
3
3
g
E aof
20}
0% 2 P P % % % % 3 2
% % % y % L S T
O%éa % % % ' 5, %, 5 % 5, 4’%,@ %
i ¥ ®

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 246/344

ao Filesystem size graphing

o%e]

In many embedded systems, storage resources are limited.

For this reason, it is useful to be able to analyze the size of your root filesystem,
and see which packages are consuming the biggest amount of space.

Allows to focus the size optimizations on the relevant packages.

Buildroot collects data about the size installed by each package.

make graph-size produces:
file-size-stats.csv, CSV with the raw data of the per-file size
package-size-stats.csv, CSV with the raw data of the per-package size
graph-size.pdf, pie chart of the per-package size consumption

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 247/344

Filesystem size graphing: example

Filesystem size per package

Total filesystem size: 3156 kB

busybox (686 kB)

lua (262 kB)

ncurses (198 kB)

strace (289 kB)

Other (32 kB)
libhid (52 k8)

htop (100 kB)

libusb (71 kB)

toolchain-external (1462 kB)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

248/344

Advanced topics

bootlin

Advanced topics

© Copyright 2004-2026, Bootlin. embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 249/344

Qo BR2_EXTERNAL: principle

o%e]

Storing your custom packages, custom configuration files and custom defconfigs
inside the Buildroot tree may not be the most practical solution

Doesn't cleanly separate open-source parts from proprietary parts

Makes it harder to upgrade Buildroot
The BR2_EXTERNAL mechanism allows to store your own package recipes,
defconfigs and other artefacts outside of the Buildroot source tree.

It is possible to use several BR2_EXTERNAL trees, to further separate various
aspects of your project.

Note: can only be used to add new packages, not to override existing Buildroot
packages

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 250/344

Q} BR2_EXTERNAL: example organization

> project/
® buildroot/
m The Buildroot source code, cloned from Git, or extracted from a release tarball.

® externall/
® external2/

m Two external trees
® output-buildil/
® output-build2/
m Several output directories, to build various configurations

® custom-app/
® custom-1lib/

m The source code of your custom applications and libraries.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 251/344

Qo Using BR2_EXTERNAL

o%e]

Specify, as a colon-separated list, the external directories in BR2_EXTERNAL

Not a configuration option, only an environment variable to be passed on the
command line

make BR2_EXTERNAL=/path/to/externall:/path/to/external2

Automatically saved in the hidden .br2-external.mk file in the output
directory
no need to pass BR2_EXTERNAL at every make invocation
can be changed at any time by passing a new value, and removed by passing an
empty value
Can be either an absolute or a relative path, but if relative, important to
remember that it's relative to the Buildroot source directory

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

252/344

Qo BR2_EXTERNAL: important files

o%e]

Each external directory must contain:

external.desc, which provides a name and description
Config.in, configuration options that will be included in menuconfig
external.mk, will be included in the make logic

If configs exists, it will be used when listing all defconfigs

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

253/344

4@3 BR2_EXTERNAL: recommended structure

+-- board/
+-- <company>/
+-- <boardname>/

+-- linux.config
+-- busybox.config
+-- <other configuration files>
+-- post_build.sh
+-- post_image.sh
+-- rootfs_overlay/

| +-- etc/
| +-- <some file>
+-- patches/

+-- libbar/

|
|
|
|
|
|
|
|
|
|
|
|
[+-- <some patches>
|

+-- configs/

[+-- <boardname>_defconfig

package/
+-- <company>/
+-- packagel/
| +-- Config.in
| +-- packagel.mk
+-- package2/
+-- Config.in
+-- package2.mk

Config.in
external.mk
external.desc

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

254/344

Qo BR2_EXTERNAL: external.desc

o%e]

File giving metadata about the external tree

Mandatory name field, using characters in the set [A-Za-z0-9_]. Will be used to
define BR2_EXTERNAL_<NAME>_PATH available in Config.in and .mk files, pointing
to the external tree directory.

Optional desc field, giving a free-form description of the external tree. Should be
reasonably short.

Example

name: FOOBAR
desc: Foobar Company

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 255/344

% BR2_EXTERNAL: main Config.in

» Custom configuration options
> Configuration options for the external packages

> The $BR2_EXTERNAL_<NAME>_PATH variable is available, where NAME is defined in
external.desc

Example Config.in
source "$BR2_EXTERNAL_<NAME>_PATH/package/packagel/Config.in"
source "$BR2_EXTERNAL_<NAME>_PATH/package/package2/Config.in"

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 256/344

% BR2_EXTERNAL: external.mk

> Can include custom make logic

> Generally only used to include the package .mk files

Example external.mk

include $(sort $(wildcard $(BR2_EXTERNAL_<NAME>_PATH)/package/*/*.mk))

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 257/344

4@} Use BR2_EXTERNAL in your configuration

> In your Buildroot configuration, don't use absolute paths for the rootfs overlay,
the post-build scripts, global patch directories, etc.

> If they are located in an external tree, you can use
$ (BR2_EXTERNAL_<NAME>_PATH) in your Buildroot configuration options.

> With the recommended structure shown before, a Buildroot configuration would
look like:

BR2_GLOBAL_PATCH_DIR="$(BR2_EXTERNAL_<NAME>_PATH)/board/<company>/<boardname>/patches/"
BR2_ROOTFS_OVERLAY="$(BR2_EXTERNAL_<NAME>_PATH) /board/<company>/<boardname>/rootfs_overlay/"

BR2_ROOTFS_POST_BUILD_SCRIPT="$(BR2_EXTERNAL_<NAME>_PATH)/board/<company>/<boardname>/post_build.sh"
BR2_ROOTFS_POST_IMAGE_SCRIPT="$(BR2_EXTERNAL_<NAME>_PATH)/board/<company>/<boardname>/post_image.sh"

BR2_LINUX_KERNEL _USE_CUSTOM_CONFIG=y
BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE="$(BR2_EXTERNAL_<NAME>_PATH)/board/<company>/<boardname>/linux.config"

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 258/344

4@} Examples of BR2_EXTERNAL trees

> There are a number of publicly available BR2_EXTERNAL trees, especially from
hardware vendors:

® bpuildroot-external-st, maintained by Bootlin in partnership with ST, containing
example configurations for the STM32MP1 platforms.
https://github.com/bootlin/buildroot-external-st

® buildroot-external-microchip, containing example configurations, additional
packages and demo applications for Microchip ARM platforms.
https://github.com/linux4sam/buildroot-external-microchip

® buildroot-external-boundary, containing example configurations for Boundary
Devices boards, mainly based on NXP i.MX processors.
https://github.com/boundarydevices/buildroot-external-boundary

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 259/344

https://github.com/bootlin/buildroot-external-st
https://github.com/linux4sam/buildroot-external-microchip
https://github.com/boundarydevices/buildroot-external-boundary

ao Package-specific targets: basics

o%e]

Internally, each package is implemented through a number of package-specific
make targets
They can sometimes be useful to call directly, in certain situations.
The targets used in the normal build flow of a package are:
<pkg>, fully build and install the package
<pkg>-source, just download the source code
<pkg>-extract, download and extract
<pkg>-patch, download, extract and patch
<pkg>-configure, download, extract, patch and configure
<pkg>-build, download, extract, patch, configure and build
<pkg>-install-staging, download, extract, patch, configure and do the staging
installation (target packages only)
<pkg>-install-target, download, extract, patch, configure and do the target
installation (target packages only)
<pkg>-install, download, extract, patch, configure and install

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 260/344

4@3 Package-specific targets: example (1)

$ make strace
>>> strace 4.10 Extracting
>>> strace 4.10 Patching
>>> strace 4.10 Updating config.sub and config.guess
>>> strace 4.10 Patching libtool
>>> strace 4.10 Configuring
>>> strace 4.10 Building
>>> strace 4.10 Installing to target
$ make strace-build
. nothing ...
$ make ltrace-patch
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Extracting
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dead803 Patching
$ make ltrace

>>> argp-standalone 1.3 Extracting

>>> argp-standalone 1.3 Patching

>>> argp-standalone 1.3 Updating config.sub and config.guess
>>> argp-standalone 1.3 Patching libtool

Cocodl

>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Configuring

>>> ltrace 0896ce554f80afdcba81d9754f6104f863dead8d3 Autoreconfiguring
>>> ltrace 0896ce554f80afdcha81d9754f6104f863dea803 Patching libtool
>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea8d3 Building

>>> ltrace 0896ce554f80afdcba81d9754f6104f863dea803 Installing to target

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

261/344

ao Package-specific targets: advanced

Jo3e!

