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大模型的通用科学能力边界
Probing Scientific General Intelligence of LLMs with Scientist-Aligned Workflows

演讲人：徐望瀚

https://black-yt.github.io/
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通用生活场景
知识问答，日常聊天…

文献调研
深度调研精度低

创意生成
创意生成可行性差

代码编写
干实验稳定性低

实验操作
湿实验动作错误

实验分析
数据分析推理能力弱

AI能够胜任很多日常工作，但在科研中的环节中，
能力缺乏。

From AGI to SGI（通用科学智能）
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Practical Inquiry Model（PIM）
实践探索模型

4.Perception
（感知）

1.Deliberation
（思辨)

分析证据
并进行批
判推理

2.Conception
（构思）

3.Action
（行动）

执行实验
或操作验
证假设

观察结果
并更新认
知

提出新思
路和方法

如何定义SGI（通用科学智能）？
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与真实科研场景对齐

Deliberation（思辨）
文献，资料等调研分析

Conception（构思）
思考新的idea

Perception（感知）
实验结果，数据分析

Action（行动）
写代码，做实验



Page 5

Shanghai Artificial Intelligence Laboratory

定义SGI（通用科学智能）

SGI

能够自主完成科学探究的
完整迭代周期

并展现出与人类科学家相
媲美的灵活性和专业能力

的人工智能
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现有工作的局限性

聚焦于某一特定的学科，例如化学（ChemBench）
地 球 （ EarthSE ） ， 物 理 （ PHYSICS ） ， 海 洋
(OceanBench ），数学（MATH，AIME-2025）。
无法考察不同的学科方向。

单一学科 Benchmark
信息检索和整理任务（DeepResearch Bench），
创意生成任务（MOOSE-Chem），工具使用任务
（ToolUniverse），代码任务（SciCode），科学
数据分析任务（SFE）。无法考察科研全流程。

单一任务 Benchmark

评测AI的通用科学能力

• 需要多学科，多方向结合

• 需要多种不同的科研任务，能够与人类科学家的科研流程对齐
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Benchmark构建

应用场景的真实性 规范任务的可测性 约束回答的开放性 确保题目的科学性
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任务定义1：Deliberation——Scientific Deep Research

Task Input

Task Output

· 背景：研究主题的详细背景信息（学科、子领域等），
用于避免术语歧义。
· 约束：实验设定、科学假设、数据来源等限制条件。
· 数据：任务中直接给出的实验或观测数据（可以是显式
的，也可以是可推断的）。
· 问题：需要回答的具体问题，例如某个量的数值或随时
间的变化。
· 回答要求：对答案形式的要求，比如单位、是否为整数、
小数位数等。

· 步骤：系统为检索、处理数据或进行推理所给出的逐
步解决方案。
· 答案：精确的数值或字符串形式的最终回答（例如具
体数值或短语）。
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Task Input

Task Output

任务定义2：Conception——Idea Generation

· 相关工作：与该研究方向相关的已有研究总结，为新想
法提供上下文。
· 挑战：当前领域面临的难题以及现有方法的不足之处。
· 局限：现有研究的具体限制或缺陷，新想法需要针对这
些问题。
· 动机：从何种视角、出于何种原因希望解决上述局限。
· 任务目标：本任务的主要目标，例如生成能解决挑战或
改进现有方法的想法。
· 现有解决方案：目前该领域常用的方案或方法描述。

· 核心想法：用来解决研究挑战的中心新思想或新概念。
· 实现步骤：实现该核心想法所需的关键步骤或流程。
· 实现顺序：上述步骤的执行先后顺序。
· 数据：实现和评估该想法所需使用的数据。
· 评价指标：用于衡量该想法效果或价值的评估标准。
· 预期结果：预计该方法或想法能取得的成果或贡献。
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Task Input

Task Output

任务定义3.1：Action——Dry Experiment

· 背景：相关科学代码及问题背景信息，为干实验提供上
下文。
· 数据代码：实验中使用的数据及其对应代码片段或预定
义输入。
· 主体代码：实验的主代码框架，其中部分函数被遮蔽或
缺失。

