
Attacker Control and Bug Prioritization

Guilhem Lacombe - Sébastien Bardin

USENIX Security 2025

Automated bug-finding has become highly effective

fuzzing, symbolic execution, abstract interpretation...

Syzkaller / Syzbot

23k bugs, 1.5k still open

OSS-Fuzz
> 10k vulns.

2/23

Bug-fixing cannot keep up!

2017 2018 2019 2020 2021 2022 2023 2024
Year

0

1000

2000

3000

4000

5000

b
u
g
s

open

fixed

fixed + closed

invalid

total

0

50

100

150

200

250

300

350

400

d
a
y
s

Syzbot Bugs per Year of Discovery (2025-04-15 snapshot)

avg. lifetime

avg. lifetime (1y max)

Syzbot 2018→2023: +47% post-discovery lifetime!
3/23

Motivating example: not all bugs are equally dangerous

Vuln A: Not that dangerous?

size < 40

char buf[256];
...
if(size < 40)

size −= 40;
memcpy(buf, msg, size);

size ∈ [264 − 40; 264 − 1]
⇒ crash

CRASH

Vuln B: DANGER!!!

size > 256

char buf[256];
if(size > 296)

size = 296;
...
memcpy(buf, msg, size);

size ∈ [257; 296]
⇒ ret. addr. overwrite

RET

4/23

We need efficient bug prioritization

Fuzzing & CO

Crashing Inputs

???

Ranked
Vulnerabilities

TO FIX

OOB +++ ...

UAF ++

OOB ++

OOB +

5/23

Existing approaches are lackluster

Automated Correct Explainable

manual analysis ✗ ✓? ✓ scalability?

vuln. type ⇒ threat level ✓ ✗ ✓ bug capabilities?

Auto. Exploit Gen. ✓ ✓/ ✗ ✓ genericity?

Machine Learning ✓ ✗ ✗ bug capabilities?

Core issue: no generic approach accounting for the capabilities granted to an attacker

6/23

Motivating example: straightforward solutions are not good enough!

Vuln A: Not that dangerous?

size < 40

char buf[256];
...
if(size < 40)

size −= 40;
memcpy(buf, msg, size);

size ∈ [264 − 40; 264 − 1]
⇒ crash

CRASH

Vuln B: DANGER!!!

size > 256

char buf[256];
if(size > 296)

size = 296;
...
memcpy(buf, msg, size);

size ∈ [257; 296]
⇒ ret. addr. overwrite

RET

Type Tainted # size
A OOB write ✓ 40
B OOB write ✓ 40

7/23

Our approach: vulnerability evaluation based on Attacker Control

General approach

formal program analysis ⇒ evaluation of well-defined aspects of exploitability

Today’s topic: Attacker Control

➤ theoretical framework + algorithms

➤ highly automated implementation in Colorstreams

InputsBug Finding Control
ScoreColorstreams

➤ application to real-world vulnerabilities (40 CVEs across experiments)
+ correct analysis of CVE-2022-30790 (vs. original human analysis)

8/23

Current scope

What kinds of bugs are we looking at?

low-level memory and pointer corruptions

➤ typical “critical” fuzzer / ASAN bugs

➤ prerequisites: triggering input + type / ASAN report

symbolic execution

input concrete execution

input

0 2|p|

Domain of
Control for p

Shrink and Split

NEW

parameter p

constraint on p

SMT formula

Examples

➤ pointer corruption: p = pointer

➤ buffer overflow: p = offset, size, written data

9/23

Attacker Control: intuitive definition

symbolic execution

input concrete execution

input

0 2|p|

Domain of
Control for p

Shrink and Split

NEW

parameter p

constraint on p

SMT formula

Intuition
control = ability to obtain desired effects through inputs

Key insight

➤ quantitative aspect: more is better

➤ qualitative aspect: ̸= values have ̸= threat levels ⇒ need weights

10/23

Attacker Control: intuitive definition

symbolic execution

input concrete execution

input

0 2|p|

Domain of
Control for p

Shrink and Split

NEW

parameter p

constraint on p

SMT formula

Intuition Actually workable and generic concept

control = ability to obtain desired effects different values for p through inputs

Key insight

➤ quantitative aspect: more is better

➤ qualitative aspect: ̸= values have ̸= threat levels ⇒ need weights

10/23

Attacker Control: core definition

Domains of Control
The set of feasible values.

OOB sizes for our motivating example

➤ Vuln. a: [264 − 296; 264 − 257]

➤ Vuln. b: [1; 40]

Useful for a human! But how to compute and score them automatically?

✗ domain propagation (precision: over approx without under approx)

✗ solution enumeration (scalability: too slow)

11/23

Computing domains of control with Shrink and Split: overview

symbolic execution

input concrete execution

input

0 2|p|

Domain of
Control for p

Shrink and Split

NEW

parameter p

constraint on p

SMT formula

execution trace
execution path

12/23

Computing domains of control with Shrink and Split: overview

symbolic execution

input concrete execution

input

0 2|p|

Domain of
Control for p

Shrink and Split

NEW

parameter p

constraint on p

SMT formula

execution trace
execution path

12/23

Computing domains of control with Shrink and Split: algorithm

0 2|p|all possible values

READY? START!