Additional useful targets

make <pkg>-show-depends, show the package dependencies

make <pkg>-graph-depends, generates a dependency graph

make <pkg>-dirclean, completely remove the package source code directory. The
next make invocation will fully rebuild this package.

make <pkg>-reinstall, force to re-execute the installation step of the package
make <pkg>-rebuild, force to re-execute the build and installation steps of the
package

make <pkg>-reconfigure, force to re-execute the configure, build and installation
steps of the package.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 262/344

4@3 Package-specific targets: example (2)

$ make strace

>>> strace
>>> strace
>>> strace
>>> strace
>>> strace
>>> strace
>>> strace

10
10
10
10
10
10
10

Extracting

Patching

Updating config.sub and config.guess
Patching libtool

Configuring

Building

Installing to target

$ 1s output/build/

strace-4.10 [...]

$ make strace-dirclean

rm -Rf /home/thomas/projets/buildroot/output/build/strace-4.10
$ 1s output/build/

[... no strace-4.10 directory ...]

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

263/344

4@3 Package-specific targets: example (3)

$ make strace
4.
4.10 Patching

4.10 Updating config.sub and config.guess
4.
4
4

>>> strace
>>> strace
>>> strace
>>> strace
>>> strace
>>> strace
>>> strace

10 Extracting

10 Patching libtool

.10 Configuring
.10 Building
4.

10 Installing to target

$ make strace-rebuild

>>> strace 4.10 Building

>>> strace 4.10 Installing to target
$ make strace-reconfigure

>>> strace 4.10 Configuring

>>> strace 4.10 Building

>>> strace 4.10 Installing to target

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

264/344

a make show-info
e

Jo3e!

$ make show-info | jq .

{
"busybox": {
"type": "target”,
"virtual”: false,
"version”: "1.31.1",
"licenses": "GPL-2.0",
make show-info outputs JSON text JdLdirt: "busybox’,
install_target”: true,
that describes the current izl SiEE"; s,
X X i "install_images"”: false,
configuration: enabled packages, in “dountoads" {
which version, their license, tarball, Lsource" "husybox-1.31.1. ar bz2",
"uris":
dependencies, etc. "http+http://www.busybox.net/downloads”,
"http|urlencodethttp://sources.buildroot.net/busybox”,
Can be useful for post-processing, -
build analysis, license compliance, etc. b o
ependencies”: [
"host-skeleton”,
"host-tar”,
"skeleton”,
"toolchain”
15
"reverse_dependencies”: []
3

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 265/344

ao Understanding rebuilds (1)

o%e]

Doing a full rebuild is achieved using:

$ make clean all

It will completely remove all build artefacts and restart the build from scratch
Buildroot does not try to be smart

once the system has been built, if a configuration change is made, the next make will
not apply all the changes made to the configuration.
being smart is very, very complicated if you want to do it in a reliable way.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 266/344

ao Understanding rebuilds (2)

o%e]

When a package has been built by Buildroot, Buildroot keeps a hidden file telling
that the package has been built.
Buildroot will therefore never rebuild that package, unless a full rebuild is done, or
this specific package is explicitly rebuilt.
Buildroot does not recurse into each package at each make invocation, it would be
too time-consuming. So if you change one source file in a package, Buildroot does
not know it.
When make is invoked, Buildroot will always:
Build the packages that have not been built in a previous build and install them to
the target
Cleanup the target root filesystem from useless files
Run post-build scripts, copy rootfs overlays
Generate the root filesystem images
Run post-image scripts

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 267/344

ao Understanding rebuilds: scenarios (1)

o%e]

If you enable a new package in the configuration, and run make
Buildroot will build it and install it
However, other packages that may benefit from this package will not be rebuilt
automatically

If you remove a package from the configuration, and run make
Nothing happens. The files installed by this package are not removed from the
target filesystem.
Buildroot does not track which files are installed by which package

Need to do a full rebuild to get the new result. Advice: do it only when really needed.

If you change the sub-options of a package that has already been built, and run
make
Nothing happens.
You can force Buildroot to rebuild this package using make <pkg>-reconfigure or
make <pkg>-rebuild.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

268/344

ao Understanding rebuilds: scenarios (2)

o%e]

If you make a change to a post-build script, a rootfs overlay or a post-image
script, and run make

This is sufficient, since these parts are re-executed at every make invocation.
If you change a fundamental system configuration option: architecture, type of
toolchain or toolchain configuration, init system, etc.

You must do a full rebuild

If you change some source code in output/build/<foo>-<version>/ and issue
make

The package will not be rebuilt automatically: Buildroot has a hidden file saying
that the package was already built.

Use make <pkg>-reconfigure or make <pkg>-rebuild
And remember that doing changes in output/build/<foo>-<version>/ can only
be temporary: this directory is removed during a make clean.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 269/344

a@ Tips for building faster

o%e]

Build time is often an issue, so here are some tips to help
Use fast hardware: lots of RAM, and SSD
Do not use virtual machines
You can enable the ccache compiler cache using BR2_CCACHE
Use external toolchains instead of internal toolchains
Learn about rebuilding only the few packages you actually care about
Build everything locally, do not use NFS for building
Remember that you can do several independent builds in parallel in different output
directories

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 270/344

ao Support for top-level parallel build (1)

o%e]

Buildroot normally builds packages sequentially, one after the other.
Calling Buildroot with make -3jX has no effect
Parallel build is used within the build of each package: Buildroot invokes each
package build system with make -3jX
This level of parallelization is controlled by BR2_JLEVEL
Defaults to 0, which means Buildroot auto-detects the number of CPUs cores

Buildroot 2020.02 has introduced experimental support for top-level parallel
build

Allows to build multiple different packages in parallel
Of course taking into account their dependencies
Allows to better use multi-core machines

Reduces build time significantly

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 271/344

ao Support for top-level parallel build (2)

Jo3e!

To use this experimental support:

Enable BR2_PER_PACKAGE_DIRECTORIES=y

Build with make -3jX
The per-package option ensures that each package uses its own HOST_DIR,
STAGING_DIR and TARGET_DIR so that different packages can be built in parallel
with no interference

See $(0)/per-package/<pkg>/
Limitations

Not yet supported by all packages, e.g Qt5

Absolutely requires that packages do not overwrite/change files installed by other
packages

<pkg>-reconfigure, <pkg>-rebuild, <pkg>-reinstall not working

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 272/344

Q@ Reproducible builds

o%e]

Buildroot guarantees that for a given version/configuration, it will always build
the same components, in the same version, with the same configuration.
However, a number of aspects (time, user, build location) can affect the build and
make two consecutive builds of the same configuration not strictly identical.
BR2_REPRODUCIBLE enables experimental support for build reproducibility

Goal: have bit-identical results when

Date/time is different (i.e. same build later)
Build location has the same path length

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 273/344

a@ Practical lab - Advanced aspects
o0

o%e]

Use legal-info for legal information
extraction

Use graph-depends for dependency graphing
Use graph-build for build time graphing
Use BR2_EXTERNAL to isolate the
project-specific changes (packages, configs,
etc.)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 274/344

Application development

Application bOOtIl'n

development

© Copyright 2004-2026, Bootlin. embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 275/344

a@ Building during development

o%e]

Buildroot is mainly a final integration tool: it is aimed at downloading and
building fixed versions of software components, in a reproducible way.

When doing active development of a software component, you need to be able to
quickly change the code, build it, and deploy it on the target.

The package build directory is temporary, and removed on make clean, so making
changes here is not practical

Buildroot does not automatically “update” your source code when the package is
fetched from a version control system.
Three solutions:
Build your software component outside of Buildroot during development. Doable for
software components that are easy to build.

Use the local SITE_METHOD for your package
Use the <pkg>_OVERRIDE_SRCDIR mechanism

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 276/344

60 Building code for Buildroot

o%e]

The Buildroot cross-compiler is installed in $(HOST_DIR)/bin

It is already set up to:
generate code for the configured architecture
look for libraries and headers in $(STAGING_DIR)
Other useful tools that may be built by Buildroot are installed in
$(HOST_DIR)/bin:
pkg-config, to find libraries. Beware that it is configured to return results for target
libraries: it should only be used when cross-compiling.

gmake, when building Qt applications with this build system.
autoconf, automake, libtool, to use versions independent from the host system.

