Attacker Control and Bug Prioritization

Guilhem Lacombe - Sébastien Bardin

Bl & BINSEC

universite UG/A\

Université
PARIS-SACLAY Grenoble Alpes

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

USENIX Security 2025

AVAILABLE REPRODUCED

\/m

Automated bug-finding has become highly effective

fuzzing, symbolic execution, abstract interpretation...

~ Syzkaller / Syzbot

S \)4./ OSS-Fuzz
23k bugs, 1.5k still open > 10k vulns.

list /. 2/23
@ J \e/nmac /

Bug-fixing cannot keep up!

5000
4000
& 3000 A
3
Q
2000

1000 A

open —&— avag. lifetime
fixed —8— avg. lifetime (1y max)
fixed + closed

invalid
B total

2017

2018 2019 2020 2021 2022 2023 2024

- 400
- 350
- 300
250

>
-200 3
150
- 100

- 50

Syzbot 2018—2023: +47% post-discovery lifetime!

3/23

Motivating example: not all bugs are equally dangerous

Vuln A: Not that dangerous? Vuln B: DANGER!!!
size < 40 size > 256
char buf[256]; char buf[256];
if(size > 296)
if(size < 40) size = 296;
size —= 40;
memcpy(buf, msg, size); memcpy(buf, msg, size);
size € [2% —40;2% —1] cRASH size € [257;296] s
= crash = ret. addr. overwrite

list | 4/23
@ J %mas /

We need efficient bug prioritization

Fuzzing & CO
v

Crashing Inputs

Ranked
Vulnerabilities

@ IistJ \/m

TO FIX
00B et
UAF + /{—\
(e]6]=) ++(®
00B + \J

5/23

Existing approaches are lackluster

Automated Correct Explainable

manual analysis X 1 v scalability?
vuln. type = threat level v X v bug capabilities?
Auto. Exploit Gen. v)X v genericity?
Machine Learning v X X bug capabilities?

Core issue: no generic approach accounting for the capabilities granted to an attacker

list | 6/23
@ J %mas /

Motivating example: straightforward solutions are not good enough!

Vuln A: Not that dangerous?
size < 40

char buf[256];
é'f.(size < 40)

size —= 40;
memcpy(buf, msg, size);

size € [2%% — 40; 254 — 1]
= crash

CRASH

Type Tainted
A OOB write v
B OOB write v

Vuln B: DANGER!!!
size > 256

char buf[256];
if(size > 296)
size = 296;

memcpy(buf, msg, size);

size € [257;296]
= ret. addr. overwrite

D

size -

40 \
40

RET

7/23

Our approach: vulnerability evaluation based on Attacker Control

General approach
formal program analysis = evaluation of well-defined aspects of exploitability

Today's topic: Attacker Control
> theoretical framework + algorithms

> highly automated implementation in Colorstreams

- Control

> application to real-world vulnerabilities (40 CVEs across experiments)
+ correct analysis of CVE-2022-30790 (vs. original human analysis)

list | 8/23
@ J %mas /

Current scope

What kinds of bugs are we looking at?
low-level memory and pointer corruptions
> typical “critical” fuzzer / ASAN bugs
> prerequisites: triggering input + type / ASAN report

input } concrete execution } * } parameter p

> pointer corruption: p = pointer

Examples

> buffer overflow: p = offset, size, written data

list | 9/23
@ J \4mas /

Attacker Control: intuitive definition

input } concrete execution } * } parameter p
Intuition
control = ability to obtain desired effects through inputs

list "\/. 10/23
@ J %mas /

Attacker Control: intuitive definition

input } concrete execution } * } parameter p

Intuition Actually workable and generic concept
control = ability to obtain desired-effects different values for p through inputs

Key insight
> quantitative aspect: more is better

> qualitative aspect: # values have # threat levels = need weights

list "\/. 10/23
@ J %mas /

Attacker Control: core definition

Domains of Control
| The set of feasible values.

OOB sizes for our motivating example
> Vuln. a: [2%% — 296; 264 — 257]
> Vuln. b: [1;40]

Useful for a human! But how to compute and score them automatically?
X domain propagation (precision: over approx without under approx)

X solution enumeration (scalability: too slow)

g IistJ \/m

11/23

Computing domains of control with Shrink and Split: overview

input } concrete execution } * } parameter p
. . S constraint on p
input symbolic execution s —

9
SMT formula -y

~

12/23

Computing domains of control with Shrink and Split: overview

input } concrete execution } * } parameter p
. y ' S constraint on p
input symbolic execution fos 1

0 olpl

~ Domain of
,@a‘ Control for p

U
4 SMT formula Qf

~

12/23

Computing domains of control with Shrink and Split: algorithm

READY? START!