13/23

Computing domains of control with Shrink and Split: algorithm

0 min max

SHRINKING

2|p|

Finding min / max values

min/maxv∈I s.t. ϕp ∧ p = v
how: Z3 min / max or binary search

13/23

Computing domains of control with Shrink and Split: algorithm

0

SPLITTING

infeasible 2|p|

Finding an infeasible value

with quantifiers: ∃ v ∈ I s.t. ∀ x , ϕp(x) ̸= v

13/23

Computing domains of control with Shrink and Split: algorithm

0

SHRINKING

minmax 2|p|

13/23

Computing domains of control with Shrink and Split: algorithm

?all feasible0

SPLITTING
error / timeout / stop

2|p|

Proving all values are feasible

∄ v ∈ I s.t. ∀ x , ϕp(x) ̸= v
⇐⇒ infeasible value query returns unsat

13/23

Computing domains of control with Shrink and Split: algorithm

0

RESULT

strong weak
> 1 feasible

2|p|

13/23

Computing domains of control with Shrink and Split: algorithm

0 2|p|all possible values

0 min max

SHRINKING

2|p|

0 infeasible 2|p|

0

SPLITTING

2|p|all feasible | ?

0 2|p|strong | weak

Guarantees
➤ strongly controlled intervals

⇒ under-approx

➤ strongly and weakly controlled intervals
⇒ over-approx

What if the domain is full of holes?
Solutions:

➤ split limit

➤ regularity constraints (ex: fixed bits)

14/23

Computing scores from domains of control

Weighted Quantitative Control (wQC)

Sum of feasible value threat levels.
⇒ integrate a weight function ω(n) over the domain of control

Motivating example

Bias toward local OOBs: ω : x 7→ 1
ln(2)x

➤ Vuln. A: wQC (oob size) ≈ 2−58

➤ Vuln. B: wQC (oob size) ≈ 0.08

0

2|size|

!!!

CRASH

∫threat++

∫threat--

+

15/23

Implementation: Colorstreams

Inputs
Vuln. params

Bug Finding Colorstreams

Tracing (Pin)

SE (Binsec)

Analysis
Policy

SMT solvers

PMC solvers

Control over
vuln. params

➤ open source release: https://github.com/binsec/colorstreams

➤ precise + dynamic + binary-level

➤ SE with

➤ tracing ⇒ single-path ⇒ performance
multi-path behaviour: analyze multiple traces + models for library functions

16/23

https://github.com/binsec/colorstreams

Evaluation

Ground-truth benchmark
➤ 39 programs, 14 real-world vulnerabilities

➤ OOB reads & writes, use-after-frees, code pointer corruptions...

➤ manually created / analyzed

⇒ evaluate precision

Realistic benchmark

➤ 26 out-of-bounds vulns from the MAGMA fuzzing benchmark*

➤ OOB reads & writes

➤ highly automated analysis

⇒ evaluate practicality

*https://hexhive.epfl.ch/magma/ 17/23

https://hexhive.epfl.ch/magma/

Precision: evaluating buffer OOB write vulnerabilities

Type of vuln: out-of-bounds write
Parameters: offset, size (+ data)

Most useful at a glance?

20 216 232 248 264

motex2.of_wsize <1>
motex1.of_wsize <1>

cve-2022-30790_2.of_woff2 <5>
cve-2022-30790.of_woff <7>

cve-2022-30790.of_wsize <5>
cve-2022-30552.of_woff <3>

cve-2022-30552.of_wsize <1>
cve-2021-3246.of_size <1>

cve-2019-14202.of_wsize <1>
cve-2019-14192.of_wsize <1>

(1) Taint
tainted

20 216 232 248 264

(2) S&S (100 max splits)
weak
strong

20 216 232 248 264

(3) S&SFB (100 max splits)
weak
strong

value range

ta
rg

et

18/23

Precision: evaluating buffer OOB write vulnerabilities

Type of vuln: out-of-bounds write
Parameters: offset, size (+ data)

Most useful at a glance?

20 216 232 248 264

motex2.of_wsize <1>
motex1.of_wsize <1>

cve-2022-30790_2.of_woff2 <5>
cve-2022-30790.of_woff <7>

cve-2022-30790.of_wsize <5>
cve-2022-30552.of_woff <3>

cve-2022-30552.of_wsize <1>
cve-2021-3246.of_size <1>

cve-2019-14202.of_wsize <1>
cve-2019-14192.of_wsize <1>

(1) Taint
tainted

20 216 232 248 264

(2) S&S (100 max splits)
weak
strong

20 216 232 248 264

(3) S&SFB (100 max splits)
weak
strong

value range

ta
rg

et

18/23

Precision: differentiating different values makes a difference!