Adding $(HOST_DIR)/bin to your PATH when cross-compiling is the easiest
solution.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 277/344

4@,‘} Building code for Buildroot: C program

Building a C program for the host

$ gcc -o foobar foobar.c
$ file foobar
foobar: ELF 64-bit LSB executable, x86-64, version 1...

Building a C program for the target

$ export PATH=$(pwd)/output/host/bin:$PATH

$ arm-linux-gcc -o foobar foobar.c

$ file foobar

foobar: ELF 32-bit LSB executable, ARM, EABI5 version 1...

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 278/344

% Building code for Buildroot: pkg-config

Using the system pkg-config
$ pkg-config --cflags libpng
-I/usr/include/1libpng12

$ pkg-config --libs libpng
-1lpngl2

Using the Buildroot pkg-config
$ export PATH=$(pwd)/output/host/bin:$PATH

$ pkg-config --cflags libpng
-I.../output/host/arm-buildroot-linux-uclibcgnueabi/sysroot/usr/include/libpngl6

$ pkg-config --libs libpng
-L.../output/host/arm-buildroot-linux-uclibcgnueabi/sysroot/usr/lib -lpngl16

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 279/344

60 Building code for Buildroot: autotools
o0

o%e]

Building simple autotools components outside of Buildroot is easy:

$ export PATH=.../buildroot/output/host/bin/:$PATH

$./configure --host=arm-linux
Passing --host=arm-1inux tells the configure script to use the cross-compilation
tools prefixed by arm-1linux-.
In more complex cases, some additional CFLAGS or LDFLAGS might be needed in
the environment.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

280/344

4@} Building code for Buildroot: CMake

v

Buildroot generates a CMake toolchain file, installed in
output/host/share/buildroot/toolchainfile.cmake

Tells CMake which cross-compilation tools to use

Passed using the CMAKE_TOOLCHAIN_FILE CMake option
https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html
With this file, building CMake projects outside of Buildroot is easy:

vvyyypy

$ cmake -DCMAKE_TOOLCHAIN_FILE=.../buildroot/output/host/share/buildroot/toolchainfile.cmake .
$ make

$ file app

app: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked...

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 281/344

https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html

4@3 Building code for Buildroot: Meson

v

Buildroot generates a Meson cross file, installed in
output/host/etc/meson/cross-compilation.conf

Tells Meson which cross-compilation tools to use
Passed using the --cross-file Meson option

https://mesonbuild.com/Cross-compilation.html

vvvyyy

With this file, building Meson projects outside of Buildroot is easy:

$ mkdir build

$ meson --cross-file=.../buildroot/output/host/etc/meson/cross-compilation.conf ..
$ ninja

$ file app

app: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked...

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 282/344

https://mesonbuild.com/Cross-compilation.html

60 Building code for Buildroot: environment-setup

o%e]

Enable BR2_PACKAGE_HOST_ENVIRONMENT_SETUP

Installs an helper shell script output/host/environment-setup that can be
sourced in the shell to define a number of useful environment variables and aliases.

Defines: CC, LD, AR, AS, CFLAGS, LDFLAGS, ARCH, etc.

Defines configure as an alias to run a configure script with the right arguments,
cmake as an alias to run cmake with the right arguments

Drawback: once sourced, the shell environment is really only suitable for
cross-compiling with Buildroot.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 283/344

4@3 Building code for Buildroot:

environment-setup

$ source output/host/environment-setup

[— ()__\ IS

[I) P2 (A NV |

[T R G G B O 2 I

ISP/ NV |V O W N/ W
Making embedded Linux easy!

Some tips:

* PATH now contains the SDK utilities

Standard autotools variables (CC, LD, CFLAGS) are exported

Kernel compilation variables (ARCH, CROSS_COMPILE, KERNELDIR) are exported
To configure do "./configure $CONFIGURE_FLAGS" or use

the "configure” alias

To build CMake-based projects, use the "cmake” alias

* ok %

*

$ echo $CC
/home/thomas/projets/buildroot/output/host/bin/arm-linux-gcc
$ echo $CFLAGS

-D_LARGEFILE_SOURCE -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -Os -D_FORTIFY_SOURCE=1

$ echo $CROSS_COMPILE
/home/thomas/projets/buildroot/output/host/bin/arm-linux-
$ alias configure

alias configure='./configure --target=arm-buildroot-linux-gnueabihf --host=arm-buildroot-linux-gnueabihf \
--build=x86_64-pc-linux-gnu --prefix=/usr --exec-prefix=/usr --sysconfdir=/etc --localstatedir=/var \

--program-prefix="

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

284/344

a local site method
o)

Jo3e!

Allows to tell Buildroot that the source code for a package is already available
locally

Allows to keep your source code under version control, separately, and have
Buildroot always build your latest changes.
Typical project organization:

buildroot/, the Buildroot source code

external/, your BR2_EXTERNAL tree

custom-app/, your custom application code

custom-1ib/, your custom library

In your package .mk file, use:

<pkg>_SITE = $(TOPDIR)/../custom-app
<pkg>_SITE_METHOD = local

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 285/344

60 Effect of 1local site method

o%e]

For the first build, the source code of your package is rsync’ed from <pkg>_SITE
to the build directory, and built there.
After making changes to the source code, you can run:

make <pkg>-reconfigure

make <pkg>-rebuild

make <pkg>-reinstall
Buildroot will first rsync again the package source code (copying only the
modified files) and restart the build from the requested step.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 286/344

local site method workflow

Make a change in
$(TOPDIR)/../custom-app/

v

make custom-app-rebuild all

Rsync code from Re-run "make"
$(TOPDIR); ../ custom-app/. > in custom-app sources
to
$(0)/output/build /custom-app-custom/ Rebuilds only what changed

Re-run "make install"
Recreates the root (in custom-app sources
filesystem image

Reinstalls to $(TARGET_DIR)

Test !

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 287/344

Qo <pkg>_OVERRIDE_SRCDIR

o%e]

The local site method solution is appropriate when the package uses this method
for all developers

Requires that all developers fetch locally the source code for all custom applications
and libraries

An alternate solution is that packages for custom applications and libraries fetch
their source code from version control systems

Using the git, svn, cvs, etc. fetching methods

Then, locally, a user can override how the package is fetched using
<pkg>_OVERRIDE_SRCDIR

It tells Buildroot to not download the package source code, but to copy it from a
local directory.

The package then behaves as if it was using the local site method.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 288/344

% Passing <pkg>_OVERRIDE_SRCDIR

b <pkg>_OVERRIDE_SRCDIR values are specified in a package override file, configured
in BR2_PACKAGE_OVERRIDE_FILE, by default $(CONFIG_DIR)/local.mk.

Example local.mk

LIBPNG_OVERRIDE_SRCDIR = $(HOME)/projects/libpng
LINUX_OVERRIDE_SRCDIR = $(HOME)/projects/linux

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 289/344

ao Debugging: debugging symbols and stripping

o%e]

To use debuggers, you need the programs and libraries to be built with debugging
symbols.

The BR2_ENABLE_DEBUG option controls whether programs and libraries are built
with debugging symbols

Disabled by default.
Sub-options allow to control the amount of debugging symbols (i.e. gcc options -g1,

-g2 and -g3).
The BR2_STRIP_strip option allows to disable or enable stripping of binaries on
the target.

Enabled by default.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/344

4@3 Debugging: debugging symbols and stripping

> With BR2_ENABLE_DEBUG=y and BR2_STRIP_strip=y
¢ get debugging symbols in $(STAGING_DIR) for libraries, and in the build directories
for everything.
® stripped binaries in $(TARGET_DIR)
® Appropriate for remote debugging
> With BR2_ENABLE_DEBUG=y and BR2_STRIP_strip disabled

® debugging symbols in both $(STAGING_DIR) and $(TARGET_DIR)
® appropriate for on-target debugging

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 291/344

60 Debugging: remote debugging requirements

o%e]

To do remote debugging, you need:

A cross-debugger
With the internal toolchain backend, can be built using BR2_PACKAGE_HOST_GDB=y.
With the external toolchain backend, is either provided pre-built by the toolchain, or
can be built using BR2_PACKAGE_HOST_GDB=y.

gdbserver
With the internal toolchain backend, can be built using BR2_PACKAGE_GDB=y +
BR2_PACKAGE _GDB_SERVER=y
With the external toolchain backend, if gdbserver is provided by the toolchain it can
be copied to the target using BR2_TOOLCHAIN_EXTERNAL_GDB_SERVER_COPY=y or
otherwise built from source like with the internal toolchain backend.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

292/344

4@3 Debugging: remote debugging setup

» On the target, start gdbserver

® Use a TCP socket, network connectivity needed
® The multi mode is quite convenient
® $ gdbserver --multi localhost:2345

> On the host, start <tuple>-gdb

® $./output/host/bin/<tuple>-gdb <program>
® <program> is the path to the program to debug, with debugging symbols
> Inside gdb, you need to:
¢ Connect to the target:
(gdb) target extended-remote <ip>:2345
® Tell the target which program to run:
(gdb) set remote exec-file myapp
® Set the path to the sysroot so that gdb can find debugging symbols for libraries:
(gdb) set sysroot ./output/staging/
® Start the program:
(gdb) run

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 293/344

a@ Debugging tools available in Buildroot

o%e]

Buildroot also includes a huge amount of other debugging or profiling related
tools.
To list just a few:

strace
Itrace
LTThg
perf
sysdig
sysprof
OProfile
valgrind

Look in Target packages — Debugging, profiling and benchmark for more.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/344

ao Generating a SDK for application developers

o%e]

If you would like application developers to build applications for a Buildroot
generated system, without building Buildroot, you can generate a SDK.