0 all possible values 2lpl

list, Vime 13/23

Computing domains of control with Shrink and Split: algorithm

SHRINKING

0 <« min max=—» 2lpl

Finding min / max values

min/max,e; st. ¢p Ap=v
how: Z3 min / max or binary search

st Vi 13/23

Computing domains of control with Shrink and Split: algorithm

SPLITTING

0 infeasible =» 2lpl

Finding an infeasible value
with quantifiers: 3 v € [s.t. V x, ¢p(x) # v

st Vi 13/23

Computing domains of control with Shrink and Split: algorithm

SHRINKING

0 max—» <= Mmin 2lp|

st Vi 13/23

Computing domains of control with Shrink and Split: algorithm

SPLITTING

0 all feasible ?

Proving all values are feasible

Bvelst Vx ¢p(x)#v
<= infeasible value query returns unsat

IistJ \/...

13/23

Computing domains of control with Shrink and Split: algorithm

RESULT

r > 1 feasible

0 - weak 2lpl

st Vi 13/23

Computing domains of control with Shrink and Split: algorithm

Guarantees
> strongly controlled intervals
= under-approx

» strongly and weakly controlled intervals
=> over-approx

all possible values 2lpl
v
SHRINKING
<= min max—» 2lpl
A
v
SPLITTING
infeasible —» 2lpl
all feasible | ? 2lpl
v
strong | weak 2lpl

What if the domain is full of holes?
Solutions:

> split limit

> regularity constraints (ex: fixed bits)

g IistJ \/m

14/23

Computing scores from domains of control

Weighted Quantitative Control (wQC)

Sum of feasible value threat levels.
= integrate a weight function w(n) over the domain of control

11 Jthreat++

"
+ ~ o
Motivating example ~

Bias toward local OOBs: w : x — ﬁ

> Vuln. A: wQC(oob_size) =~ 2758 CRASH Jthreat--
> Vuln. B: wQC(oob_size) ~ 0.08

list | 15/23
@ J %mas /

Implementation: Colorstreams

Bug Finding

A 4

Inputs
Vuln. params

<

Colorstreams

Tracing (Pin)

SE (Binsec)

Analysis
Policy

SMT solvers

PMC solvers

<

Control over
vuln. params

> open source release: https://github.com/binsec/colorstreams

> precise + dynamic + binary-level
> SE with & BINSEC

> tracing = single-path = performance
multi-path behaviour: analyze multiple traces + models for library functions

@ IistJ \4“35

16/23

https://github.com/binsec/colorstreams

Evaluation

Ground-truth benchmark
> 39 programs, 14 real-world vulnerabilities

> OOB reads & writes, use-after-frees, code pointer corruptions...
> manually created / analyzed

= evaluate precision

Realistic benchmark
» 26 out-of-bounds vulns from the MAGMA fuzzing benchmark*

» OOB reads & writes

> highly automated analysis

= evaluate practicality

@ ||StJ \4mas *https://hexhive.epfl.ch/magma/ 17/23

https://hexhive.epfl.ch/magma/

Precision: evaluating buffer OOB write vulnerabilities

Type of vuln: out-of-bounds write
Parameters: offset, size (+ data)

Most useful at a glance?
(1) Taint (2) S&S (100 max splits) (3) S&SFB (100 max splits)

. 1 weak | - 1 weak
|] | strong --] HIE strong

cve-2019-14192.0f wsize <1> -
cve-2019-14202.0f wsize <1> -
cve-2021-3246.0f size <1> -
cve-2022-30552.0f wsize <1>
cve-2022-30552.0f_woff <3> 4
cve-2022-30790.0f_wsize <5> -
cve-2022-30790.of_woff <7> 4
cve-2022-30790_2.of woff2 <5> 4
motex1.of_wsize <1> -
motex2.of_wsize <1> -

target

-
. Y
>
=
[0]
Q

value range

list "\/. 18/23
@ _I \e/rlmas /

Precision: evaluating buffer OOB write vulnerabilities

Type of vuln: out-of-bounds write
Parameters: offset, size (+ data)

Most useful at a glance?
(1) Taint (2) S&S (100 max splits) (3) S&SFB (100 max splits)

cve-2019-14192.0f wsize <1> -
cve-2019-14202.0f wsize <1> -
cve-2021-3246.0f size <1> -
cve-2022-30552.0f wsize <1>
cve-2022-30552.0f_woff <3> 4
cve-2022-30790.0f_wsize <5> -
cve-2022-30790.of_woff <7> 4
cve-2022-30790_2.of woff2 <5> 4
motex1.of_wsize <1> -
motex2.of_wsize <1> -

] weak | -l --------] weak
| strong --] HIE strong

target

-
Y
>
=
[0]
Q

N
)=}

N
=
o

[N

1

IS

/

_uerange _ \f/

list "\/. 18/23
@ J \e/nmas /

Precision: differentiating different values makes a difference!