19/23

Precision: improving human analysis

Analysis of CVE-2022-30790 from human experts*

metadata corruption in linked list ⇒ arbitrary write

20 216 232 248 264

motex2.of_wsize <1>
motex1.of_wsize <1>

cve-2022-30790_2.of_woff2 <5>
cve-2022-30790.of_woff <7>

cve-2022-30790.of_wsize <5>
cve-2022-30552.of_woff <3>

cve-2022-30552.of_wsize <1>
cve-2021-3246.of_size <1>

cve-2019-14202.of_wsize <1>
cve-2019-14192.of_wsize <1>

(1) WCSC
weak

20 216 232 248 264

(2) QC

20 216 232 248 264

(3) S&S (100 max splits)
weak
strong

20 216 232 248 264

(4) S&SFB (100 max splits)
weak
strong

value range

ta
rg

et

20 216 232 248 264

motex2.of_wsize <1>
motex1.of_wsize <1>

cve-2022-30790_2.of_woff2 <5>
cve-2022-30790.of_woff <7>

cve-2022-30790.of_wsize <5>
cve-2022-30552.of_woff <3>

cve-2022-30552.of_wsize <1>
cve-2021-3246.of_size <1>

cve-2019-14202.of_wsize <1>
cve-2019-14192.of_wsize <1>

(1) WCSC
weak

20 216 232 248 264

(2) QC

20 216 232 248 264

(3) S&S (100 max splits)
weak
strong

20 216 232 248 264

(4) S&SFB (100 max splits)
weak
strong

value range

ta
rg

et

20 216 232 248 264

motex2.of_wsize <1>
motex1.of_wsize <1>

cve-2022-30790_2.of_woff2 <5>
cve-2022-30790.of_woff <7>

cve-2022-30790.of_wsize <5>
cve-2022-30552.of_woff <3>

cve-2022-30552.of_wsize <1>
cve-2021-3246.of_size <1>

cve-2019-14202.of_wsize <1>
cve-2019-14192.of_wsize <1>

(1) WCSC
weak

20 216 232 248 264

(2) QC

20 216 232 248 264

(3) S&S (100 max splits)
weak
strong

20 216 232 248 264

(4) S&SFB (100 max splits)
weak
strong

value range

ta
rg

et

20 216 232 248 264

motex2.of_wsize <1>
motex1.of_wsize <1>

cve-2022-30790_2.of_woff2 <5>
cve-2022-30790.of_woff <7>

cve-2022-30790.of_wsize <5>
cve-2022-30552.of_woff <3>

cve-2022-30552.of_wsize <1>
cve-2021-3246.of_size <1>

cve-2019-14202.of_wsize <1>
cve-2019-14192.of_wsize <1>

(1) WCSC
weak

20 216 232 248 264

(2) QC

20 216 232 248 264

(3) S&S (100 max splits)
weak
strong

20 216 232 248 264

(4) S&SFB (100 max splits)
weak
strong

value range

ta
rg

et

➤ does not look like arbitrary write...

➤ actually identical to CVE-2022-30552

➤ humans make mistakes???

(full code review in the paper)

*https://research.nccgroup.com/2022/06/03/technical-advisory-multiple-vulnerabilities-in-u-
boot-cve-2022-30790-cve-2022-30552/ 20/23

https://research.nccgroup.com/2022/06/03/technical-advisory-multiple-vulnerabilities-in-u-boot-cve-2022-30790-cve-2022-30552/
https://research.nccgroup.com/2022/06/03/technical-advisory-multiple-vulnerabilities-in-u-boot-cve-2022-30790-cve-2022-30552/

Practicality: automatic analysis of the MAGMA vulnerabilities

Automation based on taint
➤ symb. input selection

➤ OOB detection

⇒ no manual analysis
⇒ no manual instrumentation

Runtime

6m avg. / program (7s - 20m)

Close to fully automated
prioritization of ASAN bugs!

21/23

Conclusion

Bug prioritization based on Attacker Control

➤ domains of control = set of obtainable values

➤ SE + Shrink and Split → precise computation of domains of control

➤ scoring with weighted Quantitative Control → qualitative + quantitative

⇒ automated prioritization of real-world bugs

Ongoing works

➤ further automation + fuzzing integration

➤ combining multiple paths / traces

➤ control + robustness*?

➤ more complex domains of control

➤ more vulnerability types

*Girol, G., Lacombe, G., Bardin, S., PLDI 2024 22/23

The End

Thank you for your attention.
Any questions?

https://doi.org/10.5281/zenodo.14699098

open-source release
https://github.com/binsec/colorstreams

https://binsec.github.io/

23/23

https://doi.org/10.5281/zenodo.14699098
https://github.com/binsec/colorstreams
https://binsec.github.io/

Bonus: vulnerability capability awareness / evaluation in AEG

evocatio [CCS’22]

fuzzing to find new capabilities (ex: new OOB offset / size values)
but: no scoring or ranking

KOOBE [USENIX’20]

uses constraints on OOB offset / size to characterize capabilities
but: capability comparison

➤ A > B ⇐⇒ B constant and included in A

➤ A = B ⇐⇒ A identical to B

⇒ too simple for our needs!

23/23