To achieve this:

Run make sdk, which prepares the SDK to be relocatable

Tarball the contents of the host directory, i.e. output/host

Share the tarball with your application developers

They must uncompress it, and run the relocate-sdk.sh script
Warning: the SDK must remain in sync with the root filesystem running on the
target, otherwise applications built with the SDK may not run properly.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/344

ao Practical lab - Application development
o0

o%e]

Build and run your own application
Remote debug your application
Use <pkg>_OVERRIDE_SRCDIR

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/344

ao Understanding Buildroot internals
o0

o%e]

Understanding
Buildroot internals

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

297/344

4@3 Configuration system

> Uses, almost unchanged, the kconfig code from the kernel, in support/kconfig
(variable CONFIG)

> kconfig tools are built in $(BUILD_DIR)/buildroot-config/

> The main Config.in file, passed to *config, is at the top-level of the Buildroot
source tree
CONFIG_CONFIG_IN = Config.in
CONFIG = support/kconfig
BR2_CONFIG = $(CONFIG_DIR)/.config
-include $(BR2_CONFIG)
$(BUILD_DIR)/buildroot-config/%onf:
mkdir -p $(@D)/1lxdialog
. $(MAKE) ... -C $(CONFIG) -f Makefile.br $(@F)

menuconfig: $(BUILD_DIR)/buildroot-config/mconf outputmakefile
@$(COMMON_CONFIG_ENV) $< $(CONFIG_CONFIG_IN)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 298/344

I arget options >

Build options --->
Toolchain --->
System configuration
Kernel --->

Target packages --->

——>

Filesystem images --->

Bootloaders --->
Host utilities --->
Legacy config options

—>

arch/Config.in.arm
arch/Config.in.mips
arch/Config.in.nios2
arch/Config.in.x86

Hi

arch/Config.in

Config.in toolchain/toolchain-buildroot/Config.in
. P toolchain/toolchain-external/Config.in

toolchain/Config. in toolchain/toolchain-common.in
system/Config.in

package/python/Config.in
package/qt/Config.in
package/busybox/Config.in

fs/ext2/Config.in
fs/ubifs/Config.in
boot/grub/Config.in
boot/barebox/Config.in
package/Config.in.host package/dfu-util/Config.in.host

. . package/openocd/Config.in.host
Config.in.legacy

linux/Config.in

b

package/Config.in
fs/Config.in

!

boot/Config.in

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

299/344

When you run make...

o
| all | <« all: world
| world | <« world: target-post-image
| ArEetEnos mase | < target—post—lmage: $(.TARGETS_ROOTFS) target-finalize
| and calls the post image scripts
\7
$(TARGETS_ROOTFS)
\4
N N < target-finalize: $(PACKAGES)
contains the list of root filesystem target-finalize | and does the root filesystem finalization
image types to generate ¢ (remove headers, remove doc, stripping,
copy rootfs overlays, run post-build scripts, etc.)
$ (PACKAGES)
Note: arrows indicate a make dependency. So in X
practice, the build order is the reverse of the contains the list of packages to build,

arrow direction. including kernel, toolchain, bootloaders, and

all user space libraries/applications

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 300/344

% Where is $(PACKAGES) filled?

Part of package/pkg-generic.mk

argument 1 is the lowercase package name

argument 2 is the uppercase package name, including a HOST_ prefix
for host packages

define inner-generic-package

$(2)_KCONFIG_VAR = BR2_PACKAGE_$(2)

ifeq ($$($$($(2)_KCONFIG_VAR)),y)

PACKAGES += $(1)

endif # $(2)_KCONFIG_VAR

endef # inner-generic-package

> Adds the lowercase name of an enabled package as a make target to the
$(PACKAGES) variable

> package/pkg-generic.mk is really the core of the package infrastructure

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 301/344

60 Diving into pkg-generic.mk

Jo3e!

The package/pkg-generic.mk file is divided in two main parts:
Definition of the actions done in each step of a package build process. Done through

stamp file targets.

Definition of the inner-generic-package, generic-package and
host-generic-package macros, that define the sequence of actions, as well as all
the variables needed to handle the build of a package.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 302/344

4@3 Definition of the actions: code

$(BUILD_DIR)/%/.stamp_downloaded: $(BUILD_DIR)/%/.stamp_host_installed:
Do some stuff here # Do some stuff here
$(Q)touch s$e@ $(Q)touch $e
$(BUILD_DIR)/%/.stamp_extracted: $(BUILD_DIR)/%/.stamp_staging_installed:
Do some stuff here # Do some stuff here
$(Q)touch $e $(Q)touch $e
$(BUILD_DIR)/%/ .stamp_patched: $(BUILD_DIR)/%/.stamp_images_installed:
Do some stuff here # Do some stuff here
$(Q)touch $e $(Q)touch $e
$(BUILD_DIR)/%/ .stamp_configured: $(BUILD_DIR)/%/.stamp_target_installed:
Do some stuff here # Do some stuff here
$(Q)touch $e@ $(Q)touch $e
$(BUILD_DIR)/%/.stamp_built: $(BUILD_DIR)/%/.stamp_installed:
Do some stuff here # Do some stuff here
$(Q)touch $@ $(Q) touch $e@

> $(BUILD_DIR)/%/ — build directory of any package
> a make target depending on one stamp file will trigger the corresponding action

> the stamp file prevents the action from being re-executed

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 303/344

4@} Action example 1: download

Retrieve the archive
$(BUILD_DIR)/%/.stamp_downloaded:
$(foreach hook, $($(PKG)_PRE_DOWNLOAD_HOOKS), $(call $(hook))$(sep))

Cooed
$(foreach p,$($(PKG)_ALL_DOWNLOADS),$(call DOWNLOAD, $(p))$(sep))

$(foreach hook, $($(PKG) _POST_DOWNLOAD_HOOKS), $(call $(hook))$(sep))
$(Q)mkdir -p $(eD)
$(Q)touch $@

> Step handled by the package infrastructure

> In all stamp file targets, PKG is the upper case name of the package. So when
used for BusyBox, $($(PKG)_SOURCE) is the value of BUSYBOX_SOURCE.

> Hooks: make macros called before and after each step.

b <pkg>_ALL_DOWNLOADS lists all the files to be downloaded, which includes the
ones listed in <pkg>_SOURCE, <pkg>_EXTRA_DOWNLOADS and <pkg>_PATCH.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 304/344

4@} Action example 2: build

Build
$(BUILD_DIR)/%/.stamp_built::

@$(call step_start,build)

@$(call MESSAGE,"Building”)

$(foreach hook, $($(PKG) _PRE_BUILD_HOOKS),$(call $(hook))$(sep))

+$($(PKG) _BUILD_CMDS)
$(foreach hook, $($(PKG)_POST_BUILD_HOOKS),$(call $(hook))$(sep))

@$(call step_end,build)
$(Q)touch $e

> Step handled by the package, by defining a value for <pkg>_BUILD_CMDS.

> Same principle of hooks

b step_start and step_end are part of instrumentation to measure the duration of
each step (and other actions)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 305/344

The generic-package macro

> Packages built for the target:

generic-package = $(call inner-generic-package,
$(pkgname), $(call UPPERCASE, $(pkgname)),
$(call UPPERCASE, $(pkgname)),target)

> Packages built for the host:

host-generic-package = $(call inner-generic-package,
host-$(pkgname), $(call UPPERCASE,host-$(pkgname)),
$(call UPPERCASE, $(pkgname)),host)

» In package/libzlib/libzlib.mk:

LIBZLIB_... = ...