· 函数：需要由模型补全或生成的缺失函数，实现主体代
码中的关键逻辑。



Page 11

Shanghai Artificial Intelligence Laboratory

Task Input

Task Output

任务定义3.2：Action——Wet Experiment

· 背景：相关实验流程或操作背景说明。
· 动作池：可用于实验的一组原子动作，包含每个动作的
说明及其输入/输出定义。

· 原子动作顺序：各原子动作在实验中应执行的顺序。
· 原子动作参数：每个原子动作对应的参数设置（例如试
剂种类、浓度、体积、温度等）。
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Task Input

Task Output

任务定义4：Perception——Experimental Reasoning

· 多张实验图像：表示实验结果或仪器观测数据的一组图
像（可包含流程图、观测图、实验装置图、仿真图、可
视化图等）。
· 问题：与这些实验数据/图像相关的具体问题或待验证
假设。

· 推理过程：为得到答案而进行的逐步推理，包括计算、
分析、比较等。
· 答案：在综合多模态证据后给出的最终结论，用于回答
给定问题或假设。
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数据构建：Scientist-Aligned Data Construction

1. 领域专家提供原始素材，种子问题，制定构建规则
2. 硕士或博士生根据问题规则进行问题构建
3. 数据清洗：规则校验，模型校验，专家复核
4. 难度筛选：模型测试，除过于简单的题目
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学科分布
10大学科：
地球，化学，物理，生命，
数学，能源，信息，天文，
神经科学，材料

75个研究方向：
海洋热含量，药物设计，塞
曼效应，蛋白质结构预测，
差分隐私，能源概率预测，
传感器设计，引力波检测，
视觉解码，树脂聚合反
应，…
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评测结果总览

1. Deep Research：长链路推理易崩塌；
2. Idea Generation：新颖度尚可，但可行性弱；
3. Dry Experiment：能跑通但算不对；
4. Wet Experiment：时序与分支协调困难；
5. Experimental Reasoning：对比型推理最难。
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任务1： Scientific Deep Research

1. 步骤准确率达 50%–65%，但长链条步骤中
的错误导致最终结论频繁错误，答案严格匹
配仅 10%–20%；
2. 工具增强的多智能体在逐步准确率略优，
但与纯模型差距并不显著；
3. 类型上，“数据/性质”题最难，需跨文献
精确检索与数值聚合；“实验”类相对较好但
整体仍低于 30%，体现元分析的严苛性。 
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1. Ocean Warming Continues through
2021 despite La Niña Conditions
2. 𝑅𝑅1 = 5.7 ZJ/yr（1958–2021）
3. 𝑅𝑅2 = 9.1 ZJ/yr（1986–2021）
4. 计算相对增加百分比
9.1
5.7
− 1 × 100% ≈ 59.65%

任务1： Scientific Deep Research

题目

错误原因

OpenAI Deep Research o4-mini 的回答

正确答案

模型使用的资料的时间
区间与题目要求不一致

基于IAP/CAS 数据集对全球 0–2000 m
海洋热含量（OHC）的分析：
 1958-2021年的平均年增暖率记为𝑅𝑅1
1986-2021年的平均年增暖率记为𝑅𝑅2
问：1986–2021 时期的年增暖率，相比 
1958–2021 时期增加了百分之多少？

1. 模型查到另一份 IAP/CAS OHC 资料，
给出 1955–2023 的趋势约 6.4 ZJ/yr。 
2. 模型对 1958–2021 做线性拟合：
𝑅𝑅1 ≈6.41 ZJ/yr 
3. 模型对 1986–2021 做线性拟合：
𝑅𝑅2 ≈7.81 ZJ/yr 
4. 计算相对增加百分比：
7.81
6.41

− 1 × 100% ≈ 21.88%
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任务2：Idea Generation