Vulnerability CVSS Expect Us

OOB writes
cve-2021-3246
cve-2019-14192
cve-2019-14202
cve-2022-30790
cve-2022-30552
cve-2022-30790-2

OOB reads
cve-2023-37837
heartbleed

Vulnerability CVSS Expect Us
Code ptr corr.
cve-2021-26567
cve-2020-14393
cve-2024-41881
cve-2024-43700
cve-2023-43338

%

st v 19/23

Precision: improving human analysis

Analysis of CVE-2022-30790 from human experts*
metadata corruption in linked list = arbitrary write

cve-2022-30790.0f WSize <5> rerrerrerrerssresrsiriiniii,
cve-2022-30790.of woff <7> 1-1i

CVe'2022'305520f_WS|Ze <1> |
cve-2022-30552.0f woff <3>

> does not look like arbitrary write...

> actually identical to CVE-2022-30552

> humans make mistakes???

(full code review in the paper)

||St V *https://research.nccgroup.com/2022/06/03/technical-advisory-multiple-vulnerabilities-in-u- 20/23
J erimac boot-cve-2022-30790-cve-2022-30552/

https://research.nccgroup.com/2022/06/03/technical-advisory-multiple-vulnerabilities-in-u-boot-cve-2022-30790-cve-2022-30552/
https://research.nccgroup.com/2022/06/03/technical-advisory-multiple-vulnerabilities-in-u-boot-cve-2022-30790-cve-2022-30552/

Practicality: automatic analysis of the MAGMA vulnerabilities

Automation based on taint
> symb. input selection

» OOB detection

=> no manual analysis
| = no manual instrumentation

Runtime
6m avg. / program (7s - 20m)

Close to fully automated
prioritization of ASAN bugs!

Memory Write Bugs

Memory Read Bugs

Base
Size

SSLNEWOO1 - PDFO19 1
SSLNEWOO3 - PHPO11
S5L002 1 PDF003
SSLNEWOOS -
SSLNEWOOG - TIF008
SSLNEW004 S5L001 4
SSLNEW002 - TIF008_2 1
TIF002_2 - TIFOO1 1
TIF002 55L009
TIFOO8 - XMLO12
TIF008_2 - TIF002
SSLOOL 4 ﬁ TIF002_2 {
TIFOO1
XMLOOS J PDF004 A
XMLOOT 1 Bace | PDFO107
XML002 - Sive PDFO18 A
5QLO18 4 Data | PNGOO7
00 02 04 06 0.0
Score

0.2 0.4 0.6

@ IistJ \/m

21/23

Conclusion

Bug prioritization based on Attacker Control
» domains of control = set of obtainable values

» SE + Shrink and Split — precise computation of domains of control
» scoring with weighted Quantitative Control — qualitative + quantitative

= automated prioritization of real-world bugs

Ongoing works

» further automation + fuzzing integration .
e i » more complex domains of control
» combining multiple paths / traces .

> more vulnerability types

» control + robustness*?

@ ||StJ \4mas *Girol, G., Lacombe, G., Bardin, S., PLDI 2024 22/23

The End

Thank you for your attention.
Any questions?

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

NSEC

open-source release https://binsec.github.io/
https://github.com/binsec/colorstreams

: REPRODUCED ann B
https://doi.org/10.56281/zenodo.14699098

g st Vi 23/23

https://doi.org/10.5281/zenodo.14699098
https://github.com/binsec/colorstreams
https://binsec.github.io/

Bonus: vulnerability capability awareness / evaluation in AEG

evocatio [CCS'22]

fuzzing to find new capabilities (ex: new OOB offset / size values)
but: no scoring or ranking

KOOBE [USENIX'20]

uses constraints on OOB offset / size to characterize capabilities
but: capability comparison

» A> B <= B constant and included in A
» A= B <= A identical to B

= too simple for our needs!

@ st Vo 23/23