$(eval $(generic-package))
$(eval $(host-generic-package))

> Leads to:

$(call inner-generic-package,libzlib,LIBZLIB,LIBZLIB, target)
$(call inner-generic-package,host-1ibzlib,HOST_LIBZLIB,LIBZLIB,host)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 306/344

inner-generic-package: defining variables

Macro code

$(2)_TYPE = $(4)
$(2) _NAME = $(1)
$(2)_RAWNAME = $$(patsubst host-%,%,$(1))

$(2)_BASE_NAME = $(1)-$$($(2)_VERSION)
$(2)_DIR = $$(BUILD_DIR)/$$($(2)_BASE_NAME)

ifndef $(2)_SOURCE

ifdef $(3)_SOURCE

$(2)_SOURCE = $$($(3)_SOURCE)

else

$(2) _SOURCE ?=

$$($(2) _RAWNAME)-$$($(2) _VERSION) . tar.gz

endif
endif

ifndef $(2)_SITE
ifdef $(3)_SITE
$(2)_SITE = $$($(3)_SITE)
endif
endif

Expanded for host-1ibzlib

HOST_LIBZLIB_TYPE = host
HOST_LIBZLIB_NAME = host-libzlib
HOST_LIBZLIB_RAWNAME = libzlib

HOST_LIBZLIB_BASE_NAME =
host-1ibzlib-$(HOST_LIBZLIB_VERSION)

HOST_LIBZLIB_DIR =
$(BUILD_DIR)/host-1ibz1ib-$(HOST_LIBZLIB_VERSION)

ifndef HOST_LIBZLIB_SOURCE

ifdef LIBZLIB_SOURCE

HOST_LIBZLIB_SOURCE = $(LIBZLIB_SOURCE)
else

HOST_LIBZLIB_SOURCE ?=

libz1lib-$(HOST_LIBZLIB_VERSION).tar.gz

endif
endif

ifndef HOST_LIBZLIB_SITE

ifdef LIBZLIB_SITE
HOST_LIBZLIB_SITE = $(LIBZLIB_SITE)
endif

endif

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

inner-generic-package: dependencies

ifeq ($(4),target)

ifeq ($$($(2)_ADD_SKELETON_DEPENDENCY),YES)
$(2)_DEPENDENCIES += skeleton

endif

ifeq ($$($(2)_ADD_TOOLCHAIN_DEPENDENCY),YES)
$(2)_DEPENDENCIES += toolchain

endif

endif

ifeq ($$(BR2_CCACHE),y)

ifeq ($$(filter host-tar host-skeleton host-xz host-1zip host-fakedate host-ccache,$(1)),)
$(2) _DEPENDENCIES += host-ccache

endif

endif

> Adding the skeleton and toolchain dependencies to target packages. Except for
some specific packages (e.g. C library).

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 308/344

inner-generic-package: stamp files

®
$(2) _TARGET_INSTALL = $$($(2)_DIR)/.stamp_installed
$(2) _TARGET_INSTALL_TARGET = $$($(2)_DIR)/.stamp_target_installed
$(2) _TARGET_INSTALL_STAGING = $$($(2)_DIR)/.stamp_staging_installed
$(2) _TARGET_INSTALL_IMAGES = $$($(2)_DIR)/.stamp_images_installed
$(2) _TARGET_INSTALL_HOST = $$($(2)_DIR)/.stamp_host_installed
$(2) _TARGET_BUILD = $$($(2)_DIR)/.stamp_built
$(2) _TARGET_CONFIGURE = $$($(2)_DIR)/.stamp_configured
$(2) _TARGET_RSYNC = $$($(2)_DIR)/.stamp_rsynced
$(2) _TARGET_RSYNC_SOURCE = $$($(2)_DIR)/.stamp_rsync_sourced
$(2)_TARGET_PATCH = $$($(2)_DIR)/.stamp_patched
$(2) _TARGET_EXTRACT = $$($(2)_DIR)/.stamp_extracted
$(2) _TARGET_SOURCE = $$($(2)_DIR)/.stamp_downloaded
$(2)_TARGET_DIRCLEAN = $$($(2)_DIR)/.stamp_dircleaned

> Defines shortcuts to reference the stamp files
$$($(2) _TARGET_INSTALL) : PKG=$(2)
$$($(2) _TARGET_INSTALL_TARGET): PKG=$(2)
$$($(2) _TARGET_INSTALL_STAGING) : PKG=$(2)
$$($(2) _TARGET_INSTALL_IMAGES): PKG=$(2)
$$($(2)_TARGET_INSTALL_HOST): PKG=$(2)
[...]

> Pass variables to the stamp file targets, especially PKG

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 309/344

inner-generic-package: sequencing

$(1): $(1)-install
$(1)-install: $$($(2) _TARGET_INSTALL)

ifeq ($$($(2)_INSTALL_TARGET),YES)

$$($(2) _TARGET_INSTALL): $$($(2)_TARGET_INSTALL_TARGET)
endif

ifeq ($$($(2)_INSTALL_STAGING),YES)

$$($(2) _TARGET_INSTALL): $$($(2)_TARGET_INSTALL_STAGING)
endif

ifeq ($$($(2)_INSTALL_IMAGES),YES)

$$($(2) _TARGET_INSTALL): $$($(2)_TARGET_INSTALL_IMAGES)
endif

$(1)-install-target: $$($(2) _TARGET_INSTALL_TARGET)
$$($(2) _TARGET_INSTALL_TARGET): $$($(2)_TARGET_BUILD)

$(1)-install-staging: $$($(2) _TARGET_INSTALL_STAGING)
$$($(2) _TARGET_INSTALL_STAGING) : $$($(2) _TARGET_BUILD)
$(1)-install-images: $$($(2) _TARGET_INSTALL_IMAGES)

$$($(2) _TARGET_INSTALL_IMAGES): $$($(2)_TARGET_BUILD)

$(1)-build:
$$($(2) _TARGET_BUILD) :

$(1)-configure:

$$($(2) _TARGET_BUILD)
$$($(2) _TARGET_CONFIGURE)

$$($(2) _TARGET_CONFIGURE)

$$($(2) _TARGET_CONFIGURE) : | $$($(2) _FINAL_DEPENDENCIES)
$$($(2) _TARGET_CONFIGURE) : $$($(2) _TARGET_PATCH)
$(1)-patch: $$($(2) _TARGET_PATCH)

$$($(2) _TARGET_PATCH) :

$(1)-extract:
$$($(2) _TARGET_EXTRACT) :
$$($(2) _TARGET_EXTRACT) :

$(1)-source:
$$($(2) _TARGET_SOURCE) :

$$($(2) _TARGET_SOURCE) :
$$($(2) _TARGET_SOURCE) :

$$($(2) _TARGET_EXTRACT)

$$($(2) _TARGET_EXTRACT)
$$($(2) _TARGET_SOURCE)
| $$($(2)_FINAL_EXTRACT_DEPENDENCIES)

$$($(2) _TARGET_SOURCE)
| $$($(2)_FINAL_DOWNLOAD_DEPENDENCIES)

| prepare
| dependencies

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

310/344

inner-generic-package: sequencing diagram

1ibzlib —> Libzlib-install $(LIBZLIB_INSTALL_TARGET)

S(BUILD_DIR) lielb-xyz/ stamp_insalled

1ibzlib-install-target $(LIBZLIB_TARGET_INSTALL_TARGET)

S(BUILD_DIR) libzlt-xyz/ stamp_target_instaled

Libzlib-install-staging $(LIBZLIB_TARGET_INSTALL_STAGING)

S(BUILD_DIR) liozlit-syz/ stamp_staging_installed

Libzlib-install-inages $(LIBZLIB_TARGET_INSTALL_IMAGES)

S(BUILD_DIR) lizlb-syz/ stamp_images_installed

Libzlib-build

$(LIBZLIB_TARGET_BUILD)

S(BUILD_DIR),lbelb xyz/ stamp_built

Libzlib-configure —){ $(LIBZLIB_TARGET_CONFIGURE)

S(BUILD_DIR) libelb-xyz/ stamp_configured

$(LIBZLIB_TARGET_PATCH)

S(BUILD_DIR) libelb-xye/ stamp_ptched

$(LTBZLIB_TARGET_EXTRACT)

S(BUILD_DIR) lizlioxyz/ stamp_extracted

$(LIBZLIB_TARGET_SOURCE)

S{BUILD_DIR) el xyz/ stamp_downloaded

$(LIBZLIB_FINAL_DEPENDENCIES)

List oflibelib dependencies, by package name.
Triggers the buld of exch of these dependencies,
ks o the name of each package being
2 make targer

libzlib-patch

Libzlib-extract

Libzlib-source

Uity shorteuts: not used
during 3 normal buid

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 311/344

60 Preparation work: prepare, dependencies
OC

o%e]

pkg-generic.mk

$$($(2) _TARGET_SOURCE): | prepare
$$($(2) _TARGET_SOURCE): | dependencies

All packages have two targets in their dependencies:

prepare: generates a kconfig-related auto.conf file
dependencies: triggers the check of Buildroot system dependencies, i.e. things that
must be installed on the machine to use Buildroot

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 312/344

4@3 Rebuilding packages?