1. 闭源模型“新颖性（Novelty）”更强，但“可行性（Feasibility）”普遍偏低。以 GPT-5 为例：新颖性 
76.08、可行性 18.87，体现“概念丰富 ≠ 可执行方案”；
2. 开源可行性上限约 20 分（如 Qwen3-Max 20.98），多数模型 14–20 分，显示“能说清”与“能落
地”之间的落差；
3. 常见缺陷：缺少数据获取与预处理计划；流程接口不闭合（输入输出不对齐）；步骤顺序与依赖
模糊，导致“创意→蓝图→执行”闭环断裂。
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在 65°C 下用 FRP 与 RAFT 
合成共聚物/三元共聚物并

变化进料比左边层级

左低转化率（<10%）淬灭
来避免组成漂移边层级

左通过沉淀和干燥纯化聚
合物产物边层级

用 ¹H/¹³C NMR 对聚合物组
成进行定量分析

用 SEC 测 Mn 与 Ð 比较 
RAFT/FRP 控制能力。

用 NLLS
（REACT/CONTOUR）拟合

共聚反应比

选择一组可能适用于光刻
胶的模型单体体系并初步

设定目标结构

尝试通过多种分析手段获
取精细的反应比数据

（NMR / UPLC 等

构建一个 kMC + RAFT 平
衡序列预测模型

基于模型推断设计时间变
化进料以获得多种理想化

序列结构

在反应过程中进行原位监
测（NIR/Raman）

通过高级 NMR、MS、数据
解卷积等方法解析序列分

布

在树脂体系中控制 PAG 分
布并利用 TOF-SIMS / 

STEM-EDS 进行空间分析

准备并纯化 AOST/Sty/tBA 
单体与 RAFT 试剂 EM左边

层级

用 Alfrey–Goldfinger 与概
率模型预测序列分布

分析组成与序列均匀性
对光刻胶 LER 的影响

对比实验与理论组成并
评估随转化率的漂移

探索序列结构与溶解行
为的关联

测量 LER/LWR 等关键图
形参数

建立序列特征到 LER 的
预测模型

基于模型进行序列优化
并验证

在 EUV/193i 全流程中测试
材料性能

人类专家的Idea

含具体的参数和方法名
称，前后逻辑紧密

GPT-5.1的Idea

缺乏具体工作流，具体
参数，具体方法分析重点

• 单体序列分布（monomer 
sequence distribution）
• 组成漂移（compositional 
drift）
• 组成均匀性对光刻胶性能
（尤其 LER）的影响

研究目标

定量比较 RAFT 与 FRP 制备
的光刻胶共聚物三元共聚

物的组成非均一性

任务2：Idea Generation
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任务3.1：Dry Experiment

1. 每题含 5 个单测，最佳 Gemini-3-Pro 的严格通过率（全过 
5 个单测）仅 36.64%，宽松通过率（至少过 1 个）41.98%，表
明模型常能写对部分，但难以实现严格正确；
2. 闭源模型略优于开源，但优势有限且分布重叠，“科学代码
合成”仍是各架构共同短板；
3. 平滑执行率（无报错运行）多在 90%+，显示“能跑”与“算对”
之间存在鸿沟；
4.类型上，数据处理/预测建模较稳；数值计算与仿真最弱，受
离散化、稳定性与约束处理影响。
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任务3.1：Dry Experiment

引力波体积估计中，前向累加（np.cumsum）与自适应积分（scipy.integrate.quad）差异巨大；前者累积误差经 χ(z) 
影响 dV/dz，最终体积严重偏离。 
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任务3.2：Wet Experiment

1. 序列相似度整体偏低，最佳闭源约 35.5；
参数准确率最高约 40.6；部分闭源参数准确
率显著下跌（约 20.7）； 
2. 高发错误：插入多余步骤、遗漏关键步骤、
打乱有效步骤顺序。 
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任务3.2：Wet Experiment

在 NSCLC 抗 PD-1 流程中，常见错误包括：将纵向采样简化为一次采血；PBMC 只在单一时间点分离；功能测定未
按时间/刺激分组；基因组测序与免疫表型流程混用样本等，反映时间协调、分支规划与样本管理薄弱。
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任务4：Experimental Reasoning