» Once one step of a package build

process has been done, it is never $(1)-clean-for-reinstall:
rm -f $$($(2)_TARGET_INSTALL)

done again due to the stamp file rm ~f $3($(2)_TARGET_INSTALL_STAGING)
rm -f $$($(2) _TARGET_INSTALL_TARGET)

. H . . rm —f $$($(2)_TARGET_INSTALL_IMAGES)
> Even if the package configuration is L e e e e

changed, or the package is disabled —
Buildroot doesn't try to be smart

$(1)-reinstall: $(1)-clean-for-reinstall $(1)
$(1)-clean-for-rebuild: $(1)-clean-for-reinstall
. . rm -f $$($(2)_TARGET_BUILD)
» One can force rebuilding a package
from its configure, build or install step
. . $(1)-clean-for-reconfigure: $(1)-clean-for-rebuild
using make <pkg>-reconfigure, m ~f $5(8(2)_TARGET_CONFIGLRE)
make <pkg>_rebuj-ld or $(1)-reconfigure: $(1)-clean-for-reconfigure $(1)
make <pkg>-reinstall

$(1)-rebuild: $(1)-clean-for-rebuild $(1)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 313/344

ao Specialized package infrastructures
o0

o%e]

The generic-package infrastructure is fine for packages having a custom build
system

For packages using a well-known build system, we want to factorize more logic

Specialized package infrastructures were created to handle these packages, and
reduce the amount of duplication

For autotools, CMake, Python, Perl, Lua, Meson, Golang, QMake, kconfig, Rust,
kernel-module, Erlang, Waf packages

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 314/344

4@3 CMake package example: flann

package/flann/flann.mk

FLANN_VERSION = 1.9.1

FLANN_SITE = $(call github,mariusmuja,flann,$(FLANN_VERSION))

FLANN_INSTALL_STAGING = YES

FLANN_LICENSE = BSD-3-Clause

FLANN_LICENSE_FILES = COPYING

FLANN_CONF_OPTS = \
-DBUILD_C_BINDINGS=ON \
-DBUILD_PYTHON_BINDINGS=0FF \
-DBUILD_MATLAB_BINDINGS=0FF \
-DBUILD_EXAMPLES=$(if $(BR2_PACKAGE_FLANN_EXAMPLES),ON,OFF) \
-DUSE_OPENMP=$(if $(BR2_GCC_ENABLE_OPENMP),ON,OFF) \
-DPYTHON_EXECUTABLE=0FF \
-DCMAKE_DISABLE_FIND_PACKAGE _HDF5=TRUE

$(eval $(cmake-package))

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 315/344

4@3 CMake package infrastructure (1/2)

define inner-cmake-package

$(2) _CONF_ENV 7=

$(2)_CONF_OPTS 2=

$(2)_SRCDIR = $$($(2)_DIR)/$$($(2)_SUBDIR)
$(2)_BUILDDIR = $$($(2)_SRCDIR)

ifndef $(2)_CONFIGURE_CMDS
ifeq ($(4),target)
define $(2)_CONFIGURE_CMDS
(cd $$($$(PKG) _BUILDDIR) && \
$$($$(PKG)_CONF_ENV) $$(HOST_DIR)/bin/cmake $$($$(PKG)_SRCDIR) \
-DCMAKE_TOOLCHAIN_FILE="$$(HOST_DIR)/share/buildroot/toolchainfile.cmake” \

$$($$(PKG) _CONF_OPTS) \

)
endef
else
define $(2)_CONFIGURE_CMDS

. host case ...

endef
endif
endif

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 316/344

4@3 CMake package infrastructure (2/2)

$(2)_DEPENDENCIES += host-cmake

ifndef $(2)_BUILD_CMDS
ifeq ($(4),target)
define $(2)_BUILD_CMDS
$$(TARGET_MAKE_ENV) $$($$(PKG)_MAKE_ENV) $$($$(PKG)_MAKE) $$($$(PKG)_MAKE_OPTS)
-C $$($$(PKG)_BUILDDIR)
endef
else
. host case ...
endif
endif

. other commands ...

ifndef $(2)_INSTALL_TARGET_CMDS
define $(2)_INSTALL_TARGET_CMDS
$$(TARGET_MAKE_ENV) $$($$(PKG) _MAKE_ENV) $$($$(PKG)_MAKE) $$($%$(PKG)_MAKE_OPTS)
$$($$(PKG) _INSTALL_TARGET_OPT) -C $$($$(PKG)_BUILDDIR)
endef
endif

$(call inner-generic-package,$(1),$(2),%$(3),$(4))

endef
cmake-package = $(call inner-cmake-package, $(pkgname), ..., target)
host-cmake-package = $(call inner-cmake-package,host-$(pkgname),...,host)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 317/344

4@} Autoreconf in pkg-autotools.mk

> Package infrastructures can also add additional capabilities controlled by variables
in packages

> For example, with the autotools-package infra, one can do
FOOBAR_AUTORECONF = YES in a package to trigger an autoreconf before the
configure script is executed

» Implementation in pkg-autotools.mk

define AUTORECONF_HOOK
@$$(call MESSAGE, "Autoreconfiguring”)
$$(Q)cd $$($$(PKG)_SRCDIR) && $$($$(PKG)_AUTORECONF_ENV) $$(AUTORECONF)
$$($$(PKG) _AUTORECONF_OPTS)

endef
ifeq ($$($(2)_AUTORECONF),YES)
$(2) _PRE_CONFIGURE_HOOKS += AUTORECONF_HOOK

$(2) _DEPENDENCIES += host-automake host-autoconf host-libtool
endif

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 318/344

a Toolchain support
o)

o%e]

One virtual package, toolchain, with two implementations in the form of two
packages: toolchain-buildroot and toolchain-external

toolchain-buildroot implements the internal toolchain back-end, where
Buildroot builds the cross-compilation toolchain from scratch. This package
simply depends on host-gcc-final to trigger the entire build process

toolchain-external implements the external toolchain back-end, where
Buildroot uses an existing pre-built toolchain

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 319/344

4@3 Internal toolchain back-end

Build starts with utility host tools and libraries needed for gcc
(host-m4, host-mpc, host-mpfr, host-gmp). Installed in
$(HOST_DIR)/{bin, include, 1lib}

Build goes on with the cross binutils, host-binutils, installed in
$(HOST_DIR) /bin

Then the first stage compiler, host-gcc-initial

We need the linux-headers, installed in
$(STAGING_DIR)/usr/include

We build the C library, uclibc in this example. Installed in
$(STAGING_DIR)/1ib, $(STAGING_DIR)/usr/include and of
course $(TARGET_DIR)/1ib

We build the final compiler host-gcc-final, installed in
$(HOST_DIR)/bin

ALL

'

toolchain

'

toolchain-buildroot

uclibe
host-gec-initial linux-headers
host-binutils host-mpe

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

320/344

4@} External toolchain back-end

> toolchain-external-package infrastructure,
implementing the common logic for all external
toolchains

® Implemented in toolchain/toolchain-
external/pkg-toolchain-external.mk
» Packages in toolchain/toolchain-external/
are using this infrastructure
® E.g. toolchain-external-arm-aarch64,
toolchain-external-bootlin
> toolchain-external is a virtual package itself
depends on the selected external toolchain.

ALL

'

toolchain

'

toolchain-external

'

toolchain-external-arm-aarch64

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

321/344

Q} External toolchain example

toolchain/toolchain-external /toolchain-external-arm-aarch64 /toolchain-external-arm-aarch64.mk

TOOLCHAIN_EXTERNAL_ARM_AARCH64_VERSION = 2020.11
TOOLCHAIN_EXTERNAL_ARM_AARCH64_SITE = \
https://developer.arm.com/-/media/Files/downloads/
gnu-a/10.2-$(TOOLCHAIN_EXTERNAL_ARM_AARCH64_VERSION)/binrel

TOOLCHAIN_EXTERNAL _ARM_AARCH64_SOURCE = \
gcc-arm-10.2-$(TOOLCHAIN_EXTERNAL _ARM_AARCH64_VERSION)-x86_64-aarch64-none-linux-gnu.tar.xz

$(eval $(toolchain-external-package))

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 322/344

a@ toolchain-external-package logic

Jo3e!

Extract the toolchain to $(HOST_DIR)/opt/ext-toolchain

Run some checks on the toolchain to verify it matches the configuration specified
in menuconfig

Copy the toolchain sysroot (C library and headers, kernel headers) to
$(STAGING_DIR) /usr/{include, 1ib}

Copy the toolchain libraries to $(TARGET_DIR)/usr/lib

Create symbolic links or wrappers for the compiler, linker, debugger, etc from
$(HOST_DIR)/bin/<tuple>-<tool> to
$(HOST_DIR)/opt/ext-toolchain/bin/<tuple>-<tool>

A wrapper program is used for certain tools (gcc, Id, g++, etc.) in order to

ensure a certain number of compiler flags are used, especially
--sysroot=$(STAGING_DIR) and target-specific flags.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 323/344

60 Root filesystem image generation
o0

o%e]

Once all the targets in $(PACKAGES) have been built, it's time to create the root
filesystem images

First, the target-finalize target does some cleanup of $(TARGET_DIR) by
removing documentation, headers, static libraries, etc.

Then the root filesystem image targets listed in $(ROOTFS_TARGETS) are processed

These targets are added by the common filesystem image generation
infrastructure rootfs, in fs/common.mk

The purpose of this infrastructure is to:

Collect the users, permissions and device tables

Make a copy of TARGET_DIR per filesystem image

Generate a shell script that assigns users, permissions and invokes the filesystem
image creation utility

Invoke the shell script under fakeroot

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 324/344

fs/common.mk, dependencies and table generation

ROOTFS_COMMON_DEPENDENCIES = \
host-fakeroot host-makedevs \
$(BR2_TAR_HOST_DEPENDENCY) \
$(if $(PACKAGES_USERS)$(ROOTFS_USERS_TABLES), host-mkpasswd)

rootfs-common: $(ROOTFS_COMMON_DEPENDENCIES) target-finalize
@$(call MESSAGE, "Generating root filesystems common tables")
rm -rf $(FS_DIR)
mkdir -p $(FS_DIR)
$(call PRINTF,$(PACKAGES_USERS)) >> $(ROOTFS_FULL_USERS_TABLE)
cat $(ROOTFS_USERS_TABLES) >> $(ROOTFS_FULL_USERS_TABLE)
$(call PRINTF,$(PACKAGES_PERMISSIONS_TABLE)) > $(ROOTFS_FULL_DEVICES_TABLE)
cat $(ROOTFS_DEVICE_TABLES) >> $(ROOTFS_FULL_DEVICES_TABLE)
$(call PRINTF,$(PACKAGES_DEVICES_TABLE)) >> $(ROOTFS_FULL_DEVICES_TABLE)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

325/344

4@ fs/common.mk, rootfs infrastructure 1

define inner-rootfs

ROOTFS_$(2)_IMAGE_NAME ?= rootfs.$(1)

ROOTFS_$(2) _FINAL_IMAGE_NAME = $$(strip $$(ROOTFS_$(2)_TMAGE_NAME))
ROOTFS_$(2)_DIR = $$(FS_DIR)/$(1)

ROOTFS_$(2)_TARGET_DIR = $$(ROOTFS_$(2)_DIR)/target

ROOTFS_$(2) _DEPENDENCIES += rootfs-common

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 326/344

4@3 fs/common.mk, rootfs infrastructure 2

$$(BINARIES_DIR)/$$(ROOTFS_$(2) _FINAL_IMAGE_NAME): $$(ROOTFS_$(2)_DEPENDENCIES)
@$$(call MESSAGE, "Generating filesystem image $$(ROOTFS_$(2)_FINAL_IMAGE_NAME)")
Cooodl
mkdir -p $$(ROOTFS_$(2)_DIR)
rsync -auH \
--exclude=/$$(notdir $$(TARGET_DIR_WARNING_FILE)) \
$$(BASE_TARGET_DIR)/ \
$$(TARGET_DIR)
echo '#!/bin/sh’' > $$(FAKEROOT_SCRIPT)
echo "set -e" >> $$(FAKEROOT_SCRIPT)
echo "chown -h -R 0:0 $$(TARGET_DIR)" >> $$(FAKEROOT_SCRIPT)
PATH=$$(BR_PATH) $$(TOPDIR)/support/scripts/mkusers $$(ROOTFS_FULL_USERS_TABLE) $$(TARGET_DIR) >> $$(FAKEROOT_SCRIPT)
echo "$$(HOST_DIR)/bin/makedevs -d $$(ROOTFS_FULL_DEVICES_TABLE) $$(TARGET_DIR)" >> $$(FAKEROOT_SCRIPT)
[|
$$(call PRINTF,$$(ROOTFS_$(2)_CMD)) >> $$(FAKEROOT_SCRIPT)
chmod a+x $$(FAKEROOT_SCRIPT)
PATH=$$(BR_PATH) $$(HOST_DIR)/bin/fakeroot -- $$(FAKEROOT_SCRIPT)
[...]
ifeq ($$(BR2_TARGET_ROOTFS_$(2)),y)
TARGETS_ROOTFS += rootfs-$(1)
endif
endef

rootfs = $(call inner-rootfs,$(pkgname),$(call UPPERCASE,$(pkgname)))

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 327/344

% fs/ubifs/ubifs.mk

UBIFS_OPTS := -e $(BR2_TARGET_ROOTFS_UBIFS_LEBSIZE) \
-c $(BR2_TARGET_ROOTFS_UBIFS_MAXLEBCNT) \
-m $(BR2_TARGET_ROOTFS_UBIFS_MINIOSIZE)

ifeq ($(BR2_TARGET_ROOTFS_UBIFS_RT_ZLIB),y)
UBIFS_OPTS += -x zlib
endif
UBIFS_OPTS += $(call gstrip, $(BR2_TARGET_ROOTFS_UBIFS_OPTS))
ROOTFS_UBIFS_DEPENDENCIES = host-mtd
define ROOTFS_UBIFS_CMD

$(HOST_DIR)/sbin/mkfs.ubifs -d $(TARGET_DIR) $(UBIFS_OPTS) -o $@
endef

$(eval $(rootfs))

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 328/344

Final example

< all: world

<« world: target-post-image

target-post-image: $(TARGETS_ROOTFS) target-finalize
and calls the post image scripts

target-post-image

$(TARGETS_ROOTFS)

rootfs-ubifs

rvseive]| [Tl [Rosm]

contains the list of root filesystem
image types to generate

target-finalize: $(PACKAGES)
and does the root filesystem finalization
< (remove headers, remove doc, stripping,
copy rootfs overlays, run post-build scripts, etc.)

contains the list of packages to build

$(PACKAGES)

host-pkgcont

Dependency exists
foral packages

prepare
Note: araws indicate a make dependency So in 5
practice, the buid order is the revrse of the dependencies
arrow direcion.

host-Libtool

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 320/344

o%e]

Buildroot community:
support and
contribution

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license
Corrections, suggestions, contributions and translations are welcome!

a@ Buildroot community: support and contribution
o0

bootlin

‘Q

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

330/344

Q} Documentation

> Buildroot comes with its own documentation
» Pre-built versions available at https://buildroot.org/docs.html (PDF,
HTML, text)
> Source code of the manual located in docs/manual in the Buildroot sources
® Written in Asciidoc format
» The manual can be built with:

® make manual
® or just make manual-html, make manual-pdf, make manual-epub,
make manual-text, make manual-split-html
® A number of tools need to be installed on your machine, see the manual itself.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 331/344

https://buildroot.org/docs.html

Getti t
Q@ etting suppor

o%e]

Free support
The mailing list for e-mail discussion
http://lists.busybox.net/mailman/listinfo/buildroot
1400+ subscribers, quite heavy traffic.
The IRC channel, #buildroot on the OFTC network, for interactive discussion
60+ people, most available during European daylight hours
Bug tracker
https://bugs.busybox.net/buglist.cgi?product=buildroot
Commercial support

A number of embedded Linux services companies, including Bootlin, can provide
commercial services around Buildroot.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 332/344

http://lists.busybox.net/mailman/listinfo/buildroot
https://bugs.busybox.net/buglist.cgi?product=buildroot

a@ Tips to get free support

o%e]

If you have a build issue to report:

Make sure to reproduce after a make clean all cycle

Include the Buildroot version, Buildroot .config that reproduces the issue, and last
100-200 lines of the build output in your report.