1. 闭源整体更强：最佳闭源答案准确率约 41.9、
推理有效性最高约 71.3；
2. 多数模型推理有效性高于答案准确率：难以实
现推理链条的完全正确；
3.推理类型上，因果推断与感知识别较稳；比较型
最弱，涉及跨样本细粒度对比与一致性判别。
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问题
在主震震中西北方向（沿剖面距离约 15–25 km）处，大的同震滑动发生
在浅部（约 0–5 km），理论上会导致该区域浅部余震数量偏少（余震亏
损）。在这个区域里，哪一个余震目录最符合“浅部大滑动 → 浅部余震偏
少”的预期模式？

Claude-Opus-4.1推理步骤
1. MESS HypoDD：该区域浅部(0–5 km)余震“相对稠密”；
2. Shelly (2020)：该区域浅部余震 “较为稠密”；
3. Ross et al. (2019)：在 15–25 km、0–5 km 的浅部余震明显
减少，表现出“余震亏损”。 
Claude-Opus-4.1最终答案
Ross et al. (2019)

正确答案
MESS HypoDD。西北区域浅部 (0–5 km) 余震明显稀疏，甚
至在 5–10 km 也偏少。

任务4：Experimental Reasoning
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Test Time Reinforcement Learning

为什么要做TTRL？
1. 传统数据的答案是清晰定义的，科研训练；
2. 真实科研场景没有答案，例如idea generation。

传统场景：有标准答案 科研探索：没有标准答案
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Test Time Reinforcement Learning

1. 在线检索相关文献 → 计算语义相似度 → 构造新颖性奖励（越不相似越高分）；
2. 使用 GRPO 优化策略；
3. 基座模型：Qwen3-8B（开源）。
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Test Time Reinforcement Learning

无需标准答案，新颖度由 49.36 提升至 62.06；生
成结构更具体，从“拼装套路”走向“结构化创新”。
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Agent Tool Integrated Reasoning

1. 不同模型对于工具调用的频率差异显著：其中Gemini-2.5-Pro较少调用工具，而
DeekSeek-R1等模型会频繁调用工具；
2. 不同工具被使用的频率差异交大，多部分模型主要以网页搜索作为主要的工具；
3. 减少重复检索，提高查询质量有助于提升回答质量的同时加速推理过程。
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评测框架：Agentic Evaluation Framework

1. Question Selection：按学科、
任务类型、样本规模与难度筛选
题目；支持“覆盖全部/抽样/指定
主题”等多策略；  

2. Metric Customization：在预置
科学家对齐指标基础上，结合用
户意图生成“可执行评分规约” ，
并与内置度量合并；  

3. Predict and Eval：模型推理与指
标评测；

4. Report Generation：自动汇总
“总体/分学科/分任务/分维度”结
果，生成榜单、雷达图/柱状图。
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用户自定义评测

高效
每个人的科研方向不同

快速进行部分评测

定制化
每个人的评测重点不同

制定差异化指标

可读性
生成有依据，可追溯的评测

报告，方便阅读理解
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多模态推理
通过细粒度视觉定位与对比训练，提
升比较推理精度

测试时学习
优化多目标科学奖励体系，平衡新颖
性、严谨性与安全性

湿实验协议
结合状态模拟，重点解决时序逻辑与
复杂分支

深度研究
强化证据聚合与数值鲁棒性，提升深

层研究准确性

创意生成
引入规划感知与结构化监督，保障创

意可行与执行细节完备 

代码生成
训练需超越语法，聚焦数值分析先验

与算法稳定性

未来方向

SGI
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欢迎关注

主页 论文 代码 数据

科学评测工具集
SciEvalKit

通用评测工具集
VLMEvalKit

https://internscience.github.io/SGI-Page/

社区交流群

https://internscience.github.io/SGI-Page/
https://internscience.github.io/SGI-Page/
https://internscience.github.io/SGI-Page/
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Thanks
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