Use pastebin sites like https://paste.ack.tf/ when reporting issues over IRC.

The community will be much more likely to help you if you use a recent Buildroot
version.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 333/344

a Release schedule
o)

o%e]

The Buildroot community publishes stable releases every three months.
YYYY.02, YYYY.05, YYYY.08 and YYYY.11 every year.

The three months cycle is split in two periods

Two first months of active development
One month of stabilization before the release

At the beginning of the stabilization phase, -rc1 is released.

Several -rc versions are published during this stabilization phase, until the final
release.

Development not completely stopped during the stabilization, a next branch is
opened.

Long-term maintenance of YYYY.02, with a LTS initiative

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 334/344

a Contribution process
o)

o%e]

Contributions are made in the form of patches
Created with git and sent by e-mail to the mailing list

Use git send-email to avoid issues
Use get-developers to know to who patches should be sent

The patches are reviewed, tested and discussed by the community
You may be requested to modify your patches, and submit updated versions
Once ready, they are applied by one of the project maintainers

Some contributions may be rejected if they do not fall within the Buildroot
principles/ideas, as discussed by the community.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 335/344

4@,? Patchwork

> Tool that records all patches sent on the mailing list

> Allows the community to see which patches need review/testing, and the
maintainers which patches can be applied.

> Everyone can create an account to manage his own patches
> https://patchwork.ozlabs.org/project/buildroot/list/

D Paen Serios wEm

Submiter Delegate State

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

336/344

https://patchwork.ozlabs.org/project/buildroot/list/

a Automated build testing
o)

o%e]

The enormous number of configuration options in Buildroot make it very difficult
to test all combinations.

Random configurations are therefore built 24 /7 by multiple machines.

Random choice of architecture/toolchain combination from a pre-defined list
Random selection of packages using make randpackageconfig
Random enabling of features like static library only, or BR2_ENABLE_DEBUG=y

Scripts and tools publicly available at
https://gitlab.com/buildroot.org/buildroot-test/

Results visible at http://autobuild.buildroot.org/
Daily e-mails with the build results of the past day

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 337/344

https://gitlab.com/buildroot.org/buildroot-test/
http://autobuild.buildroot.org/

autobuild.buildroot.org

Date

2019-03-20 16:32:05

2019-03-20 16:30:42

2019-03-20 16:30:27

2019-03-20 16:22:37

2019-03-20 16:20:16

2019-03-20 16:

2019-03-20 16

2019-03-20 16:01:04

2019-03-20 15:57:47

2019-03-20 15:50:20

N

2019-03-20 15:48:49
2019-03-20 15:43:42
2019-03-20 15:37:11
2019-03-20 15:31:34
2019-03-20 15:26:00

2019-03-20 15:25:55

Duration
01:12:43
04:02:55
25:32
02:12:40

3031

3127

06:29:57

01:24:17

03:07:12

22:35

Status.
oK
OK

OK

Commit ID
master
8317923
master
30330834
master
master
30330834

8317923

master.
30330834

master

master
83072923

Buildroot tests
‘Submitter ‘Arch/Subarch
Thomas Petazzoni
et mipsGdel / mips64r6
Thomas Petazzoni
59 arm / cortex-ad
Yann E. MORIN powerpc6dle / power8
(gec160) o/ arshs
Mark Corbin
(Embecosm Godzilla U18.10) riscv64
Yann E. MORIN nios2
i o Ser mipsel / mips32
e159) arc / archs
Matt Weber T
{(U14.04 Sandboxed)
Andre Hentschel arm / arm1176jzf-s

Failure reason
none.
none
none
none.

none.

none.

none

none

none

none.

06 master Mark Corbin i
04:06:01 OK 3033083 (Embecosm Godzilla U18.10) riscv32 none glibe
16:50 oK R e Teleca owerpe / 603e none. uclibe
master . §
56:16 0K Bl Yann E. MORIN nios2 none glibe
01:52:13 0K I Yann E. MORIN xtensa none uclibe
010247 0K A0 Thomes epzzoni arm / arm926ej-s none uclibe
01:46:38 0K S Andre Hentschel mips64el / mips64r6 none glibe

z z z 7z z z 2z 2z 1z z

Kz =

z

Data
dir, end log, config, defconfig
dir, end log, config, defconfig
dir, end log, config, defconfig
dir, end log, config, defconfig

dir; end log, config, defconfig

dir, end log, config, defconfig
dir, end log, config, defconfig
dir, end log, config, defconfig
dir, end log, config, defconfig

dir; end log, config, defconfig

dir, end log, config, defconfig
dir, end log, config, defconfig
dir, end log, config, defconfig
dir, end log, config, defconfig

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

338/344

Autobuild daily reports

Subject: [Buildroot] [autobuild.buildroot.net] Build results for 2019-03-19

Build statistics for 2019-03-19

branch | 0K | NOK | TIM | TOT |
2018.02.x | 18| 3| @ | 21|
2018.11.x | 36| 1] @ 37|
2019.02.x | 25| 4] @ 29|
master | 166 | 105 | 3 | 274 |

Results for branch 'master’

Classification of failures by reason

unknown | 22

angularjs-legal-info | 15

host-uboot-t00ls-2019.01 | 11
[...]

Detail of failures

sparc | android-tools-4.2.2+git2013... | NOK | http://autobuild.buildroot.net/results/f1648f245d77f85661bc0d2f1e8097c3695206d8 |
mips64el | angularjs-legal-info | NOK | http://autobuild.buildroot.net/results/fdf6b64648dfa58ec74de31104a1a71248242d80 |

[...]
arm | glib-networking-2.58.0 | NOK | http://autobuild.buildroot.net/results/fc2e68921bd84d13d2e9bc900a91e46b08d698fe |

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 339/344

ao Additional testing effort

Jo3e!

Run-time test infrastructure in support/testing
Contains a number of test cases that verify that specific Buildroot configurations
build correctly, and boot correctly under Qemu.

Validates filesystem format support, specific packages, core Buildroot functionality.
./support/testing/run-tests -1

./support/testing/run-tests tests.fs.test_ext.TestExt2
Run regularly on Gitlab CI

All defconfigs in configs/ are built every week on Gitlab Cl

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 340/344

a Acknowledgements
o)

o%e]

Bootlin would like to thank the following members of the Buildroot community for
their useful comments and reviews during the development of these training
materials:

Thomas De Schampheleire

Peter Korsgaard

Yann E. Morin

Arnout Vandecappelle

Gustavo Zacarias

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 341/344

Last slides

bootlin

Last slides

© C ight 2004-2026, Bootlin. . . .
opyrie ootin: embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 342/344

Last slide
o

o%e]

Thank you!
And may the Source be with you

00tliN - Kernel, , drivers and embedded Li inux - Development, , consulting, training and support - https://bootlin.com

Rights t
Q@ ights to copy

o%e]

© Copyright 2004-2026, Bootlin

License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work
Under the following conditions:
Attribution. You must give the original author credit.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 344/344

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

	About Bootlin
	Generic course information
	Introduction to Embedded Linux
	Introduction to Buildroot
	Managing the build and the configuration
	Buildroot source and build trees
	Source tree
	Build tree

	Toolchains in Buildroot
	Managing the Linux kernel configuration
	Root filesystem in Buildroot
	Download infrastructure in Buildroot
	GNU Make 101
	Integrating new packages in Buildroot
	Config.in file
	Package infrastructures
	.mk file for generic-package
	autotools-package infrastructure
	Target vs. host packages

	Advanced package aspects
	Licensing report
	Security vulnerability tracking
	Patching packages
	User, permission and device tables
	Init scripts and systemd unit files
	Config scripts
	Hooks
	Overriding commands
	Legacy handling
	DEVELOPERS file
	Virtual packages

	Analyzing the build
	Advanced topics
	Application development
	Understanding Buildroot internals
	Buildroot community: support and contribution
	Last slides

